Download this article
Download this article For screen
For printing
Recent Issues

Volume 23
Issue 6, 2415–2924
Issue 5, 1935–2414
Issue 4, 1463–1934
Issue 3, 963–1462
Issue 2, 509–962
Issue 1, 1–508

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Proper $2$–equivalences between infinite ended finitely presented groups

Manuel Cárdenas, Francisco Fernández Lasheras, Antonio Quintero and Ranja Roy

Algebraic & Geometric Topology 23 (2023) 1–11
Bibliography
1 H J Baues, A Quintero, Infinite homotopy theory, 6, Kluwer (2001) MR1848146
2 M Cárdenas, F F Lasheras, A Quintero, R Roy, A topological equivalence relation for finitely presented groups, J. Pure Appl. Algebra 224 (2020) 106300 MR4058235
3 M J Dunwoody, The accessibility of finitely presented groups, Invent. Math. 81 (1985) 449 MR807066
4 R Geoghegan, Topological methods in group theory, 243, Springer (2008) MR2365352
5 M Gromov, Asymptotic invariants of infinite groups, from: "Geometric group theory, II" (editors G A Niblo, M A Roller), Lond. Math. Soc. Lect. Note Ser. 182, Cambridge Univ. Press (1993) 1 MR1253544
6 F F Lasheras, Ascending HNN-extensions and properly 3–realisable groups, Bull. Austral. Math. Soc. 72 (2005) 187 MR2183402
7 F F Lasheras, R Roy, Relating the Freiheitssatz to the asymptotic behavior of a group, Rev. Mat. Iberoam. 29 (2013) 75 MR3010122
8 R C Lyndon, P E Schupp, Combinatorial group theory, 89, Springer (1977) MR0577064
9 S Mardešić, J Segal, Shape theory, 26, North-Holland (1982) MR676973
10 M L Mihalik, Semistability at , –ended groups and group cohomology, Trans. Amer. Math. Soc. 303 (1987) 479 MR902779
11 M Mihalik, Semistability of graph products, preprint (2020) arXiv:2004.11333
12 M L Mihalik, S T Tschantz, One relator groups are semistable at infinity, Topology 31 (1992) 801 MR1191381
13 M L Mihalik, S T Tschantz, Semistability of amalgamated products and HNN-extensions, 471, Amer. Math. Soc. (1992) MR1110521
14 P Papasoglu, K Whyte, Quasi-isometries between groups with infinitely many ends, Comment. Math. Helv. 77 (2002) 133 MR1898396
15 P Scott, T Wall, Topological methods in group theory, from: "Homological group theory" (editor C T C Wall), London Math. Soc. Lecture Note Ser. 36, Cambridge Univ. Press (1979) 137 MR564422
16 J Stallings, Group theory and three-dimensional manifolds, 4, Yale Univ. Press (1971) MR0415622