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Recall that two finitely presented groups G and H are “proper 2–equivalent” if
they can be realized by finite 2–dimensional CW–complexes whose universal covers
are proper 2–equivalent as (strongly) locally finite CW–complexes. This purely
topological relation is coarser than the quasi-isometry relation, and those groups
which are 1–ended and semistable at infinity are classified, up to proper 2–equivalence,
by their fundamental pro-group. We show that if G and H are proper 2–equivalent
and semistable at each end, then any two finite graph of groups decompositions of G
and H with finite edge groups and finitely presented vertex groups with at most one
end must have the same set of proper 2–equivalence classes of (infinite) nonsimply
connected at infinity vertex groups (without multiplicities). Moreover, those simply
connected at infinity vertex groups in such a decomposition (if any) are all proper
2–equivalent to Z�Z�Z. Thus, under the semistability hypothesis, this answers
a question concerning the classification of infinite ended finitely presented groups
up to proper 2–equivalence, and shows again the behavior of proper 2–equivalences
versus quasi-isometries, in which the geometry of the group is taken into account.

57M07; 57M10

1 Introduction

In [5], Gromov outlined a program to understand and try to classify all finitely generated
groups geometrically via the notion of quasi-isometry, regarded as metric spaces. Since
then, those properties of finitely generated groups which are invariant under quasi-
isometries have been of great interest and widely studied. On the other hand, the study
of asymptotic invariants of a topological nature for finitely generated groups has also
led to an interesting research area; see Geoghegan [4] for a good source on this subject.
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In this realm, in Cárdenas, Lasheras, Quintero and Roy [2] a topological equivalence
relation was introduced within the class of finitely presented groups attending to
their asymptotic topology rather than their asymptotic geometry. More precisely, two
finitely presented groups G and H are said to be proper 2–equivalent if there exist
(equivalently, for all) finite 2–dimensional CW–complexes X and Y , with �1.X/Š G
and �1.Y / Š H , such that their universal covers zX and zY are proper 2–equivalent
(as locally finite CW–complexes); in fact, the required proper 2–equivalence can be
replaced by a proper homotopy equivalence after wedging with 2–spheres. It is worth
pointing out that this equivalence relation is coarser than the quasi-isometry relation;
quasi-isometric finitely presented groups are also related in this wider and “geometry
forgetful” sense, by [4, Theorem 18.2.11].

It has been shown that two finite graph of groups decompositions with finite edge groups
and finitely presented vertex groups with at most one end yield proper 2–equivalent
groups if they have the same set of proper 2–equivalence classes of vertex groups;
see [2, Theorem 3.9]. On the other hand, in contrast to the situation under the quasi-
isometry relation (see Papasoglu and Whyte [14, Theorem 0.4]), the converse does not
hold in general. The proper 2–equivalence class of a finitely presented group does not
determine in general the set of proper 2–equivalence classes of vertex groups in such a
decomposition of the group; see [2]. We establish a partial converse to [2, Theorem 3.9]
under the semistability hypothesis:

Theorem 1.1 Let G and H be two proper 2–equivalent finitely presented groups
which are semistable at each end , and let .G; �/ and .H; � 0/ be finite graph of groups
decompositions of G and H with finite edge groups and finitely presented vertex
groups with at most one end. Then , .G; �/ and .H; � 0/ have the same set of proper 2–
equivalence classes of (infinite) nonsimply connected at infinity vertex groups (without
multiplicities). Moreover , those simply connected at infinity vertex groups in .G; �/
and .H; � 0/ (if any) are all proper 2–equivalent to Z�Z�Z.

Observe that, by [14, Theorem 0.4], if G and H are in fact quasi-isometric then .G; �/
and .H; � 0/ have the same set of proper 2–equivalence classes of vertex groups (without
multiplicities), regardless of the semistability hypothesis.

Remark 1.2 The statement of Theorem 1.1 is the best possible, as the example in
[2, Section 6] shows that G D Z2 �Z2 �Z2 and H D .Z�Z�Z/� .Z�Z�Z/ are
proper 2–equivalent, but the vertex groups in the given graph of groups decompositions
are all either finite in the case of G or simply connected at infinity in the case of H .
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Proper 2–equivalences between infinite ended finitely presented groups 3

2 Some preliminaries

For the most part we will be working within the category of locally finite CW–complexes
and proper maps. We recall that a proper map is a map with the property that the inverse
image of every compact subset is compact. Thus, two locally finite CW–complexes
are said to be proper homotopy equivalent if they are homotopy equivalent and all
homotopies involved are proper. On the other hand, a proper cellular map f WX ! Y

between finite-dimensional locally finite CW–complexes is a proper n–equivalence if
there is another proper cellular map g W Y !X such that the restrictions gıf jXn�1 and
f ıgjY n�1 are proper homotopic to the inclusion maps Xn�1�X and Y n�1� Y . Ob-
serve that if two finite-dimensional locally finite CW–complexes are proper homotopy
equivalent then they are proper n–equivalent, for all n. Also, one can easily check that
if two finite-dimensional locally finite CW–complexes are proper n–equivalent then so
are their n–skeleta, by the proper cellular approximation theorem [4, Theorem 10.1.14].

Given a noncompact (strongly) locally finite CW–complex Y , a proper ray in Y is a
proper map ! W Œ0;1/! Y . We say that two proper rays ! and !0 define the same
end if their restrictions to the natural numbers !jN and !0jN are properly homotopic.
This equivalence relation gives rise to the notion of the end determined by ! as the
corresponding equivalence class, as well as the space of ends E.Y / of Y as a compact
totally disconnected metrizable space; see [4, Section 13.4]. The CW–complex Y is
semistable at the end determined by ! if any other proper ray defining the same end
is in fact properly homotopic to !. Equivalently, Y is semistable if the fundamental
pro-group pro-�1.Y; !/ is pro-isomorphic to a tower of groups with surjective bonding
homomorphisms; see [4, Proposition 16.1.2]. Recall that pro-�1.Y; !/ is represented
by the inverse sequence (tower) of groups

�1.Y; !.0//
�1
 � �1.Y �C1; !.t1//

�2
 � �1.Y �C2; !.t2// � � � ;

where C1 � C2 � � � � � Y with !.Œti ;1// � Y �Ci is a filtration of Y by compact
subspaces, and the bonding homomorphisms �i are induced by the inclusions and
basepoint-change isomorphisms (which are defined using subpaths of !). One can
show the independence with respect to the filtration. Also, properly homotopic base
rays yield pro-isomorphic fundamental pro-groups. We refer to [4; 9] for more details
and the basics of the pro-category of towers of groups.

Given a CW–complex X with �1.X/Š G we will denote by zX the universal cover
of X , constructed as prescribed in [4, Section 3.2], so that G acts freely on the CW–
complex zX via a cell-permuting left action with Gn zX DX . The number of ends of an
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(infinite) finitely generated group G represents the number of ends of the (strongly)
locally finite CW–complex zX1, for some (equivalently any) CW–complex X with
�1.X/ŠG and with finite 1–skeleton, which is either 1, 2 or1 (finite groups have
0 ends [4; 15]). If G is finitely presented, then G is semistable at each end (or at
infinity, if G is 1–ended) if the (strongly) locally finite CW–complex zX2 is so, for some
(equivalently any) CW–complex X with �1.X/ Š G and with finite 2–skeleton. In
fact, we will refer to the fundamental pro-group of zX2 (at each end) as the fundamental
pro-group of G (at each end), and will say that G is simply connected at each end (or
at infinity, if G is 1–ended) if it has pro-trivial fundamental pro-group at each end.
Observe that any finite-dimensional locally finite CW–complex is strongly locally finite;
see [4, Proposition 10.1.12].

3 Proof of Theorem 1.1

We need the following result, which can be seen as a generalization of [12, Lemma 5]:

Proposition 3.1 Let G be a finitely presented group which is semistable at each end ,
and assume G splits as an amalgamated product G0 �F G1 (resp. an HNN-extension
H�F ) over a finite group F . Then each factor G0 and G1 (resp. the base group H )
is either finite or else it is also semistable at each end. Moreover , if the fundamental
pro-group of G at a certain end is nontrivial then it is pro-isomorphic to the fundamental
pro-group of one of the factors (resp. the base group) at one of its ends.

The proof of the first part of this proposition mimics that of [7, Lemma 3.2]. Nonetheless,
we include a detailed proof for the sake of completeness. It is worth mentioning that
independently and essentially simultaneously, Mihalik has recently shown a similar
result; see [11, Theorem 3.3].

Proof Let G0 and G1 be finitely presented groups and F be a finite group with
presentation he1; : : : ; enI r1; : : : ; rmi. Consider monomorphisms 'i W F ! Gi for
i D 0; 1, and denote by G D G0 �F G1 D hG0; G1I'0.ei / D '1.ei /; 1 � i � ni

the corresponding amalgamated product. Let K0 and K1 be finite 2–dimensional
CW–complexes with �1.Ki /ŠGi , and let fi W

Wn
iD1 S

1!Ki .i D 0; 1/ be cellular
maps such that Imfi� ��1.Ki / corresponds to the subgroup Im'i �Gi . Let L0 be the
standard 2–complex associated to the given presentation of F , with 1–cells e1; : : : ; en.
Namely, L0 is a wedge of circles each of which is directed and labeled by one of the
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generators, and a 2–cell attached to the 1–skeleton according to each of the defining
relations. Consider the adjunction spaces LD

�Wn
iD1 ei

�
�I [.

Wn
iD1 ei/�f 1

2
gL
0�
˚
1
2

	
(homotopy equivalent to L0) and X DL[f0�f0g[f1�f1g .K0tK1/. By van Kampen’s
theorem, X is a finite 2–dimensional CW–complex with �1.X/ŠG0�F G1. Let zX be
the universal cover of X with covering map p W zX!X . Observe that p�1.Ki / consists
of a disjoint union of copies of the universal cover zKi ofKi , since the inclusionKi ,!X

induces a monomorphismGi ,!G0�FG1 between the fundamental groups, for iD0; 1;
see [8]. Also, p�1

�
L0�

˚
1
2

	�
consists of a disjoint union of copies of the universal cover

zL0 of L0, as the inclusion L0 �
˚
1
2

	
,!X induces a monomorphism F ,!G0 �F G1.

Let J be a connected component of p�1
��Wn

iD1 ei
�
�
˚
1
2

	�
�p�1

�
L0�

˚
1
2

	�
. Observe

that J is a copy of the Cayley graph of F , and consider the finite 2–dimensional CW–
complex Y 0 D .J � I /[J�f 1

2
g
zL0 �

˚
1
2

	
. Thus, the universal cover zX can be regarded

as a push-out obtained from
S
g2G g

zK0,
S
g2G g

zK1 and
S
g2G gY

0 (compare with
the description given in [13], and see also [15, Section 3]) where:

(a)
S
g2G g

zK0 and
S
g2G g

zK1 are unions of copies of the “vertex spaces” zK0
and zK1, respectively, such that g zK0 � g0 zK0 if and only if g�1g0 2G0 (and are
disjoint otherwise) and g zK1 � g0 zK1 if and only if g�1g0 2G1 (and are disjoint
otherwise).

(b)
S
g2G gY

0 is a union of copies of the “edge space” Y 0 such that the subcomplex
corresponding to J � fig inside gY 0 for i D 0; 1 is glued to g zKi via a lift
Qfi:g WJ�fig!g zKi of the map fi . Furthermore Qfi:g� Qfi:g 0 if g�1g02 Im'iŠF

for i D 0; 1 (and their images are disjoint otherwise).

Next, fix a copy gY 0 and consider each map Qfi;g W J �fig! g zKi for i D 0; 1. Observe
that this map is nullhomotopic (as J �fig is a finite connected 1–dimensional complex
and g zKi is simply connected), so we can replace it (without altering the homotopy
type of the entire construction) by a constant map hi;g W J � fig ! g zKi whose image
is a vertex inside Im Qfi;g . We do the same for any other copy g0Y 0 and maps Qfi;g 0 for
i D 0; 1 via homotopies which may be taken as translates (within zX ) of those for gY 0

and Qfi;g , i D 0; 1. Since the G–action on zX is properly discontinuous, the collection
of all these homotopies together with the gluing lemma [1, Lemma I.4.9] yields a
proper homotopy equivalence between zX and a new push-out yX in the proper category,
where yX can be seen as the 2–dimensional CW–complex obtained from a collection
of copies of Y D †J [J�f 1

2
g
zL0 �

˚
1
2

	
(here “†” stands for “suspension”) and the

collection of copies g zK0 and g zK1 of zK0 and zK1 glued together appropriately through
the suspension vertices of the copies of †J � Y (via the image of the new maps hi;g )
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zK0 zK1

p q

Y

Y

Y

Y

Y

Y

Figure 1

in such a way that the copies of Y inside yX are in a bijective correspondence with the
copies gY 0 in the construction of zX . Observe that the universal cover zX is modeled
after the Bass–Serre tree for G DG0 �F G1, but the group G is no longer acting on yX .
Nevertheless, yX still keeps that same tree-like structure. See Figure 1 for a pictorial
description of yX in the infinite ended case.

We choose the copy of Y in yX (which we again refer to as Y ) corresponding to the copy
Y 0 for zX (ie g � 1), and consider the copies zK0 and zK1 in yX of the universal cover
of K0 and K1, which intersect Y at vertices p 2 zK0 and q 2 zK1, taken as basepoints.
We consider filtrations by compact subsets Ci;1 � Ci;2 � � � � � zKi with p 2 C0;1
and q 2 C1;1, and such that no vertex of zKi is in the boundary of any of the Ci;j .
These Ci;j may be taken as finite subcomplexes in some barycentric subdivision of zKi .
We proceed to build a filtration by compact subsets C1 � C2 � � � � � yX inductively.
The subset C1 consists of Y [C0;1 [C1;1. Assume Cn is constructed. Then, CnC1
is the union of Cn [C0;nC1 [C1;nC1, the copies of Y which intersect Cn, and the
translates of C0;nC1 and C1;nC1 on all those copies g zK0 and g zK1 which may intersect
these copies of Y at a vertex (so that the corresponding basepoint on zKi is sent to the
corresponding intersection vertex in g zKi ).

Observe that the fundamental pro-group of GDG0�F G1 at each end is represented by

pro-�1. zX/Š pro-�1. yX/� ff1g  �1. yX �C1/ �1. yX �C2/ � � � g;

where the basepoints are taken on any base ray determining the given end. We will
show that if zK0 is noncompact then zK0 (and hence the group G0) is semistable at
each end; the proof for G1 is analogous. In fact, one can define continuous retractions
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hj W yX �Cj ! zK0 �C0;j as follows. Fix pj 2 zK0 �C0;j (along a given base ray).
If z 2 yX �Cj is in zK0�C0;j then we set hj .z/D z. Otherwise, define hj .z/ in the
following way. Let 
 be a path in yX from z to p, and let w be the vertex at which

 meets zK0 for the first time. If w … C0;j then we define hj .z/D w, otherwise, we
set hj .z/D pj . One can check that each hj is a continuous retraction, by the choice
of the compact subsets C0;j � zK0. Observe that hj is not a proper map, as it maps
noncompact subsets of each copy of the universal cover of Ki (except for zK0) to a
point; in fact, if a copy of Y is being attached to a vertex w of zK0 �C0;j , then the
connected component of yX � fwg whose closure contains that copy of Y is sent by
hj to the single point w. However, as a loop in yX is a product (modulo change of
basepoints) of loops each of which lives inside some copy of Y , g zK0 or g zK1, one can
check that these maps hj lead us to commutative diagrams

�1. zK0�C0;j /

��

�1. zK0�C0;jC1/oo

��

�1. yX �Cj /

.hj /�
��

�1. yX �CjC1/oo

.hjC1/�
��

�1. zK0�C0;j / �1. zK0�C0;jC1/oo

where the unmarked arrows are induced by the inclusions, and the composition of
any two consecutive vertical arrows is the corresponding identity homomorphism.
Therefore the homomorphisms f.hj /�gj�1 are all surjective, and the conclusion of the
first part of the proposition follows as G is semistable at each end and hence pro-�1. yX/
(Š pro-�1. zX/) is pro-isomorphic to a tower whose bonding maps are also surjective
homomorphisms; see Section 2. In fact, given the filtrations above, one can easily check
that a repeated use of van Kampen’s theorem yields that each vertical inclusion-induced
homomorphism (in the diagram above) is an isomorphism (and hence so is each .hj /�),
by construction of yX .

In the case of an HNN-extension H�F D hH; t I t�1 0.ei /t D  1.ei /; 1 � i � ni

with monomorphisms  i W F ! H for i D 0; 1, let K be a finite 2–dimensional
CW–complex with �1.K/ŠH and fi W

Wn
iD1 S

1!K for i D 0; 1 be cellular maps
such that Imfi� � �1.K/ corresponds to the subgroup Im i � H . Let L be the
2–dimensional CW–complex constructed as above and consider the adjunction space
X D L[f0�f0g[f1�f1gK, with �1.X/ŠH�F . Then the proof is similar to the one
given above for the amalgamated product.
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For the second part of the proposition, observe that the fundamental pro-group of
G at a certain end can also be thought of as the fundamental pro-group of yX at the
corresponding end, as the universal cover zX is proper homotopy equivalent to yX .
Moreover, if G is semistable at each end then so is the 2–dimensional CW–complex yX .
Consider a base ray ! W Œ0;1/! yX with !.tn/ 2 yX �Cn for n� 1. We are to study
pro-�1. yX;!/. For this, we will distinguish the following two cases:

Case 1 There is a copy g zKi � yX for i D 0; 1 such that for all t � 0 there exists
t 0 � t with !.t 0/ 2 g zKi . In particular, the end determined by ! can be represented
by a sequence of points within the copy g zKi � yX . In this case, we can consider a
reparametrization !0 of ! such that !0.k/ 2 g zKi for all k 2 N (and yielding pro-
isomorphic fundamental pro-groups). On the other hand, we may also consider a
proper ray !00 W Œ0;1/ ! g zKi satisfying !00.k/ D !0.k/ for all k 2 N, and hence
defining the same end of yX as !0 (and !). By the semistability hypothesis, we
have a pro-isomorphism pro-�1. yX;!0/ Š pro-�1. yX;!00/; in fact, it is not hard to
show that two such proper rays !0 and !00 are always properly homotopic within yX ;
compare with [10, Lemma 4]. Finally, taking similar filtrations as in the first part of
the proof, one can easily check that a repeated use of van Kampen’s theorem yields
a pro-isomorphism pro-�1. yX;!00/Š pro-�1.g zKi ; !00/, by construction of yX . Thus,
this relates the fundamental pro-group of G at a certain end (determined by !) to the
fundamental pro-group of one of the factors Gi at one of its ends. In the case of an
HNN-extension the argument is similar.

Case 2 For every copy g zKi � yX of zKi for i D 0; 1 there exists ti;j � 0 such that
!.Œti;j ;1//\g zKi D∅ (ie ! eventually leaves any copy g zKi inside yX ). In this case, by
construction, one can easily check that for each n� 1 there exists �.n/� n (sufficiently
large) so that every loop in the component of yX �C�.n/ which contains !.t�.n// is
homotopic within the component of yX �Cn which contains !.tn/ to a constant map
(with image one of the suspension vertices of some copy of Y � yX), and hence the
inclusion-induced homomorphism �1. yX �C�.n/; !.t�.n///! �1. yX �Cn; !.tn// is
trivial. Thus, the fundamental pro-group pro-�1. yX;!/, which is also represented by
the tower (see [4, Section 16.2])

f1g �1. yX�C1; !.t1// �1. yX�C�.1/; !.t�.1/// �1. yX�C�2.1/; !.t�2.1/// � � � ;

is pro-isomorphic to the trivial tower.

Therefore, if the fundamental pro-group of G at a certain end is nontrivial, then Case 1
above must hold and the conclusion follows.
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Observe that any finitely presented groupG with more than one end can be decomposed
as the fundamental group of a finite graph of groups .G; �/ whose edge groups are finite
and whose vertex groups are finitely presented groups with at most one end, by Stallings’
structure theorem [16] and Dunwoody’s accessibility theorem for finitely presented
groups [3]. Thus, as the fundamental group of a graph of groups with nC 1 edges can
be built out of graphs with fewer edges (by amalgamated products or HNN-extensions),
an inductive argument gives us:

Corollary 3.2 Let G be the fundamental group of a finite graph of groups .G; �/ with
finite edge groups and finitely presented vertex groups with at most one end. If G
is semistable at each end then each vertex group in .G; �/ is either finite or else it is
semistable at infinity. Moreover , if the fundamental pro-group of G at a certain end is
nontrivial then it is pro-isomorphic to the fundamental pro-group of one of the vertex
groups in .G; �/.

Finally, the following result is also crucial for the proof of Theorem 1.1:

Proposition 3.3 [2, Proposition 2.9] Let G and H be two finitely presented groups
which are 1–ended and semistable at infinity. Then G and H are proper 2–equivalent
if and only if they have pro-isomorphic fundamental pro-groups.

Proof of Theorem 1.1 Assume that G and H are expressed as the fundamental group
of some finite graphs of groups .G; �/ and .H; � 0/ respectively, with finite edge groups
and finitely presented vertex groups with at most one end. In particular, they can
be expressed as a combination of amalgamated products and HNN-extensions of the
corresponding vertex groups over the corresponding (finite) edge groups. Let Gi and
Hj denote the vertex groups in the graphs of groups .G; �/ and .H; � 0/ respectively.
Following an argument similar to that in the proof of Proposition 3.1 one can get two
finite graphs of 2–dimensional CW–complexes .X ; �/ and .Y; � 0/ with vertex spaces
Xi and Yj having �1.Xi /ŠGi and �1.Yj /ŠHj , and such that their associated total
complexes X and Y (obtained as the corresponding adjunction spaces [4, Section 6.2])
are finite 2–dimensional CW–complexes satisfying �1.X/ŠG and �1.Y /ŠH .

Again, as in the proof of Proposition 3.1, one can make the universal covers zX and
zY proper homotopy equivalent to 2–dimensional CW–complexes yX and yY each one
obtained from a collection of copies of the universal covers of the corresponding vertex
spaces, and a collection of copies of the suspension of the Cayley graphs of the edge
spaces together with a copy of the (finite) universal cover of the corresponding edge
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10 Manuel Cárdenas, Francisco Fernández Lasheras, Antonio Quintero and Ranja Roy

space attached at the middle level, all glued together appropriately so that all copies
of the universal covers of the vertex spaces are mutually disjoint, and if a copy of the
universal cover of a vertex space intersects a copy of one of the suspensions above
corresponding to an edge space it does so in exactly one of the suspension vertices. By [2,
Theorem 3.5], there exists a proper 2–equivalence between the universal covers zX and
zY (as G and H are proper 2–equivalent), which in turn yields a proper 2–equivalence
f W yX! yY .

Assume there is a vertex space Xi0 in .X ; �/ such that pro-�1. zXi0 ; !/ is nontrivial
(meaning not pro-isomorphic to the trivial tower) for some (equivalently any) base
ray ! W Œ0;1/! zXi0 . By construction, one can easily check that pro-�1. zXi0 ; !/ is
pro-isomorphic to pro-�1.yX; !/, which in turn is pro-isomorphic to pro-�1.yY ; f ı!/;
see [4, Proposition 16.2.3]. By Corollary 3.2 (see also the proof of Proposition 3.1)
there must be some vertex space Yj0

in .Y; � 0/ such that pro-�1.yY ; f ı !/ is pro-
isomorphic to the fundamental pro-group of Yj0

. Therefore, the corresponding vertex
groups Gi0 and Hj0

are 1–ended and semistable at infinity (by Corollary 3.2) with pro-
isomorphic fundamental pro-groups and hence proper 2–equivalent by Proposition 3.3.
And conversely, for each vertex group in .H; � 0/ with nontrivial fundamental pro-group
there is some vertex group in .G; �/ with pro-isomorphic fundamental pro-group, and
hence in the same proper 2–equivalence class.

Finally, the second part of the theorem follows from the fact that any 1–ended and
simply connected at infinity finitely presented group is proper 2–equivalent to Z�Z�Z,
by [6, Corollary 1.3] and [2, Theorem 5.1].

Acknowledgements

The authors are thankful to the referee for helpful comments and suggestions. This
work was partially supported by the project MTM 2015-65397.

References
[1] H-J Baues, A Quintero, Infinite homotopy theory, K–Monographs in Mathematics 6,

Kluwer, Dordrecht (2001) MR Zbl

[2] M Cárdenas, F F Lasheras, A Quintero, R Roy, A topological equivalence relation
for finitely presented groups, J. Pure Appl. Algebra 224 (2020) art. id. 106300 MR Zbl

[3] M J Dunwoody, The accessibility of finitely presented groups, Invent. Math. 81 (1985)
449–457 MR Zbl

Algebraic & Geometric Topology, Volume 23 (2023)

https://link.springer.com/book/9780792369820
http://msp.org/idx/mr/1848146
http://msp.org/idx/zbl/0983.55001
http://dx.doi.org/10.1016/j.jpaa.2019.106300
http://dx.doi.org/10.1016/j.jpaa.2019.106300
http://msp.org/idx/mr/4058235
http://msp.org/idx/zbl/1440.57023
http://dx.doi.org/10.1007/BF01388581
http://msp.org/idx/mr/807066
http://msp.org/idx/zbl/0572.20025


Proper 2–equivalences between infinite ended finitely presented groups 11

[4] R Geoghegan, Topological methods in group theory, Graduate Texts in Math. 243,
Springer (2008) MR Zbl

[5] M Gromov, Asymptotic invariants of infinite groups, from “Geometric group theory,
II” (G A Niblo, M A Roller, editors), Lond. Math. Soc. Lect. Note Ser. 182, Cambridge
Univ. Press (1993) 1–295 MR Zbl

[6] F F Lasheras, Ascending HNN-extensions and properly 3–realisable groups, Bull.
Austral. Math. Soc. 72 (2005) 187–196 MR Zbl

[7] F F Lasheras, R Roy, Relating the Freiheitssatz to the asymptotic behavior of a group,
Rev. Mat. Iberoam. 29 (2013) 75–89 MR Zbl

[8] R C Lyndon, P E Schupp, Combinatorial group theory, Ergebnisse der Math. 89,
Springer (1977) MR Zbl
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