Volume 21, issue 7 (2021)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 23
Issue 6, 2415–2924
Issue 5, 1935–2414
Issue 4, 1463–1934
Issue 3, 963–1462
Issue 2, 509–962
Issue 1, 1–508

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Most big mapping class groups fail the Tits alternative

Daniel Allcock

Algebraic & Geometric Topology 21 (2021) 3675–3688
Bibliography
1 T Aougab, P Patel, N G Vlamis, Isometry groups of infinite-genus hyperbolic surfaces, Math. Ann. 381 (2021) 459 MR4322618
2 J Aramayona, N G Vlamis, Big mapping class groups: an overview, from: "In the tradition of Thurston" (editors K Ohshika, A Papadopoulos), Springer (2020) 459 MR4264585
3 M Bestvina, M Feighn, M Handel, The Tits alternative for Out(Fn), I : Dynamics of exponentially-growing automorphisms, Ann. of Math. 151 (2000) 517 MR1765705
4 M Bestvina, M Feighn, M Handel, The Tits alternative for Out(Fn), II : A Kolchin type theorem, Ann. of Math. 161 (2005) 1 MR2150382
5 B Farb, D Margalit, A primer on mapping class groups, 49, Princeton Univ. Press (2012) MR2850125
6 L Funar, C Kapoudjian, On a universal mapping class group of genus zero, Geom. Funct. Anal. 14 (2004) 965 MR2105950
7 R I Grigorchuk, Burnside problem on periodic groups, Funktsional. Anal. i Prilozhen. 14 (1980) 53 MR565099
8 R Grigorchuk, I Pak, Groups of intermediate growth: an introduction, Enseign. Math. 54 (2008) 251 MR2478087
9 N V Ivanov, Algebraic properties of mapping class groups of surfaces, from: "Geometric and algebraic topology" (editors H Toruńczyk, S Jackowski, S Spiez), Banach Center Publ. 18, PWN (1986) 15 MR925854
10 J Lanier, M Loving, Centers of subgroups of big mapping class groups and the Tits alternative, Glas. Mat. 55 (2020) 85 MR4115214
11 A Martin, P Przytycki, Tits alternative for Artin groups of type FC, J. Group Theory 23 (2020) 563 MR4116657
12 J McCarthy, A “Tits-alternative” for subgroups of surface mapping class groups, Trans. Amer. Math. Soc. 291 (1985) 583 MR800253
13 A O Prishlyak, K I Mischenko, Classification of noncompact surfaces with boundary, Methods Funct. Anal. Topology 13 (2007) 62 MR2308580
14 I Richards, On the classification of noncompact surfaces, Trans. Amer. Math. Soc. 106 (1963) 259 MR143186
15 J Tits, Free subgroups in linear groups, J. Algebra 20 (1972) 250 MR286898