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Suspension homotopy of 6–manifolds

RUIZHI HUANG

For a simply connected closed orientable manifold of dimension 6, we compute its
homotopy decomposition after double suspension. This allows us to determine its K–
and KO–groups easily. Moreover, in a special case we refine the decomposition to
show the rigidity property of the manifold after double suspension.

55P15, 55P40, 57R19; 55N15, 55P10

1 Introduction

Let M be a closed orientable smooth manifold of dimension n. Numerous investigations
have been made in geometric topology into the diffeomorphism or homeomorphism
type of M in various cases. For instance, in the general case, Wall [30; 32] studied
.s�1/–connected 2s–manifolds and .s�1/–connected .2sC1/–manifolds. For concrete
cases with specified dimension n, Barden [1] classified simply connected 5–manifolds,
and Wall [31], Jupp [18] and Zhubr [35; 36] classified simply connected 6–manifolds.
More recently, Kreck and Su [20] classified certain nonsimply connected 5–manifolds,
while Crowley and Nordström [11] and Kreck [19] studied the classification problem
of various kinds of 7–manifolds.

In the literature mentioned, the homotopy classification of M was usually carried out
as a byproduct in terms of a system of invariants. However, it is almost impossible to
extract nontrivial homotopy information of M directly from the classification. On the
other hand, unstable homotopy theory is a powerful tool for studying the homotopy
properties of manifolds. There have been several interesting investigations recently in
this direction. For instance, Beben and Theriault [6] studied the loop decompositions of
.s�1/–connected 2s–manifolds, while Beben and Wu [8] and Huang and Theriault [17]
studied the loop decompositions of the .s�1/–connected .2sC1/–manifolds. The
homotopy groups of these manifolds were also investigated by Samik Basu and Somnath
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Basu [2; 3] from a different point of view. Moreover, a theoretical method of loop
decomposition was developed by Beben and Theriault [7], which is quite useful for
studying the homotopy of manifolds. Additionally, the homotopy type of the suspension
of a connected 4–manifold was determined by So and Theriault [28].

We study the homotopy of simply connected 6–manifolds. Let M be a simply connected
closed orientable 6–manifold. By Poincaré duality and the universal coefficient theorem
we have

(1) H�.M IZ/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

Z˚d ˚T if � D 2;

Z˚2m˚T if � D 3;

Z˚d if � D 4;

Z if � D 0; 6;

0 otherwise;

where m; d � 0, and T is a finitely generated abelian torsion group. Our first main the-
orem concerns the double suspension splitting of M . Let †X denote the suspension of
any CW–complex X . Let Pn.T / be the Moore space such that the reduced cohomology
zH�.Pn.T /IZ/ is isomorphic to T if � D n and 0 otherwise; see Neisendorfer [25].

Theorem 1.1 Suppose M is a simply connected closed orientable 6–manifold with
homology of the form (1). Suppose that T has no 2 or 3–torsion. Then there is an
integer c with 0� c � d determined by the cohomology ring of M such that :

� If c D 0,

†2M '†W0 _
Wd�1

jD1.S
4
_S6/_

W2m
iD1 S5

_P6.T /_P5.T /;

where W0 ' .S
3 _S5/[ e7.

� If c D d ,

†2M '†Wd _
Wd�1

iD1 †
2CP2

_
W2m

iD1 S5
_P6.T /_P5.T /;

where Wd '†CP2[ e7.

� If 1� c � d � 1,

†2M '†Wc_
Wc�1

iD1†
2CP2

_
Wd�c�1

jD1 .S4
_S6/_

W2m
iD1 S5

_P6.T /_P5.T /;

where Wc ' .†CP2 _S3 _S5/[ e7.

Theorem 1.1 classifies the homotopy type of†2M up to an indeterminate term†Wc for
0� c � d . The Steenrod square Sq2

WH 2.M IZ=2Z/!H 4.M IZ=2Z/ determines c.
Since we need only the suspension of Wc , the attaching map of the top cell of Wc can
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be chosen so that it does not have a Whitehead product as a component. In general, the
suspension of this attaching map depends on the manifold M itself; for instance, see
Theorem 1.3 below.

Nevertheless, Theorem 1.1 is still useful, for instance, to calculate the K–group or the
KO–group of M in Corollary 1.2. In particular, when M is a Calabi–Yau threefold,
it partially reproduces the result of Doran and Morgan [12, Corollary 1.10] about its
K–group by a different method, and provides a new computation of its KO–group.
Moreover, there are many examples of simply connected Calabi–Yau threefolds. For
instance, based on Kreuzer and Skarke [21], Batyrev and Kreuzer [4] showed that
there are exactly 473 800 760 families of simply connected Calabi–Yau threefolds
corresponding to 4–dimensional reflexive polytopes.

Corollary 1.2 Let M be a manifold satisfying the conditions of Theorem 1.1. Then
the reduced K–group and KO–group of M are

zK.M /Š Z˚2dC1
˚T and fKO.M /Š

M
d

.Z˚Z=2Z/:

If we specialize to the case when d D 1, we can obtain a complete description of M

after double suspension, based on the work of Yamaguchi [34] (also summarized and
corrected by Baues [5]). In particular, Yamaguchi’s work [34] implies that a generator
x 2H 2.M IZ/Š Z has the property that x2 D ky for some k 2 Z and a generator
y 2H 4.M IZ/ of infinite order. Let �3

i D �iC2 ı�iC1 ı�i 2 �iC3.S
i/ (see Toda [29]),

where �i 2 �iC1.S
i/ is the Hopf element. Let V3 be the manifold that is the total

space of the sphere bundle of the oriented R3–bundle over S4 determined by its first
Pontryagin class p1 D 12s4, where s4 2H 4.S4IZ/ is a generator.

Theorem 1.3 Suppose M is a simply connected closed orientable 6–manifold with
homology of the form (1) such that d D 1. Let x 2 H 2.M IZ/ Š Z be a generator.
Let k 2 Z be such that x2 D ky for some generator y 2H 4.M IZ/ of infinite order.
Suppose T has no 2– or 3–torsion. Then:

� If k is odd , then M is Spin. Moreover ,

†2M '†2CP3
_
W2m

iD1 S5
_P6.T /_P5.T /

when k �˙1 mod 6, while

†2M '†2V3 _
W2m

iD1 S5
_P6.T /_P5.T /

when k � 3 mod 6.

Algebraic & Geometric Topology, Volume 23 (2023)



442 Ruizhi Huang

� If k is even and M is non-Spin ,

†2M ' S4
_†4CP2

_
W2m

iD1 S5
_P6.T /_P5.T /:

� If k is even and M is Spin ,

†2M ' .S4
[��3

4
e8/_S6

_
W2m

iD1 S5
_P6.T /_P5.T /;

where � 2 Z=2 is determined by M .

It should be remarked that there is no indeterminacy in the term .S4[��3
4

e8/ in the last
decomposition of †2M . Indeed, the stable cube element �3

n 2 �nC3.S
n/ (for n� 2)

is detected by the secondary operation T (see Harper [13, Exercise 4.2.5]), and in our
case the homotopy decomposition has to preserve the module structure induced by the
cohomology operations. Moreover, it is clear that k mod 2 and the spin condition of M

are determined by the Steenrod square Sq2. We will also see that †CP3 and †V3 can
be distinguished by the Steenrod power P1 W H 3.†M IZ=3Z/! H 7.†M IZ=3Z/.
Hence, we obtain the following rigidity result for manifolds of the type in Theorem 1.3
after double suspension:

Corollary 1.4 Let M and M 0 be two manifolds of the type in Theorem 1.3. Then
†2M '†2M 0 if and only if H�.†2M IZ/ŠH�.†2M 0IZ/ as abelian groups , and
H�.†2M IZ=pZ/ Š H�.†2M 0IZ=pZ/ as Z=2ZfSq2;Tg–modules when p D 2,
and as Z=3ZfP1g–modules when p D 3.

The paper is organized as follows. In Section 2 we reduce the decomposition problem of
6–manifolds to that of those whose third Betti numbers are zero. In Section 3, we give a
detailed procedure to decompose 6–manifolds after double suspension by the homology
decomposition method. Sections 4 and 5 are devoted to proving Theorems 1.1 and 1.3,
respectively. In Section 6, we compute some homotopy groups of odd primary Moore
spaces used in Section 3.

Acknowledgements Huang was supported by the National Natural Science Foundation
of China (grants 11801544 and 11688101), and the Chen Jingrun Future Star Program
of the AMSS. He would like to thank Professor Stephen Theriault for the international
online lecture series Loop space decompositions, which stimulated his research interest
in the homotopy of 6–manifolds.
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2 Reducing to the case when b3.M / D 0

The following well known splitting theorem for 6–manifolds was proved by Wall [31]
in the smooth category, while Jupp [18] pointed out that the theorem holds in the
topological category by the same argument.

Theorem 2.1 [31, Theorem 1] Suppose M is a simply connected closed orientable
6–manifold with third Betti number b3.M /D 2m. Then there exists a 6–manifold M1

such that

M ŠM1 # #
m
.S3
�S3/ and H3.M1IQ/D 0:

Corollary 2.2 Let M and M1 be manifolds as in Theorem 2.1. Then

†M '†M1 _
Wm

iD1.S
4
_S4/:

Proof Let M 0
1

and M 0 be the 5–skeletons of M1 and M , respectively. It is known that
S3_S3 is the 5–skeleton of S3�S3 and†.S3�S3/'†.S3_S3/_S7. In particular,
there is a homotopy retraction r W†.S3 �S3/!†.S3 _S3/. For the connected sum
M1 # .S3 � S3/, there are the obvious pinch maps q1 WM1 # .S3 � S3/!M1 and
q2 WM1 # .S3 �S3/! S3 �S3. Consider the composition

� W†.M1 # .S3
�S3//

�0
�!†.M1 # .S3

�S3//_†.M1 # .S3
�S3//

Eq1_.rıEq2/
����������!†M1 _†.S

3
_S3/;

where�0 is the standard comultiplication for a suspension, and E denotes the suspension
of a map. It is easy to see that � induces an isomorphism on homology and so is a
homotopy equivalence by Whitehead’s theorem. Since

M 0
'M 0

1 _
Wm

iD1.S
3
_S3/;

by repeating the above argument, we obtain the decomposition in the statement of the
corollary.

In Theorem 2.1 the connected summand M1 satisfies b3.M1/D 0, so by Corollary 2.2
it suffices to consider such 6–manifolds in the sequel.
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3 Homology decomposition of M after suitable suspensions

Let M be a simply connected closed orientable 6–manifold with b3.M / D 0. By
Poincaré duality and the universal coefficient theorem, we have

(2) H�.M IZ/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

Z˚d ˚T if � D 2;

T if � D 3;

Z˚d if � D 4;

Z if � D 0; 6;

0 otherwise;

where d � 0, and T is a finitely generated abelian torsion group. We may write

(3) T D
M̀
kD1

Z=prk

k
Z;

where each pk is a prime and rk � 1.

Instead of using a skeletal decomposition, we may apply a homology decomposition to
study the cell structure of M . For any finitely generated abelian group A, let Pn.A/

be the Moore space such that zH�.Pn.A/IZ/ŠA if � D n and 0 otherwise [25]. The
information on the homotopy groups of Pn.T / used in this section will be proved in
Section 6.

Theorem 3.1 [14, Theorem 4H.3] Let X be a simply connected CW–complex. Write
Hi DHi.X IZ/. Then there is a sequence of complexes X.i/ (for i � 2) such that :

� Hj .X.i/IZ/ŠHj .X IZ/ for j � i and Hj .X.i/IZ/D 0 for j > i .

� X.2/ D P3.H2/, and X.i/ is defined by a homotopy cofibration

P i.Hi/
fi�1
���!X.i�1/

�i�1
���!X.i/;

where fi�1 induces a trivial homomorphism

fi�1� WHi�1.P
i.Hi/IZ/!Hi�1.X.i�1/IZ/:

� X ' hocolimfX.2/
�2
�! � � �

�i�2
���!X.i�1/

�i�1
���!X.i/

�i
�! � � � g.

From this theorem, it is clear that the homology decomposition is compatible with
the suspension functor. That is, for X in Theorem 3.1 the sequence of the triples
.†X.i/;Efi ;E�i/ is a homology decomposition of †X .
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3.1 Structure of M.3/

By Theorem 3.1 and (2), there is a homotopy cofibration

(4) P3.T /
f2
�!M.2/

�2
�!M.3/; where M.2/ '

Wd
iD1 S2

_P3.T /:

Notice that from (3), we have Pn.T /'
W`

kD1 Pn.p
rk

k
/ by [23] or [25].

Lemma 3.2 The map f2 in (4) is nullhomotopic , and hence

M.3/ '
Wd

iD1 S2
_P3.T /_P4.T /:

Proof Since P3.T /'
W`

kD1 P3.p
rk

k
/, there is the embedding j W

W`
iD1 S2!P3.T /

of the bottom cells. Consider the commutative diagram

�2

�W`
iD1 S2

�
hurŠ

��

j�
// // �2.P

3.T //
f2�

//

hurŠ

��

�2.M.2//

hurŠ

��

H2

�W`
iD1 S2IZ

� j�
// // H2.P

3.T /IZ/
f2�D0

// H2.M.2/IZ/

where the Hurewicz homomorphisms hur are isomorphisms by the Hurewicz theorem,
f2� D 0 on homology by Theorem 3.1, and both maps j� are epimorphisms. In
particular, f2� ı j� is trivial on homotopy groups, and hence f2 ı j is nullhomotopic.
Thus, combined with (4), we have the diagram of homotopy cofibrations

(5)

W`
iD1 S2

W`
iD1 p

rk
k

��

// � //

��

W`
iD1 S3

c
��W`

iD1 S2 0
//

j

��

M.2/
// M.2/ _

W`
iD1 S3

��

P3.T /
f2

// M.2/

�2
// M.3/

where p
rk

k
W Sn! Sn is a map of degree p

rk

k
, and c is the induced map.

We claim that c can be chosen to be i2 ı
�W`

iD1 p
rk

k

�
in (5), where

i2 W
W`

iD1 S3
!M.2/ _

W`
iD1 S3

is the injection onto the sphere summands. Indeed, we may replace (5) by a strictly
commutative diagram up to homeomorphism. Start from the upper left square of (5). It
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becomes strictly commutative once we replace the 0 map by the constant map. On the
one hand, extending the new square one step to the right by taking the mapping cone, we
obtain Qc W

W`
iD1 S3!M.2/_

W`
iD1 S3, which is exactly equal to i2 ı

�W`
iD1 p

rk

k

�
, and

the upper right square automatically commutes. On the other hand, by the homotopy
extension property of a cofibration, we may replace f2 W P

3.T /!M.2/ by a map
Qf2 such that Qf2 ' f2 and the lower left square strictly commutes. It follows that

the mapping cone of Qf2 is homotopy equivalent to M.3/ and is homeomorphic to the
mapping cone of i2 ı .

W`
iD1 p

rk

k
/. Hence we can choose c D i2 ı .

W`
iD1 p

rk

k
/ in (5).

Now from (5) it follows that

M.3/ 'M.2/ _P4.T /'
Wd

iD1 S2
_P3.T /_P4.T /;

The following corollary follows from Lemma 3.2 and will be used in Lemma 3.6.

Corollary 3.3 The homotopy cofiber of the obvious inclusion

j W P3.T /_P4.T /!M.3/!M

is a Poincaré duality complex V with cell structure

V D
Wd

iD1 S2
[ e4

.1/[ e4
.2/ � � � [ e4

.d/[ e6:

Moreover, by [31, Theorem 8] V is homotopy equivalent to a closed smooth manifold.

3.2 Structure of M.5/

By Theorem 3.1 and Lemma 3.2, there is a homotopy cofibration
(6)Wd

iD1 S3 f3
�!M.3/

�3
�!M.4/ DM.5/; where M.3/ '

Wd
iD1 S2

_P3.T /_P4.T /:

We need to study the map

f3 W
Wd

iD1 S3
!
Wd

iD1 S2
_P3.T /_P4.T /:

Let i3 W P
4.T /!

Wd
iD1 S2 _P3.T /_P4.T / be the inclusion. Define the complex

Y by the homotopy cofibration

P4.T /
�3ıi3
���!M.4/ DM.5/! Y:

Algebraic & Geometric Topology, Volume 23 (2023)



Suspension homotopy of 6–manifolds 447

Lemma 3.4 The map f3 in (6) factors as

f3 W
Wd

iD1 S3 f 0
3
�!

Wd
iD1 S2

_P3.T /
i1_i2
���!

Wd
iD1 S2

_P3.T /_P4.T /

for some f 0
3
, where i1 and i2 are inclusions. Moreover , there is a homotopy cofibration

(7)
Wd

iD1 S3 f 0
3
�!

Wd
iD1 S2

_P3.T /
�0
3
�! Y;

and
M.5/ ' Y _P4.T /:

Proof First, there is the diagram of homotopy cofibrations

� //

��

P4.T /

i3

��

P4.T /

�3ıi3

��Wd
iD1 S3 f3

// M.3/

q1;2

��

�3
// M.5/

��Wd
iD1 S3

f 0
3
//
Wd

iD1 S2 _P3.T /
�0
3
// Y

where q1;2 is the obvious projection, �0
3

is induced from �3, and f 0
3
WD q1;2 ıf3. The

diagram immediately implies that (7) is a homotopy cofibration.

Let q3 W
Wd

iD1 S2 _ P3.T / _ P4.T / ! P4.T / be the canonical projection. By
Theorem 3.1, f3� WH3

�Wd
iD1 S3IZ

�
!H3

�Wd
iD1 S2_P3.T /_P4.T /IZ

�
is trivial.

In particular, q3� ı f3� D 0. Then, by the Hurewicz Theorem, q3 ı f3 is nullho-
motopic. Further, by the Hilton–Milnor Theorem (see §XI.6 of [33], for instance),
�3.S

2 _P3.T /_P4.T //Š �3.S
2 _P3.T //˚�3.P

4.T //, and hence�Wd
iD1 S3;S2

_P3.T /_P4.T /
�
Š
�Wd

iD1 S3;S2
_P3.T /

�
˚
�Wd

iD1 S3;P4.T /
�
:

Under this isomorphism, the homotopy class of f3 corresponds to Œf 0
3
�C Œq3 ı f3�.

However since we already showed that Œq3 ıf3�D 0, we have f3 ' .i1 _ i2/ ıf
0

3
, so

M.5/ ' Y _P4.T / as required.

3.3 Structure of †M.5/

From this point, we may need extra conditions on the torsion group T . First recall that
we already showed that by Lemma 3.4 there is a homotopy cofibration

(8)
Wd

iD1 S3 f 0
3
�!

Wd
iD1 S2

_P3.T /
�0
3
�! Y; where M.5/ ' Y _P4.T /:
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Let
q1 W

Wd
iD1 S2

_P3.T /!
Wd

iD1 S2

be the canonical projection, let f 00
3
WD q1 ı f

0
3
D q1 ı q1;2 ı f3, and also recall that

Pn.T /'
W`

kD1 Pn.p
rk

k
/. Let us suppose pk � 3 for each k from now on.

Lemma 3.5 Suppose T has no 2–torsion. Then there is a homotopy equivalence

†M.5/ '†X _P5.T /_P4.T /;

where X is the homotopy cofiber of the map f 00
3
W
Wd

iD1 S3!
Wd

iD1 S2.

Proof There is the diagram of homotopy cofibrations

� //

��

P3.T /

i2
��

P3.T /

�0
3
ıi2

��Wd
iD1 S3

f 0
3
//
Wd

iD1 S2 _P3.T /

q1

��

�0
3
// Y

��Wd
iD1 S3

f 00
3

//
Wd

iD1 S2 // X

where i2 is the canonical inclusion. Since �4.P
4.pr //D 0 for odd p by Lemma 6.3,

we have †Y '†X _P4.T /. The lemma then follows from (8).

3.4 Structure of †2M

Recall, when T has no 2–torsion, by Lemma 3.5 there is a homotopy cofibration

(9) S5 f5
�!M.5/

�5
�!M; where †M.5/ '†X _P5.T /_P4.T /:

Further, by Corollary 3.3 we have the homotopy cofibration

S5
!X ! V;

where X is defined in Lemma 3.5 without restriction on T , and V is a closed smooth
manifold. We now further suppose T has no 3–torsion.

Lemma 3.6 Suppose T has no 2– or 3–torsion. Then

†2M '†2V _P6.T /_P5.T /:
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Proof By the Hilton–Milnor theorem, we may write the suspension of f5 as

Ef5 D g
.1/
5
Cg

.2/
5
Cg

.3/
5
C � W S6

!†M.5/ '†X _P5.T /_P4.T /;

for some � , where E� D 0, g
.i/
5
D qi ıEf5, and qi is the canonical projection of

†X _ P5.T / _ P4.T / onto its i th summand. Then by Lemma 6.4 g
.2/
5
D 0, and

Eg
.3/
5
D 0 by Lemma 6.6. It follows that E2f5 D Eg

.1/
5

. Furthermore, there is the
diagram of homotopy cofibrations

� //

��

P4.T /_P3.T /

j5

��

P4.T /_P3.T /

j

��

S5 f5
// M.5/

�5
//

�5

��

M

�

��

S5 // X // V

where the homotopy cofibration in the last column is defined in Corollary 3.3 by using
Lemma 3.2, and similarly the homotopy cofibration in the middle column can be also
defined by using Lemma 3.2. Then it is clear that g

.1/
5
'E.�5 ı f5/ and the lemma

follows.

4 Proof of Theorem 1.1 and Corollary 1.2

In Lemma 3.6 we established the double suspension splitting of M when b3.M /D 0

and are now left to consider the homotopy type of V after suspension. Recall that V is
a Poincaré duality complex of dimension 6, and its 5–skeleton V5DX is the homotopy
cofiber of the map f 00

3
W
Wd

iD1 S3!
Wd

iD1 S2 by Lemma 3.5. The following lemma,
as a special case of [16, Lemma 6.1], determines the suspension homotopy type of X .

Lemma 4.1 [16, Lemma 6.1] There is a homotopy equivalence

†X '
Wc

iD1†CP2
_
Wd�c

jD1.S
3
_S5/

for some 0� c � d .

We may apply the method in [16, Section 3] to decompose †2V , in the same way that
we used it to prove [16, Lemmas 6.4 and 6.6].
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Lemma 4.2 Suppose †X decomposes as in Lemma 4.1.

� If c D 0,
†2V '†W0 _

Wd�1
jD1.S

4
_S6/;

where W0 ' .S
3 _S5/[ e7.

� If c D d ,
†2V '†Wd _

Wd�1
iD1 †

2CP2;

where Wd '†CP2[ e7.

� If 1� c � d � 1,

†2V '†Wc _
Wc�1

iD1†
2CP2

_
Wd�c�1

jD1 .S4
_S6/;

where Wc ' .†CP2 _S3 _S5/[ e7.

Proof Since the proof is similar to those of [16, Lemmas 6.4 and 6.6], we only sketch it.
The interested reader can find the details in [16, Section 3]. Using Lemma 4.1, let
g W S6!†X '

Wc
iD1†CP2 _

Wd�c
jD1.S

3 _S5/ be the attaching map of the top cell
of †V . To apply the method in [16, Section 3], we only need information about the
homotopy groups �6.†CP2/Š Z=6Z by [22, Proposition 8.2(i)], �6.S

3/Š Z=12Z

and �6.S
5/ Š Z=2, which are all finite cyclic groups. Then we can represent the

attaching map Eg of the top cell of †2V by a matrix B, and apply [16, Lemma 3.1] to
transform B to a simpler matrix C . The new matrix representation C of the attaching
map, corresponding to a base change of †X through a self homotopy equivalence, will
give the desired decomposition.

Proof of Theorem 1.1 First, by Theorem 2.1 and Corollary 2.2, we have

†M '†M1 _
Wm

iD1.S
4
_S4/;

where M1 is a closed 6–manifold with homology of the form (2). In particular
b3.M1/D 0. Hence, by Lemmas 3.6 and 4.2, we have that if 1� c � d � 1 then

†2M '†Wc _
Wc�1

iD1†
2CP2

_
Wd�c�1

jD1 .S4
_S6/_P6.T /_P5.T /_

W2m
iD1 S5;

where Wc ' .†CP2 _S3 _S5/[ e7. The decompositions for the cases when c D 0

or c D d can be obtained similarly. Finally, notice that c records the number of the
nontrivial Steenrod square Sq2

W H 2.†2M IZ=2Z/ ! H 4.†2M IZ=2Z/, which is
preserved by the decomposition and the suspension operator. Since Sq2 is the cup
square on the elements of H 2.M IZ=2Z/, this completes the proof of Theorem 1.1.
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i mod 2 0 1
zK�i.S0/ Z 0

j mod 8 0 1 2 3 4 5 6 7fKO�j
.S0/ Z Z=2Z Z=2Z 0 Z 0 0 0

Table 1: zK�i.S0/ and fKO
�j
.S0/.

To prove Corollary 1.2 we need Bott periodicity, which is described by Table 1, from
which we can easily calculate the following, where only fKO2

.P5.T // D 0 requires
that T has no 2–torsion:

Lemma 4.3 Let Wc be the complex defined in Lemma 4.2 for 0� c � d .

� zK.P5.T //Š T and zK.P6.T //D 0:

� fKO2
.P5.T //D fKO2

.P6.T //D 0:

� fKO1
.†CP2/Š fKO1

.S3 _S5/Š Z˚Z=2Z.

� fKO1
.†2CP2/Š fKO1

.S4 _S6/D 0:

� fKO1
.W0/Š fKO1

.Wd /Š Z˚Z=2Z and fKO1
.Wc/Š

L
2.Z˚Z=2Z/:

Proof of Corollary 1.2 We only compute the fKO–group of M when 1� c � d �1, as
the other cases can be computed similarly. By Theorem 1.1 and Lemma 4.3, we have

fKO.M /Š fKO2
.†2M /Š fKO2

.†Wc/˚

c�1M
iD1

fKO2
.†2CP2/˚

d�c�1M
jD1

fKO2
.S4
_S6/

˚

2mM
jD1

fKO2
.S5/˚fKO2

.P6.T //˚fKO2
.P5.T //

Š

M
2

.Z˚Z=2Z/˚
M
c�1

.Z˚Z=2Z/˚
M

d�c�1

.Z˚Z=2Z/

D

M
d

.Z˚Z=2Z/:

5 The case when H 2.M I Z/ Š Z

By Lemma 3.6, we may consider the torsion free case first. In [34], Yamaguchi classified
the homotopy types of CW–complexes of the form V ' S2[ e4[ e6. Specializing to
the case when V is a manifold, we can summarize the necessary result in the following
theorem (see [5, Section 1]):
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Theorem 5.1 [34, Corollary 4.6, Lemmas 2.6 and 4.3] Let V ' S2 [k�2
e4 [b e6

be a closed smooth manifold , where k�2 with k 2 Z and b are the attaching maps
of the cells e4 and e6, respectively. Then the top attaching map b is determined by
a generator bW 2 �5.S

2[k�2
e4/ of infinite order , the second Stiefel–Whitney class

!2.V / 2H 2.V IZ=2/ of V , and an indeterminacy term b0 2 Z=2 which depends on
the following three cases:

� If k is odd , then V is Spin , the homotopy type of V is uniquely determined
by k, and b D bW .

� If k is even and V is non-Spin , then the homotopy type of V is uniquely
determined by k, and bD bW C Q�4 with Q�4 representing the generator of a Z=2

summand determined by !2.V /.

� If k is even and V is Spin , then V has precisely two homotopy types depending
on the value of b0 2 Z=2, and b D bW C b0.

Remark 5.2 In Theorem 5.1, bW , as a generator of the Z–summand of �5.S
2[k�2

e4/,
is indeed a relative Whitehead product when k ¤ 0 by [34, Lemma 2.6]. It is possible
that the suspension EbW is not nullhomotopic. The class Q�4 is derived from the
homotopy class of

S5 b
�! S2

[k�2
e4 q
�! S4;

where q is the quotient map onto the 4–cell of S2 [k�2
e4 (see [5, Section 1]). The

class b0 is from a class of �5.S
2/Š Z=2f�3

2
g by [34, Lemma 2.6] or [5, Section 1].

Also, as pointed out in Mathematical Reviews [26], the original theorem of [34] was
misstated, but is corrected here and in [5, Section 1] as well.

Thanks to Theorem 5.1 and Remark 5.2, we can describe the suspension homotopy
type of V . Recall that �6.†CP2/ Š Z=6ZfE�2g [22, Theorem 8.2(i)], where
�2 W S5 ! CP2 is the Hopf map with the cofibre CP3, and E is the suspension
of a map.

Proposition 5.3 Let V ' S2[k�2
e4[b e6 be a closed smooth manifold.

� If k is odd , then V is Spin and

†V '†CP2
[k0E�2

e7;

where k 0 D 1 or 3 is such that k 0 �˙k mod 6.
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� If k is even and V is non-Spin then

†V ' S3
_†3CP2:

� If k is even and V is Spin then

†V ' .S3
[b0�3

3
e7/_S5;

where b0 2 Z=2 is from Theorem 5.1.

Proof When k is even the decompositions follow immediately from Theorem 5.1 and
Remark 5.2. When k is odd, V is Spin and †V '†CP2[EbW

e7 by Theorem 5.1.
Also notice that †CP2[EbW

e7 '†CP2[�EbW
e7. Hence, to prove the statement

in the proposition it suffices to show that the suspension map

E W �5.S
2
[k�2

e4/! �6.†CP2/

sends the generator bW to kE�2 up to sign.

For this purpose, start with the diagram of homotopy cofibrations

(10)

S3

k
��

k�2
// S2 // S2[k�2

e4

r
��

S3 �2
//

��

S2

��

// CP2

��

P4.k/ // � // P5.k/

which defines the map r . Then there is the diagram of homotopy fibrations

(11)

S1 // Z //

Qr
��

S2[k�2
e4 fx

//

r
��

K.Z; 2/

S1 // S5 �2
// CP2 fc

// K.Z; 2/

where fc and fx represent the generators c 2H 2.CP2IZ/ and x 2H 2.S2[k�2
e4IZ/,

respectively, and Z is the homotopy fibre of fx mapping to S5 by the induced map Qr .
By analyzing the Serre spectral sequences of the homotopy fibrations in (11), it can be
shown that Z'P4.k/[e5 and Qr� WH 5.S5IZ/!H 5.ZIZ/ is of degree k. Since by
Lemma 6.3 �4.P

4.k//D 0 when k is odd, we see that Z'P4.k/_S5, and then Qr� is
of degree k on homology. Moreover, by the naturality of the Hurewicz homomorphism
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and Lemma 6.4, it is easy to see that Qr� W �5.Z/ Š Z! �5.S
5/ is of degree k. It

follows that r� W �5.S
2[k�2

e4/Š Z! �5.CP2/Š Z is of degree k by (11).

Now the naturality of suspension map induces the commutative diagram

(12)

�5.S
2[k�2

e4/
r�
//

E
��

�5.CP2/

E
��

�6.†CP2/
Er�

// �6.†CP2/

where E W �5.CP2/ŠZ! �6.†CP2/ŠZ=6Z is surjective by [22, Theorem 8.2(i)].
We have shown that r� in (12) is of degree k. On the other hand, from the last column
of (10) we have the homotopy cofibration

†CP2 Er
��!†CP2

! P6.k/:

Applying the Blakers–Massey theorem [9], we obtain the exact sequence

(13) �6.†CP2/
Er�
���! �6.†CP2/! �6.P

6.k//:

Since �6.P
6.k//D 0 by Lemma 6.3 and �6.†CP2/ŠZ=6ZfE�2g, we see that Er�

is an isomorphism from (13). Then by (12), E W �5.S
2[k�2

e4/! �6.†CP2/ sends
the generator bW to kE�2 up to sign. This proves the statement in the case when k is
odd, and we have completed the proof of the proposition.

Now we can prove Theorem 1.3 and Corollary 1.4.

Proof of Theorem 1.3 First, by Theorem 2.1, Corollary 2.2 and Lemma 3.6, we have

†2M '†2M1 _
Wm

iD1.S
5
_S5/

'†2V _P6.T /_P5.T /_
Wm

iD1.S
5
_S5/;

where M1 is a closed 6–manifold with homology of the form (2) such that b3.M1/D 0

and d D 1. Moreover, by Corollary 3.3 and the assumption on the ring structure of
H�.M IZ/, we have V ' S2[k�2

e4[b e6 for some attaching map b. Let �D b0 in
Theorem 5.1. The theorem for the two cases when k is even then follows immediately
from Proposition 5.3. For the case when k is odd, recall that there is the fibre bundle
[15, Section 1.1]

S2
!CP3 �

�! S4;
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with its first Pontryagin class p1D4s4 where s4 2H 4.S4IZ/ is a generator. Taking the
pullback of this bundle with the self-map of S4 of degree 3, we obtain the 6–manifold
V3 with bundle projection �3 onto S4 in the following diagram of S2–bundles:

S2 // V3
�3
//

��

S4

3
��

S2 // CP3 �
// S4

From this diagram it is easy to see that the first Pontryagin class of �3 is 12s4 as required,
and x2 D 3y, where by abuse of notation x, y 2H�.V3IZ/ are two generators such
that deg.x/ D 2 and deg.y/ D 4. Hence by Proposition 5.3, †V ' †CP3 when
k �˙1 mod 6 and †V '†V3 when k � 3 mod 6, and then the two decompositions
when k is odd in the theorem follow.

Proof of Corollary 1.4 As discussed before Corollary 1.4, the number k mod 2 and
the spin condition of M are determined by the Steenrod square Sq2. Since the attaching
maps of the top cells of †CP3 and †V3 are E�2 of order 6 and 3E�2 of order 2,
respectively, by Proposition 5.3, after localization at 3 we can consider the Steenrod
power P1 WH 3.†M IZ=3Z/!H 7.†M IZ=3Z/. Then since†V3'.3/ S3_S5_S7,
P1 acts trivially on its cohomology. In contrast, †CP3 '.3/ S3 [˛1

e7 _ S5 with
˛1 an element detected by P1 [13, Section 1.5.5]. Hence, †CP3 and †V3 can be
distinguished by P1. Moreover, the stable cube element �3

n 2 �nC3.S
n/ (for n� 2) is

detected by the secondary operation T [13, Exercise 4.2.5]. Therefore the two cases of
S4[��3

4
e8 depending on �2Z can be distinguished by T . From the above discussions

on cohomology operations, we can prove the corollary easily by the decompositions in
Theorem 1.3.

6 Some computations on homotopy groups of odd primary
Moore spaces

In this section, we work out the homotopy groups of Moore spaces used in Section 3.
Consider the Moore space P2nC1.pr / with n � 1, p � 3 and r � 1. We have the
homotopy fibration

(14) F2nC1
fpr
g ! P2nC1.pr /

q
�! S2nC1;

where q is the pinch map of the bottom cell. Cohen, Moore and Neisendorfer proved
the following the famous decomposition theorem:
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Theorem 6.1 [10; 24] Let p be an odd prime. Then there is a p–local homotopy
equivalence

�F2nC1
fpr
g '.p/ S2n�1

�

1Y
kD1

S2pkn�1
fprC1

g ��†
W
˛ Pn˛ .pr /;

where S ifpr g is the homotopy fibre of the degree map pr WS i!S i , and
W
˛ Pn˛ .pr /

is an infinite bouquet of mod pr Moore spaces , with only finitely many Moore spaces
in each dimension and the least value of n˛ being 4n� 1.

We also need the following classical result:

Lemma 6.2 [25, Proposition 6.2.2] Let p be an odd prime. Then there is a homotopy
equivalence

Pm.pr /^Pn.pr /' PmCn.pr /_PmCn�1.pr /:

Lemma 6.3 [27; 28] Let p be an odd prime. Then there are isomorphisms

�3.P
3.pr //D Z=pr Z and �n.P

n.pr //D 0

for n� 4.

Proof The cases when n D 3 and 4 were already proved in [28, Lemma 2.1] and
[27, Lemma 3.3], respectively, while the remaining cases follow immediately from the
Freudenthal suspension theorem.

Lemma 6.4 Let p be an odd prime. Then there is an isomorphism

�nC1.P
n.pr //D 0

for n� 3.

Proof The isomorphism �4.P
3.pr // D 0 was shown in [27, Lemma 3.3]. Let us

consider �5.P
4.pr //. By the classical EHP-sequence [33, Chapter XII, Theorem 2.2],

there is an exact sequence

0D �4.P
3.pr //! �5.P

4.pr //
H
�! �5.P

4.pr /^P3.pr //
P
�! �3.P

3.pr //

! �4.P
4.pr //D 0:

By Lemma 6.2,

�5.P
4.pr /^P3.pr //Š �5.P

6.pr /_P7.pr //Š Z=pr Z:
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Hence, by Lemma 6.3 and the above exact sequence, P is an isomorphism, implying
that �5.P

4.pr //D 0. The remaining cases follow immediately from the Freudenthal
suspension theorem, and this completes the proof of the lemma.

In the remaining two lemmas, we exclude the case when p D 3.

Lemma 6.5 Let p � 5. Then there is an isomorphism

�nC2.P
n.pr //D 0

for n� 6.

Proof By the Freudenthal suspension theorem, it suffices to show �9.P
7.pr //D 0.

To do this, let us compute �9.F
7fpr g/ first. By Theorem 6.1,

�9.F
7
fpr
g/Š �8.�F7

fpr
g/Š �8.S

5/.p/:

Since �8.S
5/Š Z=24Z and p � 5, we have �9.F

7fpr g/D 0. Now from the exact
sequence of homotopy groups of the homotopy fibration (14) (for nD 3)

0D �9.F
7
fpr
g/! �9.P

7.pr //! �9.S
7/.p/ D 0;

we see that �9.P
7.pr //D 0.

Lemma 6.6 Let p � 5. The suspension morphism

E W �6.P
4.pr //! �7.P

5.pr //Š Z=pr Z

is trivial.

Proof On the one hand there is the EHP-sequence of P4.pr /

�6.P
4.pr //

E
�! �7.P

5.pr //
H
�! �7.P

5.pr /^P4.pr //! �5.P
4.pr //D 0;

where �5.P
4.pr //D 0 by Lemma 6.4, and

�7.P
5.pr /^P4.pr //Š �7.P

8.pr /_P9.pr //Š Z=pr Z

by Lemma 6.2. It follows that

(15) �7.P
5.pr //= Im.E/Š Z=pr Z:

On the other hand there is the EHP-sequence of P5.pr /

�9.P
6.P r /^P5.pr //

P
�! �7.P

5.pr //! �8.P
6.pr //D 0;
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where �8.P
6.pr //D 0 by Lemma 6.5, and

�9.P
6.P r /^P5.pr //Š �9.P

10.P r /_P11.pr //Š Z=pr Z

by Lemma 6.2. It follows that

(16) �7.P
5.pr //Š Z=pr Z=Ker.P /:

By (15) and (16), we see that �7.P
5.pr //Š Z=pr Z, and Im.E/D Ker.P /D 0.
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