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Recognition of connective commutative algebra spectra
through an idempotent quasiadjunction

RENATO VASCONCELLOS VIEIRA

A recognition principle for oco—loop pairs of spaces of connective commutative
algebra spectra over connective commutative ring spectra is proved. This is done
by generalizing the classical recognition principle for connective commutative ring
spectra using relative operads. The machinery of weak Quillen quasiadjunctions, a
generalization of Quillen adjunctions, is used to handle the model theoretical aspects
of the proof.

55P43, 55P48; 55P42, 55P47, 55P60, 55P65

1 Introduction

A recognition principle is a specification of conditions for a space to be of the weak
homotopy type of an N—loop space. Stasheff showed in [31; 32] that a pointed space is
of the weak homotopy type of a 1-loop space if and only if X is a grouplike .A,—space.
By the work of May in [21; 22] and homological computations by Cohen in [6], for
2 < N < o0 a pointed space is of the weak homotopy type of an N—loop space if and
only if X is a grouplike €y—space. The proof of the recognition principle for co—loop
spaces gives an equivalence between the homotopy category of grouplike E,—spaces
and the homotopy category of connective spectra. Due to reasons we explain shortly, an
interesting feature of this equivalence is that it is not induced by a Quillen adjunction
as is usual in a model theoretical setting.

In [23] May defines actions between operads, which encode distributive properties
and provide a natural definition of Eoo—rings. The canonical multiplicative operad
is the linear isometries operad &, which induces a nonunital monoidal structure on
the category of spectra, and thus a definition of Ess—spectra. In [9] Elmendorf, Kriz,
Mandell and May show that the category Modg of sphere modules is a monoidal model
category of spectra. Commutative monoids in Modg form the category CRingSp of
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commutative ring spectra, which is Quillen equivalent to the category of E ,—ring
spectra. The monoidal structure also provides a convenient setting to define module
spectra and algebra spectra over commutative ring spectra. As explained by May
in [25] the recognition principle can then be extended to an equivalence between
ringlike E~o—rings and connective commutative ring spectra.

In [15] Hoefel, Livernet and Stasheff show that relative 1-loop spaces are recognized by
Aoso—actions, which are pairs of spaces acted on by a resolution of the relative operad of
actions of a monoid on a space. In [37] I extended the recognition of relative N—loop
spaces for the cases 3 < N < oo. In particular, for N = oo this states that the homotopy
category of grouplike £ gg—pairs, which are algebras over a relative operad homotopy
equivalent to the infinite-dimensional Swiss-cheese relative operad, is equivalent to the
homotopy category of degree 1 maps between connective spectra.

All these recognition theorems share one feature: they can be formulated as equivalences
between homotopy categories of model categories induced by loop space functors and
delooping functors that are not adjoint. In [37] I introduced the notion of a weak
Quillen quasiadjunction, a generalization of Quillen adjunctions that allows for units
and counits to exist only up to functorial resolutions. In the same vein I defined a
generalization of Quillen idempotent (co)monads, which induce left (right) Bousfield
localizations of model structures. Through these we have a natural definition of idem-
potent quasiadjunctions, which induce equivalences between the associated homotopy
subcategories. This machinery provides a natural model theoretical axiomatization of
the essential elements of May’s original proof of the recognition principle of co—loop
spaces.

A less direct model categorical treatment of the recognition principle combines the
Quillen equivalence between grouplike E—spaces and very special I"'—spaces proved
by Santhanam in [27], with the latter category shown to be Quillen equivalent to
the category of connective spectra by Mandell, May, Schwede and Shipley in [20].
See Ando, Blumberg, Gepner, Hopkins and Rezk [1] for further model categorical
considerations about the recognition principle.

In this article I introduce a relative version of actions between operads which provides
a natural definition of E,—algebra spaces over E,—ring spaces, referred to simply
as E_ —algebras. The machinery of idempotent quasiadjunctions is used to prove the
main result, Theorem 4.6.1, a recognition principle for co—loop pairs of spaces of
commutative algebra spectra over commutative ring spectra. Explicitly it states that
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the homotopy category of algebralike! £ o—algebras is equivalent to the homotopy
category of connective commutative algebra spectra over connective commutative ring
spectra. This result is a consequence of the intermediary Theorems 4.3.1 and 4.3.2,
which constitute a recognition principle for co—loop pairs of spaces of spectra maps.

We finish this introduction by sketching how May’s original proof of the recognition
principle of co—loop spaces can be framed as an equivalence induced by an idempotent
quasiadjunction, which provides a blueprint for the main proofs in this article.

The category Spyy of sequential prespectra— see Lima [18] — consists of sequences of
spaces (Yn) € [ [y Top, equipped with structural maps 0]{‘,4 Yy ASNM s vy for
M < N satisfying compatibility conditions. The {2—spectra are the prespectra whose
adjoint structural maps 61]\‘,4 are all weak equivalences, which by Brown representability
represent (co)homology theories [5]. Spectra are prespectra whose dual structural
maps 6]1\‘,4 are all homeomorphisms; see for instance [9]. In this article we will work
exclusively in the category of prespectra, so from now on we will simply refer to
prespectra as spectra. From Spy we can define via filtered colimits over the dual
structural maps the oco—loop spaces functor
Q%®:8py — Top,, QY :=colim YIE\;}N.
NeN

The co-loop spaces 2°°Y are homotopy commutative H—spaces, but such description
ignores a lot of information. In order to describe the algebraic structure completely we
require an Ex,—operad &£, a gadget used to describe topological spaces with operations
that are associative and commutative up to coherent homotopy [21, Definitions 1.1
and 3.5].

For S, the category of finite sets and bijections, a topological operad is a contravariant
functor equipped with composition maps and an abstract identity element

P:S®P —Top; o:PAx[[4PB*—>PX4B? idePl,

with P& = x satisfying invariance, associativity and unitary laws. We can interpret
points in the underlying spaces as abstract multivariable functions with inputs indexed

I Semialgebras and semirings are like algebras and rings without the assumption that additive inverses
exist, ie we have an additive commutative monoid instead of an additive abelian group. An E 3 —algebra is
algebralike if the connected components of the underlying pair of spaces form an algebra over a ring, not
only a semialgebra over a semiring.

Algebraic & Geometric Topology, Volume 23 (2023)



298 Renato Vasconcellos Vieira

by the set A. Operads induce monads via the coend construction (see Loregian [19])
P:Top, —Top,. PX:=[5"PAxXx*4;
pxi=lidox], plo (B (0] = o (BY). (x4P)].

The category P[Top] of P—spaces consists of pointed spaces X € Top, equipped with
structural P—algebra maps £: PX — X, which we interpret as an instantiation of the
abstract operations of P.

An important family of operads are the embeddings operads Emby for N € N with
Emby A :={a = (o4) € (]RN)”ARN | o is an embedding}.
There are natural inclusions Embys < Emby and we define
Emby, := colimpy ey Emby .

All N-loop spaces are naturally Emb y—spaces with
-1~ L = N
aly?y:=(ur yhag %“_l,eaaR N |
* ifudallgR

and these induce Emb,—space structures on co—loop spaces.

An E,—operad is an operad £ with each underlying space £A a contractible free S A—
space. For the purpose of studying co—loop spaces, we further require Eo,—operads to
be equipped with an operad map v : £ — Emb,, which induces by pullback a functor
Q%°:8p — &[Top]. This functor is not a right adjoint since any abelian group G is an £—
space, and the strictness of the operations in G implies any E-map ¢ € £[Top](G, 2*°Y)
must be trivial; therefore no unit of adjunction can be constructed.

In May’s recognition theorem the solution was to consider the resolution of £-spaces
by the bar construction

B: &[Top] — E[Top], BX :=|B_(E,E,X)|,
which comes equipped with a natural weak equivalence 7': B = 1d.

The maps ¢ : £ — Emb, induce by pullback a suboperad filtration £y on £. If each
underlying space Ey A is equivariantly homotopy equivalent to the configuration space
of A elements in R then we can define the co—delooping functor

B®: E[Top] — Sp, B®X :=(|B_(ZV,En. X))
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such that there is a natural transformation n: B = Q% B>, with nx a weak equivalence
if and only if X is grouplike, meaning that o X is not only a monoid but also a group.

Dually there is no counit map. There is a spectrification functor?

).

~ N—M
2:Sp — Sp, QY := (colim Y3
P P (M <N N

where Y is a certain inclusion prespectrum constructed from Y, such that we have a

natural stable weak equivalence €’: Id = €. This functor plays an important role in the

construction of the stable model structures of spectra. There is a natural transformation

€: B®Q%® = Q such that the equation Q2®engeo = Q€' 0 holds in £[Top] and

we have a homotopy equivalence €goc B®nx ~ €00 y By in Sp:

BBy 37 poogoopooy BQoey 122X qoopooqooy
Boongflfv l/eBOOX n’QooYl»v \L Xey
B®X — =~ QB®X QXY — = Q®QY
€poox 2%y

Note the similarity of these equations to the ones for an adjunction. Indeed if B, Q, n
and €’ were substituted by identities and both equations held strictly we would have an
adjunction in the regular sense.

Adapting May’s original proof of the recognition principle, we can show that we have
a weak Quillen quasiadjunction

(B> - B.& Q°): E[Top] = Spy

which is idempotent and induces an equivalence between the homotopy category of
grouplike E—spaces and the homotopy category of connective spectra.>

1.1 Structure of the article

In Section 2 we review the definition of weak Quillen quasiadjunctions, idempotent
quasimonads and idempotent quasiadjunctions. Our main theorem will be a particular
case of the fact that idempotent quasiadjunctions induce equivalences between the
associated homotopy subcategories.

2The spectrification functor < is the left adjoint to the inclusion of the category of spectra in the sense
used in [9] into the category of prespectra, hence the name.

3For details see the proof of the relative recognition theorem in [37] ignoring the open coloring. The
proofs of Theorems 4.3.1 and 4.3.2 ignoring the codomain coloring is a coordinate-free version of this
result.
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In Section 3 we present the definition of E_ —algebras through relative operads. A
detailed description of relative sets, filtered rooted relative trees and operations on them
will be required to construct bar resolutions and delooping spectra, as well as describe
their algebraic structures. We then briefly review relative operads, £, —operads and the
bar resolution of E__—pairs. Relative operad actions are then introduced. They provide
an account of distributivity laws between multiplicative and additive relative operad
actions, and are central in the definition of the category (€, £7)[Top] of E_ —algebras.
We also show how the mixed model structure on (€, ¥7)[Top] is transferred from
the one on Topéo.

The main theorems are in Section 4. The basics of coordinate-free spectra and the
construction of the stable mixed model structure are presented. The recognition principle
for co—loop pairs of spaces of spectra maps is proved via an idempotent quasiadjunction
in Theorems 4.3.1 and 4.3.2, which imply the homotopy category of grouplike £ —
pairs is equivalent to the homotopy category of spectra maps between connective spectra.
After a review of the basics of S—modules and commutative algebra spectra, including
the construction of the stable mixed model structure, the main result, Theorem 4.6.1, is
proved.

1.2 Notation and terminology

We denote by Set the category of sets and functions, by S™ the subcategory of finite
sets and injections, and by S the subcategory of finite sets and bijections. We will use
the notation m for the sets {1,...,m}, with 0 = @.

Given a class A and a family of classes (B?) indexed by A, the dependent sum X4 B¢
is the class of pairs (a, b) with a € A and b € B?%; the dependent product IT4 B¢ is the
class of sequences (h?) indexed on A with b* € B for each a € A, or equivalently it
is the class of sections of the natural surjection ¥4 B¢ — A.

We denote by POSet the category of ordered sets and monotone functions, and A the
full subcategory on m 4 = (0 < 1 <---<m) for m € N. This category is generated by the
coface injections d; : m — 1, — my, with i &€ 0;m — 14, and codegeneracy surjections
8i:m~+ 1, — my, with §;i = §;(i + 1), for all i € my. For (m%) € TI4A we define
the set Vgm? := {0} U X 4m*.

Let Top be the cartesian closed category of compactly generated weakly Hausdorff
spaces as presented by Strickland [35]. We will make extensive use of mapping spaces
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Y X and will express their elements as x — ® for some expression ® which may use
the variable x. For X a set (or space) equipped with an equivalence relation ~ we will
denote the equivalence classes of x € X using square brackets [x] € X /.. We use the
notation K Ccpee X to indicate K is a compact subspace of X. We denote by / the
interval [0, 1] C R, and for N € N we denote by $¥ the one-point compactification
of RV,

We denote by Top, the closed monoidal category of pointed spaces (X, xg) equipped
with the smash product X AY := X X Y /xx(yo1utxo}xy and unit ({0,1},0). For
X € Top we denote by X € Top, the pointed space obtained by adjoining a disjoint
basepoint. We also denote by Topgo the category of spaces with two distinguished
points (X, xg, X1).

The theory of model categories in Goerss and Jardine [13], Hirschhorn [14], and
Hovey [16] is assumed, and also the theory of monads, their algebras and the bar
construction in [21, Section 9]. In diagrams in a model category 7 the morphisms in
the class of weak equivalences W are denoted by arrows marked with a tilde = , the
ones in the class of cofibrations C by hooked arrows <, and the ones in the class of
fibrations F' by double headed arrows —>. The functorial weak factorization systems
are denoted by (Fatc, r,; C—, F;y—) and (Fatc, r; C;—, F—) such that a morphism
f €T(X,Y) is factored for instance as X L, Fatc.r, f F%f» Y.

The notations €: 7 — 7T and cof: € = Id are used for the cofibrant resolution functor
and the associated natural trivial fibration, and the notations §:7 — 7 and fib:Id = §
are used for the fibrant resolution functor and the associated natural trivial cofibration.
The homotopy category Ho7T of T is the category with objects the bifibrant objects of
7 and morphisms the sets 7 (X, Y)/~ of homotopy classes of maps [16, Section 1.2].
If a functor S': T — A is left derivable, meaning it preserves cofibrant objects and
weak equivalences between them, its left derived functor IS is defined on objects as
LSX :=3§SX, and dually if A: A — T is right derivable its right derived functor RA
is defined on objects as RAY := CAY.

The closed cartesian category Top of compactly generated weakly Hausdorff spaces
admits three monoidal model structures:

For all X € Top its cylinder is X x I and its cone is CX := X X I /(x 0)~(x’,0)- We then
have the cofibrantly generated Quillen model structure [26] with weak equivalences the
weak homotopy equivalences (g—equivalences), ie the maps that induce isomorphisms
of all homotopy groups; fibrations the Serre fibrations (g—fibrations), ie the maps
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satisfying the homotopy lifting property with respect to the cylinder inclusions of cones
of spheres ing € Top(CSY,CSY x I) for all N € N; and cofibrations retracts of
inclusions of relative CW—complexes (g—cofibrations). This is a cofibrantly generated
model structure with factorization systems induced by the small object argument. In
this model structure all spaces are fibrant and the cofibrant spaces are the retracts of
CW-—complexes.

We also have the Hurewicz/Strgm model structure [36] with weak equivalences the
homotopy equivalences (h—equivalences), ie the maps that admit an inverse up to
homotopy; fibrations the Hurewicz fibrations (h—fibrations), ie the maps satisfying the
homotopy lifting property with respect to all cylinder inclusions ing € Top(X, X x I);
and cofibrations the Hurewicz cofibrations* (h—cofibrations), ie the maps satisfying the
homotopy extension property with respect to all evaluation fibrations evy € Top(Y 1, Y).
The weak factorization system can be constructed through (co)monads as described by
Barthel and Riehl in [2]. For any X € Top let the space of Moore paths in X be

MX = Ziefoo0ty € X0 | r =1t = yr = y1},
which comes equipped with the natural fibration eve, € Top(M X, X). The factorization
systems are then defined on every ¢ € Top(X,Y) as
(F(b:XXYMY; Ctd)x = (X,O,rl—)(bX), F¢(X,l,)/):= W)»
(E¢p:=T¢x[0,00]UrgY; Coéx:=(x,0,r—¢x,0), Fp(x,t,y,5):=ys).

In this model structure all objects are bifibrant.

These model structures can be combined into the mixed model structure — see Cole [7] —
with weak equivalences the g—equivalences; fibrations the ~—fibrations; and cofibrations

the m—cofibrations, ie the maps that can be factored as a g—cofibration followed by an
h—equivalence. A space is m—cofibrant if it is of the homotopy type of a CW—complex.

We denote by 7~ the category of morphisms f: X; — X, in T as objects and
commutative squares as morphisms. For notational convenience we denote elements of
categories of pairs 72 as X = (X4, X¢), and we will consider relative operads colored
on the set {d, c}, with d being the “domain” color and ¢ the “codomain” color.

Let Inn denote the topological category of finite or countably infinite-dimensional
real inner product spaces and linear maps, with the topology defined as the colimit

4We note that in the category of compactly generated weakly Hausdorff spaces all Hurewicz cofibrations
are closed.
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of the finite-dimensional subspaces. Let $ be the subcategory with the same objects
and with morphisms the linear isometries. Both Inn and $ are monoidal under direct
sums. For U € Inn we denote by «y the set of finite-dimensional subspaces of U,
partially ordered by inclusion, and for U € dy we define Ay :={V edy | U <V}.
For U = R*® we simply write & := s{goo. For ( f4) € $(®4U%,V) and (%) € &4 U
we use the Einstein summation convention fu% := 3 4 fyu*. For Ue $ and U < U
we use the notation UL :={t € U | Vii € U : -1i = 0} for the orthogonal complement.

For any U < U we define 7y € Inn(U, U) as the orthogonal projection onto U, and for
f €Inn(U, V) define f|y € Inn(U, V) as the restriction of f on U. For f € $(U, V)
its adjoint is f* := f_lzrfU € $(V,U). For all U € sy let $U be the one point
compactification of U obtained by adding a point co at infinity and for (U, V) € X yAy
letV-U:=VnUt

Consider the cosimplicial space of partitions of the interval Part™ € Top® with

Part™* := P0Set(m, I);

<0 if j/=1

1 g e ifi =0,
t if j/>1

. lj if il <i
9 - (1) = <{ . T],,—’_> if0<i<m,
t if j/>i
W
Wh=m\ i —om,
1 ifj/ =m
- i <i
8'tj = .y - N
04 <%ﬂ+1 ifj/>i>

with Part”* topologized as a subspace of 1. For each {(t%)) € TI4Part”* the order
of the points %" in I induces an order on V 4m%, and so an element

<y (1%) € PartVAmx,

For each ((r%)) € TI4Part”* and a’ € A we can define
: if 14 <91
§9 e A vam?,m), §9(a,i) := . ’
( D My ) ( ) Max, o’ _jai i’ if 1@ > Za/l,
. ’
such that §%'- <4 1% = (141 € Part% |

For any simplicial space X~ € Top®” its geometric realization | X | is defined via the
coend construction [19] as

| X7 := fA X2+ x Part*
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The reason we consider the geometric realization via the partitions cosimplicial space
instead of the usual homeomorphic cosimplicial space of topological simplexes is that
this choice simplifies the algorithm in [21, Theorem 11.5].

Acknowledgements

This work was financed by the grant 2020/06159-5, Sao Paulo Research Foundation
(FAPESP).

2 Idempotent quasiadjunctions

2.1 Weak Quillen quasiadjunction

The following definition introduced in [37] is a generalization of Quillen adjunctions
between model categories. The basic idea is that to construct the unit and counit
natural transformations of an adjunction between the homotopy categories it suffices to
construct a unit natural span and counit natural cospan at the model categories level,
plus some additional compatibility conditions.

Definition 2.1.1 Let 7 and .4 be model categories. A weak Quillen quasiadjunction,
or just quasiadjunction, between T and A, denoted by

(S 4(@,@ A)IT\_—\A,
is a quadruple of functors

%CT<—i_>AD@

with S the left quasiadjoint and A the right quasiadjoint, equipped with a natural span
in 7 and a natural cospan in A

ldr €=¢ =5 AS, SA=5 F <=1d,
such that

(i) S is left derivable;
(i1) A is right derivable;
(iii) 6 and & preserve cofibrant and fibrant objects;

(iv) 71’ and € are natural weak equivalences;
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(v) if X € T is cofibrant then €5x Snx ~ €5, SnY;
(vi) if Y € Ais fibrant then Aeynay =~ Aeynyy:

sex "X SASX @AY AL ASAY
Sny |~ fesx T d~  VAer
SX — o FSX AY — > AGY
€5x Aey

Theorem 2.1.2 [37, Theorem 2.1.2] A quasiadjunction induces an adjunction
(LS ARA): HoT = HoA,

r1—1 A
1dyor [cof€n’] R [€(Afibsn)] RALS

S / —1
LSRA [§(eScofa)] LF [Fe'fib] Ty

between the homotopy categories.

2.2 Idempotent quasi(co)monads

305

The following generalization of idempotent Quillen monads [4] was also introduced

following the same principle of only requiring the existence of a unit natural span, and

they also induce Bousfield localizations.

Definition 2.2.1 Let 7 be a right proper model category. A Quillen idempotent

quasimonad on T, or simply an idempotent quasimonad, is a pair of endofunctors

Q.,%:T — T equipped with a natural span
ldr <=€=5 0
such that

(i) 7’ is a natural weak equivalence;
(i) Q preserves weak equivalences;
(iii) On and ng are natural weak equivalences;
(iv) if feT(X,B),pe F(E,B)and ng,np,Qf € W then Q(f*p)eW:

XxpE-LPoE<" gr " . o 2YP o(x x E)
p*fl Pl ‘épl Qpl jQ(p*f)
X B<~—— %B—— B = X

f g nB Q of Q
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(v) ifte C(@X,K) then tsn/ € W:
X

HR

K ——= Klgy X

Theorem 2.2.2 [37, Theorems 2.3.5 and 2.3.6] An idempotent quasimonad induces
a left Boustfield localization

To=(T:Wg:=Q 'W,Cg:=C, Fg:={peF | (1) is a homotopy pullback})

E-f+ Elugy QF
p$ L(p,Qp)
B—— By OB

B

(D

The resulting homotopy category is the reflective subcategory
HoTg :={X e HoT | (ix: X — X Lzy OX) e W}
of Q—fibrant objects.

The above definition can be dualized. The resulting idempotent quasicomonads induce
right Bousfield localizations and associated coreflective homotopy subcategories.

2.3 Idempotent quasiadjunctions

A quasiadjunction (S - ¢,5 A): T = A induces the following natural span on 7 and
natural cospan on A:

10 Afib Scof €. fib
2 Idy et e AibsNe jsoe gepAF A, go

~

Id 4

~

Definition 2.3.1 An idempotent quasiadjunction is a quasiadjunction such that the
induced span and cospan (2) are respectively an idempotent quasimonad and an idem-
potent quasicomonad.

Theorem 2.3.2 [37, Theorem 2.3.8] An idempotent quasiadjunction induces an
equivalence between the associated (co)reflective homotopy subcategories:

Lid LS Ie Lid
HoT _L ~ HoTagse _L_ HoAseaz L HoA
RId RA RId
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3 E_—algebras

3.1 Relative sets and filtered rooted relative trees

Relative operads are abstract operations with entries indexed by relative sets. We now
give the basic definitions and constructions on these colored sets. We will also require
filtered rooted relative trees in the construction of the bar resolutions and delooping
spectra, and we provide here the relevant definitions and constructions.

Let Setyq, ¢} be the category of relative sets composed of sets equipped with a coloring
on the colors {d, c}, ie the class of objects

{(A,¢c) € ZgerSet({A}U A, {d,c}) |cA=d = VaeA:ca=d},

with (4, ¢) usually being denoted simply as A or explicitly as a set of elements in
brackets with coloring given by subscripts, eg {17,24,3¢,44.5¢}c. The morphisms
sets are

{o€Set(4,A)|ca=c= doa=c}, cA=dordA =c,
a, cA=cand A’ =d.
For x € {d, c} we denote by Set, C Setyq ; the full subcategory of relative sets A
such that cA = *.

Setyq,c3(4, A=

Given ((4, ¢), ((B,¢?))) € Zset,, ., [14Set we have the dependent sum
(4B, 24c%) €Setyg ey Zac?(ZgB?):=cA, X c%(a,b):=c"b.
For 0 € Setyg .1 (A, A') let
0(B?) € Set(y }(S4B%. S4B %), o(BY)(d',b):=(0d',b),
and for (%) € TT4Set () (B?, B'?) let
$41% € Setyg ) (SaBY, S4B, T41%(d’,b) = (a',7VD).
We also have the dependent product

d YaeAd:c%bh?* =d,

I[14B% € Set i TI4c?TI4B? :=cA, TI4c?(h?) =
4 SHd.c} 4 4 Act(D%) ¢ JdaecAd:ch? =c.

For 0 € Setyg c1(A, A') let
0(B?) € Setyyy(TT4B* Ty B '), o (B*)(b%):= (b" ),
and for (t?) € T14Set,(B%, B'?) let

MMgt% € Set{d,c}(HAB“, [M4B'?), T4at%(b?) := (t9b%).
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For every (b*) € 14 B* we can form a new relative set A(a) composed of the pairs
(a, b%) with coloring ¢(payA(pay = 4% (%) and ¢(pay(a, b?) = ¢*b?. This relative
set is naturally equipped with 7 (pa) € Sety ¢} (A(pay, A) with w(pay(a, b%) = a. Let

v €Set(a,e(MaZpaC®. S, paTla,, C¥).  v((B% D) = ((b9). ()
This is a key element in distributivity properties.

Let S?g’c} C Setyq,¢) be the subcategory of Sety .y composed of the finite relative

sets and the injective functions that preserve coloring, ie

{0 €Setyy (A, A) | o is injective, 'oa = ca} ifcAd =4,
ifcA#dA.

LetS¢q,cy C S?g e} be the subcategory with the same objects and bijections that preserve

1{3 C}(A A =

colormg as morphisms. For * € {d, c} we denote by S}’ and S, the full subcategories
of S} (d.c} and S¢g ¢}, respectively, composed of relative sets A such that c4 = x. Define
also the subcategory S(j<¢) C Sety )} with objects the finite relative sets and with
morphisms the bijections (that don’t necessarily preserve coloring). Note that S¢g ¢y is
a subcategory of Sz <c).

Many spaces of interest are built via the two sided bar construction for monads induced
by operads, which can be described using filtered rooted relative trees.

Definition 3.1.1 The simplicial category T4 .} € Cat2” of filtered rooted relative
trees has as objects triples

T =(V'),(¢'), ) € Tyg,cyms
composed of:

* A sequence of finite sets of vertices (V') € S"+1 We also set V0 := {r}, and
call r the root vertex of T. The vertices in V™! are called the leaves of T.

A sequence of functions (¢') € HmSet(ViH, V). We also set ¢° the unique
function in Set(V'1, V0).

* A function in {c € Set(Zp41. V', {d,c}) | (v =vand cv =d) = v’ =d},
the coloring of the vertices.

We sometimes just write 7 = ((V?), (¢')) and leave the coloring implicit.
Morphisms o € Ty ym«(T, T') are sequences of bijections in

{o") € M1, SV VY |6l =¢" 6" T Vi emy and o’ = ¢ Vi e m + 14).

Algebraic & Geometric Topology, Volume 23 (2023)



Recognition of connective commutative algebra spectra through quasiadjunction 309

The simplicial structural functors are defined on objects as

(¢ ifj <i
VI fj< .
T3 = o I EN gt =i},
VItL if j > i1 S
¢’ if j>i
) ] f . < .
v if j <i+1 d) %J._l.
T-é:= . Aqidyi ifj=i+1)],
VTl it >i41 .
/7l it >i+1
with the coloring maps induced naturally from the ones in 7.

Define also T? A%

€ Ca
{d.c}
that | V1| = 1. Define also the simplicial full subcategories T, C Tyg,cy for x € {d,c}
of the trees such that ¢r = x. We similarly define the simplicial full subcategories

T) C T

as the full simplicial subcategory of relative trees such

Note that any 7" € T4 ym« has a natural partial order structure on the union of the
set of vertices induced by the structural functions, with the root r its unique minimal
element. For each v € V! let T, € T{Od’c}m* be the subtree composed of the root
vertex and the vertices greater than or equal to v.

Forall T € Tyg cym« and (i, v) € Em*Vi define the relative set

in (i,v) 1= {0 e V'™ ¢V = v}ey € Sya,c}-

Note that S¢g .y is isomorphic to Ty ¢}0x«.

We have natural dependent sums and dependent products of filtered rooted trees of a
fixed height (T%) € I14 T¢y ¢ymx defined as

TATY = ((SAVY), (Zudp™), Tyc?), TILT® := (T4 V), (T149%), TL4¢%).
‘We also have, for all

(T, (5) = (V) ("D AW ) (W D) € Bty ym, Tymets Teena,

the grafting

T o (59) 14 ifi <m\ [(¢’ ifi <m
(e} = . s .
Symrt W=D it i > P\ Spmer =D if i > m

in Tyg cym +n + 14, with the obvious coloring map.
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Figure 1: A filtered rooted relative tree in T,3.. Edges, oriented from right
to left, represent to which element of V' the function ¢’ maps the elements
of Vi1, Decorations indicate the color of the start vertex, with wiggled
edges representing “domain” color and straight edges representing “codomain”
color. An extra edge is added to the root vertex to indicate its color.

3.2 Relative operads

We now give a brief review of relative operads, a kind of colored operad introduced by
Voronov in [38].

Deﬁnltlon 3.2.1 The category of S¢y .1—spaces is the contravariant functor category
ToP e, A topological relative operad is an S¢g .)—space P € Top ta.c equipped
with elements id, € P{1,}. for » € {d, ¢} and structural maps

(0a,(Ba)) € Mg, , 148, ToP(PA X TI4PB*. PX4B?)

such that P&, = {*.} for x € {d, c} and, using the notation a(8¢) := o4 (pa)(a, (B¢)),
satisfying the equations
o a(B(y?)) = a(Bh)(y*),
e idygya=a= oz(idca)
« a0 =a(p" V) 0(BY),
a(f? 1) = af?) - Tqr?.

Operad morphisms are natural transformations that preserve the unit and compositions,

/

and we denote the category of topological relative operad by Opy d’c}[Top].s

5 Another way to define a relative operad Q over an operad P is as an operad in the category of right
P—modules; see for instance [11]. For a relative operad P in the sense of Definition 3.2.1 the spaces
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For X = ((Xg.,eq).(Xc.ec)) € Top? define

inj
M-X:Sy .,

o la’

’ ifa’ €1
—Top:  M4X 1= MgXea. 0-(x”)::<{e“1 ifa ¢mo—>

X ifa’ elmo/

The underlying functor of a unital relative operad P can be extended to a functor on
SM-P For g € SmJ }(A A") the right action -0 € Top(PA’, PA) is defined as

{d,c}
xq ifad Imo
a-o:=af]. ] )
idy ifad €lmo

These morphisms are the degenerations of the relative operad.
A relative operad P induces a monad (P; 7, t) on Top2 with
PX, = [V PAXTLLX:
max o= fid 2] pralen (B9 (x0N)] 1= (). (x¥0)].
Definition 3.2.2 Let P be a relative operad. A P—space is a P—algebra, ie a pair of

3)

pointed spaces X € Top2 equipped with structural maps
(04) € s, ,, Top(PAX T4 X, Xc4)
satisfying, using the notation a(x%) = 04, (x%)),
a(B(x?)) = a(B*)(x), idix=1x, a-0(x) =a(o-(x?).
The category of P—spaces is denoted P[Top].

The following are the relative operads relevant to the main result.
The terminal relative operad is Com™ with underlying S¢4 .1—space given by
Com™(A) := x*.

The Syq ¢y right actions, units and compositions are the unique terminal maps. The
Com ™ —spaces are pairs (My, M.) of topological commutative monoids equipped
with a continuous homomorphism ¢: M; — M, induced by the unique element in
Com™ " {1,}c.

For U € s the relative operad of U—embeddings Emby; is
Emby A :={a = (ag) € UY | () is an embedding};

(aar) -0 :=(toa), ide:=idy, af(p?):= (aaﬁJL;)-

Pily,..., mgtq for m € N form an operad, and the modules | [,en P{lg. - .. ng,le,..., me}¢ for
m € N form a relative operad over the previous operad.
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Degenerations delete embeddings.

For U € 4 the loop space map functors image has natural Emb;—pairs structure, giving
us the functor

- - U %
4) QY Top, — Emby[Top], QY (:Yy—Ye):=() Y5

Ol()/a) = (ﬁ s {yaaat;_llﬁ_. lf ca = CA)
tyay; u ifca #cA

For (U, V) € 43y we have natural inclusion of relative operads
i‘l,] : Emb;; = Emby,, i‘l,]oz = (ny—u +agny)
and we define Emb_, := colimy Emby;.

The embeddings operad contains embeddings of configuration spaces, and these em-
beddings are relevant to the definition of £~ —operads we give here. For each U € «
define the configurations S¢4 .3—space

Confy;: Sy ., = Top, Confyy A:={X = (%) € U |a #d' = X4 # Xur}.
For all X € Confy; A let minX := ming 4, ||Xqs — Xo/||, and

- . o min X)u
XU € S{d,c}(Confg, Emb{,), XUX .= <u = Xg + ( ) >

(min X) + 2||u]|
Definition 3.2.3 An E_ —operad is a relative operad
&7 € 0pyg,c[Top]
equipped with a relative operad map
W € 0pgg c3[Top](€7, Emby,,)

and, for the induced #filtration &; := U~ Emby, a S{a,cy—space homotopy equiva-
lence
@y € TopSid.ci (Confy . £)

for each U € o such that V|y &y = yu.
By this definition the &; are m—cofibrant as S¢g }—spaces and £ is contractible and

free. One of the main examples of E_ —operads we will consider is the Steiner relative
operad, composed of paths of embeddings [33].
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For all U € sl define the relative operad 3, as
Wy A= {o=(a) e UMV |VaeAtelii,veU:
(ﬁ = Ola(t’ ﬁ)) € Emba{a}’ ||()la(t, ﬁ) _Ota(t’ 6)” S ”ﬁ - B”’
ag(1,u) =1, (il = aq(0,1)) € Emby; A},
(@ar) -0 :=(tga), 1ds:=(t—1id), a(B?):=(t > aa(t)By(1)).

Degenerations delete paths of embeddings.

We have natural inclusions Lg: Hy = ¥y, forall (U, V) € Zydy with

Lga =t ay_y +aq(t)ny)

and we define ¥, := colimy -

The E_ —structural transformations are
V:#H o, = Emb, Woa:= (0g(0)),
@y : Confy, = 9. Pux:=(r— (1—1)(xuX)q +rid),
By : ¥y = Confy, Pya = (a.(0,0)).

See [33] for the homotopies Oy dy =~ id and Py Py =~ id.

3.3 Bar resolution

For the construction of the quasiadjunctions in our main theorems we will require
the bar resolution of £~ —pairs. Recall from [21, Construction 9.6] that for a monad
(C,n, u) in the category 7, a C—functor (F, L) in the category A and a C—algebra
(X, &) we have the two sided bar construction B_(F, C, X) € AA” with

B, (F,C,X):=FC"X;

Acm ifi =0,
8i = FC'nem—i, 8i:={FC' \uomoit1 if0O<i<m,
FCcm=1g ifi =m.

In particular for a relative operad P we have the monad (P, , ) constructed in (3)
and the P—functor (P, ;). We then have a natural isomorphism

B, (P.P.X)u 2 [T My iPin (i,v) x Dymt1 Xeed
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[ ('), (@), (x*)]7-25, i'=0,

ol j<i
[Oér, (O(iv>, (xe”T '81":: |:ar’< ai/w (a(i’-i-l)v’)’ ] — i,>, (Xe>:| , 0< l-/< m,
aU+Dw, j>i T-9

[, (@), (@™ (x¢ )T -a, i"=m,

R

O(jw’ j < l-/
" (@), (x)]r - 8 1= {a’,< idew ., j=i"+1 > <xe)} :
aU=Dw sl T-5;s
The £~ —pair structural maps in each dimension are
o) (B4, (BY), (x®)]ra) i= [a(B), (B4, (x*)]5 Ta-
The bar resolution of £~ —pairs is then the geometric realization of this simplicial
&~ —pair functor
By:E7[Top] = £7[Top], BaXy:=|B_(E”,E”, X).|.

By the above isomorphism we can intuitively think of points in B, X as equivalence
classes of filtered rooted relative trees with vertices decorated with elements of £7,
leaves decorated with elements of X and we associate an ordered partition of I with
the filtration of the inner vertices.

It is not the case in general that the geometric realization of a simplicial C—-algebra
for a topological monad C is a C—algebra. This is however the case when the monad
is the one induced by an operad. The structural maps are induced by the algorithm
described in [21, Theorem 11.5]. For a sequence of elements with representatives of
distinct dimensions we can systematically determine equivalent representatives of the
same dimension, and then apply (5). The £~ —pair structural maps of B, X are induced
by the formula

©)  a{[[B4" (B""), {x*)]ra, (1))
ajw if j =ga(j, ~
- Haw‘”),({fg =0 w)>, <x“e>] <4 <z“’>],
1dcw lf.] 758 (],U)) Y Ta.§4
which is illustrated in Figure 2.
This functor can be equipped with the natural transformation
@) ':By=1d, e (@), (x)r, ()] = a(x€),

where « is the composition of all the «?, including ", induced by the operadic
composition and the structure of T'.
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Figure 2: EZ —structure of By X.

3.4 Relative operad action

Operad actions, introduced in [23, Definition VI.1.6], encode distributive laws between
operations defined by operads.® The following definition is a relative version of this
notion.

Definition 3.4.1 A relative operad pair is a pair of relative operads (P, G) equipped
with an extension of G to S (d<c) and an action of G on P defined by structural maps

(%4,(e)) € Mg, , 148, ToP(GA X TI4P B¢, PII4BY)
such that, using the notations P@x = {0x}, Gx = {14}, f x (@) := x4 (pa)(f. {a?))
and f x (B20) .= 1. TT(pay X x (826"} the following equations are satisfied:
[ (g x (@b)) = f(g) x ().

o [ (@t () = fx (@) (f x (B4)) v

o idygxa=a.

e fx(idy) =1idc4.

« frox(e®) = fx( ¥)-o(B),

o fix(a%-1%) = fx (%) TIx7%.

o 1, x*=id,.

e There exists an a € A such that «® = 0, implies f X (¢%) = 0.4.

The original reference has typos corrected in [24, Definition 1.8]. The reader should keep in mind that
the literature on pairings of operads has been plagued by errors, in particular in how it is applied to the
study of K—theory through bipermutative categories. Erratas can be found in the appendix of [24] and the
introduction of [10].
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We refer to the operad P as the additive relative operad and G as the multiplicative
relative operad of the pair.

For X = ((Xg,04,14), (X¢,0c, 1¢)) € Topg, define

*Md,c} o~ la’

o lea ifa’ &1
XN Sm_] — Top; X/\A = /\AXcaa o- [xa] = |:{ ca_ Ira ¢ mO’j|’
X

ifa’ €eImo
with the zeros as basepoints for the wedge products. We can then define the monad
(Go;n, n) on Topé0 as

GoXy =[S GALAXM:  maxi=[idx], [ 8% 1] == [ (89). [x¥0]).

Definition 3.4.2 A Go—space is a Go—algebra, ie a pair of $%—spaces X € Topé0
equipped with a structural map y: GoX — X satisfying, using f[x?] = ya[f, [x¢]],
similar equations as in Definition 3.2.2 and also that 0 is an absorbing element, ie

there exists a € A such that x* =0, = f[x%] =0.4.

The category of Gop—spaces is denoted by Go[Top].
If G acts on P then the functor P induces a monad on Go[Top].

Definition 3.4.3 Let (P, G) be a relative operad pair. A (P, G)—space is a P—algebra
in Go[Top]. Equivalently a (P, G)—space is a pair of $°—spaces X € Topg0 equipped
with a Go—space structure and a P—space structure with neutral elements the zeros such
that

Fla® ()] = o (@) (£ 1x)).
The category of (P, G)—spaces is denoted (P, G)[Top].

There is a natural operad pair structure on (Com™, Com™). Denote by >, € Com™ 4
the additive copy of Com™ and [[4 € Com™ A the multiplicative copy of Com™. Then
in a (Com™, Com™ )—space the distributivity equations and the equality of the additive
and multiplicative homomorphisms

[14 2 Ba xab = ZHABu HAW) xab*
P+x = [l 2. (D+x. 1c)
= [, 203, %+ 1de) [T 20 (%5 Le)
=¢.x
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hold. This means that (Com™, Com™)[Top] is isomorphic to the category of topological
commutative semialgebras over commutative semirings.

The main example of multiplicative relative operad we will consider is the relative
linear isometries operad £~ with

LTA:=I(@aR®,R®);  f-0:=(foa), idi=idreo, [(g9):=(fag])

The identity maps provide a natural extension of £~ to S(()Z <c)* We have a natural
action of £~ on Emb_, given by the formula

Jola®) = (mpr +2 4 fatpa o)

This naturally extends to an action on ¥, given by the formula
(8) folal)i=(t>mp 43 g fatpa (1) f5).

Definition 3.4.4 The category of E_ —algebras is (€7, %7 )[Top] for an EZ —operad
&£~ equipped with an action by &£ that is preserved by the structural relative operad
morphism W: £~ = Emb_,.

Steiner’s original argument in [33] implies the relative operad €, equipped with the
action (8) satisfies the conditions of Definition 3.4.4. Proof of the compatibility with
the coloring is straightforward and will be omitted.

Although we give this general definition we note that there is no known nontrivial
example of an E—operad equipped with an $£—action other then the Steiner operad #o.
Having a g—cofibrant, not just mixed X—cofibrant example would be interesting and
useful, but since we can work in the mixed model structure it is not necessary.

The images of B, X are also &£, —pairs with structural maps defined as

©) f[lle® (@), (x9€)]7a, (t)]]

o ar aajw“’ J=28(j,w?) ae? ai
N e e

which is illustrated in Figure 3.

3.5 Mixed model structure of E_ —algebras

In [3, Theorem 2.1] Berger and Moerdijk construct a g—model structure on categories
of algebras over colored operads by transferring cofibrantly generated model structures
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Figure 3: ¥~ —structure of B, X.

from the underlying monoidal model category. Their method generalizes to the E_ -
algebra context, at least in the topological context we are interested in this article. In [2]

Barthel and Riehl show how to transfer ~—model structures, which gives us a mixed
model structure of E_ —algebras.

Let (S 4 A): T = A be an adjunction and suppose 7 is equipped with a model
structure. Define a morphism ¢ of A to be a weak equivalence or fibration if A¢
is respectively a weak equivalence or fibration. It is often possible to extend these
distinguished classes of morphisms to a model structure on 4, and in this case we say
the model structure of A is transferred from the one on 7. For instance, an extension

exists if the model structure of T is cofibrantly generated and Crans’ transfer criteria
are met [8, Theorem 3.3]:

(i) The leftadjoint S preserves small objects, ie if 7 (X, —) preserves filtered colimits
then A(SX, —) also does.

(i) Any sequential colimit of pushouts of images under S of the generating trivial
cofibrations of 7 yields a weak equivalence in A.
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The first criterion is often easily verified; for instance it holds if the right adjoint A
preserves filtered colimits. The second can be harder to verify, but the existence of
path-objects yields condition (ii). Recall that a path object of X is a factorization of its
diagonal into a weak equivalence followed by a fibration X = Path(X) — X x X.
By Quillen’s path-object argument, the conditions

(a) A has a fibrant replacement functor,

(b) A has functorial path-objects for fibrant objects,
imply Crans’ condition (ii) [26, Chapter II, page 4.9; 34, Lemma A .4].

The Quillen model structure of £_ —algebras is transferred from the g—model structure
of Topé0 by the adjunction

(E”Ly 4U): Topgo = (£7,%7)[Top],

where E~ L, is the composition of the free &£y —algebra functor followed by the free
&~ —algebra functor, both left adjoint to forgetful functors.

The forgetful functors preserve filtered colimits, so Crans’ condition (i) is satisfied.
All objects of Topé0 are fibrant, so the same is true in (€7, £7)[Top]. Now note that
for all X € (£7,%7)[Top], the pair of Moore spaces M X := (M X;, M X.) equipped
with the pointwise operations

FLe® y)] = (maxq 1%, r = flyr]),  a(@® y?)) ;= (maxq 19,7 = a(y®r))

is an E_ —algebra. The inclusion ¢: X — MX of constant paths is a homotopy
equivalence, and the evaluations at the start and end (evg,eveo): M X — X X X is
a fibration. We therefore have a functorial construction of path-objects, and so a
transferred g—model structure on the category of E_ —algebras.

Even though the A—model structure on Topéo is not cofibrantly generated it can still
be transferred by the adjunction (E~ L, - U), with the h—cofibrations defined as
the maps with the left lifting properties against the trivial s—fibrations [2]. For all
¢ € (E7,%7)[Top](X, Y) the pair I'¢ := (T4, ['pc), equipped with the pointwise
operations

FI %, yD)] = (f[x4], maxq 1%, r = fyer]),

a{(x?, 1%, y9)) == (a(x), maxyq 1%, r = a(y“r))

is an E_ —algebra. Then (I'; C;, F) forms an algebraic weak factorization system in
(€7, %27)[Top]. On the other hand there doesn’t seem to be any natural E_ —algebra
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structure on E¢ such that the h—cofibration/trivial h—fibration factorization (E; C, Fy)
in Topéo induces a factorization in (€7, £7)[Top]. We do have an h—cofibration/s—
equivalence factorization

. T.
X% X Up-pox E"Ly (D¢ x[0,00]) Up-151¢ Y LFLD, y,

and the fact that C;¢ has the left lifting property against hA—fibrations in Topg0 in-
duces the left lifting property against h—fibrations in (£, £7)[Top] on iny. The map
(¢, F;¢%,id) is an h—equivalence, but it is not necessarily an h—fibration. Applying
(T'; Cy, F) then gives us the h—cofibration/trivial A—fibration factorization

¥y F
X ,.Ct(¢aFt¢ ,id)iny F(¢,Ft¢T,ld) F(¢52¢ ,id) Y

’

which determines the strict Hurewicz/Strgm model structure on (€7, $7)[Top]. We
then have a mixed model structure by Cole’s construction [7].

4 Recognition of algebra spectra

4.1 Coordinate-free spectra

We give a brief review of coordinate-free spectra [17] and some examples. Let U € $
be countably infinite-dimensional (in the context of coordinate-free spectra we refer
to U as a universe). The topological category Spy; of coordinate-free U—spectra is
composed of the class of objects

{Y = ((Yu). (o)) € Z1op, Tz 10 Tops Yu ASY 7V Yy) |
ogLy.01 = y. oy loy [y, 9. ] = oy [y. 5 + wl}
and morphism spaces
Spy(Y. Z) := {f = (ju) € DuTop.(Yu. Zv) | oy [fuy. 8] = froy [v. U]}
We are particularly interested here in the case U = R, and in this case we use the
notation Sp := Spgeo.
Example 4.1.1 Interesting coordinate-free spectra to keep in mind are the following,
with details similar to the equivalent symmetric examples in [29, Section 1.2]:
e For each p € Z the p—sphere spectrum is defined as
(SURY UL, 3] ;=i + my_gipd  if p <0,
§7 .= {(SY), oY i, 0] ;=1 + U if p=0,
(SUSR”Y ol [(ii, W), ¥] := (i + v, w) if p>0.
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We use the notation $ := $°.
e For each G € AbGrp, define the Eilenberg—Mac Lane spectrum
HG :=(G® F[$Y]s), oy [ga®ii% 7] := g, ®u* +7,

where F[$Y], denotes the quotient of the free abelian group generated by the points
of the U—sphere by the subgroup generated by oo, and as in the Einstein convention
gq ® 1u? indicates a finite sum of elements. Note that g ® co = 0.

e For each U € o let Oy be the orthogonal group of isometric automorphisms of U'.
The total space E Oy of the universal principal Oy —bundle is the geometric realization
of the simplicial space Oy; € Top®”™ with

7 if j/<i floifj<i+l
(ff)~8,-:=< fLfitl ifj/=i>, (ff>-5,~:=< idy ifj=i+1>.
L S S fI7 it >i+1

The U-spheres admit a left Oy —action by evaluation f -u := fu, and EOy 4 admits
the right Oy —action

i . g ifi <m ;
R R [ N Y

For (U, V) € L 44y we have a natural inclusion
Lgi Oy — Oy, Lgf =nay_uy+ fry.
The Thom spectrum is
MO = (EOy+ Aoy SY),  op (/). ('), ], 0] = [y £7), ('), + 0]
An Q-spectrum is a spectrum Y € Sp such that the adjoint structural maps 51(,] €

Top, (YU, YEV_U) are g—equivalences.

The stable homotopy groups of spectra are ng Y := moSp($?,Y). If Y is an Q—

spectrum then
moYrip if p <O,

JTI‘,SY ~ ]
mp Yo if p>0.

Spectra maps that induce isomorphisms of the stable homotopy groups are called stable
weak equivalences, and spectra Y € Sp with 7'[5 Y trivial for p < 0 are called connective.

The base space functor is

A%:Sp — Top,, A®Y :=7Yy,
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which is right adjoint to the suspension spectrum functor
%%®:Top, — Sp; I®°X := (X ASY), of[[x,i],?]:=[x, i+ 7],
with adjunction unit and counit

nx = [x,0], eyly.i]:= oy, ul.
4.2 Stable mixed model structure of spectra

For any spectrum Y € Sp the cylinder spectrum is ¥ A I := (Yy A I4), and the cone
spectrumis CY :=Y A1 /[y 11~[y,1]-

In the strict Quillen model structure on Sp a morphism f € Sp(X, Y) is a weak equiva-
lence if each fy is a g—equivalence, a fibration if it is a Serre fibration, ie if it has the
homotopy lifting property with respect to the cylinder inclusions of cones of sphere
spectra ing € Sp(C$%, C$? A 1) for all g € Z, and a cofibration if it is a retract of a
relative cell-spectrum, with cells given by cones of sphere spectra and domain of the
attaching maps the boundary sphere spectra [9, Section VIL.4]. This is a cofibrantly
generated model structure with factorization systems induced by the small object
argument. The weak equivalences, fibrations and cofibrations of this model structure
are referred to as g—equivalences, g—fibrations and g—cofibrations, respectively.

Homotopy equivalences in Sp are spectra maps that admit an inverse up to homo-
topy, with homotopies defined via the cylinder spectra in the usual way. In the strict
Hurewicz/Strem model structure f is a weak equivalence if it is a homotopy equivalence,
a fibration if it is a Hurewicz fibration, ie if it has the homotopy lifting property with
respect to all cylinder inclusions ing € Sp(X, X A /1), and a cofibration if it has the
left lifting property against trivial Hurewicz fibrations.

The weak factorization system can be constructed through (co)monads as described
in [2]. For any Y € Sp let the spectrum of Moore paths in Y be

MY :=((MYy,(0,r = ygo))), oy [(t.y),v]:= (. r oy [yr,7]).

The factorization systems are then defined as (I'f; C+f, Ff) := ((I'fu); (Cifu){(Ffu))
and (Ef; Cf, Ftf) :== ((Efv); (Cfu){Ftfu)) for all spectra maps f.

The weak equivalences, fibrations and cofibrations of this model structure are referred
to as h—equivalences, h—fibrations and s—cofibrations, respectively. We then equip Sp
with the mixed model structure as described in [7, Proposition 3.6].
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Since the point of spectra is to study stabilization phenomena we are actually interested
in inverting the stable weak homotopy equivalences. From the strict model structure
the process of Bousfield localization constructs the stable model structure, with stable
weak homotopy equivalences as weak equivalence [4; 28]. For every spectrum Y € Sp
we can functorially define an inclusion spectrum’ Y equipped with a quotient map
Y > Y, so we may think of points in Y as equivalence classes of points in ¥ [17,
Appendix 1]. If Y is already an inclusion spectrum then Y =Y. The spectrification
functor is
Q:Sp—>sp; QY := (ccg)dlli/m ?gV—U% av({,[y, D= [ > v+ D)),

induced by the adjoint structural maps ¢ and with the formula for the structural maps
determined by a choice of representative y with domain V € dy . This is a Quillen
idempotent monad with structural natural map

(10) €:1d=Q, epy:=[ir oy, ]

The stable model structure on spectra Spg has as weak equivalences the stable weak
equivalences, and stable fibrations are p € Sp(E, B) composed of indexwise Hurewicz
fibrations such that the maps

~ V-U
&Y. pv): Ev — E5 X gsv-u Bu

are g—equivalences. The fibrant spectra are the 2—spectra, and the cofibrant spectra are
those homotopy equivalent to retracts of g—cofibrant spectra. With the induced stable
model structure the adjunction (2% - A®°) is a Quillen adjunction.

The morphisms category Sp~ admits a projective stable model structure with (f4, fc) €
Sp~(: Yy — Ye,i: Z4 — Z.) a weak equivalence or fibration if f; and f. are both
stable weak equivalences or stable fibrations, respectively; and it is a cofibration if both
fq and (fc,j): Ye Vy, Zg — Z, are stable cofibrations.

4.3 Recognition of co-loop maps

We can now prove the recognition principle for co—loop pairs of spaces of spectra maps.
The base pair of spaces functor is

AP:Sp” = Top2, AP(i:Yy — Ye):= (Ya0, Yeo).

TInclusion spectra are those with adjoint structural maps & all inclusions.
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and the relative suspension functor is
Y% Top2 —Sp~, IPX :=3X%(ing: X7 — XgV X¢).
We have a Quillen adjunction
> Ory 4l ifey =
(Z°HAP):Top2 = Sp~;  Nex:=[x,0], e[y i]:= “ag[.y, uj 1 <y *i|.
opliy.u] ifcy #x

The spectrification functor € induces

Q. Sp” — Sp~, Q_i:= (Qi: QY; —> QY,).
The oo—loop pair of spaces functor is defined as
QS°:Sp” — £7[Topl, QPi:=APQ.i
with structural maps induced by the formula (4) by taking representatives of the y¢

with a common domain.

This functor is not a right adjoint, but it is a weak Quillen right quasiadjoint. The
left quasiadjoint functor is defined as follows: We have simplicial pointed maps
B_(2Y,Ey. X) € (Topy)2” with

0
B, (U, Eg, X)w 2 SUAST™ Ty i€ in(i, v)x T ymi1 Xee;

1L—1= ’ =
[y ™t (@), (T, EQQU
o0, ) ﬁQ/OIIUVZU ’

- iv e a]w’ J <i/

[, (@), (x)]r-9ir 1= {;,< ol (@D, j:i/>,(xe>} if0<i’<m,
[ii. (@), (@™ (x))]7.9,, iti"=m,

Otjw, ] < i’
[, (@), (x)]7-8ir := {ﬁ< idew, j= i/+1>, (xe)} :
aU—Dw, j>i'+1 T8,
Define the relative oo—delooping functor as
B®:£7[Top] > Sp~, BXX,:=(B_(ZY,Eg. X).|);
oy [, (@), (x)r, (1)), 8] == [l + 3, (@), (x*)]7, ()],
Points in B%° X,y are equivalence classes of decorated filtered rooted relative trees
as in the description of the bar resolution B, X, except the root vertex is decorated

with a vector in U and the relative operad points decorating the inner vertices must be
contained in the suboperad &; of the si-filtration of £7.

Algebraic & Geometric Topology, Volume 23 (2023)



Recognition of connective commutative algebra spectra through quasiadjunction 325

xl
Pl 112l 3T X2

7“ u/‘a‘ /\Na“’ \/\/\a‘ AVAVAVAVAS

I I :
I I d32W x3
I 1
: a22ma§3\/vv\/t x:
- 1-
U= *O(;’ u,a127a23 0[347 X
| | |
| | | .X6
: ' | 5
| L P x8
1-

,a;, u,a;13 a;2,47a‘36v\w X
| I I X9
| | |
b2 3

Figure 4: Representative U—loop of n.[[e”, ('), (x¢)]r, (¢%)].

Theorem 4.3.1 For £~ an E_ —operad we have a quasiadjunction

(BX 5,5 9%): € [Topl = Sp.

Proof The unit span and cospan has n’ the natural weak equivalence (7), € induced
by the idempotent monad transformation (10) and 7 and € are defined by the formulas
n: B = QB®, € BPQL = Q.

/ - L e (@), (6] g, (6], d €0l U
ar’ Ot“) , xe , [l = u~ v >v - v ,
el ). 6 )= [ | 1 o o
exulli, (@), (y)r, (11)] = [0 = a(y®) (@ +7)].
We verify that the conditions for Definition 2.1.1 are satisfied.

(i) By the assumptions on £~ and [37, Proposition 3.2.3] the functor B is left
derivable.

Figure 5: Representative V—loop of €. y [, (@), (y¢)Ir, (t')].
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(ii) Trivially Q5° preserves fibrant objects. Since Q*° = A% and stable weak
equivalences are by definition maps whose images under €2 are strict weak equivalences
we have that Q5° preserves weak equivalences.

(ili) The functor B trivially preserves fibrant objects, and by [37, Proposition 3.2.3]
it preserves cofibrant objects. By definition the functor Q. preserves fibrant objects in
the mixed stable model structure, and by [12, Section 5.3] it preserves cofibrant objects.

(iv) Asamap of topological spaces, 1’ is a realization of a simplicial strong deformation
retract, so it is itself a strong deformation retract of topological spaces and therefore
in particular a g—equivalence [21, Theorems 9.10, 9.11 and 11.10]. The map €’ is a
natural stable weak equivalence by definition.

(v) The natural homotopy H which gives the homotopy commutativity in Sp™~,

epoox By [[ii. (o). ([B (B™). (x*/ Vse (s 7. (r')]
_ [ﬁ R { ([(o<early BE) ™  +D). (BY). (x s (5], 4T € oceatl BEV }
00, ii+7 ¢ a(BT)Us
>y [B 0> [+, (@), (8% (x* Nse. (r)]]
= €goox B [l (@), (1B (BV). (x* Y se. (s )7 ()]

v+l Wel V

is
H:B®ByAI, = QB®,
Hyy ([[i. (™). {[B°". (B™). (x*))se. (s W7 (")) 1)

iv

o
= |:T)|—> |:|:ii+l7,< Be/w > (Xef):| , (1, ("i)’(sej)):|:|’
idey To(Se-§¢)

O (). (7)) i= (L= )L 119k (r) + 1 (0F g0 Cpm (s7),

where

with the conditions in the formula similar to the ones in (6).

(vi) In £7[Top] we have strict commutativity

QPengselle”, (@), (y)r (1)) = e (y®)]
= Q% 1geelle”. (@), ()7 ()] O
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Theorem 4.3.2 The quasiadjunction in Theorem 4.3.1 is idempotent and induces an
equivalence
(LB ARQ5°): HoE ™ [Toplerp = HoSpey,

between the homotopy categories of grouplike £~ —pairs and maps between connective
spectra.

Proof In £7[Top] the conditions for Definition 2.2.1 are satisfied and the resulting
reflective homotopy subcategory is composed of the grouplike £~ —pairs:

(i) As we have seen 1’ is a natural weak equivalence and by definition cof is a natural
trivial fibration, so cof7, is a weak equivalence.

(i) Since 5° preserves weak equivalence between fibrant objects and BS° preserves
weak equivalences between cofibrant objects we have that Q5°FB2°C preserves weak
equivalences.

(iii) The natural transformation 7 is a natural group completion, since it is a realization
of a simplicial group completion map —see [21, Theorems 2.7, 9.10 and 9.11] and [22,
Theorem 2.2] —and the images of Q5°FBZ°€ are grouplike; therefore NQgegBoee 18 a
natural weak equivalence. By naturality Q5°FBS°€n is also a group completion, and
since the domain and codomain are grouplike this is a natural weak equivalence.

(iv) This condition holds since fibrations are preserved by pullbacks, fibrations induce
long exact sequences of homotopy groups and for a fibration p: E — B and a map
f: X — B the fibers of the pullback f*p: X xgp E — X are homeomorphic to the
fibers of p.

(v) Pushouts in £7[Top] by a cofibration whose domain is m—cofibrant in Top,, is a
retract of a transfinite composition of pushouts by m—cofibrations in Top,, [30, 1.4],
hence this condition holds since Top, with the mixed model structure is left proper
and the underlying functor of £~ is an m—cofibrant S¢4 ;—space.

By the characterization of fibrations in the resulting Bousfield localization in [37,
Proposition 2.3.6] the fibrations are the group completions and fibrant objects are the
grouplike £~ —pairs.

The dual conditions for Definition 2.2.1 are also satisfied in Sp™~ and the resulting
coreflective homotopy subcategory is composed of the maps between connective spectra.
Note that conditions (i), (ii) and (iii) are self dual.
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(i) By definition of the stable model structure €’ is a natural stable weak equivalence
and by definition fib is a natural trivial cofibration, so n%ﬁb is a weak equivalence.

(ii) That B CQ5°F preserves weak equivalences follows by the same argument for
QPFBC.

(iif) We have that 7ggo is a natural weak equivalence, and since

Q3 enage = Q3% gz

and Q3°¢’ r]’Qoo is a natural weak equivalence by the Ewo—out—of—three property Q25°%€
is a natural weak equivalence. Since the images of €2 are Q2—spectra by the formula
for stable homotopy groups of 2—spectra we have that € induces isomorphisms on
the nonnegative stable homotopy groups, and is therefore a stable weak equivalence
on the maps between connective spectra. The images of BS° are connective by [21,
11.12] and [22, AS5]. Therefore € BooeQRF is a natural weak equivalence. By naturality
B EQS°Fe also induces isomorphisms on the nonnegative stable homotopy groups
and so is also a natural weak equivalence.

(iv) This condition holds since cofibrations are preserved by pullbacks, spectra cofibra-
tions induce long exact sequences of stable homotopy groups and for any cofibration
it A — X and map §f: A — Y the cofibers of the pushout f«i: ¥ — X Lig Y are
homeomorphic to the cofibers of i.

(v) The stable model structure of spectra is right proper so the dual of (v) holds.

By the dual of the characterization in [37, Proposition 2.3.6] the cofibrant objects are
the spectra maps such that

['((eBZ cofgse)si) Xzl — 1

are weak equivalences, which is equivalent to ¢ being a map of connective spectra. O

4.4 S-modules and commutative algebra spectra

We need to work on the more structured category of sphere modules Modg; it admits a
monoidal structure that provides a natural definition of spectral algebraic structures [9].
As a first step consider for A € S the external smash product functor

_ — ua - a >
Aa:TIASP—Spg oo AalY?)i=(Aa¥fa).  0lpa) (V] (59)]:=[oVa [y®. 0°]].
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The change of universe in this product is formally problematic, and the following
construction is used to internalize the smash product in Sp. For K Ccpe £A define the
monotone functions

W € POSet(sdg, roe, ),  p(UY) :=3 g f(U?),
VEPOSet(‘ﬂ,ﬂ@ARoo), vU = ﬂK(fa*U>,
which satisfy
pU U, vuwU =vU, (U?) Ccvu(U?), (U =pvuU%).

For all ((U%),V) e Tsig ;roo A p(ua)y We have the associated Thom complex

Uu4
TKY " = 28" /ey (g.00) € Tops,

where g8V =/ (U) jg topologized as a subspace of K x $¥". We will use the notation
=[f,v]eTK I(,U ), so that the basepoint is denoted ‘}o forany f € K.

The twisted half-smash product is

FPAX—:8 o —>Sp, FAxZ :={ colim TK'U A Z
Po,R P (chwse L TKy U )

(= D Gr ULz, £l i+ D).

oY%, 21,5 =
The monad (I; , ) on Sp is

- . . s
LY =LY ny:=[Gol ulhGol:=05""

We refer to the IL-algebras as IL—spectra and for (Y, ) € IL[Sp] we use the notation

7N 17}

The sphere spectrum 3, the Eilenberg—Mac Lane spectra HG and the Thom spectrum

MO in Example 4.1.1, as well as the suspensions XX of ¥—spaces, the spectrifi-

cations Y of IL—spectra and deloopings B® X of E—ring spaces are all IL.—spectra
with structural morphisms given as in Table 1.

The A—indexed smash product is

Aga: TIAL[Sp] — L[Sp]. Aga(Y?) :=(LAx AgY* U/[u [ yap)~ it a0 [ya]]),
) ga ga £

with structural maps induced by the ones for the twisted smash product. In order to
make explicit the parallel between the smash product of spectra with the tensor product
of abelian groups we will use the notation

-

QY= [ M € AwalY ),
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iy
S U+ fv

HG ga QU+ fv?

MO | (Y e N )+ £
y>ox [fy,u+ f7]

Sy | e p i+ 9)
B®X | [[ii+ f5.(f xa'), (fx¢)]r. (t')]

Table 1

so that the IL structural maps are
A E: P ig)
For A = 2 this defines an associative and symmetric smash product
Y1 Ag Y2 = Agp(Y1, Y2,
Associativity follows from the fact that the maps
g gy Aa(Aapa(Y4P) > Agmapa (V0). W&E (@5 [N = @ (5™ ]

are isomorphisms [9, Theorems 1.5.4, 1.5.5 and 1.5.6]. In particular when the B¢ are a
constant set B we have X4 B =~ A x B and therefore also a natural isomorphism

Oy, p = ‘PE,IM)‘PA,(B)  Aga(AgB (YY) — Agp(Aga(Y9)).
We set the notation
®5 (8%, [y*?]] = 04,5 ®F [® 74 [y**]].
Symmetry is given by the natural isomorphism
iy YV Ag Y2 Z Y2 A0 Yt [ )= @l 2y
For all Z € IL[Sp] set the notation £ := — Ay Z: L[Sp] — L[Sp].

This smash product almost has as unit the sphere spectrum 3, in that there are natural
weak equivalences

N T Ulg | =
py: =Y =Y, p®Yfly,v]:= o (%, ». f20l.
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p~'y
S ®O1f714, 0]
HG ®9[g. ® /i7", 0]

MO ®2[(f1_1gif1), (ti)’fl—lﬁ]ﬁ]
=Y ®1(2f1,82>g3)[y’g;fﬂj’g;fﬂﬂ

QY [V p~ly7]

Table 2

Unfortunately p is not in general a natural isomorphism. The category of S—modules is
the full subcategory

Modg :={Y € LL[Sp] | py is an isomorphism}.

With the same smash product and unit $ the category Modg is a symmetric monoidal
category.

From the nontrivial fact that ¥4/ 4 has a single equivalence class [9, Theorem 1.8.1
and Section XI.2] the sphere spectrum 3, the Eilenberg—Mac Lane spectra HG and the
Thom spectrum MO in Example 4.1.1, as well as XY for Y € IL[Sp] and spectrifi-
cations QY for ¥ € Modg, are all S—modules with inverse maps given as in Table 2,
where in the first three lines f € ¥2 is any linear isometry such that U C 1R, in the
fourth (g», g3) € £2 are chosen such that { f1, g2, g3) € £3 and Im f> = Im(g>, g3).

The functor % := — A¢ $ is the right adjoint of the inclusion of Mods in LL[Sp]. The
functor X% is also a left adjoint, with right adjoint induced by a closed structure on
LL[Sp] given by an L-mappings functor Fy. Details of this construction can be found
in [9, Section 1.7], but we give an overview to establish notation. The twisted half-smash
product £A4 x — admits a right adjoint, the twisted function spectrum functor
i,
F[£A,—):Sp—Spg,ree. FIL(A).Y):=( lim Y ")
(94,2180 = Spg e FIE(A) V)=, lim 7,0/
va = i vay . mpay@+ fav%) - o
opailp. (59)] == (% > ol [0 ey @i+ fai)]).
For U € o we also have a shift functor

2 N 1 2 -
—[U"]: Sprocgree = 8P Y[U']=(Yy1p2), ol [y, 8]:= 07,75 [y, (0, 9)].
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If Y € L[Sp] then F[¥2,Y)[U!] € L[Sp], with structural map

U . v U+got
79 =g ™ O g )

Finally, we can now define
Fg(—.—): L[Sp]” x LL[Sp] — L[Sp].
Fe(Z,Y)

— 1y |8 (oD — b HfD i \D _ g U+gal .
={{¢ e L[Spl(Z, F[£2,Y)[U")) | f(¢Zg) = ¢Z(fg1,fg2)9¢(fz)g = ¢Z(g1,g2f)})v
1 N U1,U2 5 2 = . = b o
o9, 0] = (2 > 01 a 92, (B.00), %= ([, 5] = dz e ).

The functor F3 := Fy(8, —): Modg — L[Sp] is right adjoint to X5.

The monoidal structure of $—modules provides a natural definition of ring spectra,
module spectra and algebra spectra.

Definition 4.4.1 A commutative ring spectrum R is a commutative monoid in Modg,
ie an $—module equipped with a multiplication map u: R A¢ R — R and a unit map
n: % — R satisfying natural associative, unit and commutative laws. The category of
commutative ring spectra is denoted CRingSp.

For R € CRingSp an R-module M is a module over R, ie an $—module equipped with
an action A: R A¢ M — M, satisfying natural associativity and unit laws. The category
of R—modules is denoted Modg.

The category of R—modules admits a symmetric monoidal structure with tensor product
the coequalizer

M AR N :=Coeq(M An¢g RAg N =2 M Ay N)

and unit R. A commutative R—algebra is a commutative monoid in (Modg, AR, R), and
the category of commutative R—algebra is denoted CAlgp. The category of commutative
algebra spectra is

CAlgSp := XcRingspCAlgp.

As in the classical set theoretical setting there is a natural isomorphism [9, VII.1]
CAlgSp = CRingSp~. Alternatively we have a monad (IP~; 5, i) on L[Sp]? with
P7Y, :=Us, Aza (Yea)/s4:

ey = 80)] pe[@FRT PN = [ (1™ [y,
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il [T »*
s ii i+ f,0°

HR 1R ®ii [Ty, T Qii + f,v""

MO lid, @, ii] [TLa @Y fug® £ -8, <ia (1), i + fu7°]

zoX [1x. ] [f 1) + fu5?]

TSR ®;’M[n Fi, ] ®2 T4 ro.ii? + f25°]

GR | [+ oY ri. 5] 5 T1 7y falya i+ 50)]
B>X| [li.2. 1x]1.2] [[ T e, <fa . <{f"aiwa >> <fa[x“e“1>} < <r‘”‘>]

idcya M4 T4 .54
Table 3

which restricts to a monad on Mod%. The objects of P~ [IL[Sp]?] behave like algebra
spectra over ring spectra, except they have units only up to weak equivalence. They
are referred to as E_ —algebra spectra, similarly to how algebras in IL[Sp] over the
nonrelative version IP of this monad are called E,—ring spectra. By the same argument
as in [9, Proposition 11.4.5] we have an isomorphism

(11) P~ [Mod3] = CA1gSp.
For R = ((Rg, R¢);n, ) € CAlgSp and ®J’Z [r?] € Aga(Rcq) we will use the notation
T2 r = @i ()]

The sphere spectrum $, the Eilenberg—Mac Lane spectrum of a commutative ring HR,
the Thom spectrum M O, suspensions X of $—spaces, the $—module %° R associ-
ated to an Eso—ring spectrum R and spectrifications QR of commutative ring spectra
R are all commutative ring spectra, while deloopings B X of Es,-ring spaces are
E s—ring spectra; see Table 3, where the implicit conditions in the last line are as in (9).

There is a natural isomorphism CAlgg = CRingSp, which is analogous to the isomor-
phism between commutative rings and commutative Z-algebras. Moreover (MO, HR) €
CAlgSp with

[TEIl(gY). (1), 51, r2 ® 52) = r2 @i + fi om, g1T! + foi2.
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4.5 Stable mixed model structure of commutative algebra spectra

The stable mixed model structure of Modg is right transferred from the one in Sp by
the adjunction

(28I 4 UF®): Sp < Modg

as described in [2; 7; 9]; the weak equivalences and fibrations in Modg are those maps
whose underlying spectrum maps are g—equivalences and s—fibrations, respectively.
The Hurewicz/Strgm strict factorization systems are constructed as in Sp with the
S—module structures of I'f and Ef defined pointwise. The strict mixed model structure
of CAlgSp is right transferred from the one in Modé by the adjunction

(P~ 4 U): Mod3 <= CAlgSp.

The strict Quillen model structure is transferred due to the fact that CA1gSp has contin-
uous coequalizers and satisfies the “cofibration hypothesis” [9, Theorem VIL.4.7]. By a
similar argument to the one we used to construct the s-—model structure of E_ —algebras,
the strict Hurewicz/Strgm model structure is also transferred. We can define an algebra
structure on I'f for f € CA1gSp as

ni := (nxu,0,r = nyu), H?[(x“, 1%, yY)] = (]—[? X%, maxy t%,r > ]_[J’Z yer).

As in Sp, (I'; C¢, F) forms an algebraic weak factorization system in CAl1gSp. We
have an h—cofibration/h—equivalence factorization

X &% X Apx P(Tf A [0, 00]4) Apry ¥ -S4,y

and applying (I'; C;, F) then gives us the A—cofibration/trivial A—fibration factorization

 Ci (1, FfT id)iny F (. Ff' id)

X T (., F+T,1d) Y.

This determines the strict Hurewicz/Strgm model structure on CAl1gSp, and therefore
also the strict mixed model structure. The stable model structure is then induced by the
idempotent Quillen monad Q as in Sp.

4.6 Recognition of algebra spectra

Let £~ be an E__ —operad equipped with an £~ —action. The functors F $ and X%
induce objectwise adjoint functors F*® and X on the morphism categories. We can
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then define the functors
Q35 CAlgSp — (£, €7)[Top], QR := QP FSy;

flg“ =" (% 5]~ 17 2. 5212)]:
B3 (¥~ £7)[Top| — AlgSp, B¥»®X :=3°%BXY.

Theorem 4.6.1 There is an idempotent quasiadjunction
(BS® 45 & Q%) (¥, £7)[Top] = CA1gSp
that induces an equivalence
(LB>® 4ARQ>%): Ho(¥, £7)[Toplug = HoCALgSpeop

between the homotopy category of algebralike E__—algebras and the homotopy category
of connective commutative algebra spectra over connective commutative ring spectra.

Proof The natural weak equivalences i’ and €’ are the same as those defined in the
proof of Theorem 4.3.1. The other natural transformations of the unit span and counit
cospan are

: )
~n T 3 —1- i vl o g o
o |:ﬁ1 . { [uz, ”f] = ®}[[[oer ul, (a'?), (xe)]TZU,, ()], uz]) if uleoel’}/U :|,
00 ifil¢a” Uy U
N N . . N R N N R U+m,. | w
eu®F[[" (™). (997, (1)), 52]:= [ > @) [ + £ 0. 52+ 1] 7).
The conditions in the first formula are the same as in the proof of Theorem 4.3.1;
the domain in the last formula is any W € dy 4 fiv with V' a common domain of
representatives of the loops ¢°.

That these maps satisfy the conditions for an idempotent quasiadjunction follows from
the fact that (2% 4 F%): P~[IL[Sp]?] = CAlgSp is a Quillen equivalence and the same
argument as for Theorems 4.3.1 and 4.3.2. |
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