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Recognition of connective commutative algebra spectra
through an idempotent quasiadjunction

RENATO VASCONCELLOS VIEIRA

A recognition principle for 1–loop pairs of spaces of connective commutative
algebra spectra over connective commutative ring spectra is proved. This is done
by generalizing the classical recognition principle for connective commutative ring
spectra using relative operads. The machinery of weak Quillen quasiadjunctions, a
generalization of Quillen adjunctions, is used to handle the model theoretical aspects
of the proof.

55P43, 55P48; 55P42, 55P47, 55P60, 55P65

1 Introduction

A recognition principle is a specification of conditions for a space to be of the weak
homotopy type of an N –loop space. Stasheff showed in [31; 32] that a pointed space is
of the weak homotopy type of a 1–loop space if and only if X is a grouplike A1–space.
By the work of May in [21; 22] and homological computations by Cohen in [6], for
2�N �1 a pointed space is of the weak homotopy type of an N –loop space if and
only if X is a grouplike EN –space. The proof of the recognition principle for1–loop
spaces gives an equivalence between the homotopy category of grouplike E1–spaces
and the homotopy category of connective spectra. Due to reasons we explain shortly, an
interesting feature of this equivalence is that it is not induced by a Quillen adjunction
as is usual in a model theoretical setting.

In [23] May defines actions between operads, which encode distributive properties
and provide a natural definition of E1–rings. The canonical multiplicative operad
is the linear isometries operad L, which induces a nonunital monoidal structure on
the category of spectra, and thus a definition of E1–spectra. In [9] Elmendorf, Kriz,
Mandell and May show that the category ModS of sphere modules is a monoidal model
category of spectra. Commutative monoids in ModS form the category CRingSp of
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commutative ring spectra, which is Quillen equivalent to the category of E1–ring
spectra. The monoidal structure also provides a convenient setting to define module
spectra and algebra spectra over commutative ring spectra. As explained by May
in [25] the recognition principle can then be extended to an equivalence between
ringlike E1–rings and connective commutative ring spectra.

In [15] Hoefel, Livernet and Stasheff show that relative 1–loop spaces are recognized by
A1–actions, which are pairs of spaces acted on by a resolution of the relative operad of
actions of a monoid on a space. In [37] I extended the recognition of relative N –loop
spaces for the cases 3�N �1. In particular, for N D1 this states that the homotopy
category of grouplike Erel

1–pairs, which are algebras over a relative operad homotopy
equivalent to the infinite-dimensional Swiss-cheese relative operad, is equivalent to the
homotopy category of degree 1 maps between connective spectra.

All these recognition theorems share one feature: they can be formulated as equivalences
between homotopy categories of model categories induced by loop space functors and
delooping functors that are not adjoint. In [37] I introduced the notion of a weak
Quillen quasiadjunction, a generalization of Quillen adjunctions that allows for units
and counits to exist only up to functorial resolutions. In the same vein I defined a
generalization of Quillen idempotent (co)monads, which induce left (right) Bousfield
localizations of model structures. Through these we have a natural definition of idem-
potent quasiadjunctions, which induce equivalences between the associated homotopy
subcategories. This machinery provides a natural model theoretical axiomatization of
the essential elements of May’s original proof of the recognition principle of1–loop
spaces.

A less direct model categorical treatment of the recognition principle combines the
Quillen equivalence between grouplike E1–spaces and very special �–spaces proved
by Santhanam in [27], with the latter category shown to be Quillen equivalent to
the category of connective spectra by Mandell, May, Schwede and Shipley in [20].
See Ando, Blumberg, Gepner, Hopkins and Rezk [1] for further model categorical
considerations about the recognition principle.

In this article I introduce a relative version of actions between operads which provides
a natural definition of E1–algebra spaces over E1–ring spaces, referred to simply
as E�

1–algebras. The machinery of idempotent quasiadjunctions is used to prove the
main result, Theorem 4.6.1, a recognition principle for 1–loop pairs of spaces of
commutative algebra spectra over commutative ring spectra. Explicitly it states that
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the homotopy category of algebralike1E�
1–algebras is equivalent to the homotopy

category of connective commutative algebra spectra over connective commutative ring
spectra. This result is a consequence of the intermediary Theorems 4.3.1 and 4.3.2,
which constitute a recognition principle for1–loop pairs of spaces of spectra maps.

We finish this introduction by sketching how May’s original proof of the recognition
principle of1–loop spaces can be framed as an equivalence induced by an idempotent
quasiadjunction, which provides a blueprint for the main proofs in this article.

The category SpN of sequential prespectra — see Lima [18] — consists of sequences of
spaces hYN i 2

Q
N Top� equipped with structural maps �MN W YM ^ S

N�M ! YN for
M �N satisfying compatibility conditions. The �–spectra are the prespectra whose
adjoint structural maps Q�MN are all weak equivalences, which by Brown representability
represent (co)homology theories [5]. Spectra are prespectra whose dual structural
maps Q�MN are all homeomorphisms; see for instance [9]. In this article we will work
exclusively in the category of prespectra, so from now on we will simply refer to
prespectra as spectra. From SpN we can define via filtered colimits over the dual
structural maps the1–loop spaces functor

�1 W SpN ! Top�; �1Y WD colim
N2N

Y S
N

N :

The1–loop spaces �1Y are homotopy commutative H–spaces, but such description
ignores a lot of information. In order to describe the algebraic structure completely we
require an E1–operad E , a gadget used to describe topological spaces with operations
that are associative and commutative up to coherent homotopy [21, Definitions 1.1
and 3.5].

For S, the category of finite sets and bijections, a topological operad is a contravariant
functor equipped with composition maps and an abstract identity element

P W Sop
! TopI ıW PA�

Q
A PBa! P†ABa; id 2 P1;

with P∅D � satisfying invariance, associativity and unitary laws. We can interpret
points in the underlying spaces as abstract multivariable functions with inputs indexed

1Semialgebras and semirings are like algebras and rings without the assumption that additive inverses
exist, ie we have an additive commutative monoid instead of an additive abelian group. An E�

1–algebra is
algebralike if the connected components of the underlying pair of spaces form an algebra over a ring, not
only a semialgebra over a semiring.
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by the set A. Operads induce monads via the coend construction (see Loregian [19])

P W Top�! Top�; PX WD
R Sinj

PA�X�AI

�x WD Œid; x�; �Œ˛; hŒˇa; hxabi�i� WD Œ˛hˇai; hxabi�:

The category PŒTop� of P–spaces consists of pointed spaces X 2 Top� equipped with
structural P –algebra maps � W PX !X , which we interpret as an instantiation of the
abstract operations of P .

An important family of operads are the embeddings operads EmbN for N 2N with

EmbN A WD f˛ D h˛ai 2 .RN /tARN
j ˛ is an embeddingg:

There are natural inclusions EmbM ,! EmbN and we define

Emb1 WD colimN2N EmbN :

All N –loop spaces are naturally EmbN –spaces with

˛hai WD

�
Eu 7!

�
a˛�1a Eu if Eu 2 ˛aRN

� if Eu 62 ˛ tARN

�
;

and these induce Emb1–space structures on1–loop spaces.

An E1–operad is an operad E with each underlying space EA a contractible free SA–
space. For the purpose of studying1–loop spaces, we further require E1–operads to
be equipped with an operad map  W E! Emb1, which induces by pullback a functor
�1 WSp! E ŒTop�. This functor is not a right adjoint since any abelian groupG is an E–
space, and the strictness of the operations inG implies any E–map '2E ŒTop�.G;�1Y /
must be trivial; therefore no unit of adjunction can be constructed.

In May’s recognition theorem the solution was to consider the resolution of E–spaces
by the bar construction

B W E ŒTop�! E ŒTop�; BX WD jB�.E;E;X/j;

which comes equipped with a natural weak equivalence �0 W B) Id.

The maps  W E! Emb1 induce by pullback a suboperad filtration EN on E . If each
underlying space ENA is equivariantly homotopy equivalent to the configuration space
of A elements in RN then we can define the1–delooping functor

B1 W EŒTop�! Sp; B1X WD hjB�.†
N ; EN ; X/ji
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such that there is a natural transformation � WB)�1B1, with �X a weak equivalence
if and only if X is grouplike, meaning that �0X is not only a monoid but also a group.

Dually there is no counit map. There is a spectrification functor2

z� W Sp! Sp; z�Y WD hcolim
M�N

zY S
N�M

N i;

where zY is a certain inclusion prespectrum constructed from Y , such that we have a
natural stable weak equivalence �0 W Id) z�. This functor plays an important role in the
construction of the stable model structures of spectra. There is a natural transformation
� W B1�1) z� such that the equation �1���1 D�1�0�0�1 holds in E ŒTop� and
we have a homotopy equivalence �B1B1�X ' �0B1XB

1�0X in Sp:

B1BX B1�1B1X

B1X z�B1X

B1�0X �

B1�X

�B1X

�

�0
B1X

B�1Y �1B1�1Y

�1Y �1 z�Y

��0
�1Y

��1Y

�1�Y

�

�1�0Y

Note the similarity of these equations to the ones for an adjunction. Indeed if B , z�, �0

and �0 were substituted by identities and both equations held strictly we would have an
adjunction in the regular sense.

Adapting May’s original proof of the recognition principle, we can show that we have
a weak Quillen quasiadjunction

.B1 a
B;z�

�1/ W E ŒTop�˛ SpN

which is idempotent and induces an equivalence between the homotopy category of
grouplike E–spaces and the homotopy category of connective spectra.3

1.1 Structure of the article

In Section 2 we review the definition of weak Quillen quasiadjunctions, idempotent
quasimonads and idempotent quasiadjunctions. Our main theorem will be a particular
case of the fact that idempotent quasiadjunctions induce equivalences between the
associated homotopy subcategories.

2The spectrification functor z� is the left adjoint to the inclusion of the category of spectra in the sense
used in [9] into the category of prespectra, hence the name.
3For details see the proof of the relative recognition theorem in [37] ignoring the open coloring. The
proofs of Theorems 4.3.1 and 4.3.2 ignoring the codomain coloring is a coordinate-free version of this
result.
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In Section 3 we present the definition of E�
1–algebras through relative operads. A

detailed description of relative sets, filtered rooted relative trees and operations on them
will be required to construct bar resolutions and delooping spectra, as well as describe
their algebraic structures. We then briefly review relative operads, E�

1–operads and the
bar resolution of E�

1–pairs. Relative operad actions are then introduced. They provide
an account of distributivity laws between multiplicative and additive relative operad
actions, and are central in the definition of the category .E�;L�/ŒTop� ofE�

1–algebras.
We also show how the mixed model structure on .E�;L�/ŒTop� is transferred from
the one on Top2

S0
.

The main theorems are in Section 4. The basics of coordinate-free spectra and the
construction of the stable mixed model structure are presented. The recognition principle
for1–loop pairs of spaces of spectra maps is proved via an idempotent quasiadjunction
in Theorems 4.3.1 and 4.3.2, which imply the homotopy category of grouplike E�

1–
pairs is equivalent to the homotopy category of spectra maps between connective spectra.
After a review of the basics of S–modules and commutative algebra spectra, including
the construction of the stable mixed model structure, the main result, Theorem 4.6.1, is
proved.

1.2 Notation and terminology

We denote by Set the category of sets and functions, by Sinj the subcategory of finite
sets and injections, and by S the subcategory of finite sets and bijections. We will use
the notation m for the sets f1; : : : ; mg, with 0D∅.

Given a class A and a family of classes hBai indexed by A, the dependent sum †AB
a

is the class of pairs .a; b/ with a 2 A and b 2 Ba; the dependent product …ABa is the
class of sequences hbai indexed on A with ba 2 Ba for each a 2 A, or equivalently it
is the class of sections of the natural surjection †ABa! A.

We denote by POSet the category of ordered sets and monotone functions, and � the
full subcategory onm�Dh0<1< � � �<mi form2N. This category is generated by the
coface injections @i Wm� 1�!m�, with i 62 @im� 1�, and codegeneracy surjections
ıi W mC 1�! m�, with ıi i D ıi .i C 1/, for all i 2 m�. For hma�i 2…A� we define
the set _Ama� WD f0g t†Am

a.

Let Top be the cartesian closed category of compactly generated weakly Hausdorff
spaces as presented by Strickland [35]. We will make extensive use of mapping spaces
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Y X and will express their elements as x 7!ˆ for some expression ˆ which may use
the variable x. For X a set (or space) equipped with an equivalence relation � we will
denote the equivalence classes of x 2X using square brackets Œx� 2X=�. We use the
notation K �cpct X to indicate K is a compact subspace of X . We denote by I the
interval Œ0; 1� � R, and for N 2N we denote by SN the one-point compactification
of RN .

We denote by Top� the closed monoidal category of pointed spaces .X; x0/ equipped
with the smash product X ^ Y WD X � Y=X�fy0g[fx0g�Y and unit .f0; 1g; 0/. For
X 2 Top we denote by XC 2 Top� the pointed space obtained by adjoining a disjoint
basepoint. We also denote by TopS0 the category of spaces with two distinguished
points .X; x0; x1/.

The theory of model categories in Goerss and Jardine [13], Hirschhorn [14], and
Hovey [16] is assumed, and also the theory of monads, their algebras and the bar
construction in [21, Section 9]. In diagrams in a model category T the morphisms in
the class of weak equivalences W are denoted by arrows marked with a tilde ��! , the
ones in the class of cofibrations C by hooked arrows ,!, and the ones in the class of
fibrations F by double headed arrows�. The functorial weak factorization systems
are denoted by .FatC;Ft IC�; Ft�/ and .FatCt ;F ICt�; F�/ such that a morphism
f 2 T .X; Y / is factored for instance as X Cf

,�! FatC;Ftf
Ftf

�
�� Y .

The notations C W T ! T and cof W C) Id are used for the cofibrant resolution functor
and the associated natural trivial fibration, and the notations F W T ! T and fib W Id) F

are used for the fibrant resolution functor and the associated natural trivial cofibration.
The homotopy category HoT of T is the category with objects the bifibrant objects of
T and morphisms the sets T .X; Y /=' of homotopy classes of maps [16, Section 1.2].
If a functor S W T ! A is left derivable, meaning it preserves cofibrant objects and
weak equivalences between them, its left derived functor LS is defined on objects as
LSX WD FSX , and dually if ƒ WA! T is right derivable its right derived functor Rƒ

is defined on objects as RƒY WD CƒY .

The closed cartesian category Top of compactly generated weakly Hausdorff spaces
admits three monoidal model structures:

For all X 2 Top its cylinder is X�I and its cone is CX WDX�I=.x;0/�.x0;0/. We then
have the cofibrantly generated Quillen model structure [26] with weak equivalences the
weak homotopy equivalences (q–equivalences), ie the maps that induce isomorphisms
of all homotopy groups; fibrations the Serre fibrations (q–fibrations), ie the maps
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satisfying the homotopy lifting property with respect to the cylinder inclusions of cones
of spheres in0 2 Top.CSN ; CSN � I / for all N 2 N; and cofibrations retracts of
inclusions of relative CW–complexes (q–cofibrations). This is a cofibrantly generated
model structure with factorization systems induced by the small object argument. In
this model structure all spaces are fibrant and the cofibrant spaces are the retracts of
CW–complexes.

We also have the Hurewicz/Strøm model structure [36] with weak equivalences the
homotopy equivalences (h–equivalences), ie the maps that admit an inverse up to
homotopy; fibrations the Hurewicz fibrations (h–fibrations), ie the maps satisfying the
homotopy lifting property with respect to all cylinder inclusions in0 2 Top.X;X � I /;
and cofibrations the Hurewicz cofibrations4 (h–cofibrations), ie the maps satisfying the
homotopy extension property with respect to all evaluation fibrations ev1 2 Top.Y I ; Y /.
The weak factorization system can be constructed through (co)monads as described by
Barthel and Riehl in [2]. For any X 2 Top let the space of Moore paths in X be

MX WD†t2Œ0;1/f 2X
Œ0;1�

j r � t D) r D  tg;

which comes equipped with the natural fibration ev1 2Top.MX;X/. The factorization
systems are then defined on every � 2 Top.X; Y / as

.�� DX �Y MY I Ct�x WD .x; 0; r 7! �x/; F�.x; t; / WD  t/;

.E� WD �� � Œ0;1�t�� Y I C�x WD .x; 0; r 7! �x; 0/; Ft�.x; t; ; s/ WD s/:

In this model structure all objects are bifibrant.

These model structures can be combined into the mixed model structure — see Cole [7] —
with weak equivalences the q–equivalences; fibrations the h–fibrations; and cofibrations
the m–cofibrations, ie the maps that can be factored as a q–cofibration followed by an
h–equivalence. A space is m–cofibrant if it is of the homotopy type of a CW–complex.

We denote by T � the category of morphisms f W Xd ! Xc in T as objects and
commutative squares as morphisms. For notational convenience we denote elements of
categories of pairs T 2 as X D .Xd ; Xc/, and we will consider relative operads colored
on the set fd; cg, with d being the “domain” color and c the “codomain” color.

Let Inn denote the topological category of finite or countably infinite-dimensional
real inner product spaces and linear maps, with the topology defined as the colimit

4We note that in the category of compactly generated weakly Hausdorff spaces all Hurewicz cofibrations
are closed.
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of the finite-dimensional subspaces. Let I be the subcategory with the same objects
and with morphisms the linear isometries. Both Inn and I are monoidal under direct
sums. For U 2 Inn we denote by AU the set of finite-dimensional subspaces of U,
partially ordered by inclusion, and for U 2AU we define AU WD fV 2AU j U � V g.
For UDR1 we simply write A WDAR1 . For hfai 2I.˚AU

a;V/ and hEuai 2˚AUa

we use the Einstein summation convention fa Eua WD
P
A fa Eu

a. For U 2 I and U <U

we use the notation U? WD fEv 2U j 8Eu 2U W Ev � EuD 0g for the orthogonal complement.

For any U <U we define �U 2 Inn.U;U/ as the orthogonal projection onto U , and for
f 2Inn.U;V/ define f jU 2Inn.U;V/ as the restriction of f on U . For f 2I.U;V/

its adjoint is f � WD f �1�fU 2 I.V;U/. For all U 2 AU let SU be the one point
compactification of U obtained by adding a point1 at infinity and for .U; V /2†AAU

let V �U WD V \U?.

Consider the cosimplicial space of partitions of the interval Part� 2 Top� with

Partm� WD POSet.m; I /I

@i � ht
j
i WD

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

��
0 if j 0 D 1
tj
0�1 if j 0 > 1

�
if i D 0;��

tj
0

if j 0 � i
tj
0�1 if j 0 > i

�
if 0 < i < m;��

tj
0

if j 0 <m
1 if j 0 Dm

�
if i Dm;

ıi � ht
j
i WD

��
tj
0

if j 0 � i
tj
0C1 if j 0 > i

�
;

with Partm� topologized as a subspace of Im. For each hhtai ii 2…APartm
a
� the order

of the points tai in I induces an order on _Ama�, and so an element

CA htai i 2 Part_Am
a
� :

For each hhtai ii 2…APartm
a
� and a0 2 A we can define

ıa
0

2�._Am
a
�; m

a0

� /; ıa
0

.a; i/ WD

�
0 if tai < ta

01;

maxta0i0�tai i
0 if tai � ta

01;

such that ıa
0

�CA ta D hta
0i i 2 Partm

a0

� .

For any simplicial space X� 2 Top�
op

its geometric realization jX�j is defined via the
coend construction [19] as

jX�j WD
R �

Xm� �Partm� :
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The reason we consider the geometric realization via the partitions cosimplicial space
instead of the usual homeomorphic cosimplicial space of topological simplexes is that
this choice simplifies the algorithm in [21, Theorem 11.5].
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2 Idempotent quasiadjunctions

2.1 Weak Quillen quasiadjunction

The following definition introduced in [37] is a generalization of Quillen adjunctions
between model categories. The basic idea is that to construct the unit and counit
natural transformations of an adjunction between the homotopy categories it suffices to
construct a unit natural span and counit natural cospan at the model categories level,
plus some additional compatibility conditions.

Definition 2.1.1 Let T and A be model categories. A weak Quillen quasiadjunction,
or just quasiadjunction, between T and A, denoted by

.S a C;F ƒ/ W T •A;

is a quadruple of functors

T
S //

C
''

A
ƒ
oo Fgg

with S the left quasiadjoint and ƒ the right quasiadjoint, equipped with a natural span
in T and a natural cospan in A

IdT
�0

�
(H C

�
H)ƒS; Sƒ

�
H) F

�0

�
(H IdA

such that

(i) S is left derivable;

(ii) ƒ is right derivable;

(iii) C and F preserve cofibrant and fibrant objects;

(iv) �0 and �0 are natural weak equivalences;
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(v) if X 2 T is cofibrant then �SXS�X ' �0SXS�
0
X ;

(vi) if Y 2A is fibrant then ƒ�Y �ƒY 'ƒ�0Y �
0
ƒY :

SCX
S�0X ���

S�X // SƒSX
�SX��

SX
�

�0SX

// FSX

CƒY
��0ƒY ��

�ƒY // ƒSƒY
ƒ�Y��

ƒY
�

ƒ�0Y

// ƒFY

Theorem 2.1.2 [37, Theorem 2.1.2] A quasiadjunction induces an adjunction

.LS aRƒ/ WHoT •HoA;

IdHoT
ŒcofC�0��1 +3 RC

ŒC.ƒfibS�/� +3 RƒLS

LSRƒ
ŒF.�Scofƒ/� +3 LF

ŒF�0fib��1 +3 IdHoA

between the homotopy categories.

2.2 Idempotent quasi(co)monads

The following generalization of idempotent Quillen monads [4] was also introduced
following the same principle of only requiring the existence of a unit natural span, and
they also induce Bousfield localizations.

Definition 2.2.1 Let T be a right proper model category. A Quillen idempotent
quasimonad on T , or simply an idempotent quasimonad, is a pair of endofunctors
Q;C W T ! T equipped with a natural span

IdT
�0

�
(H C

�
H)Q

such that

(i) �0 is a natural weak equivalence;

(ii) Q preserves weak equivalences;

(iii) Q� and �Q are natural weak equivalences;

(iv) if f 2 T .X;B/, p 2 F.E;B/ and �E ; �B ;Qf 2W then Q.f �p/ 2W :

X �B E

p�f

��

f �p // E

p
����

CE

Cp
��

�E

�
//

�0E

�
oo QE

Qp

��

Q.X �B E/

Q.p�f /

��

Q.f �p/

�
oo

X
f

// B CB
�0B

�oo
�B

� // QB QX
Qf

�oo
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(v) if � 2 C.CX;K/ then ���0 2W :

CX� _
�
��

�0

�
// X

�0����
K

�

���
0

// K tCX X

Theorem 2.2.2 [37, Theorems 2.3.5 and 2.3.6] An idempotent quasimonad induces
a left Bousfield localization

(1)

TQD .T IWQ WDQ�1W;CQ WDC;FQ WD fp 2F j (1) is a homotopy pullbackg/

E

p ����

iE // E tCE QE

.p;Qp/
��

B
iB

// B tCB QB

The resulting homotopy category is the reflective subcategory

HoTQ WD fX 2HoT j .iX WX !X tCX QX/ 2W g

of Q–fibrant objects.

The above definition can be dualized. The resulting idempotent quasicomonads induce
right Bousfield localizations and associated coreflective homotopy subcategories.

2.3 Idempotent quasiadjunctions

A quasiadjunction .S a C;F ƒ/ W T •A induces the following natural span on T and
natural cospan on A:

(2) IdT CC
cof�0C
�

ks .ƒfibS�/C +3 ƒFSC SCƒF
.�Scofƒ/F +3 FF IdA

�0Ffib

�
ks

Definition 2.3.1 An idempotent quasiadjunction is a quasiadjunction such that the
induced span and cospan (2) are respectively an idempotent quasimonad and an idem-
potent quasicomonad.

Theorem 2.3.2 [37, Theorem 2.3.8] An idempotent quasiadjunction induces an
equivalence between the associated (co)reflective homotopy subcategories:

HoT
LId //
? HoTƒFSC

LS //
?

_?
RId
oo HoASCƒF

� � LId //
?

Rƒ
oo HoA

RId
oo
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3 E�
1

–algebras

3.1 Relative sets and filtered rooted relative trees

Relative operads are abstract operations with entries indexed by relative sets. We now
give the basic definitions and constructions on these colored sets. We will also require
filtered rooted relative trees in the construction of the bar resolutions and delooping
spectra, and we provide here the relevant definitions and constructions.

Let Setfd;cg be the category of relative sets composed of sets equipped with a coloring
on the colors fd; cg, ie the class of objects

f.A; c/ 2†SetSet.fAg tA; fd; cg/ j cAD d D)8a 2 A W caD dg;

with .A; c/ usually being denoted simply as A or explicitly as a set of elements in
brackets with coloring given by subscripts, eg f1d ; 2d ; 3c ; 4d ; 5cgc . The morphisms
sets are

Setfd;cg.A;A
0/ WD

�
f� 2 Set.A;A0/ j caD c D) c0�aD cg; cAD d or c0A0 D c;
∅; cAD c and c0A0 D d:

For ? 2 fd; cg we denote by Set? � Setfd;cg the full subcategory of relative sets A
such that cAD ?.

Given ..A; c/; h.Ba; ca/i/ 2†Setfd;cg…ASetca we have the dependent sum

.†AB
a; †Ac

a/ 2 Setfd;cgI †Ac
a.†AB

a/ WD cA; †Ac
a.a; b/ WD cab:

For � 2 Setfd;cg.A;A0/ let

�.Ba/ 2 Setfd;cg.†AB
a; †A0B

��1a0/; �.Ba/.a0; b/ WD .�a0; b/;

and for h�ai 2…ASetc.a/.Ba; B 0a/ let

†A�
a
2 Setfd;cg.†AB

a; †AB
0a/; †A�

a.a0; b/ WD .a0; �a
0

b/:

We also have the dependent product

…AB
a
2 Setfd;cgI …Ac

a…AB
a
WD cA; …Ac

a
hbai WD

�
d 8a 2 A W caba D d;

c 9a 2 A W caba D c:

For � 2 Setfd;cg.A;A0/ let

�hBai 2 Setfd;cg.…AB
a;…A0B

��1a0/; �hBaihbai WD hb�
�1a0
i;

and for h�ai 2…ASetca.Ba; B 0a/ let

…A�
a
2 Setfd;cg.…AB

a;…AB
0a/; …A�

a
hbai WD h�abai:
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For every hbai 2…ABa we can form a new relative set Ahbai composed of the pairs
.a; ba/ with coloring chbaiAhbai D…Ac

ahbai and chbai.a; b
a/D caba. This relative

set is naturally equipped with �hbai 2 Setfd;cg.Ahbai; A/ with �hbai.a; ba/D a. Let

� 2 Setfd;cg.…A†BaC
ab; †…ABa…A.ba/C

aba/; �h.ba; ca/i WD .hbai; hcai/:

This is a key element in distributivity properties.

Let Sinj
fd;cg
� Setfd;cg be the subcategory of Setfd;cg composed of the finite relative

sets and the injective functions that preserve coloring, ie

Sinj
fd;cg

.A;A0/D

�
f� 2 Setfd;cg.A;A0/ j � is injective; c0�aD cag if cAD c0A0;

∅ if cA¤ c0A0:

Let Sfd;cg � Sinj
fd;cg

be the subcategory with the same objects and bijections that preserve
coloring as morphisms. For ? 2 fd; cg we denote by Sinj

? and S? the full subcategories
of Sinj
fd;cg

and Sfd;cg, respectively, composed of relative sets A such that cAD?. Define
also the subcategory Shd<ci � Setfd;cg with objects the finite relative sets and with
morphisms the bijections (that don’t necessarily preserve coloring). Note that Sfd;cg is
a subcategory of Shd<ci.

Many spaces of interest are built via the two sided bar construction for monads induced
by operads, which can be described using filtered rooted relative trees.

Definition 3.1.1 The simplicial category Tfd;cg 2 Cat�
op

of filtered rooted relative
trees has as objects triples

T D .hV i i; h�i i; c/ 2 Tfd;cgm�

composed of:

� A sequence of finite sets of vertices hV i i 2 SmC1. We also set V 0 WD frg, and
call r the root vertex of T . The vertices in V mC1 are called the leaves of T .

� A sequence of functions h�i i 2…mSet.V iC1; V i /. We also set �0 the unique
function in Set.V 1; V 0/.

� A function in fc2 Set.†mC1�V
i ; fd; cg/ j .�iv0D v and cvD d/D) cv0D dg,

the coloring of the vertices.

We sometimes just write T D .hV i i; h�i i/ and leave the coloring implicit.

Morphisms � 2 Tfd;cgm�.T; T
0/ are sequences of bijections in

fh� i i 2…mC1�S.V
i ; V 0i / j � i�i D �0i� iC1 8i 2m� and c0� i D c 8i 2mC 1�g:
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The simplicial structural functors are defined on objects as

T � @i WD

 ��
V j if j � i
V jC1 if j > i

�
;

*8<:
�j if j < i
�i�iC1 if j D i
�jC1 if j > i

+!
;

T � ıi WD

 ��
V j if j � i C 1
V j�1 if j > i C 1

�
;

*8<:
�j if j � i
idV iC1 if j D i C 1
�j�1 if j > i C 1

+!
;

with the coloring maps induced naturally from the ones in T .

Define also T0
fd;cg
2 Cat�

op
as the full simplicial subcategory of relative trees such

that jV 1j D 1. Define also the simplicial full subcategories T? � Tfd;cg for ? 2 fd; cg
of the trees such that cr D ?. We similarly define the simplicial full subcategories
T0
? � T0

fd;cg
.

Note that any T 2 Tfd;cgm� has a natural partial order structure on the union of the
set of vertices induced by the structural functions, with the root r its unique minimal
element. For each v 2 V 1 let T�v 2 T0

fd;cg
m� be the subtree composed of the root

vertex and the vertices greater than or equal to v.

For all T 2 Tfd;cgm� and .i; v/ 2†m�V
i define the relative set

in .i; v/ WD fv0 2 V iC1 j �iv0 D vgcv 2 Sfd;cg:

Note that Sfd;cg is isomorphic to Tfd;cg0�.

We have natural dependent sums and dependent products of filtered rooted trees of a
fixed height hT ai 2…ATfd;cgm� defined as

†AT
a
WD .h†AV

ai
i; h†A�

ai
i; †Ac

a/; …AT
a
WD .h…AV

ai
i; h…A�

ai
i;…Ac

a/:

We also have, for all

.T; hSei/D ..hV i i; h�i i/; h.hW ej
i; h ej i/i/ 2†Tfd;cgm�…VmC1Tcen�;

the grafting

T ı hSei WD

���
V i if i �m
†VmC1W

e.i�m�1/ if i > m

�
;

��
�i if i �m
†VmC1 

e.i�m�1/ if i > m

��
in Tfd;cgmCnC 1�, with the obvious coloring map.
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rr

1111

1212

1313

2121

2222

2323

2424

3131

3232

3333

3434

3535

3636

11

22

33

44

55

66

77

88

�0 �1 �2 �3

V 0 V 1 V 2 V 3 V 4

Figure 1: A filtered rooted relative tree in Tc3�. Edges, oriented from right
to left, represent to which element of V i the function �i maps the elements
of V iC1. Decorations indicate the color of the start vertex, with wiggled
edges representing “domain” color and straight edges representing “codomain”
color. An extra edge is added to the root vertex to indicate its color.

3.2 Relative operads

We now give a brief review of relative operads, a kind of colored operad introduced by
Voronov in [38].

Definition 3.2.1 The category of Sfd;cg–spaces is the contravariant functor category
TopS

op
fd;cg . A topological relative operad is an Sfd;cg–space P 2 TopS

op
fd;cg equipped

with elements id? 2 Pf1?g? for ? 2 fd; cg and structural maps

hıA;hBaii 2…†Sfd;cg
…ASca

Top.PA�…APBa;P†ABa/

such that P∅?Df�?g for ?2 fd; cg and, using the notation ˛hˇai WDıA;hBai.˛; hˇai/,
satisfying the equations

� ˛hˇahabii D ˛hˇaihabi,

� idcA˛ D ˛ D ˛hidcai,

� ˛ � �hˇai D ˛hˇ�
�1a0i � �.Ba/,

� ˛hˇa � �ai D ˛hˇai �†A�
a.

Operad morphisms are natural transformations that preserve the unit and compositions,
and we denote the category of topological relative operad by Opfd;cgŒTop�.5

5Another way to define a relative operad Q over an operad P is as an operad in the category of right
P–modules; see for instance [11]. For a relative operad P in the sense of Definition 3.2.1 the spaces
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For X D ..Xd ; ed /; .Xc ; ec// 2 Top2� define

…�X W S
inj
fd;cg
! TopI …AX WD…AXca; � � hxai WD

��
eca0 if a0 62 Im �

x�
�1a0 if a0 2 Im �

�
:

The underlying functor of a unital relative operad P can be extended to a functor on
Sinj;op
fd;cg

. For � 2 Sinj
fd;cg

.A;A0/ the right action �� 2 Top.PA0;PA/ is defined as

˛ � � WD ˛

��
�ca0 if a0 62 Im �

idca0 if a0 2 Im �

�
:

These morphisms are the degenerations of the relative operad.

A relative operad P induces a monad .P I �; �/ on Top2� with

(3)
PX? WD

R S
inj
? PA�…AX I

�?x WD Œid?; x�; �?Œ˛; hŒˇ
a; hxabi�i� WD Œ˛hˇai; hxabi�:

Definition 3.2.2 Let P be a relative operad. A P–space is a P –algebra, ie a pair of
pointed spaces X 2 Top2� equipped with structural maps

h�Ai 2…Sfd;cgTop.PA�…AX;XcA/

satisfying, using the notation ˛hxai D �Ah˛; hxaii,

˛hˇahxabii D ˛hˇaihxabi; id?x D x; ˛ � �hxai D ˛.� � hxai/:

The category of P–spaces is denoted PŒTop�.

The following are the relative operads relevant to the main result.

The terminal relative operad is Com� with underlying Sfd;cg–space given by

Com�.A/ WD �:

The Sfd;cg right actions, units and compositions are the unique terminal maps. The
Com�–spaces are pairs .Md ;Mc/ of topological commutative monoids equipped
with a continuous homomorphism � W Md ! Mc induced by the unique element in
Com�

f1d gc .

For U 2A the relative operad of U –embeddings Emb�
U is

Emb�
U A WD f˛ D h˛ai 2 U

tAU j h˛ai is an embeddinggI

h˛a0i � � WD h˛�ai; id? WD idU ; ˛hˇai WD h˛aˇ
a
b i:

Pf1d ; : : : ; md gd for m 2 N form an operad, and the modules
`
n2N Pf1d ; : : : ; nd ; 1c ; : : : ; mcgc for

m 2N form a relative operad over the previous operad.
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Degenerations delete embeddings.

For U 2A the loop space map functors image has natural Emb�
U –pairs structure, giving

us the functor

�U2 W Top�
� ! Emb�

U ŒTop�; �U2 .� W Yd ! Yc/ WD .Y
SU

d ; Y S
U

c /I(4)

˛hai WD

�
Eu 7!

�
a˛�1a Eu if caD cA

�a˛�1a Eu if ca¤ cA

�
:

For .U; V / 2†AAU we have natural inclusion of relative operads

iUV W Emb�
U ) Emb�

V ; iUV ˛ WD h�V�U C˛a�U i

and we define Emb�
1 WD colimA Emb�

U .

The embeddings operad contains embeddings of configuration spaces, and these em-
beddings are relevant to the definition of E�–operads we give here. For each U 2A

define the configurations Sfd;cg–space

Conf�U W S
op
fd;cg
! Top; Conf�U A WD fEx D hExai 2 U

A
j a¤ a0 D) Exa ¤ Exa0g:

For all Ex 2 Conf�U A let min Ex WDmina¤a0kExa � Exa0k, and

�U 2 Sfd;cg.Conf�U ;Emb�
U /; �U Ex WD

�
Eu 7! ExaC

.min Ex/Eu
.min Ex/C 2kEuk

�
:

Definition 3.2.3 An E�
1–operad is a relative operad

E�
2 Opfd;cgŒTop�

equipped with a relative operad map

‰ 2 Opfd;cgŒTop�.E�;Emb�
1/

and, for the induced A–filtration E�
U WD‰

�1 EmbU , a Sfd;cg–space homotopy equiva-
lence

ˆU 2 TopS
op
fd;cg.ConfU ; E�

U /

for each U 2A such that ‰jUˆU D �U .

By this definition the E�
U are m–cofibrant as Sfd;cg–spaces and E� is contractible and

free. One of the main examples of E�
1–operads we will consider is the Steiner relative

operad, composed of paths of embeddings [33].
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For all U 2A define the relative operad H�
U as

H�
UA WD

˚
˛ D h˛ai 2 U

tAI�U j 8a 2 A; t 2 I; Eu; Ev 2 U W

.Eu 7! ˛a.t; Eu// 2 Emb�
U fag; k˛a.t; Eu/�˛a.t; Ev/k � kEu� Evk;

˛a.1; Eu/D Eu; hEu 7! ˛a.0; Eu/i 2 Emb�
U A

	
;

h˛a0i � � WD h˛�ai; id? WD .t 7! id/; ˛hˇai WD ht 7! ˛a.t/ˇ
a
b .t/i:

Degenerations delete paths of embeddings.

We have natural inclusions �UV WH
�
U )H�

V for all .U; V / 2†AAU with

�UV ˛ WD ht 7! �V�U C˛a.t/�U i

and we define H�
1 WD colimA H�

U .

The E�
1–structural transformations are

‰ WH�
1) Emb�

1; ‰˛ WD h˛a.0/i;

ˆU W Conf�U )H�
U ; ˆU Ex WD

˝
t 7! .1� t /.�U Ex/aC t id

˛
;

ˆU WH
�
U ) Conf�U ; ˆU˛ WD h˛a.0; E0/i:

See [33] for the homotopies ˆUˆU Š id and ˆUˆU Š id.

3.3 Bar resolution

For the construction of the quasiadjunctions in our main theorems we will require
the bar resolution of E�–pairs. Recall from [21, Construction 9.6] that for a monad
.C; �; �/ in the category T , a C–functor .F; �/ in the category A and a C–algebra
.X; �/ we have the two sided bar construction B�.F; C;X/ 2A�

op
with

Bm�.F; C;X/ WD FC
mX I

ıi WD FC
i�Cm�i ; @i WD

8<:
�Cm if i D 0;
FC i�1�Cm�iC1 if 0 < i < m;
FCm�1� if i Dm:

In particular for a relative operad P we have the monad .P; �; �/ constructed in (3)
and the P –functor .P; �/. We then have a natural isomorphism

Bm�.P; P;X/? Š
R T?m�…†m�V iPin .i; v/�…VmC1XceI
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Œ˛r ; h˛ivi; hxei�T � @i 0 WD

8̂̂̂̂
<̂̂
ˆ̂̂̂:

Œ˛rh˛1v
0

i; h˛jwi; hxei�T �@0 ; i 0 D 0;"
˛r ;

*8<:
˛jw ; j < i 0

˛i
0wh˛.i

0C1/v0i; j D i 0

˛.jC1/w ; j > i 0

+
; hxei

#
T �@i0

; 0< i 0<m;

Œ˛r ; h˛jwi; h˛mwhxe
0

ii�T �@m ; i 0 Dm;

Œ˛r ; h˛ivi; hxei�T � ıi 0 WD

"
˛r ;

*8<:
˛jw ; j � i 0

idcw ; j D i 0C 1

˛.j�1/w ; j > i 0C 1

+
; hxei

#
T �ıi0

:

The E�–pair structural maps in each dimension are

(5) ˛hŒˇar ; hˇaivi; hxaei�T ai WD Œ˛hˇ
ar
i; hˇaivi; hxaei�†AT a :

The bar resolution of E�–pairs is then the geometric realization of this simplicial
E�–pair functor

B2 W E�ŒTop�! E�ŒTop�; B2X? WD jB�.E
�; E�; X/?j:

By the above isomorphism we can intuitively think of points in B2X as equivalence
classes of filtered rooted relative trees with vertices decorated with elements of E�,
leaves decorated with elements of X and we associate an ordered partition of I with
the filtration of the inner vertices.

It is not the case in general that the geometric realization of a simplicial C–algebra
for a topological monad C is a C–algebra. This is however the case when the monad
is the one induced by an operad. The structural maps are induced by the algorithm
described in [21, Theorem 11.5]. For a sequence of elements with representatives of
distinct dimensions we can systematically determine equivalent representatives of the
same dimension, and then apply (5). The E�–pair structural maps of B2X are induced
by the formula

(6) ˛hŒŒˇar ; hˇaivi; hxaei�T a ; ht
ai
i�i

WD

��
˛hˇari;

��
ˇajw if j D ıa.j; w/
idcw if j ¤ ıa.j; w/

�
; hxaei

�
†AT a �ıa

;CA htai i
�
;

which is illustrated in Figure 2.

This functor can be equipped with the natural transformation

(7) �0 W B2) Id; �0?ŒŒ˛
r ; h˛ivi; hxei�T ; ht

i
i� WD ˛hxei;

where ˛ is the composition of all the ˛v, including ˛r , induced by the operadic
composition and the structure of T .
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˛ ˇ1rˇ1r

1
3

ˇ111ˇ111

ˇ112ˇ112

x11x11

x12x12

x13x13

x14x14

; ˇ2rˇ2r

1
6

ˇ211ˇ211

ˇ212ˇ212

2
3

��

ˇ222ˇ222

ˇ223ˇ223

x21x21

x22x22

x23x23

D ˛hˇ1r ; ˇ2r i˛hˇ1r ; ˇ2r i

1
6

idcidc

idcidc

ˇ211ˇ211

ˇ212ˇ212

1
3

ˇ111ˇ111

ˇ112ˇ112

iddidd

iddidd

iddidd
2
3

idcidc

idcidc

iddidd

idcidc

��

ˇ222ˇ222

ˇ223ˇ223

x11x11

x12x12

x13x13

x14x14

x21x21

x22x22

x23x23

Figure 2: E�
1–structure of B2X .

3.4 Relative operad action

Operad actions, introduced in [23, Definition VI.1.6], encode distributive laws between
operations defined by operads.6 The following definition is a relative version of this
notion.

Definition 3.4.1 A relative operad pair is a pair of relative operads .P;G/ equipped
with an extension of G to Sop

hd<ci
and an action of G on P defined by structural maps

hËA;hBaii 2…†Sfd;cg
…ASca

Top.GA�…APBa;P…ABa/

such that, using the notations P∅?Df0?g, G∅?Df1?g, f Ëh˛ai WDËA;hBai.f; h˛ai/
and f Ë hˇabai WD f ��hbai Ë hˇab

a

i the following equations are satisfied:

� f Ë hga Ë h˛abii D f hgaiË h˛abi.

� f Ë h˛ahˇabii D f Ë h˛aihf Ë hˇabaii � �.

� idcA Ë˛ D ˛.

� f Ë hidcai D idcA.

� f � � Ë h˛ai D f Ë h˛��1a0i � �hBai.

� f Ë h˛a � �ai D f Ë h˛ai �…A�a.

� 1? Ë� D id?.

� There exists an a 2 A such that ˛a D 0ca implies f Ë h˛ai D 0cA.

6The original reference has typos corrected in [24, Definition 1.8]. The reader should keep in mind that
the literature on pairings of operads has been plagued by errors, in particular in how it is applied to the
study of K–theory through bipermutative categories. Erratas can be found in the appendix of [24] and the
introduction of [10].
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We refer to the operad P as the additive relative operad and G as the multiplicative
relative operad of the pair.

For X D ..Xd ; 0d ; 1d /; .Xc ; 0c ; 1c// 2 Top2
S0

define

X^� W Sinj
fd;cg
! TopI X^A WD ^AXca; � � Œxa� WD

��
1ca0 if a0 62 Im �

x�
�1a0 if a0 2 Im �

�
;

with the zeros as basepoints for the wedge products. We can then define the monad
.G0I �; �/ on Top2

S0
as

G0X? WD
R S

inj
? GAC^X^AI �?x WD Œid?; x�; �?

�
f; Œga; Œxab��

�
WD Œf hgai; Œxab��:

Definition 3.4.2 A G0–space is a G0–algebra, ie a pair of S0–spaces X 2 Top2
S0

equipped with a structural map � W G0X ! X satisfying, using f Œxa�D �AŒf; Œxa��,
similar equations as in Definition 3.2.2 and also that 0 is an absorbing element, ie

there exists a 2 A such that xa D 0ca D) f Œxa�D 0cA:

The category of G0–spaces is denoted by G0ŒTop�.

If G acts on P then the functor P induces a monad on G0ŒTop�.

Definition 3.4.3 Let .P;G/ be a relative operad pair. A .P;G/–space is a P –algebra
in G0ŒTop�. Equivalently a .P;G/–space is a pair of S0–spaces X 2 Top2

S0
equipped

with a G0–space structure and a P–space structure with neutral elements the zeros such
that

f Œ˛ahxabi�D f Ë h˛aihf Œxab
a

�i:

The category of .P;G/–spaces is denoted .P;G/ŒTop�.

There is a natural operad pair structure on .Com�;Com�/. Denote by
P
A 2 Com�A

the additive copy of Com� and
Q
A 2Com�A the multiplicative copy of Com�. Then

in a .Com�;Com�/–space the distributivity equations and the equality of the additive
and multiplicative homomorphismsQ

A

P
Ba x

ab D
P
…ABa

Q
Ahbai

xab
a

�Cx D
Q
f1c ;2cgc

h�Cx; 1ci

D
Q
f1c ;2cgc

Ëh�C; idci
Q
f1d ;2cgc

hx; 1ci

D ��x
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hold. This means that .Com�;Com�/ŒTop� is isomorphic to the category of topological
commutative semialgebras over commutative semirings.

The main example of multiplicative relative operad we will consider is the relative
linear isometries operad L� with

L�A WD I.˚AR1;R1/I f � � WD hf�ai; id WD idR1 ; f hgai WD hfag
a
b i:

The identity maps provide a natural extension of L� to Sop
hd<ci

. We have a natural
action of L� on Emb�

1 given by the formula

f Ë h˛ai WD h�f ? C
P
A fa˛

a
ba
f �a i:

This naturally extends to an action on H�
1 given by the formula

(8) f Ë h˛ai WD ht 7! �f ? C
P
A fa˛

a
ba
.t/f �a i:

Definition 3.4.4 The category of E�
1–algebras is .E�;L�/ŒTop� for an E�

1–operad
E� equipped with an action by L� that is preserved by the structural relative operad
morphism ‰ W E�) Emb�

1.

Steiner’s original argument in [33] implies the relative operad H�
1 equipped with the

action (8) satisfies the conditions of Definition 3.4.4. Proof of the compatibility with
the coloring is straightforward and will be omitted.

Although we give this general definition we note that there is no known nontrivial
example of anE1–operad equipped with an L–action other then the Steiner operad H1.
Having a q–cofibrant, not just mixed †–cofibrant example would be interesting and
useful, but since we can work in the mixed model structure it is not necessary.

The images of B2X are also L�
0 –pairs with structural maps defined as

(9) f
�
ŒŒ˛ar ; h˛aivi; hxaei�T a ; ht

ai
i�
�

WD

��
f Ëh˛ari;

�
f Ë

��
˛ajw

a

; j D ıa.j; wa/

idcwa ; j ¤ ıa.j; wa/

��
; hf Œxae

a

�i

�
…AT a �ıa

;CAhtaii
�

which is illustrated in Figure 3.

3.5 Mixed model structure of E�
1–algebras

In [3, Theorem 2.1] Berger and Moerdijk construct a q–model structure on categories
of algebras over colored operads by transferring cofibrantly generated model structures
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f ˛1r˛1r

1
3

˛111˛111

˛112˛112

x11x11

x12x12

x13x13

x14x14

;
˛2r˛2r

1
6

˛211˛211

˛212˛212

2
3

��

˛222˛222

˛223˛223

x21x21

x22x22

x23x23

D

f Ëh˛1r ; ˛2r if Ëh˛1r ; ˛2r i

1
6

f Ëhidc ; ˛211if Ëhidc ; ˛211i

f Ëhidc ; ˛212if Ëhidc ; ˛212i

f Ëhidc ; ˛211if Ëhidc ; ˛211i

f Ëhidc ; ˛212if Ëhidc ; ˛212i

1
3

f Ëh˛111; idd if Ëh˛111; idd i

f Ëh˛111; idd if Ëh˛111; idd i

f Ëh˛111; idd if Ëh˛111; idd i

f Ëh˛112; idd if Ëh˛112; idd i

f Ëh˛112; idd if Ëh˛112; idd i

f Ëh˛112; idd if Ëh˛112; idd i

2
3

��

f Ëhidc ; ˛222if Ëhidc ; ˛222i

f Ëhidc ; ˛223if Ëhidc ; ˛223i

��

f Ëhidc ; ˛222if Ëhidc ; ˛222i

f Ëhidc ; ˛223if Ëhidc ; ˛223i

��

f Ëhidd ; ˛222if Ëhidd ; ˛222i

f Ëhidd ; ˛223if Ëhidd ; ˛223i

��

f Ëhidc ; ˛222if Ëhidc ; ˛222i

f Ëhidc ; ˛223if Ëhidc ; ˛223i

f Œx11; x21�f Œx11; x21�

f Œx11; x22�f Œx11; x22�

f Œx11; x23�f Œx11; x23�

f Œx12; x21�f Œx12; x21�

f Œx12; x22�f Œx12; x22�

f Œx12; x23�f Œx12; x23�

f Œx13; x21�f Œx13; x21�

f Œx13; x22�f Œx13; x22�

f Œx13; x23�f Œx13; x23�

f Œx14; x21�f Œx14; x21�

f Œx14; x22�f Œx14; x22�

f Œx14; x23�f Œx14; x23�

Figure 3: L�–structure of B2X .

from the underlying monoidal model category. Their method generalizes to the E�
1–

algebra context, at least in the topological context we are interested in this article. In [2]
Barthel and Riehl show how to transfer h–model structures, which gives us a mixed
model structure of E�

1–algebras.

Let .S a ƒ/ W T ˛ A be an adjunction and suppose T is equipped with a model
structure. Define a morphism � of A to be a weak equivalence or fibration if ƒ�
is respectively a weak equivalence or fibration. It is often possible to extend these
distinguished classes of morphisms to a model structure on A, and in this case we say
the model structure of A is transferred from the one on T . For instance, an extension
exists if the model structure of T is cofibrantly generated and Crans’ transfer criteria
are met [8, Theorem 3.3]:

(i) The left adjoint S preserves small objects, ie if T .X;�/ preserves filtered colimits
then A.SX;�/ also does.

(ii) Any sequential colimit of pushouts of images under S of the generating trivial
cofibrations of T yields a weak equivalence in A.
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The first criterion is often easily verified; for instance it holds if the right adjoint ƒ
preserves filtered colimits. The second can be harder to verify, but the existence of
path-objects yields condition (ii). Recall that a path object of X is a factorization of its
diagonal into a weak equivalence followed by a fibration X ��! Path.X/�X �X .
By Quillen’s path-object argument, the conditions

(a) A has a fibrant replacement functor,

(b) A has functorial path-objects for fibrant objects,

imply Crans’ condition (ii) [26, Chapter II, page 4.9; 34, Lemma A.4].

The Quillen model structure of E�
1–algebras is transferred from the q–model structure

of Top2
S0

by the adjunction

.E�L�
0 a U/ W Top2

S0
˛ .E�;L�/ŒTop�;

where E�L�
0 is the composition of the free L�

0 –algebra functor followed by the free
E�–algebra functor, both left adjoint to forgetful functors.

The forgetful functors preserve filtered colimits, so Crans’ condition (i) is satisfied.
All objects of Top2

S0
are fibrant, so the same is true in .E�;L�/ŒTop�. Now note that

for all X 2 .E�;L�/ŒTop�, the pair of Moore spaces MX WD .MXd ;MXc/ equipped
with the pointwise operations

f Œ.ta; a/� WD .maxA ta; r 7! f Œar�/; ˛h.ta; a/i WD .maxA ta; r 7! ˛hari/

is an E�
1–algebra. The inclusion � W X ! MX of constant paths is a homotopy

equivalence, and the evaluations at the start and end .ev0; ev1/ WMX ! X �X is
a fibration. We therefore have a functorial construction of path-objects, and so a
transferred q–model structure on the category of E�

1–algebras.

Even though the h–model structure on Top2
S0

is not cofibrantly generated it can still
be transferred by the adjunction .E�L�

0 a U/, with the h–cofibrations defined as
the maps with the left lifting properties against the trivial h–fibrations [2]. For all
� 2 .E�;L�/ŒTop�.X; Y / the pair �� WD .��d ; ��c/, equipped with the pointwise
operations

f Œ.xa; ta; a/� WD .f Œxa�;maxA ta; r 7! f Œar�/;

˛h.xa; ta; a/i WD .˛hxai;maxA ta; r 7! ˛hari/

is an E�
1–algebra. Then .�ICt ; F / forms an algebraic weak factorization system in

.E�;L�/ŒTop�. On the other hand there doesn’t seem to be any natural E�
1–algebra
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structure on E� such that the h–cofibration/trivial h–fibration factorization .EIC;Ft /
in Top2

S0
induces a factorization in .E�;L�/ŒTop�. We do have an h–cofibration/h–

equivalence factorization

X
inX,�!X tE�L�

0 X
E�L�

0 .�� � Œ0;1�/tE�L�
0 ��

Y
.�;Ft�

�;id/
Š

������! Y;

and the fact that Ct� has the left lifting property against h–fibrations in Top2
S0

in-
duces the left lifting property against h–fibrations in .E�;L�/ŒTop� on inX . The map
.�; Ft�

�; id/ is an h–equivalence, but it is not necessarily an h–fibration. Applying
.�ICt ; F / then gives us the h–cofibration/trivial h–fibration factorization

X
Ct .�;Ft�

�;id/inX,����������! �.�; Ft�
�; id/ F.�;Ft�

�;id/
Š

��������� Y;

which determines the strict Hurewicz/Strøm model structure on .E�;L�/ŒTop�. We
then have a mixed model structure by Cole’s construction [7].

4 Recognition of algebra spectra

4.1 Coordinate-free spectra

We give a brief review of coordinate-free spectra [17] and some examples. Let U 2 I

be countably infinite-dimensional (in the context of coordinate-free spectra we refer
to U as a universe). The topological category SpU of coordinate-free U–spectra is
composed of the class of objects˚
Y D .hYU i; h�

U
V i/ 2†…ATop�…†AAU Top�.YU ^S

V�U ; YV / j

�UU Œy;
E0�D y; �VW Œ�

U
V Œy; Ev�; Ew�D �

U
W Œy; EvC Ew�

	
and morphism spaces

SpU.Y;Z/ WD ffD hfU i 2…ATop�.YU ; ZU / j �
U
V ŒfUy; Ev�D fV �

U
V Œy; Ev�g:

We are particularly interested here in the case UD R1, and in this case we use the
notation Sp WD SpR1 .

Example 4.1.1 Interesting coordinate-free spectra to keep in mind are the following,
with details similar to the equivalent symmetric examples in [29, Section I.2]:

� For each p 2 Z the p–sphere spectrum is defined as

Sp WD

8̂<̂
:
hSU�Rjpji; �UV ŒEu; Ev� WD EuC�V�Rjpj Ev if p < 0;
hSU i; �UV ŒEu; Ev� WD EuC Ev if p D 0;
hSU˚Rpi; �UV Œ.Eu; Ew/; Ev� WD .EuC Ev; Ew/ if p > 0:
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We use the notation S WD S0.

� For each G 2 AbGrp, define the Eilenberg–Mac Lane spectrum

HG WD hG˝F ŒSU ��i; �UV Œga˝ Eu
a; Ev� WD ga˝ Eu

a
C Ev;

where F ŒSU �� denotes the quotient of the free abelian group generated by the points
of the U –sphere by the subgroup generated by1, and as in the Einstein convention
ga˝ Eu

a indicates a finite sum of elements. Note that g˝1D 0.

� For each U 2A let OU be the orthogonal group of isometric automorphisms of U .
The total space EOU of the universal principal OU –bundle is the geometric realization
of the simplicial space O�U 2 Top�

op
with

hf j i � @i WD

*8<:
f j
0

if j 0 < i
f if iC1 if j 0 D i
f j
0C1 if j 0 > i

+
; hf j i � ıi WD

*8<:
f j if j < i C 1
idU if j D i C 1
f j�1 if j > i C 1

+
:

The U –spheres admit a left OU –action by evaluation f � Eu WD f Eu, and EOUC admits
the right OU –action

Œhgi i; ht i i� �f WD

���
gi if i < m
gmf if i Dm

�
; ht i i

�
:

For .U; V / 2†AAU we have a natural inclusion

�UV WOU !OV ; �UV f WD �V�U Cf�U :

The Thom spectrum is

MO WD hEOUC ^OU S
U i; �UV ŒŒhf

i i; ht i i; Eu�; Ev� WD Œh�UV f
i i; ht i i; EuC Ev�:

An �–spectrum is a spectrum Y 2 Sp such that the adjoint structural maps z�UV 2
Top�.YU ; Y

SV�U

V / are q–equivalences.

The stable homotopy groups of spectra are �Sp Y WD �0Sp.Sp; Y /. If Y is an �–
spectrum then

�Sp Y Š

�
�0YRjpj if p < 0;
�pY0 if p � 0:

Spectra maps that induce isomorphisms of the stable homotopy groups are called stable
weak equivalences, and spectra Y 2 Sp with �Sp Y trivial for p<0 are called connective.

The base space functor is

ƒ1 W Sp! Top�; ƒ1Y WD Y0;
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which is right adjoint to the suspension spectrum functor

†1 W Top�! SpI †1X WD hX ^SU i; �UV ŒŒx; Eu�; Ev� WD Œx; EuC Ev�;

with adjunction unit and counit

�x WD Œx; E0�; �U Œy; Eu� WD �
0
U Œy; Eu�:

4.2 Stable mixed model structure of spectra

For any spectrum Y 2 Sp the cylinder spectrum is Y ^ IC WD hYU ^ ICi, and the cone
spectrum is CY WD Y ^ IC=Œy;1��Œy0;1�.

In the strict Quillen model structure on Sp a morphism f 2 Sp.X; Y / is a weak equiva-
lence if each fU is a q–equivalence, a fibration if it is a Serre fibration, ie if it has the
homotopy lifting property with respect to the cylinder inclusions of cones of sphere
spectra in0 2 Sp.CSq; CSq ^ IC/ for all q 2 Z, and a cofibration if it is a retract of a
relative cell-spectrum, with cells given by cones of sphere spectra and domain of the
attaching maps the boundary sphere spectra [9, Section VII.4]. This is a cofibrantly
generated model structure with factorization systems induced by the small object
argument. The weak equivalences, fibrations and cofibrations of this model structure
are referred to as q–equivalences, q–fibrations and q–cofibrations, respectively.

Homotopy equivalences in Sp are spectra maps that admit an inverse up to homo-
topy, with homotopies defined via the cylinder spectra in the usual way. In the strict
Hurewicz/Strøm model structure f is a weak equivalence if it is a homotopy equivalence,
a fibration if it is a Hurewicz fibration, ie if it has the homotopy lifting property with
respect to all cylinder inclusions in0 2 Sp.X;X ^ IC/, and a cofibration if it has the
left lifting property against trivial Hurewicz fibrations.

The weak factorization system can be constructed through (co)monads as described
in [2]. For any Y 2 Sp let the spectrum of Moore paths in Y be

MY WD h.MYU ; .0; r 7! yU0//i; �UV Œ.t; /; Ev� WD .t; r 7! �UV Œr; Ev�/:

The factorization systems are then defined as .�fICt f; F f/ WD .h�fU iI hCt fU ihF fU i/

and .EfIC f; Ft f/ WD .hEfU iI hC fU ihFt fU i/ for all spectra maps f.

The weak equivalences, fibrations and cofibrations of this model structure are referred
to as h–equivalences, h–fibrations and h–cofibrations, respectively. We then equip Sp
with the mixed model structure as described in [7, Proposition 3.6].
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Since the point of spectra is to study stabilization phenomena we are actually interested
in inverting the stable weak homotopy equivalences. From the strict model structure
the process of Bousfield localization constructs the stable model structure, with stable
weak homotopy equivalences as weak equivalence [4; 28]. For every spectrum Y 2 Sp
we can functorially define an inclusion spectrum7 zY equipped with a quotient map
Y ! zY , so we may think of points in zY as equivalence classes of points in Y [17,
Appendix 1]. If Y is already an inclusion spectrum then zY D Y . The spectrification
functor is

z� W Sp! SpI z�Y WD hcolim
AU

zY S
V�U

V i; �UW Œ; Ew� WD ŒEv 7! .EvC Ew/�;

induced by the adjoint structural maps Q� and with the formula for the structural maps
determined by a choice of representative  with domain V 2AW . This is a Quillen
idempotent monad with structural natural map

(10) �0 W Id) z�; �0Uy WD ŒEv 7! �UV Œy; Ev��:

The stable model structure on spectra Spz� has as weak equivalences the stable weak
equivalences, and stable fibrations are p 2 Sp.E;B/ composed of indexwise Hurewicz
fibrations such that the maps

. Q�UV ; pU / WEU !ES
V�U

V �
BS
V�U

V

BU

are q–equivalences. The fibrant spectra are the �–spectra, and the cofibrant spectra are
those homotopy equivalent to retracts of q–cofibrant spectra. With the induced stable
model structure the adjunction .†1 aƒ1/ is a Quillen adjunction.

The morphisms category Sp� admits a projective stable model structure with .fd ; fc/ 2
Sp�.i W Yd ! Yc ; j W Zd ! Zc/ a weak equivalence or fibration if fd and fc are both
stable weak equivalences or stable fibrations, respectively; and it is a cofibration if both
fd and .fc ; j/ W Yc _Yd Zd !Zc are stable cofibrations.

4.3 Recognition of 1–loop maps

We can now prove the recognition principle for1–loop pairs of spaces of spectra maps.
The base pair of spaces functor is

ƒ12 W Sp�
! Top2�; ƒ12 .i W Yd ! Yc/ WD .Yd0; Yc0/;

7Inclusion spectra are those with adjoint structural maps Q� all inclusions.
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and the relative suspension functor is

†1� W Top2�! Sp�; †1� X WD†
1.ind WXd !Xd _Xc/:

We have a Quillen adjunction

.†1� aƒ
1
2 / WTop2�˛Sp�

I �?x WD Œx; E0�; �?U Œy; Eu� WD

��
�0U Œy; Eu� if cy D ?
�0U Œiy; Eu� if cy ¤ ?

�
:

The spectrification functor z� induces

z�� W Sp�
! Sp�; z��i WD . z�i W z�Yd ! z�Yc/:

The1–loop pair of spaces functor is defined as

�12 W Sp�
! E�ŒTop�; �12 i WDƒ12 z��i

with structural maps induced by the formula (4) by taking representatives of the a

with a common domain.

This functor is not a right adjoint, but it is a weak Quillen right quasiadjoint. The
left quasiadjoint functor is defined as follows: We have simplicial pointed maps
B�.†

U
� ; E

�
U ; X/ 2 .Top�

� /
�op

with

Bm�.†
U
� ; E

�
U ; X/? Š S

U^
R T0?m�…†mV iE

�in.i; v/�…VmC1XceI

ŒEu; h˛ivi; hxei�T �@i 0 WD

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

�
Œ˛
1;�1
v0 Eu; h˛

jwi; hxe
0

i�T�v0 ; Eu 2 ˛
1
v0U

1; Eu 62 ˛1tV 2U
if i 0 D 0;"

Eu;

*8<:
˛jw ; j < i 0

˛i
0wh˛.i

0C1/v0i; j D i 0

˛.jC1/w ; j > i 0

+
; hxei

#
T �@i

if 0 < i 0 <m;

ŒEu; h˛jwi; h˛mwhxe
0

ii�T �@m if i 0 Dm;

ŒEu; h˛ivi; hxei�T �ıi 0 WD

"
Eu;

*8<:
˛jw ; j � i 0

idcw ; j D i 0C1

˛.j�1/w ; j > i 0C1

+
; hxei

#
T �ıi0

:

Define the relative1–delooping functor as

B1� W E�ŒTop�! Sp�; B1� X? WD hjB�.†
U
� ; E

�
U ; X/?jiI

�UV
�
ŒŒEu; h˛ivi; hxei�T ; ht

i
i�; Ev

�
WD ŒŒEuC Ev; h˛ivi; hxei�T ; ht

i
i�:

Points in B1� X?U are equivalence classes of decorated filtered rooted relative trees
as in the description of the bar resolution B2X , except the root vertex is decorated
with a vector in U and the relative operad points decorating the inner vertices must be
contained in the suboperad E�

U of the A–filtration of E�.

Algebraic & Geometric Topology, Volume 23 (2023)



Recognition of connective commutative algebra spectra through quasiadjunction 325

Eu 7!

t1t1

˛11˛11

˛12˛12

˛13˛13

t2t2

˛21˛21

˛22˛22

˛23˛23

˛24˛24

t3t3

˛31˛31

˛32˛32

˛33˛33

˛34˛34

˛35˛35

˛36˛36

x1

x2

x3

x4

x5

x6

x7

x8

x9

˛
r;�1
1 Eu˛
r;�1
1 Eu

˛
r;�1
2 Eu˛
r;�1
2 Eu

˛
r;�1
3 Eu˛
r;�1
3 Eu

Figure 4: Representative U –loop of �c ŒŒ˛r ; h˛ivi; hxei�T ; ht i i�.

Theorem 4.3.1 For E� an E�
1–operad we have a quasiadjunction

.B1� a B2;z��
�12 / W E

�ŒTop�˛ Sp�:

Proof The unit span and cospan has �0 the natural weak equivalence (7), �0 induced
by the idempotent monad transformation (10) and � and � are defined by the formulas

� W B)�12 B
1
� ; � W B1� �12 )

z��I

�?ŒŒ˛
r;h˛ivi;hxei�T ;ht

i
i� WD

�
Eu 7!

�
ŒŒ˛

r;�1
v0 Eu; h˛

ivi; hxei�T�v0 ; ht
i i�; Eu 2 ˛rv0U

1; Eu 62 ˛rtV 1U

�
;

�?U ŒŒEu; h˛
iv
i; hei�T ; ht

i
i� WD ŒEv 7! ˛hei.EuCEv/�:

We verify that the conditions for Definition 2.1.1 are satisfied.

(i) By the assumptions on E� and [37, Proposition 3.2.3] the functor B1� is left
derivable.

Ev 7!Ev 7!

EuEu

EvEv

EuC EvEuC Ev

1d1d

2c2c

3d3d

4c4c

Figure 5: Representative V –loop of �c;U ŒŒEu; h˛ivi; hei�T ; ht i i�.
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(ii) Trivially �12 preserves fibrant objects. Since �1 D ƒ1 z� and stable weak
equivalences are by definition maps whose images under z� are strict weak equivalences
we have that �12 preserves weak equivalences.

(iii) The functor B2 trivially preserves fibrant objects, and by [37, Proposition 3.2.3]
it preserves cofibrant objects. By definition the functor z�� preserves fibrant objects in
the mixed stable model structure, and by [12, Section 5.3] it preserves cofibrant objects.

(iv) As a map of topological spaces, �0 is a realization of a simplicial strong deformation
retract, so it is itself a strong deformation retract of topological spaces and therefore
in particular a q–equivalence [21, Theorems 9.10, 9.11 and 11.10]. The map �0 is a
natural stable weak equivalence by definition.

(v) The natural homotopy H which gives the homotopy commutativity in Sp�,

�B1� XB
1
� �X ŒŒEu; h˛

iv
i; hŒˇer ; hˇejwi; hxef i�Se ; hs

ej
i�i�T ; hr

i
i�

D

�
Ev 7!

(
ŒŒ.ı<e˛

iv
v0 ˇ

er
w 0/
�1.EuCEv/;hˇejwi;hxef i�Se

�w0
;hsej i�; EuCEv 2 ı<e˛

iv
v0 ˇ

er
w 0V

1; EuCEv 62 ˛hˇerit†
VmC1

W e1V

�
'HX ŒEv 7! ŒŒEuCEv; h˛ivi; hˇehxef ii�Se ; hr

i
i��

D �0B1� XB
1
� �0X ŒŒEu; h˛

iv
i; hŒˇer ; hˇejwi; hxef i�Se ; hs

ej
i�i�T ; hr

i
i�

is

H W B1� B2 ^ IC) z�B
1
� ;

HXU .ŒŒEu; h˛
iv
i; hŒˇer ; hˇejwi; hxef i�Se ; hs

ej
i�i�T ; hr

i
i�; t /

WD

"
Ev 7!

""
EuC Ev;

*8<:
˛iv

ˇejw

idcw

+
; hxef i

#
T ıhSe �ıei

; ˆ.t; hr i i; hsej i/

##
;

where

ˆ.t; hr i i; hsej i/ WD .1� t /.ımCnC1
kDmC1

@k � hr
i
i/C t .ımkD0@0�CEm hs

ej
i/;

with the conditions in the formula similar to the ones in (6).

(vi) In E�ŒTop� we have strict commutativity

�12 ���12 ŒŒ˛
r ; h˛ivi; hei�T ; ht

i
i�D Œ˛hei�

D�12 �
0�0�12

ŒŒ˛r ; h˛ivi; hei�T ; ht
i
i�:
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Theorem 4.3.2 The quasiadjunction in Theorem 4.3.1 is idempotent and induces an
equivalence

.LB1� aR�12 / WHoE
�ŒTop�grp˛HoSp�

con

between the homotopy categories of grouplike E�–pairs and maps between connective
spectra.

Proof In E�ŒTop� the conditions for Definition 2.2.1 are satisfied and the resulting
reflective homotopy subcategory is composed of the grouplike E�–pairs:

(i) As we have seen �0 is a natural weak equivalence and by definition cof is a natural
trivial fibration, so cof�0C is a weak equivalence.

(ii) Since �12 preserves weak equivalence between fibrant objects and B1� preserves
weak equivalences between cofibrant objects we have that �12 FB1� C preserves weak
equivalences.

(iii) The natural transformation � is a natural group completion, since it is a realization
of a simplicial group completion map — see [21, Theorems 2.7, 9.10 and 9.11] and [22,
Theorem 2.2] — and the images of �12 FB1� C are grouplike; therefore ��12 FB1� C is a
natural weak equivalence. By naturality �12 FB1� C� is also a group completion, and
since the domain and codomain are grouplike this is a natural weak equivalence.

(iv) This condition holds since fibrations are preserved by pullbacks, fibrations induce
long exact sequences of homotopy groups and for a fibration p W E� B and a map
f W X ! B the fibers of the pullback f �p W X �B E! X are homeomorphic to the
fibers of p.

(v) Pushouts in E�ŒTop� by a cofibration whose domain is m–cofibrant in Top� is a
retract of a transfinite composition of pushouts by m–cofibrations in Top� [30, I.4],
hence this condition holds since Top� with the mixed model structure is left proper
and the underlying functor of E� is an m–cofibrant Sfd;cg–space.

By the characterization of fibrations in the resulting Bousfield localization in [37,
Proposition 2.3.6] the fibrations are the group completions and fibrant objects are the
grouplike E�–pairs.

The dual conditions for Definition 2.2.1 are also satisfied in Sp� and the resulting
coreflective homotopy subcategory is composed of the maps between connective spectra.
Note that conditions (i), (ii) and (iii) are self dual.
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(i) By definition of the stable model structure �0 is a natural stable weak equivalence
and by definition fib is a natural trivial cofibration, so �0Ffib is a weak equivalence.

(ii) That B1� C�12 F preserves weak equivalences follows by the same argument for
�12 FB1� C.

(iii) We have that ��12 is a natural weak equivalence, and since

�12 ���12 D�
1
2 �
0�0�12

and �12 �
0�0
�12

is a natural weak equivalence by the two-out-of-three property �12 �
is a natural weak equivalence. Since the images of z� are �–spectra by the formula
for stable homotopy groups of �–spectra we have that � induces isomorphisms on
the nonnegative stable homotopy groups, and is therefore a stable weak equivalence
on the maps between connective spectra. The images of B1� are connective by [21,
11.12] and [22, A5]. Therefore �B1� C�12 F is a natural weak equivalence. By naturality
B1� C�12 F� also induces isomorphisms on the nonnegative stable homotopy groups
and so is also a natural weak equivalence.

(iv) This condition holds since cofibrations are preserved by pullbacks, spectra cofibra-
tions induce long exact sequences of stable homotopy groups and for any cofibration
i W A ,! X and map f W A ! Y the cofibers of the pushout f�i W Y ! X tA Y are
homeomorphic to the cofibers of i.

(v) The stable model structure of spectra is right proper so the dual of (v) holds.

By the dual of the characterization in [37, Proposition 2.3.6] the cofibrant objects are
the spectra maps such that

�..�B1� cof�12 /Fi/�z�Fi i! i

are weak equivalences, which is equivalent to � being a map of connective spectra.

4.4 S–modules and commutative algebra spectra

We need to work on the more structured category of sphere modules ModS; it admits a
monoidal structure that provides a natural definition of spectral algebraic structures [9].
As a first step consider for A 2 S the external smash product functor

x̂A W…ASp!Sp˚AR1 ; x̂AhY
a
i WDh^AY

a
Uai; �

hUai

hV ai
ŒŒya�;hEvai� WD Œ�U

a

V a Œy
a; Eva��:
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The change of universe in this product is formally problematic, and the following
construction is used to internalize the smash product in Sp. For K �cpct LA define the
monotone functions

� 2 POSet.A˚AR1 ;A/; �hU ai WD
P
K f hU

ai;

� 2 POSet.A;A˚AR1/; �U WD \Khf
�
a U i;

which satisfy

��U � U; ���U D �U; hU ai � ��hU ai; �hU ai D ���hU ai:

For all .hU ai; V / 2†A˚AR1
A�hUai we have the associated Thom complex

TK
hUai
V WD†KS

V�f hUai=.f;1/�.g;1/ 2 Top�;

where †KSV�f hU
ai is topologized as a subspace of K �SV . We will use the notation

Ev
f
WD Œf; Ev� 2 TK

hUai
V , so that the basepoint is denoted 1

f
for any f 2K.

The twisted half-smash product is

LAË�W Sp˚AR1 ! Sp; LAËZ WD h colim
K�cpctLA

TK�UU ^Z�U iI

�UV ŒŒ
Eu
f ; z�; Ev� WD Œ

�V�f�V .EuCEv/

f
; ��U�V Œz; f j

�
�V .EuC Ev/��:

The monad .LI �; �/ on Sp is

LY WD L1ËY I �y WD Œ
E0
id; y�; �Œ Euf ; Œ

Ev
g ; y�� WD Œ

EuCf Ev

fg
; y�:

We refer to the L–algebras as L–spectra and for .Y; y/ 2 LŒSp� we use the notation
Eu
f
y WD yŒEu

f
; y�.

The sphere spectrum S, the Eilenberg–Mac Lane spectra HG and the Thom spectrum
MO in Example 4.1.1, as well as the suspensions †1X of L–spaces, the spectrifi-
cations z�Y of L–spectra and deloopings B1X of E1–ring spaces are all L–spectra
with structural morphisms given as in Table 1.

The A–indexed smash product is

^LA W…ALŒSp�! LŒSp�; ^LAhY
a
i WD

˝
LAË x̂AY aU =ŒEu

f
;ŒEv
a

ga
ya���Œ

EuCfa Eva

f hgai
;Œya��

˛
;

with structural maps induced by the ones for the twisted smash product. In order to
make explicit the parallel between the smash product of spectra with the tensor product
of abelian groups we will use the notation

˝
Eu
f Œy

a� WD ŒŒEuf ; Œy
a��� 2 ^LAhY

a
i;
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Eu
f
y

S EuCf Ev

HG ga˝ EuCf Ev
a

MO Œh�
f �U
U fgif �1i; ht i i; EuCf Ev�

†1X Œfy; EuCf Ev�

z�Y ŒEv 7!
�
f�V?

.EuCEv/

f
f j��V.EuC Ev/�

B1X ŒŒEuCf Ev; hf Ë˛ivi; hf xei�T ; ht i i�

Table 1

so that the L structural maps are

Eu
f˝
Ev
g Œy

a� WD ˝
EuCf Ev

fg
Œya�:

For AD 2 this defines an associative and symmetric smash product

Y 1 ^L Y
2
WD ^L2hY

1; Y 2i:

Associativity follows from the fact that the maps

‰A;hBai W ^LA.^LBahY
ab
i/!^L†ABahY

ab
i; ‰˝Euf Œ˝

Eva

ga Œy
ab�� WD˝

EuCfa Ev
a

f hgai
Œyab�

are isomorphisms [9, Theorems I.5.4, I.5.5 and I.5.6]. In particular when the Ba are a
constant set B we have †AB Š A�B and therefore also a natural isomorphism

ˆA;B WD‰
�1
B;hAi‰A;hBi W ^LA.^LBhY

ab
i/!^LB.^LAhY

ab
i/:

We set the notation

˝
Ev
g Œ˝

Eub

f b
Œyab�� WDˆA;B ˝

Eu
f Œ˝

Eva

ga Œy
ab��:

Symmetry is given by the natural isomorphism

�Y 1;Y 2 W Y
1
^L Y

2 Š
�! Y 2 ^L Y

1; � ˝Euf Œy
1; y2� WD ˝Euf �.12/Œy

2; y1�:

For all Z 2 LŒSp� set the notation †Z WD �^LZ W LŒSp�! LŒSp�.

This smash product almost has as unit the sphere spectrum S, in that there are natural
weak equivalences

�Y W†
SY ��! Y; �˝Euf Œy; Ev� WD �

f1�U
1

U ŒEuf1y; f2Ev�:
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��1y

S ˝
E0
f
Œf �11 Eu;

E0�

HG ˝
E0
f
Œga˝f

�1
1 Eu

a; E0�

MO ˝
E0
f
Œhf �11 gif1i; ht

i i; f �11 Eu�;
E0�

†SY ˝Eu
hf1;g2;g3i

Œy; g�2f2Ev; g
�
3f2Ev�

z�Y ŒEv 7! ��1 Ev�

Table 2

Unfortunately � is not in general a natural isomorphism. The category of S–modules is
the full subcategory

ModS WD fY 2 LŒSp� j �Y is an isomorphismg:

With the same smash product and unit S the category ModS is a symmetric monoidal
category.

From the nontrivial fact that LA=L1A has a single equivalence class [9, Theorem I.8.1
and Section XI.2] the sphere spectrum S, the Eilenberg–Mac Lane spectra HG and the
Thom spectrum MO in Example 4.1.1, as well as †SY for Y 2 LŒSp� and spectrifi-
cations z�Y for Y 2 ModS, are all S–modules with inverse maps given as in Table 2,
where in the first three lines f 2L2 is any linear isometry such that U � f1R1, in the
fourth hg2; g3i 2 L2 are chosen such that hf1; g2; g3i 2 L3 and Imf2 D Imhg2; g3i.

The functor †S WD �^L S is the right adjoint of the inclusion of ModS in LŒSp�. The
functor †S is also a left adjoint, with right adjoint induced by a closed structure on
LŒSp� given by an L–mappings functor FL. Details of this construction can be found
in [9, Section I.7], but we give an overview to establish notation. The twisted half-smash
product LAË� admits a right adjoint, the twisted function spectrum functor

F ŒLA;�/ W Sp! Sp˚AR1 ; F ŒL.A/; Y / WD
˝

lim
K�cpctL.A/

Y
TK
hUai

�hUai

�hUai

˛
I

�
hV ai

hUai
Œ'; hEvai� WD hEuf 7! �

�hV ai

�hUai
Œ'
��hUai.EuCfa Ev

a/

f
; ��hUai?.EuCfa Ev

a/�i:

For U 1 2A we also have a shift functor

�ŒU 1� W SpR1˚R1 ! SpI Y ŒU 1�D hYU 1;U 2i; �U
2

V 2
Œy; Ev� WD �

U 1;U 2

U 1;V 2
Œy; .E0; Ev/�:
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If Y 2 LŒSp� then F ŒL2; Y /ŒU 1� 2 LŒSp�, with structural map

Eu
f ' WD h

Ev
g 7! '

EvCg2 Eu

hg1;g2f i
i:

Finally, we can now define

FL.�;�/ W LŒSp�op
�LŒSp�! LŒSp�;

FL.Z; Y /

WD hf� 2 LŒSp�.Z; F ŒL2; Y /ŒU 1�/ j Euf .�z
Ev
g/D �z

EuCf Ev

hfg1;fg2i
; �.Euf z/

Ev
g D �z

EvCg2 Eu

hg1;g2f i
giI

�U
1

V 1
Œ�; Ev� WD hz 7! �

U 1;U 2

V 1;U 2
Œ�z; .Ev; E0/�i; Eu

f � WD hŒz;
Ev
g � 7! �z

EvCg1 Eu

hg1f;g2i
i:

The functor F S WD FL.S;�/ W ModS! LŒSp� is right adjoint to †S.

The monoidal structure of S–modules provides a natural definition of ring spectra,
module spectra and algebra spectra.

Definition 4.4.1 A commutative ring spectrum R is a commutative monoid in ModS,
ie an S–module equipped with a multiplication map � WR^LR!R and a unit map
� W S!R satisfying natural associative, unit and commutative laws. The category of
commutative ring spectra is denoted CRingSp.

For R 2 CRingSp an R–module M is a module over R, ie an S–module equipped with
an action � WR^LM !M , satisfying natural associativity and unit laws. The category
of R–modules is denoted ModR.

The category of R–modules admits a symmetric monoidal structure with tensor product
the coequalizer

M ^RN WD Coeq.M ^LR^LN �M ^LN/

and unit R. A commutative R–algebra is a commutative monoid in .ModR;^R; R/, and
the category of commutativeR–algebra is denoted CAlgR. The category of commutative
algebra spectra is

CAlgSp WD†CRingSpCAlgR:

As in the classical set theoretical setting there is a natural isomorphism [9, VII.1]
CAlgSpŠ CRingSp�. Alternatively we have a monad .P�I �; �/ on LŒSp�2 with

P�Y? WD tS? ^LA hYcai=SA I

�?y WD Œ˝
E0
idy�; �?

�
˝
Eu
f Œ˝

Eva

ga Œy
ab��

�
WD Œ˝

EuCfa Ev
a

f hgai
Œyab��;
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�Eu
QEu
f y

a

S Eu EuCfa Ev
a

HR 1R˝ Eu
Q
Ahbai

ra
ba
˝ EuCfa Ev

aba

MO Œid;∅; Eu�
�Q

Ah�
fa�U

a

U fag
aif �1a i � ı

a;CA htai i; EuCfa Eva
�

†1X Œ1X ; Eu� Œf Œxa�; EuCfa Ev
a�

†SR ˝
�
f?
Eu

f
Œ�f �1 Eu; f

�
2 Eu� ˝Evg

�QEu1
f 1
ra; Eu2Cf 2a Ew

a
�

z�R ŒEv 7! �UV Œ�Eu; Ev��
�
Ev 7!

Q�
f�V?

.EuCEv/

f
a.faj

�
�V a

.EuC Ev//
�

B1X ŒŒEu;∅; 1X �1;∅�
��
EuCfa Ev

a;

�
fa Ë

��
˛aiw

a

idcwa

��
; hfaŒx

aea �i

�
…AT

a �ıa
;CA htai i

�
Table 3

which restricts to a monad on Mod2S. The objects of P�ŒLŒSp�2� behave like algebra
spectra over ring spectra, except they have units only up to weak equivalence. They
are referred to as E�

1–algebra spectra, similarly to how algebras in LŒSp� over the
nonrelative version P of this monad are called E1–ring spectra. By the same argument
as in [9, Proposition II.4.5] we have an isomorphism

(11) P�ŒMod2S�Š CAlgSp:

For RD ..Rd ; Rc/I �; �/ 2 CAlgSp and ˝Eu
f
Œra� 2 ^LAhRcai we will use the notationQEu

f r
a WD �Œ˝Eu

f
Œra��:

The sphere spectrum S, the Eilenberg–Mac Lane spectrum of a commutative ring HR,
the Thom spectrum MO , suspensions †1X of L–spaces, the S–module †SR associ-
ated to an E1–ring spectrum R and spectrifications z�R of commutative ring spectra
R are all commutative ring spectra, while deloopings B1X of E1–ring spaces are
E1–ring spectra; see Table 3, where the implicit conditions in the last line are as in (9).

There is a natural isomorphism CAlgS Š CRingSp, which is analogous to the isomor-
phism between commutative rings and commutative Z–algebras. Moreover .MO;HR/2
CAlgSp withQEu

f ŒŒhg
1i i; ht1i i; Ev1�; r2

b
˝ Ev2b� WD r2

b
˝ EuCf1 ım� g

1i Ev1Cf2Ev
2b:
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4.5 Stable mixed model structure of commutative algebra spectra

The stable mixed model structure of ModS is right transferred from the one in Sp by
the adjunction

.†SL a UF S/ W Sp˛ ModS

as described in [2; 7; 9]; the weak equivalences and fibrations in ModS are those maps
whose underlying spectrum maps are q–equivalences and h–fibrations, respectively.
The Hurewicz/Strøm strict factorization systems are constructed as in Sp with the
S–module structures of �f and Ef defined pointwise. The strict mixed model structure
of CAlgSp is right transferred from the one in Mod2S by the adjunction

.P�
a U/ W Mod2S˛ CAlgSp:

The strict Quillen model structure is transferred due to the fact that CAlgSp has contin-
uous coequalizers and satisfies the “cofibration hypothesis” [9, Theorem VII.4.7]. By a
similar argument to the one we used to construct the h–model structure ofE�

1–algebras,
the strict Hurewicz/Strøm model structure is also transferred. We can define an algebra
structure on �f for f 2 CAlgSp as

�Eu WD .�X Eu; 0; r 7! �Y Eu/;
QEu
f Œ.x

a; ta; a/� WD
�QEu

f x
a;maxA ta; r 7!

QEu
f 

ar
�
:

As in Sp, .�ICt ; F / forms an algebraic weak factorization system in CAlgSp. We
have an h–cofibration/h–equivalence factorization

X
inX,�!X ^PX P.�f^ Œ0;1�C/^P�f Y

.f;Ft f
�;id/

Š
������! Y;

and applying .�ICt ; F / then gives us the h–cofibration/trivial h–fibration factorization

X
Ct .f;Ft f

�;id/inX,����������! �.f; Ft f
�; id/ F.f;Ft f

�;id/
Š

��������� Y:

This determines the strict Hurewicz/Strøm model structure on CAlgSp, and therefore
also the strict mixed model structure. The stable model structure is then induced by the
idempotent Quillen monad z� as in Sp.

4.6 Recognition of algebra spectra

Let E� be an E�
1–operad equipped with an L�–action. The functors F S and †S

induce objectwise adjoint functors F S� and †S� on the morphism categories. We can
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then define the functors

�
1;S
2 W CAlgSp! .L�; E�/ŒTop�; �

1;S
2 R WD�12 F

S
��I

f Œ�a� WD ŒEu1 7! hŒEu2; Evg � 7!
QE0
f �

aŒEu1; Eu2�Evgi�I

BS;1� W .L�; E�/ŒTop�! AlgSp; BS;1� X WD†S�B
1
� X:

Theorem 4.6.1 There is an idempotent quasiadjunction

.BS;1� a
B2;z��

�
1;S
2 / W .H�

1;L
�/ŒTop�˛ CAlgSp

that induces an equivalence

.LBS;1� aR�1;S2 / WHo.H�
1;L

�/ŒTop�alg˛HoCAlgSpcon

between the homotopy category of algebralikeE�
1–algebras and the homotopy category

of connective commutative algebra spectra over connective commutative ring spectra.

Proof The natural weak equivalences �0 and �0 are the same as those defined in the
proof of Theorem 4.3.1. The other natural transformations of the unit span and counit
cospan are

�?ŒŒ˛
r ; h˛ivi; hxei�T ; ht

i
i�

WD

�
Eu1 7!

�
hŒEu2; Ev

f
� 7!˝Ev

f

�
ŒŒ˛

r;�1
v0 Eu

1; h˛ivi; hxei�T�v0 ; ht
i i�; Eu2

�
i if Eu12˛rv0U

1 if Eu1…˛r tV 1 U

�
;

�?U˝
Eu
f

�
ŒŒEv1; h˛ivi; h�ei�T ; ht

i
i�; Ev2

�
WD Œ Ew 7!˛h�eiŒEv1Cf �1 Ew; Ev

2
Cf �2 Ew�

EuC�
f?
Ew

f
�:

The conditions in the first formula are the same as in the proof of Theorem 4.3.1;
the domain in the last formula is any W 2 AUCf1V with V a common domain of
representatives of the loops �e.

That these maps satisfy the conditions for an idempotent quasiadjunction follows from
the fact that .†S� aF

S
�/ WP

�ŒLŒSp�2�˛ CAlgSp is a Quillen equivalence and the same
argument as for Theorems 4.3.1 and 4.3.2.
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