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We extend the pseudoholomorphic curve methods from Floer theory to infinite-
dimensional phase spaces and use our results to prove the existence of a forced
time-periodic solution to a general Hamiltonian PDE with regularizing nonlinearity.
In particular, when the nonlinearity is sufficiently regularizing, bounded and time-
periodic, we prove an infinite-dimensional version of Gromov–Floer compactness by
using ideas from the theory of Diophantine approximations to overcome the small
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Hilbert space, we prove a cup-length estimate for the number of periodic solutions.
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Introduction

It is well known that problems in classical mechanics can be formalized and solved in
the language of Hamiltonian systems on finite-dimensional symplectic manifolds, or
phase spaces. This led to a rather novel mathematical branch called symplectic topology.
Most of the groundbreaking results in symplectic topology rely on the existence of
so-called pseudoholomorphic curves, that is, maps from a Riemann surface into the
finite-dimensional symplectic manifold equipped with a compatible almost-complex
structure, satisfying a Cauchy–Riemann-type equation; see McDuff and Salamon [23].
They were introduced by M Gromov in his seminal paper [17]. In order to prove
the existence of time-periodic solutions of Hamiltonian systems on finite-dimensional
phase spaces, A Floer has developed the tool of Floer homology, which is based on the
study of moduli spaces of so-called Floer curves, which satisfy a Cauchy–Riemann-
type equation involving a zeroth-order Hamiltonian term; see [13]. The key technical
result on which his theory relies is a compactness result for the moduli space of Floer
curves called Gromov–Floer compactness which, among other things, crucially uses
compactness of the target manifold; see also Floer and Hofer [14].

Generalizing from point particles to continuous fields, and hence from classical mechan-
ics to classical field theory, one arrives at Hamiltonian systems which are defined on
infinite-dimensional phase spaces, such as symplectic Hilbert spaces. More generally, it
is known that a number of important partial differential equations, such as the (nonlinear)
Schrödinger equation, the (nonlinear) wave equation, the Korteweg-de Vries equation
and many more, can be viewed as infinite-dimensional Hamiltonian systems. Such
partial differential equations are also called Hamiltonian partial differential equations;
see Kuksin [22]. We stress that it is a general feature of Hamiltonian PDEs that the
Hamiltonian is typically only densely defined on the symplectic Hilbert space. In these
cases, the best thing we can expect is an sc–Hamiltonian system in the sense of Hofer,
Wysocki and Zehnder [19].

We show how the pseudoholomorphic curve methods of Hamiltonian Floer theory can
be generalized to the infinite-dimensional setup of Hamiltonian PDEs with so-called
regularizing nonlinearities. As a first step towards generalizing Floer theory from finite
dimensions to infinite dimensions, we prove a version of Gromov–Floer compactness
and use our result to establish the existence of time-periodic solutions. There has been a
lot of great work on finding solutions; see Rabinowitz [25], or Berti [1] for an overview
of the current state of the art and Section 9 for more references. Our aim is to show
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Time-periodic solutions of Hamiltonian PDEs using pseudoholomorphic curves 463

how pseudoholomorphic methods can be applied to this problem. An obvious problem
comes from the fact that the Hamiltonian is only densely defined on the symplectic
Hilbert space. As it turns out, one of the main new arising challenges is a small divisor
problem: while for generic time and space periods the underlying linear Hamiltonian
PDE only has the trivial periodic solution and the return map only has eigenvalues
different from one, there is always a subsequence of eigenvalues converging to one.

Apart from showing that the bubbling-off argument still works in order to uniformly
bound derivatives, as our main result we show how regularizing the nonlinearity of a
Hamiltonian PDE needs to be in order to guarantee that Gromov–Floer compactness
still holds. It turns out that this is intimately related with the aforementioned small
divisor problem, and ultimately with the theory of diophantine approximations. We
define the concept of (weakly) admissible nonlinearities in order to classify the types
of nonlinearities for which Gromov–Floer compactness can still be established, and we
further study the regularity of the Floer curves and the time-periodic solution in both
the flow and time coordinates as well as the extra spatial coordinate.

We want to emphasize that this paper is mainly addressed to researchers with a back-
ground in Hamiltonian Floer theory who are interested in the generalization of these
techniques to the infinite-dimensional case of Hamiltonian PDEs. While we cite some
well-established results from finite-dimensional Floer theory without proof, this paper
is written in such a way that we do not assume any prior knowledge about Hamiltonian
partial differential equations, small divisor problems and Diophantine approximations.
In particular, we make no claim that the results about periodic solutions could not
be obtained using different methods. Our ultimate goal is to construct a full Floer
homology theory for Hamiltonian PDEs with regularizing nonlinearities. As a first result
which needs pseudoholomorphic curve methods, we prove a cup-length estimate for a
Hamiltonian system on a phase space which is a product of a closed finite-dimensional
symplectic manifold with linear symplectic Hilbert space.

This paper is organized as follows: In Section 1 we give a brief introduction to nonlinear
Hamiltonian PDEs and establish notation. There and in Section 2 we give a number
of examples. In Section 2 we furthermore discuss the part of the Hamiltonian which
contains the differential operator, as well as illustrate the so-called small divisor problem
which occurs when passing to infinite dimensions. In the same section and in Section 3,
we give a number of admissibility conditions and define the class of Hamiltonians
for which our results hold, and we give a counterexample to show that some of these
conditions cannot be relaxed.
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Section 4 contains a summary of the main results. In Section 5 we recall well-established
results from finite-dimensional Floer theory in order to establish the existence of Floer
curves in finite-dimensional linear symplectic spaces. In Section 6 we generalize the
bubbling-off analysis for finite-dimensional pseudoholomorphic curves and show that
the derivatives of the sequence of Floer curves are bounded; this includes a standard
elliptic regularity argument to include higher derivatives. Using a series of estimates,
Section 7 shows how the higher-dimensional components of Floer curves can be
controlled in the presence of the small divisor problem. In Section 8 we complete
the proof of the main theorem and subsequently generalize this to a wider class of
Hamiltonians in Section 9. Section 10 provides a cup-length estimate for the number
of periodic solutions when we consider Hamiltonian systems on the product of a finite-
dimensional closed symplectic manifold with linear symplectic Hilbert space. Finally,
the appendix introduces sc–Hamiltonian flows.

1 Nonlinear Hamiltonian PDEs

Let us start by describing the framework in which we will study our PDEs. Let .H; !/
be a separable symplectic Hilbert space, meaning a separable Hilbert space with an
antisymmetric bilinear map! for which i! WH!H� is an isomorphism. Following [21],
we fix a complete Darboux basis fe˙n gn2Z in the sense that !.eCi ; e

�
j /D ıij . We define

an antisymmetric linear operator J by Je˙n WD�e
�
n so that we can write the symplectic

form as !Dh � ; J � i for some equivalent inner product on H, which we fix from now on.
Introducing the complex basis zn WD 2�

1
2 .eCn C ie

�
n / for n 2 Z, the Hilbert space H

can be identified with a subspace of the complexified Hilbert space H˝C spanned
by zn, n 2 Z, where J D i and ! D idz ^ d Nz. For a smooth Hamiltonian function
H W H! R, the symplectic gradient XH is defined by dH. � / D !.XH ; � / so that
XH D JrH . We then write the Hamiltonian equation as

(1) PuDXH .u/D JrH.u/:

In this paper, we consider general time-dependent Hamiltonian PDEs of the form

PuD JAuCJrFt .u/

with underlying Hamiltonian

(2) Ht .u/D
1
2
hAu; uiCFt .u/DWHA.u/CFt .u/

for some time-dependent and T –periodic nonlinearity Ft defined in Definition 3.3, and
quadratic term HA (also called the free term) defined by a linear, possibly unbounded,
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self-adjoint (differential) operator A W Dom.A/ � H ! H where the domain of A
is dense in H. We will always assume the nonlinearity to be smooth in the time
variable. We restrict to the case where the Hilbert space is a space of functions in one
variable, which depends on the specific Hamiltonian PDE. See [1; 6; 21] for examples
of Hamiltonian PDEs.

Before we give some examples of Hamiltonian PDEs with Hamiltonian of the form (2),
let us first address the problem that the free term HA is actually only densely defined
when the differential operator A is of positive order. However, the free flow �At D e

tJA

is a linear unitary map and hence extends to a linear unitary map on the whole space H.
Indeed, we obtain an sc–Hamiltonian flow in the sense of the appendix. Even though
the existence of the free flow can be established, we have to be careful about the kind of
nonlinearities we allow for the flow of the full Hamiltonian to still be guaranteed: even
when Ft is smooth, there need not exist a flow of Ft due to compactness problems. The
existence of the flow is a very delicate problem and a large amount of great work has been
done in this direction. We avoid this problem by working with nonlinearities for which
finite-dimensional approximations exist and are immediate. In particular, below we
consider two important examples of Hamiltonian PDEs with regularizing nonlinearities
(as in [8; 9]). Such nonlinearities appear in nonlocal (or quasilocal) classical field
theories, where fields have nonlocal interactions, and actually lead to a Hamiltonian
partial integrodifferential equation. In contrast to local models, such nonlocal models,
which in many cases model reality even better, are almost never integrable. The
models we consider below can have arbitrary nonlocality, or quasilocality [29]. For the
relevance of nonlocal Hamiltonian PDEs see [10; 18; 32].

Example 1.1 (nonlinear wave equation (NLW)) We write the nonlinear wave equation
with regularizing nonlinearity as

(3) R' �'xx � @1gt .' � ; x/� � ct D 0; ' D '.t; x/D '.t; xCX/;

for x 2 S1 DR=XZ, with  2 C h.S1/ for h > 0 and gtCT D gt being bounded and
smooth in both components and having bounded derivatives in the first component,
and ct D ctCT 2 C h.S1/ denoting some time-dependent exterior potential.1A specific
example of this would be a nonlocal sine-Gordon equation with exterior potential:

R' �'xx � at sin.' � /� � ct D 0:

1Some authors write the NLW with an extra termCmu with m� 0 on the left-hand side. We choose to
set mD 0.
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This appears, for example, in a nonlocal Frenkel–Kontorova model with time- and
space-periodic coefficient at and exterior potential ct .

The nonlinear wave equation is a Hamiltonian PDE on the Hilbert space

HD L2.S1;R/�L2.S1;R/:

It can be written as a Hamiltonian PDE as�
P'

P�

�
D

�
�

'xxC @1gt .' � ; x/� C ct

�
D JrL2Ht .'; �/

with J.'; �/D .��; '/ and with Hamiltonian

Ht .'; �/D
1

2

Z X

0

.�'2x ��
2
C 2gt .' � ; x/C 2ct'/ dx:

However, this Hilbert space on which the NLW is modeled does not admit a complete
Darboux basis which is compatible with the differential operator A. We will study a
different structure in Example 2.2.

Example 1.2 (nonlinear Schrödinger equation (NLS)) Consider the nonlinear Schrö-
dinger equation with regularizing nonlinearity

i PuCuxxC @1ft .ju� j
2; x/.u� /� D 0; uD u.t; x/D u.t; xCX/;

for x 2 S1DR=XZ, with  2C h.S1/ for h > 0 and with ftCT D ft smooth in both
components. We also require that the map Qft W .s; x/ 7! ft .jsj

2; x/ is bounded and
has bounded derivatives in the first component. The Hilbert space is L2.S1;C/. The
Hamiltonian is given by

Ht .u/D
1

2

Z X

0

.�juxj
2
Cft .ju� j

2; x// dx:

This Hamiltonian PDE descends to an infinite-dimensional Hamiltonian system on
projective Hilbert space.

See [11] for more details on this last example. In contrast to [11], we will not focus
on specific examples but rather consider nonlinear Hamiltonian PDEs with general
nonlinearities on linear space. Note that even though the nonlinearity is not local, it
can be quasilocal in the sense that the smoothing kernel  can have arbitrarily small
support.
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2 Diophantineness condition

Let us start with the free term of the Hamiltonian. Since A is self-adjoint, we can
diagonalize it. Here we have to make an assumption:

Definition 2.1 The differential operator A of the free term HA is called admissible
when it is pure of degree d � 1 and there exists a complete Darboux basis .e˙n / of
eigenvectors of the operator A in the sense that Ae˙n D �ne

˙
n with real eigenvalues of

the form �n D an
d for n 2 Z and a 2R>0.

From now on we assume that the operator A is admissible. Note that the condition that
eCn and e�n have the same eigenvalue and form a Darboux basis is equal to the statement
that the commutator ŒJ; A� equals zero. Our two main examples, see below, satisfy this
condition and have eigenvalues of the form �nD .2�=X/

dnd with X > 0 denoting the
space periodicity. Despite the fact that our results apply to general symplectic Hilbert
spaces H, we will assume in what follows that aD .2�=X/d . So, let us choose such a
complete Darboux basis consisting of eigenvectors of A, so that Ae˙n D �ne

˙
n . Then

the operator JA is diagonal in the complex basis spanned by zn D 2�
1
2 .eCn C ie

�
n /

with eigenvalues i�n for n 2 Z. Following [21], we note that the flow maps of
the free Hamiltonian �At D e

tJA define a family of linear symplectomorphisms on
H which restrict to linear symplectomorphisms on the finite-dimensional subspaces
C2kC1 D SpanCfzng

k
nD�k

. The eigenvalues of the time-T flow are eian
dT . Let us

now consider the examples of the NLW and NLS from before; see [21].

Example 2.2 (NLW) The nonlinear wave equation in one space dimension was
modeled in Example 1.1 on H D L2.S1;R/ � L2.S1;R/. However, we want the
Hilbert basis to be a complete Darboux basis of eigenvectors of the operator A. This
forces us to choose H D W

1
2
;2.S1;R/ �W

1
2
;2.S1;R/ with S1 D R=XZ. In this

setting, we study (3) with the same nonlinearity. Now we write the operator A as
AD Diag.B;B/ with B D

p
�@2x and we write the nonlinear wave equation as�

P'

P�

�
D

�
�B�

B' �B�1@1gt .' � /� �B
�1ct

�
:

The inner product on W
1
2
;2.S1;R/ is

hf; gi D
1

2�

Z X

0

Bf .x/g.x/ dx;
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and the Hamiltonian on H is given by

Ht .'; �/ WD
1

2

�
A

�
'

�

�
;

�
'

�

��
C

1

2�

Z X

0

gt .' � ; x/C ct' dx;

where we extend the inner product componentwise to W
1
2
;2.S1;R/�W

1
2
;2.S1;R/.

The complete Darboux basis is then given by

eCn D
1p
jnj
.�n.x/; 0/; e�n D

1p
jnj
.0; �n.x//;

where

�n.x/D

(p
2 cos

�
2�nx
X

�
if n� 0;

p
2 sin

�
2�nx
X

�
if n > 0;

and the eigenvalues of A are

Ae˙n D
2�n

X
e˙n

so �n D and with aD 2�=X and d D 1. The Hilbert space can be identified with the
subspace SpanCfzngn2Z of the complexified Hilbert space H˝C, with

zn D
1p
2jnj

.�n.x/; i�n.x//;

and the flow maps are
�AT zn D e

iT 2�n=Xzn:

Example 2.3 (NLS) The Hilbert space for this PDE is L2.S1;C/ with inner product
which, when viewed as a real vector space with inner product

hf; gi D Re 1
X

Z X

0

f Ng dx;

has complete Darboux basis given by

eCn D en; e�n D�ien;

where fengn2Z is the complete system of eigenfunctions of �@2x given by

en.x/D e
i2�nx=X :

These have eigenvalues �n D .2�n=X/2. We can identify this real Hilbert space
.H; J D i/ with the complex Hilbert space spanned by zn W x 7!

p
2ei2�nx=X with

n 2 Z. The time-T flow of the free part of the Hamiltonian is

�AT zn D e
iT .2�n=X/2zn:

Algebraic & Geometric Topology, Volume 23 (2023)



Time-periodic solutions of Hamiltonian PDEs using pseudoholomorphic curves 469

Writing the eigenvalues as suggested above, we get �n D and where a D .2�=X/2

and d D 2.

Here we already catch a glimpse of what will be a problem we need to address, which
does not appear in the finite-dimensional case: in order to apply the machinery of
Floer theory in our infinite-dimensional situation, we would like to ensure that the
system is nondegenerate, ie that the time-T flow map has no eigenvalue equal to
one. This in turn means that aT=2� must not be rational. Compare this condition
for Example 2.2 with [25], which proved existence of forced time-periodic solutions
when the number aT=.2�/D T=X is rational. For general eigenvalues �n D and we
need aT=2� D T=Xd � .2�/d�1 to be irrational, where we recall that aD .2�/d=Xd

implicitly depends on the space periodX . However, even if these numbers are irrational,
we are faced with the problem that a subsequence of the eigenvalues of the flow will
always converge to one. Let us illustrate this problem somewhat. To prove the existence
of a solution to the nonlinear PDE, we will have to assume that the time-T flow of the
free Hamiltonian �AT has only one fixed point, or, alternatively, that the only solution
to the free Hamiltonian equation

(4) PuD JAu; u.0/D u.T /

is u� 0. When aT=2� is irrational, this forces the only solution to (4) to be u� 0; if
u0 is a fixed point of the time-T free flow, then expanding u0 as

P
Ou0.n/zn shows that

�AT u0 D �
A
T

X
n

Ou0.n/zn D
X
n

eiaT n
d

Ou0.n/zn:

So as long as aT=2� is irrational, for any n there are no eigenvalues equal to one. In
the limit, however, this is not guaranteed; there could be a subsequence of .eiT �n/n
converging to one. This is an instance of the small divisor problem. To solve this
problem, we need to control the way in which the eigenvalues (or a subsequence of
them) converge to one. The essence of our approach is that we should not be able to
approximate the irrational number aT=2� too well by rational ones. More formally:

Definition 2.4 We call the pair of time and space periods .T;X/ 2 R>0 � R>0
admissible when the number aT=2� D .2�/d�1T=Xd�1 is Diophantine.

In particular, the Diophantine number aT=2� has finite irrationality measure. Let us
explain this statement: Every real number can be approximated by a continued fraction
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and this gives a measure of how well a real number can be approximated by rationals.
For all � 2R there exists p=q 2Q such thatˇ̌̌̌

� �
p

q

ˇ̌̌̌
<
1

q2
:

The irrationality measure is a measure of how good this approximation can be. It is
defined as the infimum of the set of real numbers � for which

c

q�
<

ˇ̌̌̌
� �

p

q

ˇ̌̌̌
<
1

q2

holds for all p=q 2Q with some fixed c > 0, and is usually denoted by r . In particular,
it is at least two. It turns out that the set of numbers of irrationality measure two
(and hence of Diophantine numbers) has full Lebesgue measure [4, Theorem E.3].
For � , it is shown in [27] that r < 8. This is used, for example, in [11] to prove a
statement similar our main theorem for the NLS on projective Hilbert space. In what
follows, by generic time period T we will mean T for which aT=2� has irrationality
measure r D 2.

Before turning to the nonlinearity, let us first give an example which shows that the
Diophantineness condition (and subsequent regularity conditions for the nonlinearity)
are really necessary.

Example 2.5 (counterexample) Consider the linear wave equation with exterior
potential

(5) R' D 'xxC ct ; ctCT D ct :

Let us write ' and c as Fourier series

' D
X
p;n2Z

O'.p; n/e2�ipt=T e2�inx=X ;

c D
X
p;n2Z

Oc.p; n/e2�ipt=T e2�inx=X ;

with O'.p; n/D O'.�p;�n/ and Oc.p; n/D Oc.�p;�n/ such that the functions are real-
valued. Termwise, (5) becomes

O'.p; n/
��
2�n

X

�2
�

�
2�p

T

�2�
e2�ipt=T e2�inx=X D Oc.p; n/e2�ipt=T e2�inx=X ;

or

O'.p; n/D
Oc.p; n/ T 2

.2�n/2�
T
X
�
p
n

��
T
X
C
p
n

� :
Algebraic & Geometric Topology, Volume 23 (2023)
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When T=X is not Diophantine, there is a subsequence .p0; n0/� .p; n/p;n2Z for which
the denominator in the expression for O'.p0; n0/ goes to zero exponentially fast. If we
define the exterior potential ct by

Oc.p; n/ WD

� .2�n/2
T 2

�
T
X
�
p
n

��
T
X
C
p
n

�
if .p; n/D .p0; n0/;

0 otherwise;

then ct is smooth, but O'.p0; n0/ is constantly one, so there is no solution. Writing the
exterior potential in the Hamiltonian for the NLW in Example 2.2 as h.ct ; 0/; � i, we see
that ct should have some minimal regularity, depending on the irrationality measure of
T=X , to ensure the existence of a solution.

3 A–admissible and weakly A–admissible nonlinearities

In order to deal with the asymptotic degeneracy caused by the small divisor problem,
our key idea is as follows: in order for Gromov–Floer compactness to hold, we want to
assume that the nonlinearity can be approximated by finite-dimensional nonlinearities
in the sense of Section 5 better than the eigenvalues of the time-T flow of the free
Hamiltonian approach one. This puts restrictions on the regularity of the nonlinearity.
To explain this, consider expanding u 2H as uD

P
n Ou.n/zn and letting uk denote

the restriction to C2kC1 D SpanCfzng
k
nD�k

�H given by

uk WD

kX
nD�k

Ou.n/zn:

The finite-dimensional restriction F kt of the nonlinearity is then

F kt .u/ WD Ft .u
k/;

and we write XF;kt for the symplectic gradient of this finite-dimensional restriction.
Then the flow �

F;k
t of the restricted Hamiltonian F kt restricts to the finite-dimensional

subspace C2kC1 �H.

To formalize the idea that we need some minimal regularity for the nonlinearity to make
our methods work, we start by introducing Hilbert scales in the sense of [22]. Working
in the complex Hilbert space spanned by zn for n 2Z, where we can identify J with i ,
our separable symplectic Hilbert space H is isometrically isomorphic to `2.Z;C/ via
the complete basis fzngn2Z by

H 3 uD
X
n

Ou.n/zn 7! . Ou.n//n2Z;

Algebraic & Geometric Topology, Volume 23 (2023)
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where the sum is understood to be over n 2 Z. We will write H0 D H and define
H1 to be the (dense) subspace of H0 consisting of those uD

P
n Ou.n/zn for whichP

n Ou.n/nzn is in H0. We define `2;1 to be the image of H1 under the isomorphism
between H0 and `2 described above. More generally, we define

Hh WD

�
u2H0

ˇ̌̌X
n

Ou.n/nhzn2H0

�
; `2;h WDf. Ou.n//n2Z2`

2
j . Ou.n/nh/n2Z2`

2
g

for h� 0. Similarly, we define the sequence space

`2;�h WD f. Ou.n//n2Z j .u.n/n
�h/ 2 `2g

for h> 0 as the space of possibly diverging sequences and, using the Darboux basis, we
identify this with the subspace H�h of the space of tempered distributions. The totality
.Hh/h2R is also known as a Hilbert scale. We let H1 D

T
Hh and H�1 D

S
Hh.

Note that Hh is dense and embeds compactly in Hi when h > i .

Definition 3.1 A map Ft WH0 DH! R is called h–regularizing if it extends to a
smooth map

Ft WH�h!R;

and it is called1–regularizing when it is h–regularizing for all h 2N.

Note that when Ft is h–regularizing the differential defines a map

dFt WH�h! .H�h/
�
ŠHh;

and so, in particular, for the gradient (with respect to the inner product on H) we have

rFt WH0 �H�h!Hh:

Note that this latter property can also be stated in terms of Kuksin’s Hilbert scale theory
by saying that rFt is a scale morphism of the Hilbert scale .Hk/k of order �h.

Lemma 3.2 Assume the nonlinearity is h–regularizing with h > 0 such that the ex-
tended map Ft WH�h!R has bounded C ˛–norms for all ˛2N. Then rF k converges
to rF uniformly with all derivatives when viewed as maps into H. Furthermore , when
expanding rFt into a Fourier series

rFt .u/D
X
n2Z

2rFt .u/.n/zn

we have 2rFt .u/.n/D o.jnj�h/.
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Proof For the first statement note first that the boundedness of the C 1–norm of
Ft WH�h!R implies that the C 0–norm of rFt WH.�H�h/!Hh is bounded, which,
together with the compact embedding Hh �H, yields that rF k.u/!rF.u/ with
respect to the H–norm uniformly in u2H as k!1. Further, note that the boundedness
of the C ˛–norm of Ft WH�h!R yields a uniform bound for the higher derivatives
r˛Ft .u/ 2H˝˛

h
for all u 2H, which again implies that r˛F kt .u/!r

˛Ft .u/ with
respect to the H˝˛–norm uniformly in u 2 H as k !1. Because Ft satisfies the
regularity assumption rFt W H! Hh, the coefficients in the expansion of rFt .u/
satisfy jnjh2rFt .u/.n/D o.1/, and hence 2rFt .u/.n/D o.jnj�h/.

In order to be able to use the results from Floer and symplectic homology for open
sets in finite dimensions as in [14; 24; 31], we need a sequence of finite-dimensional
Hamiltonians which converges in the proper sense to our infinite-dimensional one as
above. To ensure that such an approximating sequence exists and that our methods
work, we impose the following restrictions on the nonlinearity:

Definition 3.3 A nonlinearity Ft WH!R is called A–admissible if A is admissible
and Ft WH!R satisfies:

(i) Ft is T –periodic with .T;X/ admissible.

(ii) The nonlinearity is h–regularizing with h > dr . Here r is the irrationality
measure of aT=2� and d � 1 the order of the differential operator A.

(iii) The extended map Ft WH�h!R has bounded C ˛–norms for all ˛.

(iv) Ft has bounded support, in the sense that for every k 2N there exists Rk > 0
such that Ft .u/D 0 for all u 2H with jukj>Rk .

Ft is called weakly A–admissible when there exists t–dependent ct D ctCT 2Hh such
that u 7! Ft .u/� hct ; ui satisfies (i), (ii) and (iii).

We stress that the notion of (weakly)A–admissibility depends on the operatorA because
the irrationality measure of the number aT=2� associated to the eigenvalues of A,
as well as the order of the PDE, dictate what regularity we need for the nonlinearity.
Observe that the Diophantineness condition is generic in the sense that Diophantine
numbers have full Lebesgue measure. Note, though, that the Diophantineness condition
should rather be thought of as a condition on the time period, rather than on the
eigenvalues of A; we start with a Hamiltonian PDE and this condition restricts what
time periods the solutions can have.
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In order to explain the relation between A–admissible and weakly A–admissible non-
linearities, we prove:

Proposition 3.4 Let zFt be a weakly A–admissible nonlinearity. Then

Ft .u/ WD �.juj
2
�h/
zFt .u/

with h as in Definition 3.3 condition (ii ), and where � a smooth cutoff function with
supp.�/� Œ0; R� for some R > 0, is A–admissible.

Proof The first condition is immediate. In order to see that Ft satisfies conditions (ii)
and (iii), note that for every ct 2Hh the map u 7! �.juj2

�h
/hct ; ui satisfies conditions

(ii) and (iii) as hct ; ui � jct jhjuj�h. To establish condition (iv), let Rk WD khR
1
2 so

that when the finite-dimensional restriction uk of u satisfies jukj0 >Rk , then

juj2
�h � ju

k
j
2
�h D

kX
nD0

j Ou.˙n/j2n�2h > k�2h
kX
nD0

j Ou.˙n/j2 >R

so that Ft .u/D 0.

By the above proposition it hence suffices to find examples of weakly A–admissible
nonlinearities.

Example 3.5 The nonlinearities from Examples 2.2 and 1.2 are weakly A-admissible
as long as .X; T / is admissible and h > dr . When u; ' 2 H�h and  2 C h, then
u �  ; ' �  2 C 0 for both examples. Together with the smoothness of Qft and gt
it follows that the maps x 7! @˛1

Qft ..u � /.x/; x/ and x 7! @˛1gt ..' � /.x/; x/ are
continuous and hence (square-) integrable over R=XZ for all ˛ 2N. Altogether this is
sufficient to prove that Ft is smooth as a map from H�h to R in both examples. Since
Qft and gt have uniformly bounded derivatives, the maps x 7! @˛1

Qft ..u� /.x/; x/ and
x 7! @˛1gt ..' � /.x/; x/ are uniformly bounded with respect to u and '. But this im-
plies that r˛Ft is uniformly bounded for ˛D 1; 2; : : :; for ˛D 0 in Example 2.2 r˛Ft
is only uniformly bounded after subtracting a linear term as allowed in Definition 3.3.

In Main Theorem 4.1, we prove the existence of a Floer curve together with the existence
of a periodic solution only for a Hamiltonian with A–admissible nonlinearity. In order
to employ the maximum principle for proving compactness of the relevant moduli
space of pseudoholomorphic curves, we do have to make the technical assumption
Definition 3.3(iv) concerning the support of the nonlinearity. In Section 9, however,
we prove that the existence of a forced time-periodic solution is still guaranteed when
the nonlinearity is weakly A–admissible instead of A–admissible.
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4 Main theorem

Before stating the main theorem, let us rewrite the setting a little. When the Hamiltonian
Ht is a sum of two terms HA and Ft , then the flows of Ht and of HA and Ft are
related via

�Ht D �HACFt D �HA#Gt D �A ı�Gt ;

where Gt WD Ft ı �At and where .HA # f /t WD HA C ft ı �A�t for any function ft .
We will work with �At and Gt rather than with Ht D HA C Ft because HA (and
henceHt ) is only densely defined, whereas the flow �At is a symplectomorphism which
is defined on the whole of H. Also Gt turns out to have sufficiently nice properties;
see Lemma 6.1 where we show that even though �At is only differentiable on dense
subspaces, Gt is at least four times continuously differentiable in t .

Going back, we see that T –periodic solutions of (1) are in one-to-one correspondence
with u satisfying

(6) PuDXGt .u/; u.t CT /D �A�T .u.t//:

We call such solutions �AT –periodic. We will prove existence of �AT –periodic solutions,
which by the above correspondence implies existence of a true T –periodic solution.
From now on we will use Gt as in (6) instead of Ft and say that Gt is A–admissible
when Ft is. Note that the norms of Ft and Gt coincide for fixed t because the free
flow is unitary. Recall that when Gt � 0, the only solution to the PDE is u� 0.

Let ' 2 C1.R/ be a cutoff function specified by

'.s/D 0 for s � �1; '.s/D 1 for s � 0; 0� '0.s/� 2:

Main Theorem 4.1 For a Hamiltonian PDE with A–admissible nonlinearity Gt there
exists a .bh=dc�1/–times differentiable map Qu W R � R ! Hh�d.r�1/� 1

2
� H for

h > dr , called a Floer curve , which satisfies the Floer equation and �AT –periodicity
condition

(7) N@ QuC'.s/rGt . Qu/D 0; Qu.s; t CT /D �A�T Qu.s; t/;

where N@D @sC i@t . The Floer curve Qu connects u0 � 0 with a (weak ) solution u1.t/
of the nonlinear Hamiltonian PDE (6) and hence of (1), in the sense that there exist
sequences s˙n 2R with s˙n !˙1 as n!1 such that

lim
n!1

Qu.s�n ; t /D 0; lim
n!1

Qu.sCn ; t /D u1.t/
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in the C bh=dc�1–sense. In particular , when the nonlinearity is 1–regularizing , then
both the Floer curve and the periodic orbit are smooth in all variables s, t and x.

Note that we call u1 a weak solution, since h�d.r�1/� 1
2
>d � 1

2
might not be large

enough to guarantee that u1 is also a solution in the classical sense. Here and after
we continue to identify H with a subspace of the complexified Hilbert space spanned
by zn for n 2 Z, and write i instead of J . We emphasize that we are using the setup
of Floer homology for general symplectomorphisms from [7] because even though
the Hamiltonian HA is only densely defined, its flow �At is an everywhere defined
symplectomorphism. To use this setup, we use the fact that .�A

�T /�i D i .

To go back from Gt to Ft and obtain a true T –periodic Floer curve for the Hamiltonian
Ht D HA C Ft , we define QQu.s; t/ WD �At Qu.s; t/ for .s; t/ 2 R �R. It immediately
follows that (7) is equivalent to

(8) N@ QQuCA QQuC'.s/rFt . QQu/D 0; QQu.s; t CT /D QQu.s; t/:

Note that the flow �At preserves Hilbert scales so that a solution to (7) indeed gives us a
solution to (8) of the same regularity. Note as well that the asymptotics lims!˙1 QQu.s; t/
of the solution QQu to (8) are T –periodic solutions to (1).

A result similar to our main theorem is proven in [11] for the nonlinear Schrödinger
equation on projective Hilbert space (see also Example 1.2). Because of the extra
topology on projective Hilbert space, the author can prove the existence of infinitely
many solutions rather than just one. We stress that our paper is self-contained, as in
contrast to [11] we study the case of general Hamiltonian PDEs.

Suppose Ft is any A–admissible nonlinearity with finite-dimensional restrictions
F kt WC

2kC1!R given by F kt .u/ WDFt .u
k/ with uk denoting the projection of u 2H

onto the finite-dimensional subspace C2kC1. Analogously, for Gt WDFt ı�At let Gkt be
its finite-dimensional restriction given byGkt WDF

k
t ı�

A
t with symplectic gradientXG;kt .

In order to prove the main theorem for the infinite-dimensional nonlinearity Ft , we show
that, after passing to a subsequence, finite-dimensional Floer curves Quk for the restricted
nonlinearity F kt converge as k!1 to a Floer curve on the infinite-dimensional Hilbert
space, as in the main theorem. This can be done because even though the time-T free
flow map is asymptotically degenerate, our assumptions on the nonlinearity assure that
this is no problem.

Here Quk satisfies the Floer equation

N@ QukC'k.s/rGt . Qu
k/D 0; Quk.s; t CT /D �A�T Qu

k.s; t/;
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with 'k.s/ for k � 1 meeting the requirements

'k.s/D 0 for s � �1 and s � 2kC 1; 'k.s/D 1 for s 2 Œ0; 2k�;

0� '0k.s/� 2 for s < 0; �2� '0k.s/� 0 for s > 0;

such that 'k.s/ ! '.s/ as k ! 1 for every s 2 R. Furthermore, we impose the
asymptotic condition lims!˙1 Quk.s; t/D 0.

This said, the main ingredient for the proof of Main Theorem 4.1 is the following
infinite-dimensional generalization of the Gromov–Floer compactness theorem; see
Theorem 8.1.

Theorem 4.2 There is a subsequence of the sequence . Quk/k of Floer curves

Quk WR�R!C2kC1

which C bh=dc�1loc –converges to a solution Qu WR�R!H of the Floer equation

.@sC i@t / QuC'.s/rGt . Qu/D 0; Qu.s; t CT /D �A�T Qu.s; t/

as in Main Theorem 4.1.

After establishing the existence of a Floer curve, we can directly deduce the existence
of a periodic orbit:

Theorem 4.3 Using finiteness of energy, the limit Floer curve Qu WR�R!H satisfies
the following asymptotic conditions: there exists sequences s˙n 2R with s˙n !˙1
as n!1 such that

lim
n!1

Qu.s�n ; t /D u0 D 0; lim
n!1

Qu.sCn ; t /D u1.t/;

in the C bh=dc�1–sense. Here u0 D 0 is the trivial and only fixed point of the free flow
and u1 is a �AT –periodic orbit of Gt .

We finish by discussing the regularity of the solution:

Theorem 4.4 The Floer curve Qu, and in particular the T –periodic solution

u.t/D �At u1.t/

we obtain from the �AT –periodic solution u1.t/, is of regularity h� d.r � 1/� 1
2

for
any h > dr , ie Qu WR�R!Hh�d.r�1/� 1

2
�H.
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In particular, when h D 1 we obtain a smooth solution to the Floer equation and
associated Hamiltonian PDE.

These results will play an important role in the construction of a symplectic cohomology
theory for Hamiltonian PDEs with regularizing nonlinearities, which is an ongoing
project of the authors. In an upcoming paper we will prove a Lagrangian version of the
results above.

5 Finite-dimensional case

As mentioned above, the approach that we take is to start with the case of finite-
dimensional nonlinearities, that is, we consider nonlinearities which are given by the
composition of any smooth T –periodic time-dependent map Ft W C2kC1 ! R with
bounded support with the orthogonal projection from H onto the finite-dimensional
subspace

C2kC1
D SpanCfzng

k
nD�k �H:

Note that any nonlinearity of this form is automaticallyA–admissible for any admissible
A and any admissible periods .T;X/. Since the linear symplectomorphism �At restricts
to any C2kC1, it turns out that, in order to prove Main Theorem 4.1 for these finite-
dimensional nonlinearities, it suffices to replace the infinite-dimensional symplectic
Hilbert space H by the finite-dimensional symplectic space C2kC1 and employ well-
established results of Floer theory in finite dimensions. To prove Main Theorem 4.1
for general infinite-dimensional A–admissible nonlinearities, we will prove in the
upcoming sections a generalized Gromov–Floer compactness result for the Floer curves
introduced in this section. More precisely, we will consider the case when the dimension
k is allowed to vary, in particular, allowed to approach infinity.

Let Ft W C2kC1! R be any smooth T –periodic time-dependent map with bounded
support in the ball BRk .0/ of radius Rk > 0 and define again Gt WD Ft ı�At . Consider
now the �–dependent Floer equation in C2kC1

(9) N@ QuC'� .s/rGt . Qu/D 0; Qu.s; t CT /D �A�T Qu.s; t/

using the family of cutoff functions '� WR! Œ0; 1� for � � 0, with '0.s/D 0 and '� .s/
for � � 1 meeting the requirements

'� .s/D 0 for s � �1 and s � 2� C 1; '� .s/D 1 for s 2 Œ0; 2��;

0� '0� .s/� 2 for s < 0; �2� '0� .s/� 0 for s > 0:

Algebraic & Geometric Topology, Volume 23 (2023)



Time-periodic solutions of Hamiltonian PDEs using pseudoholomorphic curves 479

such as

0 2�

'.s/

'� .s/

Our results stem from a careful analysis of the moduli space of curves satisfying
this Floer equation (9). We define the moduli space Mk for the finite-dimensional
problem by

f Qu� WD . Qu; �/ 2 C1.R�R;C2kC1/�R�0 j Qu satisfies (9) and lim
s!˙1

Qu.s; t/D 0g:

After restricting to R� Œ0; T �, pictorially such Floer curves look like

�
u0 D 0

where the gray area depicts the part where '� .s/D 1. In order to show that we can
compactify Mk , we crucially use the bounded support condition in Definition 3.3 and:

Proposition 5.1 (maximum principle) If .†; j / is a Riemann surface and the map
Qu W .†; j /! .C2kC1; i/ is holomorphic , then

†! Œ0;1/ given by z 7! j Qu.z/j2

has no local maximum.

This implies that Floer curves Qu cannot escape the ball BRk .0/. If they could, they
would be holomorphic outside the ball, where Gt D 0, and so by the above they could
not have a maximum, which is impossible. So even though the target space of the Floer
curve is not compact, the image is contained in a compact set.

Proposition 5.2 For every � 2N there is a Floer curve Qu� in Mk .
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Proof For the proof we use well-known results from Floer theory [26], and from Floer
theory for general symplectomorphisms [7]. Since all these results are well-established
in the literature, we freely use established terminology without giving definitions. Note
that since HA is smooth on finite-dimensional subspaces of H, one can either use a
solution Qu to (9) or QQu solving

N@ QQuCA QQuC'� .s/rFt . QQu/D 0; QQu.s; t CT /D QQu.s; t/:

To start, note that the energy E. Qu/Dk@s Quk2L2 of the Floer curves is uniformly bounded
by 4T kF kC0 (see [23, Chapter 8]) which is finite by Definition 3.3 condition (iii).
Assuming transversality for the nonlinear Cauchy–Riemann operator for the moment,
the moduli space of such pairs . Qu; �/ is a 1–dimensional manifold. Since for � D 0 the
unique Floer curve . Qu; 0/ is the constant curve Qu� 0, the moduli space is not empty.
Indeed, Floer curves . Qu; �/ exist for all � > 0 by Gromov–Floer compactness, as we
can exclude bubbling-off of holomorphic spheres as well as breaking-off of cylinders
for finite � . Note that existence of holomorphic spheres is excluded due to the fact that
the symplectic form is exact. Note that the assumption that the Hamiltonian PDE with
Ft D 0 only has the trivial periodic solution u0 D 0 is essential here to conclude that
breaking of Floer curves cannot happen for finite � > 0.

It remains to discuss the problem with transversality of the perturbed Cauchy–Riemann
operator N@C'� .s/rGkt . Since we cannot expect transversality to hold, we first need to
approximate i by a family of time-dependent almost-complex structures J �t satisfying
.�A
�T /�J

�
t D J

�
tCT , in the sense that J �t ! J 0t D i as �!1. We assume that the

perturbed almost-complex structure J �t agrees with i outside the ball BRk .0/ so that
the maximum principle still holds. The existence of Floer curves as claimed above
then holds for all � ¤ 0, and by applying Gromov–Floer compactness as �! 0 this
implies the existence of Floer curves for � D 0.

6 Bubbling-off analysis

After settling the case of finite-dimensional nonlinearities in the previous section, we
start by recalling the detailed strategy for the case of general infinite-dimensional
A–admissible nonlinearities. Let Ft be any A–admissible nonlinearity with finite-
dimensional restrictions F kt WC

2kC1!R given by F kt .u/ WDFt .u
k/, with uk denoting

the projection of u 2H onto the finite-dimensional subspace C2kC1. In analogy, for
Gt WD Ft ı �

A
t let Gkt be its finite-dimensional restriction given by Gkt WD F

k
t ı �

A
t
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with symplectic gradient XG;kt . In order to prove the main theorem for the infinite-
dimensional nonlinearity Ft , we choose for every k 2 N a Floer curve Quk for the
restricted nonlinearity F kt such that . Quk; k/ 2Mk . We then show that, after passing to
a subsequence, these finite-dimensional Floer curves converge as k!1 to a Floer
curve on the infinite-dimensional Hilbert space, as in the main theorem. This can be
done because even though the time-T free flow map is asymptotically degenerate, our
assumptions on the nonlinearity assure that this is no problem. Note that Quk satisfies a
�–dependent Floer equation with � D k and 'k.s/! '.s/ as k!1 for every s 2R.

As a first step we would like to bound the Floer curves Quk , for all k, in the Cm–norm,
where mD bh=dc. We will do this by showing the first derivatives are bounded and
then using an elliptic bootstrapping argument. We use ideas similar to those in [11].
We stress, however, that contrary to [11] for our problem we work on linear space and
with general Hamiltonians with minimal regularity.

We start by proving the analogue of Lemma 3.2 on the convergence of Gk WR�H!R

given by Gk.t; u/D Gkt .u/ to G W R�H! R given by G.t; u/D Gt .u/. Note that
we explicitly want to include into our discussion not only the derivatives with respect
to u 2H, but also the derivatives with respect to the time t 2R.

Lemma 6.1 rGk W R�H!H converges to rG W R�H!H uniformly with all
u–derivatives , and with all t–derivatives up to order mDbh=dc (which is at least two).
Furthermore , the Fourier coefficients of rG in the expansion

rG.u/.t/D
X
p;n

2rG.u/.p; n/ei2�pt=T zn

with respect to n 2 Z and p 2 Z� andT=.2�/ satisfy

2rG.u/.p; n/jnjhjpjm! 0 as jnj; jpj !1:

Proof The statement about the u–derivatives directly follows from Lemma 3.2, as
the u–derivatives of Gk are obtained from the u–derivatives of F k by composition
with the linear unitary map �At . In order to compute the t–derivatives of G one does
not only have to take the t–derivatives of F into account, but also the t–derivatives
of �A. While F is assumed to be smooth in t 2R, the t–derivatives of �A are given
by @˛t �

A D .JA/˛ ��A WH0!H�˛d and hence have decreasing regularity. But since
F is assumed to be h–regularizing and hence Ft extends to a smooth map H�h!R

with h > dr , it follows that derivatives up to order m D bh=dc � 2 are no problem.
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Moreover, since, in analogy with Lemma 3.2, we already know that rF k converges to
rF uniformly with all derivatives when viewed as maps from H�h into Hh �H, it
follows that @˛t G

k converges to @˛t G for k!1 as long as ˛ �m. When we expand

rG.u/.t/D
X
p;n

2rG.u/.p; n/ei2�pt=T zn

the statement as jpj !1 follows. The statement for the n–variable follows from the
fact that rG.u/ is in Hh.

Lemma 6.2 The first derivatives of the Floer curves Quk are bounded uniformly in k,
ie supkkT Qu

kkC0 <1.

Proof Showing that the first derivatives are bounded is done by assuming that

(10) sup
k

kT QukkC0 D1

and showing that this assumption leads to the formation of a sphere. We will not argue,
as in the finite-dimensional case, that because ! is exact no holomorphic spheres can
exist, this would require Gromov–Floer compactness in infinite dimensions. Rather,
assuming the first derivative is unbounded, we show that a sphere is formed as an image
of the disc where the length of the image of the boundary of the disc converges to zero.
We then bound the derivative of the Floer curve by the symplectic area of these discs,
which by exactness of ! is given by an integral over the boundary, thereby deriving a
contradiction. This implies boundedness in the C 1–norm. Although the proof is very
similar to the proof of the well-established finite-dimensional result, we include it with
all details as our infinite-dimensional result does not follow from the finite-dimensional
bubbling-off result.

Henceforth assume that the first derivative is unbounded in the sense that for

Ck WD max
zD.s;t/2R�R

fj@s Qu
k.z/jg DW j@s Qu

k.zk/j

the sequence .Ck/k2I converges to 1 for some index-set I . We can assume that
the Floer curve Quk attains this maximum at some point zk because of the asymptotic
conditions. Now we reparametrize as

Qvk W BpCk .0/!C2kC1 given by z 7! Quk
�
z

Ck
C zk

�
;

so that j@s Qvk.0/j D 1 and j@s Qvk.z/j � 1 for jzj �
p
Ck . Then we define a family of

maps kr for 0� r �
p
Ck:

kr W S
1
!C2kC1 given by � 7! Qvk.rei� /:
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Let L W C1.S1;C2kC1/ ! R be the map which assigns to a loop its length with
respect to the metric !. � ; i � / restricted to C2kC1. Let A W C1.BR.0/;C2kC1/!R

be the area functional A.v/ WD
R
v�!, where again we restrict the symplectic form !

to C2kC1. Now we show that for increasing dimension k, the length of the image of
the boundary circle decreases. More precisely, we show that for all k, there exists an
rk with 1

2

p
Ck � rk �

p
Ck such that L.rk /! 0. By the exactness of ! the area

of Qvkrk , which is the restriction of Qvk to the disk of radius rk , goes to zero.

As a first step, we show that A is bounded by the energy of the solution Quk as k!1,
which will show that the area is bounded.

A. Qvk/D

Z
Bp

Ck
.0/

Qvk�! D

Z
Bp

Ck
.0/

!.@s Qv
k; @t Qv

k/ ds ^ dt

�E. Quk/C

Z
B
1=
p
Ck
.zk/

'k.s/dG
k
t .@s Qu

k/ ds ^ dt

�E. Quk/C

Z
B
1=
p
Ck
.zk/

kGkkC1 ds ^ dt:

Since
p
Ck !1 by our assumption (10), the second term vanishes. Now we write

Qvk.z/D Qvk.rei� / and, assuming k is sufficiently large, computeZ pCk
p
Ck=2

rL.kr /
2dr D

Z pCk
p
Ck=2

r

�Z 2�

0

j@� Qv
k.rei� /j d�

�2
dr

� 2�

Z pCk
p
Ck=2

Z 2�

0

r j@� Qv
k
j
2 d� dr

� 10�T kF kC0

using Cauchy–Schwarz, the previous inequality and the fact that E. Quk/ < 5T kF kC0 ;
see [23]. By setting Lk0 to be the minimum of L.kr / for

p
Ck=2� r �

p
Ck , we get

10�T kF kC0 �

Z pCk
p
Ck=2

r.Lk0/
2dr D 1

8
3.Lk0/

2Ck;

so

Lk0 �

s
80�T kF kC0

3Ck
;

which tends to zero as k!1. Since ! D d�, for any disc v W BR.0/! C2kC1 we
have

A.v/D

Z
BR.0/

v�! D

Z
@BR.0/

v��;
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and so the area A. Qvkrk /! 0 as Lk0 ! 0. Now there are two ways to prove the desired
result. First, it follows from the a priori estimate

j@s Qv
k.0/j2 < c

A. Qvkrk /

r2
k

in [23, Chapter 4] by observing that the Floer curve can be realized as an actual �H;kT –
periodic J –holomorphic curve when we set J kt WD .�

G;k
�t /�i . Note that contrary to

[23, Chapter 4] we don’t work with a single almost-complex structure J , but with a
sequence J kt which converges to Jt D .�G�t /�i . Since we have j@s Qvk.0/j D 1, the
contradiction then follows by letting rk!1.

Alternatively, consider the following. We first observe that

N@ Qvk D�C�1k 'k.s/rG
k
t . Qv

k/! 0 as k!1;

and so
�@s Qv

k
D�.@ ı @s/C

�1
k 'k.s/rG

k
t . Qv

k/! 0 as k!1:

Writing v WD @s Qvk and using the divergence theorem, we get

@�

�
1

�

Z
@B�.0/

v

�
D
1

�

Z
B�.0/

�v! 0 as k!1

uniformly in � for �� � for some � > 0. Using the fact that .2��/�1
R
@B�.0/

v! v.0/

as �! 0 as well as the above convergence to zero as k!1, we get

v.0/�
1

��2

Z
B�.0/

v.z/ dz! 0 as k!1:

Now
1

��2

ˇ̌̌̌Z
B�.0/

v.z/ dz

ˇ̌̌̌
�

1

�
1
2 �

�Z
B�.0/

jv.z/j2dz

�1
2

�
1

�
1
2 �
kvkL2 ;

so that indeed

j@s Qv
k.0/j2 < c

A. Qvk� /

�2

for k sufficiently large and some positive constant c which is independent of the
dimension. Since A. Qvk� /! 0 as k !1 we obtain a contradiction to the equation
j@s Qv

k.0/j D 1.

We can now apply the aforementioned bootstrapping argument, to show boundedness
of the Floer curves in the Cm–norm. Recall that mD bh=dc � 2.
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Proposition 6.3 The Floer curves Quk are Cm–bounded uniformly in k; that is ,

sup
k

k QukkCm <1:

Proof For the proof we choose the bounded open subset

B D .sC�s; s��s/� .0; 1/�R2

for some fixed �s and all norms are understood after restricting the maps Quk to
this bounded open subset. By the result above, and the discussion following the
maximum principle, we know that k QukkC1 is bounded. We will use the fact that our
sequence of finite-dimensional nonlinearities approximates the original one and an
elliptic bootstrapping argument to show boundedness in all C ˛–norms up to ˛ Dm.
By the Sobolev embedding theorem (see [2]), the inequality

k QukkCˇ � c0k Qu
k
kW ˛;p

holds for p > 2, with ˛; ˇ 2N and for all ˇ � ˛� 2=p, and a constant c0 > 0 which
is independent of the dimension of the codomain. It follows that it suffices to show
boundedness of Quk in the W ˛;p–norms up to ˛ DmC 1.

We first observe that the boundedness in C 1 implies boundedness in W 1;p; note that
this is the point where it is crucial that we first restrict Quk to a bounded open subset.
Assume now that k QukkW ˛;p is bounded, for some ˛ > 1, uniformly in k. We have that
Quk satisfies

N@ Quk D�'k.s/rG
k
t . Qu

k/DW �k

and �k is bounded in the W ˛;p–norm if and only if the W ˛;p–norm of rGkt . Qu
k/ is

bounded with
rGk. Quk/.s; t/DrGkt . Qu

k.s; t//:

On the other hand, viewing rGk. Quk/ W B ! C2kC1 as a composition of the maps
Luk WB!B�C2kC1 given by .s; t/ 7! .s; t; Quk.s; t// and rGk WB�C2kC1!C2kC1

given by .s; t; u/ 7! rGkt .u/, by [23, Appendix B] it holds true that

krGk. Quk/kW ˛;p � c1krG
k
kC˛ .k Lu

k
k
˛�1
C0
C 1/.k LukkW ˛;p C 1/

with a constant c1 > 0 which is independent of the dimension of the target space.
Note that the C ˛–norm of rGk also contains t–derivatives of t 7! rGkt . Since by
Lemma 6.1 we have, for all ˛ �m, that krGkkC˛ !krGkC˛ as k!1, it follows
that krGkkC˛ is bounded for ˛ �m. Together with the induction hypothesis, we get
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boundedness of rGkt . Qu
k/ in the W ˛;p–norm as long as ˛ �m. Now, local regularity

of the Cauchy–Riemann operator N@ together with boundedness of � in the W ˛;p–norm
implies

k QukkW ˛C1;p � c2.kN@ Qu
k
kW ˛;p Ck QukkLp /

is finite for ˛ � m. Note that, again, c2 > 0 is independent of the dimension of the
codomain. Finally we remark that all constants depend on the bounded open subset B
but not on s, so that we obtain a bound which is uniform in s.

7 Small divisor problem

We have chosen the setting so that the nonlinearity can be approximated by finite-
dimensional ones better than the eigenvalues of the time-T flow of the free Hamiltonian
approach one. In this section, we will make this statement precise by giving bounds on
the norms of the tail of Quk , and invoke a result from number theory to overcome the
small divisor problem which arises as we increase the dimension k.

Let us write a finite-dimensional solution of the Floer equation (9) as

Quk D . Quk;`; Qu
k;`
?
/ WR�R!C2`C1

˚C2k�2`
DC2kC1

�H;

and call the tail Quk;`
?

of Quk the normal component. The statement (Proposition 7.2)
needed for the proof in Section 8 of the main theorem, is then that we have

(11) sup
k�`

k Qu
k;`
?
kCm�1 ! 0 as `!1

for m D bh=dc. We prove this by observing that the Fourier coefficients of the
Floer curve, which depend on the s–coordinate, satisfy an ODE involving the Fourier
coefficients of the Hamiltonian vector field of the nonlinearity and which satisfy a
decay property as s!˙1. The following elementary lemma then allows us to show
that the coefficients themselves decay to zero with some rate which we compute.

Lemma 7.1 Let w D wRC iwI WR!C be a continuously differentiable solution to
the ODE with asymptotic condition

(12) w0.s/D �w.s/Cf .s/; w.s/! 0 as s!˙1;

where � 2R. If f D fRC ifI WR!C satisfies kf kC0 <1, then

kwkC0 �
p
2
kf kC0

j�j
:
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�
s0

�c
�

�
s1

�
s2

wR.s/

�

Figure 1

Proof The proof is by contradiction. Assume jw.s0/j>
p
2kf kC0=j�j for some s02R

and, without loss of generality, that jwR.s0/j � jwI .s0/j so that jwR.s0/j> kf kC0=j�j
by the Pythagorean theorem. Assume that wR.s0/ > 0 and � > 0 (different signs lead
to obvious changes in the proof). Since w.s/! 0 as s!C1, by the intermediate
value theorem we know that there is some s1 > s0 such that wR.s1/ D kf kC0=�
and wR.s/ > kf kC0=� for all s 2 .s0; s1/. By the mean value theorem, there exists
some s2 2 .s0; s1/ such that w0R.s2/ < 0. Since jfR.s/j � jf .s/j � kf kC0 , we have
w0R.s2/ < 0 but �wR.s2/C fR.s2/ > 0, which contradicts the assumption that w
satisfies (12); see Figure 1.

In order to prove (11), we essentially expand the Floer curve into a Fourier series and
show that the coefficients, viewed as functions of the variable s, satisfy (12), and use
this bound to show that the Cm�1–norms of Quk;`

?
go to zero uniformly in k.

Proposition 7.2 The Cm�1–norm of the normal component Quk;`
?

converges to zero as
`!1; that is ,

sup
k�`

k Qu
k;`
?
kCm�1 ! 0 as `!1:

Proof Consider the space L2
�AT
.R;H/ of �AT –periodic maps

L2
�AT
.R;H/ WD fu 2 L2.R;H/ j u.t CT /D �A�T u.t/g;

and, acting on it, the densely defined operator �i@t . Using the fact that the maps zn are
a complete eigenbasis of �AT with eigenvalues eiaT n

d

, we observe that the space L2
�AT

has a complete basis of eigenfunctions up;n of �i@t with eigenvalues �p;n given by

up;n.t/D e
i..2�=T /p�and /tzn; �p;n D

2�

T
p� and ;

Algebraic & Geometric Topology, Volume 23 (2023)



488 Oliver Fabert and Niek Lamoree

for p; n 2 Z. Even though �p;n ¤ 0 for all p; n 2 Z, there exist sequences for which
.�p0;n0/! 0, or

inf
p;n2Z

ˇ̌̌
2�

T
p� and

ˇ̌̌
D 0:

We overcome this small divisor problem by using the assumption that the number
aT=.2�/ is Diophantine with irrationality measure r <1: for fixed n 2N, we have
the bound

(13) inf
p2Z

ˇ̌̌̌
2�

T
p� and

ˇ̌̌̌
D
2�nd

T
inf
p2Z

ˇ̌̌̌
aT

2�
�
p

nd

ˇ̌̌̌
�

c

nd.r�1/

for some c > 0.

We now view a Floer curve Quk as a map

Quk WR! L2
�AT
.R;C2kC1/� L2

�AT
.R;H/

satisfying
@s Qu

k
D�i@t Qu

k
�'k.s/rG

k
t . Qu

k/

and the asymptotic conditions Quk.s; � /! 0 as s!˙1. Expanding the s–evaluation
as a Fourier series with respect to n 2 Z and p 2 Z� andT=.2�/,

Quk.s; t/D Quk.s/.t/D

kX
nD�k

X
p

1
Quk.s/.p; n/ei2�pt=T zn

with 1
Quk.s/ WZ�Z!C. We thus obtain s–dependent sequences wkp;n.s/D

1
Quk.s/.p; n/

which satisfy

.wkp;n/
0.s/D �p;nw

k
p;n.s/Cf

k
p;n.s/; wkp;n.s/! 0 as s!˙1;

where f kp;n.s/ WD�
5
rGkt . Qu

k/.s/.p; n/2C are the Fourier coefficients of rGk. Quk/.s/.
Here we view rGk. Quk/ as a map from R to L2

�AT
.R;H/ by

rGk. Quk/.s/.t/ WD 'k.s/rG
k
t . Qu

k.s; t//

so that

rGk. Quk/.s/.t/D 'k.s/

kX
nD�k

X
p

5
rGk. Quk/.s/.p; n/ei2�pt=T zn:

SincerGk. Quk/.s/ ismDbh=dc–times continuously differentiable with respect to time
and has uniformly bounded derivatives, and by the decay property of the h–regularizing
nonlinearity, we know that

(14) kf kp;nkC0 jpj
m
jnjhDk

3
rGk. Quk/. � /.p; n/kC0 jpj

m
jnjh! 0 as jpj; jnj!1;
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where the C 0–norm is with respect to s 2R. Note that here and below it is implicitly
assumed that the limit is uniform with respect to k 2 Z, and since the argument Quk

of rGk also depends on t , we additionally have to use the result in Proposition 6.3
that Quk is bh=dc–times continuously differentiable and its derivatives are uniformly
bounded in s and t . Combining this with (13) and Lemma 7.1, we obtain

(15) kwkp;nkC0 jpj
m
jnjh�d.r�1/ D k

c
Quk. � /.p; n/kC0 jpj

m
jnjh�d.r�1/! 0

as jpj; jnj !1, where again the C 0–norm is with respect to s 2R.

We now bound the time derivative which, together with the bound on the gradient of
the nonlinearity, also leads to a bound of the s–derivative which concludes the proof.
From

j@m�1t Qu
k;`
?
.s; t/j2 �

kX
jnjD`C1

�X
p

j
1
Quk.s/.p; n/jjpjm�1

�2
and the above, it follows that the tail Quk;`

?
for k � ` satisfies

k@m�1t Qu
k;`
?
kC0 D o.`

�hCd.r�1/C 1
2 /:

Let r`
?
Gkt .u/ denote the component of the gradient of Gkt .u/ which is normal to

the finite-dimensional subspace C2`C1 �H. Since kr`
?
Gkt . Qu

k/kCm�1 goes to zero
uniformly in k � ` as `!1 by (14), and since Quk satisfies the Floer equation, we
obtain that the s–derivatives also go to zero uniformly in k, so that k Quk;`

?
kCm�1 goes

to zero uniformly in k as long as h > dr > d.r � 1/C 1
2

.

Since almost all numbers have r D 2, generically this bound comes down to h > 2d .
In the case of the Schrödinger equation this means we need h > 4, and for the wave
equation h > 2.

8 Completing the proof

We now complete the proof of Main Theorem 4.1. This consists of three parts. First,
we prove convergence of the sequence (or a subsequence) of Floer curves . Quk/k to
a solution Qu of the Floer equation on the full Hilbert space. This is not immediate,
since H, or even the support of the nonlinearity in H, is not compact, so we cannot use
Gromov–Floer compactness. We will prove this convergence in the Cm�1loc –topology,
where mD bh=dc � 2.
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Second, we establish the asymptotic properties to conclude that this Floer curve connects
the single (trivial) solution of the free Hamiltonian equation, to a (nontrivial) solution
of the full Hamiltonian equation.

Finally, we discuss the regularity of the solution. The regularity of the solution we
find will, of course, depend on the regularity of the nonlinearity. We stress here
that the existence of the finite-dimensional Floer curves Quk for the finite-dimensional
nonlinearities Gkt , which make up the sequence . Quk/k , is proven in Section 5.

Theorem 8.1 There exists a subsequence of the sequence . Quk/k of Floer curves
Quk WR�R!C2kC1 which Cm�1loc –converges to a solution Qu WR�R!H of the Floer
equation

.@sC i@t / QuC'.s/rGt . Qu/D 0

satisfying Qu.s; t CT /D �A
�T Qu.s; t/.

Proof By Proposition 7.2 we know that the Cm�1–norms of Quk;`
?

converge to zero as k
increases. To show that the limit of . Quk/k exists, we start with the observation that there
is a subsequence of . Quk;`/k of maps from R�R to C2`C1 which Cm�1loc –converges to a
smooth map Qu` WR�R!C2`C1 as k!1 for all `. We stress that the maps Quk;` take
values in C2`C1, so compactness holds by analogous reasons as for finite-dimensional
nonlinearities. In particular, by the bounded support condition in Definition 3.3, the
maximum principle ensures that the image is in a ball of radius R` �C2`C1. Because
we have locally bounded W mC1;p–norms and hence, by elliptic bootstrapping and
passing to a diagonal subsequence, local W m;p–convergence, by Sobolev embedding
we also have local convergence in the Cm�1–norm. Passing to a diagonal subsequence
yet again, we obtain Cm�1loc –convergence for all ` simultaneously.

After restricting to any bounded open subset, we now show that the sequence of maps
. Quk/k thus obtained is Cauchy in the Cm�1–norm, which is sufficient to prove Cm�1loc –
convergence. Let � > 0. Then there is an ` such that supk�`k Qu

k;`
?
kCm�1 <

1
3
�. For

this `, the sequence . Quk;`/k converges to Qu`, so there is k0 � ` such that for k; k0 � k0
we have k Quk;`� Quk

0;`kCm�1 <
1
3
�. Hence

k Quk � Quk
0

kCm�1 � k Qu
k;`
?
kCm�1 Ck Qu

k;`
� Quk

0;`
kCm�1 Ck Qu

k0;`
?
kCm�1 < �:

Let us now establish the asymptotic behavior of the Floer curve:
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Theorem 8.2 Using finiteness of energy, the limit Floer curve Qu WR�R!H satisfies
the following asymptotic conditions: there exist sequences s˙n 2R with s˙n !˙1 as
n!1 such that

lim
n!1

Qu.s�n ; t /D u0.t/ and lim
n!1

Qu.sCn ; t /D u1.t/

in the Cm�1–sense. Here u0 D 0 is the trivial and only fixed point of the free flow and
u1 is a �AT –periodic orbit of Gt .

Proof Because the energy is bounded in terms of the C 0–norm ofG (see Theorem 8.1),
we get

E. Qu/D

Z 1
�1

Z T

0

j@t Qu.s; t/�'.s/X
G
t . Qu.s; t//j

2 dt ds � 4T kF kC0 :

Choose sequences s˙ 2R with  � sC � 2 and  � �s� � 2 such that



Z T

0

j@t Qu.s
˙
 ; t /�'.s

˙
 /X

G
t . Qu.s

˙
 ; t //j

2 dt

is bounded by Z 2



Z T

0

j@t Qu.s; t/�'.s/X
G
t . Qu.s; t//j

2 dt ds

or Z �
�2

Z T

0

j@t Qu.s; t/�'.s/X
G
t . Qu.s; t//j

2 dt ds;

respectively. This impliesZ T

0

j@t Qu.s
˙
 ; t /�'.s

˙
 /X

G
t . Qu.s

˙
 ; t //j

2 dt �
4T kF kC0


! 0 as  !1:

Now we write QuD . Qu`; Qu`
?
/ W R�R! C2`C1˚H=C2`C1 for ` 2N. Since, by the

maximum principle, Qu` takes values in BR`.0/�C2`C1, after passing to a subsequence
we can assume that Qu`.s˙ ; � / C

m�1–converges as !1. After passing to a diagonal
subsequence we can assume Qu`.s˙ ; � / C

m�1–converges for all ` simultaneously. Since
k Qu`
?
kCm�1 ! 0 by Proposition 7.2 and Theorem 8.1, we have that Qu.s˙ ; � / C

m�1–
converges, that is

lim
!1

Qu.s� ; t /D u0.t/ and lim
!1

Qu.sC ; t /D u1.t/

which both satisfy the Hamiltonian equation (6). Because '.s� /D 0, the solution u0.t/
is the trivial solution. Because '.sC /D 1 we have indeed found a solution u1 to (6).
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Pictorially, the limit looks like the breaking

�
u0

Qu

u1

Since there is no other fixed point of the free flow than the trivial solution, we indeed
find a nontrivial fixed point of the full flow, provided that rFt .0/¤ 0.

We finish by discussing the regularity of the solution:

Theorem 8.3 The Floer curve Qu, and in particular the T –periodic solution

u.t/D �At u1.t/

we obtain from the �AT –periodic solution u1.t/ found in Theorem 8.2, is of regularity
h� d.r � 1/� 1

2
> 0 for every h > dr , ie Qu WR�R!Hh�d.r�1/� 1

2
�H.

Proof Let Ft be A–admissible. From (15) in the proof of Proposition 7.2 we know
that the coefficients in the Fourier expansion of the Floer curve Qu satisfy

jbQu.s/.p; n/jjnjh�d.r�1/jpjm! 0 as jnj; jpj !1

with mD bh=dc � 2 uniformly for all s, which implies that

j Qu.s; t/j2
h�d.r�1/� 1

2

�

X
n

�
jnjh�d.r�1/�

1
2

X
p

jbQu.s/.p; n/j
�2
;

where we sum over n 2 Z and p 2 Z � andT=.2�/, is uniformly bounded for all
.s; t/ 2R�R. In particular, this holds as we let s go to infinity, so we obtain the same
regularity for the nontrivial solution u1. Subsequently, the solution u.t/D �At u1.t/
also has the same regularity since �At preserves Hilbert scales.

We again stress that for generic time period T , the irrationality measure is r D 2, so
h > 2d . The regularity of the solution depends on h but also on the specific Hilbert
space on which the Hamiltonian PDE is modeled. Let us apply our results to our two
examples:
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Proposition 8.4 Viewing it as a PDE in the variables s, t and x with asymptotic
conditions , the Floer equation

N@ QQu.s; t; x/CA QQu.s; t; x/C'.s/rFt . QQu.s; t; x//D 0

with A–admissible nonlinearities admits a strong .T;X/–periodic solution

QQu.s; t CT; x/D QQu.s; t; x/D QQu.s; t; xCX/ for .s; t; x/ 2R�R�R;

for generic T when h> 21
2

for the nonlinear wave equation and h> 5 for the nonlinear
Schrödinger equation.

Proof We define QQu.s; t/ WD �At Qu.s; t/ for .s; t/ 2R�R and subsequently view QQu as a
function of s, t and x. Recall that the Hilbert space for the nonlinear wave equation
is HDW

1
2
;2
�W

1
2
;2. In Hilbert scale notation we have .H/k DW

1
2
Ck;2
�W

1
2
Ck;2.

By the Sobolev embedding theorem we have W
1
2
Ck;2

� C k . Since A is of order 1,
we need our solution QQu to be an element of W

1
2
C1;2
�W

1
2
C1;2 in order for it to be

in C 1 �C 1. For generic time period T the irrationality measure of aT=2� is r D 2,
so for the solution to land in H1 D W

1
2
C1;2
�W

1
2
C1;2
� C 1 �C 1 and be a strong

solution to the Floer equation, we need h > 21
2

. Then QQu D . QQ'; QQ�/ W R�R�R! R

satisfies�
@s QQ' � @t QQ�

@s QQ� C @t QQ'

�
D �.j QQuj�h/'.s/

�
B QQ' �B�1@1gt . QQ' � /� �B

�1ct
B QQ�

�
;

with cutoff function � W Œ0; R�! Œ0; 1� to make the nonlinearity A–admissible.

The Hilbert space for the nonlinear Schrödinger equation isL2. We have .L2/kDW k;2.
In order to get a strong solution QQu to the Floer equation with nonlinear Schrödinger
type Hamiltonian, we need QQu to be of class C 2 in the spatial variable. For generic time
period T the irrationality measure of aT=2� is r D 2 and so when the A–admissible
nonlinearity Ft is h–regularizing with h>5, we have QQu.s; t/2H2C 1

2
DW 2C 1

2
;2
�C 2

so that we get a strong solution of

@s QQuC i@t QQuD�@
2
x
QQuC�.j QQuj�h/'.s/@1f .j QQu� j

2; x; t/. QQu� /� :

Since the Floer curve Qu is of class Cm�1 in the s– and t–variables, all s– and t–
derivatives of QQu.s; t/ WD�At Qu.s; t/ up to orderm�1� 1 exist. Note that differentiability
in the time coordinate of the �AT –periodic solution itself does not immediately imply
differentiability in t for the corresponding T –periodic solution of the Floer equation.
This is because the t–derivative of �At involves JA, which decreases regularity. So our
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results do not follow from elliptic regularity. More specifically, the time derivative of QQu
is given by

d

dt
QQuD �At

�
d

dt
Qu
�
C

�
d

dt
�At

�
Qu:

Since Qu is of class Cm�1 in the time variable, the first term is sufficiently regular. For
the second term, recall that .d=dt/�At D JA�

A
t and so the second term only changes

the regularity of Qu with respect to the space variable by decreasing it by d . In particular,
the regularity in the time coordinate depends on the regularity in the space coordinate.
However, since above we gave conditions to ensure that we have enough regularity
in the space variable, that is, QQu.s; t/ 2 Hd D Dom.A/, the time derivatives in the
strong sense exist as well. Observe that the regularity requirements stated above ensure
that the single s–derivative also exists. Finally we remark that by Theorem 8.2 and
Theorem 8.3 the asymptotics of the Floer curve have the same t– and x–regularity as
the Floer curve itself.

9 Periodic solutions for Hamiltonian PDEs

As a corollary to the existence of a fixed point of �HT for a Hamiltonian with A–
admissible nonlinearity with, in particular, bounded support in our weaker sense of
Definition 3.3, we can now prove the existence of a fixed point when the nonlinearity
is only weakly A–admissible. We want to stress here that we do not claim that these
result could not be obtained using different methods, and we rather include this as an
application of our compactness result. We remark that there has been a significant
amount of research on the problem of finding time-periodic solutions of Hamiltonian
PDEs, eg [3; 5; 20; 30; 25] to mention just a few; we refer to the comprehensive
book [1] for an overview of the current state in the field. In particular, a KAM result
was proven in [8; 9] for the Schrödinger equation with regularizing nonlinearity that
we consider. Note that the small divisor problem and regularization also play a key
role in their considerations. The existence of time-periodic solutions was proven when
the nonlinearity is time-independent or when it has a prescribed time dependence, for
example, in [15; 16]. We want to stress that we are studying general nonautonomous
Hamiltonian PDEs without any predefined time-behavior of the nonlinearity.

The idea, now, is that given a weakly A–admissible nonlinearity zFt we compose it with
a cutoff function � to get an A–admissible nonlinearity Ft . We then show that when
the support of � is sufficiently large, the region where a possible T –periodic solution
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could exist stays away from the cutoff region. Main Theorem 4.1 then implies that there
exists a periodic solution for the Hamiltonian with this A–admissible nonlinearity Ft .
Since this solution remains in the region where � D 1, that is, where Ft D zFt , we
find that the solution is also a solution for the Hamiltonian with weakly A–admissible
nonlinearity zFt .

Lemma 9.1 Let A be admissible and of degree d , let .T;X/ be admissible and let
h > dr . Then there exists a positive c 2R such that

j�AT u�uj
2
� cjuj2

�h:

Proof This is a similar occurrence of the small divisor problem as we have already
seen:

j�AT u�uj
2
D

1X
nD0

jeia.˙n/
dT
�1j2j Ou.˙n/j2�c

1X
nD0

n�2d.r�1/j Ou.˙n/j2Dcjuj2
�d.r�1/;

where for the inequality we use the small angle approximation and Diophantineness
condition to write

jeian
dT
� 1j � inf

p2Z
jandT � 2�pj � 2�

c0

nd.r�1/

similar to the proof of Proposition 7.2. Since h > dr and jujh < juji whenever h < i ,
the result follows.

Theorem 9.2 For a Hamiltonian PDE with weakly A–admissible nonlinearity there
exists a forced time-periodic solution which is of regularity h�d.r�1/� 1

2
for h>dr ,

that is , u WR!Hh�d.r�1/� 1
2
�H with

@tuD JAuCJrFt .u/; u.t CT /D u.t/:

Proof Choose a cutoff function �R WR�0! Œ0; 1� which equals one on Œ0; R�, is zero
on ŒRC1;1/ and has slope �2� .�R/0.r/� 0 for r 2 ŒR;RC1�. Defining Ft DFRt
as in Proposition 3.4 using �R, it follows that Ft WH�h! R, and hence also when
viewed as a map Ft WH!R, has bounded first derivatives, independent of R. Here
we use that zFt has bounded first derivatives even when ct ¤ 0 in Definition 3.3. Since
therefore Gt has bounded first derivatives with respect to u, we have jXGt .u/j � c

0

for some c0 > 0 which is independent of R, and hence j�GT .u/ � uj � c
0T . Since

j�AT u� uj �
p
cjuj�h, u cannot be a fixed point whenever juj�h > c0T=

p
c. This
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is because �HT D �
A
T ı �

G
T , and �AT moves any u a distance at least

p
cjuj�h away

while preserving the H�h–norm. However, �GT only moves the point �A
�T u a distance

at most c0T <
p
cjuj�h, so u cannot be a fixed point. In fact, this shows that the

entire �AT –periodic solution u1 stays inside the H�h–ball of radius c0T=
p
cC � for

any � > 0. This continues to hold for the T –periodic solution u because �At preserves
the H�h–norm. Now we choose RD cT 0=

p
cC�. For this A–admissible nonlinearity,

the existence of a fixed point follows from the main theorem. By the above argument,
this fixed point is also a fixed point of the time-T flow of the Hamiltonian with weakly
A–admissible nonlinearity zFt we started with, thus proving the theorem.

We now show that when the nonlinearity is h–regularizing for all h 2 N we find a
periodic solution for almost all time periods, since Diophantine numbers have full
measure, which is of class C1 in both the time and spatial variable.

Corollary 9.3 Consider a Hamiltonian PDE with1–regularizing T –periodic non-
linearity zFt with bounded C ˛–norms as in condition (iii) of Definition 3.3, and with
admissible A. Then for admissible .X; T / there exists a strong forced T –periodic
solution which is smooth in both the time and space coordinates.

Proof This does not follow immediately from Theorem 9.2, since there is no complete
norm on H�1. In order to prove that we still find a periodic orbit for the Hamiltonian
PDE with1–regularizing weakly A–admissible nonlinearity zGt , which is even smooth
in both the time and space variable, compose zGt as above with a cutoff function
�.j � j�h/ for any finite h > dr to obtain an h–regularizing A–admissible nonlinearity.
Applying the above result we find a periodic solution u.t/ 2Hh�d.r�1/� 1

2
. Since it

is a solution to the PDE with1–regularizing weakly A–admissible nonlinearity we
started with, we can a posteriori show that u.t/ has image in H1 and that it is smooth
with respect to t . First, since zGt is1–regularizing, by definition its gradient takes
values in H1, so that

@tuD Jr zGt .u/ 2H1; u.t CT /D �A�T u.t/;

that is, the Fourier coefficients of @tu.t/ decay exponentially fast, which in turn shows
that the Fourier coefficients of �AT u.t/�u.t/ have the same decay rate. Now the nth

component un.t/Dbu.t/.n/zn of u.t/D
P
n
bu.t/.n/zn satisfies

j�AT un.t/�un.t/jD je
iaT nd

�1jjun.t/j� inf
p2Z
jaT nd�2�pjjun.t/j�

c

nd.r�1/
jun.t/j;
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so that jun.t/j still decays exponentially fast with jnj 2N, that is, u.t/ 2H1 for all t .
It remains to show that t 7! u.t/ is of class C1, for which we again use the fact that
it satisfies the Hamiltonian equation. Applying @t to both sides of @tuDXGt .u/ and
observing that G is smooth in t , and both u.t/ and @tu.t/ are in H1, we see that
@2t u.t/ 2H1. By repeatedly applying @t to both sides of the equation, it follows that
@˛t u.t/ 2H1 for all ˛ 2N.

Recalling the fact that not only Diophantine numbers have full measure, but even just
those numbers with irrationality measure r D 2, for generic T we need h > 2d and so:

Corollary 9.4 Consider a Hamiltonian PDE with h–regularizing time-periodic non-
linearity with bounded C ˛–norms as in condition (iii ) of Definition 3.3, and with
admissible A. Then for generic time period T , there exists a (weak ) forced T –periodic
solution which is of regularity h� d � 1

2
for h > 2d .

In particular, for our examples the main theorem provides us with the following results.
Here we use the result from Proposition 8.4 combined with Theorem 9.2.

Corollary 9.5 The nonlinear wave equation

R' �'xx � @1gt .' � ; x/� � ct D 0; ' D '.t; x/D '.t; xCX/

for x 2 S1 D R=XZ, with  ; ct D ctCT 2 C
h and gtCT D gt being bounded

and having bounded derivatives , admits a strong T –periodic solution for generic T ,
provided that h > 31

2
. When  ; ct D ctCT 2 C1, the solution is smooth in both time

and space coordinates.

The fact that h > 3 suffices follows from Theorem 8.3 and the proof of Proposition 8.4,
together with the observation that we need two spatial derivatives.

In order to see that one can only expect to find a periodic solution for generic T for
h > 0 large enough, we emphasize that this can even be seen from a direct computation
using Fourier series in the case when gt D 0.

Remark Expanding '.t; x/ and c.t; x/ D ct .x/ in terms of a Fourier series as in
Example 2.5, it follows that the resulting Fourier coefficients satisfy the equation�

2�n

X
�
2�p

T

��
2�n

X
C
2�p

T

�
O'.p; n/D Oc.p; n/:
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Since for any subsequence .p0; n0/ � .p; n/p;n2Z each of the two factors can only
converge to zero like n1�r (and only one of the two factors is close to zero), it follows
that for c 2W hC 1

2
;2, that is, c D .c; 0/ 2Hh, we find a solution ' 2W hC 1

2
�d.r�1/;2,

that is, uD .'; �/ 2Hh�d.r�1/ �H with d D 1, provided that h > dr . On the other
hand, it also follows that we cannot expect to find a solution of higher regularity.

Corollary 9.6 The nonlinear Schrödinger equation

i PuCuxxC @1ft .ju� j
2; x/.u� /� D 0; uD u.t; x/D u.t; xCX/

for x 2S1DR=XZ, with  2C h and QftCT D Qft W .s; x/ 7!ft .jsj
2; x/ being bounded

and having bounded derivatives , admits a strong T –periodic solution for generic T ,
provided that h > 5. When  2 C1, the solution is smooth in both time and space
coordinates.

Remark One could alternatively think about the admissibility condition for the periods
.X; T / as a condition on X : one could fix a time period T , so that for generic X
the number aT=2� is Diophantine (with r D 2). Since a D .2�=X/d in the two
main examples, this means that for fixed T , the space period X should be such that
.2�/d�1TX�d is Diophantine (with r D 2). We stress the Diophantineness condition
(with r D 2) can explicitly be checked for any chosen pair .X; T /.

10 A cup-length estimate

While our ultimate goal is to develop a full Floer homology theory for Hamiltonian
PDEs with regularizing nonlinearities, we will now give an example of a result which
definitely needs pseudoholomorphic curve techniques and cannot be proven using more
classical techniques such as in [25]. We consider the classical result by Schwarz [28]
and use our results to prove a cup-length estimate for a Hamiltonian system on a phase
space which is the product of linear symplectic Hilbert space with a closed symplectic
manifold.

Let M D .M;!M / be a closed (finite-dimensional) symplectic manifold that has
vanishing second homotopy group �2.M/D f0g. Then zM WDM �H is an infinite-
dimensional symplectic Hilbert manifold equipped with the product symplectic form
! D ��M!M C�

�
H!H and with a scale structure given by zMh WDM �Hh for h 2R.

Here �M W zMh!M and �H W zMh!Hh denote the projection onto the first or second
factor, respectively.
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Note that infinite-dimensional phase spaces of this form appear when performing
symplectic reduction using a Hamiltonian action on H which is nontrivial only on
finitely many components. Alternatively, they arise in Hamiltonian systems incorporat-
ing both Hamiltonian mechanics and Hamiltonian field theory. Indeed, generalizing
the class of Hamiltonian particle-field systems that we introduce in [12], consider
a symplectic manifold .B; !B/ with a foliation by Lagrangian submanifolds, which
contains .M;!M / as a symplectic submanifold, as well as a symplectic vector bundle
E ! B over B D .B; !B/. Let H D .H; !H/ denote a symplectic Hilbert space of
sections in this bundle which are constant along leaves, where the symplectic bilinear
form !H on H is defined using the symplectic structures on the fibers. Now consider
time-periodic Hamiltonians

Ht DH
A
CFt WM �H!R with Ft .uM ; uH/D ft .uM ; u

�
H.uM //;

where uH 7! u
�
H denotes a smoothing operator Hs�h!Hs for all s 2R. Note that

this indeed generalizes the class of time-periodic particle-field Hamiltonian systems
in [12], which model the interaction of a scalar wave field on the d–dimensional torus
T d with a particle constrained to a submanifold Q � T d . Here

M D T �Q � T �T d D B; E D B �C and HDH
1
2 .T d ;C/

can be viewed as a space of sections in the trivial bundle that are constant along
leaves of the canonical Lagrangian foliation on T �T d given by the cotangent fibers.
Furthermore, the smoothing operator is given by convolution with a C h–function �
which models the charge distribution of the particle. By contrast, recall that in this
paper we consider the case where .M;!M / is closed.

Definition 10.1 A map Ft W zM !R is called h–regularizing if it extends to a smooth
map

Ft W zM�h!R;

and it is called1–regularizing when it is h–regularizing for all h 2N.

With this, we again define:

Definition 10.2 A nonlinearity Ft W zM !R is called A–admissible if it satisfies:

(i) Ft is T –periodic with .T;X/ admissible.

(ii) The nonlinearity is h–regularizing with h > dr . Here r is the irrationality
measure of aT=2� and d the order of the differential operator A.

Algebraic & Geometric Topology, Volume 23 (2023)



500 Oliver Fabert and Niek Lamoree

(iii) The extended map Ft W zM�h!R has bounded C ˛–norms for all ˛.

(iv) Ft has bounded support, in the sense that for every k 2N there exists Rk > 0
such that Ft .u/D 0 for all u 2 zM with j.�k ı�H/.u/j>Rk .

Ft is called weakly A–admissible when there exists t–dependent ct D ctCT 2Hh such
that u 7! Ft .u/� hct ; �H.u/i satisfies (i), (ii) and (iii).

Again we find:

Proposition 10.3 Let zFt W zM !R be a weakly A–admissible nonlinearity. Then

Ft .u/ WD �.j�H.u/j
2
�h/
zFt .u/

with h as in Definition 3.3 condition (ii ), and where � a smooth cutoff function with
supp.�/� Œ0; R� for some R > 0, is A–admissible.

In this final chapter we want to show how our infinite-dimensional Gromov–Floer
compactness result can be used to prove the existence of multiple different time-
periodic solutions u W R! zM , u.t C T /D u.t/ of PuD XH .u/ for the time-periodic
infinite-dimensional Hamiltonian

Ht .u/D
1
2
hA�H.u/; �H.u/iCFt .u/DWHA.u/CFt .u/;

given as the sum of some weakly A–admissible nonlinearity Ft WM �H! R and
the quadratic term HA defined by a linear, possibly unbounded, self-adjoint (differ-
ential) operator A WH!H, which we again assume to be admissible in the sense of
Definition 2.1. We want to emphasize that it is natural to assume that the unbounded
free Hamiltonian HA depends only on the H–component of u, since the restriction of
HA to every finite-dimensional subspace is a smooth Hamiltonian. The flows of Ht
and of HA and Ft are still related via

�Ht D �HACFt D �HA#Gt D �A ı�Gt ;

whereGt WDFt ı�At , and we will work with �At andGt rather than withHt DHACFt
because HA (and hence Ht ) is only densely defined, whereas the flow �At is a
symplectomorphism which is defined on the whole of H, and hence on zM . Note
that �At � u D .�M .u/; e

itA � �H.u//, that is, �At acts trivially on the first factor of
zM DM �H.

Note that in contrast to before, the infinite-dimensional phase space zM D M �H

inherits nontrivial topology from the finite-dimensional closed symplectic manifold M ,
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which we will use to prove an infinite-dimensional version of the degenerate Arnold
conjecture. Let

cl.M/ WDmax
�
N C 1 W 9�1; : : : ; �N 2

dimMM
dD1

Hd .M/nf0g with �1[ � � � [ �N ¤ 0
�

denote the cup-length of M , which is a topological invariant of M and hence of zM .
After fixing some collection �1; : : : ; �N of N D cl.M/ � 1 nonzero cohomology
classes of M of nonzero degrees with �1[ � � � [ �N ¤ 0, we choose homology cycles
C1; : : : ; CN representing the chosen cohomology classes via Poincaré duality,

�1 D PDŒC1�; : : : ; �N D PDŒCN �:

More precisely, we consider pseudocycles defined using Morse theory on M ; see [28]
for details.

As we want to employ pseudoholomorphic curve methods, let JM denote an arbitrary
!M–compatible almost-complex structure on M and denote by J D JM � JH the
product almost-complex structure on M �H, where we again assume without loss
of generality that the linear complex structure JH on H is given by i . The following
statement is a generalization of the main result in [28], under the simplifying assumption
that �2.M/D f0g.

Theorem 10.4 For every Hamiltonian Ht .u/DHA.u/CFt .u/ with A–admissible
nonlinearity Ft , there exist N .bh=dc�1/–times differentiable maps

QuD Qu1; : : : ; QuN WR�R!M �Hh�d.r�1/� 1
2
�M �H for h > dr

satisfying the Floer equation and �AT –periodicity condition

N@J QuCrGt . Qu/D 0 and Qu.s; t CT /D �A�T Qu.s; t/:

For every ˛ D 1; : : : ; N , the Floer curve Qu˛ connects two different solutions

uD u�˛ ; u
C
˛ WR!M �H

of

(16) PuDXGt .u/; u.t CT /D �A�T .u.t//

in the sense that there exist sequences s˙˛;n 2R with s˙˛;n!˙1 as n!1 such that

lim
n!1

Qu˛.s
�
˛;n; t /D u

�
˛ .t/ and lim

n!1
Qu˛.s

C
˛;n; t /D u

C
˛ .t/:
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Furthermore , since for the symplectic actions we have

A.u�1 / <A.uC1 /�A.u�2 / < � � �<A.uCN�1/�A.u�N / <A.uCN /;

it follows that there are at least N C 1D cl.M/ mutually different solutions of (16).

Here the symplectic action A.u/ of a solution u WR!M �H of (16) is defined as

A.u/D
Z
D2
Nu�!C

Z T

0

Gt .u.t// dt;

where Nu is a filling of u, when viewed as a T –periodic orbit in the symplectic mapping
torus R �M �H=f.t; u/ � .t C T; �A

�T .u//g; note that since �2.M/ D f0g, this
definition is independent of the choice of Nu. Following the proof of Theorem 9.2:

Corollary 10.5 For every Hamiltonian Ht .u/ D HA.u/C Ft .u/ with weakly A–
admissible nonlinearity Ft there exist cl.M/ mutually different T –periodic solutions
uD u1; : : : ; uNC1 of regularity h� d.r � 1/� 1

2
for h > dr , that is ,

u WR! zMh�d.r�1/� 1
2
�M �H

with

@tuD JA�H.u/CJrFt .u/ and u.t CT /D u.t/:

For the proof we use the existence of Floer curves in finite dimensions as we did before.
More precisely, for every k 2 N let F kt WM �C2kC1! R denote the restriction of
Ft W zM !R to the finite-dimensional submanifold M �C2kC1 �M �H. Note that
F kt now has bounded support in M �BRk .0/ and we again define Gkt WD F

k
t ı �

A
t .

Let Mk denote the moduli space of tuples . Qu; �/, where Qu WR�R!M �C2kC1 is
again a Floer curve satisfying the asymptotic condition lims!˙1.�H ı Qu/.s; t/D 0,
the �–dependent Floer equation in M �C2kC1 with periodicity condition

N@J QuC'� .s/rGt . Qu/D 0; Qu.s; t CT /D �A�T Qu.s; t/

and the following intersection property: every Floer curve . Qu; �/ in Mk is required to
intersect all the cycles C1; : : : ; CN in the sense that

.�M ı Qu/
�
2�

1

NC1
; 0
�
2 C1; : : : ; .�M ı Qu/

�
2�

N

NC1
; 0
�
2 CN :

Lemma 10.6 For every � 2N there is a Floer curve . Qu; �/ in Mk .
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�
u0

C1
C2 : : :

CN

Figure 2

Proof The proof is analogous to the proof in Section 5, so we will only focus on the
differences and refer to [28] for further details. Assuming again transversality for the
nonlinear Cauchy–Riemann operator for the moment, the moduli space of such pairs
. Qu; �/ is a 1–dimensional manifold. While in the proof of Proposition 5.2 it was readily
clear that a Floer curve for �D0 exists, here we have to additionally take the intersection
property into account: since PDŒC1�[ � � � [PDŒCN �¤ 0, we may assume without loss
of generality that C1; : : : ; CN intersect transversally in a point, C1 � : : : �CN D fpointg,
so that the constant curve with image in fpointg � f0g �M �C2kC1 is the unique
Floer curve for � D 0. Again, Floer curves . Qu; �/ exist for all � > 0 by Gromov–Floer
compactness (see Figure 2), as we can exclude bubbling-off of holomorphic spheres as
well as breaking-off of cylinders for finite � . Note that in order to exclude existence of
holomorphic spheres we additionally use that �2.M/D f0g.

Since we cannot expect transversality to hold, we again first need to approximate J by a
family of time-dependent almost-complex structures J �t satisfying .�A

�T /�J
�
t D J

�
tCT ,

in the sense that J �t ! J 0t D i as � !1. We emphasize that transversality now
additionally includes that the evaluation map evD .ev1; : : : ; evN / with

ev˛ WMk
!M given by Qu 7! .�M ı Qu/

�
2�

˛

NC1
; 0
�

for ˛ D 1; : : : ; N

is transversal to C1 � � � � �CN �M � � � � �M .

For every k 2 N again let Quk W R �R! M �C2kC1 be a Floer curve in Mk for
� D k, that is, . Quk; k/ 2Mk . As before, the idea is to apply our infinite-dimensional
generalization of the Gromov–Floer compactness result to the sequence of Floer curves
Quk in order to obtain a Floer curve in zM D M �H. More precisely, the proof of
Theorem 8.1 immediately leads to a proof of the following:
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Lemma 10.7 For every ˛ D 1; : : : ; N D cl.M/� 1, a subsequence of the sequence of
shifted Floer curves

Quk˛ WR�R!M �C2kC1 given by Quk˛.s; t/D Qu
k
�
sC 2k

˛

NC1
; t
�

Cm�1loc –converges (where mD bh=dc) to a solution QuD Qu˛ WR�R!M �H of the
Floer equation

N@J QuCrGt . Qu/D 0; Qu.s; t CT /D �A�T Qu.s; t/

satisfying the intersection property .�M ı Qu˛/.0; t/ 2 C˛.

Proof The key observation is that, while in the unshifted case 'k.s; t/! '.s; t/, in
the shifted case we have 'k.sC2k˛=.N C1//! 1 for every .s; t/ 2R�R as k!1.
We start by observing that we can write the finite-dimensional Floer curve as a tuple

Quk D . Quk;`; Qu
k;`
?
/ WR�R! .M �C2`C1/�C2k�2`

DM �C2kC1
�M �H;

where Quk;`
?

again denotes the normal component of Quk . Again the extra statement
needed for the proof is that we still have, for mD bh=dc, that

sup
k�`

k Qu
k;`
?
kCm�1 ! 0 as `!1:

Note that this relies on the fact that we have bounded derivatives, proven using bubbling-
off, where we emphasize that the condition �2.M/ D f0g ensures that the proof of
Lemma 6.2 still goes through. Note that this also proves, using standard elliptic
bootstrapping, that there is a subsequence of . Quk;`/k of maps from R�R toM�C2`C1

whichCm�1loc –converges to a map Qu` WR�R!C2`C1 as k!1 for all `. We stress that
the maps Quk;` still take values in finite-dimensional compact manifold M �B2`C1R`

.0/

by the bounded support condition and the maximum principle. Because we have locally
boundedW mC1;p–norms and hence, by elliptic bootstrapping and passing to a diagonal
subsequence, local W m;p–convergence, by Sobolev embedding we also have local
convergence in the Cm�1–norm. Passing to a diagonal subsequence yet again, we
obtain Cm�1loc –convergence for all ` simultaneously, which, together with our result
about the normal component, proves that a subsequence of Quk W R�R!M �H is
locally Cauchy.

But this implies that Theorem 8.2 generalizes:
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Lemma 10.8 For every ˛D1; : : : ; N Dcl.M/�1 the limit Floer curve Qu˛ WR�R!H

satisfies the following asymptotic conditions: there exists sequences s˙˛;n 2 R with
s˙˛;n!˙1 as n!1 such that

lim
n!1

Qu˛.s
�
˛;n; t /D u

�
˛ .t/ and lim

n!1
Qu.sC˛;n; t /D u

C
˛ .t/

in the Cm�1–sense (m D bh=dc) where u�˛ and uC˛ are two different �AT –periodic
orbits of Gt .

Proof The fact that u�˛ and uC˛ need to be different follows, as in [28], from the fact
that

A.uC˛ /�A.u�˛ /DE. Qu˛/D
Z 1
�1

Z T

0

j@t Qu˛.s; t/�X
G
t . Qu˛.s; t//j

2 dt ds

withE. Qu˛/>0, since Qu˛ must satisfy the intersection property .�M ı Qu˛/.0; t/2C˛ .

Appendix Sc-Hamiltonian flows

Let us address the problem that the Hamiltonian Ht is only densely defined, while the
flow is defined on all of H. In particular, we do not have a Hamiltonian flow in the
usual sense. Rather, it is an sc–Hamiltonian flow:

Definition A.1 A map H W Hh ! R is called strongly sc1 when the differential
dH WHh �Hh!R extends to a family of maps

dH WHhC` �Hh�`!R

for all ` 2R.

Let d 2 N be the order of the differential operator A, then note that HA is a map
HA WHd=2!R. It is strongly sc1 because dHA is given by

dHA.u/ � v D hAu; vi;

and this defines a family of maps dHA W Hd=2C` �Hd=2�` ! R with ` 2 R. If we
write k D ` � 1

2
d , then dHt W HdCk �H�k ! R for k 2 R. Note that ! induces

an isomorphism ! W Hk
��! H�

�k
and so the (sc-)symplectic gradient XHt defined

by !.XHt ; � /D dHt is given by a family of maps XHt WHdCk !Hk for all k 2 R.
That is, XHt is a scale morphism of order d for all k.

Algebraic & Geometric Topology, Volume 23 (2023)
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Definition A.2 We say � WR�H!H is an sc–Hamiltonian flow of degree d when:

(i) � is sc1 in the sense of [19] for the Hilbert scale .Hdn/n2N . In particular, the
time-derivative defines a family of maps @t� WHd.nC1/!Hdn for all n 2N.

(ii) There exists a strongly sc1 map Ht WHd=2!R such that @t� DXHt .

The free flow �At is an sc–Hamiltonian flow. To show that we still get an sc–Hamiltonian
flow after we have added the nonlinearity, it is sufficient to show that the flow of Ft is
smooth on Hk for all k. Then it is immediately sc–Hamiltonian. This follows from
the fact that JrFt is smooth as a map from Hk to HkCh for h > 0 with uniform
bounds, as the compact inclusion HkCh �Hk guarantees that the flow on Hk exists
by Picard–Lindelöf. The nonlinearities in our examples satisfy this.
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