Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Chromatic (co)homology of finite general linear groups

Samuel M A Hutchinson, Samuel J Marsh and Neil P Strickland

Algebraic & Geometric Topology 22 (2022) 1511–1614
Bibliography
1 M Bakuradze, All extensions of C2 by C2n ×C2n are good for the Morava K–theory, Hiroshima Math. J. 50 (2020) 1 MR4074376
2 M Bakuradze, M Jibladze, Morava K–theory rings for the groups G38,,G41 of order 32, J. K–Theory 13 (2014) 171 MR3177822
3 T Barthel, N Stapleton, Centralizers in good groups are good, Algebr. Geom. Topol. 16 (2016) 1453 MR3523046
4 T Barthel, N Stapleton, Transfer ideals and torsion in the Morava E–theory of abelian groups, J. Homotopy Relat. Struct. 15 (2020) 369 MR4103988
5 S Carmeli, T M Schlank, L Yanovski, Ambidexterity in chromatic homotopy theory, preprint (2018) arXiv:1811.02057
6 J A Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80 (1955) 402 MR72878
7 J A Green, Hall algebras, hereditary algebras and quantum groups, Invent. Math. 120 (1995) 361 MR1329046
8 J P C Greenlees, N P Strickland, Varieties and local cohomology for chromatic group cohomology rings, Topology 38 (1999) 1093 MR1688422
9 M J Hopkins, N J Kuhn, D C Ravenel, Generalized group characters and complex oriented cohomology theories, J. Amer. Math. Soc. 13 (2000) 553 MR1758754
10 M Hopkins, J Lurie, Ambidexterity in K(n)–local stable homotopy theory, preprint (2013)
11 M Hovey, N P Strickland, Morava K–theories and localisation, 666, Amer. Math. Soc. (1999) MR1601906
12 S M A Hutchinson, The Morava cohomology of finite general linear groups, PhD thesis, University of Sheffield (2018)
13 I Kriz, K P Lee, Odd-degree elements in the Morava K(n) cohomology of finite groups, Topology Appl. 103 (2000) 229 MR1758436
14 G Lusztig, On the discrete representations of the general linear groups over a finite field, Bull. Amer. Math. Soc. 79 (1973) 550 MR315010
15 S Marsh, The Morava E–theories of finite general linear groups, PhD thesis, University of Sheffield (2009) arXiv:1001.1949
16 A Mathew, N Naumann, J Noel, Derived induction and restriction theory, Geom. Topol. 23 (2019) 541 MR3939042
17 H Matsumura, Commutative ring theory, 8, Cambridge Univ. Press (1986) MR879273
18 D Quillen, On the cohomology and K–theory of the general linear groups over a finite field, Ann. of Math. 96 (1972) 552 MR315016
19 C Rezk, Modular isogeny complexes, Algebr. Geom. Topol. 12 (2012) 1373 MR2966690
20 T M Schlank, N Stapleton, A transchromatic proof of Strickland’s theorem, Adv. Math. 285 (2015) 1415 MR3406531
21 B Schuster, Morava K–theory of groups of order 32, Algebr. Geom. Topol. 11 (2011) 503 MR2783236
22 B Schuster, K(n) Chern approximations of some finite groups, Algebr. Geom. Topol. 12 (2012) 1695 MR2966700
23 N Stapleton, Subgroups of p–divisible groups and centralizers in symmetric groups, Trans. Amer. Math. Soc. 367 (2015) 3733 MR3314822
24 N Stapleton, Transchromatic twisted character maps, J. Homotopy Relat. Struct. 10 (2015) 29 MR3313634
25 N P Strickland, Finite subgroups of formal groups, J. Pure Appl. Algebra 121 (1997) 161 MR1473889
26 N P Strickland, Morava E–theory of symmetric groups, Topology 37 (1998) 757 MR1607736
27 N P Strickland, Formal schemes and formal groups, from: "Homotopy invariant algebraic structures" (editors J P Meyer, J Morava, W S Wilson), Contemp. Math. 239, Amer. Math. Soc. (1999) 263 MR1718087
28 N P Strickland, K(N)–local duality for finite groups and groupoids, Topology 39 (2000) 733 MR1760427
29 N P Strickland, Chern approximations for generalised group cohomology, Topology 40 (2001) 1167 MR1867242
30 M Tanabe, On Morava K–theories of Chevalley groups, Amer. J. Math. 117 (1995) 263 MR1314467
31 C B Thomas, Characteristic classes and the cohomology of finite groups, 9, Cambridge Univ. Press (1986) MR878978
32 T Torii, HKR characters, p–divisible groups and the generalized Chern character, Trans. Amer. Math. Soc. 362 (2010) 6159 MR2661512