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simplicial monoidal model categories

HALDUN ÖZGÜR BAYINDIR

BORIS CHORNY

Using Dugger’s construction of universal model categories, we produce replacements
for simplicial and combinatorial symmetric monoidal model categories with better
operadic properties. Namely, these replacements admit a model structure on algebras
over any given colored operad.

As an application, we show that in the stable case, such symmetric monoidal model
categories are classified by commutative ring spectra when the monoidal unit is a
compact generator. In other words, they are strong monoidally Quillen equivalent to
modules over a uniquely determined commutative ring spectrum.

18M05, 55P99

1 Introduction

A symmetric monoidal model category is a setting to study structured objects such as
monoids, commutative monoids or modules using homotopy theoretic tools. However,
one does not always have a model structure on these structured objects. For example,
commutative monoids in chain complexes (commutative DGAs) are not known to carry
a model structure induced from the underlying model category of chain complexes.
The general problem of transferring a model structure to the categories of monoids and
modules is studied by Schwede and Shipley in [19] and it is shown that these lifts exist
under mild hypotheses. In [11, Section 4.5.4], Lurie studies this transfer problem for
commutative monoids and this lifting problem requires a stronger hypothesis, which
may be verified, though, for symmetric spectra with the positive stable model structure.
More generally, one considers the algebras over a colored symmetric operad in a given
symmetric monoidal model category. The transfer problem in this generality was
studied by Pavlov and Scholbach [14].
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44 Haldun Özgür Bayındır and Boris Chorny

The main result of this paper is that any combinatorial simplicial symmetric monoidal
model category may be replaced, up to strong symmetric monoidal Quillen equivalence,
by a model category allowing for algebras over any symmetric operad to have a
model structure transferred from the underlying category. As an application, we show
that, under mild conditions, any stable symmetric monoidal model category is strong
symmetric monoidally Quillen equivalent to a category of modules over commutative
ring spectrum. This result generalizes the theorem by Schwede and Shipley [21,
Theorem 3.1.1]. In the framework of stable1–categories, a similar result was obtained
by Lurie [11, Proposition 7.1.2.7]. Our approach provides a refinement of Lurie’s
theorem to the realm of stable combinatorial model categories.

Pavlov and Scholbach [16] call a symmetric monoidal model category admissible
if for every colored symmetric operad O, the category of O–algebras carry a model
structure transferred from the underlying category. According to Pavlov and Scholbach,
a monoidal model category is nice if it is h–monoidal, pretty small, flat and tractable.
Detailed definitions may be found in Section 3.4.

Pavlov and Scholbach’s main result in [16] is that for a nice symmetric monoidal model
category M, there exists an admissible replacement of M, up to a strong symmetric
monoidal Quillen equivalence. This replacement is the category of symmetric spectra
over M.

In this paper, we show that any simplicial combinatorial symmetric monoidal model cat-
egory is strong symmetric monoidally Quillen equivalent to a nice symmetric monoidal
model category. Combining with the result of Pavlov and Scholbach, we obtain that
such model categories have replacements with admissible symmetric monoidal model
categories.

These replacements have many applications. For example, our admissible replacement is
a Goerss–Hopkins context. This is again due to the results of Pavlov and Scholbach [16,
Theorem 1.6]. This means that Goerss–Hopkins obstruction theory can be applied in
this replacement to obtain commutative monoids from commutative monoids in the
homotopy category. Furthermore, one has a strictification for E1–algebras. In other
words, E1–algebras are Quillen equivalent to commutative monoids in this setting.

Notation 1.0.1 All our monoidal categories are symmetric monoidal. Therefore we
say monoidal when we mean symmetric monoidal. Similarly for model categories,
functors and Quillen pairs.
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Admissible replacements for simplicial monoidal model categories 45

Notation 1.0.2 There are two notions of monoidal Quillen equivalences defined by
Schwede and Shipley [20]: weak monoidal and strong monoidal. All the monoidal
Quillen equivalences we talk about are strong monoidal Quillen equivalences.

Theorem 1.0.3 Every combinatorial and simplicial symmetric monoidal model cate-
gory is symmetric monoidally Quillen equivalent to an admissible symmetric monoidal
model category. An analogous result holds for monoidal model categories that are not
necessarily symmetric.

Remark 1.0.4 In [22], Shipley constructs a model structure for commutative ring
spectra where cofibrant commutative ring spectra forget to spectra that are cofibrant
in a nonpositive model structure. The admissible replacement provided by the proof
of the theorem above also satisfies a similar property. In this admissible replacement,
cofibrant commutative monoids forget to cofibrant objects in a nonpositive model
structure. Indeed, this is true for algebras over various operads. This is a consequence
of Pavlov and Scholbach [16, Proposition 2.3.10 and Theorem 4.4].

The admissible replacement we construct satisfies further properties due to Pavlov and
Scholbach [16, Theorems 4.6 and 4.9]. These are stated in the following theorems.

Theorem 1.0.5 Every combinatorial and simplicial symmetric monoidal model cate-
gory is symmetric monoidally Quillen equivalent to an admissible symmetric monoidal
model category C where a weak equivalence of operads O! P in C induces a Quillen
equivalence between the model categories of O–algebras and P –algebras.

Remark 1.0.6 We prove Theorems 1.0.3 and 1.0.5 in a more general setting; see
Theorem 3.5.5. Namely, these theorems are true for combinatorial V symmetric
monoidal model categories for every symmetric monoidal model category V satisfying
the axioms listed in Notation 3.0.1. For instance, the model categories of pointed
simplicial sets and chain complexes over a field satisfy these axioms.

In the theorem below, O denotes an operad in simplicial sets and N˝O denotes the
operadic nerve of O.

Theorem 1.0.7 Every combinatorial and simplicial symmetric monoidal model cate-
gory is symmetric monoidally Quillen equivalent to an admissible symmetric monoidal
category C where the underlying1–category of the model category of O–algebras in C

is equivalent to the1–category of N˝O–algebras on the underlying1–category of C.
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Remark 1.0.8 The resulting symmetric monoidal model categories in Theorems 1.0.3,
1.0.5 and 1.0.7 are the same. In other words, for a given combinatorial and simplicial
symmetric monoidal model category, we construct a replacement that satisfies all the
properties given in Theorems 1.0.3, 1.0.5 and 1.0.7.

Remark 1.0.9 Applying our constructions to combinatorial and simplicial braided
monoidal model categories, one obtains the following. Every combinatorial and sim-
plicial braided monoidal model category is monoidally Quillen equivalent to another
braided monoidal model category that satisfies the properties given in Theorems 1.0.3,
1.0.5 and 1.0.7 with respect to nonsymmetric operads.

To prove these results, we first replace the given monoidal model category by another
one with a cofibrant monoidal unit if necessary. This is obtained using the results
of Muro [12]; see Section 3.1. The replacement also satisfies the hypothesis of the
theorems above.

For a monoidal model category M as in the Theorem 1.0.3 with cofibrant unit, we
obtain a zig-zag of Quillen equivalences,

(1) M LS ŒM
op
�;cof;S� Sp.LS ŒM

op
�;cof;S�; E/:

E

D F0

Ev0

Here, LS ŒM
op
�;cof;S� denotes the universal model category construction of Dugger. This

is a localization of the simplicial presheaves on a set of �–presentable cofibrant objects
of M. We equip this category with a monoidal structure using the Day convolution. The
arrows at the top denote the left adjoints. The right adjoint functor E is the restricted
Yoneda embedding and D is the left adjoint to E defined in (3).

We show that LS ŒM
op
�;cof;S� satisfies further properties with respect to its monoidal

structure. This allows us to use the results of Pavlov and Scholbach [16] to show that
the monoidal model category Sp.LS ŒM

op
�;cof;S�; E/ is admissible. To be precise, let

E denote the commutative monoid in symmetric sequences in LS ŒM
op
�;cof;S� given

by the monoidal unit of LS ŒM
op
�;cof;S� at each degree. Here, Sp.LS ŒM

op
�;cof;S�; E/

denotes the monoidal model category of E–modules. Indeed, this is the same as the
category of I–spaces in LS ŒM

op
�;cof;S� of Sagave and Schlichtkrull [18]. The adjoint

pair on the right-hand side is the standard one given by Hovey in [9, Definition 7.3];
for instance, Ev0 is the evaluation at degree 0. The pair F0 a Ev0 is a Quillen
pair when Sp.LS ŒM

op
�;cof;S�; E/ is given the stable model structure. Furthermore,
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Sp.LS ŒM
op
�;cof;S�; E/ is admissible with the positive stable model structure which is

Quillen equivalent via the identity functor to the stable model structure. We omit this
detail in (1).

Gabriel’s theorem provides a classification of cocomplete abelian categories with a
single small projective generator as categories of modules. Schwede and Shipley prove
a similar result for stable homotopy theory. They show that every stable, simplicial,
cofibrantly generated and proper model category with a compact generator is Quillen
equivalent to modules over a ring spectrum [21, Theorem 3.1.1]. We use Theorem 1.0.3
to prove a monoidal version of this result.

Theorem 1.0.10 Let M be a stable , combinatorial and simplicial symmetric monoidal
model category whose monoidal unit is a compact generator. In this situation , M is
strong symmetric monoidally Quillen equivalent to R–modules where R is a commuta-
tive ring spectrum.

Furthermore , R is uniquely determined in the following sense. If the monoidal unit of
M is cofibrant and if M is (strong or weak ) symmetric monoidally Quillen equivalent
to R0–modules for another commutative ring spectrum R0 where each monoidal model
category in the zig-zag has a cofibrant unit , then R and R0 are weakly equivalent as
commutative ring spectra.

The proof of this result makes essential use of the proof of Theorem 1.0.3. First, in the
zig-zag of Quillen equivalences in (1), instead of E, we use the symmetric sequence
corresponding to the simplicial tensor S1˝�. This provides a spectral replacement of
the given model category which allows us to obtain the derived endomorphism spectrum
of the unit. To make sure this derived endomorphism spectrum is a commutative ring
spectrum, one needs to take a fibrant replacement of the unit as a commutative ring
spectrum. For this, we make use of admissibility.

As we mentioned earlier, the1–categorical analogue of this result is due to Lurie [11,
Proposition 7.1.2.7]. To our knowledge, there is no straightforward way of obtaining
our result from Lurie’s. Nikolaus and Sagave [13] show that presentably symmetric
monoidal1–categories come from symmetric monoidal model categories. However, if
the given presentably symmetric monoidal1–category is obtained from a symmetric
monoidal model category, it is not known if the construction of Nikolaus and Sagave
gives back the monoidal model category one starts with. On the other hand, the
uniqueness part of Theorem 1.0.10 follows by Lurie’s theorem.
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Outline In Section 2, we start with a discussion on monoidal model categories and
monoidal Quillen equivalences. After that, we define Day convolution and combinatorial
monoidal model categories. Section 3 is devoted to the proof of Theorems 1.0.3, 1.0.5
and 1.0.7. In Section 4, we prove Theorem 1.0.10.

Acknowledgements We would like to thank the referee for helpful remarks. Both
authors were partially supported by ISF grant 1138/16. Furthermore, Bayındır would
like to thank the University of Haifa for the hospitality and support he received while
he was working on this project.

2 Preliminaries

2.1 Monoidal model categories

We recall the theory of monoidal model categories and enriched monoidal model
categories. As mentioned earlier, we say monoidal when we mean symmetric monoidal
for categories, model categories and functors. Furthermore, by a monoidal category, we
mean a closed symmetric monoidal category. See Definitions 4.1.1, 4.1.4 and 4.1.12 in
Hovey [8] for the definition of a closed symmetric monoidal category. In the following
definition, our unit axiom is stronger than that of [8] since we don’t assume X to be
cofibrant. This is what is called the very strong unit axiom by Muro in [12].

Definition 2.1.1 A monoidal model category M is a model category whose underlying
category is a monoidal category .M;˝; I/ with a product ˝ and a unit I such that the
monoidal structure satisfies the following compatibility conditions with respect to the
model structure on M.

(1) Pushout-product axiom For two cofibrations f W U ! V and g WX ! Y , the
map

f �g W U ˝Y qU˝X V ˝X ! V ˝Y

is a cofibration. Furthermore, this is a weak equivalence if either f or g is a
weak equivalence.

(2) Unit axiom There is a cofibrant replacement cI ��! I of the unit such that for
every X in M, the map

.cI/˝X ! I˝X ŠX

is a weak equivalence.

Remark 2.1.2 The second axiom above is satisfied if I is cofibrant.
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Remark 2.1.3 Schwede and Shipley define weak and strong monoidal Quillen equiv-
alences in [20]. They show that monoidal Quillen equivalences induce Quillen equiva-
lences at the level of monoids and modules; see [20, Theorem 3.12]. All our Quillen
equivalences are indeed strong monoidal Quillen equivalences; therefore, when we say
monoidal Quillen equivalence, we mean strong monoidal Quillen equivalence. Except
in Section 3.1, we only consider monoidal Quillen equivalences between monoidal
model categories with cofibrant units.

A monoidal functor F W C ! D between two monoidal categories .C;˝C; IC/ and
.D;˝D; ID/ is a functor that is equipped with natural isomorphisms

F.C1/˝D F.C2/Š F.C1˝C C2/ and ID Š F.IC/;

which are coherently symmetric, associative and unital; see Borceux [3, 6.4.1].

Definition 2.1.4 (Schwede–Shipley [20, Definition 3.6]) A monoidal Quillen equiva-
lence between monoidal model categories with cofibrant units is a Quillen equivalence
where the left adjoint is a monoidal functor.

For a symmetric monoidal model category V, a V model category is a model category
with an action of V that is compatible with the model structures; see Hovey [8, Defini-
tion 4.2.18]. A V monoidal model category is a V model category where the V action
is compatible with the monoidal structure. This can be formulated as in the following
definition.

Definition 2.1.5 (Hovey [8, Definition 4.2.20]) Let V and C be monoidal model
categories. We say that C is a V monoidal model category if there is a left Quillen
monoidal functor

F W V! C:

In this situation, the action of an object V in V on C in C is given by

V ˝C WD F.V /˝C C:

2.2 Day convolution for monoidal categories

Let V be a monoidal category. Given a small monoidal V enriched category .C;˝; I/,
we consider the category of V –enriched functors ŒCop;V�. We use the monoidal structure
on ŒCop;V� due to Day [5],

F ˝DayG D

Z C1;C22C

homC.�; C1˝C2/˝F.C1/˝G.C2/ for all F;G 2 VCop
:

Algebraic & Geometric Topology, Volume 23 (2023)
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This is called the Day convolution. With this monoidal product, .ŒCop;V�;˝Day; Y.I//

becomes a closed symmetric monoidal category where

Y W C! ŒCop;V�

denotes the Yoneda embedding given by

Y.C /.�/D homC.�; C /

for every C in C. We use Day convolution as our monoidal product on the presheaf
category because Y becomes a strong monoidal functor in this situation.

There is also the pointwise monoidal structure on the presheaf category ŒCop;V� but this
does not suit our purposes. This is because this monoidal product makes no reference
to the monoidal structure on C and therefore does not render Y into a strong monoidal
functor in general.

2.3 Combinatorial monoidal model categories

Here, we provide an overview of combinatorial model categories and we define what
we mean by combinatorial monoidal model categories.

Let C be a category and let C be an object in C. For a regular cardinal �, we say C is
�–presentable if mapping out of C commutes with �–filtered colimits.

A category C is said to be locally �–presentable if it is cocomplete and if there is a
set of �–presentable objects in C such that every object of C is a �–filtered colimit of
objects in this set. We say C is locally presentable if it is locally �–presentable for
some regular cardinal �.

We say a model category M is �–combinatorial if it admits sets of generating (acyclic)
cofibrations with �–presentable (co)domains and if it is locally �–presentable; see
Barwick [1, Definition 1.21]. We say M is combinatorial if it is �–combinatorial for
some regular cardinal �.

In a �–locally presentable category C, isomorphism classes of �–presentable objects
form a set [6, Section 2] we call the corresponding small full subcategory C�. For a
�–combinatorial model category M, we denote the cofibrant objects of M� by M�;cof.

For monoidal model categories, we use a stronger notion of combinatoriality. For this,
we use the definition of locally �–presentable base due to Borceux, Quinteiro and
Rosický [4, Definition 1.1]. A monoidal category C is said to be a locally �–presentable
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base if it is a locally �–presentable category, if C� contains the monoidal unit and if
C� is closed under monoidal products.

Definition 2.3.1 A monoidal model category M is �–combinatorial if it is cofibrantly
generated and its underlying monoidal category is a locally �–presentable base. In
other words, if M is �–combinatorial as a model category and if the monoidal structure
on M gives a monoidal structure on M�, then we say the monoidal model category
M is �–combinatorial. This is equivalent to M being �–combinatorial as a category
enriched over itself.

Furthermore, M is said to be combinatorial if it is �–combinatorial for some regular
cardinal �.

Lemma 2.3.2 Let N be a model category and J be a regular cardinal. Assume that
N admits a set of generating cofibrations with J –presentable (co)domains. Given a
J –filtered colimit colimJ 0 Nj for some J � J 0, the canonical map

hocolim
J 0

Nj
��! colim

J 0
Nj

is a weak equivalence.

Proof There is an adjunction

N ŒJ 0;N�
cnst

colim

where the right adjoint cnst provides the constant diagram and the left adjoint denoted
by colim takes the corresponding colimit in N. Furthermore, the functor category is
given the projective model structure. Let N� denote the corresponding diagram in the
diagram category and let a trivial fibration zN� ���N� provide a cofibrant replacement
of N�. We need to show that the induced map

colim. zN�/D hocolim
J 0

Nj ! colim
J 0

Nj

is a weak equivalence where the equality above follows by the definition of homotopy
colimits. Indeed, we show that the map above is a weak equivalence by showing that it
satisfies the left lifting property with respect to the generating cofibrations of N. Let
A ,! B denote a generating cofibration of N. We need to solve the lifting problem

A colimJ 0 zNj

B colimJ 0 Nj

Algebraic & Geometric Topology, Volume 23 (2023)
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Since A and B are J –presentable, we obtain that the horizontal maps out of them in the
diagram above factors through zNj !Nj for some j . Since zN� ���N� is a levelwise
trivial fibration, the map zNj !Nj is a trivial fibration and therefore one obtains the
desired lifting.

The following corollary should be compared to [6, Proposition 7.3].

Corollary 2.3.3 Let N be a model category and J be a regular cardinal. Assume that N
admits a set of generating cofibrations with J –presentable (co)domains. Furthermore ,
let J 0 be a regular cardinal with J � J 0. Given a levelwise equivalence N� ��!N 0� of
diagrams over J 0, the induced map

colim
J 0

Nj ! colim
J 0

N 0j

is a weak equivalence.

Proof There is a commuting diagram

hocolimJ 0 Nj hocolimJ 0 N 0j

colimJ 0 Nj colimJ 0 N 0j

'

where the vertical maps are weak equivalences due to Lemma 2.3.2. The result follows
by the two out of three property of weak equivalences.

3 Admissible replacement

In this section, we prove Theorem 1.0.3. In other words, we show that every combina-
torial and simplicial monoidal model category is monoidally Quillen equivalent to an
admissible model category. More generally, we prove this result for combinatorial V
monoidal model categories where V denotes a symmetric monoidal model category
satisfying the axioms stated in the following.

Notation 3.0.1 For the rest of this work, let V denote a combinatorial symmetric
monoidal model category satisfying the following properties.

(1) Every object of V is cofibrant.
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(2) There is a set of generating cofibrations of V where (co)domains of the generating
cofibrations are @0–presentable.

(3) The model category V is left proper.

The axioms above are satisfied by the model categories of simplicial sets, pointed
simplicial sets and chain complexes over a field k.

For our constructions, it is important that we start with a monoidal model category
whose monoidal unit is cofibrant. In Section 3.1, we use a theorem of Muro [12] to show
that a given monoidal model category satisfying the hypothesis of Theorem 1.0.3 can
be replaced with a monoidal model category whose unit is cofibrant. Furthermore, this
replacement is also a combinatorial V symmetric monoidal model category. Therefore,
for the rest of this section, we assume that we start with a monoidal model category
with a cofibrant unit.

Let M be a monoidal model category as in Theorem 1.0.3 whose monoidal unit is
cofibrant. To prove Theorem 1.0.3, we need to construct the zig-zag of monoidal Quillen
equivalences in (1) and prove that Sp.LS ŒM

op
�;cof;V�/ is admissible. The first Quillen

equivalence is constructed in Section 3.2. Section 3.4 is devoted to the proof of the fact
that LS ŒM

op
�;cof;V� is nice in the sense of Pavlov and Scholbach [16, Definition 2.3.1].

Proposition 3.5.3 provides the Quillen equivalence on the right-hand side and the
admissibility of Sp.LS ŒM

op
�;cof;V�/ is given in Theorem 3.5.1.

3.1 Cofibrant monoidal unit

Using Muro’s results, we show that every combinatorial and V monoidal model category
carries a monoidally Quillen equivalent model structure where the monoidal unit is
cofibrant [12].

Let M be a combinatorial V monoidal model category. Theorem 1 in Muro [12]
provides a new model structure zM on the same underlying category whose monoidal
unit is cofibrant. The weak equivalences of zM and M are the same but zM possibly has
more cofibrations than M, ie cofibrations of M are also cofibrations in zM. In particular,
the identity functor is a left Quillen functor

M! zM

which is the left adjoint of a monoidal Quillen equivalence. Since the unit of M is
not cofibrant, we refer the reader to Schwede and Shipley [20, Definition 3.6] for the
definition of monoidal Quillen equivalences instead of the one given in Section 2.1.
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Furthermore, zM is combinatorial and monoidal; see Muro [12, Theorem 1]. We only
need to show that zM is also a V monoidal model category. This amounts to having a
monoidal left Quillen functor V! zM. Since M is V monoidal, there is a monoidal left
Quillen functor

F W V!M

and composing this with the left Quillen functor induced by the identity functor, we
obtain the desired functor V! zM. This shows that zM is a V monoidal model category.
We obtain the following version of Muro’s theorem.

Theorem 3.1.1 (Muro [12]) Every combinatorial V symmetric monoidal model
category is symmetric monoidally Quillen equivalent to a combinatorial V symmetric
monoidal model category whose unit is cofibrant.

3.2 Replacement with the presheaf category

Here, we construct the first monoidal Quillen equivalence in (1). This is analogous to
Dugger’s construction of universal model categories. We obtain a replacement with
a localization of the V-enriched presheaves on the cofibrant �–presentable objects of
the given monoidal model category (for a sufficiently large cardinal �). This presheaf
category equipped with the Day convolution satisfies further properties on its monoidal
structure and this guarantees that the symmetric spectra on the presheaf category (with
the positive stable model structure) is admissible.

Let .M;^; IM/ be a combinatorial V monoidal model category with a cofibrant
monoidal unit. Let � denote a regular cardinal for which the following are satisfied:

(1) The symmetric monoidal model category M is �–combinatorial.

(2) The cofibrant replacement functor in M preserves �–filtered colimits.

(3) A cofibrant replacement of a �–presentable object is �–presentable.

The last two items above follow by Dugger [6, Proposition 2.3].

Suppose M is �–combinatorial for some cardinal � and let M�;cof denote the subcate-
gory of �–presentable cofibrant objects.

We consider the category of V–enriched functors and V–natural transformations from
M

op
�;cof to V. Let ŒMop

�;cof;V� denote this category. There is a fully faithful functor

Y WM�;cof! ŒM
op
�;cof;V�
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given by the Yoneda embedding. In other words, Y.M/ D hom.�;M/ for every
M 2M�;cof. For the inclusion functor I WM�;cof!M, there is the left Kan extension

(2)

M�;cof

M ŒM
op
�;cof;V�

Y
I

D

which makes the above diagram commute up to a natural isomorphism; see Kelly [10,
Proposition 4.23]. Furthermore by Kelly [10, Equation 4.25] and the Yoneda lemma,
D is given by the coend

(3) D.F /D

Z M2M�;cof

F.M/˝ I.M/:

By Kelly [10, Equations 3.5 and 3.70], D is the left adjoint of the restricted Yoneda
functor E given by E.M/.Mi / D hom.Mi ;M/ for each M 2M and Mi 2M

op
�;cof.

We obtain the adjoint pair

M ŒM
op
�;cof;V�:

E

D

There is a model structure on ŒMop
�;cof;V� where weak equivalences and fibrations are

given by levelwise weak equivalences and levelwise fibrations. This is called the
projective model structure. The generating cofibrations and trivial cofibrations of the
projective model structure are given by

(4)
I 0 D fY.A/˝ i j A 2M�;cof; i 2 I g;

J 0 D fY.A/˝ j j A 2M�;cof; j 2 J g;

respectively, where I and J are generating sets of cofibrations and trivial cofibrations
of V, respectively. By (3), it is clear that D commutes with tensoring with morphisms
in V. Therefore,

D.Y.A/˝ i/DD.Y.A//˝ i Š A˝ i

for every object A in M�;cof and morphism i in V. Since M is a V–model category
and A is cofibrant, A˝ i is a (trivial) cofibration for every (trivial) cofibration i . This
shows that D preserves generating cofibrations and trivial cofibrations. We obtain that
D aE is indeed a Quillen pair.

Now we prove that the left Quillen functorD is homotopically surjective; see Dugger [6,
Definition 3.1]. We start with the following lemma.
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Lemma 3.2.1 The generating cofibrations of ŒMop
�;cof;V� given above have @0–presen-

table (co)domains.

Proof We need to show that the morphisms in I 0 have @0–presentable (co)domains.
Due to our standing assumptions, there is a set of generating cofibrations I of V

consisting of maps with @0–presentable (co)domains. In what follows, for a given
category C, we denote the set of morphisms in C by C.�;�/.

Given a filtered colimit colimj2J Mj in ŒMop
�;cof;V� for some @0–filtered category J ,

an @0–presentable K in V and an object A in M�;cof, we have

ŒM
op
�;cof;V�.RA˝K; colim

j2J
Mj /Š V.K; hom.RA; colim

j2J
Mj //

Š V.K; .colim
j2J

Mj /.A//

Š V.K; colim
j2J

hom.RA;Mj //

Š colim
j2J

V.K; hom.RA;Mj //

Š colim
j2J

ŒM
op
�;cof;V�.RA˝K;Mj /:

The second and the third equalities follow by the Yoneda lemma, and the first and the
last equalities follow because ŒMop

�;cof;V� is a V–model category. The fourth equality
follows by the assumption thatK is @0–presentable. In the equalities above, hom.�;�/
denotes the V–enriched maps in ŒMop

�;cof;V�. Since the (co)domains of the maps in I 0

are of the form RA˝K, the chain of isomorphisms above provides the desired result.

Proposition 3.2.2 The left Quillen functor D is homotopically surjective.

Proof We need to show that for every fibrant M 2M, the natural map

DŒE.M/�cof
!M

is a weak equivalence where ŒE.M/�cof denotes a cofibrant replacement of E.M/.
There is a J –filtered colimit

M D colim
J

Mj

for some �� J such that each Mj is in M�. Using the functorial cofibrant replacement
in M that preserves �–filtered colimits, one obtains another J –diagram zM� with com-
patible trivial fibrations zMj ���Mj such that each zMj is in M�;cof. This factorization
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guarantees that the induced map

colim
J

zMj
�
�� colim

J
Mj

is a trivial fibration. In particular, colimJ zMj is fibrant. Let zM denote colimJ zMj .

Due to the diagram

DŒE. zM/�cof zM

DŒE.M/�cof M

' '

it is sufficient to show that the top horizontal map above is a weak equivalence. The
left-hand vertical map above is a weak equivalence as E (resp. D) preserves weak
equivalences between fibrant (resp. cofibrant) objects.

We obtain a cofibrant replacement of E. zM/ as

hocolim
J

hom.�; zMj / ��! colim
J

hom.�; zMj /ŠE. zM/;

where the map above is a weak equivalence due to Lemmas 3.2.1 and 2.3.2. The
isomorphism above follows because

E. zM/.N/D hom
�
N; colim

J

zMj
�

and because mapping out of the objects of M�;cof preserves �–filtered colimits.

The top horizontal map in the square above is given by composing in the following
commuting diagram:

DŒE. zM/�cofDD.hocolimJ hom.�; zMi // hocolimJ D.hom.�; zMj //

D.colimJ hom.�; zMj // colimJ D.hom.�; zMj // colimJ
zMj D zM

Š

'

Š Š

Each hom.�; zMj / above is cofibrant; see (4). Therefore, D.hom.�; zMj // provides the
correct homotopy type and one obtains that the top horizontal arrow is an equivalence
as D preserves homotopy colimits between cofibrant objects. The vertical arrow on the
right-hand side is a weak equivalence due to Lemma 2.3.2. Finally, the isomorphisms
D.hom.�; zMj //Š zMj follows by diagram (2). This provides the desired result.
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Furthermore, D aE becomes a Quillen equivalence after a localization of ŒMop
�;cof;V�.

Since ŒMop
�;cof;V� is left proper and combinatorial, this follows by Dugger [6, Propo-

sition 3.2]. Indeed, this localization can be described as follows. Let �0 be a regular
cardinal and let S�0 be the set of maps given by the first factor in the factorization of
the natural maps

(5) N !E.fD.N//

as a cofibration followed by a trivial fibration for every cofibrant and N in ŒMop
�;cof;V��0

where f denotes a fibrant replacement functor. As before, ŒMop
�;cof;V��0 denotes

the subcategory of �0–presentable objects in ŒMop
�;cof;V�. The proof of Dugger [6,

Proposition 3.2] shows that there is a large enough �0 for which the localization with
respect to S�0 renders D aE into a Quillen equivalence. Let S denote S�0 for a chosen
large enough �0. We obtain the following.

Proposition 3.2.3 For the set of maps S defined above , the Quillen adjoint pairD aE
induces a Quillen equivalence

M LS ŒM
op
�;cof;V�:

E

D

3.3 The monoidal structure on the presheaf category

We equip ŒMop
�;cof;V� with a symmetric monoidal product using the Day convolution;

see Section 2.2. This makes ŒMop
�;cof;V� a monoidal model category; see Batanin and

Berger [2, Theorem 4.1].

The levelwise monoidal structure on ŒMop
�;cof;V� is not suitable for our purposes because

it makes no reference to the monoidal structure on M and therefore does not render
D aE into a monoidal Quillen pair in general.

In order to use the Day convolution, we need to show that Mop
�;cof is a monoidal category.

Proposition 3.3.1 The monoidal structure on M induces a monoidal structure on
M

op
�;cof.

Proof It is sufficient to note that M�;cof is closed under the monoidal product and
that the unit is in M�;cof. This is true for M� because it is part of our definition
of combinatorial monoidal model categories; see Definition 2.3.1. The unit of the
monoidal structure is also assumed to be cofibrant and due to the pushout product
axiom, the monoidal product of cofibrant objects is cofibrant.
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Finally, we show that D aE is a monoidal Quillen equivalence.

Proposition 3.3.2 The Quillen equivalence D aE between M and LS ŒM
op
�;cof;V� is a

strong monoidal Quillen equivalence.

Proof It is sufficient to show that D is a strong symmetric monoidal functor; see
Definition 2.1.4. The unit map of the monoidal structure of D is provided by (2).

For the monoidal structure map of D, we consider two functors F1 and F2 that solve
the extension problem in the diagram

(6)

M�;cof �M�;cof

M ŒM
op
�;cof;V�� ŒM

op
�;cof;V�

Y�Y
^ı.I�I/

Fi

where ^ denotes the smash product functor M �M!M of M. Furthermore, the
functors Fi are defined by the formulas

F1.A;B/DD.A˝DayB/ and F2.A;B/DD.A/^D.B/:

Using the fact that Y is strong monoidal and the natural isomorphism that makes
diagram (2) commute, one observes that for each i , there is a canonical natural
isomorphism that makes diagram (6) commute for Fi . Furthermore, the functors
Fi are separately enriched cocontinuous in each variable. By the universal property of
the category of presheaves, there is a unique such dashed arrow in diagram (6); see
Kelly [10, Theorem 4.51]. In particular, we obtain that there is a natural isomorphism
F2ŠF1 that is compatible with the natural isomorphisms that make the diagram above
commute. This isomorphism serves as the monoidal structure map

D.A/^D.B/ŠD.A˝DayB/

of D. This map is commutative, associative and unital as desired.

3.4 The localized presheaf category is nice

Here, we prove that LS ŒM
op
�;cof;V� is nice in the sense of Pavlov and Scholbach [16,

Definition 2.3.1]. This ensures that symmetric spectra inLS ŒM
op
�;cof;V� is an admissible

monoidal model category. A monoidal model category is nice if it is left proper, pretty
small (Pavlov and Scholbach [15, Definition 2.1]), h–monoidal (Batanin and Berger [2,
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Definition 1.11]), flat [15, Definition 3.2.4] and tractable. We first show that ŒMop
�;cof;V�

is nice.

A cofibrantly generated model category C is pretty small if a set of generating cofi-
brations for C have @0–presentable domains and codomains. The presheaf category
ŒM

op
�;cof;V� is pretty small due to Lemma 3.2.1.

Recall that every object is cofibrant in V; see Notation 3.0.1. This implies that V is
strongly h–monoidal — see Batanin and Berger [2, Lemma 1.12] — ie V is h–monoidal
(Batanin and Berger [2, Definition 1.11]) and the monoidal product preserves weak
equivalences between all objects. Therefore, by Theorem 4.1 of Batanin and Berger [2],
ŒM

op
�;cof;V� is also strongly h–monoidal and left proper.

The tractability of ŒMop
�;cof;V� follows by (4). The following proposition completes the

proof of our claim that ŒMop
�;cof;V� is nice.

Proposition 3.4.1 The monoidal model category ŒMop
�;cof;V� is flat in the sense of

Pavlov and Scholbach [15, Definition 3.2.4]. In other words , the pushout product of a
cofibration and a weak equivalence is a weak equivalence in ŒMop

�;cof;V�.

Proof Given a cofibration y W Y1 ,! Y2 and a weak equivalence s W S1 ��! S2 in
ŒM

op
�;cof;V�, we have the following diagram:

Y1˝Day S1 Y1˝Day S2

Y2˝Day S1 Y2˝Day S1qY1˝DayS1 Y1˝Day S2

Y2˝Day S2

'

'

The morphisms marked as weak equivalences are weak equivalences because ŒMop
�;cof;V�

is strongly h–monoidal and therefore the monoidal product on it preserves weak equiv-
alences between all objects. This also implies that y^S1 is an h–cofibration. Pushouts
along h–cofibrations preserve weak equivalences; therefore the bottom horizontal map
is a weak equivalence. By two out of three property of weak equivalences, we deduce
that the pushout product of y and s is also a weak equivalence.

Let C be a left proper, pretty small, tractable and flat monoidal model category and
let C be a set of morphisms between cofibrant objects in C. In this case, we say that
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the left Bousfield localization LC is a monoidal left Bousfield localization if f ˝A
is a C–local equivalence for every cofibrant A in C and morphism f 2 C . This in
particular guarantees that LCC is a monoidal model category; see Gorchinskiy and
Guletskiı̆ [7, Lemma 31]. The property of being nice is preserved by monoidal left
Bousfield localizations. Pretty smallness only depends on the cofibrations of the given
category and left Bousfield localization preserve the properties of being left proper and
tractable; see Barwick [1, Proposition 4.12]. Furthermore, flatness and h–monoidality
are preserved due to Pavlov and Scholbach [15, Proposition 6.4].

Proposition 3.4.2 The left Bousfield localization LS defined in (5) is a monoidal left
Bousfield localization. Furthermore , LS ŒM

op
�;cof;V� is a V–model category.

Proof We start with the first statement. Let f 2 S and A be a cofibrant object in
ŒM

op
�;cof;V�. Since ŒMop

�;cof;V� is a left proper, pretty small, tractable and flat monoidal
model category, it is sufficient to show that f ˝Day A is a weak equivalence after
localization. By definition, S only contains cofibrations between cofibrant objects.
Therefore f ˝DayA is a map between cofibrant objects.

Since the Quillen pair D aE is a Quillen equivalence after localization, a map between
cofibrant objects in ŒMop

�;cof;V� is an S–local equivalence if and only if its image under
D is a weak equivalence in M. Therefore it is sufficient to show that D.f ˝DayA/ is
a weak equivalence.

By Proposition 3.3.2, D is a monoidal functor. We have

D.f ˝DayA/ŠD.f /^D.A/:

Since f is an S–local equivalence between cofibrant objects, D.f / is a weak equiva-
lence between cofibrant objects. In a monoidal model category, the monoidal product
with a cofibrant object is a left Quillen functor; therefore it preserves weak equivalences
between cofibrant objects. Furthermore D.A/ is cofibrant; therefore D.f /^D.A/ is
a weak equivalence.

Now we prove the second statement. Since the cofibrations of LS ŒM
op
�;cof;V� are the

same as the cofibrations of ŒMop
�;cof;V�, we only need to prove the case of SM7 for a

generating trivial cofibration f WA1!A2 inLS ŒM
op
�;cof;V� and a generating cofibration

g W B1 ! B2 in V. Indeed, we only need to show that the map f �g, the pushout
product of f and g, is an S–local equivalence.
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Since LS ŒM
op
�;cof;V� and V are tractable, we assume that A1, A2, B1 and B2 are

cofibrant objects. Due to SM7 in ŒMop
�;cof;V�, this guarantees that f �g is also a map

between cofibrant objects. Therefore, it is sufficient to show that D.f �g/ is a weak
equivalence. Since D is a left adjoint functor that commutes with V–tensor — see (3) —
it preserves pushout products. In particular,

D.f �g/ŠD.f /�g:

Since D is a left Quillen functor, D.f / is a trivial cofibration in M and therefore
D.f /�g is a weak equivalence.

3.5 Admissible replacement

We have shown that the given simplicial and combinatorial monoidal model category
M (with cofibrant unit) is monoidally Quillen equivalent to the nice monoidal model
category LS ŒM

op
�;cof;V�. Therefore, in order to prove Theorem 1.0.3, we need to show

that LS ŒM
op
�;cof;V� is monoidally Quillen equivalent to an admissible model category.

For this, we use the main result of Pavlov and Scholbach [16].

Pavlov and Scholbach work in a more general setting than Hovey. They consider
modules over a commutative monoid in symmetric sequences. Let I denote the monoidal
unit of LS ŒM

op
�;cof;V�. Let E be the symmetric sequence given by I at each degree

equipped with the trivial action. Let Sp.LS ŒM
op
�;cof;V�; E/ denote the category of

E–modules in the category of symmetric sequences in LS ŒM
op
�;cof;V�. Indeed, the cate-

gory Sp.LS ŒM
op
�;cof;V�; E/ is equivalent to the category of I–spaces in LS ŒM

op
�;cof;V�

(Sagave and Schlichtkrull [18]); see Pavlov and Scholbach [16, Proposition 3.2.2].

Theorem 3.5.1 (Pavlov and Scholbach [16, Theorem 1.1]) For a nice monoidal
model category C, Sp.C; R/ with the positive stable model structure is an admissible
model category , where R denotes a commutative monoid in symmetric sequences in C.

In particular, Sp.LS ŒM
op
�;cof;V�; E/ equipped with the positive stable model structure

is admissible. The following proposition is due to Theorem 9.1 of Hovey [9]; see also
Pavlov and Scholbach [16, Example 3.3.2].

Remark 3.5.2 The proposition below does not follow Hovey’s notation. In Hovey’s
notation, one would replace E with the monoidal unit of LS ŒM

op
�;cof;V�.
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Proposition 3.5.3 The left Quillen functor

F0 W LS ŒM
op
�;cof;V�! Sp.LS ŒM

op
�;cof;V�; E/

— see Hovey [9, Definition 7.3] — is the left adjoint of a symmetric monoidal Quillen
equivalence. Here , Sp.LS ŒM

op
�;cof;V�; E/ is given the stable model structure.

Remark 3.5.4 Hovey works in the setting of left proper cellular model categories in [9].
The cellularity assumption is needed in order to make sure that certain left Bousfield
localizations exists. Namely, in order to localize the projective model structure on sym-
metric spectra to obtain the stable model structure. In our case, LS ŒM

op
�;cof;V� is indeed

cellular but we do not need this. Since LS ŒM
op
�;cof;V� is left proper and combinatorial,

the relevant left Bousfield localizations are guaranteed to exist in Sp.LS ŒM
op
�;cof;V�/

which is also left proper and combinatorial.

Finally, we prove Theorems 1.0.3, 1.0.5 and 1.0.7. The following theorem is a general-
ization of Theorems 1.0.3 and 1.0.5 since the model category of simplicial sets satisfy
the axioms for V given in Notation 3.0.1.

Theorem 3.5.5 Let V be as in Notation 3.0.1. Every combinatorial V symmetric
monoidal model category is symmetric monoidally Quillen equivalent to an admissible
symmetric monoidal model category where a weak equivalence of operads induce a
Quillen equivalence between the model categories of the corresponding algebras.

Proof of Theorems 3.5.5 and 1.0.7 We start with the proof of Theorem 3.5.5. Let
N be a symmetric monoidal model category satisfying the hypothesis of the theorem.
Theorem 3.1.1 states that N is strong monoidally Quillen equivalent to another sym-
metric monoidal model category M that also satisfies the hypothesis of the theorem
and has a cofibrant monoidal unit.

Propositions 3.2.3 and 3.3.2 state that M is strong monoidally Quillen equivalent
to the presheaf category LS ŒM

op
�;cof;V�. Furthermore, we proved in Section 3.4 that

LS ŒM
op
�;cof;V� is nice.

Finally,LS ŒM
op
�;cof;V� is strong monoidally Quillen equivalent to Sp.LS ŒM

op
�;cof;V�; E/

with the stable model structure due to Proposition 3.5.3. With the stable model struc-
ture, Sp.LS ŒM

op
�;cof;V�; E/ may not be admissible. However, this model structure is

monoidally Quillen equivalent to the positive stable model structure through the identity
functor; see Pavlov and Scholbach [16, Proposition 3.3.1]. As desired, the positive
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stable model structure on Sp.LS ŒM
op
�;cof;V�; E/ is admissible due to Theorem 3.5.1.

This provides the admissible replacement of N.

Furthermore, weak equivalence of operads induce a Quillen equivalence of the cor-
responding model categories of algebras in Sp.LS ŒM

op
�;cof;V�; E/ due to Pavlov and

Scholbach [16, Theorem 4.6]. This finishes the proof of Theorem 3.5.5.

For Theorem 1.0.7, we work in the setting where V is the model category of simplicial
sets. In this situation, Sp.LS ŒM

op
�;cof;S�; E/ satisfies the desired property due to Pavlov

and Scholbach [16, Theorem 4.9].

4 Categories of modules

This section is devoted to the proof of Theorem 1.0.10. In other words, we show that
every stable, combinatorial and simplicial monoidal model category whose monoidal
unit is a compact generator is monoidally Quillen equivalent to modules over a com-
mutative ring spectrum. Furthermore, we show that this commutative ring spectrum is
unique.

4.1 Replacement with a spectral model category

Here, we show that every stable, combinatorial and simplicial symmetric monoidal
model category N is monoidally Quillen equivalent to a spectral one.

As before, one replaces N with another stable, combinatorial and simplicial symmetric
monoidal model category M whose monoidal unit is cofibrant; see Theorem 3.1.1.
Since N is pointed and since M is equivalent to N as a category, M is also pointed.

Since M is a pointed simplicial model category, it is also an S�–model category in a
natural way where S� denotes the category of pointed simplicial sets; see Hovey
[8, Definition 4.2.19]. As before, M is strong monoidally Quillen equivalent to
LS ŒM

op
�;cof;S�� where � is as in Section 3.2 and S is as in Proposition 3.2.3. This

follows by Propositions 3.2.3 and 3.3.2.

Notation 4.1.1 For a given nice S� symmetric monoidal model category .C;˝C; IC/,
let K denote the symmetric sequence in C given by Kn D .S1˝ IC/˝Cn at degree n.
We denote the model category of K–modules equipped with the stable model structure
by Sp.C/. Let A be a monoid in Sp.C/. We denote the category of A–modules by
A–mod and unless otherwise stated, we assume that this category is equipped with the
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stable model structure. The category of A–modules equipped with the positive stable
model structure is denoted by A–modC. Similarly, we write Sp.C/C when we are using
the positive stable model structure on Sp.C/.

Notation 4.1.2 For the rest of this work, let .D;˝D; ID/ denote a stable, combinatorial
and nice S� symmetric monoidal model category. Furthermore, assume that ID is
cofibrant and assume that ID is a compact generator of the homotopy category of D.
We denote the monoidal product and the monoidal unit of Sp.D/ as in .Sp.D/;^; I/.

The following is a consequence of Hovey [9, Theorem 9.1].

Proposition 4.1.3 Let D be as in Notation 4.1.2. In this situation , Sp.D/ is strong
symmetric monoidally Quillen equivalent to D. Furthermore , the monoidal unit of
Sp.D/ is a compact generator of the homotopy category of Sp.D/.

Ultimately, we are interested in the case DD LS ŒM
op
�;cof;S��. We have the following.

Proposition 4.1.4 Let N be a symmetric monoidal model category satisfying the
hypothesis of Theorem 1.0.10. Also , let M, � and S be as above. The presheaf category
LS ŒM

op
�;cof;S�� satisfies the assumptions for D given in Notation 4.1.2. Furthermore ,

N is strong symmetric monoidally Quillen equivalent to Sp.LS ŒM
op
�;cof;S��/.

In order to prove Theorem 1.0.10, we need to show that Sp.D/ is monoidally Quillen
equivalent to the model category of R–modules for some commutative ring spectrum R.
For this, we need to consider a spectral enrichment of Sp.D/.

Construction 4.1.5 Since D is an S� monoidal model category, there is a left Quillen
functor T W S�!D. Following the discussion after Definition 7.2 of Hovey [9] and
Hovey [9, Theorem 8.11], one obtains that Sp.D/ is a spectral symmetric monoidal
model category. In other words, there is a canonical monoidal left Quillen functor

zT W Sp.S�/! Sp.D/:

We denote the right adjoint of zT by zU .

Proposition 4.1.6 The adjoint pair zT a zU in Construction 4.1.5 is also a Quillen pair
between Sp.S�/C and Sp.D/C.

Proof We start by describing the functor zT in detail. Given a category C, let †C
denote the category of symmetric sequences in C. There is a symmetric sequence S in
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S� given by .S1/^k in degree k. Furthermore, recall that K is the symmetric sequence
in D given by Kk D .S1/^k ˝ ID. With this notation, the categories of S–modules
and K–modules are Sp.S�/ and Sp.D/, respectively.

Recall that there is a monoidal left Quillen functor

T W S�!D:

Let U denote the right adjoint of T . Applying T levelwise makes †D into a †S�
monoidal model category; see Hovey [9, Section 7]. In other words, the functor
†S�! †D given by T at each level is monoidal. Furthermore, the right adjoint to
this functor is also given by U at each level as explained in Hovey [9, Section 7]. The
levelwise application of T to S gives K and therefore there is an adjoint pair between
S–modules and K–modules. This is indeed the adjoint pair zT a zU . This shows that zU
is given by levelwise application of U on the underlying symmetric sequences.

Since localizations do not change trivial fibrations, the trivial fibrations in the positive
stable model structure of Sp.S�/ (resp. Sp.D/) are given by the maps that are trivial
fibrations at each level of †S� (resp. †D) except possibly in degree zero; see Pavlov
and Scholbach [16, Notation 2.3.5]. Since zU applies the right Quillen functor U
levelwise, it preserves the trivial fibrations of the positive stable model structure. This
also shows that zT preserves the cofibrations of the positive stable model structure.

Let f be an acyclic cofibration in the positive stable model structure on Sp.S�/.
We already showed that zT .f / is a cofibration in the positive stable model structure.
Therefore it is sufficient to show that zT .f / is a weak equivalence in the positive stable
model structure. Since there are more trivial fibrations in the positive stable model
structure than the stable model structure, a cofibration in the positive stable model
structure is also a cofibration in the stable model structure. Furthermore, the weak
equivalences of the positive stable model structure and the stable model structure agree;
see Pavlov and Scholbach [16, Proposition 3.3.1]. In particular, f is also an acyclic
cofibration in the stable model structure. Therefore zT .f / is an acyclic cofibration in
the stable model structure. This shows that zT .f / is a weak equivalence in the positive
stable model structure as desired.

4.2 Proof of Theorem 1.0.10

To prove Theorem 1.0.10, we need to show that Sp.D/ is monoidally Quillen equivalent
to the model category R–modules for some commutative ring spectrum R. Here, D

Algebraic & Geometric Topology, Volume 23 (2023)



Admissible replacements for simplicial monoidal model categories 67

is as in Notation 4.1.2. The definition of the symmetric monoidal model category
.Sp.D/;^; I/ is given in Notation 4.1.1. Our conventions on stable and positive stable
model structures are also given in Notation 4.1.1.

The commutative ring spectrum R should be considered as the derived endomorphism
ring spectrum of the monoidal unit of Sp.D/. However, in order to ensure that the
endomorphism ring spectrum is a commutative ring spectrum, one needs a fibrant
model of I as a commutative monoid. For this, we take a fibrant replacement

(7) ' W I ��! f I

of I in the model category of commutative monoids in Sp.D/C. Since the weak
equivalences of the positive stable model structure agree with those of the stable
model structure — see Pavlov and Scholbach [16, Proposition 3.3.1] —' is also a weak
equivalence in Sp.D/.

Since Sp.D/ is flat — Pavlov and Scholbach [16, Proposition 3.4.2] — Quillen invari-
ance holds for Sp.D/. This means that the Quillen adjunction between the model
categories of I–modules and f I–modules induced by ' is a Quillen equivalence; see
Schwede and Shipley [19, Theorem 4.3]. Similarly, this adjunction is also a Quillen
equivalence between I–modC and f I–modC. Since I denotes the monoidal unit of
Sp.D/, I–mod is simply another name for Sp.D/. Because f I is a commutative
monoid, f I–mod is also a closed symmetric monoidal model category. The left adjoint
of the Quillen equivalence between I–mod and f I–mod is a monoidal Quillen functor;
see the discussion after Definition 4.1.14 in Hovey [8]. This functor is given by

f I^�W Sp.D/! f I–mod:

The monoidality of this functor follows from the natural isomorphism

f I^ .X ^Y /Š .f I^X/ f̂ I .f I^Y /

that holds for every X; Y 2 Sp.D/. Here, f̂ I denotes the monoidal product in f I–
modules.

This shows that Sp.D/ is monoidally Quillen equivalent to the model category of
f I–modules. Therefore, it is sufficient to show that the model category of f I–modules
is monoidally Quillen equivalent to modules over a commutative ring spectrum. We
obtain the following.
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Proposition 4.2.1 Let f I be the fibrant replacement of I given in (7). The func-
tor f I ^ � is the left adjoint of a monoidal Quillen equivalence between Sp.D/
(resp. Sp.D/C) and f I–mod (resp. f I–modC).

Construction 4.2.2 In Construction 4.1.5, we showed that there is a monoidal left
Quillen functor zT W Sp.S�/! Sp.D/. Composing this with the monoidal left Quillen
functor f I^�, we obtain a monoidal left Quillen functor

F WD .f I^�/ ı zT W Sp.S�/! f I–mod:

Let R denote the right adjoint of F .

Since F is monoidal, R is lax monoidal and R.f I/ is a commutative ring spectrum.
Again because it is monoidal, F induces a functor

F 0 WR.f I/–mod! FR.f I/–mod:

Here, F 0 is given by F and the right adjoint R0 of F 0 is again given by R. Since F aR
is a strong monoidal Quillen pair, the counit map of this adjunction provides a map
FR.f I/! f I of commutative monoids. Through this map, we obtain a left Quillen
functor

f I^FG.f I/�W FR.f I/–mod! f I–mod:

Finally, let LD .f I^FG.f I/�/ ıF
0. We obtain a Quillen pair L aG,

L WR.f I/–mod f I–mod WG:

Going through the definition of these functors above, one observes that G is given
by R.

To prove Theorem 1.0.10, we need to show thatLaG is a monoidal Quillen equivalence.

Remark 4.2.3 In the construction above, although we do not make it explicit, we make
use of the spectral enrichment of f I–mod as in the proof of Schwede and Shipley [21,
Theorem 3.9.3]. The mapping spectrum hom.�;�/ in the category of f I–modules is
given by R.Hom.�;�// where Hom.�;�/ denotes the internal hom in f I–mod. The
functor G above is given by

G.�/DR.�/DR.Hom.f I;�//D hom.f I;�/:

In particular, one observes that the adjoint pair L a G above agrees with the one
constructed in the proof of Schwede and Shipley [21, Theorem 3.9.3].
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Proposition 4.2.4 The Quillen pair L aG in Construction 4.2.2 is also a Quillen pair
between R.f I/–modC and f I–modC.

Proof It is sufficient to show that G preserves positive (trivial) fibrations. In the model
category of modules over a given monoid in a nice monoidal model category, (trivial)
fibrations are those of the underlying model category. Since the G is given by R, it is
sufficient to show that R preserves positive (trivial) fibrations. For this, it is sufficient
to show that F is a left Quillen functor between Sp.S�/C and f I–modC. This follows
by Propositions 4.1.6 and 4.2.1.

Proposition 4.2.5 The left Quillen functor L is monoidal. In other words , L aG is a
strong monoidal Quillen pair.

Proof Since F is a composite of monoidal functors, it is a monoidal functor. Since
F preserves coequalizers and monoidal products, one observes that it also carries
monoidal products of R.f I/–modules to monoidal products of FR.f I/–modules. In
other words, F 0 is also monoidal. Finally L is monoidal as it is given by a composite
of monoidal functors.

The proof of Schwede and Shipley [21, Theorem 3.9.3] goes through to show that
L a G is a Quillen equivalence between the respective stable model structures. The
only difference in our situation and that of Schwede and Shipley [21, Theorem 3.9.3]
is that our compact generator f I may not be bifibrant in f I–mod. It is fibrant in
f I–modC but it may not be fibrant in f I–mod. Similarly, f I is cofibrant in f I–mod
but it may not be cofibrant in f I–modC.

Theorem 4.2.6 (Schwede–Shipley [21, Theorem 3.9.3]) As in (7), let I ��! f I

be a fibrant replacement of the monoidal unit I of Sp.D/ in the model category of
commutative monoids in Sp.D/C. The Quillen pair

L aG

given in Construction 4.2.2 is a Quillen equivalence betweenR.f I/–mod and f I–mod.

Proof We first show that the derived unit map

R.f I/!Gf 0Lc0.R.f I//
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of the adjunctionLaG (evaluated atR.f I/) is a weak equivalence. Here, f 0 denotes a
fibrant replacement functor in f I–mod and c0 denotes a cofibrant replacement functor
in R.f I/–mod. As R.f I/ is cofibrant in R.f I/–mod, the cofibrant replacement
functor may be omitted. Also, L.R.f I//D f I as L is monoidal. The monoidal unit
f I is only assumed to be fibrant in the positive stable model structure and therefore it
may not be fibrant in the nonpositive stable model structure. However, G is also a right
Quillen functor between the respective positive stable model structures and the weak
equivalences of the positive and the nonpositive stable model structures agree Pavlov
and Scholbach [16, Proposition 3.3.1]. Due to this, the fibrant replacement f 0 above
may also be omitted. Since G is given by R and since L is monoidal, one obtains that

GL.R.f I//DG.f I/DR.f I/

as desired. Similarly, one shows that the derived counit map evaluated at f I

Lc0Gf 0.f I/! f I

is also a weak equivalence where f 0 and c0 denote the relevant fibrant and cofibrant
replacement functors respectively.

The rest of the proof follows as in Schwede and Shipley [21, Theorem 3.9.3]. For the
sake of completeness, we provide a sketch of the proof of Schwede and Shipley [21,
Theorem 3.9.3] in our case, ie in the case of a single compact generator. For this, it
is sufficient to show that the induced adjoint pair at the level of homotopy categories
is indeed an equivalence of categories. The unit and the counit maps of the derived
adjunction are isomorphisms when evaluated at the respective monoidal units as we
show above.

It follows from Proposition 4.1.3 and our constructions that f I is a compact generator
of the homotopy category of f I–mod.

The derived functor of L is a left adjoint and therefore it preserves coproducts. Using
the compactness of f I, one can show as in the proof of Schwede and Shipley [21,
Theorem 3.9.3] that the derived functor of G also preserves coproducts. Furthermore,
both derived functors preserve shifts and triangles. Therefore, the unit and the counit
maps of the derived adjunction are isomorphisms on the categories generated by the
monoidal units under coproducts, triangles and shifts. Since both monoidal units are
generators, this shows that the counit and the unit maps of the derived adjunction are
isomorphisms on all objects.
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The following provides the uniqueness part of Theorem 1.0.10. This is a consequence
of Lurie’s results.

Proposition 4.2.7 Let M be a monoidal model category as in Theorem 1.0.10 with a
cofibrant monoidal unit. Furthermore , assume that M is (strong or weak ) symmetric
monoidally Quillen equivalent to Ri–modules via a zig-zag of symmetric monoidal
Quillen equivalences where each symmetric monoidal model category involved in the
zig-zag has a cofibrant monoidal unit. Here , Ri denotes a commutative ring spectrum
for i D 1 and i D 2. In this situation , R1 and R2 are weakly equivalent as commutative
ring spectra.

Proof The hypothesis implies that the symmetric monoidal 1–categories corre-
sponding to the model categories of R1–modules and R2–modules are equivalent; see
Péroux [17, Theorem 2.13]. It follows from Proposition 7.1.2.7 of Lurie [11] that R1
and R2 are weakly equivalent as commutative ring spectra.

We are ready to prove Theorem 1.0.10.

Proof of Theorem 1.0.10 Let N be a stable, combinatorial and simplicial monoidal
model category whose monoidal unit is a compact generator, ie let N satisfy the
hypothesis of Theorem 1.0.10. Due to Proposition 4.1.4, N is monoidally Quillen
equivalent to Sp.D/ for some monoidal model category D as in Notation 4.1.2. Let
I ��! f I be a fibrant replacement of the monoidal unit I of Sp.D/ in the model
category of commutative monoids in Sp.D/C. Due to Proposition 4.2.1, Sp.D/ is
monoidally Quillen equivalent to f I–mod. Construction 4.2.2 provides a Quillen
adjunction L aG between the model categories of f I–modules and R.f I/–modules
where R.f I/ is a commutative ring spectrum. This Quillen adjunction is monoidal
due to Proposition 4.2.5 and it is indeed a Quillen equivalence due to Theorem 4.2.6.
This proves that the given N is monoidally Quillen equivalent to the model category of
modules over R.f I/ (with the stable model structure) as desired.

The uniqueness part of Theorem 1.0.10 follows by Proposition 4.2.7.
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