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Constraints on families of smooth 4-manifolds
from Pin™ (2)—monopole

HoKUTO KONNO
NOBUHIRO NAKAMURA

Using the Seiberg—Witten monopole equations, Baraglia recently proved that the
inclusion Diff(X') < Homeo(X) is not a weak homotopy equivalence for most of
simply connected closed smooth 4-manifolds X. We generalize Baraglia’s result
by using the Pin™ (2)-monopole equations instead. We also give new examples of
4—manifolds X for which o (Diff(X)) — mo(Homeo(.X)) are not surjections.

57R57; 57505

1 Introduction

T Kato and the authors [8] recently made use of Seiberg—Witten theory for families
in order to detect nonsmoothable topological families of 4-manifolds. This argument
extracts some homotopical difference between the homeomorphism groups and the
diffeomorphism groups of some classes of 4-manifolds. Soon after [8], using Seiberg—
Witten theory for families in a different manner, D Baraglia [1] extensively generalized
the result in [8] on comparisons between the homeomorphism and diffeomorphism
groups of 4-manifolds: he proved in [1, Corollary 1.9] that for every closed, oriented,
simply connected, smooth, and indefinite 4—manifold M with |o (M )| > 8, the inclusion
Diff(M') — Homeo(M ) is not a weak homotopy equivalence. Here o (M) denotes the
signature of M, and Diff(M ) and Homeo(M ) denote the groups of diffeomorphisms
and homeomorphisms, respectively. The proof of this result by Baraglia is based on
some constraints on smooth families of 4—manifolds obtained from a finite-dimensional
approximation of the families Seiberg—Witten monopole map. The purpose of this
paper is to give analogues of arguments in [1] by Baraglia for the Pin™ (2)—-monopole
equations introduced by the second author in [12], and to make use of the Pin™ (2)—
monopole analogues to generalize the above result by Baraglia on comparison between
homeomorphism and diffeomorphism groups as follows:
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420 Hokuto Konno and Nobuhiro Nakamura

Theorem 1.1 Let X be a smooth 4—manifold which is homeomorphic to a 4—-manifold
of the form

P q
() M #(S'xY) #(S?xE)),
i=1 j=1
where
e M is a simply connected, closed, oriented, smooth, and indefinite 4—manifold
with |o(M)| > 8;
* Y; is an oriented closed 3—manifold, and X; is an oriented closed 2—manifold of
positive genus; and
e p and g are nonnegative integers, where we interpret #f=1 (S'xY;) as S* for

p =0, and similarly for g = 0.

Set n = min{b(M),b_(M)}. If we fix a homeomorphism between X and a 4—
manifold of the form (1), then:

e [If M is nonspin, there exists a nonsmoothable Homeo( X )—bundle
X—>E->T"
e If M is spin, there exists a nonsmoothable Homeo( X )—bundle

X > E—>T1r 1,

Here b (M) is the maximal dimension of positive-definite subspaces of H?(M ;R)
with respect to the intersection form, and b— (M) = by(M ) — b4+ (M). We say that a

Homeo(X)-bundle E is nonsmoothable if E does not admit a reduction of structure
to Diff(X).

By standard obstruction theory, we have:

Corollary 1.2 Let X be a smooth 4—-manifold which is homeomorphic to a 4—manifold
of the form » 4
M #(S'xY) # (S?x %)),
i=1 ji=1
where

e M is a simply connected, closed, oriented, smooth, and indefinite 4—manifold
with |o(M)| > 8;
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* Y; is an oriented closed 3—manifold, and X; is an oriented closed 2—manifold of
positive genus; and

e p and g are nonnegative integers.

Then the inclusion
Diff(X) — Homeo(X)

is not a weak homotopy equivalence.

More precisely, if we fix a homeomorphism between X and a 4—manifold of the
form (1), then:

e If M is nonspin,
7 (Diff(X)) — my (Homeo(X))

is not an isomorphism for some k < min{b4(M),b_(M)} — 1.

o If M is spin,
7y (Diff (X)) — 75 (Homeo(X))

is not an isomorphism for some k < min{b4(M),b_(M)} —2.

Remark 1.3 Here we compare Theorem 1.1 and Corollary 1.2 with Baraglia’s argu-
ment given in [1]:

(1) The case that p = g = 0 follows from an argument based on [1, Theorem 1.1].

(2) The case that p =0, g <2, and M is spin follows from an argument based on [1,
Theorem 1.2].

Instead of a simply connected 4-manifold in M in Theorem 1.1 and Corollary 1.2, we
may also consider not simply connected 4—manifolds whose homeomorphism types
can be understood well. We give such an example using Enriques surfaces:

Theorem 1.4 Let X be a smooth 4—manifold which is homeomorphic to a 4—manifold
of the form » .
mS#M # (S'xY:) # (S*xT)),
i=1 j=1
where:
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422 Hokuto Konno and Nobuhiro Nakamura

e S is an Enriques surface and M is a standard simply connected smooth 4—
manifold with nonpositive signature. Here M is called standard if M is obtained
as the connected sum of finitely many (possibly zero) copies of CP?, —CP2,
S2x S?% K3,and —K3. If M is not spin, we assume also that o (M) < 0.

* Y; is an oriented closed 3—manifold, and X; is an oriented closed 2—manifold of
positive genus.

e m is a positive integer, and p and q are nonnegative integers, where we interpret
#f’zl(S1 x Y;) as S* for p = 0, and similarly for g = 0.

Setn = b4 (M) + m. Then there exists a nonsmoothable Homeo(X )-bundle

X—E—->T"

Corollary 1.5 Let X be a smooth 4—-manifold which is homeomorphic to a 4—manifold
of the form

P q

mS#M # (S'xY:) # (S*x %)),
i=1 j=1

where:

e S is an Enriques surface and M is a standard simply connected smooth 4—
manifold with nonpositive signature. If M is not spin, we assume also that
o(M) <0.

* Y; is an oriented closed 3—manifold, and X; is an oriented closed 2—manifold of
positive genus.

e m is a positive integer, and p and q are nonnegative integers.

Then the inclusion
Diff(X) — Homeo(X)

is not a weak homotopy equivalence. More precisely,
7 (Diff(X)) — m; (Homeo(X))

is not an isomorphism for some k < by (M) +m —1.

As a more specific corollary of Theorem 1.4 than Corollary 1.5, we may give new
examples of 4—manifolds X for which ¢ (Diff(X)) — mo(Homeo(X)) are not surjec-
tions:
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Corollary 1.6 Let X be a smooth 4—manifold which is homeomorphic to a 4—manifold
of the form » q
S#k(—CP?) # (S'xY) # (S?x %)),
i=1 j=1
where
» S is an Enriques surface, Y; is an oriented closed 3—manifold, and ¥; is an
oriented closed 2—manifold of positive genus; and

e k, p and g are nonnegative integers.

Then
1o (Diff(X)) — mo(Homeo(X))

is not a surjection. Namely, there exists a self-homeomorphism of X which is not
topologically isotopic to any self-diffeomorphism of X .

Remark 1.7 The case in Theorem 1.4 and Corollaries 1.5 and 1.6 that p = ¢ = 0 can
be deduced also from an argument using [1, Theorem 1.1].

The first example of 4—manifolds X for which 7o (Diff(X)) — m¢(Homeo(X)) are
not surjections is a K3 surface, proven by Donaldson [5]. One may check the same
statement holds also for any homotopy K3 surface using the Seiberg—Witten invariants
and a result by Morgan and Szabé [10]. We note that examples of 4—manifolds X for
which 7o (Diff(X)) — mo(Homeo(X)) are not injections are known a little more: the
first example was given by Ruberman [14], and later additional examples were given
by Baraglia and the first author [2], and by Kronheimer and Mrowka [9] recently.

The paper is organized as follows. In Section 2 we recall some basics of Pin™ (2)—
monopole theory and describe a finite-dimensional approximation of the families
Pin™ (2)-monopole map. In Section 3 we give constraints on smooth families of 4—
manifold using a finite-dimensional approximation of a families Pin™ (2)-monopole
map. Those constraints are analogues of some constraints by Baraglia [1] obtained
from the families Seiberg—Witten monopole map. In Section 4 we give the proofs of
Theorems 1.1 and 1.4: we shall construct concrete topological families of 4—manifolds
and show the nonsmoothability of them using the constraints obtained in Section 3.
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2 Pin™ (2)-monopole maps for families

First, we briefly review Pin™ (2)-monopole theory. For a thorough treatment, readers
are referred to [12; 13].

Let X be an oriented, closed, connected, and smooth 4-manifold. Fix a Riemannian
metric g on X. Let X — X be an unbranched double cover, and let £ = X X¢+1} L,
the associated local system with coefficient group Z. We always assume that X—>Xis
nontrivial. Let {g ={®R and i fg =£®/—1R. Set bf (X) =rank H/ (X ;£) for j >0,
and set b% (X) = rank H*(X; ), where HT (X ) denotes a maximal-dimensional
positive-definite subspace of H2(X;{) with respect to the intersection form of X.
Define the Lie groups Pin™ (2), and Spin“~(4) by Pin™ (2) = U(1) U jU(1) C Sp(1)
and Spin°~ (4) = Spin(4) X1y Pin™ (2). Note that Spin°~ (4)/ Spin©(4) = {£1} and
Spin®~(4)/Pin~(2) 2 SO(4). A Spin°~—structure on X — X is defined as a triple
s = (P, o0, 1), where

e P is a principal Spin“~ (4)-bundle over X,
e 0:X — P/Spin‘(4) is an isomorphism of {1}-bundles, and

e 7:Fr(X) - P/Pin" (2) is an isomorphism of SO(4)-bundles, where Fr(X)
denotes the frame bundle of X.

The associated O(2)-bundle L = P/ Spin(4) is called the characteristic bundle of
a Spin“~ —structure s = (P, 0, 7). We denote the {—coefficient Euler class of L by
¢i(s) € H*(X:0).

Some notions associated to Spin°~—structures are very similar to those of Spin‘—
structures: a Spin“~ —structure s on X—>X gives rise to the positive and negative spinor
bundles S* over X and the Clifford multiplication p: Q'(X;i¢r) — Hom(S T, S7).
An O(2)—connection A on L induces the Dirac operator D4: I'(S™) — I'(S™). Note
that the self-dual part of the curvature FI is an element of Q1 (X;ilR). We denote
by g: ST — QF(X;ilR) the canonical real quadratic map. The Pin~ (2)-monopole
equations are defined by

) D4p =0, 1Ff=q(®)

for O(2)—connections A on L and positive spinors ¢ € I'(S™). The equations in (2)
are equivariant under the action of the gauge group ¢ = I‘(A7 X¢+1yU(1)), where {£1}
acts on U(1) by complex conjugation.
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Choose a reference O(2)—connection Ay on L. The Pin™ (2)-monopole map
m: QUX;ilg)dT(ST) > QU@ QN(X:ilg) ®T(ST)
is defined by
m(a,¢) = (d*a,da—q(@), Day+a)-

The map m is decomposed into the sum m = [ + ¢, where [/ is the linear map given by
[ =(d*,d*, Dy,), and c is the quadratic part given by c(a, ¢) = (0, —q(¢), %,o(a)qﬁ).
As well as usual Seiberg—Witten theory, we consider the Sobolev completions of the
domain and the target of m. Choose k > 4. Let V := L,ZC(QI(X; ilr) ®T(ST)) and

W= Li_l((QO ®QT)(X;ilr) ®T(S7)). Then m is extended to a smooth map
m:YV — W. The linear part / is a Fredholm map of index

(@0 =0 (X)) + b1 (X) = bE (X),
and ¢ is a nonlinear compact map. Note that bg (X) = 0 if £ is nontrivial.

We take the Li 41

simplify the notation. Then the %-action is smooth. The space

—completion of the gauge group %, denoted by the same symbol 4 to

ker(d*: L7 (Q'(X;ilr)) — L;_(Q°(X;ilR)))
is a global slice for the $—action at (0, 0), and we have
m~1(0) = {solutions to (2)} Nker d*.

The slice ker d* still has a remaining gauge symmetry. Let H be the group of harmonic
{%1}—equivariant maps X — U(1), which is the kernel of the composition of the maps

L2 (9L LA (X;itr) LS L (2°(X;itR)).
Then m is H—equivariant, and we have

m~1(0)/H = {solutions to (2)}/%.
Note that ,
H' (X:0) =7, 75

if ¢ is nontrivial. Let r: H'(X;£) — H'(X;{r) be the map induced from the natural
map £ — {g and set H :=Imr = ZP!. Note the exact sequence

(3) 1> {+1}>H—> H—0.
Fixing a splitting of the above sequence, we have

H={£1}xH.
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Remark 2.1 A way of fixing a splitting of (3) is as follows; cf [12, Section 4.7].
Choose a loop y in X such that the restriction of £ to y is nontrivial. Let C,, be the
subgroup of % consisting of u € ¢ satisfying that |, is homotopic to the constant map
with value 1. Then there is an exact sequence

l1-K)y —>9—{£1} > 1.
From this we have
HNK, = H,

and this gives a splitting of (3).
Let J := H'(X;¢r)/H. Then J is a bf—dimensional torus. Dividing the harmonic

projection
w:V— HY (X;il), (a,¢) h(a),

by H, we obtain a Hilbert bundle ¥ = V/H — J. Then dividing the map m by H, we
obtain a fiber-preserving {+1}—equivariant map :

V- I xw

-

J J

For our later purpose, there is no need for the whole of 7. What we need is only the
restriction /72| 4,1 gy of 7 to the fiber over the origin of J. The restriction 772 z—1(q) is
identified with the map m( defined by

Vo:=Li(Im(d +d*: (Q°® Q) (X;ilgr) —» Q1(X;ilr)) ®T(ST)),
(5) Woi=L{_(Q°@ Q) (X:ilr) ®T(ST)),
my: VO - WO’ (Cl, ¢) = (d*av FA() + d+a _q(a)’ DA()+a¢)'

Let Aut(X, s) be the automorphism group of the Spin®~ 4-manifold (X, s), which
consists of pairs ( f, f ) of diffeomorphisms f preserving the isomorphism class of s
and lifts f of f to Spin°~—bundle automorphisms of the principal Spin®~—bundle
P associated to 5. Let B be a compact space. Suppose a smooth Aut(X, s)-bundle
(X,s) > E — B is given. That is, E is a smooth fiber bundle £ = [ [, 5(Xp. 5p)
with fiber a Spin®~ 4—manifold such that there is an isomorphism (X}, 55) == (X, 5)
of Spin°~ 4-manifolds for each . Let L = [ [,cp Lp be the associated family of
O(2)-bundles where each L, is the characteristic O(2)-bundle of (X}, s5). Choose
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a family of Riemannian metrics {gp}5cp on E. Then we have an associated vector
bundle
RS > HY(E, 0) > B

whose fiber over b € B is the space H (X} {p) of harmonic self-dual 2—forms on X.
The isomorphism class of HT(E, () is independent of the choice of the family of
Riemannian metrics on E since the Grassmannian of maximal-dimensional positive-
definite subspaces of H?(X;{R) is contractible.

Choose a family of reference O(2)—connections {Ap}pcp on .. Then we can obtain a
family of m¢ given in (5), denoted by

M02]7—>VV,

by parametrizing the previous argument over B. Here Y and W are the Hilbert bundles
over B with fibers Vy and W, respectively, and ¢ is a fiber-preserving map whose
restriction on each fiber is identified with the map .

By taking a finite-dimensional approximation of g [3; 4; 6], we obtain a {£1}-
equivariant proper map
fiV->Ww

which satisfies the following properties:

e V and W are finite rank subbundles of ¥ and W.

e V and W are decomposed as V = Vy @ V; and W = W, @ W;. The group
{£1} acts on V and W) trivially, and on V; and W by fiberwise multiplication.

o fEL—f vy : Vo — W is a fiberwise linear inclusion.
e W, is isomorphic to Vo @ H(E, {).

e The index of the family of the Dirac operators, ind{Dg, }, is represented by
[Vil=[W1]in K¢113(B).

When ¢; (s) = 0, the Pin™ (2)-monopole equations have a larger gauge symmetry given
by G = F(X~ X¢+1y Pin™(2)) [12, Section 4.3]. Then the whole theory admits the
Jj—action and the resulting finite-dimensional approximation f: V — W is equivariant
under the action of the cyclic group Cy of order 4 generated by ;. In this case, C4 acts
on Vy and W, by fiberwise multiplication of {£1} via the surjective homomorphism
C4 — {£1}, and on V7 and W by fiberwise multiplication of j. Note that the j—action
gives complex structures on V7 and Wj.
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Remark 2.2 As mentioned above, what we need for the proofs of our results is the
family po and its finite-dimensional approximation. More generally, we can construct
a parametrized family of the fotal monopole maps m of (4) once a family of splittings
of (3) is given. We can obtain such a family of splittings if we can choose a family
of loops {y»}pep such that £|,, is nontrivial. In this case, the family of the monopole
maps is parametrized by the total space of a bundle K over B with fiber J.

3 Constraints from Pin™ (2)—monopole

As in Section 2, suppose that we have a smooth Aut(X, s)-bundle (X,s) > E — B,
where B is a compact space.

The following theorem is a Pin™ (2)-monopole analogue of a part of [1, Theorem 1.1]
by Baraglia:

Theorem 3.1 Ifwy (H*(E, 0)) # 0 in HY"(B:Z,), then & (s)? < o(X) holds.

Proof The proof is parallel to that of [1, Theorem 1.1]. Throughout this proof, the
coefficients of cohomology groups are supposed to be Z,. Let G = {£1}. Note that
the Borel cohomology H(;(pt) is isomorphic to Zj[u] with degu = 1. Since G acts
on the base space B trivially, we have H(B) = H*(B)[u]. For a vector bundle U
over B, denote its disk bundle by D(U), and the sphere bundle by S(U). Choosing a
finite-dimensional approximation f of i, we have the commutative diagram

V=V()69V1 f—>W=W()G9W1
L()T LIT
fG
V0—>W()

Note that the vertical arrows and 1 are fiberwise linear inclusions. We also have a
relative version of the above diagram for the pairs (D(V), S(V)) etc. Applying the
Hé—functor, we obtain

HE(D(V). S(V)) e HE(DW). S(W))

©) l l
(fo*

HE(D(Vo), S(Vy)) «——— HE(D (W), S(Wp))

Note the following facts:
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* The Thom isomorphisms, eg H%(D(V), S(V)) = H(B)tg(V), where 1 (V)
is the G—equivariant Thom class.

. L:;‘EG (Vo Vi) =eqg(V1)tg(Vy), where eg(V7) is the G—equivariant Euler class.

Similarly,
1116 (Wo @& Wh) = eg (W)t (W),

(/) 6 (Wo) = eg(H™ (E. 0))16(Vo).
The last equation follows from that Wy = Vo, @ H™ (E, ()

* There exists a class o in Hj(B) such that /*zg(W) = atg(V). The class « is
called the cohomological degree of f.

By the diagram (6), we obtain the relation
(N aeq (V)16 (Vo) = eg(HT (E. £))ec (W1t (Vo).
Let m = rankg V7 and n = rankg W;. Then
m—n=ind Dy, = $(¢1(s)* — o (X)).
The G—Euler classes of V7 and Wy are given by
e (V1) = wmn (V1) + w1 (VD) + -+ wy (V)u" " +u™,
ec(W1) = wa(W1) + wpt (Wpu + -+ wi (W~ +u”.

Since G acts on HV(E,{) trivially, we have eg(HT(E,{)) = Wyt (HT(E,0)).
By (7), eg(HT(E™, £))eg (W) is divisible by eg (V7). If

eG(HT(E, b)) = wbi(H’L(E,ﬁ)) # 0,
then m —n < 0. Finally we obtain ¢, (s)> < o (X). ad

Using the relation (7), we can obtain additional constraints on V; and Wj. Let us recall
the notation of the Stiefel-Whitney class of virtual vector bundles. For an integer i > 0
and vector bundles V and W over a common base space, define w; ([W]—[V]) as
the component of w(V)~!w (W) in degree i, where w(V') denotes the total Stiefel—
Whitney class of V.

Corollary 3.2 For i with i >n—m, w;([Wi]—[Vi))e(HT(E,{)) =0.

Proof In H*(B)[u,u™!], the equality (7) implies that
a=eg(HY(E*,0))eg(Wi)eg(V1)™.

Since « is in H*(B)[u], the right-hand side has no terms of negative degree in u. O
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Remark 3.3 In the proofs of Theorem 3.1 and Corollary 3.2, we used the Z,-—
coefficient Borel cohomology. We can obtain similar constraints using the Borel
cohomology with local coefficient Z,, g+ (g;¢))- In this case, the constraints are given
in terms of Chern classes of V; and W; with local coefficient.

The following theorem is a Pin™ (2)-monopole analogue of [1, Theorem 1.2]:

Theorem 3.4 Suppose ¢1(s) = 0 for the family (X,s) - E — B. If
wye (HE(E) A0 or wye (HF(E, 0) #0,

theno(X) > 0.

Proof Recall that a finite-dimensional approximation f is C4—equivariant when
¢1(s) = 0. Let G = Cy4. Also in this proof, the coefficients of cohomology groups
are supposed to be Zj. Then we have Hj(pt) = Z[u, v]/u? with degu = 1 and
deg v = 2. The surjective homomorphism G — {£1} induces the homomorphism

H{yyy (pt) = Zo[u] - HG(pt) = Zo[u, vl/u?,  u>u.

Regard G as a subgroup of S in an obvious way. Then the inclusion G < S induces
the homomorphism

H% (pt) = Zolvl » HE(pt) = Za[u, vl/u®, v .

By an argument similar to the proof of Theorem 3.1, we obtain the relation (7) for some
o€ Hg (B). In this case, V; and W) are complex vector bundles. Let r := rankc V;
and s :=rankc W;. Then
F—s = —%O(X).

The G—-Euler classes are written as

ec(V) =cr(Vi) + e, (Vv +--- e (Vo ™ 07,

eG(W1) = cs(W1) + s (Wv + -+ ey (W)o* ™! 07,
where ¢; are the (mod 2)—Chern classes. If we regard H = HT(E,{) as a {£1}-
equivariant bundle, then the {£1}-Euler class of H is given by

eqa1y(H) = wp(H) +wp_qu + -+ wi (H)u" " +ub,

where b = bﬁ. Noticing #? = 0 in H( (B), we obtain

eg(H) = wp(H) + wp—_y (H)u.
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Then, under the assumption that eg(H) # 0, the relation (7) implies that
—%U(X) =r—s=<0.

This proves the Theorem 3.4. O

Remark 3.5 The proofs of [1, Theorem 1.1] and [1, Theorem 1.2] used S 1—symmetry
and Pin(2)-symmetry of the monopole maps respectively. It would be worth noting that
the above arguments of the proofs of Theorems 3.1 and 3.4 show that {41}-symmetry
and C4—symmetry are enough to prove parts of [1, Theorem 1.1] and [1, Theorem 1.2],
respectively.

4 Proof of Theorems 1.1 and 1.4

In this section we give the proofs of Theorems 1.1 and 1.4. For this purpose, we
first collect some preliminary results. Let X be an oriented connected closed smooth
4—manifold with a double cover X — X . The following lemma is given in [12]. (See
[12, Proposition 11] and the proof of [12, Theorem 37].)

Lemma 4.1 [12] For each cohomology class C € H*(X;{), let[C], € H*(X;Z5)
denote the mod 2 reduction of C. If[C], satisfies

[Clr = wa(X) + w1 (Er)>,

then there exists a Spin“~ —structure s on X — X such that & (s)=C.

Note that, as well as usual Spin°® structure, we may define the notion of a topological
Spin‘~—structure on a topological manifold and a families topological Spin~—structure
on a continuous bundle of manifolds, namely a manifold bundle whose structure
group is the homeomorphism group of the fiber. (See [3, Section 4.2] for (families)
topological Spin® structures.) Given a continuous bundle of manifolds and a families
topological Spin“~—structure on it, if the manifold bundle is smoothable, then the
families topological Spin“~—structure induces a families Spin®~—structure in the usual
sense.

Lemmad.2 Fori =1,...,n, let X; be an oriented closed 4—manifold, X~,~ — X; be
a double cover, s; be a Spin“~ —structure on fl — X, fi be a self-diffeomorphism of
X; preserving orientation of X; and the isomorphism class of ;. Suppose that each f;
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has a fixed ball B; embedded in X;, and extend f; to a self-diffeomorphism of X by
identity outside X;. Define the connected sums X = X #---#X,, ands = s, #---#5s,
by gluing around B;. Then there exist commuting lifts fl, s fn in Aut(X, s) of the
commuting diffeomorphisms f1, ..., f.

Moreover, a similar statement holds also for topological Spin®~—structures.

Proof The proof of the case for topological Spin“~—structures is similar to the smooth
case, so we give the proof only for the smooth case. Note that we have an exact

sequence
1 - %(X) — Aut(X, s) — Diff(X, [s]) — 1,

where %(X) is the gauge group of the Spin®~—structure s and Diff(X, [s]) is the group
of diffeomorphisms preserving the isomorphism class of s. Take a lift f; in Aut(.X,s)
of f;. Since f; is supported inside X; \ B;, we have that

filxvaxi\z) € 9(X\ (X \ By)).

Set u; = f, lx\(x;\B;)- To complete the proof of the Lemma 4.2, it suffices to show
that there exists an extension of each u; to an element of 4(X'), since then the lifts
fi= ui_l - fi of f; satisfy the desired property.

To see that u; € 4(X \ (X; \ Bi)) can be extended to an element of 94(X), note that we
may assume that X, ; — X is the trivial double cover around B; and that s is a trivial
Spin“~—structure around B;. Then, as noted in [13, Remark 2.8], we may regard u;|5p,
as a map u;|yp,: S 3 — U(1), which can be deformed continuously to the constant
map onto the identity element in U(1) since 73 (U(1)) = 0. This implies that u; can
be extended as we desired. m|

We can now start the proof of Theorem 1.1. Some of ideas of the construction of a
nonsmoothable family £ with fiber X are based on [1, Theorem 10.3; 8, Theorem 4.1;
11, Sections 3 and 4; 12, Section 2; 13, Section 1].

Proof of Theorem 1.1 Let X be as in the statement of Theorem 1.1. Set
p q
®) N=#(S"xY) #(S?x%)).
i=1 ji=1
Since the assertion of Theorem 1.1 is invariant under reversing orientation of M, we

may assume that o(M) < 0 without loss of generality. Then we have n = b4 (M).
Note that, since M is assumed to be indefinite, we have b4 (M) > 0.
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A local system ¢N on N is constructed in [13, Section 1.2]. We recall the construction.

For a connected double cover S! — S , taking a product with Y; foreachi =1,..., p,
we have a connected double cover ST x ¥; — S x ;.

Let T2 — T2 be a nontrivial double cover. For each j = 1,...,q, consider &; as
a connected sum X; = T2 #..-# T2, Taking a fiber sum of 72 — T2, we obtain a
double cover X; — Xj.

Let N — N be a fiber sum of §' x¥; - S!'x ¥; (i = 1,....p)and &; — %,
(j =1,...,q). We define the local system £V by ¢V = N x4 Z. Let Eﬁzﬁxilz.
Then we have

9) b (N)=0 and w(td)*=o.

Let X — X be the fiber sum of the trivial double cover M UM — M and N — N.
Set{ =X X417 and b = X X1 R. Then we have

(10) H*(X:0)~ H*(M:;Z)® H*(N; (M)
and
(11) wi (Cr)* = (0, w1 (6§)%)

through (10), and also have
bE(X) = by (M) =n.
It follows from (9) and (11) that
(12) w2 (X) 4wy (lr)* = wa(M)

since w,(N) = 0. Below we consider the case that M is spin and that M is nonspin
separately.

First, let us consider the case that M is spin. In this case, M is homeomorphic to
(13) 2m(—Eg)#nS? x S*

for some m by Freedman’s theorem, where — E'g denotes the negative-definite Eg—
manifold. Note that we have m > 0 since we have assumed that o (M) < 0 (actually
we also have n > 2m + 1 by Furuta’s 10/8—inequality, but this fact is not necessary
here). Henceforth we shall identify M with (13) as topological manifold.

As noted in [11, Example 3.3], one may easily find an orientation-preserving self-
diffeomorphism o: S2 x §? — S2 x §? satisfying the following two properties:
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o There exists a 4-ball B embedded in S? x S? such that the restriction of ¢ on a
neighborhood of B is the identity map.

e o reverses orientation of HT(S? x S?).

Let fi...., fn_1 be copies of o on each connected summand of (n — 1)(S? x S?),
and let us extend them as homeomorphisms of M and X by identity over the other
connected sum factors. Since fi,..., f,—1 commute with each other, we can form the
multiple mapping torus

X —>E->T1"!

of fi,..., fu—1. This family £ is a Homeo(X )-bundle, for which we shall show
nonsmoothability. We argue by contradiction and suppose the family X — E — 7”1
has a reduction of structure group to Diff(X').

Let M — Ep; — T"! denote the multiple mapping torus of f1,..., f,_ restricted
to M. Then the family E is the fiberwise connected sum of Eps and the trivialized
bundle 7" ! x N — N. As in the proof of [1, Theorem 10.3], it is easy to see that
wp—1(HV(Epg)) # 0. This nonvanishing together with (9) and (10) implies that

(14) wa—t (HY(E, 0) #0 in H" (B Z,).

Since now we have w, (M) = 0, it follows from Lemma 4.1 and (12) that there exists
a Spin“~—structure s on X — X such that ¢1(s) = 0. More precisely, we may take s
to be trivial on the connected summand M in X. Here we note the following lemma:

Lemma 4.3 The family E has a lift of structure group to Aut(X, s), provided that E
has a reduction of structure group to Diff(X').

Proof Since the Spin“~—structure s on the connected summand M in X is trivial,
each f; obviously preserves the isomorphism class of the restriction of the topological
Spin®——structure s on the i ™ connected summand of 1(S? x §?). Therefore this lemma
follows from Lemma 4.2. |

We can now complete the proof of Theorem 1.1 in the case that M is spin. By (14)
and Lemma 4.3, the family X — E — T"~! satisfies the assumption of Theorem 3.4;
thus o(X) > 0. However o (X)) = o(M) holds and we assumed that 6 (M) < 0. This
is a contradiction, and hence E is nonsmoothable.

Next, let us consider the case that M is not spin. Some of arguments here are very
similar to the spin case above. Denote by —CPZ,_ the closed simply connected
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topological 4-manifold whose intersection form is (—1) and whose Kirby—Siebenmann
class does not vanish. Then M is homeomorphic to

m(—CP?) #(—Eg) #(—CPZ,.) #n(S? x §?)

for some m > 0 and n > 0. Let f7,..., f; be the commuting self-diffeomorphisms
of n(S? x §?2) obtained as copies of o above as well as the spin case, and extending
them as self-homeomorphisms of X by identity, we may obtain a continuous family
X — E — T" as the multiple mapping torus. Similar to the spin case, we argue by
contradiction and suppose that the family X — E — 7" has a reduction of structure
group to Diff(X).

Let M — Ep; — T" denote the multiple mapping torus of fi,..., fj restricted to M.
Then it is easy to see that e(H ™ (Eyy, Loy, (H+(Epp))) 7 0, where Zy, (m+(Ep))
denotes the local system with coefficient group Z determined by w;(H " (Ejps)). This
observation together with (9) and (10) implies that

(15) wy(HY(E, ) #0 in H'(B:;Z,).
Let C € H*(X;{) be a cohomology class expressed as
C=(er1,...,em,0,e,0,0)
under the direct sum decomposition of H2(X;{) into
H*(—-CP%2)®" & H*(—Es: Z) ® H*(—CP}: Z) & H*(n(S? x S?): Z) & H*(N: {V),

where ¢; and e denote a generator of H?(—CP?;Z) and that of H?(—C ]P’%ake; Z),
respectively. Then C satisfies that [C], = w,(M'). Therefore it follows from Lemma 4.1
and (12) that there exists a Spin°~—structure s on X — X such that c1(s) =C.

As well as Lemma 4.3, the structure group of E lifts to Aut(X, s) provided that E is
smoothable. Therefore by (15) we may apply Theorem 3.1 to this family, and thus we
have ¢;(s)? < o(X). However it follows from a direct calculation that

16> =C*=-m—1 and o(X)=0(M)=—m—09.

This is a contradiction, and hence E is nonsmoothable. This completes the proof of
Theorem 1.1. m|

Proof of Theorem 1.4 The proof is very similar to that of Theorem 1.1 above. Let
X be as in the statement of Theorem 1.4 and M’ = mS # M. Define N by (8). By
an argument in the proof of [7, Theorem 3] by Hambleton and Kreck, it turns out
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that an Enriques surface S is homeomorphic to —Eg # (S? x S?) # W, where W
is a nonspin topological rational homology 4—sphere with 771 (W) = Z/2 and with
nontrivial Kirby—Siebenmann invariant. Hence m.S is homeomorphic to

m(—Eg)#mS? x S*#mW.
Note that M can be topologically decomposed as follows:

o If M is nonspin, M is homeomorphic to a(S? x S?)#b(—CP?) for some a > 0
and b > 0. Here we have used the assumption that o (M) < 0 if M is nonspin.

o If M is spin, M is homeomorphic to a(S? x S?)#2b(—Eys) for some a,b > 0.

Let us repeat the argument in the proof of Theorem 1.1 until getting (12) under replacing
M with M.

First, let us assume that M is spin. Then M’ is homeomorphic to
(m +2b)(—E3) #nS? x S #mW,

where n =a+m. Let fi, ..., f, be the commuting self-diffeomorphisms of 7(S? x S?)
obtained as copies of o given in the proof of Theorem 1.1, and extending them as self-
homeomorphisms of X by identity, we may obtain a continuous family X — F — T"
as the multiple mapping torus. We argue by contradiction and suppose that the family
X — E — T" has a reduction of structure group to Diff(X). First, note that we
again obtain (15) similarly. Let @ € H?(S;Z) be the cohomology class given by
o = (0,1) € H*(S;Z) under the direct sum decomposition

H?*(S:Z)~ H*(—Eg#S*x S*:Z)® H*(W: Z),

where H?(W;Z) is known to be isomorphic to Z /27 and 1 € H*(W ; Z) denotes the
unique nontrivial element. Let C € H?(X; £) be the cohomology class given by

C=0,a1,...,0m,0)
under the decomposition of H2(X;{) into
H?*((m 4 2b)(—Eg)#nS* x S%,Z) ® H*(W:Z)®" @ H>(N; V),

where «; are copies of . Then C satisfies that [C], = w,(M'). We can deduce from
an argument similar to the proof of Theorem 1.1 that C? < o(X) using Theorem 3.1.
However it follows from a direct calculation that C? = 0 and o(X) = —8(m + 2b).
This is a contradiction, and hence E is nonsmoothable. This completes the proof of
Theorem 1.4 in the spin case.
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Next, let us assume that M is nonspin. The proof is similar to the spin case above.
First, note that M’ is homeomorphic to

m(—Eg) #n(S? x S?)#b(—CP?)#mW,

where n = a + m. As well as the spin case, let f1,..., f; be the commuting self-
diffeomorphisms of 7(S? x S?) obtained as copies of g, and extending them as self-
homeomorphisms of X by identity, we may obtain a continuous family X — F — T"
from fi,..., fu. Suppose that the family X — E — T" has a reduction of struc-
ture group to Diff(X). We again obtain (15) similarly. Let ¢ be a generator of
H2(—CP2: 7). Let C € H*(X: {) be the cohomology class given by

C = (0,51,...,éb,al,...,O{m,O)
under the decomposition of H2(X;{) into
H2(m(—Eg)#n(S* x $?);Z) ® H*(b(—CP?); Z) d H>*(W;Z)®™ & H*(N; ¢V),

where ¢; are copies of e. Then C satisfies that [C], = w,(M), and we can deduce
that C? < o/(X) using Theorem 3.1. However it follows from a direct calculation that
C?=—band o(X)=—8m—b. Since b > 0 in the nonspin case, this is a contradiction.
Hence E is nonsmoothable. This completes the proof of Theorem 1.4 in the nonspin
case. |
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