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The handlebody group and the images of the
second Johnson homomorphism

QUENTIN FAES

Given an oriented surface bounding a handlebody, we study the subgroup of its
mapping class group defined as the intersection of the handlebody group and the
second term of the Johnson filtration; A\J2. We introduce two trace-like operators,
inspired by Morita’s trace, and show that their kernels coincide with the images by
the second Johnson homomorphism �2 of J2 and A\J2, respectively. In particular,
we answer in the negative a question asked by Levine about an algebraic description
of �2.A\ J2/. By the same techniques, and for a Heegaard surface in S3, we also
compute the image by �2 of the intersection of the Goeritz group G with J2.
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1 Introduction and notation

We consider an abstract handlebody Vg of genus g whose boundary is a surface †g of
genus g. This surface minus a disk will be the surface with nonempty boundary †g;1.
We will often forget the indices concerning the genus and the number of boundary
components when they are clear from context.
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Figure 1: Model for †g;1, and a possible choice of system of meridians and parallels.

The study of the handlebody group A is of major importance for the study of the
mapping class group of surfaces M, especially in connection with the theory of 3–
manifolds and their Heegaard presentations. The reader may find useful information on
this topic in the survey by Hensel [5]. It is a nonnormal subgroup of the mapping class
group of infinite index, which makes its study as a subgroup of M difficult. Precisely,
M will be our notation for Mg;1, the mapping class group of †g;1, and A will be our
notation for Ag;1, the mapping class group of Vg relative to a disk in @Vg .

We will let � WD �1.†g;1; x0/, where x0 is a point on the boundary of †g;1, and
H WDH1.†g;1/ its abelianization. Recall that � is isomorphic to the free group with
2g generators F2g , and hence H is isomorphic to Z2g . The curves .˛i /1�i�g and
.ˇi /1�i�g in Figure 1 are two cutting systems such that each curve in the first one has
exactly one intersection point with exactly one curve in the second one, and vice versa.
Such a choice is called a system of meridians and parallels. In particular, it fixes a
choice of a basis for H DZha1; a2; : : : ; ag ; b1; b2; : : : ; bgi, where ai (resp. bi ) is the
homology class of ˛i (resp. ˇi ). When †g;1 is regarded as the boundary of Vg (minus
a disk), we will suppose that the meridians (ie the curves ˛i ) bound pairwise-disjoint
disks in the handlebody. If promoted to elements of the fundamental group � , the
curves ˇi define generators of � 0 WD �1.V; x0/ and the curves ˛i normally generate
the kernel of the surjection �! � 0 induced by the inclusion of †g;1 in Vg . We denote
by A this kernel, so that � 0 ' �=A. It is well known that the handlebody group A,
which can be thought of as consisting of elements of the mapping class group M
extending to the whole handlebody, coincides with the subgroup of M preserving A [5].
We emphasize that, from the point of view of the surface †g;1, this subgroup A of M
depends on the choice of handlebody Vg .

We also consider H 0 WD H1.Vg/, the first homology group of the handlebody. The
kernel of the homomorphism H ! H 0 induced by the inclusion of †g;1 in Vg is
denoted by A. It is generated in H by the elements ai . The group H 0 'H=A is freely
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generated by the classes of the elements bi , but should not be thought of as a subgroup
of H since there is no canonical way to choose a supplement of A in H . We consider
the homological intersection form ! WH˝H!Z, which induces a nonsingular pairing
!0 W A˝H 0 ! Z. We denote by L.H/ D

L
k�1 Lk.H/ the graded Lie ring freely

generated by H in degree 1. We denote by T .H/ the tensor algebra, in which L.H/
can be embedded. The symmetric algebra S.H/ is as usual the quotient of T .H/ by
its antisymmetric tensors.

In this paper we focus on the study of the group A\J2, where J2 is the second term
of the Johnson filtration .Jk/k�1 [9]. Examining the group A \ J2 seems natural
when one uses Johnson-type homomorphisms to study finite-type invariants of 3–
manifolds from the point of view of Heegaard splittings. Additionally, the Johnson
filtration of M is separating, and so is its intersection with A; hence the study of the
filtration .A\ Jk/k�1, including the determination of its associated graded algebraL
k�1.A\ Jk/=.A\ JkC1/, is also relevant for the study of the group A itself. As

the Torelli group I (the subgroup of M acting trivially at the homological level) is the
first term J1 of the Johnson filtration, the question addressed here is the next natural
step after the study of A\ I pursued by Omori in [20], and the earlier computation of
.A\J1/=.A\J2/ given by Morita in [17].

The study of the relationship between the Johnson filtration and the handlebody group
may cover other aspects. In particular, it was proved independently by Hain [4]
and Jorgensen [12] that there exist elements of M arbitrarily deep in the Johnson
filtration that are not in the union of the conjugates of A in M. Moreover, Hain also
introduced a filtration of a completion of M (relative to the symplectic representation),
called the weight filtration and he introduced in [4] another filtration, the relative
weight filtration associated to the choice of a handlebody bounded by †. The study
of the graded spaces associated to these filtrations should be related to the quotients
.A\Jk/=.A\JkC1/˝Q.

In this paper, we work with coefficients in Z (the only exception will be in the appendix).
To get a more precise grasp of the intersection A\J2, we use the Johnson homomor-
phisms .�k/k�1 introduced in [9], trace-like operators, and the Casson invariant.

The first step is to define a trace-like operator Tras on the codomain of �2 (which is the
group of symplectic derivations of degree 2 of L.H/, denoted by D2.H/). Using the
results of Morita [17] and Yokomizo [27], we prove that the kernel of Tras is precisely
�2.J2/. We also show that �2.ŒJ1; J1�/DKer.Trsym/, where Trsym is another trace-like
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map (defined on a subgroup of D2.H/). The codomains of Tras and Trsym will be
Ker.! W ƒ2.H=2H/! Z2/ and Ker.! W S2.H=2H/! Z2/, respectively. Here, and
in the sequel, for any module V , the notation S2.V / stands for the quotient of V ˝V
by the two-sided ideal generated by the tensors of the form v˝w�w˝v. The module
ƒ2.V / is the quotient of the same module by the two-sided ideal generated by the
tensors of the form v˝wCw˝ v and v˝ v. Notice that this last type of tensor is
needed in the definition in the case of Z2–modules. For example there is a canonical
projection from S2.H=2H/ to ƒ2.H=2H/, given by reducing the classes of elements
of the form v˝ v.

The second step is the study of �2.A\J2/, which, by definition of �2, is isomorphic
to .A\ J2/=.A\ J3/. In [14], Levine observed that this image is contained in the
kernel of the canonical projection from D2.H/ to D2.H 0/. He asked whether the
intersection of Ker.D2.H/! D2.H

0// with Im.�2/ was equal to �2.A\ J2/. We
shall define, using the nonsingular pairing !0, another trace-like operator TrA vanishing
on �2.A\ J2/, but not on this subgroup proposed by Levine. Therefore, we answer
Levine’s question in the negative. Furthermore, Tras and TrA will allow us to compute
precisely �2.A\J2/, and thus to identify .A\J2/=.A\J3/ with an explicit subgroup
of D2.H/.

The paper is organized as follows. In Section 2, we review the definition of the Johnson
filtration .Jk/k�1 from [9], as well as the definition of the Johnson homomorphisms
.�k/k�1 by Morita [19]. Then we define the maps Tras and Trsym and use them
to characterize �2.J2/ and �2.ŒJ1; J1�/, respectively. In Section 3, we first review
closely related works. Then we recall the definition of the Levine filtration .Lk/k�1
from [14], so as to state and motivate precisely the question asked by Levine. In
Section 4, we define the map TrA, and we prove that it gives a new obstruction for
an element of D2.H/ to be in �2.A\ J2/, by using Morita’s decomposition of the
Casson invariant [17]. In Section 5, we compute the image �2.A \ J2/ using the
algebraic tools introduced in Sections 2 and 4. In Section 6, when † is a Heegaard
surface of S3, we compute �2.G \J2/ where G �M is the Goeritz group defined by
this Heegaard splitting. Finally, in the appendix, we decompose �2.G \J2/˝Q into
irreducible GL.g;Q/–modules, and we check the computation of Section 6 for rational
coefficients, without using the main result of Section 5.

Acknowledgements I would like to thank my advisor, Gwénaël Massuyeau, for his
careful readings and his encouragements. I am deeply grateful to Anderson Vera, for
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his helpful comments and for giving the idea of the computation in Section 6. I also
thank Richard Hain for giving his comments on the first version of this paper. This
research has been supported by the project “AlMaRe” (ANR-19-CE40-0001-01) of the
ANR and the project “ITIQ-3D” of the Région Bourgogne Franche-Comté.

2 Image of the second Johnson homomorphism �2

2.1 The space of symplectic derivations of degree 2

Here we review some facts about Johnson homomorphisms and their diagrammatic
description. We are especially interested in describing the image of the second Johnson
homomorphism.

2.1.1 Johnson homomorphisms and tree-like Jacobi diagrams The Johnson filtra-
tion and the Johnson homomorphisms have been introduced and studied by Johnson
and Morita in [9; 19]. Recall that � WD �1.†g;1/ is a free group. For k � 1, we
consider its lower central series .�k�/k�1. We call the quotient Nk WD �=�kC1� the
kth nilpotent quotient of � . The first nilpotent quotient is canonically isomorphic to
H WDH1.†g;1/. It is clear that M acts both on � and all its nilpotent quotients. There
is an exact sequence

0! LkC1.H/!NkC1!Nk! 0;

where the first nontrivial arrow is given by the identification between LkC1.H/ and
�kC1�=�kC2� . This sequence induces the short exact sequence

0! Hom.H;LkC1.H//! Aut.NkC1/! Aut.Nk/:

The group Jk is defined as the kernel of the canonical homomorphism �kWM!Aut.Nk/.
In particular J1 is called the Torelli group, otherwise denoted by I D Ig;1. It consists
of elements of the mapping class group acting trivially on the homology of the surface.
The alternative notation KD Kg;1 is also sometimes used for J2.

The restriction of �kC1 to Jk then induces a morphism

�k W Jk! Hom.H;LkC1.H//:

We call this map the kth Johnson homomorphism. Its kernel is JkC1. Furthermore, the
mapping class group acts on itself by conjugation, inducing an action of the symplectic
group Sp.H/ on the quotient Jk=JkC1. This group also naturally acts on H . Each

Algebraic & Geometric Topology, Volume 23 (2023)



248 Quentin Faes

�k is then Sp.H/–equivariant. It is also known that the graded space induced by the
Johnson filtration has a Lie structure, its bracket being induced by the commutator
in M. The target space of �k can be identified with the space of derivations of degree k,
ie derivations of L.H/ mapping H D L1.H/ to LkC1.H/. We denote by Dk.H/ the
subspace of symplectic derivations of degree k. It consists of derivations of degree k
sending z! 2ƒ2H ' L2.H/, the bivector dual to !, to 0. The fact that an element of
M fixes the boundary of †g;1 allows us to further restrict the image of �k to Dk.H/.
Also, Dk.H/ is determined by the short exact sequence

0!Dk.H/!H ˝LkC1.H/! LkC2.H/! 0;

where the arrow fromH ˝LkC1.H/ to LkC2.H/ is the bracket of the free Lie algebra.

With these definitions, the spaces .Dk.H//k�1 reassemble in a graded Lie alge-
bra D.H/ (the bracket of two derivations d1 and d2 being classically defined as
d1d2� d2d1). The family .�k/k�1 induces a map � ,

� W
M
k�1

Jk=JkC1!D.H/;

which is an Sp.H/–equivariant graded Lie morphism. The map �k is not onto Dk.H/
in general, but it is known to be surjective for k D 1 [7] and rationally surjective for
k D 2 [17]. We shall describe in the next subsections the image of �2 in a precise way.

We also need to define the spaces of tree-like Jacobi diagrams At
k
.H/ and rooted

tree-like Jacobi diagrams At;r
k
.H/. A tree is a connected graph that is contractible as a

topological space. From now on, by “a tree”, we mean a uni-trivalent tree T , possibly
rooted, whose set of trivalent (or internal) vertices is oriented (the orientation being
counterclockwise in all the figures), and whose set of univalent (or external) vertices,
denoted by v1.T /, is colored by elements of H . We will also refer to external vertices
as leaves and internal vertices as nodes. The cardinal of the set of trivalent vertices
v3.T / is the degree of the tree T . The spaces At

k
.H/ and At;r

k
.H/ are the Z–modules

generated by trees (respectively rooted trees) of degree k subject to some relations:
multilinearity of the labels, the AS relation, and the IHX relation. We specify these
relations for k D 2 in Figure 2, and we refer the reader to [13] for further details about
what follows. These spaces assemble in two graded algebras, At .H/ and At;r.H/
endowed with a Lie bracket and a quasi-Lie bracket, respectively. For the bracket of
At .H/, take two trees, and sum all the ways to contract an external vertex from the
first one with an external vertex from the second one using the symplectic form !. For

Algebraic & Geometric Topology, Volume 23 (2023)



The handlebody group and the images of the second Johnson homomorphism 249

IHX:
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Figure 2: Relations in At2.H/.

At;r.H/, take two trees, and form a tree by gluing their roots to a rooted binary tree
with two leaves.

We also define, for any k, maps

�k WAtk.H/!Dk.H/; T 7!
X

x2v1.T /

lx˝T
x;

where lx is the element of H coloring the vertex x and T x is the rooted tree obtained
by setting x to be the root in T , read as an element of LkC1.H/ (which can be done
inductively by considering that

�

a b
corresponds to Œb; a�). These maps assemble into

a graded Lie algebra morphism which we refer to as “the expansion map”.

2.1.2 A presentation forD2.H / The first Johnson homomorphism takes values in
D1.H/ which is known to be isomorphic to ƒ3H . The map �1 is surjective, and �1 is
an isomorphism, thus identifying the quotient J1=J2 to At1.H/.

The second Johnson homomorphism takes values in D2.H/. This space is well
understood too. Morita [17], using the exact sequence

0!ƒ3H !H ˝L2.H/! L3.H/! 0;

described it as the image of .ƒ2.H/˝ƒ2H/S2 in the quotient

.H ˝H ˝ƒ2H/=H ˝ƒ3H;

where L2.H/ has been identified with ƒ2H .

We will prefer to use the following description given by Levine [13]. Indeed, a simpler
way to think about this space is to use the free quasi-Lie algebra L0.H/D

L
k�1 L

0
k
.H/

on H , which is defined similarly to the free Lie algebra with the alternativity axiom
Œx; x�D 0 (for any x 2 L) replaced by the antisymmetry axiom Œx; y�C Œy; x�D 0 (for
any x; y 2L). This change adds 2–torsion to the group. We define D0

k
.H/, similarly to
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Dk.H/, as the kernel of the bracket from H ˝L0
kC1

.H/ to L0
kC2

.H/. We will only
use k D 1 or 2 in this paper. We have D01.H/'D1.H/ and a commutative diagram
with exact rows:

0 D02.H/ H ˝L03.H/ L04.H/ 0

0 D2.H/ H ˝L3.H/ L4.H/ 0

Levine also showed that we have the exact sequence

(2-1) 0!D02.H/!D2.H/!ƒ2.H=2H/! 0:

This is helpful for the following reason: D2.H/, which is a free abelian group, can be
thought of as a lattice in D2.H/˝Q. By (2-1), to generate D2.H/, one simply needs
to add to D02.H/ expansions of type 1

2
�.u�u/ for any rooted tree u with 2 external

vertices, that we glue to its copy along their roots. These are indeed elements ofD2.H/,
ie they have integer coefficients. For x; y 2 ƒ2H , we write x$ y for the element
x˝yCy˝x. Also ƒ4H can be embedded in .ƒ2H $ƒ2H/� .ƒ2H ˝ƒ2H/S2

by sending a^ b ^ c ^ d to

.a^ b/$ .c ^ d/� .a^ c/$ .b ^ d/C .a^ d/$ .b ^ c/;

for a; b; c; d 2H . It has been proven by Levine in [13] using Morita’s work in [17]
(see also [15, Proposition 3.1]) that the map

.ƒ2H˝ƒ2H/S2

ƒ4H
!D2.H/;

.a^b/$ .c^d/ 7! a˝Œb; Œc; d ��Cb˝ŒŒc; d �; a�Cc˝Œd; Œa; b��Cd˝ŒŒa; b�; c�

D �2

� a
b c

d �

.a^b/˝.a^b/ 7! a˝Œb; Œa; b��Cb˝ŒŒa; b�; a�D
1

2
�2

� a
b a

b �
is a well-defined isomorphism that fits in the commutative diagram with exact rows

(2-2)

0 S2.ƒ2H/

ƒ4H

.ƒ2H˝ƒ2H/S2

ƒ4H
ƒ2H
2�ƒ2H

0

0 D02.H/ D2.H/ ƒ2.H=2H/ 0

$

�0
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where �0 is defined in a way similar to � [13]. To be precise, the expansion of a tree is
actually an element of D02.H/, and this defines an isomorphism between D02.H/ and
At2.H/ [13].

From this we deduce the following presentation of the abelian group D2.H/.

Proposition 2.1 D2.H/ is generated by trees a

b c
d for a, b, c and d in H and

elements aˇ b for a; b 2H subject to the relations

� AS, IHX, and multilinearity with respect to the labels for all trees ,

� aˇ aD 0 and aˇ b D bˇ a for all .a; b/ 2H �H ,

� 2.aˇ b/D
a

b a
b ,

� .aC b/ˇ c D aˇ cC bˇ cC
a
c b

c .

Proof Let us momentarily denote by G the group defined by the presentation. We
define a homomorphism from G to .ƒ2H ˝ƒ2H/S2=ƒ4H by sending a ˇ b to
the class of .a ^ b/˝ .a ^ b/ and any tree a

b c
d to the element corresponding to

its expansion through diagram (2-2), ie to .a^ b/$ .c ^ d/. We define a converse
homomorphism by reversing the previous mappings. It suffices to show that these
maps are well defined. It is straightforward calculus to check that the relations for
G vanish in .ƒ2H ˝ƒ2H/S2=ƒ4H , noting in particular that it is known that the
expansion map sends the IHX relation to 0. Conversely, .ƒ2H ˝ƒ2H/S2 can be
presented in the following way. The group .ƒ2H ˝ƒ2H/S2 is generated by elements
.a^ b/˝ .a^ b/ and .a^ b$ c ^ d/ with a; b; c; d 2H . The relations are

.a^b/$ .a^b/D 2.a^b/˝.a^b/;

..aCb/^c/˝..aCb/^c/�.a^c/˝.a^c/�.b^c/˝.b^c/D .a^c$ b^c/:

This presentation is summarized in the short exact sequence

0! S2.ƒ2H/! .ƒ2H ˝ƒ2H/S2 !
ƒ2H

2 �ƒ2H
! 0

where the last arrow sends .a^ b/˝ .a^ b/ to a^ b and .a^ b/$ .c ^ d/ to 0. We
can then read these relations in the presentation of G. We finally notice that for any
a; b; c; d 2H , .a^ b/$ .c ^ d/� .a^ c/$ .b ^ d/C .a^ d/$ .b ^ c/ is sent to
the IHX relation, up to some antisymmetries.
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Remark 2.2 Elements aˇ b for a; b 2H correspond to halves of symmetric trees
(namely 1

2
a

b a
b for a; b 2H ) through the inclusion

D2.H/�D2.H/˝Q'At2.H/˝Q:

Then, a concise and simple way to summarize the previous discussion, is to say that
D2.H/ embeds in the space of trees At2.H/˝Q, and its image is the lattice generated
by trees and halves of symmetric trees. This is what we will do, especially in Sections 4
and 5.

2.2 An explicit description of Im.�2/ inD2.H /

We aim at a homomorphism that would be explicitly defined on D2.H/, using the
presentation in Proposition 2.1, and whose kernel would be Im.�2/. From now on, we
will abuse notation and identify D02.H/ with At2.H/ and think of its elements as trees.

In [10], Johnson showed that K is generated by Dehn twists along bounding simple
closed curves (called BSCC maps) of genus 1 and 2. We will denote by T the Dehn twist
along a given simple closed curve  . In the sequel, we will need Morita’s computations
for the image of a BSCC map by the second Johnson homomorphism [17]:

Lemma 2.3 Let  be a BSCC bounding a subsurface F of genus h in †, and let
.ui ; vi /1�i�h be any symplectic basis of the first homology group of F . Then

�2.T /D

� hX
iD1

ui ^ vi

�̋ 2

D

hX
iD1

ui ˇ vi C

hX
i;jD1
i¤j

ui

vi uj

vj

2D2.H/:

BSCC maps of genus 1 and 2 are all conjugate, by an element of the mapping class
group, to one of the Dehn twists T1

or T1;2
(see Figure 4 in Section 5). Lemma 2.3

then shows that Im.�2/ is generated by elements of type uˇ v with !.u; v/D 1 and
elements of type u1

v1 u2

v2 with !.ui ; vj /D ıij and !.u1; u2/D !.v1; v2/D 0.

We also recall that Morita showed in [17] that the cokernel D2.H/= Im.�2/ is a 2–
torsion group. Yokomizo [27] showed that whenever g � 2, its rank over Z2 is
.g� 1/.2gC 1/. He gave an explicit basis of the cokernel using the computations of
Morita. He also computed that the dimension of D2.H/=�2.ŒI; I�/, which is also a
2–torsion group, is 4g2�1. We shall use the computations of Morita and Yokomizo to
prove the second statement in the following theorem. We now suppose that g � 2.
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Theorem 2.4 For any g � 2, the homomorphisms

D02.H/
Trsym
��! Ker.! W S2.H=2H/! Z2/;

a

b c

d

7! !.a; d/bcC!.a; c/bd C!.b; d/acC!.b; c/ad;

and

D2.H/
Tras
�! Ker.! Wƒ2.H=2H/! Z2/;

a

b c

d

7! !.a; d/b ^ cC!.a; c/b ^ d C!.b; d/a^ cC!.b; c/a^ d;

aˇ b 7! .1C!.a; b//a^ b

are well defined , Sp.H/–equivariant , and induce the commutative diagram with exact
rows

(2-3)

0 K=J3 D2.H/ Ker.! Wƒ2.H=2H/! Z2/ 0

0 ŒI;I�
J3\ŒI;I�

D02.H/ Ker.! W S2.H=2H/! Z2/ 0

�2 Tras

�2 Trsym

where the rightmost up arrow is induced by the canonical projection S2.H=2H/!
ƒ2.H=2H/.

Proof Let us first show that the maps are well defined. For D2.H/ we use the presen-
tation from Proposition 2.1, and for D02.H/ the presentation given by the definition
of A2.H/. It is clear that the antisymmetry relation is sent to 0 since we are working
modulo Z2. Multilinearity is also clear by multilinearity of the symplectic form. Hence,
for the tree part, the only relation to check is the IHX relation,

IHX 7! !.a; d/bcC!.a; c/bd C!.b; d/acC!.b; c/ad

D!.d; c/abC!.d; b/acC!.a; c/dbC!.a; b/dcC!.a; d/cbC!.a; b/cd

C!.c; d/abC!.c; b/ad;

which vanishes in S2.H=2H/ and ƒ2.H=2H/. We have more relations to check
for Tras. The only nontrivial ones are�

2.aˇ b/�

a

b a

b �
7! 0� 2.!.a; b/ab/D 0;
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and the one relating halves of symmetric trees with regular trees (Remark 2.2),

.aC b/ˇ c � aˇ c � bˇ c

7! .1C!..aC b/; c//.a^ cC b ^ c/C .1C!.a; c//a^ cC .1C!.b; c//b ^ c

D !.a; c/b ^ cC!.b; c/a^ c;

which is also exactly the image of ac b

c .

It is immediate that Trsym and Tras are Sp.H/–equivariant, because ! is, by definition.
It is also straightforward to check that they are onto Ker.! W S2.H=2H/! Z2/ and
Ker.! Wƒ2.H=2H/! Z2/, respectively. Indeed, over Z2 these kernels have dimen-
sions

�
2g
2

�
C2g�1D .gC1/.2g�1/ and

�
2g
2

�
�1D .g�1/.2gC1/, respectively. We

can easily give explicit generators for these spaces and show the desired surjectivity. The
elements aibj , aiaj , bibj , aiai , and bibi (for 1� i; j � g), together with the elements
aibiCagbg (for 1� i < g) are generators for Ker.! W S2.H=2H/!Z2/. The projec-
tion of these elements in ƒ2.H=2H/ gives generators for Ker.! Wƒ2.H=2H/!Z2/.
To produce elements mapping to one of these generators cd with !.c; d/ D 0, we
do the following. The genus being greater than or equal to two, we can always
suppose that there exist a; b 2H with !.a; b/D 1 and !.a; c/D !.b; d/D 0 so then
Trsym� a

d c
b
�
D cd . Also Trsym� ai

ag bi

bg
�
D aibi C agbg . The same computations

show that Tras is onto.

Also, we have from [10] a set of generators of Im.�2/ which is sent to 0 by the
map Tras. For all .u; v/ with !.u; v/D 1 and all .u1; v1; u2; v2/ with !.ui ; vj /D ıij
and !.u1; u2/D !.v1; v2/D 0,

Tras.uˇ v/D Tras
� u1
v1 u2

v2 �
D 0:

Hence, Im.�2/ is contained in the kernel of Tras. For the image of ŒI; I� by �2, it is
known that the image is Œƒ3H;ƒ3H� by the surjectivity of �1 and the fact that � is
a Lie algebra homomorphism. Recall that the bracket in At .H/ is given by all the
ways to contract external vertices using the symplectic form. Taking the bracket of two
elements of form

a

b c
and d

e f
, we get 9 trees, which will be sent by Trsym to 36

terms in S2.H=2H/. For example, the coefficient of the symmetric term ad is

!.b; e/!.c; f /C!.b; f /!.c; e/C!.c; e/!.b; f /C!.c; f /!.b; e/
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coming from the trees

c

a f

d

;

c

a d

e

;

a

b f

d

;

a

b d

e

:

The above term vanishes, and we thus see that �2.ŒI; I�/� Ker.Trsym/.

Finally, the dimensions of the targets of Tras and Trsym are equal to the ones given by
Yokomizo in [27, Corollaries 2.2 and 3.2] for the dimensions of the cokernels of �2; ie
.g�1/.2gC1/ for D2.H/= Im.�2/ and .gC1/.2g�1/ for D02.H/=.�2.ŒI; I�//. This
last dimension is not directly given by Yokomizo; it is obtained from the dimension of
D2.H/=�2.ŒI; I�/ by removing

�
2g
2

�
, because of the exact sequence (2-1).

Notice that the kernel of the canonical projection

Ker.! W S2.H=2H/! Z2/! Ker.! Wƒ2.H=2H/! Z2/

is isomorphic to H=2H , which can be mapped into S2.H=2H/ in the obvious way.
Hence, applying the snake lemma to the diagram (2-3) and using (2-1), we get the
following description of the image of K=ŒI; I� under �2, ie the quotient K=.ŒI; I� �J3).

Corollary 2.5 There is a short exact sequence

0!H=2H ! �2.K/=�2.ŒI; I�/' K=.ŒI; I� �J3/!ƒ2.H=2H/! 0:

We can relate this short exact sequence to what we know about the abelianization of the
Torelli group. For g � 3, the abelianization of I is well understood, thanks to the work
of Johnson [11]. In [8], he built a homomorphism ˇ (the so-called Birman–Craggs
homomorphism) from the Torelli group to a 2–torsion abelian group B�3 (where B�k
is the filtered space of Boolean polynomial functions of degree at most k on a certain
Z2–affine space), such that the abelianization of I is isomorphic by .�1; ˇ/ to a fibered
product

ƒ3H �ƒ3.H=2H/B�3:

This description implies that K=ŒI; I� is isomorphic toB�2 via ˇ. Johnson also claimed
that ˇ.J3/D B0 (see [9, page 178], [15, Remark 3.21], and Remark 4.15 below for a
proof). Hence, we have that J3=.ŒI; I�\ J3/ is identified to B0 ' Z2 by the map ˇ.
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Therefore, we have K=.ŒI; I� � J3/' B�2=B0 via ˇ. Then, the short exact sequence
of Corollary 2.5 fits into the following commutative diagram:

(2-4)

0 H=2H K
ŒI;I��J3

ƒ2.H=2H/ 0

0 B�1=B0 B�2=B0 B�2=B�1 0

ˇ

All vertical arrows are isomorphisms, the left (resp. right) one being the inverse of
the formal first (resp. second) differential on B�1 (resp. B�2). We can recover a
precise description for the horizontal map H=2H ! K=.ŒI; I� �J3/ by investigating
in detail the connecting homomorphism arising from the snake lemma applied to
diagram (2-3). The commutativity of the diagram is not trivial and can be deduced
from [27, Proposition 3.3] or [15, Lemma 3.18].

3 Motivation for the study of A\J2

We are particularly interested in the relation of the handlebody group with the Johnson
filtration. We explain our interest in this filtration and briefly review previous works on
this subject.

Below, V.3/ and S.3/ denote respectively the set of all oriented 3–manifolds and all
closed oriented homology 3–spheres up to orientation-preserving homeomorphisms.
We first remind some facts about Heegaard splittings. Any 3–manifold can be divided
(not in a unique way) into two handlebodies of same genus. Equivalently, any 3–
manifold can be obtained by gluing two handlebodies together by a homeomorphism
between their boundaries. Essentially, this homeomorphism specifies where a set of
meridians of the second handlebody should be sent on the boundary of the first one,
yielding the notion of Heegaard diagrams.

The standard example is of course the sphere S3, where one considers the standard
handlebody Vg and glues a copy �Vg with opposite orientation by a map sending
its meridians to the curves ˇi in Figure 1. Then we get for all g a splitting S3 WD
Vg [�g .�Vg/, where �g is a certain orientation-preserving homeomorphism of †g
which can be defined by giving its action on � ; see Section 6. Note that there is, up to
isotopy, a unique Heegaard splitting of S3 of genus g. We define Bg;1 WD �gAg;1��1g .
We denote by S3' the 3–manifold Vg [�ı' .�Vg/ for any element ' 2Mg;1 (we extend
' to †g by the identity on the remaining disk). The map ' is called the gluing map.
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We also have stabilization maps Mg;1!MgC1;1, compatible with the other maps.
When one composes the gluing map on the right by an element of B D Bg;1, or to the
left by an element of A, the resulting manifold does not change up to homeomorphism.
The following result is a refinement of the Reidemeister–Singer theorem [23; 24].

Theorem 3.1 (Reidemeister–Singer) There is a bijection

lim
g!C1

Ag;1 nMg;1=Bg;1! V.3/; ' 7! S3' ;

which actually restricts to a bijection limg!C1Ag;1 n Ig;1=Bg;1! S.3/.

The second fact in Theorem 3.1 is written explicitly in [16]. One would expect that
considering restrictions to deeper groups of the Johnson filtration would yield other
topological conditions on the manifold, but this is not the case in low degrees for
homology 3–spheres. We call a homology 3–sphere Jk–equivalent to S3 if it is
homeomorphic to S3' for some ' in Jk . More generally, we say that two 3–manifolds
are Jk–equivalent if there exists a Heegaard splitting of the first one such that one can
compose the gluing map by an element of Jk and get a Heegaard presentation for the
second manifold. It is known that Jk–equivalence is an equivalence relation.

Morita [17] has shown that any two homology 3–spheres are J2–equivalent. Pitsch [21]
improved this result to J3–equivalence. They both used the following.

Lemma 3.2 Let l �1. If for some genus g, we have Im.�k/D �k.A\Jk/C�k.B\Jk/
for all k � l then any homology 3–sphere is JlC1–equivalent to S3.

Another proof of the fact that any two homology 3–spheres are J3–equivalent is given
in [15, Theorem C]. Unfortunately, using Lemma 3.2 for l D 3 seems complicated:
the computations could hardly be made by hand, and we do not know how to build
all elements of J3, whereas J2 has well-known generators. Besides, as the result
involves B, this lemma only addresses the question of homology 3–spheres, hence
manifolds at least J1–equivalent to S3. That is one reason why we want to describe
in this paper �2.A\J2/ by polarizing some computations in [21] and by introducing
new arguments.

We also know some facts about the first term IA WD A\ J1. A generating set was
described by Omori in [20]. He gives the following theorem, where HBP stands for
“homotopical bounding pair”, and a genus-h HBP–map is the composition Tc ıT �1d
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of two Dehn twists, where c and d are essential simple closed curves cobounding a
surface of genus h, cobounding an annulus in the handlebody, and not bounding disks
in the handlebody.

Theorem 3.3 (Omori) For g � 3, IAg;1 is normally generated in Ag;1 by a genus-1
HBP–map , and hence it is generated by genus-1 HBP–maps.

It would be interesting to get the same kind of description for A\J2, but we only give
in this paper its image by the second Johnson homomorphism, and formulate some
questions; see Remark 5.8.

But our main motivation for the study of A\J2 comes from [14]. In this paper, Levine
defines the Lagrangian filtration .Lk/k�1 which is a nonseparating filtration of the
mapping class group. It is not helpful to get an approximation of the mapping class
group of the surface, but it is natural to study 3–manifolds presented through Heegaard
splittings. The definition of this filtration depends on A, the kernel of the projection p
from � to � 0 ' �=A. The Lagrangian subgroup A is the kernel of the projection
H !H 0 which is the image of A under the projection from � to H . Also, whenever
f is an element of the mapping class group, f� 2 Sp.H/ stands for the action of f
on H . We still write abusively f for the action of f on the fundamental group.

Definition 3.4 The Lagrangian Torelli group is defined by

IL WD fh 2M j h�.A/� A and h� is the identity on Ag:

For k � 1, an element h of M belongs to Lk if it is in IL and p.h.A//� �kC1� 0.

Note that L1 D IL. We recall the following fact from [14], describing the intersection
of this filtration, which is nonempty.

Lemma 3.5 L1 WD
T
k�1Lk coincides with A\L1.

It is clear that Jk � Lk for all k � 1.

Question 3.6 Do we have Lk D Jk �L1 for all k?

This question can be approached inductively, which leads to the next lemma, given by
Levine; see [14, Lemma 6.2] for a proof.
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Lemma 3.7 Suppose Lk D Jk �L1. Then LkC1 D JkC1 �L1 if and only if

Im.�k/\Ker.Dk.H/!Dk.H
0//D �k.A\Jk/:

It is shown in [14, Lemma 6.3] that L1 D J1 � L1. Furthermore, the following
proposition describing .A\J1/=.A\J2/, was given by Morita in [17, Lemma 2.5].

Proposition 3.8 We have Ker.D1.H/!D1.H
0//D �1.A\J1/.

Recall that �1 is surjective; hence this proposition together with Lemma 3.7 implies
that the answer to Levine’s question is positive for k D 1; 2 (as explained in [14,
Proposition 6.1]). As for the k D 3 case, the equality necessary for the induction step
is no longer true, as will be shown in the next section,

�2.A\J2/¨ Im.�2/\Ker.D2.H/!D2.H
0//:

Therefore the answer to Question 3.6 is “no” for k D 3.

4 The A–trace

In this section, we are still working with two “abstract” surfaces †g;1 �†g bounding
a handlebody, †g D @Vg . We consider the subgroup A of M consisting of elements of
the mapping class group of† extending to V . The context differs from [21], where there
are two handlebodies defined by a Heegaard splitting of S3. In this paper, we wish to
investigate �2.A\J2/. Considering that an element of A globally preserves A, it is not
hard to see that the kth Johnson homomorphism sends an element of A\Jk to the sum
of an element in A˝LkC1.H/ and an element in H ˝Ker.LkC1.H/! LkC1.H 0//.
Hence we certainly have �k.A\ Jk/ � �k.Jk/\Ker.Dk.H/!Dk.H

0//. It is not
easy to see what could be another necessary condition to be in �k.A\ Jk/. Hence
one could wonder, in relation to Question 3.6, whether �2.A \ J2/ coincides with
Im.�2/\Ker.D2.H/!D2.H

0//. We show in this section that it is not the case.

4.1 Examples of elements of A\J2

Here we describe three families of examples of elements in A\J2. We start by recalling
some facts about the generation of A and J2.

First, a Dehn twist along a simple closed curve belongs to the handlebody group if
and only if this curve bounds a disk in the handlebody V . Such a meridional twist can
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also be performed half-way. Furthermore, if two curves ı and ı0 cobound a properly
embedded annulus in V , one can perform an annulus twist in the handlebody and see
that TıT �1ı 0 is an element of A. The handlebody group is generated by meridional
twists, meridional half-twists and annulus twists. See [5] for more details.

As for the second term in the Johnson filtration, it is generated by BSCC maps [10], ie
Dehn twists along simple closed curves bounding in the surface. Also, it is a classical
fact from [18] that ŒJk; Jl �� JkCl , so any commutator of two elements of the Torelli
group are in the Johnson subgroup KD J2.

Knowing these facts we can build three families of elements in A\J2:

(1) Dehn twists along bounding simple closed curves, which also bound disks in the
handlebody.

(2) Annulus twists along two simple closed curves which are both bounding subsur-
faces in the surface (but not necessarily bounding disks in the handlebody).

(3) Commutators of the group A\ J1, the Torelli handlebody group, for which a
generating system is recalled in Theorem 3.3.

We shall now define a map TrA WKer.D2.H/!D2.H
0//! S2.H 0/, and show that it

vanishes on all the image of A\J2 under �2.

4.2 Definition of the A–trace

We consider the following filtration on Dk.H/, which only depends on the Lagrangian
subgroup A of H . For �1� l � kC 1, we set

Fl D Span
�

expansion of trees with k nodes (and halves of symmetric trees
when k is even) with at least l C 1 leaves vanishing in H 0

�
:

Below, for k D 2, we identify trees and their expansions; see Remark 2.2.

We consider the diagram

0 A˝LkC1.H/ H ˝LkC1.H/ H 0˝LkC1.H/ 0

0 A˝LkC1.H 0/ H ˝LkC1.H 0/ H 0˝LkC1.H 0/ 0

p

where all vertical arrows are induced by the projection from H to H 0. We claim that
the following holds:
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Lemma 4.1 Set K WD Ker.LkC1.H/! LkC1.H 0//. We have

(i) F�1 DDk.H/,

(ii) F0 �Dk.H/\p�1.A˝LkC1.H 0//D Ker.Dk.H/!Dk.H
0//,

(iii) F1 �Dk.H/\Ker.p/DDk.H/\ .H ˝K/.

Proof We have seen in Section 2 that expansions of half symmetric trees and expan-
sions of trees lie in D.H/. If a tree with k leaves has at least one leaf in A, then after
expanding the tree, there will be k � 1 terms in which such a leaf is involved in the
free Lie algebra part. These k � 1 terms will vanish after projecting on L.H 0/. The
remaining term will be a tensor product of the root vanishing in H 0 and some element
in L.H/. This shows that p.F0/�A˝LkC1.H 0/. If the tree has at least two leaves in
A, then the expansion gives k terms such that the part in the free Lie algebra vanishes
in L.H 0/. Hence p.F1/D 0.

Remark 4.2 In fact all the inclusions in Lemma 4.1 are equalities, but we shall not
need this.

Remark 4.3 The graded space associated with the filtration .Fl/�1�l�kC1 can be
identified to the space At

k
.A˚H 0/ of tree-like Jacobi diagrams colored by A˚H 0

with degree defined by the number of A–colored leaves shifted by 1 (the same space
appears with a different grading in [26]).

Additionally, the long exact sequence in relative homology for the handlebody

0!H2.V; @V IZ/!H 'H1.@V IZ/!H 0 DH1.V IZ/! 0

gives a canonical isomorphism H2.V; @V IZ/' A. Now, Poincaré–Lefschetz duality

H2.V; @V IZ/' H 1.V IZ/' .H 0/�

gives an intersection pairing
!0 W A˝H 0! Z

which is also induced by ! in the obvious way. Then, by considering the injection i of
L.H 0/ in the tensor algebra T .H 0/, and the contraction .!0/1;2 of the first two tensors
in A˝T .H 0/ by !0, we define the map

TrA W F0
p
�! A˝LkC1.H 0/

i
�! A˝TkC1.H

0/
.!0/1;2

���! Tk.H
0/� Sk.H 0/:
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Remark 4.4 The definition of the homomorphism TrA is inspired by the trace Tr
defined by Morita in [19], but the reader should be aware that the following diagram
does not commute:

F0 Dk.H/

Sk.H 0/ Sk.H/

TrA Tr

The first thing to notice about TrA is that it vanishes on F1 as p already vanishes on
this space. Hence it can be thought of as a map starting from F0=F1. Therefore, to
compute this map, we can consider only trees with one leaf colored by A and the other
leaves nontrivial in H 0. The map TrA is thus defined on the graded space associated
with the filtration F , which corresponds to diagrams whose leaves are colored by A
or H 0; see Remark 4.3. On such a space, a direct computation shows that there is a
practical way of computing TrA: take the leaf colored by A and consider all possible
ways to contract it by !0 with the other leaves in H 0. One gets a sum of oriented circles
with leaves in H 0 (the orientation being given by drawing an arrow from the leaf in A
to the other leaf). One can read this oriented diagram in Sk.H 0/, the inward leaves
contributing with a minus sign. We now denote by x0 the class in H 0 of an element x
in H . We will also omit some tensor product notations when it is clear from context.

Example 4.5 For a 2 A and c; d; e 2H

(4-1) TrA
� a
c0 d 0

e0 �
D !.a; e/d 0c0�!.a; d/e0c0:

Indeed, in S2.H 0/,

.!0/1;2 ı i ıp

� a
c d

e �
D .!0/1;2 ı i.a˝ ŒŒe0; d 0�; c0�/

D .!0/1;2.ae0d 0c0� ad 0e0c0� ac0e0d 0C ac0d 0e0/

D !.a; c/.d 0e0� e0d 0/�!.a; d/e0c0C!.a; e/d 0c0

D !.a; e/d 0c0�!.a; d/e0c0 2 S2.H 0/:

Remark 4.6 It is worth noting that the restriction of the Johnson filtration to A is
compatible with the conjugation by elements of A. This induces a �0.A/–module

Algebraic & Geometric Topology, Volume 23 (2023)



The handlebody group and the images of the second Johnson homomorphism 263

structure on the quotients A\ Jk=A\ JkC1, where �0.A/ is the image of A under
the representation �0 WM! Sp.H/� Aut.H/. The action of �0.A/ on H induces an
action on H 0 (and thus on Sk.H 0/). The map TrA is equivariant relatively to these
actions.

We now focus on the case k D 2. One could check by direct computation that this map
vanishes on the image by �2 of all elements of A\J2 of the three kinds described in
Section 4.1. Instead of that, we will show in the next section that the map actually
vanishes on the whole of �2.A\J2/. Nevertheless, this map is not trivial on F0\Im.�2/,
as we shall now see. We fix a choice .ai ; bi /1�i�g of a symplectic basis for H , such
that A is generated by the family .ai /1�i�g . For instance, we consider the basis of H
induced by a system of meridians and parallels .˛i ; ˇi /1�i�g as explained in Section 1.
Let us define two families of elements in F0, depending on the previous choice,

T
ij
1 WD

ai

bj bj

bi
; i ¤ j;

T
kk0;ij
2 WD

ak

bi bj

bk
C

ak0

bi bj

bk0

; i ¤ j; k ¤ j; k0 ¤ j:

Lemma 4.7 The elements T ij1 and T kk
0;ij

2 belong to Im.�2/ and

TrA.T ij1 /D b
0
j b
0
j ; TrA.T kk

0;ij
2 /D 2b0ib

0
j :

Proof By definition of Tras, we get Tras.T
ij
1 /D !.ai ; bi /bj ^ bj D 0 2ƒ

2.H=2H/

and Tras.T kk
0;ij

2 /D 2!.ak; bk/bi ^bj D 0 2ƒ
2.H=2H/. Therefore, by Theorem 2.4,

we have T ij1 ; T
kk0;ij
2 2 Im.�2/. For the computation of TrA on T ij1 and T kk

0;ij
2 , we

use formula (4-1).

We embed S2.H 0/ in .H 0˝H 0/S2 by sending h01h
0
2 2 S

2.H 0/ to h01˝h
0
2Ch

0
2˝h

0
1 2

.H 0˝H 0/S2 . It defines a restriction map .H 0˝H 0/�! S2.H 0/�. Using the duality
A'H 0� given by the map a 7!!0.a; � /, we then have an isomorphism from .A˝A/S2

to .H 0� ˝H 0�/S2 which is a subspace of .H 0� ˝H 0�/ ' .H 0 ˝H 0/�. Hence we
obtain a well-defined map r from .A˝A/S2 to S2.H 0/�,

(4-2) r W .A˝A/S2! .H 0�˝H 0�/S2! .H 0�˝H 0�/' .H 0˝H 0/�! S2.H 0/�:
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Notice that r.ai ˝ ai /D 2.b0ib
0
i /
� and r.ai $ aj /D 2.b

0
ib
0
j /
�, which shows that r=2

is well defined, surjective, and hence is an isomorphism. We can now define eTrA as
the bilinear mapeTrA W F0 � .A˝A/S2 ! Z; .T; s/ 7! 1

2
r.s/.TrA.T //:

We can also regard eTrA as a bilinear map F0=F1 � .A˝A/S2 ! Z.

Remark 4.8 Notice that TrA depends only on the choice of the Lagrangian subgroup
A�H .

Remark 4.9 Since r=2 is an isomorphism, for any T 2F0, we have that eTrA.T; s/D 0
for all s 2 .A˝A/S2 if and only if TrA.T /D 0.

4.3 Relating TrA with the Casson invariant

In this section, we review Morita’s decomposition of the Casson invariant in [17] and
use it to show the following:

Theorem 4.10 The Casson invariant induces a map � WD2.H/�M! Z, which is
not bilinear. Its restriction to F0 � IL is bilinear and fits into a commutative diagram

F0 � IL Z

F0=F1 � .A˝A/S2

�

� eTrA

Furthermore , for any T 2 �2.A\J2/ and ' 2 IL, we have �.T; '/D 0. Consequently,
TrA vanishes on �2.A\J2/.

The map � is defined in the following way. Recall from Definition 3.4 that IL is
the Lagrangian Torelli group. For f 2 IL and h 2H , the difference f�.h/� h only
depends on the class of h inH 0, and is in A because of the very definition of IL. Hence
we get a map

IL! Hom.H 0; A/' .H 0/�˝A' A˝A

whose target restricts to .A˝A/S2 because of the symplectic condition. Hence we get a
homomorphism � W IL! .A˝A/S2 . Let us describe � in terms of the symplectic basis
described in Section 4.2. It is known that the canonical map from M to Sp.H/ given
by the action in homology is surjective. Using the symplectic basis, we identify Sp.H/
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with the group Sp.2g;Z/ of matrices M such that MT JM D J where J WD
�
0 Id
�Id 0

�
,

ie matrices M D
�
A B
C D

�
where A, B , C and D satisfy

(4-3)

ATD�CTB D Id;

ATC D CTA;

DTB D BTD:

The image of A by M! Sp.2g;Z/ consists of all matrices of the form
�
A B
0 D

�
where

ATD D Id and DTB is symmetric; see [2, Lemma 2.2] or [6]. The image of IL by
M! Sp.2g;Z/ consists of all matrices of type

�
Id S
0 Id

�
where S is symmetric. The

matrix S associated in this way to an element ' is the description of �.'/2Hom.H 0; A/
in the basis .b0i /1�i�g and .ai /1�i�g . In particular, � is surjective. The matrix
SD .Si;j /1�i;j�g actually corresponds to the symmetric tensor

Pg
i;jD1 Si;j .ai˝aj /2

.A˝A/S2 (via the isomorphism .A˝A/' Hom.H 0; A/ given by !0).

Remark 4.11 The map � can even be restricted to IL \A, and will still be onto
.A˝A/S2 (as a consequence of [5, Theorem 7.1]). This has a role to play in the proof
of Theorem 4.10.

The following corollary is a consequence of Theorem 4.10.

Corollary 4.12 For any g � 2, �2.A\J2/ is strictly included in

Im.�2/\Ker.D2.H/!D2.H
0//:

Proof We have exhibited in Lemma 4.7 elements of Im.�2/\Ker.D2.H/!D2.H
0//

on which TrA does not vanish.

The rest of this section is dedicated to the proof of Theorem 4.10, and in particular to
the construction of �.

4.3.1 Morita’s decomposition of the Casson invariant Let � denote the Casson
invariant. We consider a Heegaard embedding j W†g;1! S3 of our abstract surface
†g;1 in S3. This means that there exists a surface †g � S3 such that †g;1 WD j.†g;1/
is obtained from †g by removing a small open disk, and such that †g splits S3 into
two handlebodies V g andW g , which are called the “inner” and the “outer” handlebody,
respectively. The orientation that j induces on †g;1 is supposed to coincide with the
one induced by V g . Later, we will also suppose that j extends to Vg , and that j.Vg/
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is the “inner” handlebody V g in the splitting of S3. Then, the handlebody group
ADAg;1 is identified through j to the mapping class group of V g relative to the disk
†g n†g;1.

For every ' 2 I, one can define the 3–manifold obtained by cutting S3 along the image
of j and gluing back the two handlebodies using the mapping cylinder of '. In [17],
Morita defines �j .'/ as the Casson invariant of the resulting homology 3–sphere
S3.j; '/, yielding a map

�j W I! Z; ' 7! �.S3.j; '//:

The above map is not a homomorphism, nevertheless Morita showed that its restriction
to KD J2 is a homomorphism. He also showed that it can be expressed as the sum of
two homomorphisms. We review their definitions, and refer the reader to [17] or [15]
for more details. The first one, d , is called the “core of the Casson invariant” and is
independent of j . The second one is not, but is completely determined by the second
Johnson homomorphism. Our notation conventions differ slightly from the original
ones given in [17], the content being exactly the same.

We do not need to give a precise definition for the map d W K! Z, we only need to
recall the following facts. Johnson [10] showed that K is generated by Dehn twists
along bounding simple closed curves and Morita proved in [17] that

d.T /D 4h.h� 1/

whenever  is a simple closed curve bounding a subsurface of genus h.

As for the second map, we need to fully review its definition. Let C be the unital,
commutative, and associative algebra with generators l.u; v/ for all u and v in H and
subject to the relations

l.n �uCn0 �u0; v/D n � l.u; v/Cn0 � l.u0; v/;

l.v; u/D l.u; v/C!.u; v/

for all u; u0; v 2 H and n; n0 2 Z. We denote by lk the linking number in S3. Let
"j W C! Z be the unique algebra homomorphism such that

"j .l.u; v// WD lk.j�.u/; jC� .v//

where jC is an embedding parallel to j , meaning that the image of jC is obtained
by pushing the image of j towards the outer handlebody. We fix a set of meridians
and parallels .x̨; x̌/ for the surface †g;1; see Figure 3. This defines a system .˛; ˇ/
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x̨1 x̨2 x̨g

x̌
1

x̌
2

x̌
g

Figure 3: A system of meridians and parallels on †g;1 � V g � S3.

of meridians and parallels for † given by ˛ WD j�1.x̨/ and ˇ WD j�1. x̌/. For any
1� i � g, the homology classes of ˛i and ˇi are denoted by ai and bi , respectively.

Remark 4.13 Considering that lk.j�.ai /; jC� .bj //D 0 and lk.j�.bi /; jC� .aj //D ıij ,
the matrix associated to the bilinear mapping lk.j�. � /; jC� . � // WH �H !Z is

�
0 0
Id 0

�
.

Morita also defines a map � W .ƒ2H ˝ƒ2H/S2 ! C determined by

�..u^v/˝.u^v// WD l.u; u/l.v; v/�l.u; v/l.v; u/;

�..a^b/$ .c^d// WD l.a; c/l.b; d/�l.a; d/l.b; c/�l.d; a/l.c; b/Cl.c; a/l.d; b/:

He then defines a map Nd W .ƒ2H ˝ƒ2H/S2 ! Z by
Nd..u^ v/˝ .u^ v// WD 0;

Nd..a^ b/$ .c ^ d// WD !.a; b/!.c; d/�!.a; c/!.b; d/C!.a; d/!.b; c/;

so that Nqj WD "j ı�C 1
3
Nd vanishes on ƒ4H � .ƒ2H ˝ƒ2H/S2 . Hence, it is defined

on D2.H/; see diagram (2-2). Finally, qj WD �Nqj ı �2 W K!Q is such that

(4-4) ��j D
1
24
d C qj W K! Z:

Here comes the key point of the definition of the map �:

Lemma 4.14 For any Heegaard embedding j , there is a well-defined map

�j WD2.H/�M! Z

given by
�j .ŒT �; '/ WD ."j � "jı'/ ı �.T /

for ' 2M and T 2 .ƒ2H ˝ƒ2H/S2 (here ŒT � denotes the class of T in D2.H/).
This map is linear in its left argument and it satisfies

(4-5) .�j ��jı'/.h/D �j .�2.h/; '/

for all ' 2M and h 2 K.
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Proof For any ' 2M we have, applying (4-4) both to j and j ı', that�.�j��jı'/D
qj � qjı' . This last part depends only on the second Johnson homomorphism. More
precisely, by looking at the definition of Nqj and Nqjı' , one can compute that for any
element T in .ƒ2H ˝ƒ2H/S2 , whose class in D2.H/ is ŒT �,

. Nqj � Nqjı'/.ŒT �/D ."j � "jı'/ ı �.T /:

The result is then straightforward.

Remark 4.15 Lemma 4.14 shows, as explained by Morita in [17, Remark 6.3], that
the homomorphism �2 contains all the information about the differences .�j ��jı'/
with ' 2M. Furthermore, when reducing (4-5) mod 2, one can deduce that ˇ.J3/�B0
as claimed by Johnson in [9, page 178]. Indeed for any f 2 J3, and for any ' 2M,
we have that ˇ.f /.!j /� ˇ.f /.!jı'/ D �j .�2.f /; '/ D 0, where !j and !jı' are
the Sp–quadratic forms defined by the Heegaard embeddings j and j ı', respectively;
see [8] for more details. Hence, ˇ.f / is fixed by the action of Sp.2g;Z/. Furthermore,
it is not hard to prove from [8] and Lemma 2.3 that there exists a map d2, with kernel
B�1 (giving the second formal differential of boolean quadratic functions), and a
commutative diagram

K B�2

D2.H/ ƒ2.H ˝Z2/

ˇ

�2 d2

This implies that ˇ.J3/� B�1 which in turn implies that ˇ.f / is a constant. Indeed,
there is no nontrivial Sp.2g;Z/–invariant boolean affine function on the set of Sp–
quadratic forms.

4.3.2 The application � We now suppose that j extends to the handlebody V , in
such a way that j.V / D V is the inner handlebody of the Heegaard splitting of S3.
Once such a j is fixed we simply define � WD �j , where �j is defined in Lemma 4.14.
We need first the following lemma:

Lemma 4.16 For any element T 2 �2.A\J2/, the map �.T; � / vanishes on A.

Proof If we choose ' to be in A and  to be in A\J2, we have that .�j ��jı'/. /D
�.S3/� �.S3/D 0. Indeed, both j ı ı j�1 and .j ı '/ ı ı .j ı '/�1 extend to
the handlebody V . Hence �.�2. /; '/D 0, by (4-5).
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Note that whenever ' is not in A, then j ı' does not extend to an embedding on V ,
and the conclusions of Lemma 4.16 may not be true. Also the fact that j extends to V
is needed.

We now compute the map � explicitly. Let ' 2M be such that '�.A/ � A. Notice
first that

(4-6) "jı'.l.u; v//D lk..j ı'/�.u/; .j ı'/C� .v//D "j .l.'�.u/; '�.v//

for any u; v 2H . We use our chosen basis for H (the one defined by j ), and write the
action of ' as a matrix

�
A B
0 D

�
. Then the matrix of the bilinear map

lk..j ı'/�. � /; .j ı'/C� . � //

is given by

(4-7)
�
A B

0 D

�T �
0 0

Id 0

��
A B

0 D

�
D

�
0 0

Id DTB

�
;

where S WDDTB is a symmetric matrix. We now suppose that ' 2 IL, and denote by
!ı and !S the pairings H �H ! Z corresponding to the matrices

�
0 0
Id 0

�
and

�
0 0
0 S

�
through our choice of basis for H , where S is the matrix describing �.'/ 2 .A˝A/S2

in the basis .a1; : : : ; ag/. Note that these definitions depend on the choice of Heegaard
embedding j .

We then have the following:

Lemma 4.17 For any a; b; c; d; u; v 2H and for any ' 2 IL,

��

� a
b c

d

; '

�
D !S .a; c/!S .b; d/C!S .c; a/!S .d; b/�!S .a; d/!S .b; c/

�!S .d; a/!S .c; b/C!S .a; c/!ı.b; d/C!S .c; a/!ı.d; b/

�!S .a; d/!ı.b; c/�!S .d; a/!ı.c; b/C!ı.a; c/!S .b; d/

C!ı.c; a/!S .d; b/�!ı.a; d/!S .b; c/�!ı.d; a/!S .c; b/;

��

�
1

2

u

v u

v

; '

�
D !S .u; u/!S .v; v/�!S .u; v/!S .v; u/C!S .u; u/!ı.v; v/

�!S .u; v/!ı.v; u/C!ı.u; u/!S .v; v/�!ı.u; v/!S .v; u/;

where S is the matrix describing �.'/ in the basis .a1; : : : ; ag/.

Algebraic & Geometric Topology, Volume 23 (2023)



270 Quentin Faes

Proof The result follows from the definition of � WD �j , the definition of � , and

."jı'�"j /.l.a; c/l.b; d//D "jı'.l.a; c/l.b; d//�"j .l.a; c/l.b; d//

D "jı'.l.a; c//"jı'l.b; d//�"j .l.a; c//"j .l.b; d//

D .!SC!ı/.a; c/.!SC!ı/.b; d/�!ı.a; c/!ı.b; d/

D !S .a; c/!S .b;d/C!S .a;c/!ı.b;d/C!ı.a;c/!S .b;d/;

where the third equality is obtained by (4-6) and (4-7).

We can express this is in a very compact way. Once again we define a trace-like
operator Tr!S ,

Tr!S WD2.H/!H ˝L3.H/ i
�! T4.H/

.!S /
1;2

���! T2.H/;

where .!S /1;2 is the contraction of the first two tensors by !S . We now need the
following lemma.

Lemma 4.18 For any a; b; c; d; u; v 2H , and for any ' 2 IL,

Tr!S

� a
b c

d �
D !S .a; d/.b˝ cC c˝ b/C!S .b; c/.a˝ d C d ˝ a/

�!S .a; c/.b˝ d C d ˝ b/�!S .b; d/.a˝ cC c˝ a/;

Tr!S

�
1

2

u

v u

v �
D !S .u; v/.u˝ vC v˝u/�!S .u; u/v˝ v�!S .v; v/u˝u;

where S is the matrix describing �.'/ in the basis .a1; : : : ; ag/.

Corollary 4.19 For any ' 2 IL,�
1
2
!S C!ı

�
ıTr!S D �. � ; '/

where S is the matrix describing �.'/ in the basis .a1; : : : ; ag/.

Proof of Corollary 4.19 This is a direct computation, together with the fact that the

matrix S is symmetric. Set y WD
�
1
2
!S C!ı

�
ıTr!S

� a
b c

d
�
. Then

y D
�
1
2
!SC!ı

��
!S .a; d/.b˝cCc˝b/C!S .b; c/.a˝dCd˝a/

�!S .a; c/.b˝dCd˝b/�!S .b; d/.a˝cCc˝a/
�
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D !S .a; d/!S .b; c/C!S .b; c/!S .a; d/�!S .a; c/!S .b; d/

�!S .b; d/!S .a; c/C!ı
�
!S .a; d/.b˝cCc˝b/C!S .b; c/.a˝dCd˝a/

�!S .a; c/.b˝dCd˝b/�!S .b; d/.a˝cCc˝a/
�

D �

� a
b c

d

; '

�
;

where the last equality comes from Lemma 4.17. The equality for halves of symmetric
trees can be checked in a similar way.

Remark 4.20 It is easy to see that the map � is not linear in the second variable.
However, since !S ıTr!S clearly vanishes on F0, we have that the restriction �jF0�IL

is bilinear, as stated in Theorem 4.10.

We now prove Theorem 4.10.

Proof of Theorem 4.10 Recall that TrA vanishes on F1. So does �. Indeed, by
Corollary 4.19 and Remark 4.20, we have !ı ıTr!S D �. � ; '/ for any ' 2 IL, with
S D �.'/. Also, by Lemma 4.18, for any x1; x2 2 A and for any c; d 2H ,

!ı

�
Tr!S

� x1
x2 c

d ��
D !ı.0/D 0;

!ı

�
Tr!S

� x1
c d

x2 ��
D !ı.!S .c; d/.x1˝ x2C x2˝ x1//D 0:

For any symmetric tree T 0 in F1, Tr!S
�
1
2
T 0
�
D

1
2

Tr!S .T 0/D 0.

Hence, it is sufficient to compute the maps on trees with only one leaf colored by an
element of A. Any half of a symmetric tree in F0 is actually in F1, and for any a 2 A
and c1; c2; c3 2H , we have, once again applying Lemma 4.18,

!ı

�
Tr!S

� a

c1 c2

c3 ��
D !S .c1; c2/!ı.a˝c3Cc3˝a/�!S .c1; c3/!ı.a˝c2Cc2˝a/

D !S .c1; c2/!ı.c3; a/�!S .c1; c3/!ı.c2; a/

D !S .c1; c2/!
0.a; c3

0/�!S .c1; c3/!
0.a; c2

0/

D !S .c1; c2/!.a; c3/�!S .c1; c3/!.a; c2/;
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and, if s WD
Pg
i;jD1 Si;j .ai ˝ aj / is the element of .A˝A/S2 corresponding to S

under the isomorphism .A˝A/' Hom.H 0; A/ given by !0, then

eTrA
� a

c1 c2

c3

; S

�
D

1
2
r.s/

�
!.a; c3/.c2c1/�!.a; c2/.c3c1/

�
D !S .c1; c2/!.a; c3/�!S .c1; c3/!.a; c2/

as one can see by using (4-1) and (4-2). Indeed, s yields after dualization an elementPg
i;jD1 Si;j .b

0�
i ˝ b

0�
j / 2 .H

0�˝H 0�/. This corresponds exactly to the element of
.H 0˝H 0/� induced by !S . In other words,

r.s/.c2c1/D !S .c2˝ c1C c2˝ c1/D 2!S .c1; c2/:

From these equalities, and Corollary 4.19, we can conclude that for all T 2 F0, and
' 2 IL, we have eTrA.T; �.'//D �.T; '/. To conclude, if a tree T is in �2.A\ J2/,
for any ' 2 IL \A, we have �.T; '/ D 0 by Lemma 4.16. By Remark 4.11, it is
the same as saying that �.T; '/ D 0 for any ' 2 IL. Remark 4.9 then implies that
TrA.T /D 0. The map TrA then vanishes on �2.A\J2/.

Remark 4.21 Note that, while the map �D �j WD2.H/�M! Z depends on the
choice of the Heegaard embedding j W †! S3 (extending to V ), its restriction to
F0 � IL only depends on the Lagrangian A�H , as a consequence of Theorem 4.10.

5 Computing �2.A\J2/

In this section we compute explicitly the image of A\J2 under �2. We are going to
show that it is detected by TrA W F0! S2.H 0/. The hypothesis on the genus in the
next result could probably be improved, but it would add a lot of special cases to the
computations below.

Theorem 5.1 For g � 4, �2.A\J2/D Ker.TrA/\Ker.Tras/D Ker.TrA/\ Im.�2/.

The inclusion �2.A\J2/�Ker.TrA/\Ker.Tras/ follows from Theorems 2.4 and 4.10.
Recall that the elements inD2.H/ are expansions of trees and halves of symmetric trees,
as explained in Section 2. As before, identify a tree with 4 leaves with its expansion
in D2.H/. A symplectic basis .ai ; bi / of H is chosen so that the ai ’s generate the
Lagrangian subgroup A�H which is involved in the definition of TrA. We denote by
B the Lagrangian generated by the bi ’s. Now, notice that trees with 0� k � 4 leaves
colored by elements among the ai ’s and 4� k colored by elements among the bi ’s
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give, after projection, generators of the quotient Fk�1=Fk . We call such trees trees of
type k. For example F0=F1 is generated by trees of type 1. Also an element of F0 can
be written as a linear combination of elements of type 1 to 4.

We will use several times the following lemma.

Lemma 5.2 Let
0!K! F ! C ! 0

be a short exact sequence of finitely generated abelian groups. We suppose that C
is a free abelian group or a Z2–vector space , and that we have a generating family
.fi /0�i�f of F and a basis .cj /0�j�c for C such that .fi / consists of elements of K
and lifts of elements of .cj /. Then K is generated by

.ffi j 0� i � f g\K/[ .ffi �fj j 0� i < j � f g\K/

if C is free abelian and by

.ffi j 0� i � f g\K/[ .ffi �fj j 0� i < j � f g\K/[f2fi j 0� i � f g

if C is a Z2–vector space.

Proof Let us suppose that C is a free abelian group. Let p W F ! C denote the
projection. By our hypothesis, for every j 2 f0; : : : ; cg, cj has a lift among the fi ’s.
We denote by .ki /0�i�� the elements among the fi ’s that are in K and .li /0�i�l the
other ones. Now, for any x 2 K, we can write x D

P
i�� �iki C

P
j�l �j lj , with

�i ; �j 2 Z. We thus have
�P

p.lj /Dci
�j
�
ci D 0; hence

P
p.lj /Dci

�j D 0 for every
i 2 f0; : : : ; cg. Fix 1� i � c and consider the lj ’s such that p.lj /D ci , and renumber in
a simpler way the elements (denoted by �0 and l 0 after renumbering) from 0 to ni such
that

P
p.lj /Dci

�j lj D
Pni

jD0 �
0
j l
0
j D

Pni

jD0

Pj�1
sD0 �

0
j .l
0
sC1� l

0
s/, where we used thatPni

jD0 �
0
j D 0. This computation allows us to write x as a linear combination of the

ki ’s and elements li � lj such that p.li /D p.lj /. For the case where C is a Z2–vector
space, the proof can be easily adapted.

Remark 5.3 The generating family provided by Lemma 5.2 is far from being optimal.
For example, given x; y; z 2 F with the same image in C , one does not need to take
.x�y/, .x� z/ and .y � z/, as the last one is a linear combination of the other two.

Let T be in F0 \ Im.�2/ and write it as T1C T�2 where T1 and T�2 are written as
some linear combinations of type 1 elements and type 2 to 4 elements, respectively.

Algebraic & Geometric Topology, Volume 23 (2023)



274 Quentin Faes

We suppose that TrA.T1CT�2/D 0, ie TrA.T1/D 0. Using the special elements of
A\J2 described in Section 4.1 we are going to show that T 2 �2.A\J2/.

From now on, we refer to the element in �2.A\J2/ as realizable elements. We also say
that a tree of type 0 to 4 has a contraction when at least two of its leaves can be paired
nontrivially through !. Some of the computations below are inspired by computations
in [17] and [21].

For the sake of preciseness, we emphasize that for two submodules P and Q of a
module V , the notation P ^Q stands for the image of P ˝Q under the projection
V ˝V !ƒ2.V /. From Section 2, we have that Tras vanishes on elements of Im.�2/.
On an element of type 1 this trace takes value in .B^B/˝Z2 and on other types it takes
values in .A^H/˝Z2. Hence, using the decomposition ƒ2H D .B ^B/˚ .A^H/,
it is clear that Tras.T1CT�2/D 0 implies Tras.T1/D Tras.T�2/D 0. In the sequel, we
shall prove that T1 2 �2.A\J2/ and, next, we will show that T�2 2 �2.A\J2/ using
the fact that Tras.T�2/D 0.

In terms of the symplectic basis .ai ; bi / of H , the elements of type 1 can be of the
following form (up to sign):

1 i;j;k;l WD

ai

bj bk

bl
; 2 i;j;k WD

ai

bj bk

bi
;

3 i;k;l WD

ai

bi bk

bl
; 4 i;k WD

ai

bi bk

bi
;

with i different from j , k and l .

Proposition 5.4 Set N WDKer.TrA W SpanZftype 1 elementsg! S2.H 0//. Then N is
generated by elements of type 1 , 3 and

2 i;j;j � 2 i 0;j;j ; 2 i;j;k � 2 i 0;j;k; 2 i;j;k � 2 i 0;k;j ;

2 i;j;k � 4 j;k; 2 i;j;k � 4 k;j ; 4 i;k � 4 k;i ;

where i and i 0 must be different from j , k and l , and j ¤ k.

Proof It is a consequence of Lemma 5.2 applied to the short exact sequence

0!N ! SpanZftype 1 elementsg ! S2.H 0/! 0
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after computing that
TrA

�
1 i;j;k;l

�
D 0;

TrA
�
3 i;k;l

�
D 0;

TrA
�
2 i;j;k

�
DCb0kb

0
j ;

TrA
�
4 i;k

�
DCb0kb

0
i :

Here, the generating family for SpanZftype 1 elementsg is the family of type 1 elements,
and the basis we use for S2.H 0/ is .b0ib

0
j /1�i�j�g .

We are going to show that N � �2.A\J2/; in particular we will have T1 2 �2.A\J2/.
First, 1 i;j;k;l can be written as

ai

bj bk

bl
D

�
�

ai

bj bm

;

bl

am bk

�
;

where m is different from j . Morita has shown, as stated in Proposition 3.8, that (the
expansion of) a tree (with three leaves) in D1.H/ is in �1.A\J1/ if and only if one of
the leaves vanishes in H 0 [19], where D1.H/Dƒ3H has been identified with At1.H/.
Hence 1 i;j;k;l is indeed in �2.A\J2/, obtained as the image by �2 of an element of
the third family defined in Section 4.1: a commutator of the Torelli handlebody group.
This is also true for

3 i;k;l D

�
�

ai

bi bm

;

bl

am bk

�

with m¤ i . Now, we are left with the generators of N built in Proposition 5.4 from
2 and 4 elements. One can check that

2 i;j;j � 2 i 0;j;j D

�
�

ai

bj bi 0

;

bi

ai 0 bj

�
;

2 i;j;k � 2 i 0;k;j D

�
�

ai

bj bi 0

;

bi

ai 0 bk

�
;

2 i;j;k � 2 i 0;j;k D

�
�

ai

bj bi 0

;

bi

ai 0 bk

�
C

ai 0

bi 0 bj

bk
;
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and that

2 i;j;k � 4 j;k D

�
�

ai

bj bl

;

bi

al bk

�
C

� aj

bj bl

;

bj

al bk

�
;

2 i;j;k � 4 k;j D
�
2 i;j;k � 4 j;k

�
C
�
4 j;k � 4 k;j

�
;

4 i;k � 4 k;i D

�
�

ai

bi bl

;

bi

al bk

�
C

� ak

bk bl

;

bk

al bi

�
C

al

bl bi

bk
;

with l always chosen so that it does not add any contraction, which is possible if the
genus is greater or equal to 4. We know how to show that each of the terms are in
�2.A\J2/, because

ai 0

bi 0 bj

bk
D

�
�

ai 0

bi 0 bl

;

bk

al bj

�
with l ¤ i 0

for i 0 ¤ j; k; and all of these terms are in the image of elements of the third kind
described in Section 4.1. Hence N � �2.A\J2/.

Remark 5.5 One can notice that all the trees that have been used above to realize
elements of N as linear combinations of Lie brackets of elements of �1.A\ J1/ are
colored by elements of A and elements of B (and never only by A or only by B).

We now turn to the element T�2. We remark that .A^H/D .A^A/˚ .A^B/; hence
if write T�2 D T2CT�3 where T2 is a linear combination of type two elements and
T�3 a linear combination of type 3 and 4 elements, then Tras.T2/ D Tras.T�3/ D 0,
because Tras.T�2/D 0. We will deal first with T2. By the IHX relation, we can even
restrict our type two elements appearing in the writing of T2 to trees where the two A
colors are not “close” to each other, ie trees of the form

5 i;j;k;l WD

ai

bj bk

al

; 6 i;j WD
1

2

ai

bj ai

bj

with no conditions on the indices. It is known, by Morita’s formula in Lemma 2.3,
that the elements of the form 6 i;i can be obtained as the image under �2 of a Dehn
twist along a curve i bounding a subsurface with ai and bi forming a symplectic basis
of this subsurface. This curve can be chosen to bound a disk in the handlebody (see
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i

i i;j j

Figure 4: Curves i and i;j .

Figure 4) so that the corresponding Dehn twist is an element of the first kind described
in Section 4.1. Hence, 6 i;i belongs to �2.A\J2/, and we now suppose i ¤ j in the
definition of 6 i;j .

We show that 5 i;i;j;j is realizable. This will be useful in the computations below.
Take disjoints neighborhoods of ˛i [ ˇi and j̨ [ ǰ , and band these two genus 1
surfaces as shown in Figure 4. The boundary i;j of the resulting genus 2 surface is
bounding a disk in the handlebody and its image by �2 (using Lemma 2.3) is

�2.Ti;j
/D 6 i;i � 5 i;i;j;j C 6 j;j ;

which shows that 5 i;i;j;j 2 �2.A\J2/.

We divide cases in terms of the number of leaves that contract in 5 i;j;k;l . If there is
no contraction (j ¤ l and k¤ i ), then 5 i;j;k;l can be easily obtained as a commutator
of trees with a leaf in A, supposing g � 4. If there are 2 contractions, then k D i
and j D l , which yields two cases: if i D j then we get �2 6 i;i , which we have
already dealt with; if not, we get an element 5 i;j;i;j … Ker.Tras/. If there is only one
contraction, then up to symmetry ( 5 i;j;k;l D 5 l;k;j;i ) we can suppose that k D i and
j ¤ l . Hence the remaining element T 02 (the part of T2 which is not yet proved to be in
�2.A\J2/) is a linear combination of trees of the form 5 i;j;i;j (with i ¤ j ), 5 i;j;i;l
(with l ¤ j ) and 6 i;j (with i ¤ j ) such that

Tras� 5 i;j;i;j �D ai ^ bi C aj ^ bj with i ¤ j;

Tras� 5 i;j;i;l�D al ^ bj with l ¤ j;

Tras� 6 i;j �D ai ^ bj with i ¤ j;

and satisfies Tras.T 02/D 0.

Notice that in Ker.! Wƒ2.H=2H/! Z2/ the two subspaces SpanZ2
fai ^ bj j i ¤ j g

and SpanZ2
fai^biCaj ^bj j i ¤ j g have trivial intersection. This allow us to write T 02
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as a sum of two elements, say U and V , the element U being in SpanZ

˚
5 i;j;i;l ; 6 i;j j

j ¤ l
	

and V being in SpanZ

˚
5 i;j;i;j j i ¤ j

	
, such that Tras.U /DTras.V /D 0. The

element U can be written as a linear combination of

5 i;j;i;l ˙ 5 i 0;j;i 0;l ; 2 6 i;j ; 5 i;j;i;l ˙ 6 l;j

by Lemma 5.2 applied to the short exact sequence

(5-1) 0!K! SpanZ

˚
5 i;j;i;l ; 6 i;j j j ¤ l

	 Tras
�! SpanZ2

fai ^ bj j i ¤ j g ! 0;

where the generating family for SpanZ

˚
5 i;j;i;l ; 6 i;j j j ¤ l

	
and the basis for

SpanZ2
fai^bj j i¤ j g are given in their definition. The tree 2 6 i;j has no contractions

and can be realized as a commutator of the Torelli handlebody group. We also have,
with r ¤ i; j; l ,

5 i;j;i;l C 5 i 0;j;i 0;l D

� ai

bj ai 0
;

al

bi 0 bi

�
as l ¤ j;

2 5 i;j;i;l D

� ai

bj ar

;

al

br bi

�
�

� ai

bj br

;

al

ar bi

�

�

� ar

br ai

;

al

bi bj

�
as l ¤ j;

and with the same arguments as above these elements are realizable (using the first
family described in Section 4.1). For elements involving 5 and 6 , if i ¤ j , then

6 l;j � 5 i;j;i;l D 6 l;j C

�
�

ai

bj aj

;

al

bj bi

�
�

bj

aj bj

al

:

As 6 l;j �
bj

aj bj

al
C 6 j;j can be obtained from the Dehn twist along the boundary

of a neighborhood of . j̨ ] ˛�1l /[ ǰ (where . j̨ ] ˛�1l / denotes the connected sum of

j̨ and ˛l ), and knowing that 6 j;j is in �2.A\J2/, we conclude that 6 l;j � 5 i;j;i;l
is realizable for i ¤ j . If i D j , then we write, for some j 0 ¤ i ,

(5-2) 6 l;j � 5 j;j;j;l D
�
6 l;j � 5 j 0;j;j 0;l

�
C
�
5 j 0;j;j 0;l � 5 j;j;j;l

�
and we have just shown that both terms of this sum are realizable. We conclude that U
is realizable.
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We need to show that V is also realizable, which will show that T 02, and hence T2 are
also realizable. We need the following.

Lemma 5.6 The kernel S in the short exact sequence

0! S ! SpanZ

˚
5 i;j;i;j j i ¤ j

	 Tras
�! SpanZ2

fai ^ bi C aj ^ bj j i ¤ j g ! 0

is generated by the family˚
5 1;i;1;i C 5 i;j;i;j C 5 j;1;j;1 j i ¤ j

	
[
˚
2 5 i;j;i;j j i ¤ j

	
:

Proof It is not hard to see, by sending the family
˚
5 i;j;i;j j i < j

	
to .H ˝Q/˝4

through the expansion map and the inclusion L.H ˝Q/� T .H ˝Q/, that this family
is free. Indeed, 5 i;j;i;j is sent to a sum of 16 terms, from each of which one can
recover i and j . Each of these terms belongs (up to a sign) to the basis of .H ˝Q/˝4

induced by the basis chosen for H . Hence, SpanZ

˚
5 i;j;i;j j i ¤ j

	
is free and we

can apply Lemma 5.2 to the short exact sequence by using the family˚
5 i;j;i;j � 5 j;1;j;1 j i < j

	
[
˚
5 j;1;j;1 j 2� j

	
as a generating family for SpanZ

˚
5 i;j;i;j j i ¤ j g

	
, and .a1 ^ b1C ai ^ bi /2�i�g as

the basis for SpanZ2
fai ^ bi C aj ^ bj j i ¤ j g. Then S is generated by˚

2 5 i;j;i;j � 2 5 j;1;j;1 j i < j
	

[
˚
2 5 j;1;j;1 j 2� j

	
[
˚
5 i;j;i;j � 5 j;1;j;1� 5 i;1;i;1 j i < j

	
[
˚
5 i;j;i;j � 5 j;1;j;1� 5 i;k;i;kC 5 k;1;k;1 j i < j < k

	
;

from which we deduce the simpler generating family˚
5 1;i;1;i C 5 i;j;i;j C 5 j;1;j;1 j i ¤ j

	
[
˚
2 5 i;j;i;j j i ¤ j

	
:

Indeed, it is easy to get the elements of the family given by Lemma 5.2 with the
elements given right above. For example, for i < j ,

5 i;j;i;j � 5 j;1;j;1� 5 i;1;i;1

D
�
5 1;i;1;i C 5 i;j;i;j C 5 j;1;j;1

�
� 2 5 1;i;1;i � 2 5 j;1;j;1;

and, for i < j < k,

5 i;j;i;j � 5 j;1;j;1� 5 i;k;i;kC 5 k;1;k;1

D
�
5 1;i;1;i C 5 i;j;i;j C 5 j;1;j;1� 2 5 j;1;j;1

�
�
�
5 1;i;1;i C 5 i;k;i;kC 5 k;1;k;1� 2 5 k;1;k;1

�
:
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Hence by Lemma 5.6, the element V can be written as a linear combination of

5 1;i;1;i C 5 i;j;i;j C 5 j;1;j;1; 2 5 i;j;i;j ;

where i ¤ j . We compute, for i; j ¤ 1,� a1

bi aj

;

ai

bj b1

�
D 5 1;i;1;i C 5 i;j;i;j �

aj

a1 bj

b1

D 5 1;i;1;i C 5 i;j;i;j � 5 j;1;j;1C 5 j;j;1;1:

We know that 5 j;j;1;1 is realizable, which shows that 5 1;i;1;i C 5 i;j;i;j � 5 j;1;j;1
is also realizable. Similarly, the element 5 i;j;i;j C 5 j;1;j;1� 5 1;i;1;i is realizable.
By summing these two elements, we get that 2 5 i;j;i;j is also realizable. We deduce
that both 5 1;i;1;i C 5 i;j;i;j C 5 j;1;j;1 and 2 5 i;j;i;j belong to �2.A\ J2/ for any
i ¤ j . Therefore V is realizable. We finally turn to T�3. We define the elements

7 i;j;k;l WD

ai

aj bk

al

; 8 i;j WD
1

2

ai

aj ai

aj

with i ¤ j , then

Tras. 7 i;j;k;l/D ıkiaj ^ al C ıkjai ^ al ; Tras. 8 i;j /D ai ^ aj :

The fact that T�3 can be realized will follow from the same kind of computations as
for T2. We define P WD Ker.Tras

W SpanZftype 3 and 4 elementsg ! .A^A/˝Z2/.

Proposition 5.7 P is generated by trees with 4 leaves colored by A, elements of
type 7 with no contractions , elements of type 7 i;k;k;i , and elements

7 i;k;k;m˙ 7 m;k;k;i ; 7 i;k;k;l ˙ 7 i;k0;k0;l ; 7 i;k;k;l ˙ 8 i;l ;

where i must be different from k, k0 and l , and m¤ k.

Proof It follows once again from Lemma 5.2 applied to the short exact sequence

0! P ! SpanZftype 3 and 4 elementsg Tras
�! ..A^A/˝Z2/! 0:

Type 3 and 4 elements give a generating family for SpanZftype 3 and 4 elementsg and
.ai ^ aj /1�i<j�g a basis for ..A^A/˝Z2/. Note that, according to Lemma 5.2, in
our family of generators we should have elements of type 2 7 i;j;k;l and 2 8 i;j for any
i ¤ j . Nevertheless, these elements are not needed, because if there is no contraction
we have the element 7 i;j;k;l as a generator and if there is one contraction it is easy
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to obtain both 2 7 i;j;j;l and 2 7 i;j;i;l D�2 7 j;i;i;l from the generators given in the
proposition. This last argument also works for 2 8 i;j .

We now show that P is contained in �2.A \ J2/. Elements of type 4 that are not
expansions of half trees in D2.H/ are not worth mentioning: they always have no
contractions and are in �2.ŒA\J1;A\J1�/. The same is true for elements of type 7

with no contractions. Once again we check some relations, making sure that any tree
with three leaves appearing in the computations below has at least one leaf colored by A,

7 i;k;k;l C 7 i;k0;k0;l D

" ai

ak ak0
;

al

bk0 bk

#
;

7 i;k;k;l � 7 l;k0;k0;i D

"
�

ai

ak bk0

;

al

ak0 bk

#
;

7 i;k;k;m� 7 m;k;k;i D

ak

bk am

ai

D

" ak

bk ai

;

ai

bi am

#
;

2 7 i;k;k;m D

" ai

ak ar

;

am

br bk

#
�

" ai

ak br

;

am

ar bk

#
�

" ar

br ak

;

ai

bk am

#
;

8 i;l ˙ 7 i;k;k;l D
�
8 i;l ˙ 7 i;l;l;l

�
˙
�
7 i;k;k;l � 7 i;l;l;l

�
:

We also consider the Dehn twist along the curve bounding the surface which is a
neighborhood of ˛l [ .˛i ]ˇ˙l /, where .˛i ]ˇ˙l / is a connected sum of ˛i and ˇl with
orientation defined by the sign. This element is in A\J2 and its image under �2 is

1

2

ai ˙ bl

al ai ˙ bl

al

D 8 i;l ˙ 7 i;l;l;l C
1

2

bl

al bl

al

which ultimately shows that 8 i;l ˙ 7 i;l;l;l belongs to �2.A \ J2/. Therefore,
8 i;l ˙ 7 i;k;k;l is also realizable. Finally, elements of type 7 i;k;k;i can be realized

in the following way. Notice that

1

2

ai C ak

bkC ai ai C ak

bkC ai
�
1

2

ak

bkC ai ak

bkC ai
D
1

2

ai

bkC ai ai

bkC ai
C

ai

bkC ai ak

bkC ai
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D
1

2

ai

bk ai

bk
C

ai

bk ak

bkC ai

D 6 i;k � 5 i;k;k;kC 7 i;k;k;i :

Now, we have already shown that 6 i;k � 5 i;k;k;k 2 �2.A\J2/ (by equality (5-2)),
because it can be written as 6 i;k� 5 k;k;k;i . So we just need to show that the left part
of this equality is also in �2.A\J2/ to conclude that 7 i;k;k;i is realizable. This comes
once again from Lemma 2.3 and the fact that the curves bounding .˛i ]˛k/[ .ˇk ]˛i /
and .˛k/[ .ˇk ] ˛i / (where .˛i ] ˛k/ and .ˇk ] ˛i / are connected sums of the curves
involved) are bounding disks in the handlebody. All these computations imply that
P � �2.A\J2/, so T�3 2 �2.A\J2/.

Consequently, we get that T 2 �2.A\J2/ which finishes the proof of Theorem 5.1.

Remark 5.8 The computations in this section actually give generators for �2.A\J2/,
which we can write explicitly. Also, it can be noticed that we used only elements of
A\ J2 of the first and the third kind defined in Section 4.1. This tells us something
about the generation of A\ J2, but only up to J3. Naturally the following question
arises: is A\J2 generated by elements of the first and the third kind in Section 4.1?

Theorem 5.1 allows us to recover the result shown by Pitsch in [21], whose immediate
corollary is that any homology 3–sphere is J3–equivalent to S3. We even get a slight
improvement on the genus condition. With the definitions of A, B, and � given in
Section 3, we get the following result:

Corollary 5.9 For any g � 4, Im.�2/D �2.A\J2/C �2.B\J2/.

Proof Any element T in the image of �2 can be written as (an expansion of) a linear
combination T1 of trees with 0 or 1 leaf colored byA and a linear combination T2 of trees
with 2, 3 or 4 leaves colored by A (here, the term “tree” includes halves of symmetric
trees as well). Then it is clear that Tras.T1/ 2 B ^B , whereas Tras.T2/ 2 A^H . The
spaces B ^B and A^H having trivial intersection in ƒ2H implies both T1 and T2
lie in the kernel of Tras. The term T2, by definition, also lies in the kernel of TrA.
We also know (see Section 6) that � acts on H as the map sending ai to .�bi / and
bi to ai for all i’s, and that B D �A��1. Now ��.T1/ lies in the kernel of TrA. By
Theorem 4.10, we know that there are two mapping classes  1 and  2 in A\J2 such
that T D T1CT2 D �2.� 1��1/C �2. 2/, which finishes the proof.
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Remark 5.10 In this proof, we used only the fact that F1\�2.J2/� �2.A\J2/ which
is strictly weaker than the equality �2.A\J2/DKer.TrA/\�2.J2/ from Theorem 5.1.
In this sense, the computation in this section is more precise than the one from [21].

6 Computing �2.G \J2/

As in Section 3, we choose a system of meridians and parallels in the boundary of Vg ,
and we identify S3 with Vg[�g.�Vg/. This gives the Heegaard splitting of genus g of
the 3–sphere, and we consider the subgroup BD �A��1 of M. We thus have a family
of curves .˛i /1�i�g with homology classes .ai /1�i�g as in the previous sections, but
also a set of curves .ˇi /1�i�g with homology classes .bi /1�i�g , defining a Lagrangian
B �H . The map � can be defined by its action on � . We lift the curves ˛i and ˇi to
elements of � as described in Figure 5, and we set

�� W �! �; ˛i 7! ˇ�1i ; ˇi 7! ˇi˛iˇ
�1
i :

Indeed, by the Dehn–Nielsen theorem, as �� fixes the element � WD
Qg
iD1Œˇ

�1
i ; ˛i �

defined by �@† in � (� is described in Figure 5), the map � realizing this action is well
defined.

The Goeritz group of S3 is the group of isotopy classes of orientation-preserving
homeomorphisms of S3 preserving this Heegaard splitting (and fixing the disk). We
denote it by G WD Gg;1. Observe that G coincides with A\B. The Johnson filtration
restricts to a separating filtration on G. In this section, we compute �1.G \ J1/ and
�2.G\J2/ using, respectively, a refinement of the computations made by Morita in [17]
and the computations and results in Section 5. Notice that � acts on G by conjugation,
and on H by sending ai to �bi and bi to ai for all i . We also need the following from
[25, Section 3].

x̨1 x̨2 x̨g

x̌
1

x̌
2

x̌
g

�

x0

Figure 5: The based curves .˛i /1�i�g and .ˇi /1�i�g .
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Figure 6: The two curves defining  .

Lemma 6.1 The image of G in Sp.2g;Z/ coincides with��
P 0
0 (P T /�1

� ˇ̌̌
P 2 GL.g;Z/

�
and , so , is canonically isomorphic to GL.g;Z/.

Thus, for all k, �k.G \Jk/ is a GL.g;Z/–module.

Proposition 6.2 For g � 2, we have �1.G \J1/D A^B ^H .

Proof We identify once again elements of ƒ3H to trees with three leaves. Any
element in �1.G\J1/ must vanish when we reduce its leaves in H=A or H=B . Hence
it can be written as a linear combination of trees whose leaves are never colored solely
by A or by B . Now, one can check that any tree in A^B ^H colored by elements in
fai ; bi j 1� i � gg is in the Z–module generated by the orbit of T WD

a1

b1 b2
under the

actions of � and GL.g;Z/. Indeed, if such a tree has 2 leaves colored by A, the action
of � allows us to have a tree in the same orbit but with two leaves colored by B . Now,
such a tree is always in the orbit of T or T 0 WD

a1

b2 b3
under the action of GL.g;Z/

(just by renumbering). But T 0 is also in the Z–module generated by the orbit of T , as
one can write T 0 D

a1

b1Cb2 b3
�T . Hence, it is sufficient to show that this particular

tree is in �1.G\J1/. Actually, if  denotes the composition of a right Dehn twist along
a simple closed curve corresponding to Œ˛2; ˇ�12 �Œ˛1; ˇ

�1
1 �ˇ2 2 � with the left Dehn

twist along a simple closed curve corresponding to ˇ2 2 � (as described in Figure 6
and [17, Figure 3a]), then �1. / D T . The map  is an annulus twist in the inner
handlebody, and the composition of two Dehn twists along curves bounding disks in
the outer handlebody. Hence, we have  2A\B D G.

Even though TrA and TrB are not defined over the same subspaces of D2.H/, their
kernels are both included in D2.H/. Hence the following makes sense
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Proposition 6.3 For g � 4, we have �2.G\J2/DKer.Tras/\Ker.TrA/\Ker.TrB/.

Proof The inclusion from the left to the right is a direct consequence of Theorems 2.4
and 5.1. For the other inclusion, let us take an element

T 2 Ker.Tras/\Ker.TrA/\Ker.TrB/:

We say, for 0 � k; l � 4, that a tree has type .k; l/ if it has k leaves colored by A
and l leaves colored by B . The tree T is then a linear combination of trees of type
.1; 3/, .2; 2/ and .3; 1/. This is due to the fact that T must be in the kernel of the
projections D2.H/!D2.H=A/ and D2.H/!D2.H=B/. Hence we decompose T
into 3 elements: T D T1CT2CT3, such that Ti is a linear combination of elements
of type .i; 4� i/, for i D 1; 2; 3. The images by Tras of these 3 elements take place
in separate summands in ƒ2.H=2H/. Also, by definition, TrA (resp. TrB ) vanishes
on the element of types .2; 2/ and .3; 1/ (resp. .2; 2/ and .1; 3/). We thus have, for
i D 1; 2; 3, Ti 2 Ker.Tras/ \ Ker.TrA/ \ Ker.TrB/. We thus treat these 3 elements
separately.

The element T1 belongs to the space N defined in Proposition 5.4. By Remark 5.5,
any element in N can be realized as a linear combination of commutators of trees with
three leaves with always at least one leaf in A and one leaf in B . By Proposition 6.2,
this implies that N � �2.G \J2/. Indeed, we have ŒG \J1;G \J1�� G \J2.

The element T3 is such that ��.T3/ is of type .1; 3/; hence is in N . We deduce that
��.T3/, and consequently T3, also belong to �2.G \J2/.

The element T2 is exactly of the same type as its homonym in Section 5. We want
to modify slightly the argument in order to show that it is also in �2.G \ J2/. The
elements Œ˛1; ˇ�11 � and Œ˛2; ˇ�12 �Œ˛1; ˇ

�1
1 � in � (where the curves have been lifted to

elements of � as in Figure 5) define two simple closed curves bounding disks both
in the inner and the outer handlebody. Then the Dehn twists along these two curves
are maps in the Goeritz group, but also in J2. This gives, respectively, that 6 1;1
and 6 1;1 � 5 1;1;2;2 C 6 2;2 are in �2.G \ J2/. Using the action of GL.g;Z/ (by
sending 1 on i and 2 on j ), we deduce that for all 1 � i ¤ j � g, we have 6 i;i ,
5 i;i;j;j 2 �2.G \J2/. For the trees of type 5 i;j;k;l with no contraction discussed on

page 277, we can simply write

ai

bj bk

al

D

� ai

bj al

;

al

bl bk

�
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if all the indices are different or

ai

bj bk

al

D

� ai

bj am

;

al

bm bk

�
with m … fi; j; k; lg otherwise (which is possible with g � 4). We conclude, as in
Section 5 that T2 is a sum of an element in �2.G\J2/ and an element T 02DU CV with
U 2K and V 2 S , where these spaces are defined in the short exact sequence (5-1)
and in Lemma 5.6, respectively. The computations showing that V 2 �2.A\J2/ only
involves commutators of trees colored both by A and B , and the element 5 j;j;1;1. By
Proposition 6.2, V 2 �2.G\J2/. Finally, using once again the same argument, we only
need to show that 6 l;j � 5 j;j;j;l 2 �2.G\J2/ for i ¤ j to show that U 2 �2.G\J2/.
We notice that the action of GL.g;Z/ corresponding to b1 7! b1Cb2 and a2 7! a2�a1

(and fixing the other elements in the basis) sends 6 1;2 to 6 1;2� 5 1;1;2;1. Then the
action of � on this element gives 6 2;1� 5 1;1;1;2. This proves that 6 2;1� 5 1;1;1;2 2

�2.G \ J2/, and by action of GL.g;Z/, that 6 l;j � 5 j;j;j;l 2 �2.G \ J2/ for any
i ¤ j .

Remark 6.4 The rationalization of �2.G \ J2/ is a finite-dimensional GL.g;Q/–
module. In the appendix, we give its decomposition into irreducible modules. This
results in a rational version of Proposition 6.3.

Clearly one has that �k.G \ Jk/ � �k.A \ Jk/ \ �k.B \ Jk/. It is not clear if the
converse is true in general. As a direct consequence of Propositions 6.2 and 6.3 and
Theorem 5.1, we get the following:

Corollary 6.5 For g � 4, we have �1.G \ J1/ D �1.A \ J1/ \ �1.B \ J1/ and
�2.G \J1/D �2.A\J2/\ �2.B\J2/.

In [22], Pitsch already pointed out that the image of G in Sp.2g;Z/ coincides with
the intersection of the images of A and B; see Lemma 6.1. Using this fact and the
Reidemeister–Singer theorem (see Theorem 3.1), he showed ([22, Theorem 1]):

Proposition 6.6 There is a well-defined isomorphism

lim
g!1

�
.Ag;1\ Ig;1/nIg;1=.Bg;1\ Ig;1/

�
Gg;1
' S3:

where G acts by conjugation.
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This gives an intrinsic description of the equivalence relation given by Reidemeister–
Singer theorem on the Torelli group. The same can be done, using Corollary 6.5, for
the second and third term of the Johnson filtration.

Proposition 6.7 Let Kg;1 WD J2.†g;1/ and Lg;1 WD J3.†g;1/. Then there are well-
defined isomorphisms

lim
g!1

�
.Ag;1\Kg;1/nKg;1=.Bg;1\Kg;1/

�
Gg;1
' S3

and
lim
g!1

�
.Ag;1\Lg;1/nLg;1=.Bg;1\Lg;1/

�
Gg;1
' S3:

Proof The proof is by induction. We already know that the maps are well defined and
surjective; see Section 3. We know by Proposition 6.6 that two gluing maps �2Kg;1 and
 2Kg;1 yield the same homology 3–sphere if and only if, after an eventual stabilization,
there exists maps �a 2A\I, �b 2B\I and �2G such that �D��a �b��1. Applying
�1 to this equality we get that �1.�a/D��1.�b/ 2 �1.A\I/\ �1.B\I/D �1.G\I/.
Then there exists �0 2 G \ I such that ��1��D �0 ı .�0�1�a/ .�b�0/ ı�0�1, with
�0�1�a 2A\Kg;1 and �b�0 2 B\Kg;1. Then a conjugate of � by an element of the
Goeritz group is in the same double coset class as  . This concludes, as one can get
the proof for Lg;1 by applying the same method to some elements � and  in Lg;1.

Using the methods described by Pitsch in [22], Proposition 6.7 could help to build invari-
ants of homology 3–spheres by using algebraic properties of J2 and J3. Unfortunately,
we do not know about generators of A\J2 and A\J3.

Appendix Decomposition of �2.G \J2/˝Q

As a consequence of Lemma 6.1, the conjugation action of the Goeritz group G on
itself induces a GL.g;Z/–module structure on �2.G \ J2/, the image of the Goeritz
group by the second Johnson homomorphism. This action is the restriction of the
canonical action of GL.g;Z/ � Sp.2g;Z/ ' Sp.H/ on D2.H/ to �2.G \ J2/. Let
D2.H

Q/ be the rationalization of the abelian group D2.H/, with HQ WDH ˝Q. It
is clear that HQ is a GL.g;Q/–module, hence D2.HQ/ is also a GL.g;Q/–module.
Then, by standard arguments (see [1] for instance), the GL.g;Z/–module structure on
�2.G \J2/ extends to a GL.g;Q/–module structure on �2.G \J2/˝Q.

In this appendix, we fix a genus g � 4 and we give the decomposition of this module
into irreducible GL.g;Q/–modules. We do not use any results from Section 5. Recall

Algebraic & Geometric Topology, Volume 23 (2023)



288 Quentin Faes

from Section 6 that we have a basis .ai ; bi /1�i�g for H , inducing a basis for HQ.
This also yields a decomposition H D AQ˚BQ, with AQ and BQ stable under the
action of GL.g;Q/. Specifically, GL.AQ/ acts on AQ and .AQ/� in the natural way,
BQ is identified to .AQ/� via ! and GL.AQ/ is identified to GL.g;Q/ through the
basis .a1; : : : ; ag/ of AQ.

Let Di;j be the subspace of D2.HQ/ generated by expansions of trees with i leaves
in AQ and j leaves in BQ, for 0� i � 4 and i C j D 4. We compute the dimensions
of these submodules of D2.HQ/.

Lemma A.1 For any g � 3,

dim.D2.HQ//D 1
3
g2.2g� 1/.2gC 1/;(A-1)

dim.Di;j /D dim.Dj;i /;(A-2)

dim.D0;4/D 1
12
g2.g� 1/.gC 1/;(A-3)

dim.D1;3/D 1
3
g2.g� 1/.gC 1/;(A-4)

dim.D2;2/D 1
2
g2.g2C 1/:(A-5)

Proof Equation (A-1) is a consequence of the isomorphism

.ƒ2HQ˝ƒ2HQ/S2

ƒ4HQ
'D2.H

Q/

(see diagram (2-2)). Equation (A-2) is obtained by interchanging the ai ’s and bi ’s. We
also notice that D0;4 'D2.AQ/, and we obtain (A-3). The space D1;3 is isomorphic
to AQ ˝ L3.BQ/, and the dimension of L3.V / is equal to .n3 � n/=3 for a vector
space V of dimension n; this proves (A-4). Equation (A-5) follows from the previous
using that D2.HQ/D

L
0�i�4Di;4�i . One can also get (A-5) by showing that there

is an isomorphism D2;2 ' S
2.AQ˝BQ/.

We now decompose �2.G \J2/˝Q into 3 submodules and compute their respective
dimensions. Write TrA;Q for TrA˝Q and TrB;Q for TrB ˝Q. The kernels of these
two maps are both regarded as GL.g;Q/–submodules of D2.HQ/.

Corollary A.2 The space �2.G \J2/˝Q is a subset of

Ker.TrA;Q/\Ker.TrB;Q/D
�
D1;3\Ker.TrA;Q/

�
˚D2;2˚

�
D3;1\Ker.TrB;Q/

�
;

and the summands are GL.g;Q/–submodules with respective dimensions

1
6
g.gC 1/.2g2� 2g� 3/; 1

2
g2.g2C 1/ and 1

6
g.gC 1/.2g2� 2g� 3/:
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L
Œ0� Œ0� Œ21g�2� Œ21g�2� Œ42g�2� Œ221g�4�

dim 1 1 g2� 1 g2� 1 1
4
g2.g� 1/.gC 3/ 1

4
g2.gC 1/.g� 3/

HWV �2.T�/

gX
i;jD1

ai

aj bi

bj gX
iD1

a1

bg bi

ai gX
iD1

a1

ai bi

bg a1

bg a1

bg a1

a2 bg

bg�1

Table 1

Proof The inclusion is a consequence of Theorem 4.10, given that G DA\B. The
decomposition is an immediate consequence of the fact thatD3;1˚D2;2�Ker.TrA;Q/
and D1;3 ˚D2;2 � Ker.TrB;Q/. The maps TrA;Q and TrB;Q respect the action of
GL.g;Q/ by Remark 4.6; hence the 3 summands are GL.g;Q/–submodules. The
computation of the dimensions is a consequence of the rank theorem and the previous
lemma, as TrA;Q is surjective onto S2.H=A˝Q/.

Next, we use the representation theory of SL.g;C/, and exhibit the irreducible modules
in �2.G \ J2/˝Q by finding highest weight vectors. Our notation convention for
a Young diagram with n rows of type .�1 � �2 � � � � � �n � 0/ is Œ�1�2 : : : �n�.
To such a diagram is associated an irreducible representation of SL.g;Q/ whenever
n� g� 1, as described in [3]. For short, to a Young diagram � WD Œ�1�2 : : : �g�1� is
associated the subrepresentation of the tensor product

Ng�1
iD1 S

.�i��iC1/.ƒiV / spanned
by v� WD .e1/

�1��2 ˝ .e1 ^ e2/
.�2��3/ ˝ : : :˝ .e1 ^ : : : ^ eg�1/

.�g�1��g/, where
V WDQg has a basis e1; e2; : : : ; eg , and �g D 0. This defines both a representation of
GL.g;Q/ and SL.g;Q/.

Theorem A.3 For any g � 4, we have an isomorphism of SL.g;Q/–modules

�2.G\J2/˝Q

D 2Œ0�C2Œ21g�2�CŒ42g�2�CŒ221g�4�CŒ32g�31�CŒ1g�2�CŒ321g�3�CŒ12�:

Sketch of proof We simply need to exhibit highest weight vectors in �2.G \J2/˝Q

for the action of SL.g;Q/ on D2.HQ/, such that the sum of the dimensions of the
modules they generate is the dimension of Ker.TrA;Q/\Ker.TrB;Q/. We can check
this using (A-1), and it is standard representation theory to verify that a given vector is
a highest weight vector. Hence we get that D2;2 decomposes as in Table 1, where T� is
the Dehn twist around the boundary component of †g;1, and .D1;3\Ker.TrA;Q//˚
.D3;1\Ker.TrB;Q// decomposes as in Table 2.
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L
Œ32g�31� Œ1g�2� Œ321g�3� Œ12�

dim 1
3
g2.g� 2/.gC 2/ 1

2
g.g� 1/ 1

3
g2.g� 2/.gC 2/ 1

2
g.g� 1/

HWV

a1

bg bg�1

bg gX
iD1

ai

bi bg

bg�1 a2

a1 bg

a1 gX
iD1

a1

a2 bi

ai

Table 2

One can also get these decompositions by giving tensorial description of the modules
(such as D2;2 ' S2.AQ˝BQ/) and by using Pieri’s formula. It remains to show that
the highest weight vectors are indeed in �2.G \J2/˝Q. The author checked this for
g � 4 and did it in the same spirit as in the proof of Proposition 6.3.

This already gives a rational version of Proposition 6.3.

Corollary A.4 For any g � 4, �2.G \J2/˝QD Ker.TrA;Q/\Ker.TrB;Q/.

Finally, we turn to the decomposition of �2.G \ J2/˝Q into irreducible GL.g;Q/–
modules. For any integer k�0, we now denote by Detk the kth power of the determinant
representation, and Det�k its dual. Any irreducible rational representation of GL.g;C/
is obtained as the tensor product of an irreducible representation of SL.g;C/ of type �
(for a young diagram �) with a power of the determinant representation. By looking at
the action of the center of GL.g;Q/ on the highest weight vectors given in the proof
of Theorem A.3, we get the following:

Theorem A.5 For any g � 4, we have an isomorphism of GL.g;Q/–modules

�2.G\J2/˝QD 2Œ0�C2Œ21g�2�˝Det�1CŒ42g�2�˝Det�2CŒ221g�4�˝Det�1

CŒ32g�31�˝Det�2CŒ1g�2�˝Det�1CŒ321g�3�˝Det�1CŒ12�:

Proof We know that each irreducible summand W of the SL.g;Q/–module decompo-
sition of �2.G\J2/˝Q is isomorphic as a GL.g;Q/–module to W ˝Detk , for some
k 2 Z. We also know that the isomorphism between the “model” representation given
by the Young diagram � and W can be made explicit by sending v� to the highest
weight vector of our representation. The integer k must be chosen in such a way that
this isomorphism lifts to an isomorphism of GL.g;Q/–modules.
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We only do the computation for one summand, say �D Œ32g�31�. The map sending v�
to T� WD

a1

bg bg�1

bg is an isomorphism of SL.g;Q/–modules, but one can check that for
any d 2Q, .dId/ �v�Dd2g�2v�, while .dId/ �T�D .1=d2/T�. By choosing kD�2,
we get that the map from Œ32g�31�˝Det�2 to the GL.g;Q/–module spanned by T�,
sending v�˝ 1 to T� is a GL.g;Q/–equivariant isomorphism. More generally, one
can check that for a Young diagram � WD Œ�1�2 : : : �g�1� appearing in the irreducible
decomposition of Di;j , we get k D 1

g

�
i � j �

Pg�1
iD1 �i

�
.

Remark A.6 In the decomposition of Theorem A.5, the action of � induces the
following symmetries:

(1) The irreducible summands in D2;2 are isomorphic to their own duals.

(2) The irreducible summands in D1;3 and D3;1 are exchanged when dualizing;
indeed, .Œ321g�3�˝Det�1/�' Œ32g�31�˝Det�2, and Œ12��' Œ1g�2�˝Det�1.

This is an instance of a general fact: for any k � 1, �k.G \Jk/˝Q is isomorphic to
its dual as a GL.g;Q/–module. Indeed, the map � preserves �k.G \Jk/˝Q, and one
can see by direct computation that for all P 2 GL.g;Q/ and X 2Dk.HQ/, we have
�.P �X/D .P T /�1 � �.X/. Hence the basis of HQ induces a Q–module isomorphism
between D2.HQ/ and its dual, and the composition of this isomorphism with � is
a GL.g;Q/–module isomorphism between D2.HQ/ and D2.HQ/�. We conclude
that if W is an irreducible module in �k.G \Jk/˝Q, then �W is also an irreducible
module in �k.G \ Jk/˝Q which is isomorphic as a GL.g;Q/–module to the dual
representation W �.
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