Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 8, 4139–4730
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
A bivariant Yoneda lemma and $(\infty, 2)$–categories of correspondences

Andrew W Macpherson

Algebraic & Geometric Topology 22 (2022) 2689–2774
DOI: 10.2140/agt.2022.22.2689
Bibliography
1 D Ayala, J Francis, Fibrations of –categories, High. Struct. 4 (2020) 168 MR4074276
2 T Bachmann, M Hoyois, Norms in motivic homotopy theory, 425, Soc. Math. France (2021) MR4288071
3 C Barwick, (,n)–Cat as a closed model category, PhD thesis, University of Pennsylvania (2005) MR2706984
4 C Barwick, C Schommer-Pries, On the unicity of the theory of higher categories, J. Amer. Math. Soc. 34 (2021) 1011 MR4301559
5 P Belmans, A J de Jong, others, The Stacks project, electronic reference (2005–)
6 D Ben-Zvi, J Francis, D Nadler, Integral transforms and Drinfeld centers in derived algebraic geometry, J. Amer. Math. Soc. 23 (2010) 909 MR2669705
7 D Ben-Zvi, D Nadler, Loop spaces and connections, J. Topol. 5 (2012) 377 MR2928082
8 C Berger, Iterated wreath product of the simplex category and iterated loop spaces, Adv. Math. 213 (2007) 230 MR2331244
9 T Dyckerhoff, M Kapranov, Higher Segal spaces, 2244, Springer (2019) MR3970975
10 D Gaitsgory, N Rozenblyum, A study in derived algebraic geometry, I : Correspondences and duality, 221, Amer. Math. Soc. (2017) MR3701352
11 D Gepner, R Haugseng, Enriched –categories via nonsymmetric –operads, Adv. Math. 279 (2015) 575 MR3345192
12 D Gepner, R Haugseng, T Nikolaus, Lax colimits and free fibrations in –categories, Doc. Math. 22 (2017) 1225 MR3690268
13 R Haugseng, Rectification of enriched –categories, Algebr. Geom. Topol. 15 (2015) 1931 MR3402334
14 R Haugseng, Iterated spans and classical topological field theories, Math. Z. 289 (2018) 1427 MR3830256
15 V Hinich, Yoneda lemma for enriched –categories, Adv. Math. 367 (2020) 107129, 119 MR4080581
16 B Keller, On the cyclic homology of exact categories, J. Pure Appl. Algebra 136 (1999) 1 MR1667558
17 J Lurie, Higher topos theory, 170, Princeton Univ. Press (2009) MR2522659
18 J Lurie, Higher algebra, book project (2017)
19 A W Macpherson, The operad that co-represents enrichment, Homology Homotopy Appl. 23 (2021) 387 MR4185309
20 E Mann, M Robalo, Brane actions, categorifications of Gromov–Witten theory and quantum K–theory, Geom. Topol. 22 (2018) 1759 MR3780445
21 A Mazel-Gee, A user’s guide to co/cartesian fibrations, Grad. J. Math. 4 (2019) 42 MR3999274
22 C Rezk, A Cartesian presentation of weak n–categories, Geom. Topol. 14 (2010) 521 MR2578310
23 E Riehl, D Verity, Homotopy coherent adjunctions and the formal theory of monads, Adv. Math. 286 (2016) 802 MR3415698
24 E Riehl, D Verity, Fibrations and Yoneda’s lemma in an –cosmos, J. Pure Appl. Algebra 221 (2017) 499 MR3556697
25 T Schürg, B Toën, G Vezzosi, Derived algebraic geometry, determinants of perfect complexes, and applications to obstruction theories for maps and complexes, J. Reine Angew. Math. 702 (2015) 1 MR3341464
26 C Simpson, Homotopy theory of higher categories, 19, Cambridge Univ. Press (2012) MR2883823
27 B Toën, Operations on derived moduli spaces of branes, preprint (2013) arXiv:1307.0405