Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 7, 3789–4436
Issue 6, 3145–3787
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
Time-periodic solutions of Hamiltonian PDEs using pseudoholomorphic curves

Oliver Fabert and Niek Lamoree

Algebraic & Geometric Topology 23 (2023) 461–508
Bibliography
1 M Berti, Nonlinear oscillations of Hamiltonian PDEs, 74, Birkhäuser (2007) MR2345400
2 H Brezis, Functional analysis, Sobolev spaces and partial differential equations, Springer (2010) MR2759829
3 H Brézis, J M Coron, L Nirenberg, Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math. 33 (1980) 667 MR586417
4 Y Bugeaud, Distribution modulo one and Diophantine approximation, 193, Cambridge Univ. Press (2012) MR2953186
5 W Craig, C E Wayne, Newton’s method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math. 46 (1993) 1409 MR1239318
6 L Di Gregorio, Infinite dimensional hamiltonian systems and nonlinear wave equation: periodic orbits with long minimal period, PhD thesis, Università degli Studi Roma Tre (2005)
7 S Dostoglou, D A Salamon, Self-dual instantons and holomorphic curves, Ann. of Math. 139 (1994) 581 MR1283871
8 L K Èliasson, B Greber, S B Kuksin, A KAM theorem for space-multidimensional Hamiltonian partial differential equations, Tr. Mat. Inst. Steklova 295 (2016) 142 MR3628517
9 L H Eliasson, B Grébert, S B Kuksin, KAM for the non-linear Beam equation, II : A normal form theorem, preprint (2015) arXiv:1502.02262
10 A C Eringen, Nonlocal continuum field theories, Springer (2002) MR1918950
11 O Fabert, Hamiltonian Floer theory for nonlinear Schrödinger equations and the small divisor problem, Int. Math. Res. Not. 2022 (2022) 12220 MR4466000
12 O Fabert, N Lamoree, Cuplength estimates for periodic solutions of Hamiltonian particle-field systems, preprint (2021) arXiv:2107.03989
13 A Floer, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120 (1989) 575 MR987770
14 A Floer, H Hofer, Symplectic homology, I : Open sets in Cn, Math. Z. 215 (1994) 37 MR1254813
15 G Gentile, M Procesi, Periodic solutions for the Schrödinger equation with nonlocal smoothing nonlinearities in higher dimension, J. Differential Equations 245 (2008) 3253 MR2460026
16 G Gentile, M Procesi, Periodic solutions for a class of nonlinear partial differential equations in higher dimension, Comm. Math. Phys. 289 (2009) 863 MR2511654
17 M Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 MR809718
18 F Haas, B Eliasson, Time-dependent variational approach for Bose–Einstein condensates with nonlocal interaction, J. Phys. B 51 (2018) 175302
19 H Hofer, K Wysocki, E Zehnder, sc-smoothness, retractions and new models for smooth spaces, Discrete Contin. Dyn. Syst. 28 (2010) 665 MR2644764
20 S B Kuksin, Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum, Funktsional. Anal. i Prilozhen. 21 (1987) 22 MR911772
21 S B Kuksin, Infinite-dimensional symplectic capacities and a squeezing theorem for Hamiltonian PDEs, Comm. Math. Phys. 167 (1995) 531 MR1316759
22 S B Kuksin, Analysis of Hamiltonian PDEs, 19, Oxford Univ. Press (2000) MR1857574
23 D McDuff, D Salamon, J–holomorphic curves and symplectic topology, 52, Amer. Math. Soc. (2004) MR2045629
24 A Oancea, A survey of Floer homology for manifolds with contact type boundary or symplectic homology, Ensaios Mat. 7, Soc. Brasil. Mat. (2004) 51 MR2100955
25 P H Rabinowitz, Free vibrations for a semilinear wave equation, Comm. Pure Appl. Math. 31 (1978) 31 MR470378
26 D Salamon, Lectures on Floer homology, from: "Symplectic geometry and topology" (editors Y Eliashberg, L Traynor), IAS/Park City Math. Ser. 7, Amer. Math. Soc. (1999) 143 MR1702944
27 V K Salikhov, On the irrationality measure of π, Uspekhi Mat. Nauk 63 (2008) 163 MR2483171
28 M Schwarz, A quantum cup-length estimate for symplectic fixed points, Invent. Math. 133 (1998) 353 MR1632778
29 E T Tomboulis, Nonlocal and quasilocal field theories, Phys. Rev. D 92 (2015) 125037 MR3465268
30 C E Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys. 127 (1990) 479 MR1040892
31 C Wendl, A beginner’s overview of symplectic homology, (2010)
32 L Zhong, Y Li, Y Chen, W Hong Weiyi Hu, Q Guo, Chaoticons described by nonlocal nonlinear Schrödinger equation, Sci. Rep. 7 (2017) 41438