Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Comparaison des nerfs $n$–catégoriques

Dimitri Ara and Georges Maltsiniotis

Algebraic & Geometric Topology 22 (2022) 2867–2914
Abstract

Le but de cet article est de comparer trois foncteurs nerf pour les n–catégories strictes : le nerf de Street, le nerf cellulaire et le nerf multi-simplicial. Nous montrons que ces trois foncteurs sont équivalents en un sens adéquat. En particulier, les classes d’équivalences faibles n–catégoriques qu’ils définissent coïncident : ce sont les équivalences de Thomason. On donne deux applications de ce résultat : la première affirme qu’une équivalence de type Dwyer–Kan pour les équivalences de Thomason est une équivalence de Thomason ; la seconde, fondamentale, est la stabilité de la classe des équivalences de Thomason par les dualités de la catégorie des n–catégories strictes.

Our aim is to compare three nerve functors for strict n–categories: the Street nerve, the cellular nerve and the multisimplicial nerve. We show that these three functors are equivalent in some appropriate sense. In particular, the classes of n–categorical weak equivalences that they define coincide: they are the Thomason equivalences. We give two applications of this result: the first one states that a Dwyer–Kan-type equivalence for Thomason equivalences is a Thomason equivalence; the second one, fundamental, is the stability of the class of Thomason equivalences under the dualities of the category of strict n–categories.

Keywords
strict $\infty$–categories, cellular sets, simplicial sets, Thomason equivalences, nerve functors, cellular nerve, Street nerve, multisimplicial nerve, Gray tensor product, lax transformations
Mathematical Subject Classification
Primary: 18E35, 18N30, 18N40, 18N50, 55P10, 55P15, 55U10, 55U35
References
Publication
Received: 13 December 2020
Revised: 18 May 2021
Accepted: 6 June 2021
Published: 13 December 2022
Authors
Dimitri Ara
Institut de Mathématiques de Marseille
Université d’Aix-Marseille
CNRS
Marseille
France
http://www.i2m.univ-amu.fr/perso/dimitri.ara/
Georges Maltsiniotis
Institut de Mathématiques de Jussieu
Université Paris Cité
CNRS
Paris
France
https://webusers.imj-prg.fr/~georges.maltsiniotis/