|
|
Recent Issues |
Volume 24, 8 issues
Volume 24
Issue 8, 4139–4730
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594
Volume 23, 9 issues
Volume 23
Issue 9, 3909–4400
Issue 8, 3417–3908
Issue 7, 2925–3415
Issue 6, 2415–2924
Issue 5, 1935–2414
Issue 4, 1463–1934
Issue 3, 963–1462
Issue 2, 509–962
Issue 1, 1–508
Volume 22, 8 issues
Volume 22
Issue 8, 3533–4008
Issue 7, 3059–3532
Issue 6, 2533–3057
Issue 5, 2007–2532
Issue 4, 1497–2006
Issue 3, 991–1495
Issue 2, 473–990
Issue 1, 1–472
Volume 21, 7 issues
Volume 21
Issue 7, 3221–3734
Issue 6, 2677–3220
Issue 5, 2141–2676
Issue 4, 1595–2140
Issue 3, 1075–1593
Issue 2, 543–1074
Issue 1, 1–541
Volume 20, 7 issues
Volume 20
Issue 7, 3219–3760
Issue 6, 2687–3218
Issue 5, 2145–2685
Issue 4, 1601–2143
Issue 3, 1073–1600
Issue 2, 531–1072
Issue 1, 1–529
Volume 19, 7 issues
Volume 19
Issue 7, 3217–3753
Issue 6, 2677–3215
Issue 5, 2151–2676
Issue 4, 1619–2150
Issue 3, 1079–1618
Issue 2, 533–1078
Issue 1, 1–532
Volume 18, 7 issues
Volume 18
Issue 7, 3749–4373
Issue 6, 3133–3747
Issue 5, 2509–3131
Issue 4, 1883–2507
Issue 3, 1259–1881
Issue 2, 635–1258
Issue 1, 1–633
Volume 17, 6 issues
Volume 17
Issue 6, 3213–3852
Issue 5, 2565–3212
Issue 4, 1917–2564
Issue 3, 1283–1916
Issue 2, 645–1281
Issue 1, 1–643
Volume 16, 6 issues
Volume 16
Issue 6, 3073–3719
Issue 5, 2459–3071
Issue 4, 1827–2458
Issue 3, 1253–1825
Issue 2, 621–1251
Issue 1, 1–620
Volume 15, 6 issues
Volume 15
Issue 6, 3107–3729
Issue 5, 2479–3106
Issue 4, 1863–2477
Issue 3, 1239–1862
Issue 2, 623–1238
Issue 1, 1–622
Volume 14, 6 issues
Volume 14
Issue 6, 3141–3763
Issue 5, 2511–3139
Issue 4, 1881–2509
Issue 3, 1249–1879
Issue 2, 627–1247
Issue 1, 1–625
Volume 13, 6 issues
Volume 13
Issue 6, 3099–3731
Issue 5, 2471–3097
Issue 4, 1857–2469
Issue 3, 1243–1856
Issue 2, 625–1241
Issue 1, 1–624
Volume 12, 4 issues
Volume 12
Issue 4, 1901–2517
Issue 3, 1265–1899
Issue 2, 643–1263
Issue 1, 1–641
Volume 11, 5 issues
Volume 11
Issue 5, 2477–3084
Issue 4, 1861–2475
Issue 3, 1243–1860
Issue 2, 625–1242
Issue 1, 1–624
Volume 10, 4 issues
Volume 10
Issue 4, 1865–2468
Issue 3, 1245–1863
Issue 2, 627–1244
Issue 1, 1–625
Volume 9, 4 issues
Volume 9
Issue 4, 1885–2502
Issue 3, 1255–1883
Issue 2, 625–1254
Issue 1, 1–624
Volume 8, 4 issues
Volume 8
Issue 4, 1855–2414
Issue 3, 1223–1853
Issue 2, 615–1222
Issue 1, 1–613
Volume 7, 4 issues
Volume 7
Issue 4, 1633–2270
Issue 3, 1135–1632
Issue 2, 529–1134
Issue 1, 1–528
Volume 6, 5 issues
Volume 6
Issue 5, 2031–2518
Issue 4, 1519–2029
Issue 3, 1025–1517
Issue 2, 513–1024
Issue 1, 1–512
Volume 5, 4 issues
Volume 5
Issue 4, 1291–1732
Issue 3, 865–1290
Issue 2, 443–864
Issue 1, 1–442
Volume 4, 2 issues
Volume 4
Issue 2, 647–1272
Issue 1, 1–645
Volume 3, 2 issues
Volume 3
Issue 2, 623–1292
Issue 1, 1–622
Volume 2, 2 issues
Volume 2
Issue 2, 591–1204
Issue 1, 1–590
Volume 1, 2 issues
Volume 1
Issue 2, 627–790
Issue 1, 1–625
|
|
|
|
|
1 |
M Ando, A J
Blumberg, D Gepner, Parametrized spectra,
multiplicative Thom spectra and the twisted Umkehr map,
Geom. Topol. 22 (2018) 3761 MR3890766 |
2 |
M Ando, A J
Blumberg, D Gepner, M J Hopkins, C
Rezk, An
∞–categorical approach to
R–line bundles, R–module Thom spectra, and twisted
R–homology, J. Topol. 7
(2014) 869 MR3252967 |
3 |
V Angeltveit,
M A Hill, T Lawson, The spectra
ko and ku are not Thom spectra : an approach using
THH, from: "New
topological contexts for Galois theory and algebraic geometry"
(editors A Baker, B Richter), Geom. Topol. Monogr. 16, Geom.
Topol. Publ. (2009) 1 MR2544383 |
4 |
O Antolín-Camarena,
T Barthel, A simple universal
property of Thom ring spectra, J. Topol. 12 (2019) 56
MR3875978 |
5 |
S Basu, S
Sagave, C Schlichtkrull, Generalized Thom
spectra and their topological Hochschild homology, J.
Inst. Math. Jussieu 19 (2020) 21 MR4045079 |
6 |
A J Blumberg,
Topological
Hochschild homology of Thom spectra which are E∞ ring
spectra, J. Topol. 3 (2010) 535 MR2684512 |
7 |
A J Blumberg,
R L Cohen, C Schlichtkrull, Topological
Hochschild homology of Thom spectra and the free loop
space, Geom. Topol. 14 (2010) 1165 MR2651551 |
8 |
M Bökstedt,
Topological Hochschild homology, unpublished
(1985) |
9 |
M Brun, G
Carlsson, B I Dundas, Covering
homology, Adv. Math. 225 (2010) 3166 MR2729005 |
10 |
G Carlsson,
C L Douglas, B I Dundas, Higher topological
cyclic homology and the Segal conjecture for tori, Adv.
Math. 226 (2011) 1823 MR2737802 |
11 |
D Clausen, A
Mathew, N Naumann, J Noel, Descent in algebraic
K–theory and a conjecture of
Ausoni–Rognes, J. Eur. Math. Soc. 22 (2020) 1149
MR4071324 |
12 |
B Day, A reflection
theorem for closed categories, J. Pure Appl. Algebra 2
(1972) 1 MR296126 |
13 |
A D Elmendorf,
I Kriz, M A Mandell, J P May,
Rings, modules,
and algebras in stable homotopy theory, 47, Amer. Math.
Soc. (1997) MR1417719 |
14 |
D Gepner, M
Groth, T Nikolaus, Universality of
multiplicative infinite loop space machines, Algebr.
Geom. Topol. 15 (2015) 3107 MR3450758 |
15 |
D Gepner, R
Haugseng, Enriched
∞–categories via non-symmetric
∞–operads, Adv. Math. 279
(2015) 575 MR3345192 |
16 |
S Glasman, A spectrum-level
Hodge filtration on topological Hochschild homology,
Selecta Math. 22 (2016) 1583 MR3518559 |
17 |
J Hahn, A Yuan,
Exotic
multiplications on periodic complex bordism, J. Topol.
13 (2020) 1839 MR4186145 |
18 |
I Klang, The factorization
theory of Thom spectra and twisted nonabelian Poincaré
duality, Algebr. Geom. Topol. 18 (2018) 2541 MR3848394 |
19 |
N J Kuhn,
The
McCord model for the tensor product of a space and a
commutative ring spectrum, from: "Categorical
decomposition techniques in algebraic topology" (editors G
Arone, J Hubbuck, R Levi, M Weiss), Progr. Math. 215,
Birkhäuser (2004) 213 MR2039768 |
20 |
A Lindenstrauss, B
Richter, Stability of
Loday constructions, Homology Homotopy Appl. 24 (2022)
245 MR4410464 |
21 |
J L Loday,
Opérations sur
l’homologie cyclique des algèbres commutatives, Invent.
Math. 96 (1989) 205 MR981743 |
22 |
J Lurie, Higher topos
theory, 170, Princeton Univ. Press (2009) MR2522659 |
23 |
J Lurie, Derived
algebraic geometry, VII: Spectral schemes, preprint
(2011) |
24 |
J Lurie, Higher algebra, book
project (2017) |
25 |
J Lurie, Elliptic
cohomology, II: Orientations, preprint (2018) |
26 |
M Mahowald,
Ring
spectra which are Thom complexes, Duke Math. J. 46
(1979) 549 MR544245 |
27 |
A Mathew, THH and base-change
for Galois extensions of ring spectra, Algebr. Geom.
Topol. 17 (2017) 693 MR3623668 |
28 |
R McCarthy, V
Minasian, HKR theorem for
smooth S–algebras, J. Pure
Appl. Algebra 185 (2003) 239 MR2006429 |
29 |
J McClure, R
Schwänzl, R Vogt, THH(R)≅R ⊗ S1 for
E∞ ring spectra, J. Pure Appl.
Algebra 121 (1997) 137 MR1473888 |
30 |
M C McCord,
Classifying spaces
and infinite symmetric products, Trans. Amer. Math.
Soc. 146 (1969) 273 MR251719 |
31 |
H Miller,
Finite localizations, Bol. Soc. Mat. Mex. 37 (1992) 383
MR1317588 |
32 |
T Nikolaus, P
Scholze, On topological
cyclic homology, Acta Math. 221 (2018) 203 MR3904731 |
33 |
T Pirashvili,
Hodge
decomposition for higher order Hochschild homology,
Ann. Sci. École Norm. Sup. 33 (2000) 151 MR1755114 |
34 |
J Rognes, Galois extensions of
structured ring spectra and Stably dualizable groups,
898, Amer. Math. Soc. (2008) MR2387923 |
35 |
S Sagave, C
Schlichtkrull, Virtual vector
bundles and graded Thom spectra, Math. Z. 292 (2019)
975 MR3980280 |
36 |
C Schlichtkrull,
Higher
topological Hochschild homology of Thom spectra, J.
Topol. 4 (2011) 161 MR2783381 |
37 |
V P Snaith,
Algebraic
cobordism and K–theory,
221, Amer. Math. Soc. (1979) MR539791 |
38 |
V Snaith, Localized stable
homotopy of some classifying spaces, Math. Proc.
Cambridge Philos. Soc. 89 (1981) 325 MR600247 |
39 |
B Stonek, Higher
topological Hochschild homology of periodic complex
K–theory, Topology Appl.
282 (2020) MR4116834 |
40 |
R M Switzer,
Algebraic topology:
homotopy and homology, 212, Springer (1975) MR0385836 |
41 |
C A Weibel,
S C Geller, Étale descent for
Hochschild and cyclic homology, Comment. Math. Helv. 66
(1991) 368 MR1120653 |
42 |
C Westerland,
A higher
chromatic analogue of the image of J, Geom. Topol. 21 (2017) 1033
MR3626597 |
|