Algebraic ¢ Geometric

Topology

Volume 23 (2023)

Groups acting on CAT(0) cube complexes with
uniform exponential growth

RADHIKA GUPTA
KASIA JANKIEWICZ
THOMAS NG

:.msp



:. Algebraic & Geometric Topology 23:1 (2023) 13-42
msp poI: 10.2140/agt.2023.23.13
Published: 27 March 2023

Groups acting on CAT(0) cube complexes with
uniform exponential growth
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We study uniform exponential growth of groups acting on CAT(0) cube complexes.
We show that groups acting without global fixed points on CAT(0) square complexes
either have uniform exponential growth or stabilize a Euclidean subcomplex. This
generalizes the work of Kar and Sageev that considers free actions. Our result lets us
show uniform exponential growth for certain groups that act improperly on CAT(0)
square complexes, namely, finitely generated subgroups of the Higman group and
triangle-free Artin groups. We also obtain that nonvirtually abelian groups acting
freely on CAT(0) cube complexes of any dimension with isolated flats that admit a
geometric group action have uniform exponential growth.

20E07, 20F65, 20F67; 5TM60

1 Introduction

In this article, we continue the inquiry to determine which groups that act on CAT(0)
cube complexes have uniform exponential growth. Let G be a group with finite
generating set S and corresponding Cayley graph Cay(G, S) equipped with the word
metric. Let B(n, S) be the ball of radius n in Cay(G, S). The exponential growth rate
of G with respect to S is defined as

w(G,S):= lim |B(n,S)"/".
n—>00
The exponential growth rate of G is defined as
w(G) :=inf{w(G, S) | S is a finite generating set}.

We say a group G has exponential growth if w(G, S) > 1 for some (hence every) finite
generating set S. A group G is said to have uniform exponential growth if w(G) > 1.
The reader is referred to de la Harpe’s book [26] for more details on growth of groups.

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution
License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.


http://msp.org
http://dx.doi.org/10.2140/agt.2023.23.13
http://www.ams.org/mathscinet/search/mscdoc.html?code=20E07, 20F65, 20F67, 57M60
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/
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Many groups of exponential growth are known to have uniform exponential growth,
for instance, nonelementary hyperbolic groups (Koubi [36]), relatively hyperbolic
groups (Xie [56]), solvable groups (Alperin [2] and Osin [46]), nontrivial amalgamated
free products and HNN-extensions (Bucher and de la Harpe [27]), one-relator groups
(Grigorchuk and de la Harpe [20]), linear groups over a field of characteristic zero
(Eskin, Mozes and Oh [18]), and many hierarchically hyperbolic groups (Abbott, Ng,
Spriano, Gupta and Petyt [1]). The first examples of groups with exponential growth
that do not have uniform exponential growth were introduced by Wilson [54].

Kar and Sageev showed that if a group acts freely on a CAT(0) square complex, then
either it has uniform exponential growth or it is virtually abelian [35]. We generalize the
result of Kar and Sageev by removing the assumption of a free action. By semisimplicity
of cubical isometries — see Haglund [23, Theorem 1.4] — freeness of the action implies
that the group is torsion-free. Wise shows, however, that groups acting geometrically
on CAT(0) cube complexes need not even be virtually torsion-free [55, Section 9].
We show that even if the group contains elliptic elements, we can still get uniform
exponential growth.

Theorem A Let G be a finitely generated group acting without global fixed point
on a CAT(0) square complex X . Then either G has uniform exponential growth with
w(G) > *%/2 or G stabilizes a flat or line in X .

See Section 2 for the definition of a flat. In the setting of groups acting properly on
CAT(0) square complexes, stabilizing a flat can be upgraded to virtually abelian.

Corollary 5.3 Let G be a finitely generated group that acts properly on a CAT(0)
square complex. Then either G has uniform exponential growth with w(G) > °V/2, or
G is virtually abelian.

Most known results on uniform exponential growth can be shown by producing a
constant M > 0 such that in any generating set there exists a pair of elements with
word length at most M that generate a free semigroup or subgroup.

Definition 1.1 (N —short subgroup) Let G be a finitely generated group, with a finite
generating set S. We say that a sub(semi)group H in G is N—short with respect to S,
if there exists a finite collection of words with S—length at most N that generate H.
We say G contains a uniformly N—short H, if for every finite generating set S there
exists a copy of H in G that is N—short with respect to S
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Groups acting on CAT(0) cube complexes with uniform exponential growth 15

Existence of uniformly N—short free subgroups or free semigroups in a group G
immediately gives the uniform bound w(G) > /2; see Alperin and Noskov [3,
Proposition 2.4]. This was used by Grigorchuk and de la Harpe [19, Section (A)]
to show uniform exponential growth of torsion-free hyperbolic groups. Their work
builds upon work of Gromov [21, Theorem 5.3(E)] that was proved by Delzant [15,
théoreme I].

We say that a group G has locally uniform exponential growth if there is a constant
wo > 1 such that every finitely generated subgroup H of G either has w(H) > wg or
H is virtually abelian. This property is sometimes called “uniform uniform exponential
growth”. In the setting of groups acting properly on CAT(0) cube complexes, this is
closely related to the strong Tits alternative of Sageev and Wise [51, Theorem 1.1]
for a given subgroup H. Such bounds on the growth of subgroups have been shown
by Mangahas for the mapping class group [38], depending on the complexity of the
surface, and by Kar and Sageev for groups acting freely on square complexes [35]. The
bounds on exponential growth in this paper are also uniform over finitely generated
subgroups with dependence only on the dimension of the cube complex. We remark
that bounds on uniform exponential growth need not pass to subgroups. For example,
the free product of two copies of Wilson’s group has w(G) > ¥/2 coming from its
action on its Bass—Serre tree.

The proof of Theorem A relies on constructing a hyperbolic isometry with uniformly
bounded word length from pairs of elliptic isometries of a 2—dimensional cube complex.
Our construction also works for a 3—dimensional cube complex.

Proposition 4.3 Leta and b be a pair of isometries of a CAT(0) cube complex X of
dimension two or three. Then either

(1) there exists a hyperbolic element in {a,b) whose length in a, b is at most L,
where L is a constant that only depends on dim(X), or

(2) (a,b) fixes a point in X .
If X is 2—dimensional, then L = 12.
We use the fact that the Burnside groups B(2,2) and B(2, 6) are finite in the proof of
Proposition 4.3. However, this means that we cannot use our proof to obtain a similar

result in higher dimensions. It remains open whether the above proposition holds in
higher dimensions.
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In this article, we also impose extra conditions on the cube complex to show uniform
exponential growth for groups acting on cube complexes of arbitrary dimension. In
particular, we show the following (see Section 2.5 for definition of a CAT(0) cube
complex with isolated flats).

Theorem B There exists a constant wg > 1 depending only on d € N such that the
following holds. Let X be a CAT(0) cube complex of dimension d with isolated flats
that admits a geometric group action. For any finitely generated group G acting freely
on X, either w(G) > wy or G is virtually abelian.

Note that if the action of the group G on X is free and geometric then G is relatively
hyperbolic. Uniform exponential growth for relatively hyperbolic groups was proved
by Xie [56]. However, we obtain bounds on growth depending only on the dimension
of X rather than hyperbolicity constants. Moreover, our result shows that G has locally
uniform exponential growth, which is new.

In the proof of Theorem B, we use a variation of work of Jankiewicz [33] (see
Proposition 3.4) on cubical dimension of small cancellation groups (see Lemma 2.14).
If instead of isolated flats, we impose the condition of hyperbolicity on our CAT(0)
cube complex X, then we can use the same proof strategy as for Theorem B to relax
the requirement of a geometric group action to a weakly properly discontinuous (WPD)
action.

Proposition 3.7 There exists a constant wg > 1 depending only on d € N such that the
following holds. Let X be a CAT(0) cube complex of dimension d that is hyperbolic.
For any finitely generated group G acting freely and weakly properly discontinuously
on X, either w(G) > wy or G is virtually infinite-cyclic.

Similar results on uniform exponential growth for groups acting on hyperbolic spaces
have been obtained before. In [8, Theorem 13.1] Breuillard and Fujiwara show that if
G is a finitely generated group of isometries of a Gromov hyperbolic space, then either
the exponential growth rate is bounded from below by a positive constant depending on
the joint minimal displacement and the hyperbolicity constant or G fixes a pair of points
in the boundary. Before that, Besson, Courtois and Gallot showed that given a > 0
and n € N, there is a constant ¢(n,a) > 0 such that if M is a complete Riemannian
manifold of dimension 7 with pinched sectional curvature ks € [-a?, —1] and " is a
finitely generated discrete group of isometries of M then either w(T") > ¢¢®@) > | or
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Groups acting on CAT(0) cube complexes with uniform exponential growth 17

I' is virtually nilpotent [5, Theorem 1.1]. The action of hyperbolic manifold groups
and more generally —hyperbolic groups is so nice that it is even possible to exhibit
uniformly short free subgroups; see Dey, Kapovich and Liu [16, Theorem 1.1] and
Koubi [36, Théoreme 5.1].

A feature of our results is that they depend only on the dimension of the cube complex.
Our results may be useful in understanding the cubical dimension of finitely generated
groups as in work of Jankiewicz [33].

Besides groups that act properly on CAT(0) cube complexes, the results here allow us
to give the first proofs of uniform exponential growth for several groups that admit
improper actions on CAT(0) square complexes. We show that information about vertex
stabilizers can be leveraged to give bounds on exponential growth.

Corollary 6.1 Suppose G is a finitely generated group that acts by isometries on
a CAT(0) square complex X such that finitely generated subgroups of the vertex
stabilizers are either virtually abelian or have uniform exponential growth bounded
below by wqg > 1. Then for any finitely generated subgroup H < G, either

(1) H has uniform exponential growth with w(H ) > min{ Y2, Wo}, Or
(2) H is virtually abelian, or
(3) H stabilizes a flat or line in X .

In particular, this lets us expand the list of acylindrically hyperbolic groups that are
known to have locally uniform exponential growth. In particular, we show that the
Higman group and Artin groups with triangle-free defining graphs have locally uniform
exponential growth; see Theorem 6.2 and Theorem 6.4.

Organization

In Section 2, we review background on cube complexes, CAT(0) spaces with isolated
flats, past results related to building free semigroups and uniform exponential growth in
cube complexes. In Section 3, we prove Theorem B and Proposition 3.7. In Section 4,
we construct uniformly short hyperbolic isometries in any action on a cube complex
of dimension at most 3 without global fixed point. This is the key tool needed to
prove Theorem A and Corollary 5.3 in Section 5. We go on to prove locally uniform
exponential growth of the Higman group and triangle-free Artin groups in Section 6,
where we prove Corollary 6.1.
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2 Background

In this section we review fundamentals of cube complexes and past results on building
free semigroups using CAT(0) cube complexes. For more basics on CAT(0) cube
complexes see Sageev’s notes [50].

2.1 Cube complexes and hyperplanes

Let X be a CAT(0) cube complex. Let Isom(X) denote the collection of cubical
isometries of X. We will assume that any isometric group action on X does not invert
hyperplanes. This is achieved by cubically subdividing X once. We denote the fixed
point set of a cubical isometry a € Isom(X) by Fix(a) C X. If two points x and y are
fixed by a, then the CAT(0) geodesic joining them is also fixed by a. Therefore, Fix(a)
is a connected and convex subspace of X (with respect to the CAT(0) metric).

Convex subcomplexes of CAT(0) cube complexes are particularly well-behaved. CAT(0)
cube complexes are often regarded as high-dimensional generalizations of trees because
convex subcomplexes satisfy the Helly property — that is, any collection of pairwise
intersecting convex subcomplexes have nonempty intersection.
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Groups acting on CAT(0) cube complexes with uniform exponential growth 19

A natural family of convex subspaces are hyperplanes. A hyperplane is a subspace that
separates the complex into two distinct half spaces by cutting every cube it intersects
in half. We denote a hyperplane in X by h. Let H(X) denote the collection of all
hyperplanes of X . For a subcomplex A4 of X, let #(A) be the collection of hyperplanes
of X that separate a pair of points in A. Note that when A is convex with respect to
the CAT(0) metric these are all the hyperplanes that intersect A. A path joining two
vertices of X is called a combinatorial geodesic if it is a path of minimum length in
the 1-skeleton of X joining the two points. Note that every edge in a combinatorial
geodesic uniquely corresponds to a hyperplane separating the vertices.

Definition 2.1 (cubical convex hull) Let A be a subspace of X. The cubical convex
hull of A, denoted by cHull(A), is the smallest convex subcomplex of X containing A.

Hyperplanes give the cube complex a wallspace structure in the sense of Haglund and
Paulin [24]. This wallspace structure produces a dual cube complex from a collection
of hyperplanes of X using Sageev’s construction [49]; see [50, Lecture 2] for more
details. Since hyperplanes encode combinatorial geodesics in a cube complex, the
hyperplanes that cross a subcomplex determine its cubical convex hull. We record this
observation.

Observation 2.2 Let A be a subcomplex of X. Then the subcomplex cHull(A4) is
isomorphic to the cube complex dual to H(A).

We say that two subcomplexes A, B C X are parallel when there exists p > 0 such that
A x [0, p] embeds isometrically in X such that A x {0} = A and A x{p} = B. In light
of Observation 2.2, hyperplanes can be used to detect when two convex subcomplexes
are parallel.

Lemma 2.3 [31, Lemma 2.8; 32, Lemma 2.7] Two convex subcomplexes are parallel
when they are dual to the same hyperplanes. Moreover, they are equal if and only if
there are no hyperplanes separating them.

2.2 Isometries of CAT(0) cube complexes and their associated
subcomplexes

Let X be a finite-dimensional CAT(0) cube complex. Given a hyperplane f of X and
g a hyperbolic isometry of X, we say g skewers £ if for some choice of halfspace £
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associated to i we have gPh C hfor some p > 1. Such a p can be taken to be at most
dim(X). Equivalently, g skewers hif any CAT(0) axis of g intersects A in exactly one
point. We say g is parallel to hif any axis for g is contained in the R—neighborhood
of f for some R > 0. A hyperbolic isometry g is peripheral to f if it neither skewers it
nor is parallel to it.

Given a hyperbolic isometry g of X, the skewer set of g, denoted sk(g), is the collection
of all hyperplanes skewered by g. The parallel subcomplex Y of a hyperbolic isometry
g is the maximal subcomplex of X contained in the intersection of peripheral halfspaces
containing the axes of g; see [35]. Let p(g) be the collection of hyperplanes parallel
to g. The parallel subcomplex Y, is a (g)—invariant subcomplex of X dual to

H(Yg) = sk(g) Up(g).

This subcomplex naturally decomposes as a product Yy = Eg X Kg where Eg is
dual to sk(g) and K, is dual to p(g) because any hyperplane in p(g) crosses every
hyperplane of sk(g). The complex Ey is a Euclidean subcomplex— that is, when
equipped with the combinatorial metric, it isometrically embeds in Euclidean space [33,
Lemma 2.4]. The action of g on Y, respects the decomposition where g acts as a
translation on Eg, and has a fixed point in its action on Kg. Moreover, for every axis
L of g, the subcomplex Y, contains cHull({), which is isometric to Eg.

2.3 Rank one isometries

We record some observations about rank one isometries of CAT(0) cube complexes.
Let X be a finite-dimensional locally finite CAT(0) cube complex. An isometry g of
X is called rank one if it is hyperbolic and an axis of g does not bound a half flat. A
bi-infinite geodesic in X is called a rank one geodesic if it does not bound a half flat.
The visual boundary 0X of a geodesic metric space X consists of equivalence classes
of geodesic rays emanating from a base point where two rays are said to be equivalent
if they have finite Hausdorff distance. The homeomorphism type of the boundary does
not depend on the choice of base point.

Lemma 2.4 [4, Lemma I11.3.3] Let g be a rank one isometry of a locally compact
CAT(0) space Y. Then g fixes exactly two points in the visual boundary dY , denoted

by A(g).

We now show that g acts cocompactly on its parallel subcomplex Yy when g is a rank
one isometry.
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Proposition 2.5 Let g be a hyperbolic isometry of X, and let {g be a CAT(0) axis
of g. Then any bi-infinite CAT(0) geodesic within finite Hausdorff distance from £ is
contained in the parallel subcomplex Y, of g.

Moreover, if g is rank one, then the parallel subcomplex Yy is the maximal convex
subspace of X with Yy = A(g). Furthermore, Y, is a quasiline on which g acts
cocompactly.

Proof Let { be a bi-infinite geodesic such that dpaus (£, £g) < 0o. Itis straightforward to
see that the two geodesics are asymptotic. By the flat strip theorem [9, Theorem I1.2.13],
we get that £ and £, are in fact parallel. Therefore £ C Y.

Suppose g is rank one. The limit set A(g) has two points by Lemma 2.4. Any bi-
infinite geodesic joining A(g) has finite Hausdorff distance from £, and by the above
is contained in Y. Furthermore, by [22, Lemma 4.8] cHull({,) is contained in a
bounded neighborhood of the axis {4, so the action of g on cHull({g) is cocompact.
The parallel subcomplex Y, decomposes as a product of cube complexes Eg x Kg,
where E, is isometric to cHull({g) and K, is bounded since g is rank one. Thus
0Yg = 0Eg = A(g). The action of g preserves the product decomposition and acts as
a translation on Eg. Hence, it follows that the action of g on Yy is cocompact. O

We record the following consequence that will be used in the proof of Theorem B.

Lemma 2.6 Leta and b be rank one isometries of X such that A(a) = A(b). Then
Ya - Yb .

Proof Since A(a) = A(b), an axis of a and an axis of b are finite Hausdorff distance
apart. Then by Proposition 2.5, £}, C Y, and ¢, C Y. By Proposition 2.5, Y, is the
maximal convex subspace of X with 0¥, = A(a). Therefore Y, C Y, and vice versa.
Thus they are equal. a

2.4 Types of group actions and Bieberbach’s theorem

We recall the definitions of free, proper, and discrete actions on possibly locally infinite
CW complexes. Let X be a CW complex and let G be a discrete group acting cellularly
by isometries on X . The action of G is proper when for every compact set K in X, the
collection {g € G | gK N K # &} is finite. Since X is a CW complex, this is equivalent
to requiring that every cell stabilizer is finite; see for instance [34].
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The action of G on X is free if every point in X has trivial stabilizer. We say the action
is discrete if G is a discrete subgroup of homeomorphisms of X with respect to the
compact-open topology. For CW complexes, proper actions are always discrete. We
recall the following version of Bieberbach’s theorem for later reference.

Theorem 2.7 (Bieberbach’s theorem [53, Corollary 4.1.13]) For each dimension n,
there is an integer m such that any group acting discretely by isometries on Euclidean
n—space E" has an abelian subgroup of index at most m.

2.5 Flats in CAT(0) spaces

Definition 2.8 Let X be a CAT(0) space. For k > 2, a (k—-)flat in X is an isometrically
embedded copy of Euclidean space EX. A half-flat in X is an isometrically embedded
copy of R xR .

The reader is referred to [29] for details on CAT(0) spaces with isolated flats. We recall
the definition here.

Definition 2.9 A CAT(0) space X has isolated flats if there is a nonempty Isom(X)-
invariant collection of flats F, of dimension at least two, such that the following
conditions hold:

(1) Maximal There exists a constant D < oo such that each flat in X lies in the
D—tubular neighborhood of some F € F.

(2) Isolated For every p < oo there exists k(p) < oo such that for any two distinct
flats F, F' € F, diam(N,(F) N Np(F")) < «k(p).

We say a CAT(0) cube complex X has isolated flats if X with its CAT(0) metric is a
CAT(0) space with isolated flats. CAT(0) cube complexes are particularly well-adapted
to studying isolated flats because hyperplanes inherit the isolated flats property.

Lemma 2.10 Let X be a CAT(0) cube complex with isolated flats, and h be a hyper-
plane of X. Then either hi does not have any flats or it is also a CAT(0) cube complex
with isolated flats.

Proof Let F be a flat contained in £. Every flat in £ is a flat in X and hence there
exists a maximal flat F’ in F containing F. Since intersection of two convex sets is
convex in a CAT(0) space, AN F' is convex. Thus 4 N F is the nonempty collection of
maximal flats in / that satisfy Definition 2.9. |
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Lemma 2.11 Any half flat in a CAT (0) space with isolated flats that admits a geometric
group action is contained in a bounded Hausdorff neighborhood of a maximal flat in F.

Proof This follows because such spaces are relatively hyperbolic with respect to the
collection of maximal flats by Hruska and Kleiner [30]. O

Lemma 2.12 Leta be a rank one isometry and b be a hyperbolic isometry of a CAT(0)
space X with isolated flats that admits a geometric group action. If b fixes A(a) then b
is also a rank one isometry and A(a) = A(b).

Proof Let b be the homeomorphism of dX induced by b. By [48, Theorem 3.3], the
set of elements of X fixed by b is equal to dMin(b). Therefore, A(a) € dMin(b). If
b is not rank one then any axis of b bounds a half-flat, which is contained is a bounded
neighborhood of a maximal flat F by Lemma 2.11. Hence, dMin(b) C 0F . However,
A(a) cannot be contained in the boundary of a maximal flat because a is rank one.
Thus, b is also a rank one isometry and A(a) = A(b) by Lemma 2 4. a

2.6 Past results building free semigroups in cube complexes

Uniform exponential growth is typically proved by generating uniform length free
semigroups. For instance, for a 2—-dimensional cube complex Kar and Sageev show the
following:

Proposition 2.13 [35, Proposition 15] Leta and b be two distinct hyperbolic isome-
tries of a CAT(0) square complex X . Then either

(1) (a,b) contains a 10—short free semigroup, or

(2) there exists a Euclidean subcomplex of X invariant under (a, b).

In [33], Jankiewicz obtains the following generalization of Proposition 2.13 to higher-
dimensional cube complexes.

Lemma 2.14 [33, Lemma 4.2] Leta and b be two distinct hyperbolic isometries of a
d—dimensional CAT(0) cube complex X such that (a, b) acts freely on X. Then one of
the following hold:

(1) Short free semigroup There exists a constant L = L(d) < oo such that {(a, b)
contains an L—short free semigroup.
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(2) Stabilize hyperplane One of (bN ,a=%'bN a?"y or (a™V, b=%'a™N b?') stabilizes
a hyperplane of X .

(3) Virtually abelian powers The group (a™ ,bN)

Above, N = d!K3! where K3 is the Ramsey number R(d + 1, 3).

is virtually abelian.

Compared to Proposition 2.13, Lemma 2.14 requires taking powers. However, under
the additional assumption that X has isolated flats and a geometric group action (as in
Section 3), we can recover Proposition 2.13 in all dimensions; see Proposition 3.4.

3 CAT(0) spaces with isolated flats

The goal of this section is to prove Theorem B. We start by proving some results that
lead up to Proposition 3.4, which is the main lemma used to prove Theorem B. In what
follows, let (X, F) be a CAT(0) space with isolated flats that admits a geometric group
action. When X is a CAT(0) cube complex that admits a geometric group action, X is
finite-dimensional and locally finite.

Lemma 3.1 Leta and b be a pair of hyperbolic isometries of X such that
(@™, pM) < Isom(X)

stabilizes a flat for some N, M € 7\ {0}. Then (a, b) < Isom(X) stabilizes a maximal
flatin X.

Proof Let (aV,bM) stabilize a flat Fy. By Definition 2.9 (maximal), there exists
a maximal flat F € F such that Fy is contained in a D-neighborhood of F. Let £,
and £, be axes of a and b, respectively. Then £, and £} are contained in a bounded
neighborhood of F. This is because a® has an axis in Fp, {4 is also an axis of a®,
and any two axes of @’V are parallel in X. The same is true for £, and b . The axis £,
(resp. £p) is also in a bounded neighborhood of a F (resp. bF). Since the collection F
is Isom(X )—invariant, a F', bF € F. Now by Definition 2.9 (isolated) and maximality
of F, we getthat F =aF and F = bF. Thus a and b stabilize F. a

Lemma 3.2 Leta and b be a pair of hyperbolic isometries of X such that
(@™, pM) < Isom(X)

stabilizes a line for some N, M € 7 \ {0}. Then either (a, b) stabilizes a flat or a and b
are rank one isometries and {a, b) fixes A(a) = A(b) C 0X.
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Proof Let £ be a line stabilized by (a®,bM). Suppose £ is contained in a tubular
neighborhood of some maximal flat F' € F. Since maximal flats in X are isolated,
(aV,bM) stabilizes F. Now by Lemma 3.1, (a, b) stabilizes a flat.

Now suppose £ is not contained in a tubular neighborhood of any maximal flat F € F.
Then by Lemma 2.11, £ is a rank one geodesic. Hence, a”V and b™ are rank one
isometries, and so are a and b. The axes of a and b are parallel, so they share the same
endpoints A = A(a) = A(b). Thus (a, b) fixes A by Lemma 2.4. |

We obtain a similar result when an element and its conjugate stabilize a flat or line.

Lemma 3.3 Leta and b be a pair of hyperbolic isometries of X such that
(a,bab™ ') < Isom(X)

stabilizes a flat or a line. Then either {(a, b) stabilizes a flat or a and b are rank one
isometries and (a, b) fixes A(a) = A(b) C 0X.

Proof Let E be a line or flat stabilized by (a, bab™!) and suppose E is contained in
a tubular neighborhood of some maximal flat F € F. Let £, and £;,,—1 := b{, be
fixed axes of @ and bab™ !, respectively. Then £, and b{, are contained in a bounded
neighborhood of F. The axis £, (resp. b{,) is also in a bounded neighborhood of
aF (resp. bF). Since the collection F is Isom(X)—invariant, a F,bF € F. Now
by Definition 2.9 (isolated), we get that ' = aF and F = bF. Therefore a and b
stabilize F.

Now suppose E does not lie in a tubular neighborhood of a maximal flat. It follows
that dim(E) = 1, so E is an axis for a. By Lemma 2.11, a is a rank one isometry. Both
a and bab™! stabilize A(a), which is equal to the pair of end points of E. Therefore b,
and hence (a, b), also fixes A(a). Then by Lemma 2.12, we conclude that b is also a
rank one isometry and A(a) = A(b). a

In light of the above results, we are able to upgrade Lemma 2.14 in the setting of
isolated flats. For the remainder of this section let X be a CAT(0) cube complex of
dimension d with isolated flats that admits a geometric group action.

Proposition 3.4 Leta,b € Isom(X) be a pair of hyperbolic isometries of X such that
{a,b) acts treely on X . There exists a constant M = M(d) < oo such that either

(1) (a,b) contains an M —short tfree semigroup, or
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(2) the subgroup (a, b) stabilizes a flat, or

(3) a and b are rank one isometries and {(a, b) fixes A(a) = A(b) C 3X.

Proof The proof is by induction on the dimension of X. For the base cases, if
dim(X) = 1 then we are done by Lemma 5.1 with M (1) = 4. If dim(X) = 2 then the
conclusions are satisfied by [35, Theorem 1], with M (2) = 10.

For the induction step, apply Lemma 2.14. Let
M(d) =max{(2d!+ N)-M(d —1),L(d)}

where L(d) is the constant from Lemma 2.14. If the condition (short free semigroup)
is satisfied then we are done. If the condition (virtually abelian powers) is satisfied
then (a™V,b") stabilizes a flat or line by the flat torus theorem [9]. By Lemma 3.1
or Lemma 3.2, conclusion (2) or (3) holds. If the condition (stabilize hyperplane) is
satisfied then up to switching a and b, the group H = (a®¥, h=4'aN p4!) stabilizes
a hyperplane. Since hyperplanes are convex in the cube complex, the elements a’v
and b=?'aN p4" have axes in £ [9, Chapter 11.6 Proposition 6.2(4)]. Hence, they are
both hyperbolic in the restricted action of H on f. Moreover, the restricted action
is free. Therefore by the induction hypothesis, (a®,b~'a™N b4') either contains an
M (d—1)-short free semigroup or (a™,b~%'a®N 4!} stabilizes a flat in foraV and
h=4'aN pd! are rank one isometries of A fixing A(@™) = A(b~%'aNbp?") C dh C OX.
In the case when (a?V, p=d!gN bd!) stabilizes a flat in /Ai, conclusion (2) or (3) holds by
Lemma 3.3 followed by Lemma 3.1 or Lemma 3.2. In the remaining case, b~4! fixes
A(aN) because b= A(@V) = A(b~?'aN b?"). By Lemma 2.12, b=?" is a rank one
isometry of A with A := A~ = A@@V).

If a and b are also rank one in X then {(a, b) fixes A = A(a) = A(b) and we are done.
Suppose now that b is not rank one in X . It must be that the subgroup (a, b} stabilizes
a maximal flat F' € F. Indeed, by Lemma 2.12 the element a is also not rank one
in X. By Lemma 2.11 any axis of a (resp. b) is within finite Hausdorff distance of
a maximal flat F, € F (resp. Fj € F) such that aF, = F, (resp. bF, = F}). Since
A(a) = A(b), the maximal flats F, and F} are equal. Therefore F := F, = F} is
stabilized by (a, b). |

Now that we understand how pairs of hyperbolic isometries stabilize flats and pairs of
points in dX, we are able to extend this to any finite collection.
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Lemma 3.5 Letsy,...,s, be a collection of hyperbolic isometries of X such that for
each 1 <i # j <n, either (s;, s;) stabilizes a flat or s; and s; are rank one isometries and
(si,s;j) stabilizes A(s;) = A(s;). Then either (s1,...,sy) stabilizes a flat or for every
i > 1, s; is a rank one isometry and (s1, ..., Sy) stabilizes A(s1) =--- = A(sp) C 0X.

Proof If s; is a rank one isometry then so is every s;. Indeed, rank one isometries do
not stabilize any flat and every hyperbolic isometry g € Stab(A(s1)) is rank one with

A(g) = Als1).

We may thus assume that every pair in {sq, ..., S, } stabilizes a flat. Let E; be a flat
stabilized by (s1, ;) where 2 <i < n. By Definition 2.9 (maximal), E; is contained
in a tubular neighborhood of maximal flat F; € F. We argue as in the proof of
Lemma 3.1 that (sq, s;) stabilizes F;. Let £ be an axis of s1. Then £ is contained in a
bounded neighborhood of F; for all 2 <i < n. Therefore by Definition 2.9 (isolated),
F; = F; =: F for all i # j. Therefore, each s; stabilizes F and hence (s1,...,$s)
stabilizes a flat in X. O

We are now ready to prove Theorem B.

Theorem B There exists a constant w; > 1 depending only on d € N such that the
following holds. Let X be a CAT(0) cube complex of dimension d with isolated flats
that admits a geometric group action. For any finitely generated group G acting freely
on X, either w(G) > wy or G is virtually abelian.

Proof Let S = {s1,...,5,} be a finite generating set for G. Since the action is
free, each s; is a hyperbolic isometry of X. For every 1 <i # j < n, consider the
pair s; and s;. By Proposition 3.4 applied to s; and s;, if there exists a constant
M = M(d) < oo such that (s;, s;) contains an M —short free semigroup, then

w(G) > N2 =: wy.

So suppose for all pairs i # j, either (s;,s;) stabilizes a flat or s; and s; are rank one
isometries and (s;, s;) stabilizes A(s;) = A(s;). By Lemma 3.5, either G = (s1, ..., Sn)
stabilizes a flat or for every i > 1, s; is a rank one isometry and G stabilizes

A:=A(s1)=---= A(sy) C0X.

First suppose G stabilizes a flat. Since G acts freely on X, it is a discrete subgroup of
isometries of the flat. Thus by Bieberbach’s theorem, the group G is virtually abelian.
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Now suppose each s; is a rank one isometry and G stabilizes A. By Lemma 2.6, the
parallel subcomplex Y;; coincides with Y, foralli # j. LetY := Y5 =---=Yj,.
By Proposition 2.5, Y is a quasiline. Since G acts freely on X, G acts freely and hence
properly on Y. By Proposition 2.5, each s; acts cocompactly on Y. Hence, G acts
geometrically on Y. Thus, G is two-ended and hence virtually infinite cyclic. a

If instead of isolated flats, we impose the condition of hyperbolicity on our CAT(0) cube
complex X, then we can use the same proof strategy as for Theorem B to get uniform
exponential growth where the requirement of a geometric group action is replaced with
the weaker hypothesis of a weakly properly discontinuous action introduced Bestvina
and Fujiwara [6, Section 3]; see [47] for more details on acylindrical hyperbolicity. We
first recall a lemma from a paper of Dahmani, Guirardel, and Osin.

Lemma 3.6 [13, Lemma 6.5] Let G be a group acting on a §—hyperbolic space X
and let h € G be a hyperbolic WPD element. Then h is contained in a unique maximal
virtually cyclic subgroup E(h) of G. Moreover, E(h) = {g € G | dyaus(g¥,{) < 00},
where £ is a quasigeodesic axis of h in X .

In more general actions on hyperbolic spaces, stabilizers of endpoints of hyperbolic
isometries need not be virtually abelian let alone virtually cyclic. By requiring that
hyperbolic isometries be WPD, we can prove the following.

Proposition 3.7 There exists a constant wg > 1 depending only on d € N such that the
following holds. Let X be a CAT(0) cube complex of dimension d that is hyperbolic.
For any finitely generated group G acting freely and weakly properly discontinuously
on X, either w(G) > wy or G is virtually infinite-cyclic.

Proof Leta,b € G be two distinct hyperbolic isometries of X. Suppose (a™,hV)
stabilizes a line £ in X. Then @™ and »¥ fix the endpoints of £. Since a and a® share
the same fixed points in dX, we conclude that a and b fix the same pair of points in dX.
This implies that b€, has finite Hausdorff distance from £,. Thus, by Lemma 3.6,
b € E(a) and (a, b) is virtually cyclic. Similarly, if a and bab™! stabilize a line then
(a, b) is virtually cyclic because b € E(a).

Now let {s1, ..., s, } be afinite generating set of G such that each s; acts as a hyperbolic
isometry of X. Then the result follows as in the proof of Proposition 3.4, Lemma 3.5
and Theorem B. |
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Remark 3.8 Let G be a group acting freely on a CAT(0) cube complex X. If G
satisfies the conclusions of Lemmas 3.1, 3.2, 3.3 and 3.5, then we can use Lemma 2.14
as above to obtain a uniform exponential growth result for G.

A simple example to illustrate the difficulty of working with powers is the following:
Let G = (x,y | [x2, y?] = 1). Then G acts freely on a CAT(0) cube complex because
its presentation 2—complex can be subdivided into a CAT(0) square complex. The
subgroup (x2, y?) is free abelian. However, G is far from being virtually abelian.
The group G is isomorphic to a (finitely generated free)-by-cyclic group. A brief
outline is as follows: we change the presentation by replacing the generator y by

1z2x72z71xz71 = 1). Consider the epimorphism

z=xyand we get G = (x,z | x?zx~
¢: G — Z which sends x to 1 and z to 0. Then by Brown’s criterion [10] — see also
[17, Section 5] —ker(¢) is finitely generated and by Magnus’s Freiheitssatz [37] it is a

free group. Thus G is isomorphic to ker(¢) x Z.

4 Generating hyperbolic isometry

In this section, our goal is to produce a hyperbolic isometry g of a CAT(0) cube complex
X by composing two elliptic isometries a and b, such that g has uniform length in a
and b. For example, if a and b are two elliptic isometries of a tree with disjoint fixed
points, then g = ab is a hyperbolic isometry of the tree [52, I Proposition 26]. We
obtain an analogous result when X has dimension 2 or 3.

We first prove a general lemma quantifying how elliptic isometries of CAT(0) cube
complexes interact with the cubical hull of their fixed sets.

Lemma 4.1 Let X be a d—dimensional CAT(0) cube complex and let a be an elliptic
isometry of X . Then cHull(Fix(a)) is pointwise fixed by ak where k =lcm{l1,2,...,d}.

Proof Let A := Fix(a). By Observation 2.2, cHull(A) is dual to the collection of
hyperplanes #(A4). We will show that a* fixes each hyperplane in % (A), which implies
that a¥ pointwise fixes cHull(A).

Let Ao be the union of all open cubes of X that intersect A nontrivially. Then a
preserves every cube C € Ag. Also every hyperplane that crosses C is in H(A4). Since
C contains fixed points of a, the action of a on C is determined by a permutation
of at most d hyperplanes. However, the order of every cyclic permutation group on
d objects divides k = lem{1,2,...,d}, so a* is a trivial permutation of hyperplanes
crossing a cube. Therefore, ak fixes each hyperplane in H(A). |
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Figure 1: The hyperplanes a”h and b’ h are disjoint from .

The next lemma differs from Proposition 4.3 in that the conclusion involves the subgroup
(a*, b¥) instead of (a, b).

Lemma 4.2 Let a and b be two elliptic isometries of a CAT(0) cube complex X
of dimension d. If their fixed sets are separated by a hyperplane then there exists a
hyperbolic isometry g € {a, b), such that g has length at most 2d ina and b. Otherwise,
the subgroup (a¥,b¥), where k = lem{1,2, ..., d}, fixes pointwise the intersection
cHull(Fix(a)) N cHull(Fix(b)).

Proof Let f be a hyperplane that separates A := Fix(a) and B := Fix(b). Since X
is d—dimensional, there are two hyperplanes in {ﬁ, afAi, azfAi, . ,ad ﬁ} that are either
equal or disjoint. If f = ah, then the point in f closest to A is fixed by a, which is
not possible since h separates A and B. Suppose f = akh for some 2 <k < d, and
forallm =1,...,k — 1 we have A #* a™f and AN a™h # &. Then the collection
Hy = {fl, ah, ..., ak_lfl} is invariant under a. Also each pair of hyperplanes in Hy
intersects, therefore by the Helly property for hyperplanes they all have a common
point of intersection which is invariant under a. This is again not possible since A
separates A and B. Therefore, there exists r,s € {1,2,...,d} such that a" A and b’k
are disjoint from /i and contained in different halfspaces determined by h. Let f be
the halfspace containing A. Then we have b*# C a” h. See Figure 1. Thus a™" 5% is a
hyperbolic isometry of length at most 2d in a and b.

If there is no hyperplane separating A and B, then cHull(A4) and cHull(B) intersect in
a nonempty set. Therefore, by Lemma 4.1, ak and b¥ fix cHull(A) N cHull(B), where
k=1ecm{l,2,...,d}. O

We will now prove Proposition 4.3. Recall that the free Burnside group B(m,n) is the
quotient of the free group on m generators by the normal subgroup generated by the
n'™ powers of all the elements. If m > 2 and n is sufficiently large, then B(m,n) is
infinite [43; 44; 45]. However, for small values of n, some are known to be finite. For
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instance, B(2,2) =7 /27 ® 7./27 and B(2, 6) are known to be finite [25]. In order to
extend our proof of Proposition 4.3 for cube complexes of dimension d > 4, we would
need B(2, k), where k =1lcm{l,2,...,d}, to be finite. However, already for d = 4, it
is not known whether B(2, 12) is finite or not.

Proposition 4.3 Leta and b be a pair of isometries of a CAT(0) cube complex X of
dimension two or three. Then either

(1) there exists a hyperbolic element in {a,b) whose length in a, b is at most L,
where L is a constant that only depends on dim(X), or

(2) (a,b) fixes a point in X .
If X is 2—dimensional, then L = 12.

Proof Let F(a, ) be the free group on two generators, generated by o and . First
assume X is 2—dimensional. Let K be the kernel of the map from F(«, ) to B(2,2).
Then K is finitely generated by o2, B2, af?a~! and Ba?B~L. Let wy = o, wo = B,
w3 = afa~! and wy = Baf~!. Then K is generated by w%, w%, wg and w%, and each
w; has length at most 3 in F(a, B). Let ¢: F(a, B) — (a, b) be the map that sends «
toa and B to b. Then w; := ¢(w;) for 1 <i < 4 also has length at most 3 in (a, b).

The following is a schematic:

1 K¢ F(a,B) —» B(2,2) —— 1
L]
1 P(K)C {(a, by — (finite) —— 1
If w; is a hyperbolic isometry of X for some 1 < i < 4, then we are done. So
suppose each w; is elliptic in X. For i # j, by Lemma 4.2, either (1512 w}) fixes

cHull(Fix(w;)) N cHull(Fix(w;)), or there exists a hyperbolic isometry in (w,?, w;) of
length at most 4 in w;, w;, so of length at most 4-3 = 12 =: L in (a, b). Suppose
the latter happens for each pair w;, w;. By Helly’s property for cubically convex sets,
there exists a point x € () cHull(Fix(w;)), which is fixed by each wl? and hence by
¢ (K). Since K is a finite index subgroup of F(«, B), ¢(K) is a finite index subgroup
of {a,b). Thus (a, b) has a global fixed point in X.

If X is 3—dimensional, then we consider the group B(2, 6) instead of B(2,2) which is
also finite. Let M > 0 be the maximum length in o, § of the elements in the smallest
finite generating set of K. Then as above, we can either find a hyperbolic isometry of
length at most 6M = L in {(a, b) or {a, b) fixes a point in X. |
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5 Cubical groups generated with torsion

In this section, X will be a CAT(0) square complex. We consider a finitely generated
group G acting without global fixed point on X. In [35], the authors restrict their
attention to free actions. Freeness implies that every element of G acts as a hyperbolic
isometry of X. If the action is not free, then a given generating set may consist partially
or entirely of elements acting elliptically on X. We will use Proposition 4.3 to construct
a hyperbolic isometry from elliptic isometries and then build on the proof of Theorem 1
in [35].

Before proving Theorem A, we recall the basic case of groups acting on trees.

Lemma 5.1 Let S be a finite collection of isometries of a simplicial tree T'. Either
(S) stabilizes a point or a line, or (S) contains a 4—short free semigroup.

Proof Suppose S contains a hyperbolic isometry g of 7" with axis £. If S C Stab({)
then we are done. Otherwise, there exists s € S such that the axis sf % £. By [35,
Proposition 10], g¥! and sg*'s~! generate a free semigroup. If S consists only of
elliptic isometries of 7', then we may assume there exists elements a, b € S that do not
fix a common point or else we are done. By [52, I Proposition 26], the element ab is a
hyperbolic isometry of 7. We may repeat the argument above with g = ab. a

We use Proposition 4.3 to generalize [35, Proposition 15] to actions that are not free.

Proposition 5.2 Let S be a finite collection of isometries of X, and suppose S contains
at least one hyperbolic isometry, and at least one elliptic isometry. Then either

(1) (S) contains a 50—short free semigroup, or
(2) (S) stabilizes a flat or line in X .

Proof Let S = So U Sepiipic Where Sy is the set of hyperbolic isometries, and Sejjiptic
is the set of elliptic isometries. Let S; = Sp U {ese_1 | s € So,e € Seniptic} and
S> =851 U {ese_1 | s € S1, e € Seniptic §- Bach of So, S1 and S5 is a finite collection of
hyperbolic isometries of X with S—length at most 5. Assume no pair of word of length
at most 50 in S generates a free semigroup. In this case, we will find a Euclidean
subcomplex that is stabilized by S.

Words in S; fori =0, 1, 2 have S—length at most 5. By assumption there does not exist
a 50—short free semigroup with respect to .S, so there is no 10—short free semigroup with
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respect to any S;. By [35, Theorem 1], there exists a minimal S,—invariant subspace F5,
which is an isometrically embedded Euclidean plane or line (with respect to the CAT(0)
metric). Since S1 C S», F» is also stabilized by S;. Let F; be a minimal subspace of
F> stabilized by S;. Similarly, let Fy be a minimal subspace of F; stabilized by Sp.
We have Fy C F; C F5. Since the three Euclidean spaces have dimensions 1 or 2,
either Fo = Fy,or Fo & F1 = F». Fori = 1,2, 3, we denote the subcomplex cHull(F;)
by E;.

First suppose that Fo = F;. Then we also have that their cubical convex hulls Ey = E
are equal. If Sejjipic C Stab(E7), we are done. Suppose there exists e € Sejjiptic Such
that e £ # Ej. If the subcomplexes eE and E are not parallel, then there exists
a hyperplane he H(E7) such that eh ¢ H(E1). Since f intersects Eq, which is a
minimal Euclidean complex stabilized by S, there exists g € (S1) such that he sk(g).
It follows that ef € esk(g) = sk(ege™!). Since ege™! € (S1) and S stabilizes E7,
ef must intersect E 1- Thus eE1 and E1 must be parallel. Since X is 2—dimensional
we get dim E; = dimeE; = 1. Since E; is a subcomplex it must be a combinatorial
line. The parallel subcomplex of g is isometric to E1 x T and is stabilized by S by
repeating the above argument for every element e € Sejjipic. Moreover, (S) preserves
the product structure of £ x 7. By Lemma 5.1, (S) stabilizes a point or line £ in its
action on 7. Thus, (S) stabilizes the line £ or flat £y x £.

Now consider the case where Fo & F = F>. We must have dim Fp =1 and dim F; =2.
Since X is 2—-dimensional, any Euclidean 2—plane is equal to its cubical convex hull.
Hence, we have F; = E; = F, = E,. We repeat the argument from the previous
paragraph for E1, E> in the place of Eq, E1. We conclude that Sejjipic C Stab(E?2), as
otherwise we get a contradiction with the fact that dim £; = 2. a

We are now ready to prove Theorem A and Corollary 5.3.

Theorem A Let G be a finitely generated group acting without global fixed point
on a CAT(0) square complex X . Then either G has uniform exponential growth with
w(G) > *YY2 or G stabilizes a flat or line in X .

Proof Let S be a finite generating set for G. If S contains no hyperbolic isometries
then by Proposition 4.3 we may replace S with a new generating set containing a
hyperbolic isometry whose S—length is < 12. Thus without loss of generality we
may assume that S contains at least one hyperbolic isometry. If S contains no elliptic
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isometries, then we reduce to Theorem 1 of [35]. Suppose that S contains at least one
elliptic isometry. By Proposition 5.2, either there exists a pair of words of length at
most 50 in S that freely generate a free semigroup or S stabilizes a flat or line in X.
When G has uniform exponential growth we get w(G) > *V/2. |

For proper actions on CAT(0) square complexes we can upgrade stabilizing a flat or
line to being virtually abelian.

Corollary 5.3 Let G be a finitely generated group that acts properly on a CAT(0)
square complex. Then either G has uniform exponential growth with w(G) > *3/2, or
G is virtually abelian.

Proof Suppose G does not have uniform exponential growth with w(G) > *¥/2. By
Theorem A, G stabilizes a flat or line F. Consider the image G of G in Isom(F). Since
the action of G on X is proper, the action on F is also proper, and so G is a discrete
subgroup of Isom(F). Also, the properness of the action implies that K = ker(G — G)
is finite. By Bierberbach’s theorem (Theorem 2.7), the quotient G is virtually abelian.
Thus, G is finite-by-(virtually abelian) and hence virtually abelian. For completeness
we include a proof of this in Lemma 5.4 below. a

Lemma 5.4 Let G be a finitely generated finite-by-(virtually abelian) group, ie there
exists a finite normal subgroup K < G such that G/ K is virtually abelian. Then G is
virtually abelian.

Proof Let A be a maximal rank free abelian subgroup of G/K and let H be the
preimage of A in G. Then H is a finite index subgroup of G and fits into the short
exact sequence

1-K—H—>A—1.

Let ¥ : H — A denote the projection. The group H acts on K by conjugation, ie there

is a homomorphism H — Aut(K), so we can pass to a further finite index subgroup

H'’ whose action on K is trivial, ie we have the central extension
1K > H -4 —>1

where K’ = KN H' and A’ = n(H') < A. Let {ay,...,a,} be a minimal set of
generators of A, and let {hy,...,h,} be a set of elements of H such that 7 (h;) = a;
for all 1 <i <n. We will show that (h'lnl, .ty = 7" for some my, ..., m, € N.
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This follows from the following claim: for any g, € H’ with [(g), w(h)] = 1, there
exists m € N such that [g, 2] = 1. To see that the claim is true, note that for every
m € N we have [g,h™] € K'. Since K’ has only finitely many elements there exist
distinct 71 and m, such that gh™ g~ 1h=™™1 = gh™2g~1p=™2 which implies that
hml—ng—l — g_lhml_mz,

It remains to show that H” := (h"',..., hy™") has finite index in H’. Note that
A" :=(a}"",...,ay™) has finite index in A’. The finite index subgroup ¢~1(4”) of
H' is generated by {h]'",... , hy"}U K, and so is isomorphic to K x H". O

In general, stabilizing a flat is far from sufficient to show that a group is virtually
abelian. The following example was brought to our attention by Talia Fernos.

Example 5.5 Let G = Z? @ R where R is the Grigorchuk group, which has interme-
diate growth. R acts faithfully on a tree 7', with a single global fixed point v, so G acts
faithfully on the universal cover of the wedge sum a torus and 7" along the vertex v.
The torus lifts to a 2—flat stabilized by G, but G does not act faithfully on this flat.
Moreover, G is neither virtually abelian nor contains a free semigroup because it has
intermediate growth.

Nevertheless, by studying the interactions between vertex stabilizers it is sometimes
possible to show that certain groups acting improperly on a CAT(0) square complex
may still satisfy the conclusion of Corollary 5.3.

6 Improper actions and locally uniform exponential growth

It is not known whether all acylindrically hyperbolic groups have uniform exponential
growth. However, they may contain finitely generated exponentially growing subgroups
without uniform exponential growth. For example, this is the case for the free product
of Wilson’s group with itself. In this section, we will show that by understanding vertex
stabilizers it is possible to use Theorem A to prove locally uniform exponential growth
results for certain acylindrically hyperbolic groups that also act on cube complexes. In
each case, we make use of the following.

Corollary 6.1 Suppose G is a finitely generated group that acts by isometries on
a CAT(0) square complex X such that finitely generated subgroups of the vertex
stabilizers are either virtually abelian or have uniform exponential growth bounded
below by wg > 1. Then for any finitely generated subgroup H < G, either
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(1) H has uniform exponential growth with w(H ) > min{ 2, Wo}, Or
(2) H is virtually abelian, or
(3) H stabilizes a flat or line in X .

Proof If H acts without global fixed point on X then, by Theorem A, either it contains
a uniformly short free semigroup, or it stabilizes a flat or line. If H has a fixed point
in X, then it is a finitely generated subgroup of one of the vertex groups, so either is
virtually abelian or has uniform exponential growth bounded by wy. O

6.1 Higman group

The Higman group [28], H, is given by the presentation
H :=(a; | aj(@i+1)a; ' = a?,\)iez/az-

This presentation gives a decomposition of H as a square of groups with the following
local groups. Each vertex group is a copy of BS(1,2). Each edge group is a copy of Z.
Each 2—cell group is trivial. This decomposition gives a cocompact action of H on a
CAT(0) square complex X, whose vertex stabilizers are the groups mentioned above.
Martin used this structure to show that certain generalizations of the Higman group
act acylindrically hyperbolically [40, Theorem B] on CAT(0) square complexes. The
Higman group itself is acylindrically hyperbolic coming from its structure as a free
product with amalgamation and [42].

Theorem 6.2 Let G be any finitely generated subgroup of the Higman group H. Then
either G is cyclic or G has uniform exponential growth with w(G) > °V/2.

To understand exponential growth in the Higman group, we first show uniform expo-
nential growth of finitely generated subgroups of Baumslag—Solitar groups. Uniform
exponential growth of solvable Baumslag—Solitar groups follows from work of Bucher
and de la Harpe [27], however they do not address subgroups.

Lemma 6.3 (Baumslag—Solitar groups) Any finitely generated subgroup of a Baum-
slag-Solitar group BS(1, m), where m # +1, is either cyclic or has uniform exponential
growth bounded by /2.

Proof Let S be any finite collection of elements of the Baumslag—Solitar group with
presentation (a,t | tat™! = a™). Let T be the Bass—Serre tree for BS(1,m) with
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Z vertex and edge groups. This tree can be obtained from the Cayley complex by
collapsing in the a—direction.

By Lemma 5.1, either G = () contains a 4—short free semigroup or stabilizes a point
or line in 7. If G stabilizes a point then G is cyclic, so assume that G stabilizes a
line £. Tt suffices to show that Stab(¥) is cyclic.

Every element of BS(1, m) can be written in the form & = a?t9 because ta = a™t.
We claim elements of the form a? cannot stabilize £. Indeed, if a? stabilizes £ then it
would fix the line pointwise because such elements fix a vertex in 7. Vertex stabilizers
are conjugates of a, so segments of length n can only be fixed pointwise by elements
that are powers of a””. Taking n larger than p gives a contradiction. If g # 0 then £ is
also a hyperbolic isometry of 7. The only hyperbolic isometries that will stabilize the
axis of g are roots and powers of g. The axes of any other hyperbolic isometry /# will
diverge from £ in the tree 7', so & cannot stabilize £. It follows that Stab({) is cyclic. O

With this, we are ready to address the Higman group.

Proof of Theorem 6.2 By Corollary 6.1 and Lemma 6.3, any finitely generated
subgroup G < H of the Higman group either has w(G) > °V/2, or is virtually abelian,
or stabilizes a flat or line in X. Let E be the line or flat in X stabilized by G. We have
homomorphism 7 : G — Isom(E) where the image G is virtually abelian. The kernel is
contained in () e Stab(p), soitis cyclic. If dim(E) = 2 then ker(rr) is trivial because
the 2—cell groups are trivial. If dim(E£) = 1 then E is contained in the 1-skeleton of X .
Stabilizers of adjacent edges have trivial intersection by [39, Lemma 2.1], so we again
have ker(r) is trivial. Therefore, G 2 G, and moreover G is cyclic, since the Higman
group is torsion-free and does not contain Z2 as a subgroup [39, Proposition 4.15]. O

6.2 Triangle-free Artin groups

Artin groups generalize the braid group. They admit presentations corresponding
to finite labeled graphs where each label m is at least two. Vertices correspond to
generators and an edge labeled by m joining vertices a and b corresponds to the relation

aba---=bab---.
—— ——
m m

Triangle-free Artin groups are those whose defining graphs have girth > 4. Spherical
Artin groups are those whose quotient Coxeter group is finite. This quotient is obtained
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by imposing that all generators have order 2. An Artin group is FC—type when every
clique in the defining graph is associated to a spherical Artin subgroup. An Artin group
is 2—dimensional if every spherical Artin subgroup has rank at most 2. It is easy to see
that an Artin group is triangle-free if and only if it is 2—dimensional FC-type.

Many subclasses of Artin groups exhibit properties of nonpositive curvature and have
attracted much attention in recent years. Indeed, FC—type Artin groups are acylindri-
cally hyperbolic by Chatterji and Martin [12, Theorem 1.2]. In recent work, Martin
and Przytycki exploit an improper action of FC—type Artin groups on CAT(0) cube
complexes in order to prove the strong Tits alternative [41].

Charney and Davis showed an Artin group A is FC—type if and only if its Deligne
complex D 4 is a CAT(0) cube complex. Moreover, they showed that D 4 is a K (i, 1)
space for A so it has the same cohomological dimension as the Artin group [11,
Theorem 4.3.5]; see also [41]. In particular, the Deligne complex of triangle-free Artin
groups is a CAT(0) square complex. The action of any FC—type Artin group A on
its Deligne complex has vertex stabilizers that are conjugates of standard parabolic
subgroups, which correspond to subgraphs of the defining graph of A.

Theorem 6.4 Let G be any finitely generated subgroup of a triangle-free Artin group A.
Either G is virtually abelian or it has uniform exponential growth with w(G) > *V/2.

The base case of the theorem is the following.

Lemma 6.5 (rank 2 Artin groups) Any finitely generated subgroup of a rank 2 Artin
group is either virtually abelian or has uniform exponential growth bounded by ¥/2.

Proof Any rank 2 Artin group A acts geometrically on a CAT(0) square complex
isometric to R x 7" where T is a simplicial tree [32, Theorem 5.1] (a similar complex is
also described in [7]). Also, A is torsion-free [14]. Therefore, any subgroup of A acts
freely on R x 7'. The bounds on growth follow from [35, Theorem 1] in the special
case where X is isometricto R x 7. a

Proof of Theorem 6.4 The Deligne complex D 4 of a triangle-free Artin group is a
CAT(0) square complex. Every edge in D 4 lies in a square and every square in ID 4
has one vertex with trivial stabilizer joined to two vertices with cyclic stabilizers that
are conjugates of subgroups generated by two distinct standard generators, and one
vertex that is a conjugate of a rank 2 standard parabolic subgroup; see [11; 41].
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Suppose that the exponential growth rate w(G) < “°v/2. If G has a global fixed point
in D4 then G is virtually abelian by Lemma 6.5. Hence, by Corollary 6.1, G stabilizes
a flat or line E C D 4. Therefore, the image, G, of G in Isom(E) is virtually abelian.
The kernel ker(G — G) has a subgroup K of index at most 2 that pointwise stabilizes
the cubical convex hull of E. The group K is contained in the pointwise stabilizer
ﬂxeCHull( gy Stab(x) of cHull(E) in G, which we will show is trivial. If cHull(£)
contains any vertex with trivial stabilizer, then [ xEcHUll(E)© Stab(x) is clearly also
trivial. Suppose that E is a combinatorial line that does not contain any vertices
with trivial stabilizers. Such a line must contain a vertex with cyclic stabilizer, so
ker(G — G) is a (possibly trivial) cyclic group. Hence, G is a cyclic-by-(virtually Z)
group, which is virtually abelian. |
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