Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Time-periodic solutions of Hamiltonian PDEs using pseudoholomorphic curves

Oliver Fabert and Niek Lamoree

Algebraic & Geometric Topology 23 (2023) 461–508
Bibliography
1 M Berti, Nonlinear oscillations of Hamiltonian PDEs, 74, Birkhäuser (2007) MR2345400
2 H Brezis, Functional analysis, Sobolev spaces and partial differential equations, Springer (2010) MR2759829
3 H Brézis, J M Coron, L Nirenberg, Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math. 33 (1980) 667 MR586417
4 Y Bugeaud, Distribution modulo one and Diophantine approximation, 193, Cambridge Univ. Press (2012) MR2953186
5 W Craig, C E Wayne, Newton’s method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math. 46 (1993) 1409 MR1239318
6 L Di Gregorio, Infinite dimensional hamiltonian systems and nonlinear wave equation: periodic orbits with long minimal period, PhD thesis, Università degli Studi Roma Tre (2005)
7 S Dostoglou, D A Salamon, Self-dual instantons and holomorphic curves, Ann. of Math. 139 (1994) 581 MR1283871
8 L K Èliasson, B Greber, S B Kuksin, A KAM theorem for space-multidimensional Hamiltonian partial differential equations, Tr. Mat. Inst. Steklova 295 (2016) 142 MR3628517
9 L H Eliasson, B Grébert, S B Kuksin, KAM for the non-linear Beam equation, II : A normal form theorem, preprint (2015) arXiv:1502.02262
10 A C Eringen, Nonlocal continuum field theories, Springer (2002) MR1918950
11 O Fabert, Hamiltonian Floer theory for nonlinear Schrödinger equations and the small divisor problem, Int. Math. Res. Not. 2022 (2022) 12220 MR4466000
12 O Fabert, N Lamoree, Cuplength estimates for periodic solutions of Hamiltonian particle-field systems, preprint (2021) arXiv:2107.03989
13 A Floer, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120 (1989) 575 MR987770
14 A Floer, H Hofer, Symplectic homology, I : Open sets in Cn, Math. Z. 215 (1994) 37 MR1254813
15 G Gentile, M Procesi, Periodic solutions for the Schrödinger equation with nonlocal smoothing nonlinearities in higher dimension, J. Differential Equations 245 (2008) 3253 MR2460026
16 G Gentile, M Procesi, Periodic solutions for a class of nonlinear partial differential equations in higher dimension, Comm. Math. Phys. 289 (2009) 863 MR2511654
17 M Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 MR809718
18 F Haas, B Eliasson, Time-dependent variational approach for Bose–Einstein condensates with nonlocal interaction, J. Phys. B 51 (2018) 175302
19 H Hofer, K Wysocki, E Zehnder, sc-smoothness, retractions and new models for smooth spaces, Discrete Contin. Dyn. Syst. 28 (2010) 665 MR2644764
20 S B Kuksin, Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum, Funktsional. Anal. i Prilozhen. 21 (1987) 22 MR911772
21 S B Kuksin, Infinite-dimensional symplectic capacities and a squeezing theorem for Hamiltonian PDEs, Comm. Math. Phys. 167 (1995) 531 MR1316759
22 S B Kuksin, Analysis of Hamiltonian PDEs, 19, Oxford Univ. Press (2000) MR1857574
23 D McDuff, D Salamon, J–holomorphic curves and symplectic topology, 52, Amer. Math. Soc. (2004) MR2045629
24 A Oancea, A survey of Floer homology for manifolds with contact type boundary or symplectic homology, Ensaios Mat. 7, Soc. Brasil. Mat. (2004) 51 MR2100955
25 P H Rabinowitz, Free vibrations for a semilinear wave equation, Comm. Pure Appl. Math. 31 (1978) 31 MR470378
26 D Salamon, Lectures on Floer homology, from: "Symplectic geometry and topology" (editors Y Eliashberg, L Traynor), IAS/Park City Math. Ser. 7, Amer. Math. Soc. (1999) 143 MR1702944
27 V K Salikhov, On the irrationality measure of π, Uspekhi Mat. Nauk 63 (2008) 163 MR2483171
28 M Schwarz, A quantum cup-length estimate for symplectic fixed points, Invent. Math. 133 (1998) 353 MR1632778
29 E T Tomboulis, Nonlocal and quasilocal field theories, Phys. Rev. D 92 (2015) 125037 MR3465268
30 C E Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys. 127 (1990) 479 MR1040892
31 C Wendl, A beginner’s overview of symplectic homology, (2010)
32 L Zhong, Y Li, Y Chen, W Hong Weiyi Hu, Q Guo, Chaoticons described by nonlocal nonlinear Schrödinger equation, Sci. Rep. 7 (2017) 41438