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1 Introduction

Let C be a small category. A pointed C–space, or diagram space over C, is a functor

X W C! Top�:

The homotopy theory of diagram spaces is studied for various reasons, perhaps the most
fundamental one being Elmendorf’s theorem [13], which identifies the homotopy theory
of G–spaces for a discrete group G with the homotopy theory of diagram spaces over
the so-called orbit category Or.G/. Similarly to classical homotopy theory, a major
tool to study C–spaces are C–homology theories, which are collections of functors

hCn W Fun.C;Top�/! Ab
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156 Malte Lackmann

satisfying the usual Eilenberg–Steenrod axioms; see Section 5.1. Such theories can be
constructed by setting

(1) hCn.X IE/D �n.E ^C X/;

where E is a (cofibrant) Cop–spectrum. This construction can be traced back to the very
beginning of the theory of spectra in the case that C is the trivial category, and was first
formulated by Davis and Lück [10] in this general form. It since has proved useful in
many contexts, primarily in work on the Farrell–Jones conjecture; see Bartels, Bestvina,
Lück and Reich [2; 3; 4; 33], Kammeyer, Lück and Rüping [24; 45], Kasprowski,
Ullmann, Wegner and Winges [25; 59] and Wu [60]. However, the question of whether
every C–homology theory arises in the way described above had not yet been addressed.
This is answered in the positive by our first theorem, the homology representation
theorem, proved in Section 5:

Theorem A Suppose that C is equivalent to a countable category. Let hC� be any
C–homology theory. Then there is a Cop–spectrum E and a natural isomorphism

(2) hC�.� /Š h
C
�.� IE/:

Moreover , every morphism of homology theories

hC�.� IE/! hC�.� IE
0/

is induced by a morphism E!E 0 in the derived category of Cop–spectra.

As for the well-known case CD�, the analogous cohomological version of this statement
is considerably easier to prove, using a Yoneda lemma argument due to Brown [8].
Neeman [42] has vastly generalized this argument to a triangulated category setup that
is sufficient to treat the case of C–cohomology theories. Specific references for the case
of C–spaces are Bárcenas [1] and Lackmann [27].

The classical strategy for deducing the homological Theorem A from the cohomological
one is to use Spanier–Whitehead duality to switch between cohomology and homology,
and then use Adams’ version of Brown’s representability theorem to deal with the
arising difficulty that the duality functor is only defined on finite spectra. The latter
point poses no difficulties, since Adams’ result was also generalized by Neeman [41]
in a form suitable for our applications.

The first point is more difficult. The main innovation here is that the correct notion of
duality is not incorporated by a functor

D W Fun.C;SpO/op
! Fun.C;SpO/;
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Homology representation theorems for diagram spaces 157

but by a functor
D W Fun.C;SpO/op

! Fun.Cop;SpO/:

This is the reason why we called it the external (Spanier–Whitehead) duality functor.
Note that in the technical sense, the term “duality” is not justified. It refers to the
canonical isomorphism

(3) DDX ŠX

for dualizable X . However, the two D here are not, as in the classical case, the same
functor, but only formally given by the same construction, applied to C and Cop.

These two aspects originate from the fact that instead of classical duality theory, which
takes place in a monoidal category, the correct framework for us is duality theory in a
closed bicategory. This was first developed in May and Sigurdsson [38, Chapter 16].
We give a slightly simplified exposition in Section 4. It is applied to a closed bicategory
of spectrally enriched categories, derived bimodules and morphisms between these,
constructed in Theorem 2.3.1. With the correct setup at hand, the following statement,
which is our Corollary 4.2.7, may be proved quite analogously to the classical case.

Theorem B Every finite C–CW–spectrum is dualizable.

For finite groups G, classical genuine G–representation theory takes into account the
orthogonal representation theory of G. This is a very sophisticated and rich theory.
Recently, this approach has been extended to proper equivariant homotopy theory for
infinite discrete groups; see Degrijse, Hausmann, Lück, Patchkoria and Schwede [11].
We take a different route here, which uses no representation theory. We want to stress
that for (finite or infinite) groups, our results are neither generalizations nor special
cases of the genuine results. We refer the reader to Remark 2.1.4 for a more detailed
discussion.

Our third main result concerns the case of rational C–homology theories. These come
from contravariant functors from C to rational spectra, which are identified with rational
chain complexes via the stable Dold–Kan correspondence. Note that at this point
we face the problem of upgrading a (weak) monoidal Quillen equivalence between
two categories of spectra to a Quillen equivalence between diagram spectra, suitably
compatible with balanced smash products. This is a quite subtle issue, discussed in
Section 3. If the chain complexes we get on the algebraic side split (functorially), this
entails the existence of a Chern character, ie a decomposition of the rational C–homology
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theory into a direct sum of shifted Bredon homology theories; see Definition 6.3.4. We
can construct such a Chern character in two instances:

Theorem C Let C be equivalent to a countable category and assume that hC� is a
rational C–homology theory with the property that all coefficient systems hCt are flat as
right C–modules. Then there is a Chern character for hC�.

Theorem D Suppose that C D Or.G;F/ where G is finite and all members of the
family F are cyclic of prime power order.1Then a Chern character exists for every
C–homology and cohomology theory.

Theorem C, which we prove as Proposition 6.3.7, is similar to a theorem of Lück [32];
see Remark 6.3.8. It may be applied toG–homology theories whose coefficient systems
have Mackey extensions; see Section 6.4. Theorem D, proved as Corollary 6.5.4 and
Proposition 6.5.5, uses the results of Li [31] on hereditary category algebras. Actually,
as we prove in Proposition 6.5.1, every C–homology theory possesses a Chern character
if and only if the category algebra QC (see Definition 6.2.1) is hereditary.

Further directions

Our results suggest further questions that we find interesting. The first concerns the
notion of an equivariant homology theory, described in Lück and Reich [33, Section 6].
This consists of homology theories for all groups at the same time, linked by various
induction isomorphisms. These can also be constructed from suitable diagram spectra,
for instance spectra over the category of small groupoids.

Question 1 Is there a representation theorem for equivariant homology theories, ie
does every equivariant homology theory come from a suitable diagram spectrum?

We note that all common examples of equivariant homology theories are constructed
using groupoid spectra, except equivariant bordism (see Lück [32, Example 1.4]), where
such a representation is not known to us.

The next question concerns the fact that in the nonequivariant stable category SHC,
the dualizable objects are exactly the finite CW–spectra, and these are also exactly the
compact objects (in the sense that mapping out of them up to homotopy commutes
with direct sums).

1We want to stress that different primes are allowed to occur as the bases of these prime power orders.
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Homology representation theorems for diagram spaces 159

Question 2 What is the relation between compact, dualizable and finite objects in the
derived category of C–spectra?

The last question concerns the case of rational C–homology theories.

Question 3 Find conditions under which the flatness assumption of Theorem C is
satisfied.

The generalization of the hereditarity results in Section 6.5 and related questions are
the subject of work in progress of the author together with Liping Li; see [29]. In
particular, Theorem D can be generalized to infinite groups.

Organization of the paper
� Section 2 recalls some background from homotopy theory and constructs the

closed bicategory of spectrally enriched categories.

� Section 3 discusses what happens if orthogonal spectra are replaced by another
model category of spectra as the target category of our diagram spectra.

� Section 4.1 develops external duality theory in closed bicategories and applies
this to C–spectra, proving Theorem B.

� Section 5.1 proves Theorem A via the route sketched above.

� Section 6 studies the rational case and proves Theorems C and D.
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160 Malte Lackmann

2 The closed bicategory DerMod.SpO/

The correct setup for developing external duality theory, as is done in Section 4,
is given by the notion of a closed bicategory. This will then be applied to deduce
results about C–spectra. In this first section we will introduce the actors, ie recall the
basics about model structures on the category Fun.C;SpO/ of C–spectra in Section 2.1,
introduce the notion of a closed bicategory in Section 2.2 and show how Fun.C;SpO/
can be endowed with this structure (see Proposition 2.2.1), and then show that we
can preserve this structure when passing to the homotopy category in Section 2.3,
especially Theorem 2.3.1. Our closed bicategories will, in the underived (resp. derived)
case, consist of small spectrally enriched categories (with cofibrant mapping objects),
bimodules (resp. derived bimodules) over these and morphisms (in the homotopy
category) of bimodules.

2.1 Recapitulations about the homotopy category of C–spectra

Let SpO denote the category of orthogonal spectra with the stable model structure, as
discussed in [36], and let C be a small category enriched in SpO . Let Fun.C;SpO/ denote
the category of enriched functors from C to SpO and enriched natural transformations
[7, Definition 6.2.4]. Prominent objects of this category are the representable functors

c D C.c; ‹/

for c 2Ob.C/, or more generally X ^c for some spectrum X , where the smash product
is meant objectwise.

We want to endow Fun.C;SpO/ with a model structure in which the fibrations and
weak equivalences are given by the objectwise fibrations and weak equivalences. This
determines the model structure, if it exists, uniquely, justifying that we call it “the”
projective model structure. We want that:

� The projective model structure exists.

� It is a cofibrantly generated model structure. A class of generating cofibrations
is given by morphisms of the form X ^ c! Y ^ c, where X ! Y runs through
a class of generating cofibrations of SpO and c through the objects of C; a class
of generating trivial cofibrations is described similarly.

� A cofibration in the projective model structure is objectwise a cofibration.
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For usual Set–enriched categories C, this is folklore since SpO is a cofibrantly generated
model category [17, Theorem 11.6.1, Proposition 11.6.3]. For spectrally enriched C,
the situation is more subtle. The most general reference we could find is:

Theorem 2.1.1 (Shulman [51, Theorem 24.4]) Suppose that C satisfies:

(C) the mapping spectra C.c; d/ are cofibrant for all c; d 2 C.

Then all three items above are satisfied.

Shulman’s theorem uses the fact that SpO satisfies the monoid axiom, as is proved in
[36, Theorem 12.1(iii)]. Because of the above theorem:

We assume from now on that our category C satisfies (C).

We define
SHCC D Ho.Fun.C;SpO//

and use square brackets to indicate that we are talking about morphisms in the homotopy
category:

ŒX; Y �C WD HomHo.Fun.C;SpO//.X; Y /D HomSHCC .X; Y /:

Fun.C;SpO/ is a stable model category, so the homotopy category admits a preferred
triangulated structure, even in the strong sense of [19, Section 7]. We refer to the fact
that

(4) X
f
�! Y !Z!†X

is a distinguished triangle sloppily as Z D C.f /. Note that this notion makes sense
already in the pointed model category of pointed C–spaces [19, Section 6]. If f is a
cofibration between cofibrant objects, then C.f /D Y=X .

It is a well-known fact about triangulated categories that a distinguished triangle (4)
induces a long exact sequence

(5) � � � ! Œ†Y;B�C! Œ†X;B�C! ŒCf;B�C! ŒY; B�C! ŒX; B�C! � � � ;

and similarly for ŒB;� �C .

A triangulated subcategory of SHCC is a full subcategory closed under† and†�1 with
the property that if it contains a morphism f WX! Y , then it also contains its cone Cf .

Recall from [36] that SpO is inhabited by various spheres FkSn with F0S0 D S

and Fk.X ^ Y / D .FkX/^ Y . In the homotopy category, FkSn becomes a k–fold
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desuspension of Sn. The canonical maps Fk.SnC/!Fk.D
nC1
C

/, with k 2Z and n2N,
define a class of generating cofibrations in SpO . A class of generating cofibrations
in Fun.C;SpO/ is thus given by Fk.SnC/^ c! Fk.D

nC1
C

/^ c for k 2 Z, n 2N and
c 2Ob.C/. We will call an object of SHCC a finite C–CW–spectrum if it can be obtained
from the constant functor � by a finite number of gluing steps using these generating
cofibrations. The C–Spanier–Whitehead category SWC is the full subcategory of SHCC

on the finite C–CW–spectra.

The name is justified by the following lemma:

Lemma 2.1.2 (a) SWC is the full subcategory of SHCC on objects of the form
†N†1A for some integer N and some finite pointed C–CW–complex A.

(b) If A is a finite C–CW–complex and B is an arbitrary C–CW–complex, then

HomSWC .†
N†1A;†M†1B/Š colimkf†

NCkA;†MCkBgC;

where the curly brackets on the right denote (unstable) homotopy classes of maps
of C–spaces.

(c) SWC is the smallest triangulated subcategory of SHCC containing the objects c
for all c 2 Ob.C/.

Note that statement (b) serves as an alternative definition of SWC , not using SHCC .

Proof Part (a) is an easy induction. In part (c), the fact that SWC is triangulated is
clear as well. For the minimality, note that this would be clear inductively if we had
defined finite C–CW–spectra using attaching maps Fk.Sn/^ c! Fk.DnC1/^ c since
DnC1DC.Sn/. Unfortunately, DnC1

C
is not the cone of Sn

C
. However, in the homotopy

category, we may suspend as often as we want since this is an isomorphism. After one
suspension, the basepoint problem vanishes: the inclusion Sn

C
! DnC1

C
becomes the

inclusion of the boundary B of an .nC2/–disk D with two boundary points identified
(to the basepoint). The cone of the quotient map SnC1! B can be identified with D.

For part (b), note that it suffices to prove this statement for †A and †B . Fix B . As
in the proof of (c), we only need to show that it holds true for all c, and if it is true for
A and A0, and if f WA!A0 is a morphism, then it is true for Cf . For corepresentable
functors c, the statement boils down to the well-known corresponding statement for
SHC. Use Theorem 2.3.1(c) and Lemma 2.3.6 below to deal with the left-hand side. For
the cone argument, first prove that the right-hand side functor (for fixed B) turns cofiber
sequences into long exact sequences, similarly to (5) above. There is a natural map
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from the right-hand side to the left-hand side which is compatible with these two cone
long exact sequences, and thus the claim follows via induction and the five lemma.

Remark 2.1.3 If CDOr.G/ is the orbit category of a groupG, then Marc Stephan [54]
has shown that Elmendorf’s theorem holds in orthogonal spectra, ie there is a model
structure on naive orthogonal G–spectra (G–objects in the category of orthogonal
spectra) and a Quillen equivalence between this model category and Fun.C;SpO/.
However, this may fail in other categories of spectra with the properties discussed in
Section 3.1 below. For instance, it definitely fails in ChQ. The reason is that Stephan’s
paper has a cellularity condition that is satisfied by SpO , but not by ChQ. We will not
use the spectral Elmendorf theorem in this paper.

Remark 2.1.4 As promised in the introduction, we want to compare our approach to
the classical one of classical genuine G–equivariant homotopy theory. Surveys on this
topic are [37; 46, Chapter 3; 16, Sections 2 and 3, Appendices A and B]. In this context,
G is a finite (or compact Lie) group, and usually not Z–graded, but so-called RO.G/–
graded (co)homology theories are considered and this leads to a stable category in which
not only S1 but all representation spheres SV are invertible with respect to the smash
product, where V runs through all finite subrepresentations of a so-called universe U.
Using Remark 2.1.3 above, one sees that (for SpO as the category of spectra) we invert
subrepresentations of the trivial universe R1, an approach sometimes called naive
equivariant stable homotopy theory in the genuine context.

This framework in all its generality breaks down when G becomes an infinite group.
Recently, the authors of [11] developed a generalization for infinite (or noncompact Lie)
groups G with respect to the family of finite (or compact) subgroups. In their setup,
smashing with all Thom spaces S� , with � a G–vector bundle over EG, is inverted.
Thus, this gives a different setup than the one we treat here, and in particular does not
relate to the Davis–Lück construction of homology theories occurring in our homology
representation Theorem 5.2.3. Also, our theory is more general in that it treats diagram
spaces over arbitrary countable categories C.

2.2 The constructions ^C and mapC

From now on, the letters A, B and D also refer to spectrally enriched small categories
satisfying (C) as in Theorem 2.1.1. The spectrally enriched category A ^ Bop has
objects Ob.A/�Ob.B/ and

.A^Bop/..a; b/; .a0; b0//DA.a; a0/^B.b0; b/:
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Note that this spectral category satisfies (C) again. An .A;B/–bimodule is a continuous
functor A^Bop!SpO . We denote the category of .A;B/–bimodules and .A;B/–linear
morphisms (natural transformations of enriched functors) by

Mod.A;B/D Fun.A^Bop;SpO/;

with Hom sets denoted by Hom.A;B/.� ;� / and homotopy sets (Hom sets in the
homotopy category of .A^Bop/–spectra) denoted by Œ� ;� �.A;B/. We just call .C;�/–
and .�; C/–bimodules left and right C–modules, respectively.

If X is a right and Y a left C–module, then X ^C Y is the spectrum

coequ
�W
.c;d/2Ob.C/2 Y.c/^ C.c; d/^X.d/�

W
c2Ob.C/ Y.c/^X.c/

�
:

Here, the upper arrow is defined on any .c; d/–summand via the morphism correspond-
ing to

X� W C.c; d/!map.X.d/;X.c//

under the adjunction between �^X.d/ and map.X.d/;� /. The lower arrow is defined
similarly, using Y instead of X .

More generally, the balanced smash product X ^B Y of an .A;B/–bimodule X and a
.B; C/–bimodule Y is the .A; C/–bimodule defined by

X ^B Y.a; c/DX.a; ‹/^B Y.‹; c/:

Similarly, the mapping spectrum mapCop.U;X/ between two right C–modules U and
X is defined as

equ
� Y
c2Ob.C/

map.U.c/; X.c//�
Y

.c;d/2Ob.C/2
map

�
C.c; d/;map.U.d/; X.c//

��
:

More generally, for an .A;B/–bimoduleX and a .C;B/–bimoduleU , we have an .A; C/–
bimodule mapBop.U;X/. We can similarly define the mapping spectrum between two
left C–modules, or between an .A;B/–bimodule and an .A; C/–bimodule. We also
introduce the .A;A/–bimodule A defined by

.a; a0/ 7!A.a0; a/;

this not being a tautology, but referring to the mapping spectra of the category A.

The constructions just introduced can not only be defined in SpO , but in any cosmos2 V .
They are linked in various ways that can be subsumed using the notion of a closed
bicategory.

2A cosmos is a closed symmetric monoidal category with all small limits and colimits.
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Recall that a bicategory M consists of a class of objects Ob.M/, and a small category
of 1–morphisms M.A;B/ between any two objects A and B, together with composition
functors

M.B; C/�M.A;B/!M.A; C/

for all A;B; C 2Ob.M/ that are associative and have units up to coherent isomorphisms
[6, Definition 7.7.1]. The morphisms between the 1–morphisms are called 2–morphisms.
A bicategory is called closed [38, Definition 16.3.1] if for every 1–morphismX WA!B
and every object C, the precomposition with X ,

X� WM.B; C/!M.A; C/;

as well as the postcomposition with X , X� WM.C;A/!M.C;B/, have a right adjoint.
Since adjoints are unique up to unique isomorphism if they exist, this is a property of a
bicategory, not an additional structure on it.

Proposition 2.2.1 Let V be a cosmos. Then there is a closed bicategory Mod.V/ in
which the objects are given by small V–enriched categories , 1–morphisms from A to
B are .A;B/–bimodules with composition given by balanced product and idA given by
the .A;A/–bimodule A, the 2–morphisms are given by morphisms of bimodules , and
if X is an .A;B/–bimodule then the right adjoints of pre- and postcomposition with X
are given by mapA.X;� / and mapBop.X;� /.

Proof The bicategory structure was first discussed in [5] for V D Set; Proposition 2.6
of [18] is a classical reference for V D Top, though it omits bicategorical language. A
general reference is [52, Section 3], especially Lemmas 3.25 and 3.27.

Remark 2.2.2 In the literature, there are three different names for what we call
bimodules here, all of which seem to be common in some circles; the other two
are distributors and profunctors. Consequently, the bicategory introduced above is
sometimes also called Dist.V/ or Prof.V/.

Remark 2.2.3 The category Mod.A;B/ can again be jazzed up to a spectrally enriched
category: if we view two .A;B/–bimodules X and Y as left .A^Bop/–modules (or
right .Aop ^ B/–modules), we can define a mapping spectrum map.A;B/.X; Y / with
underlying set Hom.A;B/.X; Y /. Thus, Mod.SpO/ is a spectrally enriched closed
bicategory in the obvious sense. We don’t give further details since we won’t use this
enrichment.
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Example 2.2.4 In addition to V D Set and V D SpO , another interesting example
of a cosmos is V D Ab. An Ab–enriched category is usually called a preadditive
category, and a preadditive category with one element is the same as a ring, with a
bimodule in the sense discussed here corresponding to a bimodule in the usual sense
(whence the name). Thus, we get as a full subbicategory of Mod.Ab/ the bicategory
of rings, .R; S/–bimodules and .R; S/–linear homomorphisms between them, which
is sometimes called the Morita category. More generally, you can take V D R–Mod
for some commutative ring R. You may also take V D ChR. A ChR–category is
the same as an R–linear dg-category. Suppose that A and B are R–linear categories
(concentrated in degree 0), then an .A;B/–bimodule is the same as a chain complex
of .A;B/–bimodules over R–Mod. Thus we get as a full subbicategory of Mod.ChR/
the bicategory of R–linear categories and chain complexes of .A;B/–bimodules. We
will study this in detail in the rational case in Section 6.

2.3 Deriving ^C and mapC

We will now derive the whole setup in the sense that we pass to the homotopy category
of every bimodule category Mod.A;B/, and define a derived version of the balanced
smash product which allows us to view the collection of all derived bimodule categories
as a bicategory, as well as derived versions of the mapping spectra which exhibit this
bicategory as closed. Technically, we achieve this by using the notion of a Quillen
adjunction of two variables [19, Section 4.1].

Throughout the rest of this subsection, let X be an .A;B/–bimodule, Y a .B; C/–
bimodule, Z a .C;D/–bimodule, U an .A;D/–bimodule, and V an .A; C/–bimodule.
(This convention will always be clear from the context.)

Theorem 2.3.1 The following data defines a closed bicategory DerMod.SpO/: objects
are small SpO–enriched categories satisfying (C ), 1–morphisms from A to B are
.A;B/–bimodules , and 2–morphisms are given by

.DerMod.A;B//.X; Y /D ŒX; Y �.A;B/:

The identity 1–morphism of an object A is the .A;A/–bimodule A and the identity
2–morphism of a 1–morphism X is idX . The composition of 1–morphisms and their
adjoints are given by the functors

�^
L
B �W DerMod.A;B/�DerMod.B; C/! DerMod.A; C/;

RmapCop W DerMod.B; C//op
�DerMod.A; C/! DerMod.A;B/;
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and
RmapA W DerMod.A;B/op

�DerMod.A; C/! DerMod.B; C/;

which are the total derived functors of �^B �, mapCop and mapA. Explicitly , for Q a
functorial cofibrant replacement and R a functorial fibrant replacement , we have

X ^LB Y ŠQX ^BQY; RmapCop.Y; V /ŠmapCop.QY;RV /

and
RmapA.X;U /ŠmapCop.QX;RU /:

In particular , the closed bicategory structure induces the natural isomorphisms:

(a) A^LAX ŠX ŠX ^
L
B B in DerMod.A;B/.

(b) .X ^LB Y /^
L
C Z ŠX ^

L
B .Y ^

L
C Z/ in DerMod.A;D/.

(c) ŒX ^LB Y; V �.A;C/ Š ŒX;RmapCop.Y; V /�.A;B/ Š ŒY;mapA.X; V /�.B;C/.

(d) RmapA.A; X/ŠX Š RmapBop.B; X/ in DerMod.A;B/.

(e) RmapA.X ^
L
B Y;U /Š RmapB.Y;RmapA.X;U // in DerMod.C;D/.

(f) RmapDop.Z;RmapA.X;U //Š RmapA.X;RmapDop.Z;U // in DerMod.B; C/.

Proof Let A, B and C denote small spectrally enriched categories satisfying (C). The
closedness of the bicategory Mod.SpO/ gives natural isomorphisms

'l W Hom.A;C/.X ^B Y; V /
Š�! Hom.B;C/.Y;mapA.X; V //

and
'r W Hom.A;C/.X ^B Y; V /

Š�! Hom.A;B/.X;mapCop.Y; V //:

The categories Mod.A;B/, Mod.B; C/ and Mod.A; C/ with the quintuple consisting
of ^B, Homr DmapCop , Homl DmapA and the two isomorphisms 'r and 'l form an
adjunction of two variables in the sense of [19, Definition 4.1.12]. We want to apply
[19, Corollary 4.2.5] to show that ^B is a Quillen bifunctor.

In order to do this we have to check that the pushout product of two generating
cofibrations is a cofibration, and that it is a trivial cofibration if one of the factors is a
generating trivial cofibration. For the definition of the pushout products � and �B see
[19, Definition 4.2.1]. We check the first statement, the other two being similar. We
may choose the generating cofibrations of the form f ^ .a; b/ and g^ .b0; c/, where
f and g belong to a class of generating cofibrations of SpO . Up to isomorphism of
morphisms, we have the identity

(6) .f ^ .a; b//�B .g^ .b
0; c//Š .f �g/^B.b; b0/^ .a; c/:
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By the pushout-product axiom for SpO , f �g is a cofibration. Now, B.b; b0/ is cofibrant
by (C) and thus .f � g/^ B.b; b0/ is a cofibration, since it is a smash product of a
cofibration with a cofibrant object. Here we use the pushout-product axiom for SpO

again. Thus, the right-hand side of (6) has the left lifting property with respect to all
trivial fibrations and is thus a cofibration.

Proposition 4.3.1 of [19] then applies to show that we have total derived functors as in
the statement of the theorem, and that the quintuple

.^LB ;RmapCop ;RmapA; R'r ; R'l/

defines an adjunction of two variables. This gives the isomorphism (c). Isomorphism
(b) follows from the explicit description of ^LB together with the fact that the balanced
smash product of two cofibrant bimodules is cofibrant, which follows from the Quillen
bifunctor property.

To show that DerMod.SpO/ is actually a bicategory, we are left to deal with two
points. Firstly, that there is an associativity isomorphism satisfying a coherence square.
This follows directly from the corresponding fact for Mod.SpO/, as in the proof of
[19, Propositions 4.3.1 or 4.3.2]. Secondly, that we have an identity 1–morphism at
every object. Surprisingly, this is the more difficult part, since the identity A might be
noncofibrant. However, we may use Corollary 2.3.4 below to see that

A^LAX ŠA^AX ŠX;

since A is obviously right flat in the sense of Definition 2.3.3. The coherence conditions
for this unitality isomorphism are readily checked.

The fact that the derived mapping functors are right adjoints of the derived smash
products is part of the adjunction of two variables statement. Summarizing, we have
now proved that DerMod.SpO/ is a closed bicategory, amounting to isomorphisms (a)
to (c).

Now the point is that (d) to (f) are valid in any closed bicategory: (d) follows from (a) —
if pre- and postcomposition with A is isomorphic to the identity, then the same has to
be true for their adjoints. Similarly, (e) and (f) follow from (b).

Proposition 2.3.2 If X is a cofibrant .A;B/–spectrum , then X ^B � preserves weak
equivalences.
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Proof We first treat the case where X is FkA^ .a; b/, where A is any pointed CW–
complex. Let Y ! Y 0 be any weak equivalence of .B; C/–spectra. Smashing with
FkA^ .a; b/, we get the map

FkA^A.a;� /^Y.b;� /! FkA^A.a;� /^Y 0.b;� /:

Now, A.a;� / is objectwise a cofibrant spectrum by (C), and so is FkA. But smashing
with a cofibrant spectrum preserves weak equivalences by [36, Proposition 12.3].

Now we want to reduce to the general case. By general theory of cofibrantly gener-
ated model categories, a cofibrant object is a retract of a cell complex. Since weak
equivalences are closed under retracts, we may assume that X is a (transfinite) cell
complex, ie a transfinite composition (see [17, Definition 10.2.2]) of pushouts along
generating cofibrations. Suppose that the transfinite composition is indexed by some ˇ
and denote the intermediate “skeleta” by X˛ for ˛ < ˇ, where X˛C1 can be obtained
from X˛ by a cobase change along a coproduct of generating cofibrations. In particular,
X˛ ,!X˛C1 is a cofibration in the projective model structure, but this property is not
preserved when smashing (over C) with an arbitrary spectrum. This is why we have to
use the more subtle notion of h–cofibration. This is a concept which is not available in
an arbitrary model category, but is in many topological examples, in particular in SpO .
Our use of h–cofibrations is restricted to this proof.

We define a map of C–spectra A! B to be an h–cofibration if B ^ IC retracts onto
A ^ IC [A B ^ f0gC; see [36, page 457]. Since the generating cofibrations are h–
cofibrations, the same is true for the inclusions X˛!X˛C1. Moreover, h–cofibrations
are preserved under balanced smash products by definition.

Now we are in shape to prove the proposition for general X by transfinite induction
on ˇ. It is true for the domains and targets of the generating cofibrations by the first
step of the proof, applied to AD Sn

C
and AD Dn

C
. Thus, if it is true for X˛ , then also

for X˛C1, using [36, Theorem 8.12(iv)]. For limit ordinals ˇ, we know that Xˇ is the
colimit ofX˛ for ˛<ˇ. This is preserved when smashing with Y and Y 0. In orthogonal
spectra, a stable equivalence is the same as a ��–isomorphism [36, Proposition 8.7].
Computing the stable homotopy groups commutes with colimits along h–cofibrations,
since these are levelwise closed inclusions.

Definition 2.3.3 An .A;B/–spectrum F is right flat if F ^B � preserves weak equiv-
alences. A morphism f W F !X is called a right flat replacement of X if F is right
flat and f is a weak equivalence.
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Corollary 2.3.4 Let f W F ! X be a right flat replacement of X . Then there is a
natural isomorphism

X ^LB Y Š F ^B Y

for any .B; C/–bimodule Y .

Proof There are weak equivalences

X ^LB Y DQX ^BQY
��!X ^BQY

� � F ^BQY
��! F ^B Y;

where the first and second weak equivalence follow from Proposition 2.3.2.

Left flat replacements are defined similarly and the statement of the corollary carries
over mutatis mutandis.

Remark 2.3.5 Proposition 2.3.2 and Corollary 2.3.4 have been proved to show the
isomorphism A^LA X Š X . The proof is technically much more advanced than the
rest of the proofs in this section and in particular harder to generalize to other model
categories of spectra than orthogonal spectra; see Section 3. In the understanding of
the author, this is inevitable for Proposition 2.3.2 since the corresponding statement for
C D � is a subtle point in all treatments he could find, but it would be nice to have a
more straightforward proof of the fact that A^LAX ŠX , going along another route.

The one-object Yoneda lemma carries over to the derived setting without trouble since
c is a cofibrant Cop–spectrum. We state it here for later use:

Lemma 2.3.6 For a C–spectrum X and c 2 Ob.C/, there are natural isomorphisms in
SHC,

c ^C X ŠX.c/ and RmapC.c; X/ŠX.c/:

3 Changing the category of spectra

Throughout the paper hitherto, we investigated C–spectra in the sense of functors from
C to the category SpO of orthogonal spectra. However, the literature also uses several
other model categories of spectra, which are either Quillen equivalent to orthogonal
spectra (respecting the smash product in one sense or the other, as discussed below), or
describe a slightly different version of spectra, eg connective spectra or rational spectra.
The purpose of this section is to bring all these other models in, in two ways:
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� Firstly, we state conditions under which much of the framework built up so far
can be built up with another category of spectra instead of orthogonal spectra.

� Secondly, suppose we have built up the framework for two different model
categories S and T , and we have a Quillen equivalence between the two. Then
we want to see how our constructions, performed in S, compare with the same
constructions performed in T .

The first item will be carried out in Section 3.1. We will write down a list of assumptions
on the model category of spectra and then deduce a substantial part of Section 2. Roughly
speaking, we generalize enough to write down derived smash products and mapping
spectra, and prove the various adjunctions between them; see Proposition 3.1.1. What
we will not prove is the derived Yoneda Lemma

A^LAX ŠX;

since the way we proved it used rather specific properties of orthogonal spectra;
see the proof of Proposition 2.3.2. However, let us emphasize that we pursued a
minimalist approach here, proving what we strictly need in the rest of the paper instead
of maximizing the generality. We can well imagine that a reader who is, for example,
an expert on simplicial homotopy theory will find a way to prove the derived Yoneda
Lemma for simplicial symmetric spectra, either transferring Proposition 2.3.2 or via
another route.

The second item is dealt with in Section 3.2. The Quillen equivalence between S
and T has to be compatible with the smash product. The literature contains (at least)
two different ways in which a Quillen equivalence can be compatible with monoidal
structures on its source and target: strong and weak monoidal Quillen equivalences.
Their definitions will be recalled below. In many cases, it is possible to compare two
categories of spectra by a strong monoidal Quillen equivalence, and then the comparison
result is trivial. For instance, this applies to all pairs of model categories of spectra
discussed in [36]. However, we also need (in Section 6.1) the comparison along the
more restrictive notion of a weak monoidal Quillen equivalence, which is not trivial
any longer; see Proposition 3.2.1.

Note that the agenda of the first item may be carried out for spectrally enriched
categories C, while in the second case, we have to restrict to usual Set–enriched
categories, since it is technically difficult to compare S–enriched with T –enriched
categories; see Remark 3.2.3.
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The reason that we get into this discussion in detail is twofold. Firstly, it is intrinsically
satisfying to know that our results are independent of the choice of a model category
of spectra. Secondly, and more concretely, our comparison results will become crucial
in Section 6.1, where they are used in the rational case to pass from rational spectra to
rational chain complexes.

Remark 3.0.1 We want to comment on the way we intend to apply the comparison
results of this subsection. Suppose S is a model category of spectra which is Quillen
equivalent to orthogonal spectra, and we are interested in Theorem A from Section 1
for S. Then we will use the result for SpO , to be proved below, and then compare
the balanced smash product occuring (secretly) on the right-hand side of (2) from
Theorem A to the corresponding balanced smash product in S, using the machinery
we are just about to develop, for instance the isomorphism (7) from Section 3.2 below.
Similarly, if S is, say, the model category of simplicial symmetric spectra and the
homology theory is defined on simplicial C–sets instead of C–spaces, we may first
transfer it to C–spaces (using the Quillen equivalence between simplicial sets and
spaces), then apply the representation theorem here and translate back to simplicial
spaces and simplicial symmetric spectra.

Another strategy would be to develop bicategorical duality theory over S and then
prove Theorem A separately for S. Although this is also a totally valid approach, it is
not the one we will use here — mainly because of the technical problem mentioned
above that we cannot prove the derived Yoneda Lemma for S and thus do not have a
clean bicategory at hand.

3.1 Categories of spectra

We start by distilling properties of SpO we used to set up the framework of Section 2.
Let .S;^;S/ denote a model category which also has a monoidal structure.

As already explained in the introduction, our proof of Proposition 2.3.2 is so specific
that we don’t aim to generalize it, or the derived Yoneda lemma. We rather pursue
a minimalist approach, comprising the following: set up homotopy categories as in
Section 2.1 up to and including the discussion of the triangulated structure, define
balanced smash products and mapping spectra as in Section 2.2, derive these as in
Theorem 2.3.1 to get ^LC and RmapC and isomorphisms (b) through (f).

To prove these statements, we used the following list of properties of SpO :
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� The smash product and mapping spectra furnish SpO with the structure of a
cosmos, ie a closed symmetric monoidal category with all small limits and
colimits.

� It has a cofibrantly generated stable [19, Chapter 7] model structure. There is a
class of generating cofibrations and generating trivial cofibrations whose sources
are cofibrant.

� The unit of the smash product is cofibrant.

� The pushout-product axiom [47, Definition 3.1] holds.

� The monoid axiom [47, Definition 3.3] holds.

We have argued that the following “metatheorem” holds:

Proposition 3.1.1 Suppose that a model category .S;^;S/ of spectra satisfies the
above list of properties. Then the statements of Theorem 2.3.1 hold for S in the place
of SpO , except that DerMod.S/ may fail to have identities , thus is not a bicategory ,
and that isomorphism (a) may not hold.

Remark 3.1.2 The fact that SpO is a cosmos (with respect to the smash product) was
crucially needed to construct balanced smash products and mapping spectra, and the
compatibility with the model structure to derive these; see Subsections 2.2 and 2.3.
The cofibrant generation is needed to construct model structures on C–spectra. The
facts that SpO is a cosmos, the unit is cofibrant and the pushout-product axiom holds
imply that it is a monoidal model category in the sense of [19, Definition 4.2.6]. The
latter notion is slightly weaker than the three mentioned facts and would technically
also suffice for our purposes. The monoid axiom is needed for Theorem 2.1.1.

The literature in stable homotopy theory contains a plethora of different model categories
of spectra. Apart from orthogonal spectra, we will use the category Sp†sSet of simplicial
symmetric spectra with the stable model structure from [22].

Lemma 3.1.3 The model category Sp†sSet satisfies the above list of properties.

Proof See [22, Theorems 2.2.10 and 3.4.4, and Corollaries 5.3.8 and 5.5.2]. Note that
the authors of [22] call what we defined as a model category satisfying the pushout-
product axiom a monoidal model category. The fact that the unit is cofibrant is remarked
on page 53 of [22].
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Remark 3.1.4 In [49, Theorem 3.3.3] it is shown that if spectra are simplicial symmet-
ric spectra, the model categories Fun.C;Sp†sSet/ are exactly the simplicial, cofibrantly
generated, proper, stable model categories with a set of compact generators.

Remark 3.1.5 The paper [36] further treats the model categories of W–spaces and
sequential spectra. The treatment of W–spaces and orthogonal spectra is completely
analogous, so that all results (even Proposition 2.3.2) will be true for W–spaces, with
the same references in [36] applying. All model categorical aspects apply to sequential
spectra as well, but this is not a closed symmetric monoidal category and will be treated
separately in Section 3.3.

We will now discuss some model categories of rational spectra originally introduced
in [50]. These will be the main actors of Section 6.1. The four monoidal model
categories are:

� the category HQ–Mod of modules over the monoid HQ in Sp†sSet with model
structure as explained in [47, Theorem 4.1(1)],

� the model category ChQ of unbounded rational chain complexes; see Section 2.3
of [19],

� the category Sp†.sVectQ/ of symmetric spectra over simplicial Q–vector spaces;
see [21],

� the category Sp†.chCQ/ of symmetric spectra over nonnegatively graded rational
chain complexes; see [21].

The last two model structures are constructed following the general construction [19]
of a model category of symmetric spectra over a given (nice) monoidal model category.
It is applied to the categories of simplicial objects in Q–vector spaces with the model
structure from [43, Chapter II.4], and to chCQ with the projective model structure
[12, Section 7].

Lemma 3.1.6 The four model categories mentioned above satisfy the above list of
properties.

Proof Standing Assumptions 2.4 of [50], proved for our four model categories in
Section 3, comprises all our assumptions except the cofibrancy of the sources of the
generating (trivial) cofibrations. ForHQ–Mod , this can be seen as follows: Generating
cofibrations for HQ–modules can be obtained from generating cofibrations in Sp†sSet
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by smashing with HQ; see [47, Lemma 2.3]. Since these have cofibrant sources and
HQ is cofibrant, the smash product is cofibrant in Sp†sSet and thus also in HQ–Mod

since this has more cofibrations. For ChQ, the sources are cofibrant since they are
bounded and (trivially) degreewise projective. For the last two categories, the stable
model structures on symmetric spectra have the same cofibrant objects as the projective
model structures introduced [21, Theorem 8.2] and their generating cofibrations have
cofibrant sources since this is true for sVectQ and chCQ.

3.2 Comparison between different categories of spectra

Throughout this subsection, A, B and C are discrete (as opposed to enriched) categories
(see Remark 3.2.3). Let .S;^;S/ and .T ;˝;T / denote categories of spectra, ie stable
model categories satisfying the list of assumptions from the last subsection. Let

F W .S;^;S/� .T ;˝;T / WG

be a Quillen equivalence between two categories of spectra, where F is the left adjoint.
An .A;B/–bimodule is just a functor in the usual nonenriched sense from A�Bop to
S or T . We thus have an adjunction

F� W Fun.A�Bop;S/� Fun.A�Bop; T / WG�;

which is again a Quillen equivalence [17, Theorem 11.6.5].

Recall the definition of weak and strong monoidal Quillen equivalences from [48,
Section 3.2]: a Quillen equivalence is called strong monoidal if F is strong monoidal
and F.QS/! F.S/Š T is a weak equivalence for the unit S, and it is called weak
monoidal if G is lax monoidal. Thus F is lax comonoidal, so that the maps

r W F.x ^y/! F.x/˝F.y/

are weak equivalences for all cofibrant x and y, and the composite

F.QS/! F.S/! T

is a weak equivalence as well. In our case, the unit S is cofibrant, so this boils down to
the fact that F.S/! T is a weak equivalence.

In the case of a strong monoidal Quillen equivalence (which we face, for example,
when comparing symmetric with orthogonal spectra as our underlying cosmos) it is
straightforward to construct a satisfying comparison machinery: F� commutes with
balanced smash products and thus the same holds for the equivalence of categories

ˆDˆ.A;B/ D Ho.F�/ W Ho.Fun.A�Bop;S//! Ho.Fun.A�Bop; T //;
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and, consequently, its inverse � D Ho.G�/. We spell out the natural isomorphisms

(7) ˆ.X ^LB Y /Šˆ.X/˝
L
B ˆ.Y /; �.X 0 ^LB Y

0/Š �.X 0/˝LB �.Y
0/

as well as

RmapA.ˆ.X/;ˆ.U //Šˆ.RmapA.X;U //;(8)

RmapA.�.X
0/; �.U 0//Š �.RmapA.X

0; U 0//:

These come from the adjunction between the balanced smash product and mapping
spectrum. Similar isomorphisms hold for RmapB.

Now we turn to weak monoidal Quillen equivalences. The comonoidal transformation
r induces a commutative diagramW

b!b0 F.X.b
0/^Y.b//

W
b F.X.b/^Y.b//

W
b!b0 F.X.b

0//˝F.Y.b//
W
b F.X.b//˝F.Y.b//

r r

and thus induces a map on the colimits of the rows. Since F commutes with colimits,
we get r W F�.X ^B Y /! F�.X/˝B F�.Y /.

Proposition 3.2.1 r is a weak equivalence if X and Y are cofibrant.

Proof We first treat the case where X D A^ .a; b/ for some cofibrant spectrum A.
Here r is isomorphic to

r W F.A^ a^Y.b;� //! F.A^ a/˝F.Y.b;� //;

which is a weak equivalence since A^ a is objectwise cofibrant by discreteness of
A and C, and Y.b;� / is objectwise cofibrant by [17, Proposition 11.6.3]. Note the
natural isomorphism

F�.A^ .a; b//Š F�
�W
b A^ a

�
Š
W
b F�.A^ a/Š F�.A^ a/˝ b;

since F commutes with colimits.

In the general case, X is a retract of a (transfinite) cell complex. We may thus assume
that X is itself a cell complex. Arguing by transfinite induction, we have to show that
the property that r is a weak equivalence is preserved under gluing along coproducts
of generating cofibrations and under passage to colimits along cofibrations.

For the first point we use the first step of the proof and the cube lemma [19, Lemma 5.2.6].
The two comparison diagrams consist of cofibrant objects and one cofibration since F�
is left Quillen, and ^B and ˝B are Quillen bifunctors; see the proof of Theorem 2.3.1.
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For the second point, suppose that we have a chain of cofibrations of some shape �.
This is a cofibrant diagram in the projective model structure on the functor category of
�–sequences as the lifting property can be proved by transfinite induction. Since the
colimit is a left Quillen functor [17, Theorem 11.6.8], it preserves weak equivalences
between cofibrant objects.

With ˆ as above we get a natural isomorphism in Ho.Fun.C; T //,

ˆ.X ^LB Y /D F�.QX ^BQY /
Š

r
�! F�.QX/˝B F�.QY /Šˆ.X/˝

L
B ˆ.Y /;

and we obtain our desired isomorphisms (7) and, by adjointness, (8).

Corollary 3.2.2 Let .F;G/ denote a weak or strong monoidal Quillen equivalence
between two categories of spectra .S;^;S/ and .T ;˝;T /. If A, B and C denote
discrete categories , then the derived functors ˆ and � on .A;B/–, .B; C/– and .A; C/–
modules commute with balanced smash products and mapping spaces , as spelled out in
(7) and (8) above.

Remark 3.2.3 It is important in our discussion that A, B and C are discrete cate-
gories. For a treatment of nondiscrete categories (in case of strong monoidal Quillen
equivalences), and a formulation of Corollary 3.2.2 in bicategorical language, see
[28, Corollaries 2.16 and 2.23].

3.3 Sequential spectra

Sequential spectra do not form a monoidal model category, only a model category
tensored and cotensored over spaces. The tensor and cotensor structure can be derived
by the same Quillen adjunction argument as in Theorem 2.3.1. In this case even
Proposition 2.3.2 may be proved in the same way as above, relying on the same
references in [36], as this paper treats sequential and orthogonal spectra uniformly.

While it is impossible to formulate duality for sequential spectra over C (using our
methods), it is possible to write down a homology theory from a sequential Cop–spectrum
as in (1) from Section 1 or, more precisely, (13) from Lemma 5.1.3 below. For this
construction, Theorem 5.2.3 actually holds true as well. To see this, we compare with
a Quillen equivalence to orthogonal C–spectra and only have to show that the balanced
smash products are translated into one another.
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Let U�.Y / denote the underlying .B � Cop/–sequential spectrum of a .B � Cop/–
orthogonal spectrum Y . Let X be an .A� Bop/–space. Then there is a tautological
isomorphism of .A�Bop �B� Cop/–sequential spectra

U�.†
1X ^Y /ŠX ^U�Y

inducing the same isomorphism for ^B instead of ^ since U� commutes with colimits.
To pass to the derived functor, it suffices to cofibrantly replace X by an argumentation
similar to Corollary 2.3.4. Thus, we get a natural isomorphism

Ho.U�/.†1X ^LB Y /ŠX ^
L
B Ho.U�/.Y /:

Similarly,

Ho.U�/.RmapA.†
1X;U //Š RmapA.X;Ho.U�/.U //;

where we use in the derivation process that the right adjoint U� preserves fibrant objects.

4 External Spanier–Whitehead duality

We will now set up an external version of Spanier–Whitehead duality which relates
finite C–spectra to finite Cop–spectra and which allows us to go back and forth between
homology theories on finite C–spectra and cohomology theories on finite Cop–spectra
in the proof of Theorem 5.2.3.

We will begin by formulating the problem, ie by defining the notion of a dual pair.
This is carried out in the context of an arbitrary bicategory in Section 4.1. There are
several equivalent formulations of this notion, the equivalence of which is proved in
Proposition 4.1.1. We will later use this formulation of the problem in the bicategory
structure on DerMod.SpO/ discussed in Theorem 2.3.1. The discussion at the end
of Section 4.1 uses the symmetry of the bicategory DerMod.SpO/ and finally the
closedness. The closed structure allows us to write down, in Section 4.2, an ansatz for
the solution of the above problem: we construct a functor D for which it is plausible
that .X;DX/ is a dual pair. This approach could in principle be carried out in any
closed bicategory, but we only do this in the example of DerMod.SpO/ to simplify the
exposition. Finally, we prove in the usual way, using an inductive argument, that finite
spectra are dualizable.

4.1 Bicategorical duality theory

The discussion in this subsection is essentially equivalent to [38, Chapter 16], slightly
simplified for our purposes; also compare with [30, Chapter III]. We change our standing
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notation from the last section: here X will always denote an .A;B/–bimodule, Y a
.B;A/–bimodule, Z a .C;A/–bimodule, U a .B; C/–bimodule, V an .A; C/–bimodule
and W a .C;B/–bimodule. All morphisms between bimodules are morphisms in the
homotopy category — in other words, we are working in the bicategory DerMod.SpO/.

Given a morphism

" WX ^LB Y
.A;A/
����!A;

we may define
"1� W ŒW;Z ^

L
AX�.C;B/! ŒW ^LB Y;Z�.C;A/;

where "1�.f / is the composition

W ^LB Y
f ^L

BY����!Z ^LAX ^
L
B Y

Z^L
A"����!Z ^LA AŠZ:

Similarly, we may define

"2� W ŒU; Y ^
L
A V �.B;C/! ŒX ^LB U; V �.A;C/:

On the other hand, a morphism

� W B .B;B/
���! Y ^LAX

yields
�1� W ŒW ^

L
B Y;Z�.C;A/! ŒW;Z ^LAX�.C;B/

and
�2� W ŒX ^

L
B U; V �.A;C/! ŒU; Y ^LA V �.B;C/:

In the following, the letters " and � are reserved for morphisms with source and target
as above. The next proposition is the main point of our discussion of duality since
it shows that the notion of a dual pair can be equivalently formulated in terms of "
and �, or only one of them — the other one can be recovered uniquely. It is essentially
[30, Theorem III.1.6] or [38, Proposition 16.4.6].

Proposition 4.1.1 The following data determine one another:

(I) morphisms " and � such that the composition

X ŠX ^LB B X^L
B �����!X ^LB Y ^

L
AX

"^L
AX����!A^LAX ŠX

equals idX and the composition

Y Š B^LB Y
�^L

BY����! Y ^LAX ^
L
B Y

Y^L
A"����! Y ^LA AŠ Y

equals idY ,
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(II) a morphism " such that "1� is a bijection for all W and Z,

(III) a morphism " such that "2� is a bijection for all U and V ,

(IV) a morphism � such that �1� is a bijection for all W and Z,

(V) a morphism � such that �2� is a bijection for all W and Z.

Proof If " and � as in (I) are given, then a direct check reveals that "1� and �1� are
inverse bijections, as are "2� and �2�. Thus we recover (II) through (V). We now show
how to recover (I) from (II), with the proceeding starting from another point being
analogous.

Suppose that "1� is always a bijection. With C D B, W D B and Z D Y , we get an
isomorphism

"1� W ŒB; Y ^
L
AX�.B;B/! ŒB^LB Y; Y �.B;A/:

Choosing � as the preimage of the canonical isomorphism B^LB Y Š Y , we get the
second of the two compositions in (I) to equal idY . Note that we have no other choice
for � if we want (I) to hold. Moving on, note that "1��

1
� is the identity for all W and Z.

Since "1� is a bijection, this exhibits �1� as a bijection as well and implies that the other
composition �1�"

1
� also equals the identity. Now the first composition in (I), viewed as

a morphism X !A^LAX (forget the last canonical isomorphism 'X ), equals �1�."/,
so its image under �1� equals ". But the same is true for '�1X , so the two are equal.

It is obvious that the presented constructions are inverse to each other — one way we
forgot about �, and going back we had a unique choice for �.

Remark 4.1.2 Condition (I) of Proposition 4.1.1 says that .X; Y / is an adjoint pair in
the sense of adjointness between 1–morphisms in bicategories [6, Definition 7.7.2].

Definition 4.1.3 .X; Y I "; �/— equivalently .X; Y I "/ or .X; Y I �/— is called a dual
pair of bimodules if the equivalent conditions of Proposition 4.1.1 hold.

Note that we can omit one of " and � from the quadruple .X; Y I "; �/, but not both; for
instance, " is not uniquely determined by X and Y , since we might change it by an
automorphism of its source or target.

Remark 4.1.4 The discussion above is not symmetric in A and B. We could equally
well have formulated a second kind of duality where we interchanged the role of the
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source and target of a 1–morphism, as well as the order of the composition (balanced
smash product) everywhere. This would have given a different notion of duality with
different dual pairs.

The bicategory DerMod.SpO/ has a special kind of symmetry available. By defini-
tion there is a canonical isomorphism of categories between .A;B/–bimodules and
.Bop;Aop/–bimodules, which we denote by

X 7!Xop:

This assignment is involutive, and we have canonical isomorphisms


 W .X ^LB Y /
op Š�! Y op

^
L
Bop X

op

of .A; C/–bimodules, and
ı W .idA/

op Š�! idAop

of .Aop;Aop/–bimodules.

Remark 4.1.5 In the language of [38, Section 16.2], this refers to the fact that
DerMod.SpO/ is a symmetric bicategory with involution A 7!Aop.

In this notation, Remark 4.1.4 says that the fact that .X; Y I "; �/ is a dual pair is not
equivalent to the fact that .Xop; Y opI "0; �0/ is a dual pair for some "0 and �0. However,
there is the following tautological observation which we will use later:

Proposition 4.1.6 The pair .X; Y I "; �/ is a dual pair if and only if

.Y op; Xop
I ı"op
�1; 
�opı�1/

is.

Proof The proof is trivial for condition (I) of Proposition 4.1.1.

Proposition 4.1.7 If .X; Y I "; �/ and .U;W I �; �/ are dual pairs , then so is

.X ^B U;W ^B Y I �; �/

where � is the composition

X ^LB U ^
L
C W ^

L
B Y

X^L
B �^

L
BY��������!X ^LB B^LB Y ŠX ^

L
B Y

"�!A

and � is defined similarly.

Proof The proof is trivial for condition (I) of Proposition 4.1.1; see Theorem 16.5.1
of [38].
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The next two propositions use the closedness of DerMod.SpO/. They are essentially
Propositions 16.4.13 and 16.4.12 of [38].

Proposition 4.1.8 If .X; Y I "/ is a dual pair , then we have the natural isomorphisms

Z ^LAX
.C;B/
Š
���! RmapAop.Y;Z/;(9)

Y ^LA V
.B;C/
Š
���! RmapA.X; V /;(10)

and

(11) Y Š RmapA.X;A/:

Proof For the first two isomorphisms use Proposition 4.1.1(II), Theorem 2.3.1(c) and
the (usual form of the) Yoneda lemma. Setting CDA and V DA in (10) yields (11).

4.2 External duality for .A;B/–spectra

Considering (11) from Proposition 4.1.8 above, we will now reverse the logic, define
Y as DX and check when this yields a dual pair.

Definition 4.2.1 For an .A;B/–spectrum X , define the dual of X to be the .B;A/–
spectrum

DX DD.A;B/X D RmapA.X;A/:

Remark 4.2.2 The notation D.A;B/ above should draw the reader’s attention to the
fact that the dual of an .A;B/–spectrum depends on the pair .A;B/, and not only on
the indexing category A^Bop. However, we will only write D from now on.

Remark 4.2.3 If we are sloppy for the moment and ignore the derivation process, we
may think of D as given by the formula

DX.c/DmapC.X.� /; C.c;� //:

We have the evaluation map

"X WX ^
L
B DX Š RmapA.A; X/^

L
B RmapA.X;A/

.A;A/
����!A:

Definition 4.2.4 X is called dualizable if .X;DX I "X / is a dual pair, ie if the map
."X /

�
1 from Proposition 4.1.1 is a bijection for all W and Z.
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The map "X has the naturality property that for every morphism f W X ! X 0 in
DerMod.A;B/, the diagram

X ^LB DX
0 X 0 ^LB DX

0

X ^LB DX A

f ^L
B id

id^L
BDf "X0

"X

commutes. It follows that for all W and Z (which we consider fixed from now on),

."X /
1
� W ŒW;Z ^

L
AX�.C;B/! ŒW ^LB DX;Z�.C;A/

is a natural transformation.

Recall that an exact functor between triangulated categories is a functor which commutes
with the shift functor and sends distinguished triangles to distinguished triangles. If S

is a triangulated category, then Sop becomes a triangulated category with shift functor
the opposite of †�1, abusively denoted by †�1 again, where a triangle

X ! Y !Z!†�1X

is distinguished if and only if

†�1X !Z! Y !X

is distinguished in S.

Lemma 4.2.5 (a) D W .DerMod.A;B//op! DerMod.B;A/ is an exact functor.

(b) X is dualizable if and only if †X is.

(c) If X ! X 0 ! X 00 ! †X is a distinguished triangle and both X and X 0 are
dualizable , then so is X 00.

Proof (a) By Theorem 2.3.1(e),

D.†X/D RmapA.S^
LX;A/Š Rmap.S;DX/Š†�1DX:

To show that D preserves cofiber sequences, we may assume that our cofiber sequence
is of the form

X
f
�! Y ! Cf !†X

with X and Y cofibrant and f a cofibration. By using the explicit cofibrant models
and the properties of (underived) mapping spectra (see Section 2.2), the image of the
sequence under D is identified with the sequence

�DX ! hofib.Df /!DY
Df
�!DX;
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which is a fiber sequence in the sense of [19, Definition 6.2.6]. But fiber and cofiber
sequences coincide in a stable model category by [19, Theorem 7.1.11].

(b) There is a commutative diagram

ŒW;Z ^LA†X�.C;B/ ŒW ^LB D.†X/;Z�C;A

ŒW;†Z ^LAX�.C;B/ ŒW ^LB DX;†Z�C;A

."†X /
1
�

Š Š

."X /
1
�

where the vertical arrows are the isomorphisms from Theorem 2.3.1(b) and (c), and the
right one also uses the isomorphisms �E Š†�1S^E and Rmap.†�1S; F /Š†F
in SHC.

(c) Fix W and Z. Note that Z ^LA � and W ^LB � preserve distinguished triangles
since they are left adjoints. By (5) from Section 2.1, the columns of the following
ladder are exact:

ŒW;Z ^LAX�.C;B/ ŒW ^LB DX;Z�.C;A/

ŒW;Z ^LAX
0�.C;B/ ŒW ^LB DX

0; Z�.C;A/

ŒW;Z ^LAX
00�.C;B/ ŒW ^LB DX

00; Z�.C;A/

ŒW;Z ^LA†X�.C;B/ ŒW ^LB †DX;Z�.C;A/

ŒW;Z ^LA†X
0�.C;B/ ŒW ^LB †DX

0; Z�.C;A/

."X /
1
�

."X0 /
1
�

."X00 /
1
�

."†X /
1
�

."†X0 /
1
�

The statement is now deduced via the five lemma.

From now on, assume that

(FM) the mapping spectra of B are finite CW–spectra.

In our applications B will always be the trivial category � with mapping spectrum S.

Lemma 4.2.6 If condition (FM) holds , then every .A;B/–spectrum of the form .a; b/

is dualizable.
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Proof For clarity, denote by a (as usual) the covariant functor corepresented by a,
and by a the contravariant functor represented by a during this proof. We first treat the
case that B is trivial. Note that DaŠ a by Lemma 2.3.6 and

" W a^L aŠ a^ a!A

is just the composition in A. It follows that "1� is given by

ŒW;Z ^LA a�.C;�/! ŒW ^L a;Z ^LA a^
L a�.C;A/

compose
�����! ŒW ^L a;Z�.C;A/:

Lemma 2.3.6 exhibits the source and the target as ŒW;Z.‹; a/�.C;�/. Here, Z.a; ‹/
makes sense for a derived module Z because of the definition of weak equivalence. A
direct check on elements (assuming that W is cofibrant and Z is fibrant) shows that
the above composition is an isomorphism.

In the general case, we have

.a; b/D a^ b Š a^L b:

Denote by Db the functor Rmap.b;S/. This is the dual of b viewed as a .�;B/–
bimodule. This .�;B/–bimodule is dualizable by condition (FM). By Proposition 4.1.7
and the first part of the proof, .a; b/ is dualizable with dual

D.a; b/ŠDb ^L a:

The following corollary summarizes the last two sections and comprises Theorem B
from Section 1.

Corollary 4.2.7 Suppose that condition (FM ) holds. Then every finite .A;B/–CW–
spectrum is dualizable. Consequently, for every finite .A;B/–spectrum X , any .A; C/–
spectrum V and any .C;A/–spectrum Z, there are natural isomorphisms

Z ^LAX Š RmapAop.DX;Z/

and
DX ^LA V Š RmapA.X; V /:

In particular , there is a natural isomorphism

(12) D.Aop;Bop/.D.A;B/X/
op
ŠX

for finite X .
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Remark 4.2.8 It follows from the proof of Lemma 4.2.6 that if B D �, then the dual
of a finite .A;�/–spectrum is a finite .�;A/–spectrum. This is false for general B.

Remark 4.2.9 In practice, we will refer to (12) sloppily as DDX Š X . The “op”
in (12) refers to the fact that we have to consider DX as an .Aop;Bop/–spectrum,
instead of as a .B;A/–spectrum, which implies that the duality functor is taken with
respect to the (contravariant) A–variance again.

Proof of Corollary 4.2.7 The full subcategory of dualizable objects contains all
corepresentable functors .a; b/ by Lemma 4.2.6 and is a triangulated subcategory by
Lemma 4.2.5(b) and (c). Thus, it contains all finite .A;B/–spectra by Lemma 2.1.2(c).
The two isomorphisms follow from Proposition 4.1.8. The isomorphism X ŠDDX

follows from the first one by setting C DA and Z DA (or from Proposition 4.1.6).

In particular, D constitutes an equivalence of triangulated categories

SWC! SW
op
Cop

for an arbitrary spectrally enriched category C satisfying (C).

Example 4.2.10 Let C be the orbit category of finite subgroups of the integers. It
has one object and automorphism group Z. We will view C as a spectrally enriched
category by adjoining a basepoint and smashing with S. Let X be the Z–space R with
the usual translation action. This is a free (thus proper) action, so it defines a Cop–space
X‹ that we abusively also denote by X . We want to describe the dual of XC, which is
a C–spectrum. Suspending once, we get a cofiber sequence

†x F
�!†x!†XC:

Here, x denotes the unique object of C and the map F can be described as follows: In
the S1 coordinate, it collapses the antipodal point of the basepoint to the basepoint.
Then it maps the first half of the circle to the circle in the target with the same x
coordinate n, and the second half of the circle to the .nC1/st circle. Dualizing and
rotating, we thus get a cofiber sequence

†�1x DF�!†�1x!D.XC/:
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5 Homological representation theorems

Having established external Spanier–Whitehead duality we can now prove our homology
representation theorem, Theorem 5.2.3, as sketched in Section 1. In Section 5.1 we first
recollect some well-known information about C–homology theories, before Section 5.2
uses results of Neeman, as well as the results of Section 4, to prove the main result. It
has the hypothesis that SWCop is equivalent to a countable category. This turns out to
be equivalent to the countability of C itself (up to equivalence of categories), as proved
in Section 5.3.

From now on, C is a discrete (as opposed to enriched) index category.

5.1 C–homology theories

Recall that a C–homology theory consists of a sequence of functors

hCn W Fun.C;Top�/! Ab

for n 2 Z, together with natural isomorphisms �n W hCn.†X/Š h
C
n�1.X/ such that:

� If A f
�!X is a map of pointed C–spaces, then the sequence

hCn.A/! hCn.X/! hCn.Cf /

is exact.

� For a collection .Xi / of pointed C–spaces, the canonical homomorphismM
i2I

hCn.Xi /! hCn
�W
i2I Xi

�
is an isomorphism.

� If f WX! Y is a weak equivalence of C–spaces, then hCn.f / is an isomorphism
for all n.

C–cohomology theories .hn/n are defined similarly, except that they are contravariant
functors and the wedge axiom has a product instead of a sum.

If the functors hCn are only defined on finite C–CW–complexes, then we call hC� a
homology theory on finite C–CW–complexes. For homology theories, this is the same
datum since the homology of a C–CW–complex is the colimit of the homologies of its
finite subcomplexes, by a well-known telescope argument from the classical setting.
This is, however, not true for cohomology theories. In both the homological and
cohomological case, the wedge axiom for finite sums follows from the cone axiom.
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Remark 5.1.1 There are variations in this definition which give equivalent notions
of homology theories. For example, the homology theory may only be defined on
pointed C–CW–complexes, with the weak equivalence axiom left out (being void on
C–CW–complexes). Such a theory can be extended to all pointed C–spaces via a
functorial CW–approximation. Also, one might define unreduced homology theories
which are functors from pairs of (unpointed) C–spaces to abelian groups, satisfying the
usual Eilenberg–Steenrod axioms. The notions of reduced and unreduced C–homology
theories are proved to be equivalent in the classical way [27]. All combinations of these
two variations occur in the literature.

We recall the notion of a (co)homological functor on a triangulated category from
[42, Definition 1.1.7, Remark 1.1.9]:

Lemma 5.1.2 A (co)homology theory on finite pointed C–CW–complexes is the same
datum as a (co)homological functor on the triangulated category SWC .

Proof We use the description of SWC given in Lemma 2.1.2. If H is a homological
functor, then defining

hCn.X/DH.†
�n†1X/

together with the obvious suspension isomorphisms yields a homology theory on finite
C–CW–complexes. Conversely, if hC� is such a theory, then Lemma 2.1.2 shows that

H.†N†1X/D hC�N .X/

defines a functor on SWC . The short exact cofiber sequence can be turned into a long
exact sequence by the usual rotation method, showing that H is a homological functor.
It is obvious that these two constructions are inverse to each other.

The following construction is classical [10, Lemma 4.2]:

Lemma 5.1.3 Let E W Cop! SpO be a functor. Then

(13) hCn.X IE/D �n.E ^
L
C †
1X/

defines a C–homology theory.

Remark 5.1.4 Strictly speaking, in the right-hand side of the above equation, �n.� /
should be Œ†nS;� �SHC. This coincides with the well-known colimit definition for
orthogonal spectra, but not for (all) symmetric spectra; see [22, page 61].
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5.2 The homology representation theorem

Our main result, Theorem 5.2.3, which is Theorem A from Section 1, can be seen as a
converse to Lemma 5.1.3. It shows that every homology theory can be obtained by this
construction when SWCop is equivalent to a countable category in the following sense:

Definition 5.2.1 A category is called countable if it has countably many objects and
morphisms.

Remark 5.2.2 A category is equivalent to a countable category if and only if it has a
countable skeleton and all morphism sets are countable.

Theorem 5.2.3 Suppose that SWCop is equivalent to a countable category. Let hC� be
any C–homology theory. Then there is a Cop–spectrum E and a natural isomorphism

hC�.� /Š h
C
�.�IE/:

Moreover , every morphism of homology theories

hC�.� IE/! hC�.� IE
0/

is induced by a morphism E!E 0 in the derived category SHCCop .

The morphism in the last statement of Theorem 5.2.3 is in general not unique, already
in the case C D �, due to the existence of phantoms. The proof of the theorem is based
on two theorems from [41]:

Theorem 5.2.4 [41, Theorem 5.1] Let S be a countable triangulated category. Then
the objects of projective dimension � 1 in Fun.Sop;Ab/ are exactly the homological
functors Sop! Ab.

We cite a second theorem from the same paper. The version which we state here seems
to be slightly stronger, but the same proofs apply in our case.

In detail: let T be a triangulated category with arbitrary small coproducts, and denote
by S a triangulated subcategory which

� is essentially small,

� generates T [41, Definition 2.5],

� consists of compact objects [41, Definition 2.2].

Neeman insists on S being the category Tc of all compact objects (and he requires
this subcategory to have the other two properties), but this is not really needed.
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Theorem 5.2.5 [41, Proposition 4.11] If every homological functor H W Sop! Ab
has projective dimension �1 as an object of Fun.Sop;Ab/, then the pair .T;S/ satisfies
Brown representability in the sense that :

(i) Every homological functor H W Sop!Ab is naturally isomorphic to a restriction

H.� /Š T.� ; X/ �S

for some object X of T.

(ii) Given any natural transformation of functors on Sop

T.� ; X/ �S! T.� ; Y / �S;

there is a morphism f WX ! Y in T inducing the natural transformation. The
map f is in general not unique.

We apply the two theorems to T D SHCCop and S D SWCop . The generation and
compactness hypotheses are trivial.

Proof of Theorem 5.2.3 Let H be the homological functor on SWC corresponding to
(the restriction of) hC� by Lemma 5.1.2. Since D is exact by Lemma 4.2.5(a), we can
define a homological functor G on SW

op
Cop by

G.Y /DH.DY /:

By Theorems 5.2.4 and 5.2.5, there is a fibrant and cofibrant Cop–spectrum E that
represents G. We thus have natural isomorphisms

hCn.X/ŠH.†
�n†1X/ŠG.D.†�n†1X//Š ŒD.†�n†1X/;E�Cop

.�X /
1
�

Š Œ†nS; E ^LC †
1X�Š �n.E ^C †

1X/:

An arbitrary C–CW–complex X is the colimit of its finite subcomplexes, and both
homology theories commute with these colimits, so the isomorphism can be pulled
over. Finally, an arbitrary C–space can be approximated by a C–CW–complex.

The representation of morphisms of homology theories follows analogously from part
(ii) of Theorem 5.2.5.

5.2.1 C–cohomology theories A Cop–spectrum E defines a cohomology theory via

h�C .Y IE/D Œ†
�n†1Y;E�SHCCop Š ��n.RmapCop.†1Y;E//:
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If Y is a C–CW–complex and E is fibrant, the R can be omitted. The fact that every
C–cohomology theory has this form, ie the generalization of the classical Brown
representability theorem, may be obtained by mimicking its original proof [1; 27], or
by citing a theorem of Neeman again [42, Theorem 8.3.3]. Note that the cohomological
case is in any way considerably easier than the homological case: it doesn’t need the
countability assumption.

5.2.2 Morphisms of C–cohomology theories These are always represented by mor-
phisms in SHCCop . First, replace the representing spectra E and E 0 by fibrant and
cofibrant spectra, and restrict to cofibrant X . Then the nth degree cohomology theory
is just given by ŒX;En�C , thus we get various maps En! E 0n such that the obvious
compatibility diagrams commute up to homotopy. Now, rewrite these diagrams using
the structure maps †En ! EnC1 and use that these have the homotopy extension
property since E is cofibrant [36, Lemma 11.4] to strictify the diagrams inductively.
(This is the argument for sequential spectra; use the arguments presented in Section 3.3
to pass to orthogonal spectra.)

5.3 Countability considerations

In practice, it may seem hard to check whether SWCop is equivalent to a countable
category for a given category C. However, this turns out to be the case if and only if C
itself is equivalent to a countable category. The following proposition, together with
Theorem 5.2.3, proves Theorem A from Section 1:

Proposition 5.3.1 Let C be a category. Then SWC is equivalent to a countable category
if and only if C is.

Example 5.3.2 If G is a countable group and F is a family of subgroups which is
countable up to conjugation in G, then Or.G;F/ is countable. For instance, F can be
the family of finite subgroups.

Example 5.3.3 Let G be a reductive p–adic algebraic group [9; 39] and F the family
of compact open subgroups. Note that the orbit category is a discrete category, in the
sense that the topology on the morphism spaces is discrete. We now show that it is
countable. Any compact subgroup fixes a vertex in the Bruhat–Tits building, hence
is contained in a vertex stabilizer. These are all conjugate to a stabilizer of the vertex
of some fundamental chamber, of which there are only finitely many. Let K be a
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vertex stabilizer. The compact totally disconnected group K has a countable system
Ki of compact open subgroups which form a neighborhood basis of the identity. Thus,
every subgroup of K lies between some Ki and K. But for fixed i , there are only
finitely many of these, since they correspond to subgroups of the finite group K=Ki .
To prove that morphism sets are countable, it suffices by Lemma 6.4.2 to show that
G=K is countable. But G=K is the orbit of a vertex in the Bruhat–Tits building, which
is countable since the building is a union of balls and every ball contains only finitely
many vertices by local compactness. With a little more care, one can show that if G is
a reductive group over Qp which is absolutely almost simple and simply connected,
then the morphism sets are even finite [28, Appendix B].

Lemma 5.3.4 Let X be a countable pointed CW–complex.

(a) For every n, �n.X/ is countable.

(b) Fix a map @Dn!X . Then the set Œ.Dn; @Dn/; X� of homotopy classes of maps
Dn!X rel @Dn is countable.

Proof Part (a) is contained in Theorem 6.1 of [34]. Part (b) can be proved similarly.

Proof of Proposition 5.3.1 It is obviously necessary that C is equivalent to a countable
category, since for any object c, the 0th singular homology of X.c/Š RmapC.c; X/ is
a well-defined functor Hc on SWC:

Hc.X/D H0.X.c//:

Let Funfin:CW.C;SpO/ denote the full subcategory of Fun.C;SpO/ of functors which
are finite C–CW–spectra.

We have a quotient functor Funfin:CW.C;SpO/ ! SWC and a Yoneda embedding
Cop! Funfin:CW.C;SpO/. The composition

Cop
! Funfin:CW.C;SpO/! SWC

.Hc/c
����! Fun.C;Ab/

is again the Yoneda embedding, which is fully faithful. It follows that the composition
of the first two functors sends nonisomorphic objects to nonisomorphic objects and is
faithful. Thus if SWC is equivalent to a countable category, then so is C.

For the sufficiency, it is obviously enough to show that the category of finite pointed C–
CW–complexes, with homotopy classes of maps, is equivalent to a countable category;
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compare Lemma 2.1.2. Note that for a finite C–CW–complex X , all X.c/ are countable
CW–complexes, because of the condition that C has countable morphism sets.

First, we show that there are only countably many homotopy types of objects X via
induction on the number of cells of X . There are only countably many 0–dimensional
CW–complexes since Ob.C/ is countable. Now, we suppose that X is given and we
want to show that there are only countably many possibilities to attach one further
cell. This amounts to choosing an object c (countably many choices) and a based
homotopy class of an attaching map Sn

C
^ c!X . But these are in bijection with free

homotopy classes Sn!X.c/, which is a quotient of �n.X.c// and thus countable by
Lemma 5.3.4(a).

The countability of the morphism sets follows similarly from Lemma 5.3.4(b).

6 The rational case

In this section, the discrete category C is always assumed to be equivalent to a countable
category. For technical reasons, we treat homology theories of C–simplicial sets instead
of C–spaces. The results apply to topological spaces too, since we may apply the
geometric realization functor objectwise. Our Theorem 5.2.3 holds true also in this
setting, yielding that any homology theory hC� is of the form hC�.� IE/ for some
E W Cop! Sp†sSet.

Now, suppose that the homology theory hC� Š h
C
�.� IE/ is rational, ie takes values in

Q–vector spaces. By plugging in corepresentable functors c, it follows that all spectra
E.c/ have rational homotopy groups for all c. Thus the natural map

E!HQ^E

is a weak equivalence of C–spectra. Note that the right-hand side is not only a functor
from C to spectra, but also to HQ–modules. The stable Dold–Kan correspondence,
discussed in Section 6.1, links these to chain complexes.

We have thus arrived in a purely algebraic setting. More precisely, we study modules
over a certain category algebra QC; see Section 6.2. One of the tools that is available
here, and was not available in the case of spectra, is the Künneth spectral sequence for
a tensor product of chain complexes. We use this to prove the existence of a Chern
character in the case of flat coefficients; see Proposition 6.3.7. The flatness hypothesis is
true in the homological case if the coefficients extend to Mackey functors, as discussed
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in Section 6.4. Another approach, based on the work of Liping Li on hereditary category
algebras [31], is presented in Section 6.5. This approach has no hypothesis on the
homology theory, but on the category C.

6.1 The stable Dold–Kan correspondence

We work with the paper [50], which realizes the stable Dold–Kan correspondence as a
zigzag of weak monoidal Quillen equivalences (left adjoints on top):

(14) HQ–Mod
Z
�
 
�
�
!
�
U

Sp†.sVectQ/
L

 
�
�
�
�
�
�
�
�
�
�
!

��N
Sp†.chCQ/

D
�
 
�
�
!
�
R

ChQ :

The paper constructs these functors over a general ring R (and concentrates on RD Z

in some parts of the exposition), but we will only need the special case RDQ. The
four model categories used here were introduced in Section 3.1. For the definition
of the various functors, we refer to [50]. The definitions of some of them will be
recalled in the proof of Proposition 6.1.1. They have the special property that all right
adjoints preserve all weak equivalences. This passes to the functor categories and has
the consequence that no fibrant replacements are necessary when the derived functor is
computed.

For any (Set–enriched) category C, we get Quillen equivalences

Fun.C;HQ–Mod/
Z��
 
�
�
�
�
!
�

U�
Fun.C;Sp†.sVectQ//

L� 
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
!

.��N/�
Fun.C;Sp†.chCQ//

D��
 
�
�
�
�
!
�

R�
Fun.C;ChQ/:

By the discussion in Section 3.2, we thus get an equivalence of categories

Ho.Fun.C;HQ–Mod//
ˆ
�
 
�
�
!
�
�

Ho.Fun.C;ChQ//;

where ˆ and � respect derived balanced smash products and mapping spectra, and are
given by

ˆDD�Q.�
�N/�Z�Q and � D U�L�QR�:

Here Q denotes cofibrant resolution, as usual. For a based simplicial set A, let zQA
denote the simplicial Q–vector space which is the reduced linearization of A, ie it has
as a basis in degree n the set of nonbasepoint n–simplices An n f�g. Furthermore, let
N W sVectQ! chCQ denote the normalized chain complex functor.

Proposition 6.1.1 If X is a based simplicial C–set , then there is a natural isomorphism

ˆ.HQ^†1X/ŠN zQX:
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Proof We may assume that X is cofibrant in the projective model structure since
N zQ W sSet ! ChQ preserves all weak equivalences [14, Proposition 2.14]. We go
through the construction of ˆ step by step. The first cofibrant replacement is not
needed since †1X is a cofibrant C–spectrum, and thus HQ^†1X is a cofibrant
C–HQ–module. The functor Z is given by linearizing and then using the canonical
morphism � W zQ.HQ/! zQS to turn the result into a zQS–module again.

We thus have

Z�Q.HQ^†1X/D zQS˝ zQ.HQ/
zQ.HQ^†1X/

Š zQS˝ zQ.HQ/
zQ.HQ/˝ zQS

zQ.†1X/Š zQ.†1X/:

Here we used that the functor zQ is strong monoidal and commutes with colimits. Note
that

. zQ.†1X//n Š zQSn˝ zQX;

which we refer to as zQ.†1X/D zQS˝ zQX .

Next, we apply the functor ��N objectwise. Here N is the normalized chain complex
functor as introduced above, which sends zQ.†1X/ to aN. zQS/–module in the category
of symmetric sequences of positive chain complexes. This becomes a module over
Sym.QŒ1�/ (a symmetric spectrum) via a ring homomorphism

� W Sym.QŒ1�/!N. zQS/

specified on page 358 of Shipley [50]. This ring map is not an isomorphism (it
corresponds to a subdivision of a cube into simplices), but a weak equivalence; see the
proof of Shipley’s Proposition 4.4.

Next, we show that N zQX is a cofibrant C–chain complex. Since N is an equivalence
of categories, it commutes with colimits, and so does zQ. Thus the assertion follows
inductively from the fact thatN zQ.Sn�1/C!N zQ.Dn/C is a cofibration. This is readily
checked since cofibrations of chain complexes over the field Q are just monomorphisms.

A similar inductive argument can be used to show that Sym.QŒ1�/˝N zQX is cofibrant
in Fun.C;Sp†.chCQ// and that � induces a weak equivalence

�˝ id W Sym.QŒ1�/˝N zQX !N zQS˝N zQX:

From the right-hand side we go on with the shuffle map of [48, (2.7)], applied levelwise:

r WN zQS˝N zQX !N. zQS˝ zQX/:
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The shuffle map is always a quasi-isomorphism on the level of chain complexes
(even a homotopy equivalence with homotopy inverse the Alexander–Whitney map),
thus it induces a weak equivalence on each level. To see that it is a morphism of
symmetric spectra, ie Sym.QŒ1�/–modules, it suffices to show that it is a morphism
of N zQS–modules. This is an easy diagrammatic check using the fact that N is a lax
monoidal transformation [48, page 256]. Summarizing, we have constructed a cofibrant
replacement

Sym.QŒ1�/˝N zQX rı.�˝id/
�

������! ��N. zQS˝ zQX/:

The last step is to apply the functor D objectwise to the left-hand side. But this is
objectwise just the suspension spectrum of N zQX.‹/, and D applied to the suspension
spectrum of a chain complex yields just the chain complex itself by [50, Lemma 4.6].
(Suspension spectra are denoted by F0 in Shipley’s paper.)

6.2 Rational C–modules and nondegenerate QC–modules

The upshot of the argumentation of this section until this point is that we can translate
Theorem 5.2.3 to the rational case since a C–homology theory hC� always comes from a
functor E W Cop! ChQ. Note that this is the same as a chain complex of functors from
Cop to Q–vector spaces. We now take a closer look at this additive category.

Let C be a small category enriched in Q–vector spaces. (Everything holds true over an
arbitrary commutative ground ring, though.)

Definition 6.2.1 The category algebra QC of C is given byM
c;d2C

HomC.c; d/;

with multiplication defined by bilinear extension of the relations

g �f D

�
gf if g and f are composable;
0 else:

If C happens to be the free Q–linear category on a (Set–enriched) category, we have
the presentation

QC ŠQ

�
ef for f W c! d

ˇ̌̌
egef D

�
egf if g and f are composable;
0 else;

�
;

where the angle brackets indicate that we take the quotient of the free (noncommutative)
algebra over the ef by said relations. If C has only finitely many objects, the category
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algebra QC has a unit
P
c2Ob.C/ idc . For general (non-object-finite) C, QC has only

an approximate unit in the sense defined below. Recall that a net in a set S is a map
I ! S where I is a directed set, ie a partially ordered set in which any two elements
have a common upper bound.

Definition 6.2.2 A ring S has an approximate unit if there is a net .ei /i2I of idempo-
tents in S with the properties:

� For every s 2 S , there is some i such that eis D s D sei .

� For i � j , we have ej ei D eiej D ei .

A left S–module M is called nondegenerate if SM DM . Equivalently, if for every
m 2 M there is some i such that eim D m. The category of nondegenerate left
S–modules and S–linear maps is denoted by NModS .

Lemma 6.2.3 Let S be a ring with approximate unit.

(a) If M is a nondegenerate left S–module , then there is a natural isomorphism of
S–modules

S ˝S M ŠM:

(b) A nondegenerate left S–module P which is projective in the category of non-
degenerate left S–modules is flat in the sense that �˝S P is an exact functor
from nondegenerate S–modules to abelian groups.

Proof (a) Define an S–linear map f W S ˝SM !M by s˝m 7! sm. A map g (of
sets, say) in the other direction is defined as follows: an element m 2M is mapped to
ei ˝m, where i 2 I is such that eimDm. This is well-defined, since if j is another
such index, choose k � i; j . Then

ei ˝mD .ekei /˝mD ek˝ .eim/D ek˝mD ej ˝m:

It is immediate that f ıg is the identity. For gıf , use the fact that S has an approximate
unit by choosing ei with eis D s. Then eismD sm and

g.f .s˝m//D ei ˝ .sm/D s˝m:

(b) A nondegenerate S–module is a quotient of a direct sum of left regular representa-
tions S . If it is projective, then it is a direct summand and hence flat by part (a).
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For our category algebra QC, the set I consists of all finite sets of objects of C, ordered
by inclusion, and the approximate unit sends F 2 I to

eF D
X
c2F

idc :

The following result is essentially [40, Theorem 7.1]:

Proposition 6.2.4 There is an isomorphism of additive categories

„ W Fun.C;VectQ/!NModQC :

There is a similar equivalence between contravariant functors and nondegenerate right
modules. If this is also denoted by „, then there are natural isomorphisms of Q–vector
spaces

„.X/˝QC „.Y /ŠX ˝C Y

for a right C–module X and left C–module Y , and

HomQC.„.X/;„.Z//Š HomC.X;Z/

for two right C–modules X and Z. The analogous statement for rational chain com-
plexes holds true mutatis mutandis.

Proof The equivalence is defined as follows: if X W C! VectQ is a functor, define

„.X/D
M

c2Ob.C/

X.c/

with the action of .f W c0! d0/ 2QC on x D .xc/c given by

.f � x/d D

�
X.f /.xc0

/ if d D d0;
0 else:

This yields a nondegenerate QC–module since every element lies in some vector
subspace

L
c2F X.c/, where F is a finite set of objects, and eF acts as the identity on

this subspace.

An inverse equivalence

… WNModQC! Fun.C;VectQ/

is constructed as follows: if M is a nondegenerate QC–module, let

.….M//.c/D idcM:
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A morphism f W c! d induces a linear map idcM ! idd M since f D idd f .

It is easy to check that …„ is the identity. For the other composition, note that there is
a natural map

„.….M//D
M

c2Ob.C/

idcM !M

induced by the inclusions. This will be an injective QC–linear map in general since the
idc are orthogonal idempotents. If M is nondegenerate, it is surjective.

The two asserted natural isomorphisms are straightforward.

Remark 6.2.5 The above proposition being proved, we will from now on omit the
isomorphisms „ and … and thus identify rational C–vector spaces with nondegenerate
left QC–modules, etc.

Remark 6.2.6 The category

Ch.NModQC/Š Fun.C;ChQ/

can be endowed with a model structure in (at least) two ways. The first one is just the
projective model structure as a functor category, coming from the projective model
structure on ChQ. The second one is the projective model structure on chain complexes
over NModQC . This model structure (for abelian categories different from modules
over a unital ring) is defined in [20, Section 3]. The hypotheses of [20, Theorem 3.7]
are satisfied here since QC generates NModQC in the sense that NModQC.QC;� /
is faithful. One can easily check that these two model structures coincide.

The discussion of this section allows us, in the rational case, to state Theorem 5.2.3 in
a completely algebraic way.

Corollary 6.2.7 If E is a chain complex of right QC–modules , then

(15) hC�.X IE/D H�.E˝QC X/

defines a rational reduced C–homology theory. Here

X DQN zQ Sing.X/

denotes a cofibrant replacement of N zQ Sing.X/ and Sing W Top�! sSet� denotes the
singular simplicial complex functor.

Conversely , if hC� is a rational C–homology theory , then there is a chain complex E,
and a natural isomorphism of homology theories as above.
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Remark 6.2.8 In the second part of the theorem, if E is cofibrant (as a chain complex
over NModQC), one might take N zQ Sing.X/ instead of its cofibrant replacement X .
This is due to the fact that in the aforementioned model category, tensoring with a
cofibrant chain complexes preserves weak equivalences, by Lemma 6.2.9, so we get
an analogue of Corollary 2.3.4. However, we will mainly use (15) in the form with X
since this allows us to manipulate E.

Lemma 6.2.9 If X is a cofibrant chain complex over NModQC , then tensoring with
X preserves weak equivalences.

Proof Note that a cofibrant chain complex is degreewise projective by the argument
from [19, Lemma 2.3.6]. For positive chain complexes, the assertion thus follows
from the Künneth spectral sequence [35, Theorem 12.1]. In the general case, truncate
the chain complexes (the cofibrant complex X naively, the source and target of the
quasi-isomorphism as in the proof of Proposition 6.3.7 below) and then pass to the
colimit.

6.3 Chern characters

We quickly recall the notion of Bredon homology [10, Section 3]. Let M be a right
QC–module. If X is a pointed C–CW–complex, then applying the cellular complex
objectwise yields a left QC–chain complex and the homology of the tensor product

hC;Br
n .X IM/D Hn.M ˝QC C

cell
� .X IQ//

defines a C–homology theory — use a CW–approximation to extend it to arbitrary
C–spaces.

Definition 6.3.1 The coefficient system of a reduced C–homology theory hC� is the
Z–graded right QC–module given by hCn.c/D h

C
n.S

0 ^ c/.

The Bredon homology with respect to this coefficient system appears in the Atiyah–
Hirzebruch spectral sequence

(16) hC;Br
p .X I hCq/) hCn.X/:

It is proved in the same way as in the case C D � [27].
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Lemma 6.3.2 Suppose the right QC–chain complex E is given by a right QC–module
E0 DM in degree 0, and En D 0 otherwise. Then there is a natural isomorphism of
homology theories

H�.E˝QC X/Š h
C;Br
� .X IM/:

Proof The coefficient system of the left homology theory is given by Ek in degree k.
Since this is 0 in nonzero degrees, the Atiyah–Hirzebruch spectral sequence (16)
collapses and gives the above isomorphism.

Remark 6.3.3 Alternatively to using the Atiyah–Hirzebruch spectral sequence, one
could also prove Lemma 6.3.2 by using a zigzag of chain complexes between the
singular and the cellular chain complex which is natural (in cellular maps) and induces
the isomorphism between singular and cellular homology. This then can be upgraded
to C–CW–complexes. Such a zigzag is constructed on page 121 of [58].

We now turn to the question of existence of Chern characters, which means for us that
the homology theory splits into a direct sum of shifted Bredon homology theories. By
plugging in suspended representable functors Sn ^ c, one sees that there is only one
choice for the coefficient systems in every degree, yielding:

Definition 6.3.4 Let hC� be a C–homology theory. A Chern character for hC� is an
isomorphism of C–homology theories

hC�.X/Š
M
sCtD�

hC;Br
s .X I hCt /:

Chern characters for C–cohomology theories are defined in the exact same way, also
using direct sums.

Lemma 6.3.5 Let M be a right QC–chain complex. Then a Chern character exists for
hC�.� IM/ if and only if M is isomorphic to a complex with zero differentials in the
derived category of Ch.NModQC/.

Proof The “if” part is obvious. For the “only if” part, suppose that hC�.� IM/

possesses a Chern character. Assembling all coefficient systems, appropriately shifted,
into a complex M 0 with zero differentials, we thus get an isomorphism of rational
C–homology theories

hC�.� IM/Š hC�.� IM
0/:
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By the second part of Theorem 5.2.3 (representation of morphisms), this isomorphism
comes from a morphism in the derived category of Fun.C;HQ–Mod/, which is equiv-
alent to the derived category of Fun.C;ChQ/ by the stable Dold–Kan correspondence,
and to the derived category of NModQC by Proposition 6.2.4 and Remark 6.2.6.

We thus have a morphism f WM !M 0 in the derived category of NModQC inducing
an isomorphism of homology theories as above. But, evaluating on the functors c for
c 2Ob.C/, this means that f is a quasi-isomorphism, ie an isomorphism in the derived
category.

Remark 6.3.6 In the case that M is bounded, [23, Sections 4.5 and 4.6] describes
how one can find out whether the condition of Lemma 6.3.5 holds, using a sequence of
obstructions living in Exti .HpCi�1.M/;Hp.M// with i � 2. The exposition assumes
that the ground ring R has a unit, but this is not used in the argumentation.

We now discuss one approach to constructing Chern characters. The following result
was announced in Section 1 as Theorem C:

Proposition 6.3.7 Suppose that hC� is a rational C–homology theory with the property
that all coefficient systems hCt are flat as right C–modules. Then there exists a Chern
character for hC� which is natural in the homology theory hC�.

Remark 6.3.8 This result is similar to [32, Theorem 4.4] where the case of the
proper orbit category of a discrete group is treated, with the additional assumption
that the homology theory is equivariant, ie there are proper homology theories for all
discrete groups linked via induction isomorphisms. A technical difference is that the
flatness assumption is not over the orbit category itself, but over a certain category
Q Sub.G;FIN /, whereas the homology theories are defined on Or.G;FIN /–spaces
as usual. Thus, our theorem does not imply Lück’s theorem directly.

Remark 6.3.9 Taking into account Lemma 6.3.5, we have proved that whenever a
chain complex of nondegenerate QC–modules has flat homology, then it is isomorphic
to a trivial complex in the derived category. For bounded complexes, we may also see
this: using the result that over a countable ring, flat modules have projective dimension
at most 1 [53], we see that all higher Exti–groups of the homology modules for i � 2,
appearing in Remark 6.3.6, vanish.
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Proof of Proposition 6.3.7 Start with the representation as in (15) from Corollary 6.2.7.
First suppose that E is bounded below, say positive. We claim that X is degreewise
flat. Copying the argument from the proof of [19, Lemma 2.3.6] shows that X is
degreewise projective in the category NModQC . Note that a fibration is still the same
as a degreewise surjective map. By Lemma 6.2.3(b), X is degreewise flat.

Having said this, we get a Künneth spectral sequence [35, Theorem 12.1]:

E2p;q D
M
sCtDq

TorQC
p .Hs.E/;Ht .X//) HpCq.E˝QC X/:

Since the coefficients Hs.E/ are flat, all higher Tor terms vanish and the E2 page is
concentrated on the line p D 0. It thus degenerates and gives an isomorphism

hCn.X/Š Hn.E˝QC X/Š
M
sCtDn

Hs.E/˝QC Ht .X/Š
M
sCtDn

Ht .Hs.E/˝QC X/

Š

M
sCtDn

h
C;Br
t .X IHs.E//;

where we used flatness of Hs.E/ again, and Lemma 6.3.2. Naturality of the Künneth
spectral sequence shows directly that this isomorphism is natural in X . Naturality in
the homology theory additionally needs the fact that every morphism of homology
theories is induced by a morphism of chain complexes, after possibly replacing E by a
fibrant and cofibrant complex; see Theorem 5.2.3.

For arbitrary E, let �kE denote the truncations

.�kE/n D

8<:
En if n� k;
ker.dk/ if nD k;
0 if n < k:

There are natural injective chain maps

�kE ,!E

inducing a homology isomorphism in all degrees � k, whereas the homology of �kE
in degrees < k is 0. In particular, Ht .�kE/ is flat for all t .

The maps above exhibit E as the colimit of the sequence

�0E ,! ��1E ,! ��2E ,! � � � :

We now run the above argument with the truncations �kE. Note that we need not
assume these to be cofibrant, thanks to Lemma 6.2.9. The various isomorphisms

Hn.�kE˝QC X/Š
M
sCtDn

Hs.Ht .�kE/˝QC X/
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are natural with respect to the inclusions �kE ,! �k�1E by naturality of the Künneth
spectral sequence. Passing to the colimit, the right-hand side obviously gives the desired
sum of Bredon homologies. The left-hand side gives Hn.E˝QC X/ since homology
commutes with filtered colimits, and so does �˝QC X .

A cohomological version can be proved in a very similar way:

Proposition 6.3.10 Let h�C be a rational C–cohomology theory with projective coeffi-
cient systems. Then there is a Chern character for h�C .

Proof The proof is analogous, using a cohomological version of Corollary 6.2.7 and
the cohomological Künneth spectral sequence [44, Theorem 11.34]

E
p;q
2 D

M
sCtDq

ExtpQC.Hs.X/;Ht .E//) HpCq.HomQC.X;E//:

Note that to formulate Corollary 6.2.7 with HomQC instead of derived tensor product,
we also need to replace E fibrantly, since we don’t have a mapping space version of
Corollary 2.3.4 at hand. However, in ChQ and thus in Fun.C;ChQ/, all objects are
fibrant.

6.4 Mackey functors

In this subsection, C is the orbit category of a group G. We will show that the flatness
assumption of Proposition 6.3.7 holds if G is finite and the coefficients can be extended
to Mackey functors.

The following definitions and the explicit description of the orbit category below are
well-known. The restriction that a family is closed under taking subgroups (in particular,
it always contains the trivial subgroup) is sometimes dropped in the literature, but we
use it in this subsection as well as in Section 6.5 below.

Definition 6.4.1 (a) Let G be a group. A family of subgroups of G is a set of
subgroups of G which is nonempty and closed under conjugation and taking
subgroups.

(b) The orbit category Or.G;F/ has as objects the transitive G–spaces G=H for
H 2 F , and as morphisms all G–linear maps.

(c) An EI category is a category in which all endomorphisms are invertible.
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Lemma 6.4.2 Let G be an arbitrary group and F a family of subgroups.

(a) For H;K 2 F , there is an isomorphism

�H;K WKnTransG.H;K/Š HomOr.G;F/.G=H;G=K/ given by g 7! �H;K.g/

with
TransG.H;K/D fg 2GIgHg�1 �Kg

and
.�H;K.g//.xH/D xg�1K

for x 2G. Furthermore , for L 2 F and g0 2 TransG.K;L/, we have

�K;L.g0/ ı�H;K.g/D �H;L.g0g/:

(b) If F consists of finite groups only, then Or.G;F/ is an EI category.

If no confusion can arise, we will only write � for �H;K .

Proof Part (a) is well-known and follows immediately from the fact that the objects
of G are transitive G–spaces. For part (b), note that if H is finite, then gHg�1 �H
implies, by cardinality reasons, that gHg�1 DH and thus g�1Hg DH .

From now on, G is finite and F is the family of all subgroups. Recall that a (rational)
Mackey functor assigns to any subgroup H of G a Q–vector space M.H/, and to any
inclusion K �H two homomorphisms

IHK WM.K/!M.H/ and RHK WM.H/!M.K/;

called induction and restriction, and for any g 2G conjugation homomorphisms

cg WM.H/!M.gHg�1/:

These have to satisfy certain relations listed, for instance, in [56].

Let �Q.G/ denote the Mackey category of G; we take [56, Proposition 2.2] as its
definition. It is a category enriched in Q–vector spaces which is not the free Q–linear
category on a category. Its objects are the subgroups of G. By design, a Mackey functor
is just a Q–linear functor �Q.G/! VectQ.

Lemma 6.4.3 There is a canonical functor I W Or.G/!�Q.G/ defined by

I.G=H/DH and I.�.g//D IK
gHg�1cg

for g 2 TransG.H;K/.
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Remark 6.4.4 Since I is injective on objects, it induces a ring homomorphism I on
the category algebras [61, Proposition 3.2.5]. The category algebra of �Q.G/ is called
�Q.G/, the Mackey algebra.

Proof of Lemma 6.4.3 Let H , K, L, g and g0 be as in Lemma 6.4.2. Calculate:

I.�.g0/ ı�.g//D I.�.g0g//D IL
g 0gH.g 0g/�1cg 0g D I

L
g 0K.g 0/�1I

g 0K.g 0/�1

g 0gH.g 0g/�1cg 0cg

D IL
g 0K.g 0/�1cg 0I

K
gHg�1cg D I.�.g

0//I.�.g//:

Definition 6.4.5 A left (or right) rational Or.G/–module M is said to extend to a
Mackey functor if it is of the form I� zM for a left (or right) �Q.G/–module zM .

Proposition 6.4.6 �Q.G/ is a projective left Q Or.G/–module.

Remark 6.4.7 It is not known to us whether the corresponding statement for right
modules holds. Thus Corollary 6.4.8 cannot be formulated for G–cohomology theories
at the moment.

Proof of Proposition 6.4.6 A Q–basis of �Q.G/ is given on the bottom of page 1875
of [56] (cf Propositions 3.2 and 3.3). It consists of all elements

IK
gLg�1cgR

H
L D I.�.g//R

H
L

for L�H and g 2 TransG.L;K/, up to the identification

(17) I.�.g//RHL D I.�.g
0//RHL0 ,9x 2H \ .g

0/�1Kg such that L0 D xLx�1:

Let P denote a set of representatives of pairs .H;L/ with L�H , modulo the relation
that for fixed H , L may be conjugated by an element from H : .H;L/� .H; hLh�1/.
Then we define an Or.G/–linear homomorphism

F W
M

.H;L/2P

Q HomOr.G/.G=L;� /˝QNG.L/QŒNG.L/=.H \NG.L//�! �Q.G/;

�.g/˝n 7! I.�.gn//RHL :

We will show that F is an isomorphism, which implies the result since the left-hand
side is a projective module by the semisimplicity of all QNG.L/.

To see that F is surjective, note that by the result cited above, the right-hand side has a
basis of elements I.�.g//RHL with L�H . We only have to achieve .H;L/ 2 P. For
this, choose h 2H such that .H;L0/ 2 P with L0 D hLh�1. For g0 D gh�1, we have

hD .g0/�1 � 1 �g 2 .g0/�1Kg\H;

and thus I.�.g//RHL D I.�.g
0//RHL0 D F.�.g/˝ 1/ by (17) above.
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Next, we show that F is injective. Fix H and K and consider only morphisms from
H to K. Let L be a set of representatives of subgroups of H up to conjugation
(in H ). The left-hand side has a basis consisting of all pairs .L; �.g/˝ 1/, where
.H;L/ 2 P and g 2 KnTransG.L;K/=NG.L/. Such an element is mapped to the
element I.�.gn//RHL on the right-hand side, which is part of the Thévenaz–Webb
basis. Thus, we only have to show that F is injective when restricted to the basis
f.L; �.g/˝ 1/g. Suppose that

F.L; �.g/˝ 1/D F.L0; �.g0/˝ 1/:

By (17), there exists x 2H \ .g0/�1Kg such that L0 D xLx�1. In particular, L and
L0 are conjugate in H , ie L D L0. Then x 2 NG.L/. We have g0x D kg for some
k 2K, and consequently

�.g/˝ 1D �.kg/˝ 1D �.g0x/˝ 1D �.g0/˝ x D �.g0/˝ 1:

Corollary 6.4.8 Let G be finite and hG� a rational G–homology theory with the
property that all coefficient systems hCt extend to Mackey functors. Then there is a
Chern character for hG� .

Proof Let M D I� zM . By [55, Theorem 9.1], the Mackey algebra (over Q) is
semisimple. Thus, zM is a projective �Q.G/–module and hence M is a projective, thus
flat, Or.G/–module by Proposition 6.4.6. The existence of the Chern character then
follows from Proposition 6.3.7.

Remark 6.4.9 A similar result was shown by Lück [32, Theorem 5.2]. His result holds
for arbitrary discrete G (with F the family of finite subgroups), but refers to equivariant
homology theories, and the Mackey condition is formulated for Q Sub.G;FIN /–
modules; see Remark 6.3.8. Lück’s definition of Mackey extension is stronger than
our definition given below. Thus his examples, namely equivariant bordism (Examples
1.4 and 6.4) and the equivariant homology theories associated to rationalized algebraic
K–theory and rationalized algebraic L–theory of the group ring, as well as rationalized
topological K–theory of the reduced group C �–algebra (Example 1.5, Section 8) can
also serve as examples for us.

In contrast to Lück’s result, the argumentation presented here breaks down for infiniteG.
While Proposition 6.4.6 still holds true in this case, it is not true any longer that �Q.G/

is semisimple. We give an example showing that it is not even von Neumann regular.
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Recall from [15] that a ring is called von Neumann regular if every module is flat, and
that this is equivalent to the condition that for every ring element a, there exists a ring
element x such that axaD a.

Example 6.4.10 Let G D D1 D hs; t j s2 D t2 D 1i be the infinite dihedral group,
and let �Q.G/ and �Q.G/ be defined exactly as above (for finite groups), with the
difference that the subgroups H and K are restricted to the finite subgroups of G. One
can show that

Hom�Q.G/.hsi; hti/DQhfI hti1 gR
hsi
1 Ig 2 htinG=hsigi:

Representatives of the .hti; hsi/–double cosets are given by .st/k for k 2 Z. Let

xk D I
hti
1 .st/kR

hsi
1 and yk D I

hsi
1 .st/kR

hti
1 :

The yk form a Q–basis of the homomorphisms from hti to hsi similarly.

Let aD y0 D I
hsi
1 R

hti
1 2 Hom�Q.G/.hti; hsi/. Compute

axkaD I
hsi
1 R

hti
1 I
hti
1 .st/kR

hsi
1 I
hsi
1 R

hti
1 D I

hsi
1 .1C t /.st/k.1C s/R

hti
1

D I
hsi
1 ..st/kC t .st/kC .st/ksC t .st/ks/R

hti
1

D I
hsi
1 ..st/kC st.st/kC .st/kst C st.st/kst/R

hti
1

D ykC 2ykC1CykC2:

It follows easily that the linear equation axaD a has no solution. Thus, �Q.D1/ is
not von Neumann regular.

6.5 Hereditary category algebras

In this subsection we restrict ourselves to finite categories, so that we only deal with
unital rings. Recall that a ring is called left hereditary if any submodule of a projective
left module is projective. It is called right hereditary if any submodule of a projective
right module is projective.

Proposition 6.5.1 The following are equivalent for a finite category C:

(a) QC is right hereditary.

(b) Every rational C–homology theory possesses a Chern character.

The same statement holds for left hereditarity and cohomology.
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Proof By Lemma 6.3.5, assertion (b) is equivalent to the fact that every chain complex
of nondegenerate right QC–modules is isomorphic to a trivial complex in the derived
category.

Over every ring any (right) chain complex is quasi-isomorphic to a degreewise projective
one, and it is well-known [26, Section 1.6] that these split over right hereditary rings.

Conversely, assume that QC is not right hereditary. One can easily see that this
means that Ext2QC doesn’t vanish, ie there are right QC–modules M and N such that
Ext2QC.N;M/¤ 0. A straightforward triangulated category argument, explained for
instance in [23, Sections 4.5 and 4.6], shows how this can be used to construct a chain
complex L with only nontrivial homology groups H0.L/ŠM and H1.L/ŠN which
is not isomorphic to the trivial complex MŒ0�˚NŒ�1� in the derived category.

For finite EI categories, Liping Li [31] has found out when the category algebra is
hereditary. Let us first introduce some notation. We call a category C finite if it has
finitely many objects and morphisms. Assume for simplicity that C is connected. A
morphism f is called unfactorizable if it is not an isomorphism, and whenever f D gh,
then g or h is an isomorphism. Every nonisomorphism can be factored as a composition
of unfactorizable morphisms. We now define the unique factorization property, which
asserts that this factorization is essentially unique for every morphism. The definition
is [31, Definition 2.7], slightly changed, since we do not assume that C is skeletal:

Definition 6.5.2 The category C satisfies the unique factorization property (UFP) if
for any two chains

x D x0
˛1
�! x1

˛2
�! � � �

˛n
�! xn D y

and
x D x00

˛01�! x01
˛02�! � � �

˛0
n0�! x0n0 D y

of unfactorizable morphisms ˛i and ˛0i which have the same composition f W x! y,
we have nD n0 and there are isomorphisms hi W xi ! x0i for 1� i � n� 1 such that

h1˛1 D ˛
0
1; ˛0nhn�1 D ˛n and ˛0ihi�1 D hi˛i for 2� i � n� 1;

ie the following ladder diagram commutes:

x x1 x2 � � � xn�1 y

x x01 x02 � � � x0n�1 y

˛1

idx

˛2

h1 h2

˛3 ˛n�1 ˛n

hn�1 idy

˛01 ˛02 ˛03 ˛0n�1 ˛0n
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Proposition 6.5.3 [31, Theorem 5.3, Proposition 2.8] If C is a finite EI category, then
QC is left hereditary if and only if C satisfies the UFP. Moreover , being left hereditary
and right hereditary is equivalent for QC.

Proof Note that Li calls hereditary what we call left hereditary. With this in mind, the
first statement follows directly from his Proposition 2.8 and Theorem 5.3. The second
statement follows from this since .QC/op ŠQ.Cop/, and Cop satisfies the UFP if and
only if C does.

Corollary 6.5.4 If C is a finite EI category , then C satisfies the UFP if and only if
every rational C–homology theory possesses a Chern character , which is true if and
only if every C–cohomology theory does.

We finally analyze the case of orbit categories, heading to Theorem D from Section 1:

Proposition 6.5.5 Let G be a group and F a family of finite subgroups. The category
Or.G;F/ satisfies the UFP if and only if F consists only of cyclic subgroups of prime
power order (where different prime bases may occur in the same family).

In particular, if F is the family of all subgroups, then this is the case if and only if G is
of the form Z=pk for some k. Note the formal similarity of this result to Triantafillou’s
results in [57].

Proof The “only if” part Suppose that Or.G;F/ has the UFP. Let F 2 F . Let H
and K be two subgroups of F . Let

1�H1 �H2 � � � �Hi DH �HiC1 � � � � �Hn D F

be a chain of subgroups such that Hl �HlC1 is a maximal subgroup, and similarly

1�K1 �K2 � � � �Kj DK �KjC1 � � � � �Km D F:

Recall the bijection � from Lemma 6.4.2. We can factor the morphism �.1/ as a
product of unfactorizables in two ways, as

G=1
�.1/
��!G=H1

�.1/
��!G=H2

�.1/
��! � � �

�.1/
��!G=Hn DG=F

and
G=1

�.1/
��!G=K1

�.1/
��!G=K2

�.1/
��! � � �

�.1/
��!G=Km DG=F:
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It follows from the UFP that mD n and that for all l , G=Hl and G=Kl are isomorphic
in Or.G;F/, ie Hl and Kl are conjugate in G. Since H and K were arbitrary, it
follows that for any two subgroups of F , one is subconjugate to the other in G. If H
and K have the same order, they are thus conjugate in G.

This implies that F has to be a p–group for some p. Indeed, suppose that two different
primes p and q divide jF j. Then we can choose H of order p and K of order q. It
follows that H DH1 and K DK1, so H and K are conjugate which is absurd since
they have different orders.

Next, we prove that F has only normal subgroups. Indeed, let L be minimal nonnormal.
Then L is different from 1. Let K be a maximal proper subgroup of L, which is thus
normal in F . Let

LD L0 � L1 � � � � � Ln D F

be a chain of subgroups such that Li �LiC1 is maximal. For f 2 F � TransG.K;L/,
the morphism �.1/ WG=K!G=F has the two factorizations

G=K
�.1/
��!G=L

�.1/
��!G=L1

�.1/
��! � � �

�.1/
��!G=F

and
G=K

�.f /
��!G=L

�.1/
��!G=L1

�.1/
��! � � �

�.1/
��!G=F:

By the UFP, there is g 2 NG.L/ such that �.g/ D �.f / W G=K ! G=L, ie g D f
modulo L. Thus, f 2 LNG.L/DNG.L/ and L is normal in F .

Finally, we show that F has only one maximal subgroup. For this, consider any
maximal subgroup H of F , and extend it to a chain

1�H1 �H2 � � � �Hn DH � F

whereHi is a maximal subgroup ofHiC1. Let g2TransG.H; F / be arbitrary. Consider
the two factorizations of �.g/ W 1! F

G=1
�.1/
��!G=H1

�.1/
��!G=H2

�.1/
��! � � �G=Hn DG=H

�.g/
��!G=F

and
G=1

�.g/
��!G=H1

�.1/
��!G=H2

�.1/
��! � � �G=Hn DG=H

�.1/
��!G=F:

By the UFP, there is h2NG.H/ such that �.h/D �.g/, ie hD g in F nTransG.H; F /.
Since H is normal in F , we have F �NG.H/ and it follows that

NG.H/D TransG.H; F /:
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Now, suppose thatH 0 is another maximal subgroup of F . ThenH andH 0 are conjugate
via some g 2 G. It follows that g 2 TransG.H; F /DNG.H/, so H DH 0. Thus, F
has only one maximal subgroup.

We claim that this forces F to be cyclic, and show this claim by induction over the
order of F . Since F is a p–group, it has a nontrivial center C . F=C has only one
maximal subgroup as well, and it follows that F=C is cyclic. It is an easy exercise to
show that if the quotient of the group by its center is cyclic, the group has to be abelian.
Thus, F is abelian. From the classification of finite abelian groups, F is cyclic.

The “if” part Now, suppose that F only has cyclic members of prime power order.
Given a chain

G=H0
�.g1/
����!G=H1

�.g2/
����!G=H2 � � �

�.gn/
����!G=Hn

of unfactorizable morphisms, we first manipulate it using the equivalence relation
explained in Definition 6.5.2: Substituting H 01 D g

�1
1 H1g1, g01 D 1 and g02 D g2g1,

we consider the factorization

G=H0
�.1/
���!G=H 01

�.g2g1/
�����!G=H2

�.g3/
����!G=H3 � � �

�.gn/
����!G=Hn

with the same composition as before. Repeating this step at positions 2 through n� 1,
we arrive at a chain

G=H0
�.1/
��!G=H 01

�.1/
��!G=H 02

�.1/
��!G=H 03 � � �G=H

0
n�1

�.g 0/
���!G=Hn

with composition g0 modulo Hn. Since our replacement algorithm followed the defini-
tion of UFP, we only need to compare morphisms in such a normal form. Note that
since H 0n�1 is cyclic of order a power of p, the index ŒH 0i WH

0
i�1� is always p since

the morphisms of the chain are unfactorizable. This is true for any other chain from
G=H0 to G=Hn, and consequently the length of such a chain is always n. Let

G=H0
�.1/
��!G=H 001

�.1/
��!G=H 002

�.1/
��!G=H 003 � � �G=H

00
n�1

�.g 00/
����!G=Hn

be another chain with the same composition, ie g00 D fg0 with f 2Hn. This implies
that

.g0/�1Hng
0
D .g00/�1Hng

00:

Thus, H 0n�1 and H 00n�1 are both maximal subgroups of .g0/�1Hng0, and since this is a
cyclic group, they coincide: H 0n�1DH

00
n�1. Since g00Dfg, we get that �.g0/D�.g00/.

It follows that H 0i DH
00
i for all i � n� 1 and thus the two chains are equal.
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