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Parametrized higher category theory

JAY SHAH

We develop foundations for the theory of co—categories parametrized by a base
oo—category. Our main contribution is a theory of indexed homotopy limits and
colimits, which specializes to a theory of G—colimits for G a finite group when the
base is chosen to be the orbit category of G. We apply this theory to show that the
G—-oo—category of G—spaces is freely generated under G—colimits by the contractible
G—space, thereby affirming a conjecture of Mike Hill.
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510 Jay Shah

1 Introduction

Motivation from equivariant homotopy theory This paper lays foundations for
a theory of co—categories parametrized by a base co—category S. Our interest in
this project originates in attempting to locate the core homotopy theories of interest
in equivariant homotopy theory — those of G—spaces and G-spectra— within the
appropriate co—categorical framework. To explain, let G be a finite group and let us
review the definitions of the co—categories of G—spaces and G—spectra, with a view
towards endowing them with universal properties.

Consider a category Topg of (nice) topological spaces equipped with G—action, with
morphisms given by the G—equivariant continuous maps. There are various homotopy
theories that derive from this category, depending on the class of weak equivalences that
one chooses to invert. At one end, we can invert the class W'; of G—equivariant maps
which induce a weak homotopy equivalence of underlying topological spaces, forgetting
the G—action. If we let Spc denote the co—category of spaces (ie co—groupoids), then
inverting W'y obtains the co—category of spaces with G—action

Topg[W71'] ~ Fun(BG, Spe).

For many purposes, Fun(BG, Spc) is the homotopy theory that one wishes to con-
template, but here we instead highlight its main deficiency. Namely, passing to this
homotopy theory blurs the distinction between homotopy fixed points and actual fixed
points, in that the functor Top; — Fun(BG, Spc) forgets the homotopy types of the
various spaces X for H a nontrivial subgroup of G. Because many arguments
in equivariant homotopy theory involve comparing X ¥ with the homotopy fixed

X hH, we want to retain this data. To this end, we can instead let W' be the

points
class of G—equivariant maps which induce an equivalence on H—fixed points for every
subgroup H of G. Let Speg := Topg [W™!]; this is the co—category of G—spaces.

As with TopG[Wl_l], we would like a description of Spe; which eliminates any
reference to topological spaces with G—action, for the purpose of comprehending its

universal property. Elmendorf’s theorem grants such a description: we have
Speg ~ Fun(0g, Spe),

where Og is the category of orbits of the group G. Thus, as an co—category, Speg is
the free cocompletion of Og.

It is a more subtle matter to define the homotopy theory of G—spectra. There are at
least three possibilities:
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Parametrized higher category theory 511

(1) The co—category of Borel G—spectra, ie spectra with G—action. This is
Sp”S := Fun(BG, Sp),
which is the stabilization of Fun(BG, Spc).

(2) The co—category of “naive” G—spectra, ie spectral presheaves on Og. This is
Spg = Fun(ng,Sp),
which is the stabilization of Speg.!

(3) The co—category of “genuine” G—spectra, ie spectral Mackey functors on the
category Fg of finite G—sets: Let A°T(Fg) be the effective Burnside (2, 1)—
category of G, given by taking as objects finite G—sets, as morphisms spans
of finite G—sets, and as 2—morphisms isomorphisms between spans. Then the
oo—category of genuine G—spectra is defined to be

Sp* := Fun®(A*"(F;). Sp).
the co—category of direct-sum preserving functors from A°T(Fg) to Sp.?

The third possibility incorporates essential examples of cohomology theories for G—
spaces, such as equivariant K—theory, because G—spectra in this sense possess transfers
along maps of finite G—sets, encoded by the covariant maps in A°(Fg). It is thus
what homotopy theorists customarily mean by G—spectra. However, from a categorical
perspective it is a more mysterious object than the co—category of naive G—spectra,
since it is not the stabilization of G—spaces. We are led to ask:

Question What is the universal property of SpG? More precisely, we have an adjunc-
tion

X¥:Speg = SpY Q>
with the right adjoint given by taking 2°°: Sp — Spc objectwise and restricting along

the evident map 0°Gp — A°f(Fg), and we would like a universal property for D2
or Q.

Put another way, what is the categorical procedure which manufactures SpG from
Speg?

IThe usage of a subscript G to indicate presheaves on Qg (whether valued in spaces or spectra) is
consistent with our later notation for the S—category of S—objects in an arbitrary co—category — see
Construction 3.9.

2This is not the definition which first appeared in the literature for G—spectra, but it is equivalent to, for
example, the homotopy theory of orthogonal G—spectra by the pioneering work of Guillou and May [6].
For an co—categorical treatment, see Barwick [1].
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The key idea is that for this procedure of “G-stabilization” one needs to enforce
“G—additivity” over and above the usual additivity satisfied by a stable co—category;
that is, one wants the coincidence of coproducts and products indexed not just by
finite sets but by finite sets with G—action. Reflecting upon the possible homotopical
meaning of such a G—(co)product, we see that for a transitive G—set G/H, |5 /H
and [ [ /g should be interpreted to mean the left and right adjoints to the restriction
functor SpG — SpH , ie the induction and coinduction functors, and G—additivity then
becomes the Wirthmiiller isomorphism. In particular, we see that G—additivity is not
a property that SpG can be said to enjoy in isolation, but rather one satisfied by the
presheaf Sp@ of co—categories indexed by Og; here, for every G—orbit U, a choice of
basepoints_pecifying an isomorphism U = G/H yields an equivalence Sp% (U) ~ SpH ,
and the functoriality in maps of orbits is that of conjugation and restriction (in particular,
recording the residual actions of the Weyl groups on SpH ). Correspondingly, we must
rephrase our question so as to inquire after the universal property of the morphism
of Og-presheaves, £ Speg — S_pG, where % is objectwise given by genuine
H —suspension ranging over all subgroups H < G.

We now pause to observe that for the purpose of this analysis the group G is of secondary
importance as compared to its associated category of orbits O¢. Indeed, we focused on
G-additivity as the distinguishing feature of genuine vs naive G—spectra, as opposed
to the invertibility of representation spheres, in order to evade representation theoretic
aspects of equivariant stable homotopy theory. In order to frame our situation in its
proper generality, let us now dispense with the group G and replace O¢g by an arbitrary
oo—category 7T'. Call a presheaf of co—categories on T' a T—category. The T—category of
T—spaces Sper is given by the functor 7 — Catoo, 1 > Fun((T/ )P Spc). Note that
this specializes to Speg when T = Og because Oy =~ (Og)/ (G/H), lice categories
stand in for subgroups in our theory. With the theory of 7—colimits advanced in this
paper, we can then supply a universal property for Sper as a T—category. Write Funr
for the internal hom in the co—category of T—categTries, which is cartesian closed.

1.1 Theorem Suppose T is any oo—category. Then Sper is T —cocomplete, and for
any T —category E which is T —cocomplete, the T —functor of evaluation at the T —final
object’

Funf (Sper. E) — Fun (+7. E) ~ E

3We define #7 to be the constant T—presheaf valued at %, which is the final object in the co—category of
T—categories.
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induces an equivalence from the T'—category of T'—functors Sper — E' which strongly
preserve T —colimits to E. In other words, Sper is freely generated under T ~colimits
by the final T —category.

1.2 Remark The notion of 7T—cocompleteness needed for the theorem is slightly
more elaborate than one might naively expect. Namely, we say that a T'—category C is
T—cocomplete if for all t € T, the pullback of C to a T/t —category C; (Notation 2.29)
admits all (small) 7/?—colimits (Definition 5.13). Correspondingly, we say that a
T—functor F: C — D strongly preserves T —colimits if for all # € T', the pulled-back
T/*—functor F: C; — D, preserves all T/!—colimits (Definition 11.2).

When T = Og, this result was originally conjectured by Mike Hill.

To go further and define 7—spectra, we need a condition on 7" so that it supports a
theory of spectral Mackey functors. We say that 7" is orbital if T admits multipullbacks,
by which we mean that its finite coproduct completion Fr admits pullbacks. The
purpose of the orbitality assumption is to ensure that the effective Burnside category
AS(Fr) is well defined. Note that the slice categories T); are orbital if 7' is. We
define the T—category of T—spectra S_pT to be the functor 7°° — Cats, given by
t > Fun®(4°"(Fr,,),Sp). We then have the following theorem of Denis Nardin
concerning S_pT from [15], which resolves our question:

1.3 Theorem [15, Theorem 7.4] Suppose T is an atomic* orbital co—category. Then
S_pT is T —stable, and for any pointed T —category C which has all finite T —colimits,
the functor of postcomposition by 2°°

(%), : Funf. ™ (C,Sp”) — Lin” (C, Sper)

induces an equivalence from the co—category of T—functors C — SpT which preserve
finite T —colimits to the co—category of T —linear functors C — Sper, ie those T—
functors which are fiberwise linear and send finite T —coproducts to T —products.

We hope that the two aforementioned theorems will serve to impress upon the reader
the utility of the purely co—categorical work that we undertake in this paper.

1.4 Warning In contrast to this introduction thus far and the conventions adopted
elsewhere —eg in [15] — we will henceforth speak of S—categories, S—colimits, etc
for S = T°P.

4This is an additional technical hypothesis which we do not explain here. It will not concern us in the
body of the paper.
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What is parametrized oco—category theory?

Roughly speaking, parametrized co—category theory is an interpretation of the familiar
notions of ordinary or “absolute” co—category theory within the (oo, 2)—category of
functors Fun(S, Cat,), done relative to a fixed “base” co—category S. By “interpreta-
tion”, we mean something along the lines of the program of Emily Riehl and Dominic
Verity [16], which axiomatizes the essential properties of an (oo, 2)—category that
one needs to do formal category theory into the notion of an co—cosmos, of which
Fun(S, Catyo) is an example. In an co—cosmos, one can write down in a formal way
notions of limits and colimits, adjunctions, Kan extensions, and so forth. Working out
what this means in the example of Cato,—valued functors is the goal of this paper. In
the classical 2—categorical setting, such limits and colimits are referred to as “indexed”
limits and colimits, so another perspective on this paper is that it extends indexed
category theory to the co—categorical setting.

In contrast to Riehl and Verity, we will work within the model of guasicategories and
not hesitate to use special aspects of our model (eg combinatorial arguments involving
simplicial sets). We are motivated in this respect by the existence of a highly developed
theory of cocartesian fibrations due to Jacob Lurie, which we review in Section 2.
Cocartesian fibrations are our preferred way to model Caty,—valued functors, for two
reasons:

(1) The data of a functor F': § — Cat, is overdetermined compared to that of
a cocartesian fibration over S, in the sense that to define F' one must prescribe an
infinite hierarchy of coherence data, which under the functor-fibration correspondence
amounts to prescribing an infinite sequence of compatible horn fillings.> Because
of this, specifying a cocartesian fibration (which one ultimately needs to do in order
to connect our theory to applications) is typically an easier task than specifying the
corresponding functor to Catyo.

(2) The Grothendieck construction on a functor § — Caty is made visible in the
cocartesian fibration setup, as the total category of the cocartesian fibration. Many of
our arguments involve direct manipulation of the Grothendieck construction, in order
to relate or reduce notions of parametrized oo—category theory to absolute co—category
theory.

We have therefore tailored our exposition to the reader familiar with the first five
chapters of Lurie [9]; the only additional major prerequisite is the part of Lurie [11,

31t is for this reason that one speaks of straightening a cocartesian fibration to a functor.
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Appendix B] dealing with variants of the cocartesian model structure of [9, Section 3]
and functoriality in the base.

Linear overview

Let us now give a section-by-section summary of the contents of this paper.

In Section 2 we define an S—category as a cocartesian fibration over S, and then
collect some necessary preliminaries on cocartesian fibrations and model structures
on categories of marked simplicial sets. In particular, we recapitulate Lurie’s theo-
rem that establishes conditions under which change-of-base adjunctions are Quillen
(Theorem 2.24). This theorem will allow us to efficiently verify the fibrancy of many
of the simplicial set constructions introduced in this paper.

In Section 3 we first define and study the internal hom Fung (—, —) of S—categories
(Definition 3.2). We then recall the S—category of S—objects E s in an oco—category
E from Barwick, Dotto, Glasman, Nardin and Shah [2] (Construction 3.9), which
computes the right adjoint to the forgetful functor [C — S|+ C. When S = 023 and
E = Spc, this recovers the G—category of G-spaces Spcg .

In Section 4 we first introduce the S—join (— x5 —) (Definition 4.1), which in terms
of presheaves computes the fiberwise join. We then define and study two (canon-
ically equivalent) S—slice constructions: for an S—functor p: K — C, we have
S—undercategories C(,, ), and C P9/ and S—overcategories C/(p,s) and c/S),
The “lower” construction (Definition 4.17) is a direct generalization of Joyal’s slice
construction —cf [9, Proposition 1.2.9.2] — and participates in a Quillen adjunction
with the S—join. The “upper” construction (Definition 4.26) proceeds by taking an
S—fiber of the relevant map of S—functor categories. In practice, the upper S—slice is
far easier to work with as its definition is less bound up with the intricate combinatorics
of the S—join (which need to be thoroughly understood to even establish the fibrancy of
the lower S—slice; see Proposition 4.11). However, it is easier to establish the universal
mapping property of the S—slice using its lower incarnation (Proposition 4.25).

In Section 5 we initiate our study of S—colimits and S—limits by giving the basic
Definition 5.2, and then discuss a few special cases: S—(co)limits in an S—category
of S—objects, S—colimits indexed by constant S—diagrams, and S—colimits indexed
by S—points (ie S—coproducts). We then explain how to deduce results about S—
limits from S—colimits (or vice versa) by means of the vertical opposite construction
(Corollary 5.25).
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In Section 6 our main goal is to establish an S—analogue of Joyal’s cofinality theorem
[9, Theorem 4.1.3.1]: an S—functor C — D is S—final if and only if it is fiberwise
final® (Theorem 6.7). Our strategy is to control the functoriality encoded by the S—slice
category in terms of a construction, the twisted slice (Definition 6.5), fibered over the
twisted arrow category 6(5 ); the right Kan extension of the latter will then obtain the
former (Theorem 6.6). In fact, we first do the same for the internal hom Fung itself
(equation (6.3.1)). This may be thought of as a refinement of the end formula for an
oo—category of natural transformations (see Remark 6.4).

In Section 7 we introduce the notions of S—fibration, S—(co)cartesian fibration and
S-bifibration (Definitions 7.1 and 7.9). We also introduce the free S—(co)cartesian
fibration as an example (Definition 7.6).

In Section 8 we recall Lurie’s definition of a relative adjunction and specialize it to the
notion of an S—adjunction (Definition 8.3). We then prove a number of fundamental
results about S—adjunctions — most notably, the fact that a left S—adjoint preserve
S—colimits (Corollary 8.9).

In Section 9, given an S—cocartesian fibration ¢: C — D and an S—functor F: C — E,
we construct the left S—Kan extension ¢ F': D — E, which will also call the D—
parametrized S—colimit of F. With our assumption on ¢, we have that for every
object x € Dy, (¢ F)(x) is computed as the S s/_colimit of the restriction of F to
the S%/—fiber C x- This is precisely analogous to the situation where the left Kan
extension along a cocartesian fibration is computed by taking colimits fiberwise. In
order to construct ¢ F', we need to solve the coherence problem of assembling the
individual S*/—colimits of Fy: Cy — Ej (ranging over all x € Dy) into a single S—
functor out of D. We introduce the S—pairing (Construction 9.1), and subsequently the
D—parametrized slice (Construction 9.8), to facilitate this. The problem of constructing
¢ F then ultimately reduces to choosing a section of a certain trivial Kan fibration
defined in terms of the D—parametrized slice (Theorem 9.15).

In Section 10 we define left S—Kan extensions in general (Definition 10.1) and prove
the basic existence and uniqueness result about them (Theorem 10.3). In contrast to
the brutal simplex-by-simplex approach taken in [9, Section 4.3.2] to the construction
of Kan extensions (cf [9, Lemma 4.3.2.13]), we instead reduce to the solved coherence
problem for D—parametrized S—colimits via factoring the S—functor ¢: C — D to
be extended along through the free S—cocartesian fibration on it. We remark that, to

SWe write final and initial for what Lurie calls (left) cofinal and right cofinal, respectively.
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our knowledge, the approach of Sections 9 and 10 give a novel” and more conceptual
construction of Kan extensions even in the context of ordinary co—category theory.
Lurie has since independently written up a treatment of (relative) Kan extensions along
these lines in Kerodon [12, Section 7.3].

In Section 11 we recall the S—category of presheaves Pg(—), prove the S—Yoneda
Lemma 11.1, discuss S—mapping spaces, and establish the universal property of Pg(—)
as free S—cocompletion (Theorem 11.5), thereby proving Theorem 1.1.

In Section 12 we prove two Bousfield-Kan-style® decomposition results that express
an arbitrary S—colimit as a geometric realization of either S—coproducts or S—space-
indexed S—colimits (Theorems 12.13 and 12.6). The essential content behind such
formulas lies in replacing a given diagram C with one fibered over AP x § that
possesses an S—final map to C. As a warmup, we first explain how this goes when S
is a point (Corollaries 12.3 and 12.5); the resulting formula appears to be new in the
case of coproducts, whereas the case of spaces was first obtained by Aaron Mazel-Gee
in [14]. We then apply the S—Bousfield—Kan formula to show that, supposing S°P
admits multipullbacks, an S—category is S—cocomplete if and only if it admits all
S—(co)products and geometric realizations (Corollary 12.15).

Notation and conventions

Let C be an co—category. We write
0(C) := Fun(A!, C)

for the co—category of arrows in C. In this paper, we will frequently encounter fiber
products of the form
A XF,C,eV() G(C) XCV1,C,G B

where F: A — C and G: B — C are functors. To avoid notational clutter, we adopt
the global convention that, unless otherwise decorated, fiber products with the source
functor evy are to be written on the left, and fiber products with the target functor ev,
are to written on the right. Moreover, we will drop F and G from the notation if they
are understood from context. For instance, we would write the preceding expression as
Axc O0(C)xc B.

7All these results date to 2017.

8By this, we mean to refer to generalizations of the classical formula for writing a colimit as a coequalizer
of coproducts, which were studied by Bousfield and Kan in the context of homotopy colimits with
coequalizers replaced by geometric realization.
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2 Cocartesian fibrations and model categories of marked
simplicial sets

Let S be an co—category. In this section, we give a rapid review of the theory of
cocartesian fibrations and the surrounding apparatus of marked simplicial sets. This
primarily serves to fix some of our notation and conventions for the remainder of the
paper; for a more detailed exposition of these concepts, we refer the reader to [4]. In
particular, the reader should be aware of our special notation (Notation 2.29) for the
S—fibers of an S—functor.

Cocartesian fibrations

We begin with the basic definitions:
2.1 Definition Let w: X — S be a map of simplicial sets. Then 7 is a cocartesian
fibration if:
(1) Itis an inner fibration; for every n > 1, 0 < k < n and commutative square
A — X

A" —> S
the dotted lift exists.

(2) For every edge a: s9 — s1 in S and x9 € X with w(xg) = 9, there exists an
edge e: xo — x1 in X with (e) = «, such that e is w—cocartesian; for every
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n > 1 and commutative square

A’&L)X

B
L
A" —> S
with f|xc0.13 = e, the dotted lift exists.

Dually, 7 is a cartesian fibration if 7°P is a cocartesian fibration.

A cocartesian (resp. cartesian) fibration 7: X — S is said to be a left (resp. right)
fibration if for every object s € ' the fiber X, is a Kan complex.

Now suppose 7: X — S and p: ¥ — § are (co)cartesian fibrations. Then a map of
(co)cartesian fibrations f: X — Y is a map of simplicial sets such that po f =x
and f carries w—(co)cartesian edges to p—(co)cartesian edges. The collection of
cocartesian fibrations over S and maps thereof organize into a subcategory Catgzc/ag of
the overcategory Caty) .

In this paper, owing to the importance of these notions we see fit to introduce more
concise and suggestive terminology for cocartesian fibrations and left fibrations over S.

2.2 Definition An S—category (resp. S—space) C is a cocartesian (resp. left) fibration
w:C — S. An S—functor F: C — D between S—categories C and D is a map of
cocartesian fibrations over S.

Given an S—category w: C — S, an S—subcategory D C C is a subcategory such that
the restriction 7 |p is a cocartesian fibration and an edge in D is 7| p—cocartesian if and
only if it is w—cocartesian. The inclusion functor then necessarily preserves cocartesian
edges, so is an S—functor. We further say that D is a full S—subcategory if D C C
is in addition a full subcategory, or equivalently, for every s € S, Ds C Cy is a full
subcategory.

2.3 Example (arrow co—categories) The arrow co—category O(S) of S is cocartesian
over S via the target morphism ev;, and cartesian over S via the source morphism evy.
An edge

e: [so — to] = [s1 — t1]

in O(S) is evi—cocartesian (resp. evg—cartesian) if and only if evg(e) (resp. evy(e)) is
an equivalence in S.
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The fiber of evg: O(S) — S over s is isomorphic to Lurie’s “alternative” slice co—
category S s/ Using our knowledge of the evi—cocartesian edges, we see that evy
restricts to a left fibration S/ — . In the terminology of [9, Proposition 4.4.4.5], this
is a corepresentable left fibration. We will refer to the corepresentable left fibrations as
S—points. Further emphasizing this viewpoint, we will often let s denote S s/

To a beginner, the lifting conditions of Definition 2.1 can seem opaque. Under our
standing assumption that S is an co—category, we have a reformulation of the definition
of cocartesian edge, and hence that of cocartesian fibration, which serves to illuminate
its homotopical meaning.

2.4 Proposition Let w: X — S be an inner fibration (so X is an oco—category).
Then an edge e: xg — x1 in X is w—cocartesian if and only if for every x, € X, the
commutative square of mapping spaces

Mapy (x1, x2) - Mapy (xo, x2)

Mapg (7 (x1). 7(x2)) =25 Mapg (7 (xo). 7(x2))

is homotopy cartesian.

With some work, Proposition 2.4 can be used to give an alternative, model-independent
definition of a cocartesian fibration. We refer to Mazel-Gee’s paper [13] for an exposi-
tion along these lines.

2.5 Example [9, Section 3.2.2] Let Cats, denote the (large) co—category of (small)
oo—categories. Then there exists a universal cocartesian fibration U — Cateo, Which is
characterized up to contractible choice by the requirement that any cocartesian fibration
w: X — S (with essentially small fibers) fits into a homotopy pullback square

X —u

LA

s I caty,

Concretely, one can take AU to be the subcategory of the arrow category O(Catyo)
spanned by the representable right fibrations and morphisms thereof.
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As suggested by Example 2.5, the functor
Fun(S, Cateo) — Catggc/ag
given by pulling back U — Cat, is an equivalence. The composition
Gr: Fun(S, Caty,) = Catf;’f/“g,t C Catog/s

is the Grothendieck construction functor. Since equivalences in Fun(S, Caty) are
detected objectwise, Gr is conservative. Moreover, one can check that Gr preserves
limit and colimits, so by the adjoint functor theorem Gr admits both a left and a right
adjoint.

2.6 Notation Let
Fr4Gr-4 H

denote the left and right adjoints of Gr.

We call Fr the free cocartesian fibration functor (see also [5]); concretely, one has
Fr(X — §) = X x5 0(S) =% S,

or as a functor s = X Xg §/; with functoriality obtained from S;(_). The functor H
can also be concretely described using its universal mapping property: since

Fr({s} C §) = S/,

the fiber H(X); is given by Fun,g(Ss/, X), and the functoriality in § is obtained from
that of S(_)/.

A model structure for cocartesian fibrations

We want a model structure which has as its fibrant objects the cocartesian fibrations
over a fixed simplicial set. However, it is clear that to define it we need some way
to remember the data of the cocartesian edges. This leads us to introduce marked

simplicial sets.

2.7 Definition A marked simplicial set (X, &) is the data of a simplicial set X and a
subset £ C X of the edges of X, such that £ contains all of the degenerate edges. We
call £ the set of marked edges of X. A map of marked simplicial sets f: (X, &) — (Y, F)
is a map of simplicial sets f: X — Y such that f(£) C F.
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2.8 Notation We introduce notation for certain classes of marked simplicial sets. Let
X be a simplicial set.

o X"is X with only the degenerate edges marked. To avoid notational clutter, we
will sometimes suppress this notation and simply write X for X b,

o X*is X with all of its edges marked.
¢ Suppose that X is an oco—category. Then X~ is X with its equivalences marked.

* Suppose that 7 : X — § is an inner fibration. Then y X is X with its 7—cocartesian
edges marked, and X Uis X with its w—cartesian edges marked.

e Letn>0. Let yA" and yAf denote A" and Af, respectively, with the edge {0, 1}
marked (if it exists, ie excluding A® and A(l) = {0}) along with the degenerate
edges. Dually, let A" and AZ“ denote A" and A, respectively, with the edge
{n — 1, n} marked.

Note that our choice of notation ;A" and yAf is not meant to be interpreted as a special
instance of marking cocartesian edges (though the map A" — Al given by 0 — 0 and
1,...,n +— 1 renders it as such for the former); rather, we mean to indicate that the
relevant lifting problem for a cocartesian fibration as a marked simplicial set is to lift
along the marked horn inclusion nA’& — A" (cf Definition 2.9 below), and vice versa
for cartesian fibrations and AZ” — A

For the rest of this section, fix a marked simplicial set (Z, £) where Z is an co—category
and & contains all of the equivalences in Z — in our applications, Z will generally be
some type of fibration over S. Let sSetjr( Z.6) denote the category of marked simplicial
sets over (Z, £). Following Lurie [9, Notation 3.1.0.2], we will also denote sSet;rZji
more simply as sSet;"Z. We will frequently abuse notation by referring an object
(X, F)—>(Z,€) of sSetj'(Z ©) by its domain (X, F), or even just by X.

2.9 Definition An object (X, F) in sSet/+( 2.6y 18 (Z, E)~fibered if:

(1) m:X — Z is an inner fibration.

(2) For every n > 0 and commutative square

u/\g e (X, .7:)

nAn — (Z,8)

9This differs from [11, Definition B.0.19], but nonetheless defines the correct class of anodyne morphisms
[11, Definition B.1.1].
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a dotted lift exists. In other words, letting n = 1, w—cocartesian lifts exist over

marked edges in Z, and letting n > 1, marked edges in X are m—cocartesian.!?
(3) For every commutative square
(A%)'i U(A%)b (Az)b — (X, F)
(W) (Z.6)
11

a dotted lift exists. In other words, marked edges are closed under composition.

4) LetQ = A0 1 AL0.23 A3 11 Al1.3} A%, For every commutative square

0" —— (X, F)

L

ok —> (Z,8)

a dotted lift exists. Since we assumed that £ contains all equivalences in Z, this
implies that all equivalences in X are marked.

2.10 Example Letw: X — Z be an inner fibration. Comparing with Definition 2.1,
it is clear that (X, F) is Z"fibered if and only if 7 is a cocartesian fibration and
(X,F) = yX. At the other extreme, (X, F) is Z~fibered if and only if 7 is a
categorical fibration and (X, F) = X~

Recall that a model structure, if it exists, is determined by its cofibrations and fibrant
objects. Collecting results of Lurie from [11, Appendix B], we now define a model
structure on sSetj'( Z.6) with cofibrations the monomorphisms and fibrant objects given
by the (Z, £)-fibered objects.

2.11 Definition Define functors!?

Map(—, —): sSetjr(Z,g)op X sSetjr(Z,g) — sSet,
Funz(—, —): sSetj“(Z,(s)Op X sSetjr(Z,g) — sSet

10Condition (2) already guarantees that X — Z is a cocartesian fibration if € = Z1; however, one
additionally needs condition (4) to ensure that all of the w—cocartesian edges are marked in X .

U Strictly speaking, condition (3) by itself only guarantees that for any pair of composable marked edges,
there exists a composite that is again marked. One additionally needs condition (4) to ensure that all

compositions of marked edges are again marked.

1214 [11, Appendix B, these functors are denoted as Map”Z and Mapbz respectively.
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Hom(A, Mapz (X, Y)) = Hom,(z.¢)(A* x X, Y),
Hom(A,Funz(X,Y)) = Hom/(Z,g)(Ab xX,Y).

2.12 Definition A map f: A — B in sSetj'(Z € is a cocartesian equivalence (with
respect to (Z, £)) if one of the following equivalent conditions hold.

(1) Forall (Z,&)-fibered X, f*: Map, (B, X) — Map, (A4, X) is an equivalence
of Kan complexes.

(2) Forall (Z,&)-fibered X, f*:Funz(B, X) — Funz (A, X) is an equivalence of
oo—categories.

2.13 Theorem [11, Theorem B.0.20] There exists a left proper combinatorial model
structure on the category sSet;"( Z.6) which we call the cocartesian model structure,
such that

(1) the cofibrations are the monomorphisms,
(2) the weak equivalences are the cocartesian equivalences,

(3) the fibrant objects are the (Z, £)—fibered objects.

Dually, we define the cartesian model structure on sSetjr( z.e) 0 be the cocartesian

model structure on sSet}L( Z.5) under the isomorphism given by taking opposites.

2.14 Remark The underlying co—category of sSetjr( 7.6 identifies as the subcategory
of Cat,/z on those isofibrations!®> X — Z that admit cocartesian lifts over &, and
with morphisms preserving cocartesian edges. In particular, passing to the closure of £
under composition does not change the underlying co—category.

We have the following characterization of the cocartesian equivalences between fibrant

objects — which is unsurprising, in light of the equivalence Catcoi’)c/aét =~ Fun(Z, Cat).

2.15 Proposition [11, Lemma B.2.4] Let X and Y be fibrant objects in sSet}L(Z £)

equipped with the cocartesian model structure, and let f : X — Y be amap in sSetjr( Z.6)"
Then the following are equivalent:
13with this choice, the resulting subcategory is not stable under equivalence. One could alternatively

appeal to a homotopy-invariant notion of cocartesian fibration and instead replace isofibrations with
functors — cf [13], which admits an obvious generalization to this setting.
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(1) f is a cocartesian equivalence.

(2) f is a homotopy equivalence, ie f admits a homotopy inverse; there exists a
map g:Y — X and homotopies h: (A)# x X — X andh': (A xY — Y in
sSetjr(Z £) connecting g o f toidy and f o g toidy, respectively.

(3) f is a categorical equivalence.

(4) For every (not necessarily marked) edge o: A' = Z, fy: Al xz X — Al xz Y
is a categorical equivalence.

If every edge of Z is marked, then (4) can be replaced by the following apparently
weaker condition:

(4') Forevery objectz € Z, f,: X, — Y is a categorical equivalence.
We also have the following characterization of the fibrations between fibrant objects.

2.16 Proposition [11, Proposition B.2.7] Let Y = (Y, F) be a fibrant object
in sSet Nz, 5) equipped with the cocartesian model structure, and let f: X — Y be a
map in sSet . 1(Z.8) Then the following are equivalent:

(1) f is a fibration.
(2) X is fibrant, and f is a categorical fibration.

(3) f isfibrantin sSet/(Y )

2.17 Corollary Suppose Z — S is a cocartesian fibration. Then the cocartesian model
structure sSet;"  coincides with the “slice” model structure on (sSet / S) /sz created by
the forgetful functor to sSet ™, /s equipped with its cocartesian model structure.

Proof This immediately follows from Proposition 2.16. O

2.18 Example Suppose that Z is a Kan complex. Then the cocartesian and cartesian
model structures on sSet 1z coincide. In particular, taking Z = A°, we will also refer
to the cocartesian model structure on sSet™ as the marked model structure. Since this
model structure on sSet™ is unambiguous, we will always regard sSet™ as equipped
with it. Then the fibrant objects of sSet™ are precisely the co—categories with their
equivalences marked.
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2.19 Example Suppose that (Z,&) = Z~. Then the cocartesian and cartesian model
structures on sSeterN coincide. Moreover, we have a Quillen equivalence

()" (sSetjoyal) )z = sSet?LZN U

where the functor U forgets the marking. In particular, (—)" sends categorical equiva-
lences to marked equivalences.

2.20 Example The inclusion functor Spe C Cato, admits left and right adjoints B
and ¢, where B is the classifying space functor that inverts all edges and ¢ is the “core”
functor that takes the maximal sub—oco—groupoid. These two adjunctions are modeled
by the two Quillen adjunctions

U: sSet"‘ <:> SSetQuﬂ]en I(—)ﬂ, (—)ﬂ . sSetQumen <:> sSet"' ‘M.

Here M (X, €) is the maximal subsimplicial set of X such that all of its edges are marked.
In particular, (—)* sends weak homotopy equivalences to marked equivalences.

2.21 Proposition [11, Remark B.2.5] The bifunctor
. + + +
—x—isSet) i o) X5Set) 7, o) 55t 7 7, £1xe)
is left Quillen. Consequently, the bifunctors
Mapz(—, —): SSet;r(Z’g)op X sSet;r(Z’g) — sSetQuilien,
Funz(—,—): sSetjr(Z’g)Op X sSetf(Z’E) — sSetjoyal

are right Quillen, so sSetf( Z.E) is both an sSetqyien—enriched model category (with
respect to Map ) and sSetjoy,—enriched model category (with respect to Funy).

2.22 Remark As explained in [16, Digression 1.2.13], by Proposition 2.21 the full
subcategory of sSetj'( 7.6 spanned by the fibrant objects is an example of an co—cosmos
[16, Definition 1.2.1].

Finally, we explain how the formalism of marked simplicial sets can be used to extract
the pushforward functors implicitly defined by a cocartesian fibration. First, we need a
lemma.

marked anodyne. Consequently, for a cocartesian fibration C — S, the map
Fun(;A", 1C) — Fun(A" !, C) Xgypan-1 ¢y Fun(A", S)

induced by i, is a trivial Kan fibration.
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Proof We proceed by induction on 7, the base case n = 1 being the left marked
anodyne map A0} — DAI = (AH#. Consider the commutative diagram

A L gAT—2 —y A0} AL2,0m)

Ui l

(A« AB=LE) ——————5 yAR |in

|

A

where € is the collection of edges {0,i}, 0 <i < n (and the degenerate edges). The
square is a pushout, and by the inductive hypothesis, the left-hand vertical map is left
marked anodyne. We deduce that i, is left marked anodyne. The second statement
now follows because the lifting problem

A 5 Fun(nAn,uC)
| T
B~y Fun(A"1, C) xpunqan—t ¢y Fun(A", S)

transposes to
AX A" Ugoepn—1 Bx N1 ——4C

BXnAn > S

and the left-hand vertical map is left marked anodyne for any cofibration A — B by [9,
Proposition 3.1.2.3]. O

The main case of interest in Lemma 2.23 is when n = 1, which shows that
0 (C) — C x5 0O(S)
is a trivial Kan fibration. Let
P:C x5 0(S) — 0°(C)

be a section that fixes the inclusion C C 0°°@(C) (for this, note that C C C x5 O(S)
is a cofibration as it is a monomorphism of simplicial sets). Then we say that P or
the further composite P’ = evy oP is a cocartesian pushforward for C — S. Given
an edge o of S, P}: Cs — C; is the pushforward functor oy determined under the
equivalence Catggc/ag ~ Fun(S, Catyo).
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Functoriality in the base

Let w: X — Z be a map of simplicial sets. Then the pullback functor
n*:sSetjz — sSet,x

admits a left adjoint my, given by postcomposing with . In addition, since sSet is a
topos, 7* also admits a right adjoint 7, which may be thought of as the functor of
relative sections because Hom, y (A, 7« (B)) = Hom, 7z (A xx Z, B).

Now supposing that 7 is a map of marked simplicial sets, 7*, 7, and 7« extend to
functors of marked simplicial sets over X or Y in an evident manner. We then seek
conditions under which the adjunctions 71y 4 7* and 7* — 74 are Quillen with respect
to the cocartesian model structures. To this end, we have the following theorem of
Lurie.

2.24 Theorem [11, Theorem B.4.2] Let
(Z,&) << (X, F) 2 (X', F)
be a span of marked simplicial sets such that Z, X, X' are oco—categories and the
collections of markings contain all the equivalences.
(i) The adjunction

. + + .
pg.sSet/(X,F) :sSet/(X,,f,) p*

is Quillen with respect to the cocartesian model structures.

(ii) Further suppose that:
(1) Forevery object x € X and marked edge f: z — m(x) in Z, there exists a
locally w—cartesian edge xo — x in X lifting f .
(2)  is a flat categorical fibration.
(3) & and F are closed under composition.

(4) Suppose given a commutative diagram

X1
27N
X h > X
0 7 X2

in X where g is locally w—cartesian, w(g) is marked, and w(f) is an

equivalence. Then f is marked if and only if h is marked. (Note in particular
that, taking f to be an identity morphism, every locally —cartesian edge
lying over a marked edge is itself marked.)
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Then the adjunction
* + + .
b4 .sSet/(X’F) <:>sSet/(Z’5) Tk

is Quillen with respect to the cocartesian model structures.
We formulated Theorem 2.24 as a theorem concerning a span Z <% X -5 X’ because
in applications we will typically be interested in the composite Quillen adjunction

o™ sSet]L(Z’g) = sSet;“(X,’f/) e p”.
Here are two examples.
2.25 Example (pairing cartesian and cocartesian fibrations) Let 7: X — Z be a
cartesian fibration. Then the span
VARESD CREN 4.

satisfies the hypotheses of Theorem 2.24. Now given a cocartesian fibration ¥ — Z,
define
Funz(X,Y) := (man®) (Y — Z¥).

Then the fiber of ﬁl?lz(x, Y) over an object z € Z is Fun(X;, Y;), and given a
morphism «: zg — z1, the pushforward functor

ay: Fun(X;,,Y;,) = Fun(X;,,Y;,)

0 b
is given by precomposition in the source and postcomposition in the target. Note how
this example highlights the relevance of condition (1) in Theorem 2.24(ii).

2.26 Example (right Kan extension) Let f:Y — Z be a functor. We can apply
Theorem 2.24 to perform the operation of right Kan extension at the level of cocartesian
fibrations. Consider the span

ZF 0 (0(Z) xz 5 V)P X YR
Then the conditions of Theorem 2.24 are satisfied, so we obtain a Quillen adjunction
(pry)i(evo)™: sSeth = sSetj“Y :(evo)«(pry)*.

In addition, the map C xz Y# — C xz 0(Z)# xz Y*# induced by the identity section
t: Z — 0(Z) is a cocartesian equivalence in sSet]LY for C — Z fibrant in sSet]LZ, by
[2, Lemma 9.8]. Consequently, the induced adjunction of co—categories

(pry ) (evo)™: Catg‘;“/ag s Catg‘;“/a;} :(evo)«(pry)*
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is equivalent to
f*:Fun(Z, Catso) == Fun(Y, Cateo) : f

under the straightening/unstraightening equivalence (which is natural with respect to
pullback).

Note that as a special case, if Z = A? we recover the formula Funy (Y, 1C) >~ lim F¢
of [9, Corollary 3.3.3.2] (where C — Y is a cocartesian fibration and F¢:Y — Cats
the corresponding functor). Indeed, this construction of the right Kan extension of a
cocartesian fibration is suggested by that result and the pointwise formula for a right
Kan extension.

Finally, we will use the following two observations concerning the interaction of
Theorem 2.24 with compositions and homotopy equivalences of spans — which we
also recorded in [4].

2.27 Lemma Suppose we have spans of marked simplicial sets
Xo <2 Zo 2 Xy and X; <725 X,
which each satisfy the hypotheses of Theorem 2.24. Then the span
Zo & Zoxx, Z1 25 74

also satisfies the hypothesis of Theorem 2.24.'* Consequently, we obtain a Quillen
adjunction

(p1 opry)i(moopry)™: sSet}"X0 s sSet}}'2 :(mo o prg)«(p1 0pry)*,

which is the composite of the Quillen adjunction from sSet}LX0 to sSeter1 with the one

+ +
from sSet/X1 to sSet/Xz.

Proof The assertion that the span satisfies the hypotheses of Theorem 2.24 is by
inspection. The other assertion that the Quillen adjunction factors as a composite
follows from the base-change isomorphism pg 7y « = prg , o pry. O

14However, one should beware that the “long” span Xg < Zg X x, Z1 — X2 may fail to satisfy the
hypotheses of Theorem 2.24, because the composition of locally cartesian fibrations may fail to again be
locally cartesian; this explains the roundabout formulation of the statement.
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2.28 Lemma Suppose a morphism of spans of marked simplicial sets

v ;f&

X ¢ .4

4 /

0

where pyt* and (p')1(x')* are left Quillen with respect to the cocartesian model
structures on X and X'. Suppose moreover that f is a homotopy equivalence in
sSeter,, so that there exists a homotopy inverse g and homotopies

h:id~gof and k:id~ fog.
Then the natural transformation pyr* — (p')1(7r')* induced by f is a cocartesian
equivalence on all objects, and, consequently, the adjoint natural transformation
(")« (p')* — m«p* is a cocartesian equivalence on all fibrant objects.
Proof The homotopies / and k pull back to show that for all X — C, the map
idy Xxc f: X xc K— XXxcL
is a homotopy equivalence with inverse idy x¢ g. The last statement now follows from

[7, Corollary 1.4.4(b)]. O

Parametrized fibers

In this brief subsection, we record notation for the S—fibers of an S—functor.

2.29 Notation Given an S—category w: D — S and an object x € D, define
Ox— (D) :={x} xp O(D).
For the full subcategory of cocartesian edges 0°°“*(D) C O(D), also define
X :={x} xp O°(D),
Given an S—functor ¢p: C — D, define
Cx:=xxpgyC.
Note that by definition, the objects of x are w—cocartesian edges in D with source x.

Then by the right cancellative property of w—cocartesian edges [9, Lemma 2.4.2.7],
the morphisms in x are 2—simplices of cocartesian edges with source x; hence x is
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an S—space (via the map evy: x — §). In fact, by Lemma 12.10, evy: x — S7x/ s a
trivial fibration, so we may think of x as an “S—point” of D.

In view of this, we will also regard Cy as an 7 x/ —category (and we will sometimes
be cavalier about the distinction between x and S”™ x/). Note however, that the functor
x — D is canonical in our setup, whereas we need to make a choice of cocartesian
pushforward to choose an S—functor S” X/ — D that selects x € D.

3 Functor categories

Let S be an co—category. Then Fun(S, Cat) is cartesian closed, so it possesses an
internal hom. As a basic application of Theorem 2.24, we will define this internal hom
at the level of cocartesian fibrations over S.

3.1 Proposition Let C — S be a cocartesian fibration. Let evy,evy:0(S)xsC — S
denote the source and target maps. Then the functor

J’_

(evi)i(evo)™: sSetjrS — sSet/G(S)ﬁXSDC

+
—>sSet/S

is left Quillen with respect to the cocartesian model structures.

Proof We verify the hypotheses of Theorem 2.24 as applied to the span
S0 0(8)F x5 4C X5 SH

By [9, Corollary 2.4.7.12], evg is a cartesian fibration and an edge ¢ in O(S) xg C
is evg—cartesian if and only if its projection to C is an equivalence. Thus (1) holds.
Item (2) holds since cartesian fibrations are flat categorical fibrations. Item (3) is
obvious. Item (4) follows from the stability of cocartesian edges under equivalence. O
3.2 Definition In the statement of Proposition 3.1, let

Fung(C, —) := (evo)«(evy)*: sSeth — sSeth.
We will also write this as Fung (;C, —) if we wish to emphasize the marking.
Proposition 3.1 implies that if D — S is a cocartesian fibration, then Fung (C, D) — S is

a cocartesian fibration. Unwinding the definitions, we see that an object of Fung (C, D)
over s € S is an §%/—functor

§% xgC — S xg D,
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and a cocartesian edge of Fung(C, D) over an edge e: Al — S isa Al x g 0(S)-functor
Al x50(S) x5 C — Al x5 0(S) x5 D.

Our first goal is to prove that the construction Fung (C, —) implements the internal hom
at the level of underlying co—categories. To this end, we have the following lemma
and proposition.

3.3 Lemma Let(: S — O(S) be the identity section and regard O(S ) as a marked
simplicial set over S via the target map. Then:

(1) For every marked simplicial set X — S and cartesian fibration C — S,
idy x txide: X xg C!'— X x5 0(S)# xg C!
is a cocartesian equivalence in sSeth.
(1") For every marked simplicial set X — S and cartesian fibration C — S,
(xide: X xg C! —>Fun((A1)ﬁ,X) xg C"

is a cocartesian equivalence in sSet;"S, where the marked edges in Fun((A)#, X)
are the marked squares in X .

(2) For every marked simplicial set X — S and cocartesian fibration C — S,
idc x ¢ xidy : yC x5 X — 41C x5 0(S)* x5 X

is a homotopy equivalence in sSet}LS.

Proof (1) Because —xgC f preserves cocartesian equivalences, we reduce to the case
where C = S. By definition, X — X xg 0(S)¥ is a cocartesian equivalence if and only
if for every cocartesian fibration Z — §, Mapi. (X x5 0(S)H, 1 Z) — Mapftg (X,42)
is a trivial Kan fibration. In other words, for every monomorphism of simplicial sets
A — B and cocartesian fibration Z — S, we need to provide a lift in the commutative
square

B¥ X X Uyey y (A% x X) x5 O(S) % 1z

(B¥x X)xg0(S)f ——— S*
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Define ho: 0(S)* x (AH)# — 0(S)* to be the adjoint to the map 0(S)* — 0(0(S))*
obtained by precomposing by the map of posets Al x Al — Al which sends (1, 1) to 1
and the other vertices to 0. Precomposing ¢ by id 4z, y X ho, define a homotopy

h: (A% x X) x5 0(S) x (A - ,Z
from @6 x °Prasxx 0 @|(arxx)xg0(s)s- Using i and @|pi x, define a map
¥ B X X Ugayx (A x X) x5 0(S)* — Fun((AN¥,,2)

such that Y| s, x is adjoint to ¢|gu, x o praexx and V| 4 x)xso(s)t 1S adjoint to A.
Then we may factor the above square through the trivial fibration

Fun((AY¥,,Z) — 1 Z x5 0(S)*
to obtain the commutative rectangle:

BY X X Ugeyy (Af x X) x5 0(5)F —2 Fun((AV%,,2) —1s 1Z

(B¥ x X) x5 O(S)f ————— 1 Z x5 O(S)F —— s#
¢|Bn><XX1d

The dotted lift 1; exists, and e o {ﬁ is our desired lift.
(1) Repeat the argument of (1) with Fun((Al)ﬁ, X) in place of @(S)ﬁ.

(2) Let p: C — S denote the structure map and let P be a lift in the commutative

square
{C ——<— Fun((A1)*,4,0)
I 2 =feoson
1C Xs @(S)ﬁ' 1C x5 0(S)*
Let

g = (e1 xidy) o (P xidy): 4C x5 0(S)* x5 X — 4C x5 X

and note that g is a map over S. We claim that g is a marked homotopy inverse of
f =id¢ xt xidy. By construction, g o f = id. For the other direction, define

ho: Fun((AhF,1C) x (AH* — Fun((ADH¥, ,C)
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as the adjoint of the map Fun((A")#, 1C) — Fun((A! x AN)#, 1C ) obtained by precom-
posing by the map of posets Al x Al — Al which sends (0, 0) to 0 and the other
vertices to 1. Define

hiyC xs 0(S) xs X x (AHYF - ,C x5 0(S)* x5 X

as the composite ((eg, O(p)) x X) o (ho X X) o (P xidy(a1)z). Then  is a homotopy
over S fromidto fog. O

3.4 Proposition Let C,C’, D — S be cocartesian fibrations and let F: C — C' be a
monomorphism of cocartesian fibrations over S (so preserving cocartesian edges). For
all marked simplicial sets Y over S, the map

Fung (3D, Fung (;C",Y)) — Funs (1D x5 4C", Y) Xpung (;Dxg5C.v) Funs (;D, Funs (;C, Y))
which precomposes by F is a trivial Kan fibration.
Proof From the defining adjunction, for all X,Y € sSetj‘S we have a natural isomor-

phism
Fung (X, Fung (;C, Y)) = Fung (X x5 0(S)* x5 C,Y)

of simplicial sets. Since Fung (—, —) is a right Quillen bifunctor, the assertion reduces
to showing that

yD Xs nC/ U,DxsyC 4D X5 @(S)‘i xsyC — 4D xg @(S)ti Xg nC/

is a trivial cofibration in sSetjrS, which follows from Lemma 3.3(2). O

In Proposition 3.4, letting C = @ and Y = yE for another cocartesian fibration
E — S, we deduce that Fung(C’, —) is right adjoint to C’ xg — as an endofunctor
of Fun(S, Cat,). Further setting D = §, we deduce that the category of cocartesian
sections of Fung (4C, 1 £) is equivalent to Fung (;C, 1 £). We will employ the following
notation to explicitly track objects under this correspondence.

3.5 Notation Given a map f:;C — E, let of denote the cocartesian section

St Fung (;C, yE) given by adjointing the map 0(S)* xg 1C e, C AN hE.

We next study varying the second variable in the construction Fung (—, —).
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3.6 Lemma Let C — D be a fibration of marked simplicial sets over S .
(1) Let K — S be a cocartesian fibration. Then
Funs (4K, C) — Funs (4K, D) xp C

is a fibration in sSeth.

(2) The map
Fung (S*,C) — Fung(S*, D) xp C

is a trivial fibration in sSetjrS.
Proof Leti: A — B be a map of marked simplicial sets. For (1), we use that if i is a
trivial cofibration, then
BUg AxsO0(S) x5 4K — B xs0(S) x5 1K

is a trivial cofibration, which follows from Proposition 3.1. For (2), we use that if i is a
cofibration, then
By Axgs0(S)* > B xg0(S)

is a trivial cofibration, which follows from Lemma 3.3(1). O
The following proposition indicates that we can promote the conclusion Fung (S, —) ~id
(as an endofunctor of Fun(S, Cat,)) of Proposition 3.4 to the level of cocartesian
model structures. It will not be used in the sequel and is included only for illustrative
purposes.
3.7 Proposition The Quillen adjunction

—Xg @(S)ﬂ : sSetjrS = sSeth Zmls(sﬁ, -)

is a Quillen equivalence.

Proof We first check that for every cocartesian fibration C — S, the counit map
Fung (5%, ,C) x5 0(S)F —4C
is a cocartesian equivalence. By Lemma 3.3(1), it suffices to show that

Fung (S%,,C) — 4C
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is a trivial marked fibration, which follows from Lemma 3.6(2) (taking D = S). We
now complete the proof by checking that — x g O(S )* reflects cocartesian equivalences;
ie given the commutative square

A— B

! !

Axs0(S) —— B xg0(S)*

if the lower horizontal map is a cocartesian equivalence over S (with respect to the
target map) then the upper horizontal map is a cocartesian equivalence over S. But the
vertical maps are cocartesian equivalences by Lemma 3.3(1). O

The construction Fung (—, —) does not make homotopical sense when the first variable
is not fibrant, so it does not yield a Quillen bifunctor. Nevertheless, we can say the
following about varying the first variable.

3.8 Proposition Let K, L, and C be fibrant marked simplicial sets over S, let
f: K — L be amap and let

f*:Fung(L,C) — Fung(K,C)
denote the induced map.

(1) Suppose that f is a cocartesian equivalence over S. Then f* is a cocartesian
equivalence over S.

(2) Suppose that f is a cofibration. Then f* is a fibration in sSetjrS.
Proof (1) It suffices to check that for all s € S, f* induces a categorical equivalence
between the fibers over s, ie that
Fung ((S*/)* xg L, C) — Fung ((S*)* x5 K, C)

is a categorical equivalence. Our assumption implies that (S5/)# xg K — (S*/)# xg L
is a cocartesian equivalence over S, so this holds.

(2) For any trivial cofibration A — B in sSet}', we need to check that
Axg0(S)xs L UAxg0(S)xs K Bxs0(S)xs K— Bxs0(S)xs L

is a trivial cofibration in sSetjrS. By Proposition 3.1, — x5 O(S) xg K preserves trivial
cofibrations and ditto for L. The result then follows. O
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A final word on notation: since Fung(—, —) is only homotopically meaningful (and
fibrant) when both variables are fibrant, we will henceforth cease to denote the markings
on the variables.

S —categories of S —objects

For the convenience of the reader, we briefly review the construction and basic properties
of the S—category of S—objects in an co—category C. This is a construction, at the
level of marked simplicial sets, of the right adjoint to the Grothendieck construction
functor!®

Gry: Cat“’c/agt — Caty,, (C— S)—C.

This material is originally due to Denis Nardin in [2, Section 7].
3.9 Construction [2, Definition 7.4] The span

St g(5)" £

defines a rlght Quillen functor (evg)«p*: sSet™ — sSet, /s which sends an co—category
E to Fung (0(S), E x S) (cf Example 2.25). This is the S—category of objects in E,
which we will denote by Eg.

The next proposition shows that the functor £ — E g indeed implements the right
adjoint to Gry .

3.10 Proposition Suppose C an S—category and E an co—category. Then we have an
equivalence
¥ :Fung(C, Eg) = Fun(C, E).

Proof Consider the commutative diagram

C~ —— 0(S)F —— A

[

nC—)Sﬁ

|

AO

15We write Gry to distinguish from Notation 2.6.
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Given an co—category E, traveling along the outer span (ie pulling back and then pushing
forward) yields Fun(C, E), traveling along the two inner spans yields Fung(C, E's),
and the comparison functor v is induced by the map ¢: C~ — ,C x5 O(S )u. By
[2, Proposition 6.2], ¢ is a homotopy equivalence in sSetjrS. Therefore, combining
Lemma 2.27 and Lemma 2.28, we deduce the claim. O

3.11 Notation Given an S—functor p: C — Eg, let pT: C — E denote the corre-
sponding functor under the equivalence of Proposition 3.10.

3.12 Example Let £ = Spc or Cat. Then Spcg (resp. Caty s) is the S—category
of S—spaces (resp. S—categories). In particurar, suppose £ = Spc and § = 02).
Then we also call S_pcogx the G—oo—category of G—spaces. Note that the fiber of this
cocartesian fibration over a transitive G—set G/H is equivalent to the co—category of
H—spaces Fun(Og), Spc), and the pushforward functors are given by restriction along
a subgroup and conjugation.

3.13 Remark Let C be an S—category and 7n: X — C a left fibration. Then =
straightens to a functor F': C — Spe¢, which under the equivalence of Proposition 3.10
corresponds to an S—functor F’: C — Spes. We will say that & S—straightens to F’.
Similarly, if 7 is a cocartesian ﬁbration,ﬁen 7 S—straightens to an S—functor valued
in Cat, 5.

4 Join and slice

The join and slice constructions are at the heart of the oo—categorical approach to limits
and colimits. In this section, we introduce relative join and slice constructions and
explore their homotopical properties.

The S —join

4.1 Definition Let:: S x dA! — § x Al be the inclusion. Define the S—join to be
the functor
(— * g —) =l Sset/sxaAl — sSet/SxAl .

Define the marked S—join to be the functor

J’_

(— x5 —) 1= tx: sSet;rkS,nX((,)Al)b — sSet/SﬁX(Al)b.
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4.2 Notation Given X and Y, marked simplicial sets over S, we will usually refer to
the structure mapsto S by m1: X — S, mp: Y — S,and 7n: X x5 ¥ — S. Explicitly,
an (i +j+1)-simplex A of X xg Y is the data of simplices 0: A" — X, t: A/ - Y,
and A’: A x A/ — S such that the diagram

AN — s N x AN AN

O L

T 2

X > S < Y

commutes; we then have that A’ = 7 o A. We will sometimes write A = (o, ) S0 as to
remember the data of the i —simplex of X and the j—simplex of Y in the notation. If
given an n—simplex of X xg Y, we will indicate the decomposition of A given by the
structure map to Al as A0 x A" (with either side possibly empty).

4.3 Proposition Let:: S x dA! < § x Al be the inclusion. Then

(@) tx:sSet/ g ga1 — sSet g, a1 is a right Quillen functor.

- sSet™ t
(b) L*.sSet/SﬁX(aAl)b —>sSet/SnX(A1)»

Consequently, if X and Y are categorical (resp. cocartesian) fibrations over S, then

is a right Quillen functor.

X xg Y is a categorical (resp. cocartesian) fibration over S, with the cocartesian edges
given by those in X and Y .

Proof For (b), we verify the hypotheses of Theorem 2.24(ii). All of the requirements
are immediate except for (1) and (2).

(1) Let (s,i) be a vertex of S¥ x (A1), i = 0 or 1. Let f:(s'i") > (s,i)be a
marked edge in S¥ x (A')*. Then i’ =i and f viewed as an edge in S¥ x (A" is
locally (—cartesian.

(2) Tt is obvious that Al < Al is a flat categorical fibration, so by stability of flat
categorical fibrations under base change, S x Al < S x Al is a flat categorical
fibration.

Part (a) also follows from (2) by [11, Proposition B.4.5]. By (a), if X and Y are
categorical fibrations over S, X g Y is a categorical fibration over S x Al. The
projection map S x Al — S is a categorical fibration, so X xg Y is also a categorical
fibration over S. By (b), if X and Y are cocartesian fibrations over S, y X xg Y is
fibrant in sSet;rSﬁX (Al
1 X *s 4} is marked as a cocartesian fibration over S. O

Since S* x (A!)® is marked as a cocartesian fibration over S,
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We have the compatibility of the relative join with base change.

44 Lemma Let f:T — S be a functor and let X and Y be (marked) simplicial sets
over S. Then we have a canonical isomorphism

(XxsY)xs T =(XxsT)*x7 (Y xsT).

Proof From the pullback square

T x Al —L5 T x Al

lfxm lfxm

Sx Al 5§ x Al
we obtain the base-change isomorphism f*(t5)x = (t7)« f*. O
In [9, Section 4.2.2], Lurie introduces the relative “diamond” join operation ¢ g, which
we now recall. Given X and Y marked simplicial sets over S, define

XosY =X Uysgyxioy X xs ¥ x (AN Uysgysqny Y.
There is a comparison map
Vixy): XosY - XxsY =0(X,Y),

adjoint to the isomorphism (*(X x5 Y) =~ (X, 7).

4.5 Lemma Let X be a marked simplicial set. Then ¥ (x s): X ©5 St > X x5 SH
is a cocartesian equivalence in sSetjrS. Dually, if X is in addition fibrant, then

V(s,x): Stog X — S* x5 X is a cocartesian equivalence in sSeth.

Proof We first address the map ¥(x,s). By left properness of the cocartesian model
structure, the defining pushout for X ¢ .S fisa homotopy pushout. By Theorem 4.16,16
—xg SH preserves cocartesian equivalences. Therefore, choosing a fibrant replacement
for X and using naturality of the comparison map ¥(x,s), we may reduce to the case
that X is fibrant. Then we have to check that

X x {1} —— X x (A’

| |

St 5 X g S*

16There is no circularity since Lemma 4.5 is only later referenced in this paper at the beginning of
Section 9.
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is a homotopy pushout square. Since this is a square of fibrant objects, this assertion
can be checked fiberwise, in which case it reduces to the equivalence Xy o A =» X>
of [9, Proposition 4.2.1.2].

The second statement concerning V¥ (s, x) follows by the same type of argument, but

without the reduction step. |

4.6 Warning In general, ¥(x y) is not a cocartesian equivalence. As a counterexample,
consider S = Al, X = {0}, and Y = {1}. Then Y (x,y) is the inclusion of

X og Y = A0 At}

into X xg ¥ = Al, which is not a cocartesian equivalence over Al.
We will later need the following strengthening of the conclusion of Proposition 4.3.

4.7 Proposition (1) LetC,C’, D — S be inner fibrations and let C,C’' — D be
functors over S. Then C xp C' — S is an inner fibration.

(2) LetC,C’, D — S be S—categories and let C,C’ — D be S—functors. Then
C xp C' — S is an S—category with cocartesian edges given by those in C or
C’,and C xp C' — D is an S—functor.

Proof (1) Let 0 <k <n. We need to solve the lifting problem

A 2 Cup

AT
IR
A'Y —— S
Let A: A" — D be a lift in the commutative square
Ay — D
A
L2
A" — S
Define A using the data (Ao a0, Ao| a1, A). Then A is a valid lift.
(2) Consider C xp C’ as a marked simplicial set with marked edges those in 4C or

in ;C’. We need to solve the lifting problem

Ao Lo, CxpC’
AT

NS
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Let A: A" — D be a lift in the commutative square
A
L 27
pAY —— S
Define A using the data (Ag|an0, Ao| a1, A). Then A is a valid lift. Finally, note that we
may obviously lift against classes (3) and (4) of [9, Definition 3.1.1.1]. We conclude

that C xp C’ — S is fibrant in sSetjrS, hence an S—category with cocartesian edges as
marked. O

Since the S—join is defined as a right Kan extension, it is simple to map into. In the
other direction, we can offer the following lemma.

4.8 Lemma LetC, C’, D, and E be S—categories and let C, C' — D be S —functors.
Then
Fung(C *xp C’, E) — Fung(C, E) x Fung(C’, E)

is a bifibration [9, Definition 2.4.7.2]. Consequently,
Fung(C *xp C’, E) — Fung(C, E)

is a cartesian fibration with cartesian edges those sent to equivalences in Fung (C’, E),
and
Fung(C xp C', E) — Fung (C’, E)

is a cocartesian fibration with cocartesian edges those sent to equivalences in Fung(C’E).

Proof By inspection, the span
(A"’ <& (C +p C') X5 s#

satisfies the hypotheses of Theorem 2.24. Therefore, w47"* (1E — S) is a categorical
fibration over Al. The claim now follows from [9, Proposition 2.4.7.10], and the
consequence from [9, Lemma 2.4.7.5] and its opposite. O

The Quillen adjunction between S —join and S —slice

Our next goal is to obtain a relative join and slice Quillen adjunction. To this end, we
need a good understanding of the combinatorics of the relative join (Proposition 4.11).
We prepare for the proof of that proposition with a few lemmas.
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4.9 Lemma Leti,] > —1 and j,k > 0. Then the map
A we N o 9N s A Ly o px gt NV TRHIT2 oy AT RS

is inner anodyne.

Proof Let f: A ™! < A« AV/=!and g: AKT! < AKF1. The map in question is
f % g Al s0is inner anodyne by [9, Lemma 2.1.2.3]. |

By [9, Lemma 2.1.2.4], the join of a left anodyne map and an inclusion is left anodyne.
We need a slight refinement of this result:

4.10 Lemma Let f: A9 =< A be a cofibration of simplicial sets.

(1) Letg: By — B be a right marked anodyne map between marked simplicial sets.
Then

fPxgiAgxBUygy g A" x By A"+ B
is a right marked anodyne map.

(2) Letg: Bo < B be a left marked anodyne map between marked simplicial sets.
Then

g*fb:B*A%UBD*A%BO*Ab%B*Ab

is a left marked anodyne map.

Proof We prove (1); the dual assertion (2) is proven by a similar argument. As f lies
in the weakly saturated closure of the inclusions iy, : dA™ < A™ it suffices to check
that i,"n * g is right marked anodyne for the four classes of morphisms enumerated
in [9, Definition 3.1.1.1]. For g: (A?)" < (A", 0 <i < n, i}, « g obtained from
an inner anodyne map by marking common edges, so is marked right anodyne. For
g: AZ” s Al i’ xgis A;’iﬁi}q < A""'m"'ln, 50 i’ * g is marked right anodyne.
For the remaining two classes, i 31 * g is the identity because no markings are introduced
when joining two marked simplicial sets. |

The following proposition reveals a basic asymmetry of the relative join, which is
related to our choice of cocartesian fibrations to model functors.
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4.11 Proposition Let K be a marked simplicial set over S
(1) For every marked left horn inclusion yAfj < yA" over S, the induced map
K *5 (AR x5 0(S)!) > K x5 (A" x5 0(5)")

is left marked anodyne, where the pullbacks yAf X s @(S)n and y A" x g @(S)n are
formed with respect to the source map eo and are regarded as marked simplicial
sets over S via the target map e.

(1') For every left horn inclusion Afj < A" over S, the induced map
A" x5 0(S) Upnxsocs) K xs (Ag x5 0(S)) = K x5 (A" x5 0(S))
is an inner anodyne map.

(2) Leteg: C — S be a cartesian fibration over S and lete;: C — S be any map of
simplicial sets. For every inner horn inclusion A}, < A", 0 <k <n over S, the
induced map

K xg (Az x5 C)— Kxg (A" x5 C)
is inner anodyne, where the pullbacks A} xs C and A" x g C are formed with
respect to eg and are regarded as simplicial sets over S via ey.

(3) For every marked right horn inclusion AZ” < A" over S, the induced map
Kxg A™M s K xg A

is right marked anodyne.

Proof Let I be the set of simplices of K endowed with a total order such that o < o’
if the dimension of o is less than that of o/, where we view the empty set as a simplex
of dimension —1. Let J be the set of epimorphisms y: A/ — A"~! endowed with a
total order such that y < y’ if the dimension of y is less than that of y’. Order I x J
by (0, x) < (¢’ y) if 0 <o’ or 0 =o' and y < y'. For any simplex 7: A/ — A", we
let r¢ () be the pullback

Ark(r)o rk(r)} A1

R
N —T 5 A"
We will let ¢ denote the map under consideration. We first prove (1). Given o €
and y € J, let X5, be the submarked simplicial set of K xg (A" x5 O(S )ﬂ) on

Algebraic € Geometric Topology, Volume 23 (2023)



546 Jay Shah

K xs (4Af xs 0(S)") and simplices (67, 7'): Al * A — K %5 (A" x5 6(S)) not in
K x5 (Af xs 0(S)) with (07, r9(eg 0 ') < (0, x). If (0, x) < (¢/, x’), then we have
an obvious inclusion X , < X4/ 7, and we let

X<(a,x) = (nAg X @(S)n) U ( U Xa/,xf).
(0’,x)<(0,x)

Since K x5 (1A" xg @(S)n) = colim(g, y)erxJ Xq,x» in order to show that ¢ is left
marked anodyne it suffices to show that X (4, ) <> Xo,y is left marked anodyne for
all (o, ) € I x J. We will say that a simplex of X , is new if it does not belong to

X<(0,x)-

Let 0: A' — K be an element of 7 and y: A/ — A""! an element of J. Let
A=(0,7): NN — K g (A" x5 0(S)) be any nondegenerate new simplex of Xo,x»
so ro(eg o) = x. Let y: A/T1 — A" be the unique epimorphism with ro(y) =
and let e: Al — A" xg 0(S) be a cartesian edge over {0, 1} with (1) = 7(0). The
inclusion (A1)# Liyo A/ < yA/+1 is right marked anodyne, so we have a lift 7 in the
diagram
Ao AV 95 A" x5 O(S)
- 7
Lo BT
By Lemma 4.10,
A N g p AT s A s A/ H

is right marked anodyne. Using that (e; o T)(e) is an equivalence, we obtain a lift

; ; ; AUeT
A % A |—|Af HA/'H T 811'..

!

A w AT

s~

which allows us to define 1: Al x A/t > K x g (A" x5 0(S)) extending A and 7. Then
A is a nondegenerate new simplex of X, o,x and every face of A except for A = d;i 11 (1)
lies in X -(4,,). We may thus form the pushout

i+j+2 . .
LA i+ L +2) —— Xe@p

! !

LW A2 i+ 1,0 +2)) —— X1
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which factors the inclusion X (4 y) <> X(g,y) as the composition of a left marked
anodyne map and an inclusion. (There is one further complication involving markings:
in the special case n = 1, 0 = @ and j = 1, we may have that A = 7 is a marked
edge, ie an equivalence over 1. Then the edges of T are all marked, so we should
form the pushout via maps (A%)ﬁ <> (A2)¥ which are left marked anodyne by [9,
Corollary 3.1.1.7]).

Now for the inductive step suppose that we have defined a sequence of left marked
anodyne maps

X<(a,x) — ... X<(0,x),m C X(o,x)

such that for all 0 </ < m all new nondegenerate simplices in X (4, ,) of dimension
i +1+ j liein X_(4 ) and admit an extension to an (i +/+ j +1)—simplex with the
edge {i +/,i + 1+ 1} marked in X (g4 ),;> and no new nondegenerate simplices of
dimension > i +/ + j + 1 lie in X (4, ;7. Let A = (o, T) be any new nondegenerate
(i +m+j+1)—simplex not in X (4, y),m- For 0 <1 <m let A; = (0, 7;) be a nonde-
generate (i +m+j +1)—simplex in X (4 ) m With dj +m(A;) = d;4141(A) and edge
{i + m,i +m + 1} marked. 7 and 79, ..., T;y—1 together define a map

7' Aﬁii * N7 A" x5 0(S)
where the domain of t is the subset {0,...,m —1,m+1,...,m + j + 1} and the
domain of t; is the subset {0,...,[,...,m+ j + 1}. Observe that the map

Aziiq * N1 Am+1u * A1

is right marked anodyne, since it factors as

AT A oy gt Uy AL AT=T ey amtil AT

where the first map is obtained as the pushout of the right marked anodyne map
m+11 m+11 - . m+11 m+1l -1

Al <A along the inclusion A}, 7" < A"+ A/7" and the second map

is obtained by marking a common edge of an inner anodyne map. Let j: A"/ +1 5 A7

be the unique epimorphism with ro()y) = y. Then we have a lift T in the commutative

diagram

4

AT« AT T A x5 O(S)

Am+1 *Aj—i —)Z) A
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By Lemma 4.10, the map

Ai*Am+1q*Aj_lu Am+1n*Aj_1;>Ai*Am+1n*Aj_l

m+1 Aﬁiiu*N_l

is right marked anodyne. Since (e; o T)({m,m + 1}) is an equivalence, we may extend
(U mA) UmA UerT to a map AT +/+2 — § which defines a nondegenerate

(i+m+ j+2)-simplex A with A as its (i + m + 1)™ face and which extends 7. By
construction, every other face of A lies in X <(o,x),m- Thus we may form the pushout

L 2 i bm o L m £2) —— X< m

! l

I_ll(Ai+m+j+2,{i +m+ l,i +m +2}) — X<(a,x),m+1

and complete the inductive step. (Again, there is one further complication involving
markings: in the special case i = —1,n =1, j = 0 and m = 1, we may have that
A is marked. Then every edge of X is marked since (A%)ﬂ — (Az)ﬂ is right marked
anodyne, and we form the pushout along maps (A%)it — (A2)H), Passing to the colimit,
we deduce that X (5 ) <> X0,y is marked left anodyne, which completes the proof.

For (1’), simply observe that if i > —1 we are attaching along inner horns.

We now modify the above proof to prove (2). Let X, , be the subsimplicial set of
K x5 (A"x5C)on K g (A xgC)and simplices (67, 7'): A« AV — K x5 (A" x5 C)
not in K xs (A7 x5 C) with (0/, 7 (eg 0 7')) < (0, ). Let

X<(o,x) =(K*(Az Xs C))U( U Xa’,x’)-
(07.x")<(0,x)

We will show that X (5 ,) <> Xo,y is inner anodyne for all (0, ) € [ x J.

Leto: Al — K be an element of 7, X: A — A" an element of J, and let k&’ be the
first vertex of y with y(k') = k. Let A = (0,7): A x A/ — K x5 (A" x5 C) be any
nondegenerate new simplex of Xy y, so rg(ego1) = x. Let j: AT 5 A" be the

unique epimorphism with r¢ () = y. Combining [9, Lemma 2.1.2.3] and Lemma 4.10,
we see that the inclusion

dir: N = AL AV TH o ARTZT A
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is right marked anodyne, so we have a lift T in

AN —F 5 AtxgC

A1 o . A
where T({k’,k’ + 1}) is a cartesian edge. By Lemma 4.9,
AN x N Uy NTHs A x AV TE
is inner anodyne. We thus obtain an extension

Nox N Ly, AT TRE

|

Ai * Aj-i-l».

S

which allows us to define A: AY x A/T1 — K xg (A" xg C) extending A and 7. Then
A s nondegenerate and every face of A except for A = d; 1 /41 ()_k) lies in X (g, ). We
may thus form the pushout

i+j+2
LI Aiiess — X<@n

| !

I_I)L NTIH2 X<(U,x),1

which factors the inclusion X (4 ) <> X(g,y) as the composition of an inner anodyne
map and an inclusion.

Now for the inductive step suppose that we have defined a sequence of inner anodyne
maps

Xeox) == X<o)m C X0

such that for all 0 </ < m all new nondegenerate simplices in X (4, ,) of dimension
i +1+ j liein X_(4,y),; and admit an extension to an (i +/+ j +1)-simplex such
that the edge {i + k" +1,i + k' + 1 + 1} is sent to a cartesian edge of A" xg C, and
no new nondegenerate simplices of dimension > i + 1/ + j + 1 lie in X (4, 4. Let
A = (0, 7) be any new nondegenerate (i +m+j+1)-simplex not in X_ (4 ) m- For
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0 <! <mlet A; = (0, 7;) be a nondegenerate (i +m+j+1)-simplex in X_ (5, y),m
with d; 4 4k (A1) = dj+14%+1(A). Then t and 19, ..., T;—1 together define a map

1. Ak'—1 m+1 | Aj—k'—1 n
T A * AT * A — A'xgC,

where the domain of 7 is the subset {0,... . k'+m—1Lk'+m+1,....m+j + 1}
and the domain of t; is the subset {0,..., k" +1,...,m + j + 1}. The map

T A N A

is AK'—1 joined with a right marked anodyne map, so is right marked anodyne by
Lemma 4.10. Let j: A" t/+1 5 A" be the unique epimorphism with ¢ () = x. Then
we have a lift T in the following commutative diagram

. gy ’
A1 A%ii * K= T 5 AtxgC

AmtJ+1 X s A

such that T({k" 4+ m, k' +m + 1}) is a cartesian edge. By Lemma 4.9, the map
Ai *Ak’—l * QAT *Aj—k’ UAk’fl*aAm*Ajfk’ Am+j+1 s Ai+m+j+2

is inner anodyne. Thus, we may extend (|J; 7A;)UrAUe T toamap AT H/+2 5 S
which defines a nondegenerate (i +m+ j 4+2)-simplex A with A asits (( +&’ +m+1)D
face and which extends 7. By construction every other face of A lies in X <(o,x).m-
Thus we may form the pushout

i+m+j+2
|—|A Ai+k’+m+1 > X<(o,0).m

| |

I_ll Ai+m+j+2 N X<(0,)(),m+1

and complete the inductive step. Passing to the colimit, we deduce that X - (5 ) <> Xo,y
is inner anodyne, which completes the proof.

We finally modify the above proof to prove (3). Giveno € I and y € J, let X , be
the submarked simplicial set of K g A" on K g Aﬁu and simplices

(0, 7): N« N — K xg A"
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notin K xg AZu with (o/, r, (') < (o, ). Let

X<o = (K *s AZH) U ( U XG’,X’)-

(07,x")<(0,x)

We will show that X (4, ,) <> Xo,y is right marked anodyne for all (o, y) € I x J.
Let 0: A' — K be an element of / and y: A/ — A""! an element of J. Let
A=(0,7): AN x N - K xg A" be any nondegenerate new simplex of X », so
ra(t) = x. Let j: A/t1 — A" be the unique epimorphism with r,,(¥) = y. By
Lemma 4.9, the inclusion

A s N Uy NTHes A AT
is inner anodyne, so we have an extension in

|

Ai *Aj-i-l .

S

which allows us to define A: AY » A/t — K xg A" extending A and y. Then A s
nondegenerate and every face of A except for A = dj 4 j 4+2(A) lies in X <(0,x)- We may
thus form the pushout

i+j+20
Lix Ai+j+2 — X<,

. l

i+ 42l
|_|A NHI+2 —>X<(0,x),1

which factors the inclusion X5 ) = X(4,) @s the composition of a right marked
anodyne map and an inclusion.

Now for the inductive step suppose that we have defined a sequence of right marked
anodyne maps
X<o) = = X<om C X0

such that for all 0 </ < m all new nondegenerate simplices in X (4, ,) of dimension
i +1+ j lie in X_(4 4); and admit an extension to an (i +/+j +1)-simplex, and
no new nondegenerate simplices of dimension > i + 1/ + j + 1 lie in X (4, 4. Let
A = (0, 7) be any new nondegenerate (i +m+j+1)-simplex not in X_ (4 ) m- For
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0 <l <mletA; = (0,7) be a nondegenerate (i +m+j+1)-simplex in X (4, ).m
with dj ym+j+1(A1) = d;i+ j+141(A) (note that 7; = 7). By Lemma 4.9, the map

A x N x QA™ Upjgpm A x A™ s A% A % AT

is inner anodyne. Therefore, we may extend 7w A U (Ul 7T)L]) toamap AT/ M2 _ g
and define an (i 4 j +m+2)—simplex A of K % A" with

ditjtmi2h=A and digjiph=2A+1.

By construction, every face of A except for A lies in X <(o,x),m- Thus we may form the
pushout

i+j+m+20
Lx Ai+j+m+2 » X<, 0.m

. |

I_l)L Ai+j+m+2n E— X<(0,x),m+1

and complete the inductive step. Passing to the colimit, we deduce that X - (5, ) <> X0,y
is right marked anodyne, which completes the proof. a

4.12 Remark The proof of Proposition 4.11 can be adapted to show that for any
cartesian fibration C — §, yAj xs C b s pA* xg C I is marked left anodyne (in
the 0 = & case, we only use that eg: O(S) — § is a cartesian fibration). As well,
letting K = &, part (2) of Proposition 4.11 shows that Ag xg C — A" xg C is inner
anodyne. This refines the theorem that marked left (resp. inner) anodyne maps pullback
to cocartesian (resp. categorical) equivalences along cartesian fibrations.

For later use, we state a criterion for showing that a functor is left Quillen.

4.13 Lemma LetJl and N be model categories and let F : M — N be a functor which
preserves cofibrations. Let I be a weakly saturated [9, Definition A.1.2.2] subset of the
trivial cofibrations in JL such that for every object A € M, we have amap f: A — A’
where f € I and A’ is fibrant. Then F preserves trivial cofibrations if and only if

(1) forevery f €I, F(f) is a trivial cofibration;

(2) F preserves trivial cofibrations between fibrant objects.
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Proof The “only if” direction is obvious. For the other direction, let A — B be a
trivial cofibration in /. We may form the diagram

A——— B

I

A —— AUy B —— (A'uy B

where the vertical and lower right horizontal arrows are in /. Then our two assump-
tions along with the two-out-of-three property of the weak equivalences shows that
F(A) — F(B) is a trivial cofibration. O

4.14 Lemma Let K be a simplicial set over S. Then
K *g —,— *%g K: sSet/S — sSetK//S
are left adjoints. Similarly, for K a marked simplicial set over S,

Kxg—, —xs K: sSeth — sSet;g//S
are left adjoints.

Proof We prove that K xg — is a left adjoint in the unmarked case and leave the other
cases to the reader. Let F' denote K x5 — and define a functor G : sSetg y5 — sSet ;g
by letting G(K — C) be the simplicial set over S which satisfies

Hom, s (A", G(K — C)) = Homg y5(K x5 A", C);

this is evidently natural in K — C. Define a unit map 5: id — GF on objects X
by sending 0: A" — X to K xs0: K xg A" — K x5 X, which corresponds to
A" — G(K x5 X). Define a counit map n: FG — id on objects K — C by sending
A=(0,1): A% AV = Kxs G(K — C)to Al % AV @ K wg AV 25 € where 7/
corresponds to : A/ — G(K — C). Then it is straightforward to verify the triangle
identities, so F is adjoint to G. O

For the following pair of results, endow sSet;“S with the cocartesian model structure
and sSet} K /s = (sSetj'S) k, with the model structure created by the forgetful functor
to sSet 7, /s

4.15 Theorem Let K be a marked simplicial set over S. The functor

K x5 (— x5 0(S)%): sSetfg — sSet) ¢
is left Quillen.
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Proof We will denote the functor in question by F. First observe that F is the
composite of the three left adjoints eg, e11, and K xg —, so F is a left adjoint. F
evidently preserve cofibrations, so it only remains to check that F' preserves the trivial
cofibrations. We first verify that F' preserves the left marked anodyne maps. Since
F preserves colimits it suffices to check that F preserves a collection of morphisms
which generate the left marked anodyne maps as a weakly saturated class. We verify
that F preserves the four classes of maps enumerated in [9, Definition 3.1.1.1].

(1) For¢: (Az)b — (A")", 0 < k < n, the underlying map of simplicial sets of F () is
inner anodyne by Proposition 4.11. F(¢) is obtained by marking common edges of an
inner anodyne map, so is left marked anodyne.

(2) Fort:yAfy — yA", we observe that the map

Kxs (AL xs0(S)HU K x5 (A" x5 0(S)") = K #5 (44" x5 0(S)F)

Kxs (AL x50(S)")

in the case n = 1 is marked left anodyne, since every marked edge in the codomain
factors as a composite of two marked edges in the domain, and is the identity if n > 1. It
thus suffices to show that K »g (1A{ X5 @(S)n) — Kxg (1A" x5 @(S)n) is left marked
anodyne, which is the content of part (1) of Proposition 4.11.

(3) and (4) In both of these cases one has a map of marked simplicial sets A — B
whose underlying map is an isomorphism of simplicial sets. Then

A —— F(A)

|

B —— F(B)
is a pushout square, so F(A) — F(B) is left marked anodyne if A — B is.

Next, let f: yC — 3D be a cocartesian equivalence between cocartesian fibrations
over S. Let g: D — ;C be a homotopy inverse of f, so that there exists a homotopy
h:yC x (AHF > yC over § from idc to g o f. Define a map

¢: (K x5 (;C x5 0(S)H) x (A — K x5 ((;€ x5 0(S)H*) x (A1)
by sending an (i 4 j +1)-simplex (4, ) given by the data

oA 5K, TN 5 Cxs08), mod: NT/TL S AL g ATFIFL Al
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to an (i 4 j +1)—simplex A’ given by o, (t,0t) and 7 o A, where 1: AV — A" x A/ is
the inclusion. It is easy to see that ¢ restricts to an isomorphism on

(K x5 (1C x5 0(S)*)) x dAL,

We deduce that F(h) o ¢ is a homotopy from F(g o f) to the identity. A similar
argument concerning a chosen homotopy from f o g to idp shows that F(f) is a
cocartesian equivalence.

Finally, invoking Lemma 4.13 completes the proof. O

4.16 Theorem Let K be a marked simplicial set over S. The functor

—*xs K: sSetjrS — sSetIJg//S
is left Quillen.

Proof As with the proof of Theorem 4.15, the proof will be an application of
Lemma 4.13. We first verify that — xg K preserves the four classes of left marked
anodyne maps enumerated in [9, Definition 3.1.1.1]. Class (1) is handled by the
dual of part (2) of Proposition 4.11. Class (2) is handled by the dual of part (3) of
Proposition 4.11. Classes (3) and (4) are handled as in the proof of Theorem 4.15.
Finally, the case of A — B a cocartesian equivalence between fibrant objects is also
handled as in the proof of Theorem 4.15. O

4.17 Definition Let K, C — S be marked simplicial sets over S and let p: K — C
be a map over §S. Define the marked simplicial set C(, 5y, — S as the value of the
right adjoint to K *g (— X 0(S)*on K — C — S in sSetIJg//S. By Theorem 4.15, if
C — § is an S—category, then C(, 5); — S is an S—category. We will refer to C(,, )/
as a S—undercategory of C.

Dually, define the marked simplicial set C;(,,5) — S as the value of the right adjoint
to — x5 (K xs 0(S)¥) on K - C — S in sSetIJg//S. By Theorem 4.16 applied to
K x5 0(S)*, if C — S is an S—category, then C/(p,s) = S is an S—category. We will
refer to Cy(p,s) as an S—overcategory of C.

In the sequel, we will focus our attention on the S—undercategory and leave proofs of
the evident dual assertions to the reader.
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Functoriality in the diagram

We now study the functoriality of the S—undercategory with respect to the diagram
category. Given maps f: K — L and p: L — X of marked simplicial sets over S, we
have an induced map X, sy, — X(py.s)/» which in terms of the functors that X, sy,
and X, r,s), represent is given by precomposing L xs (4 X g 0(S)%) > X by f xsid.

Recall that for a category Jl admitting pushouts and a map f: K — L, we have an
adjunction

fridlgy = My f*

where fi(K — X) = XUg L and f*(L £> X) = po f. If A is a model category and
Mg, and ALy, are provided with the model structures induced from ., then (fi, /™) is
a Quillen adjunction. Moreover, if Jl is a left proper model category and f is a weak
equivalence, then (£, f*) is a Quillen equivalence.

4.18 Proposition Let f: K — L be a cocartesian equivalence in sSetjrS. Let C be an
S—category and let p: L — 4C be a map. Then 1C(, sy — 1C(pf,s), 1s a cocartesian
equivalence in sSetjrS.

Proof Let F = fio (K x5 (— x5 0(S)") and let F/ = L x5 (— x5 0(S)*). Let G
and G’ be the right adjoints to F and F’, respectively. Let «: F — F’ be the evident
natural transformation and let §: G’ — G be the dual natural transformation, defined by
G’ ¢, GFG' $2%5 GF'G' %S G. Then Bc :1Cp,s); = 1C(pr.s), is the map under
consideration. By Theorem 4.16, ax is a cocartesian equivalence for all X € sSetjrS.
Therefore, by [7, Corollary 1.4.4(b)], B¢ is a cocartesian equivalence. O

4.19 Proposition Consider a commutative diagram of marked simplicial sets
K—C
| % Js
L —— D

where i is a cofibration and q is a fibration.

(1) The map

Cip.5)/ = Cpi,8)/ XDiypi.sr Piap.s)/
is a fibration.
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2) LetK =@ and D = S*. Then the map
Cip,5)) = Clpi,s)) = Fung (S*, C)

is a left fibration (of the underlying simplicial sets).

Proof (1) Given a trivial cofibration A — B, we need to solve lifting problems of
the form

L*s (Axs0(S)) Ugsgaxsos)s K *s (B xs @(S)ﬁ) —=C

L s (B xs0(5)%

but the left-hand map is a trivial cofibration by Theorem 4.15.

(2) We need to solve lifting problems of the form

(A" x5 O(S)F Uamy K 5 (A7) xs @(S)ﬁ) — C

K x5 (A7) x5 0(S)¥)

where 0 </ < n, but the left-hand map is a trivial cofibration by Proposition 4.11(1")
and (2). O

Combining (2) of the above proposition with Lemma 3.6(2) — which supplies a trivial
marked fibration Fung(S*, C) — C — we obtain a map Cip,s)) — C which is a
marked fibration and a left fibration, and such that for any f: K — L, the triangle

Cw.5)) — Cwrsy/
C
commutes.
The universal mapping property of the S—slice

Because the S—join and slice Quillen adjunction is not simplicial, we do not immediately
obtain a universal mapping property characterizing the S—slice. Our goal in this
subsection is to supply such a universal mapping property (Proposition 4.25). We first
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recall how to slice Quillen bifunctors. Suppose V" is a closed symmetric monoidal
category and .l is enriched, tensored, and cotensored over V". Denote the internal hom
by

Hom(—, —): M°P x M — V.

Define bifunctors
Hom, /(—, —): Mi‘} X My =V, Homyy(—, —):J(/L?i XMy =V
on objects f:x —a,g:x —band f':a— x, g’: b — x to be pullbacks

Hom,,(f,g) — Hom(a,b)  Hom/(f’,g') —— Hom(a, b)

| o b

1 —5 Hom(x, b) 1 ;) Hom(a, x)
and on morphisms in the obvious way (we abusively denote by g: 1 — Hom(x, b)
the map corresponding to g under the natural isomorphisms Hom(1, Hom(x, b)) =
Hom(1 ® x,b) = Hom(x, b), and likewise for f'). It is easy to see that Hom,, and
Hom/, preserve limits separately in each variable.

4.20 Lemma In the above situation let M be a model category and % be a monoidal
model category. If Hom(—, —) is a right Quillen bifunctor, then Hom, (-, —) and
Hom/, (-, —) are right Quillen bifunctors, where we endow .l and A, with the
model structures created by the forgetful functor to J.

Proof We prove the assertion for Hom, /(—, —), the proof for Hom/, (-, —) being
identical. Leti:a — b and f:c — d be morphisms in Jily, (so they are compatible
with the structure maps 7y, ..., 7gz). In the commutative diagram

Hom,/(7p, 7¢) > Hom(b, ¢)

| !

Hom, /(7a, 7¢) XHom, , (rq,mq) HOMy/ (70, T4) — Hom(a, ¢) Xpom(a,4) Hom(b, d)

| |

1 > Hom(x, ¢)

it is easy to see that the lower square and the rectangle are pullback squares, so the
upper square is a pullback square. It is now clear that if Hom(—, —) is a right Quillen
bifunctor, then Hom, /(—, —) is as well. O
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We apply Lemma 4.20 to the bifunctors
Mapg ys(—,—): sSetl‘E//SOp X sSetI'E//S — sSetquillen,
Fung s(—,—): sSet;;//SOp X sSet;;//S — sSetjoyal

induced by Mapg(—, —) and Fung(—, —).

4.21 Lemma Let K, A, and B be simplicial sets and define a map
AX(KxB)— K% (AXxXB)

by sending the data (A" — A, Ak — K, A* k=1 5 B) of a n—simplex of A x (K * B)
to the data (A¥ — K, A* k=1 5 4 x B) of a n—simplex of K » (A x B). Then

¢ AX(K*B)Ugyxg K—> K*x(AxB)

is a categorical equivalence.

Proof Recall [9, Proposition 4.2.1.2] that there is a map
nx,y: X oY =X Uyxyxfoy X XY X Al Uxxyx(nn ¥ — XY
natural in X and Y which is always a categorical equivalence. Thus
f=(Axngp)Uidg: AX (Ko B)Ugxxk K> Ax (K * B)Uaxk K

is a categorical equivalence. The domain is isomorphic to K ¢ (4 x B), and it is easy
to check that the map ng 4xp is the composite

Ko (Ax B) L5 Ax (K % B) Uaxk K 25 K % (A x B).

Using the two-out-of-three property of the categorical equivalences, we deduce that ¢
is a categorical equivalence. O

4.22 Lemma Forall L sSetj’S, we have a natural equivalence
¢: Fung (L, ﬂC(p,S)/) = FunK//S(K *s (L xg @(S)ﬂ), nC).

Proof Define bisimplicial sets X, Y : A°° — sSet by
Xn =Mapg s (K x5 (A" x L x5 0(8)").4C).
Yn = Map (A", Fung s (K x5 (L x5 0(S)*),4C))
=~ Mapy ;s ((A")" x (K x5 (L x5 0(S)*) Upmpn g K. 1C)).
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and define a map of bisimplicial sets ®: X — Y by precomposing levelwise by the
map

gL (A x (K x5 (L x5 0(S)H) Uanyrxx K = K x5 (A")° x L x5 0(S)*)

adjoint as a map over S x Al to the identity over S x dAl. Taking levelwise zero
simplices then defines the map ¢, which is clearly natural in L, K, and C. By
Theorem 4.16, taking a fibrant replacement of K we may suppose that K is fibrant.
We first check that X and Y are complete Segal spaces. By [8, Theorem 4.12], Y is a
complete Segal space as it arises from a co—category. For X, since Mapg /g (—, —) is
a right Quillen bifunctor, we only have to observe that:

e Every monomorphism A — B of simplicial sets induces a cofibration
K x5 (A° x L x5 0(S)*) = K 5 (B” x L x5 0(S)%),
so X is Reedy fibrant.

e The spine inclusion ¢, : Sp(n) — A" induces a trivial cofibration
K 5 (Sp(n)® x L x5 0(S)") — K »g (A")’ x L x5 0(S)¥).

Since (5 is inner anodyne, this follows from Theorem 4.15 and [9, Proposition
3.1.4.2].

e The map 7: E — A%, where E is the nerve of the contractible groupoid with
two elements, induces a cocartesian equivalence

K x5 (E” x L x5 0(S)") — K x5 (L x5 0(S)"):

7 is a cocartesian equivalence (as the composite of £ b E¥ and E¥ — A9),

so this also follows from Theorem 4.15 and [9, Proposition 3.1.4.2].

We next prove that ® is an equivalence in the complete Segal model structure. For this,
we will prove that each map gy, 5 is a cocartesian equivalence in sSet;rS. Both sides
preserve colimits as a functor of L (valued in sSetI"; Y g)» so by left properness and the
stability of cocartesian equivalences under filtered colimits we reduce to the case L
is an m—simplex with some marking. In particular, (A™)? x g 0(S)* — S is fibrant in

sSetjrS. By [9, Theorem 4.2.4.1] we may check that the square of fibrant objects

(A"’ x K s K

! |

(A’ x (K %5 (A™P x5 0(S)H) —— K x5 (A" x (A™)> x5 0(S)¥)
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is a homotopy pushout square in the underlying co—category Catco‘:ffsft ~ Fun(S, Cat,),

where colimits are computed objectwise. In other words, we may check that for every
s € S, the fiber of the square over s is a homotopy pushout square in sSet, which holds
by Lemma 4.21. Pushing out along the cofibration (A™)® xg 0(S)* — L xg 0(S)*
and using left properness, we deduce that g7, ,, is a cocartesian equivalence. Finally,
we invoke [8, Theorem 4.11] to deduce that ¢ is a categorical equivalence. O

4.23 Lemma Let L — S be a cocartesian fibration. Then
idg *tr: K x5 4L — K x5 (1L x5 0(S)")

is a cocartesian equivalence in sSeth.

Proof By Theorem 4.16, taking a fibrant replacement of K we may suppose that K is
fibrant. By Proposition A.4, it suffices to show that for every s € S,
K5 * L5 — KT x (L xs (S7)F)

is a marked equivalence in sSet™. The cartesian equivalence {s} — (S /5 )4 pulls back
by the cocartesian fibration 4L — S # to a marked equivalence LY — L xs (S /5)k,
Then, by Theorem 4.15 for S = A%, K s * — preserves marked equivalences, which
concludes the proof. 0

4.24 Notation Suppose we have a commutative square of S—categories and S—
functors:
K—5D
F T
c LM
Define Fung /7,5 (C, D) to be the pullback

Fung yp,s(C, D) —— Fung(C, D)

1 e

§ — %% % Fung(K, M)

If K = @, we will also denote Fung s s (C, D) by Fun/ps s(C, D). If M = §, we
will write Fung s 5(C, D) in place of Fung s 5 s(C, D).

Note that by Propositions 3.8 and 2.16, the defining pullback square is a homotopy
pullback square if F is a monomorphism and 7 is a categorical fibration.
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4.25 Proposition Let K, L and C be S—categories andlet p: K — C andq: L — C
be S—functors.

(1) We have an equivalence

y:Fung (L, C(p,s5)/) = Fung s (K s L, C).
(2) We have an equivalence

' Funs(L, Cyq,s)) — Funy ys(K x5 L,C)
(3) We have equivalences

¥ v,
Fun/c s(L.C(p,s)/) => Fungipys (K *s L, C) <Z Fun/c s(K,Cjq.5))-

Proof (1) Define the S—functor ¥ as follows. Suppose we are given a marked
simplicial set 4 and a map A — Fung (L, C(, s)/) over S. This is equivalently given
by the datum of a map

faiyK x5 (A xs 0(S)F x5 L) x5 0(S)*) - ,C
under K and over S. Let
1K Ut go(syis ok (AX5O(S)) x5 (K x5 (1L x50(S)H) = K w5 (Ax50(S)FxsyLx50(S)*)

be the map over S x Al adjoint to the identity over S x dAl. Precomposing f4 by this
and (i 4L — 4L xg 0(S)* on that factor defines the desired map

A — Fungys(K x5 L,C).

Now to check that v is an equivalence, we may work fiberwise and combine Lemmas
4.22 and 4.23.

(2) This follows by a parallel argument to the proof of (1).

(3) We prove that ¥, is an equivalence; a parallel argument will work for wl’,.
Fung,; ys(K s L, C) fits into a diagram

Fung,; ys(K xs L,C) —— Fung/s(K xs L,C) —— Fung(K x5 L,C)

.

S > Fung ys(KUL,C) —— Fung(KUL,C)

| |

S » Fung (K, C)
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in which every square is a pullback square. The map v/, is then defined to be the
pullback of the map of spans

Funs (L, C(p,5y) —— Fung(L,C) +—%— §
J» ]
Fung ys(K *s L,C) — Fungys(KUL,C) «— §
in which the vertical arrows are equivalences. By Proposition 4.19 and Fung (L, —) be-

ing right Quillen, the top left horizontal arrow is an S—fibration, and by Proposition 3.8,
the bottom left horizontal arrow is an S—fibration, so v/, is an equivalence. O

In light of Proposition 4.25, we have evident “alternative” S—slice S—categories, whose
definition more closely adheres to the intuition that a slice category is a category of
extensions.

4.26 Definition Let p: K — C be an S—functor. We define the alternative S—
undercategory

C P/ = Fung ys(K *s S.C).
Similarly, we define the alternative S—overcategory

C/(P:S) = mK//S(S *9 K, C)

4.27 Corollary Let p: K — C andq: L — C be S—functors.

(1) We have equivalences C,.sy) —> C?5) and C;(,.5) => C/@5).

(2) We have an equivalence Fun,c s(L,C?*5)/) ~ Fun,c 5 (K, C/@5)) through
a natural zigzag.

Proof For (1), let L = S and K = S in Proposition 4.25(1) and (2), respectively.
For (2), combine the preceding (1) and Proposition 4.25(3). O

4.28 Warning When S = A?, the alternative S—undercategory
C PS5 ~(p} Xpun(k,c) Fun(K™, C)

differs from Lurie’s alternative undercategory cp/. However, we have a comparison
functor
{P} Xpun(k.c) Fun(K™, C) — C?/

which is a categorical equivalence and which factors through the categorical equivalence
Cp) — CP?/ of [9, Proposition 4.2.1.5].
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Slicing over and under S —points

We give a smaller model for slicing over and under S—points in an S—category C.

4.29 Notation Suppose C an S—category. Let
0s(C) :=Fung (S x Al,C) = S x¢(5)0(C)
denote the fiberwise arrow S—category of C. Given an object x € C, let
C/X:=0g(C)xcx, C* :=xxc0g(C).

4.30 Proposition Let x € C be an object and denote by iy : x — Cx the x—functor
defined by x. We have natural equivalences of x—categories

CE/@,ix) ~ C/E’ CE/(ix,LC) ~ X/

Proof For any functor S — S and S—category C, Og(C) x5 S’ =~ 0g/(C x5 S’).
Therefore, O5(C) xc x = 0x(Cyx) xc, X and likewise for x x¢c Og(C). Changing
base to x, we may suppose S = x and ;x =1i:S5 — C is any S—functor. The identity
section § — O(S) induces a morphism of spans

S —Z Fung(S,C) <—— Fung(S x Al,C)

| !

S L5 C« Fung (S x Al, C)

with the vertical maps equivalences. Taking pullbacks now yields the claim (where we
use the isomorphism S xs S = S x Al to identify the upper pullback with the S—slice
category in question). O

4.31 Proposition We have a natural equivalence CX/ ~ C*/ of left fibrations over C..

Proof Using the marked left anodyne map DA% — uAZ and the map of Lemma 2.23
for n = 2, we obtain a span

Fun(qu, 1C)
Fun((A%1)4 1 C) x oy Fun(AH2, C) Fun(A{%2}, C) x g10.2; Fun(AZ, )
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Pulling back via {x} X0 — on the left and — X g¢1.2; S on the right, and using that
the inclusion Al%2} — AZ U a2y A is a categorical equivalence, we get

{x} Xcto} Fun(qu, HC) X g41.2} S

which completes the proof. O

cx/ cx/

5 Limits and colimits

In this section, we introduce S—colimits and study their basic properties. We then study
the correspondence between S—colimits and S-limits through the vertical opposite
construction of [3].

5.1 Definition Let C be an S—category and : S — C be a cocartesian section. We
say that ¢ is a S—initial object if o (s) is an initial object for all objects s € S. Dually,
o is an S—final object if o (s) is a final object for all s € S..

5.2 Definition Let K and C be S—categories. Let p: K xg .S — C be an extension
of an S—functor p: K — C. From the commutativity of the diagram

S —225 Fung(K #5 S,C)

|

§ —— Funs(K,C)

(recall Notation 3.5 for o(_)) we see that o defines a cocartesian section of C (p.5)/
(Definition 4.26), which we also denote by 5. We say that p is an S—colimit diagram
if 05 is an S—initial object. If p is an S—colimit diagram, then p|s: S — C is said to
be an S—colimit of p. If S admits an initial object s, we will also identify the S—colimit
with its value on s.

Dually, substituting S g K for K xg S leads in a parallel way to the definition of an
S—limit diagram and an S—limit.

5.3 Remark In view of the comparison result Corollary 4.27, we could also use the
S—slice category C(,,s)/ to make the definition of an S—colimit diagram. This would
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yield some additional generality, in that C, sy, is defined for an arbitrary marked
simplicial set K. However, the construction C (.8)/ is easier to relate to functor
categories, which we need to do to show that the left adjoint to the restriction along
K C K x5 S computes colimits (a special case of Corollary 9.16).

5.4 Remark Suppose K and C are co—categories, and write 7 : K — * for the map to
a point. One may define the K—indexed colimit “globally” as the (partially defined) left
adjoint 7y to the restriction functor 7*: C — Fun(K, C). Given a diagram p: K — C
that admits an extension to a colimit diagram p: K® — C with cone point {v}, one
then has pl,y >~ mi(p).

To establish a parallel picture for S—colimits, we will first need to introduce the
concept of S—adjunctions (Definition 8.3). If we now let K and C be S—categories
and w: K — § denote the structure map, we will show that if for all s € §, Cy admits
Ks—indexed S* /—colimits, then the restriction S—functor 7*: C — Fung (K, C) admits
a left S—adjoint m such that

(m1)s : Fungs/ (K, Cs) — Cs

computes the S $/_colimit (Theorem 10.5 in the special case ¢ = ). Furthermore,
taking cocartesian sections of this S—adjunction then yields an adjunction, which we
may abusively denote by

m:Fung (K, C) == Fung (S, C) 7,
in which my computes the S—colimit.

In proving some of the assertions in this subsection (Corollary 5.9 and Propositions
5.11 and 5.12), it will be convenient to have this relationship between S—colimits and
S—adjunctions established. We note that there is no danger of circularity here since the
proof of Theorem 10.5 (or its simpler predecessor Theorem 9.15) doesn’t use any of
the remainder of this subsection (which, apart from S—(co)limits in an S—category of
S—objects, is only devoted to working out special classes of diagrams in the theory).

There are a couple instances where the notion of S—colimit specializes to a notion of
ordinary category theory. For example, we have the following pair of propositions
computing S—colimits and S—limits in an S—category of objects C s as left or right
Kan extensions in C; the asymmetry in their formulations arises due to working with
cocartesian fibrations instead of cartesian fibrations to model S—categories. In the
statements, recall Notation 3.11 for the meaning of (—)T.
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5.5 Proposition Let p: K x5 S — Cg be an S—functor extending p: K — Cyg.
Suppose further that a left Kan extension of pt: K — C to a functor K x5 S — C
exists. Then the following are equivalent:

(1) p is an S—colimit diagram.
(2) pt is aleft Kan extension of pT.

3) ﬁT|K§> is a colimit diagram for all s € S.

Proof (2) and (3) are equivalent because left Kan extensions along cocartesian fibra-
tions are computed fiberwise. Suppose (3). To prove (1), we want to show that for
every s € S, ps is an initial object in (C )@ But (C5)@) is equivalent
to the fiber of Fun(K 5 s, C) — Fun(K,, C) over pT|KS, so to prove the claim it
suffices to show that the functor 57| K, is a left Kan extension of Plk,- This holds by
the equivalence of (2) and (3) for S s/,

Conversely, suppose (1). Since we supposed that a left Kan extension of p' exists, left
Kan extensions of pT| K, all exist and any initial object in the fiber of

Fun(Kj *5 s, C) — Fun(Kj, C)

over pT| K, 1s a left Kan extension of al K- necessarily a fiberwise colimit diagram
(we need this hypothesis because Kan extensions as defined in [9, Section 4.3.2] are
always pointwise Kan extensions). This implies (3). O

5.6 Proposition Let p: S xs K — Cg be an S—functor extending p: K — Cyg.
Suppose further that a right Kan extension of pt: K — C to a functor S xg K — C
exists. Then the following are equivalent:

(1) p is an S-limit diagram.
(2) p' is aright Kan extension of pT.
2" ﬁT|§*§K§ is a right Kan extension opr|K§ forall s € S.

3) p‘T|KS<1 is a limit diagram for all s € S.

Proof We first observe that because the inclusion S — S *g K is left adjoint to the
structure map S xg K — S of the cocartesian fibration,

(S x5 K)* ~ 8% x5 (S x5 K) = 5 %5 K.
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The equivalence of (2) and (2’) now follows from the formula for a right Kan extension.
Also, if we view K3 as mapping to S *s K via {s} * Ky — s s Ks — S x5 K, where
the first map is adjoint to ({s} — s,id), then (2) and (3) are also equivalent by the
same argument. Finally, (2") implies (1) by definition, and (1) implies (2’) under our
additional assumption that a right Kan extension of pT exists (for the same reason as
given in the proof of Proposition 5.5). |

If S is a Kan complex, then the notion of S—colimit reduces to the usual notion of
colimit.

5.7 Proposition Let S be a Kan complex. Then an S—functor p: K xg S — C is an
S—colimit diagram if and only if for every objects € S, pls: (Ks)® — Cs is a colimit
diagram.

Proof If S is a Kan complex, then for every s € S, §%/ is a contractible Kan complex.
Therefore, for all s € S we have (C #>5)/); ~ {Ps} XFun(Ky,Cs) Fun(K%, Cs), which
proves the claim. |

We say that K is a constant S—category if it is equivalent to S x L for L an co—category.
We have an isomorphism L™ x S — (L x §) g S (defined as a map over S x Al to
be the adjoint to the identity on (L x S, S)).

5.8 Proposition An S—functor p: L™ x S — C is an S—colimit diagram if and only
if for every object s € S, ps: L¥ — C; is a colimit diagram.

Proof Observe that
(Cc (p,S)/)S = {ps} XFun g, (LxSS/,Cy) Fung,, (L” x ss/ . Cs)
~ {ps} Xpun(L,c,) Fun(L™, Cy).

Therefore, 05:5 — C (.8)/ is S—initial if and only if { ps} € {Ps}XFun(L.c,)Fun(L”, Cs)
is an initial object for all s € S, which is the claim. |

5.9 Corollary Suppose C is an S—category such that Cs admits all colimits for every
object s € § and the pushforward functors oy: C; — C; preserve all colimits for every
morphisma:s —t in S. Then C admits all S —colimits indexed by constant diagrams.
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Proof First suppose that S has an initial object s. Suppose that p: L xS — C is an S—
functor. Let pg: L® — Cs be a colimit diagram extending ps. Let p: L® xS — C be an
S—functor corresponding to pg under the equivalence Fung (L™ xS, C) ~Fun(L", Cy),
which we may suppose extends p. By Proposition 5.8, p is an S—colimit diagram.

The general case follows from Theorem 9.15, taking ¢: C — D tobe L xS — S. O
We now turn to the example of corepresentable fibrations.

5.10 Definition Let s € S be an object and let K be an S/ —category which is
equivalent to a coproduct of corepresentable fibrations

[ [ s/ ~ ] s Heth g/

iel iel

for {o;: s — ti}ier a collection of morphisms in S. Let p: K — C xg S5/ be an
S5/ _functor, so p is precisely the data of objects {x; € Cy, };er. Let

K xgs) S — C xg 8

be an $%/—colimit diagram extending p, and let y = p(v) € C; for v = id be the cone
point. Then we say that y is the S—coproduct of {x;};cs along {o;};c1, and we adopt
the notation y = [ [, x;.

Our choice of terminology is guided by the following result, which shows that an
§/_colimit of an §%/—functor p: §*/ ~ S/ — C obtains the value of a left adjoint to
the pushforward functor oy on p(¢). In the case of S = 03’, C =Spcg or S_pG, and
K = 02’, this is the induction or indexed coproduct functor from H to G.

5.11 Proposition Let C be an S—category, let «: s — t be a morphism in C, and let
7w: M — Al be a cartesian fibration classified by the pushforward functor oy : Cy — C;.
Let p: S — C xg S*/ be an S*/ —functor and let x = p(id;) € C;. Then the data of an
S/ _colimit diagram extending p yields a w—cocartesian edge e in M with dy(e) = x
and lifting 0 — 1.

Proof Let p: St/ *gs/ §5/ — C x5 §%/ be an S*/—colimit diagram extending p. Let
y = p(idy) and let f": Al — S*/ x ¢,/ S5/ be the edge connecting id; to . We may
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suppose that M is given by the relative nerve of ay, so that edges in M over Al are
given by commutative squares

{1} I Cs

Lk

Al —— C;
Then let e be the edge in M determined by y and f = po f’: x — ayy. By definition,
do(e) = x.

We claim that e is w—cocartesian. This holds if and only if for every y’ € C the map

Mapc, (v, y") = Mapc, (x, a1y")

induced by f is an equivalence. But the local variant of the adjunction of Theorem 10.5
implies this (passing to global sections). a

S—coproducts also satisfy a base-change condition. This is awkward to articulate in
general, because the pullback of a corepresentable fibration along another need not
be corepresentable. However, if we impose the additional hypothesis that 7 = S°P
admits multipullbacks, then a pullback of a corepresentable fibration decomposes as
a finite coproduct of corepresentable fibrations. In this case, we have the following
useful reformulation of the base-change condition. Recall from the introduction that
we let Fr denote the finite coproduct completion of 7. Let X C O(Fr) be the full
subcategory on those arrows whose source lies in 7" and consider the span

(Fr)f &L x 20 78,
This satisfies the dual of the hypotheses of Theorem 2.24, so
C* = (evo) (ev1)*((CY)Y)

is a cartesian fibration over Fr (with the cartesian edges marked), where CY — T
is the dual cartesian fibration of [3]. Unwinding the definitions, given a finite 7'—set
U =11, si, we have that the fiber

(C*)y ~ Funy (]_[ T/si, CV) ~[]¢s
i i
(where Fun7 (—, —) denotes those functors over T that preserve cartesian edges), and

given a morphism of T—sets «: U — V/, the pullback functor «*: (C*)y — (C*)y is
induced by restriction.

Algebraic € Geometric Topology, Volume 23 (2023)



Parametrized higher category theory 571

5.12 Proposition C admits finite S —coproducts if and only if w: C* — F is a Beck—
Chevalley fibration, ie 7 is both cocartesian and cartesian, and for every pullback
square

Wy

e ]

U—"-V
in Fr, the natural transformation

() @N(B)* — Bra

adjoint to the equivalence (B')*a™ ~ (a')* B™* is itself an equivalence.

Proof By Theorem 10.5, C admits finite S—coproducts if and only if for every finite
collection of morphisms {«; : § — #; }, the restriction functor

(]_[ a,-)* : Fung (S*/, C) — Fung (]_[ st/ c)
i

admits a left S—adjoint, in which case that left S—adjoint is computed by the S—
coproduct along the «;. This in turn is immediately equivalent to 7 being additionally
cocartesian and () being an equivalence for @ = [ [«;: [ [#i — s and all morphisms
B:s’ — s in T. Finally, note that the apparently more general case of () being an
equivalence for any pullback square is actually determined by this, because any map
a:U=]]t; >V =]]s;jisthedataof f:1— J and {a;;:s; —t;};c s-1(;)> Whence
o* = ()" ]_[j Cs; — [1; Cy;, etc yields a decomposition of the map (*) in terms of
the “basic” squares that we already handled. O

We conclude this subsection by introducing a bit of useful terminology.

5.13 Definition Let C be an S—category. We say that C is S—cocomplete if, for
every object s € S and ss/ —diagram p: K — C (with K fiberwise small), p admits
an S/ —colimit.

5.14 Remark Suppose that £ is S—cocomplete. Then taking D = S in Theorem 9.15,
E admits all (small) S—colimits. However, the converse may fail: if we suppose that £
admits all S—colimits, then any S* / —diagram Ky — E; pulled back from an S—diagram
K — E admits an S*/—colimit; however, not every S s/ —diagram need be of this form.
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Vertical opposites

In this subsection we study the vertical opposite construction of [3], with the goal
of justifying our intuition that the theory of S—limits can be recovered from that of
S—colimits, and vice versa (Corollary 5.25). We first recall the definition of the twisted
arrow oo—category from [1, Section 2].

5.15 Definition Given a simplicial set X, we define 0(X) to be the simplicial set
whose n—simplices are given by the formula

0(X), := Hom((A")P x A", X).

If X is an co—category, then 6(X ) is the twisted arrow co—category of X .

5.16 Warning By definition, 6‘(X ) comes equipped with a source and target functors
evp: 6(X ) —> X°Pandev;: 6(X ) — X, respectively. In other words, twisted arrows
are contravariant in the source and covariant in the target. This convention is opposite
to that in [11], but agrees with [3].

5.17 Recollection Suppose X — T a cocartesian fibration. Then the simplicial set
XVOP is defined to have n—simplices

u@(An) — t]X
ol
(AMF —— TH

The forgetful map XV°P — T is a cocartesian fibration with cocartesian edges given
by 6(A1)ﬂ — yX. For every t € T, we have an equivalence (X;)°P =5 (XVP),
implemented by the map which precomposes by evy: u@(A”) — ((A”)"P)", which is
an equivalence in sSet™.

Dually, suppose ¥ — T a cartesian fibration. Then the simplicial set ¥ V°P is defined to
have n—simplices

@)’ —— v

|

(A —— T
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and the forgetful map Y Y°P — T is a cartesian fibration with fibers (¥ ¥P), <= (¥;)°P.
As a warning, note that the definition of the underlying simplicial set of (—)¥°P changes
depending on whether the input is a cocartesian or cartesian fibration; in particular, the
notation is potentially ambiguous for a bicartesian fibration. We will not apply (—)"°P
to bicartesian fibrations in this paper.

Define a functor 0’ (-): sSeth — sSetjrS by
0'(A L5 S) = (0(4),¢4) =2

where an edge e is in € 4 just in case evg(e) is marked in A°P. Note that 6(—) preserves
M AP, and from this it
easily follows that o’ (—) also preserves colimits. By the adjoint functor theorem, o’ (-)
admits a right adjoint, which we label (—)"°P — this agrees with the previously defined
(—)*°P for cocartesian fibrations y X — § f,

colimits since it is defined as precomposition by A°P

5.18 Proposition The adjunction

0'(-): sSet]LS <:>sSet;rS ((—)VP

is a Quillen equivalence with respect to the cocartesian model structure on sSetjrS.

Proof We first prove the adjunction is Quillen by employing the criteria of Lemma 4.13.
Consider the four classes of maps which generate the left marked anodyne maps:

(1) i: A} = A", 0 <k <n: By [l, Lemma 12.15], 6(AZ) <> O(A") is inner
anodyne, so 0’(i) is left marked anodyne.

(2) i:yAf <> yA": We can adapt the proof of [1, Lemma 12.16] to show that 6/(1')
is a cocartesian equivalence in sSeth (even though it fails to be left marked
anodyne). The basic fact underlying this is that a right marked anodyne map is
an equivalence in sSet™, so in sSeth if it lies entirely over an object; details
are left to the reader.

3) i: K" < K* for K a Kan complex: Because 6(1() — K°P x K is a left fibration,
6(]( ) is then again a Kan complex. It follows that o’ (i) is left marked anodyne.

4) (A%)ﬂ UA% (A2)" < (A2)#: obvious from the definitions.

It remains to show that for a trivial cofibration f: ;X < ¥ between fibrant objects,
o’ (f) is again a trivial cofibration. Since 6(X ) —> 6‘(Y) is a map of cocartesian
fibrations over S and the marking on o’ (—) contains these cocartesian edges, by
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Proposition A.4 it suffices to show that for every object s € S, o (X)s — o’ (Y)s is an
equivalence in sSet™. We have a commutative square

0'(X)s — O'(Y)s

l !

xt Lyt
where the vertical maps are left fibrations and the bottom map is an equivalence in
sSet™. Therefore, the map X f Xyt 0'(Y)s — 0'(Y)y is an equivalence in sSet™.
Applying Proposition A.4 once more, we reduce to showing that for every object
x1€X,0(X)x, — 6/(Y)f(x1) is an equivalence in sSet™.

Now employing the source maps, we have a commutative square

0(X)x, — OV )ray

l !

Xopﬂ £ ;Yoptl

where the vertical maps are left fibrations and the bottom horizontal map is a cartesian
equivalence in sSet?’Sop. Therefore, the map X°P Xyop (o4 (Y)s — o’ (Y)s is a cartesian
equivalence. By a third application of Proposition A.4, we reduce to showing that
for every object xg € X, @(X)(x(),xl) — 6,(Y)(f(xo),f(x|)) is an equivalence. But
now both sides are endowed with the maximal marking and the map is equivalent to
Mapy (xo, x1) PEN Mapy (f(x0), f(x1)), which is an equivalence by assumption.

The fact that this Quillen adjunction is an equivalence follows immediately from [3,
Theorem 1.4]. O
5.19 Lemma Let C — S be a cocartesian fibration.

(1) Let f:S’— S be a functor. Then f*(CP) == f*(C)"°P.

(2) Let g: S — T be a cartesian fibration and let C be an S—category. Then there is

a T—functor y: g+(C)"P — g, (C"°P) natural in C which is an equivalence.

Proof Part (1) is obvious from the definitions. For (2), the map y is defined as follows:
an n—simplex of g«(C)P over o € T, is given by the data of a commutative diagram

O(A") x 78 SF —— C

! !

(A" xp S)F 27, b
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and precomposition by the obvious map 6(A” X7 S)— 0 (A")x T S yields an n—simplex
of g« (CV°P).

We now show that for all # € T', y, is a categorical equivalence. Because y; is obtained
by taking levelwise O—simplices of the map of complete Segal spaces

Mapg (;0(A%) x S¥,1C) — Mapg (;0(A%) x 6(S,)¥, ,C).

it suffices to show that for all n, n@(A”) X 6(5})# — u@(A”) X Sf is a cocartesian equiv-
alence in sSetjrS. As a special case of Proposition 6.3, 6(St)ﬂ — S f is a cocartesian
equivalence in sSetjrSt, so the claim follows. O

5.20 Lemma The map ev°P: (6(A”)0p)n — (A" x ((A")°P) is left marked anodyne.

Proof For convenience, we will relabel O (A™)°P as the nerve of the poset 7, with
objects ij, 0 <i < j <n and maps ij — kl fori <k and j < /. Then an edge
ij — kl is marked in [, just in case j = [, and the map ev°P becomes the projection
on: In = (A (A, ij — (i, j). Let f: (A")® — I, be the map which sends
i to 0i. Then p, o fy: {0} x (A”)b — (A x (A")" is left marked anodyne, so by
the right cancellativity of left marked anodyne maps it suffices to show that i, is left
marked anodyne. For this, we factor f; as the composition

(An)b = In,—l - In,O —> > In,n = Ipn,

where I, ; C I is the subcategory on objects ij with i = 0 or j < k (and inherits
the marking from /), and argue that each inclusion g : I, x C Iy, g 41 is left marked
anodyne. For this, note that g fits into a pushout square

{0} % (Ak-i—l)b U{O}X(Ak)b (An—k—l)ﬁ % (Ak)b ; (An—k—l)ﬁ % (Ak+1)b

! l

gk
Ink 7 A k+1

with the upper horizontal map marked left anodyne. O

5.21 Construction Suppose T is an co—category, X, Z — T are cocartesian fibrations,
Y — T is a cartesian fibration, and wu: 4 X X7 Y N yZ is a map of marked simplicial
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sets over T'. We define a map
MVOP: nXVOp XT YVOpu — L‘]ZVOP
by the following process:

Let J, be the nerve of the poset with objects ij for0 <i <n,—n <j <nand —j <i,
and maps ij — kl ifi <k and j <. Mark edges ij — kl if j = 1. Let I, C J, be
the subcategory on ij with j > 0 and I, C J, be the subcategory on ij with j <0;
also give I, and [, the induced markings. We have an inclusion (A" — J, given
by i > i0 which restricts to inclusions (A*)# — I, (A")¥ — I}, and induces a map
Vo In U(An)n I,/l C Jn.

Define auxiliary (unmarked) simplicial sets Z’ — T by
Hom, 7 (A", Z") = Hom; 7 (Jn, 4 Z)

and Z” — T by Hom; 7 (A", Z") = Hom, 7 (I Uanys I,,4Z), where J, — A" via
ij —i. We have amap r: Z' — Z” given by restriction along the y,,, which we claim
is a trivial fibration. By a standard reduction, for this it suffices to show that y, is left
marked anodyne. Indeed, this follows from Lemma 5.20 applied to I, — (A")# x A"
and the observation that the map A" x A" Uan I, — J,, is inner anodyne, whose proof
we leave to the reader.

Define also a map Z’ — Z"°P over T by restriction along the map q@(A”) — Jn which
sends ij to jn if i =0 and j(—i) otherwise. Finally, define a map X"VP x 7 Y'P — Z”
over T as follows. A map A" — XY°P x7 Y V°P is given by the data

) — X @) — v

I

(A —— T (A T

We have isomorphisms q@(A") ~ ], and (6(A”)°P)n =~ [,, and obvious retractions
In Uanys 1) — I, I, given by collapsing the complementary part onto A”. Using
this, we may define

In Ugpmys I = 4 X xp Y1 — 4 Z,

which is an n—simplex of Z”.

Choosing a section of r, we may compose these maps to define P, which is then
easily checked to also preserve the indicated markings. For example, ;£¥°P on edges is
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given by
X11
1 m(x11, y11)
Xo0 — Xo1 1 w(x11, y11)
= | w(xo0, yo1) — p(xor,y11) |+ 1
Yor = yu 1 N (X005 Yoo) = aft(Xo0, Y0o)
1 1(x00, Yoo) = a1u(xo0. Y00)
Yoo

where o 14(x00, Yoo) is a choice of pushforward for the edge « in T that the diagrams
are vertically over.

5.22 Lemma Let C — T be a cartesian fibration and let D — T be a cocartesian
fibration. There exists a T —equivalence Funr (C, D)VP — Funy (CY°P, DYoP),

Proof We have a map u: %T (C, D) xr C — D adjoint to the identity. Employing
Construction 5.21 on p and then adjointing, we obtain our desired 7—functor . A
chase of the definitions then shows that for all objects t € T', ¥; is homotopic to the
known equivalence Fun(Cy, D;)° ~ Fun(C,”, D;"). O

5.23 Lemma Let K and L be S—categories. Then there exists an S —equivalence

Vi (K *g L)"P =5 LY 5 g KVOP

over S x Al

Proof Note that (S x AP = S x (A!)°P. View (K xg L)"°P as lying over S x Al
via the isomorphism (A!)°P 2 Al. Since (K g L)BOp >~ [YP and (K *g L)\{Op >~ KVOP,
our S—functor ¥ is adjoint to the identity over S x dAl. Fiberwise, /5 is homotopic to
the known isomorphism (K * L) 2 L¥ » Kg¥, so ¥ is an equivalence. O
5.24 Proposition Suppose K and C are S—categories.

(1) The adjoint of the vertical opposite of the evaluation map induces an equivalence

Fung (K, C)*P = Fung (K", C*P).
(2) Suppose p: K — C is an S—functor. We have equivalences

(C(p,S)/)VOP ~ (CVOP)/(IJ“"’,S)’ (C/(P,S))VOP ~ (CVOP)(PV"",S)/_
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Proof (1) Recall from (6.3.1) the equivalence Fung(K,C) >~ m«n"*{K,C}s. By
Lemmas 5.22 and 5.19(1),

{K.C}¢" >~ {K"®P, C"P}g.
By Lemma 5.19(1) and (2),
T (K, C}g* = (mem™{K, C}s)".
Combining these equivalences supplies an equivalence
Fung (K, C)* = Fung (K", C*P).

It is straightforward but tedious to verify that the adjoint of the vertical opposite of the
evaluation map Fung (K, C)"P xg KV°P — C°P is homotopic to this equivalence.

(2) Combine (1), Lemma 5.23, Proposition 5.18 (which shows in particular that (—)"°P
is right Quillen), and the definition of the S—slice category. |

5.25 Corollary Let p: S xs K — C be an S—functor. Then p is an S—limit diagram
if and only if p¥°P: K¥P xg § — C"°P is an S —colimit diagram.

This allows us to deduce statements about S—limits from statements about S—colimits,
and vice versa. For this reason, we will primarily concentrate our attention on proving
statements concerning S—colimits (and eventually, S-left Kan extensions), leaving the
formulation of the dual results to the reader.

5.26 Warning Even with Corollary 5.25, it seems difficult to deduce Proposition 5.6
concerning S-limits in an S—category of objects C g directly from Proposition 5.5 on
S—colimits in C g. This is because the formation of vertical opposites C s +> (C 5)"°P
doesn’t intertwine with any operation at the level of the co—category C.

6 Assembling S —slice categories from ordinary slice
categories

Suppose p: K — C is an S—functor. For every morphism «: s — ¢ in S, we have
a functor py: Ky — C;, and we may consider the collection of “absolute” slice
categories Cp,,, and examine the functoriality that they satisfy. For this, we have the
following basic observation: given a morphism f:¢ — t’, covariant functoriality of
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slice categories in the target yields a functor C,,,; — C and given a morphism

foz/’

g:s" — s, contravariant functoriality in the source yields a functor Cp,;, — Cooe/-

Elaborating, we will show in this section that there exists a functor
F:=F(p:K—C): 6(5‘) — Catyo

out of the twisted arrow category 0 (S) such that F () ~ C,,,/, which encodes all of this
functoriality (Definition 6.5). Moreover, the right Kan extension of F along the target
functor 6(S ) = S is C(,,s)/ (Theorem 6.6). We will end with some applications of
this result to the theory of cofinality and presentability (Theorem 6.7 and Remark 6.11).

We first record a cofinality result which implies that the values of a right Kan extension
along evy : 0(S) — S are computed as ends.

6.1 Lemma The functor 0(S*/) — 0(S) x5 S*/ is initial.

Proof Let («:u —1t,B:s — t) be an object of 0(S) x5 S*/. We will prove that
C =0(5"") xg(5yx g5/ (0(S) x5 5°7) 0. )

is weakly contractible. An object of C is the data of an edge
s
7N
h
X ——— )

in $/, which we will abbreviate as f N g, and an edge

xi>y s 55y
RV

u—)t

in 0(S) x5 S%, which we will abbreviate as (h, g) &Y% (a, B).

Let Cy C C be the full subcategory on objects ¢ = ((f N ), (h,g) (CH2N (o, B))
such that y is a degenerate edge in S s/, 'We will first show that Cy is a reflective
subcategory of C by verifying the first condition of [9, Proposition 5.2.7.8]. Given an
object ¢ of C, define ¢ to be ((f X2 B), (vh, B) L9 («, B)) and let e: ¢ — ¢’ be
the edge given by

(h.g) —" (yh.p)

g
ly ’ (s,y)\f* /(S,idf)
B (o, B)

V

f—
ld/T
f—
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We need to show that for all d = ((f’ LIN B). (1, B) LUAON (o, B)) € Co,
Mapc (c’. d) <> Map (¢, d)

is a homotopy equivalence. The space Map. (c, d) lies in a commutative diagram

Mapc (¢, d) > Mapg g/, (f 2 . [/ 25 B)

l |

Map sy 557y o gy (1 €)- (. ) —— Mapg (s, s ((h.8). (W', B)

! |@ia.

CH2)
AY 4 > Mapé(s)xsss/ ((h, ), (. B))

where the two squares are homotopy pullback squares. We also have the analogous
diagram for Map(c’, d), and the map e* is induced by a natural transformation of
these diagrams. The assertion then reduces to checking that the upper square in the
diagram

h /% (ds,y)* h %
Mapgsory (f 2 B £ 25 B) S Mape g (f 2> g, £ 255 B)

! l

Mapg gy 5o/ (7 B (@ ) Y2705 Mape ), 50/ (. 8). (@, B))
1

!

Mapgs/ (B, B) 4 > Mapgs/(g. )

is a homotopy pullback square. Since (idy, y) and (ids, y) are evi—cocartesian edges

in 0(S) and 6(S*/) respectively, the lower and outer squares are homotopy pullback
squares (where we implicitly use that the map (&', id) covers the identity in S*/ to
identify the long vertical maps with those induced by ev;), and the claim is proven.

To complete the proof, we will show that ¢ = (8 = 8, (id;, B) (@idy), (a, B)) is an
initial object in Cy. Let d € Cyp be as above. In the diagram

(h/91dﬁ) /
A —5 Mapg g/ (B = B, ' B)

(a,idy) \L

AO —_— Map@(S)XSSS/((idt’ ﬂ)’ (a’ 18)) . Mapé(s)(ldt’a)

| | |

idg
A Mapgs (B, B) s Mapg (7, 1)
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we need to show that the upper square is a homotopy pullback square in order to
prove that Map (¢, d) ~ *. The fiber of 0(S) overt € S is equivalent to (S,;); in
particular, id; is an initial object in the fiber over ¢. Therefore, the two outer squares
are both homotopy pullbacks. Since the lower right square is a homotopy pullback,
this shows that all squares in the diagram are homotopy pullbacks, as desired. O

Let K be an S—category. Let J, be the poset with objects ij for 0 <i < j <2n+1
which has a unique morphism ij — k/ if and only if k <i < j <[. Let I, C J, be
the full subcategory on objects ij such that i < n. In view of the isomorphisms

Jn = O(AZ"T1) > G((AM)P = AY),
the I,, and J, extend to functors
Io C Jo 2 O((A*)P » A®): A —> sSet.

Viewing [, and J, as marked simplicial sets where ij — k/ is marked just in case
k = i, we moreover have functors to sSet™. Define the simplicial set X : A° — Set to
be the functor

Hom g+ (1o, 1K) XHom(1,,5) Hom((A*)P x A®, )

where I, C J, — (A®*)°P x A® is given by the target map. An n—simplex of X is thus
the data of a diagram

knn — kn(n+1) — kn(2n+1)

| | |

k11 /R > Kin > kl(n+1) A k1(2n+1)
koo — ko1 b > kon —— ko@m+1) — -+ — ko@n+1)

where the horizontal edges are cocartesian in K and the vertical edges lie over degen-
eracies in §.
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Declare an edge e in X to be marked if the corresponding map /; — 4K sends all
edges to marked edges. We have a commutative square of marked simplicial sets

X — 0(S)

| e

(KV)F —— (50

where KY = (KY°P)°P — §°P is the dual cartesian fibration and the map X — KV is
defined by restricting I, — K to I, — K (where I}, is the full subcategory of I, on
ij with j <n). Let ¥ denote the resulting map from X to the pullback.

6.2 Lemma v :X — (KV)tl X (Sop)t O(S)* is a trivial fibration of marked simplicial
sets.

Proof Since any lift of a marked edge in (K v)ﬂ X (Sop)# 6(S ) to an edge in X is
marked, it suffices to prove that the underlying map of simplicial sets is a trivial
fibration.

We first show that I, C I, is left marked anodyne. Let I,, x C I, be the full subcategory
on objects ij with i <k and similarly for I, ,. For 0 < k < n we have a pushout
decomposition

(A=) ) 5 (AR iy (KR P AR

I

n,n—k Uli/z,nfkfl In’n_k_l

(A kyonyc (an 1 Lk

and the left-hand map is left marked anodyne by [9, Proposition 3.1.2.3]. It thus suffices
to show that
I o2 (AN — I, g = (A2 1A

is left marked anodyne, and this is clear.
We now explain how to solve the lifting problem

N ——— X

An —) KV X §op 6(5)
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To supply the dotted arrow we must provide a lift in the commutative square

A, Uy I, — 4K
R

[

I, —— S#

where 01, = U[,_1]c[n]{n—1 as a simplicial subset of 7, and likewise for d1I,. Then
since I, — 01, Uyy I, and I, — I are left marked anodyne, f is a cocartesian
equivalence in sSetj’S, and the lift exists. O

For all s € S, we have trivial cofibrations iz: Ky —> (KV);, and thus commutative
squares

Ky —% 5 (S)

l levo

KV s §op
from which we obtain a cofibration

| | Ky > KY x50 O(S).
seS
We have an explicit lift /' of ¢ to X, where Ky — X is given by precomposition by

In—> AN ij—>n—i.

By Lemma 6.2, there exists a lift o in the commutative square

Lses Ks —————= X

KV XSop 6(;5) = KV XSop 6(5)

Let y: X — K be the functor induced by A* — I,,, i — (n —i)(n +i). Define the
twisted pushforward

P:KY xgw 0(S) > K

to be the map over S given by the composite y o 0. Then for every object o: s — ¢ in
§ (S), ﬁa oig: Ky — Kj; is a choice of pushforward functor over o, which is chosen to
be the identity if o« = id;.
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6.3 Proposition Forall A € sSet/g,
P xgidy: (KV)tl X (Sop) 6(S)ﬁ Xgs A hK xs AP

is a cocartesian equivalence in sSetj’A.

Proof Let (Z, E) denote the marked simplicial set (K v)ﬂ X (Sopy# 0(S)*. Viewing
Z as 0(S) xsoxs (KY x S), we see that Z — S is a cocartesian fibration with the
cocartesian edges a subset of E. Moreover, every edge in E factors as a cocartesian
edge followed by an edge in E in the fiber over S. By Proposition A .4, it suffices to
verify that for all s € S, P; is a cocartesian equivalence in sSet™. Since idy is an initial
object in 6(5) X s {s}, the inclusion of the fiber (K"); C (Zs, Ej) is a cocartesian
equivalence in sSet™ by [9, Lemma 3.3.4.1]. We chose P 50 as to split the inclusion
of K in Z, so this completes the proof. a

Consider the commutative diagram

0(S)Fx 5K

id@(S)XSﬁ\
dXxev

O(S) vy, 5,00 (KV) x50 B(S)H) B (KY) xsonO(SF 3! (K V) xS* % s*

lpr lpr qv xidl

O(S) Xev; 5,00, 0(S)F ——— TF(S)F —L— (SP)fxSH

|

St

where 7 = evg o prg(g) and 7' = Pr(s)- Since KV — S°P is a cartesian fibration, by
Theorem 2.24 (¢ xid) is right Quillen. Therefore, given an S—category C, we obtain
a0(S )—category

{K,C}s:=(ev*o(q" xid)x opr)(;C).
Moreover, we saw in Example 2.26 that 7, * is right Quillen and computes right Kan
extension along evj : 6‘(5 ) — S. Finally, the map idgs) X P induces an S—functor

(6.3.1) 0:Fung(K,C) — men’*{K,Clg,
natural in K and C. By Proposition 6.3 applied to A = S s/ for all s € S, 6 is an

equivalence.
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6.4 Remark As a corollary, we have that the global sections of { K, C } s are equivalent
to Fung (K, C). If we knew that under the straightening functor St, {K,C}s was
equivalent to the composite

0(S) > S®x S Sts (K)PxSts (€) Cat® x Catoo %5 Catoo,

then this would yield another proof of the end formula for the co—category of natural
transformations, as proven in [5, Section 6]. As we manage to always stay within
the environment of cocartesian fibrations, this identification is not necessary for our
purposes.

6.5 Definition Given an S—functor p: K — C and a choice of twisted pushforward
P for K, define the cocartesian section wp: 0(S) — {K, C}s to be the adjoint to
poP: KV % gor 0(S)* — 1K —C.
For objects [o: s — t] in 0(S), wp () € Fun((KY)s, Cy) is the functor
Pt Oﬁai (KY)s = K; = C;.
Define the rwisted slice 6(5 )—category to bel”
c@/ .= 0(S) x(k.c1s {K x5 S, C}s.

Note that the fiber of C?>5)/ over an object [o: s — t] is crioPal

We now connect the constructions C -5/ and C(?-5$)/. A check of the definitions
reveals that 6 o 0, = 747" (w)p) for the canonical cocartesian section

We thus have a morphism of spans
§ ——5— Funs(K.C) «—— Funs(K +5 5.C)
S ————— > ma™{K,C}s +— mn™{Kx5S,C}g
7" * (wp)

with all objects fibrant and the right horizontal maps fibrations by a standard argument.
Taking pullbacks, we deduce:

17We omit the dependence on P from the notation.
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6.6 Theorem We have an equivalence
Ter*(C Py =, c .S/

In other words, the right Kan extension of C (P-5)/ along the target functorevy: 0(S)—S
is equivalent to C (P-5)/

Proof Our interpretation of this equivalence is by Example 2.26. |

Relative cofinality

Let us now apply Theorem 6.6. We have the S—analogue of the basic cofinality result
[9, Proposition 4.1.1.8].

6.7 Theorem Let f: K — L be an S—tfunctor. The following conditions are equiva-
lent:

(1) Forevery objects € S, fy: Ks — Ly is final.
(2) For every S—functor p: L — C, the functor f*: C@S)/ — c®/5/ js an
equivalence.

(3) For every S—colimit diagram p: L xs S — C, po f®: K xg S — C is an
S'—colimit diagram.

Proof (1) = (2) Factoring f as the composition of a cofibration and a trivial
fibration, we may suppose that f is a cofibration, in which case we may choose
compatible twisted pushforward functors PK and PL Let p: L — C be an S—functor.
Precomposition by f yields a 0(S)-functor f *. C (2.5)/ —-C (f:S )/, Passing to the
fiber over an object «: s — t, the compatibility of Pk and Py implies that the diagram

Pr)a
(KV)S Piday g,

(fV); fl \”f)’
(PL)a

(LV)g Py,

commutes and that

(]7*)“ — (fv);k szO(ﬁL)a/ N C(Pf)to(ﬁK)a/_

By [9, Corollary 4.1.1.10], (f"), is final, so by [9, Proposition 4.1.1.8], (/) is an
equivalence. Consequently, f* is an equivalence. Now by Theorem 6.6, f* is an
equivalence.
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(2) = (3) Immediate from the definition.

(3) = (1) Lets € S be any object and ps: LY — Spec a colimit diagram. Let
p: (L xs S)s — Spe be a left Kan extension of pg along the full and faithful inclusion
LY C (L xs S)s. By transitivity of left Kan extensions, p is a left Kan extension of
its restriction to Lg. By Proposition 5.5, under the equivalence

Fun(L, Spe) ~ Fung (L, Spes),

7/ is an §%/—colimit diagram. By assumption, p o (/™) sisan S s/ _colimit diagram.
By Proposition 5.5 again, ps o fs is a colimit diagram, as desired. O

6.8 Definition Let f: K — L be an S—functor. We say that f is S—final if it satisfies
the equivalent conditions of Theorem 6.7. We say that f is S—initial if VP is S—final.

6.9 Example Let F:C — D :G be an S—adjunction (Definition 8.3). Then F' is
S—initial and G is S—final.

6.10 Remark Let C and D be S—categories and F: C — D be an S—functor.

(1) Suppose F is fiberwise a weak homotopy equivalence. Then F is a weak
homotopy equivalence by [9, Proposition 4.1.2.15], [9, Proposition 4.1.2.18],
and [9, Proposition 3.1.5.7].

(2) Suppose F is S—final. Then F is final. Indeed, for any diagram p: D — Spc,
we have that

colim p(d) =~ colim colim p(d) =~ colim colim pF(c¢) =~ colim pF(c).
deD P( ) seS deDyg p( ) s€S ceCy p () ceC p ()

(3) Suppose F is S—initial. Then F is initial. To show this, by (the dual of) [9,
Theorem 4.1.3.1] it suffices to show that for every d € D, C xp D/4 is weakly
contractible. Let s be the image of d in §. By Lemma 10.9, the inclusion
Cs Xp, (DS)/ d 5 C x D D/4 is final, so in particular is a weak homotopy
equivalence. Hence the desired conclusion follows by our assumption that F is
S—initial and [9, Theorem 4.1.3.1] again.

We conclude by using the twisted slice 0 (S)—category to give a criterion for the
presentability of the S—slice.
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6.11 Remark (presentability of the parametrized slice) Suppose that the functor
S — Caty, classifying the cocartesian fibration C — S factors through PrX, ie C — §
is a right presentable fibration. For any X a presentable co—category and diagram
fiA-> X, X I s again presentable and the forgetful functor X Il - X creates
limits and filtered colimits. Therefore, the twisted slice 6(S )—category C (».8)/ is a
right presentable fibration. Since the forgetful functor PrR — Caty, creates limits, by
Theorem 6.6 we deduce that C?-5)/ is a right presentable fibration. In particular, in
every fiber there exists an initial object. However, these initial objects may fail to be
preserved by the pushforward functors. In fact, even if we assume that C — S is both
left and right presentable, C may fail to be S—cocomplete.

7 Types of S -fibrations

In this section we introduce some additional classes of fibrations which are all defined
relative to S'.

7.1 Definition Let ¢: C — D be an S—functor. We say that ¢ is an S—fibration if it
is a categorical fibration. We then say that ¢ is an S—cocartesian fibration if it is an
S—fibration such that for every object s € S, ¢s: Cs — Dy is a cocartesian fibration,
and for every square in C

h
Xs — X¢

o, L

Ys — Yt

with & and k ¢—cocartesian edges over ¢p(h) = ¢(k):s — ¢, if f is a ¢pgs—cocartesian
edge then g is a ¢;—cocartesian edge.

Dually, we say that ¢ is an S—cartesian fibration if it is an S—fibration such that for
every object s € S, ¢s: Cs — Dy is a cartesian fibration, and for every square in C
labeled as above, but now with 4 and k ¢—cartesian edges over ¢ (h) = ¢(k): s — ¢, if
f is a ¢g—cartesian edge then g is a ¢;—cartesian edge.

Equivalently, ¢: C — D is S—(co)cartesian if it is a categorical fibration, fiberwise
a (co)cartesian fibration, and for every edge in S, the cocartesian pushforward along
that edge preserves (co)cartesian edges in the fibers. We formulate our definition as
above so as to avoid having to make any “straightening” constructions such as choosing
pushforward functors.
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7.2 Remark Declare a morphism of S—cocartesian fibrations
[c %5 p]—[c' 25 D)
to be a commutative square of S—functors

c L, ¢

N

D % p

in which for all s € S, Fy sends ¢s—cocartesian edges to ¢; cocartesian edges. Let
@C"Cart'ﬁb(Catggc/ag) be the co—category of S—cocartesian fibrations and morphisms
thereof. Then one has the straightening equivalence

0°ca b (Catet) ~ Fun(S, 09 (Caty,)).

7.3 Remark ¢:C — D is an S—fibration if and only if ¢: 4C — 4D is a marked
fibration.

7.4 Remark In view of [9, Proposition 2.4.2.11, Lemma 2.4.2.7 and Proposition
2.4.2.8], ¢: C — D is an S—cocartesian fibration if and only if ¢ is a cocartesian
fibration. However, there is no corresponding simplification of the definition of an
S—cartesian fibration.

7.5 Lemma Let ¢: C — D be an S—cartesian fibration and let f: x — y be a
¢s—cartesian edge in Cs. Then f is a ¢p—cartesian edge.

Proof The property of being ¢—cartesian may be checked after base-change to the
2-simplices of D. Consequently, we may suppose that S = Al and s = {1}. We have
to verify that for every object w € C we have a homotopy pullback square

e
Map (w, x) ——— Map¢(w, y)

J» J».
Mapp (¢w. ¢x) 2L Mapp, (pw. ¢y)

If w € Cy, for any choice of cocartesian edge w — w’ over 0 — 1, the square is

equivalent to

S+
MapC] (w/’ X) ——— MapC1 (w/7 )

J» [+

(s
Mapp, (pw’, ¢x) —— Mapp, (', $y)
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Hence we may suppose that w € Cy, in which case the square is a homotopy pullback
square since f is a ¢j—cartesian edge. |

We next discuss an important example of S—(co)cartesian fibrations. Recall the fiberwise
arrow S—category Og (D) (Notation 4.29). Fix ¢: C — D an S—functor.

7.6 Definition The free S—cocartesian and free S—cartesian fibrations on ¢ are the
S—functors
Fréo(¢) :=evy opr,: C xp Os(D) — D,

Fr**"(¢) :=evgopr,: Os(D) xp C — D.

7.7 Proposition Fr°“®‘(¢) is an S—cocartesian fibration. Dually, Fr**"(¢) is an
S —cartesian fibration.

Proof We prove the second assertion, the proof of the first being similar but easier.
First note that Og(D) xp C is a subcategory of O(D) xp C stable under equivalences.
Therefore, since evg: 0(D) xp C — D is a cartesian fibration, Fr**"(¢) is a categorical
fibration. Moreover, for every object s € S, Fr*(¢)s: O(Ds) xp, Cs is the free
cartesian fibration on ¢ : Cy — D;. It remains to show that for every square

h
(a—=¢x.x) —— (b—>9¢y.y)
ls L
(@ —¢x'.x') o (0~ ¥,y
in Og (D) xp C with the horizontal edges cocartesian over S and the left vertical edge
Fr(¢)s—cartesian, the right vertical edge is Fr®"(¢);—cartesian. This amounts to
verifying that y — y’ is an equivalence in C;. The above square yields a square

lr L
/ k /
X —)
in C with x — x’ an equivalence and the horizontal edges cocartesian over S, from

which the claim follows. O

We conclude this section with an observation about the interaction between S—joins
and S—cocartesian fibrations which will be used in the sequel.
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7.8 Lemma Let C, C' and D be S—categories and let ¢,¢’: C,C' — D be S—
functors. If ¢ and ¢’ are S—(co)cartesian, then px¢': C xp C’' — D is S—(co)cartesian.

Proof This is an easy corollary of Proposition 4.7. O

7.9 Definition We say that an S—functor F: C — D xg E is an S—bifibration if
for all objects s € S, Fj is a bifibration. Observe it is then automatic that prp F is
S—cartesian and prg F': C — E is S—cocartesian.
7.10 Example The S—functor

Fung(K x5 L, C) — Fung (K, C) xs Fung (L, C)

is an S—bifibration by Lemma 4.8. In particular, for an S—functor p: K — C, the
S—functors C?:5)/ — C and C/(7-5) — C are S—cocartesian and S—cartesian, re-
spectively.

8 Relative adjunctions
In [11, Section 7.3.2], Lurie introduces the notion of a relative adjunction.

8.1 Definition [11, Definition 7.3.2.2] Suppose we are given categorical fibrations
q:C — Sand p: D — S, and functors F: C — D and G: D — C over S. Suppose
there exists a natural transformation u: idc — GF such that

(1) u exhibits F as a left adjoint to G, and

(2) ¢q(u) is the identity transformation from q to itself.

Then we say that the adjunction F - G is a relative adjunction with respect to S.

8.2 Recollection By [11, Proposition 7.3.2.5], relative adjunctions are stable under
base-change; in particular, they restrict to adjunctions over every fiber.

8.3 Definition Let C and D be S—categories. We call a relative adjunction (with
respect to S)
F:C=D:G

an S—adjunction if F and G are S—functors.
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We prove some basic results about S—adjunctions in this section. Let us first reformulate
the definition of a relative adjunction in terms of a correspondence. Let F: C — D
be an S—functor. By the relative nerve construction, F' defines a cocartesian fibration
M — Al by prescribing, for every A" 2 A" x A"t — Al, the set Homa1 (A", M) to
be the collection of commutative squares

AW —— C

I

AN —— D

for n; > 0, and setting Hom1 (A", M) = Hom(A", C) for n; = —1. Moreover, the
structure maps for C and D to S define a functor M — S by sending A" — M to
N'—- D — Sitn >0,and A" - C — S if n; <0. Then M is an S—category,
M — S x Al is an S—cocartesian fibration, and F admits a right S—adjoint if and only
if M — S x Al is an S—cartesian fibration.

8.4 Proposition Let F': C == D :G be an S-adjunction and let I be an S—category.
Then we have adjunctions

Fy:Fung(I,C) = Fung(/,D):G«, G*:Fung(C,I)=Fung(D,I):F*.
Proof Let M — S x Al be the S—functor obtained from F. We first produce the
adjunction Fx -1 G«. Invoking Theorem 2.24 on the span

(A) <= i1 x (AYF 25 ¥ (A

we find that 7, 7t"*: sSet;r(SnX(A,)n) — sSetjr(Al)ii is right Quillen. Let N = o™ (M).

Then N — Al is a cocartesian fibration classified by the functor
Fy:Fung(/,C) — Fung (I, D).
Now invoking Theorem 2.24 on the span
((ADHP Lo (17 x (AP L5 (57 x (A1))r

we deduce that psp™: sSet;"(SNX(Al),;) — Ssetj-(Al)ij

model structures, is right Quillen. Let N = pxp"* M. Since G is right S—adjoint to F,

with respect to the cartesian

N’ — Al is a cartesian fibration classified by the functor

G«:Fun;g(1, D) — Fun,g(1,C)
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where we view I, C and D as categorical fibrations over S. N is a subcategory of N’,
and the cartesian edges e in N’ with do(e) € N are in N. Hence N — Al is also a
cartesian fibration classified by the functor

G«:Fung(I, D) — Fung (I, C).

We now produce the adjunction G* < F* by similar methods. Let € be the collection
of edges e: x — y in M such that e admits a factorization as a cocartesian edge over S
followed by a cartesian edge in the fiber. Note that since M — S x Al is an S—cartesian
fibration, € is closed under composition of edges. Invoking Theorem 2.24 on the span

(ADF (M, €0) 255 5% x (Al

+
/(Ah#

P = ™ (g1 x (AHH).

we deduce that pu.u'*: sSet™ — sSet

J(Stx (AL is right Quillen. Let
Then P — Al is a cocartesian fibration classified by the functor
G*:Fung(C,I)— Fung(D, ).

Let €, be the collection of edges e: x — y in M such that e is a cocartesian edge over
an equivalence in S. Now invoking Theorem 2.24 on the span

(AYHP 2 (M, %) s (87~ x (A)F)oP

we deduce that v,v’™: Sset;l_(S’Vx(Al)ﬁ) — sSetf(Al)a, with respect to the cartesian

model structures, is right Quillen. Let P’ = v, v (1™ x (Al)ﬁ). P’ — Al is a cartesian
fibration with P as a subcategory. One may check that P — Al inherits the property
of being a cartesian fibration, which is classified by the functor

F*:Fung (D, I)— Fung(C,I). O

8.5 Corollary Let F: C == D :G be an S—adjunction and let I be an S—category.
Then we have S—adjunctions

Fy:Fung(I,C) == Fung(/, D) :Gx, G*:Fung(C,I) =Fungs(D,I):F*.

Proof By Proposition 8.4, for every s € S,
Fy:Fungs/ (I xg S%,C x5 §%) == Fung,, (I x5 S/, D x5 §°/) : G

is an adjunction, and similarly for the contravariant case. O
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To state the next corollary, it is convenient to introduce a definition.

8.6 Definition Suppose m: C — D is an S—fibration. Define the co—category
Sectp,s () of S—sections of 7 to be the pullback

Sectp/s(n) —— Fung(D,C)

L

i

A — 2 Fung(D, D)
Define the S—category Sectp s () to be the pullback

Sectp,s(w) — Fung(D,C)

l lzr*

UidD
S ——— Fung(D, D)
We will often denote Sectp s (1) by Sectp,s(C), the S—functor 7 being left implicit.
Note that for any object s € S, the fiber Sectp /s () is isomorphic to Sectp /s (7s).
8.7 Corollary Let p:C — E and q: D — E be S—fibrations. Let F:C === D : G be
an adjunction relative to E where F and G are S—functors. Then for any S —category I,
Fy:Fung(l,C) = Funs (I, D) :G«

is an adjunction relative to Fung (I, E). In particular, taking I = E and the fiber over
the identity, we deduce that

Fy:Sectg s(p) == Sectg/s(q) :G«
is an adjunction, and also that
Fy:Sectp/s(p) == Sectg/5(q) :Gx«

is an S —adjunction.

Proof The proof of Proposition 8.4 shows that the unit for the adjunction Fyx - G« is
sent by p« to a natural transformation through equivalences. O
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8.8 Lemma Let F:C = D :G be an S-adjunction. For every S—functor p: K — D,
we have a homotopy pullback square in sSetjrS

c/Gp.S) __y p/®.S)
levg l/evé)
c—f b
where the upper horizontal map is defined to be the composite

c/(Gp.S) F  ~/(FGp,S) €@, n/(p.S)
Dually, for every S—tfunctor p: K — D, we have a homotopy pullback square in sSet?rS

pFp.S) ___ c®.S)/
levp levlc
p—% ¢
where the upper horizontal map is defined to be the composite

pFP.S)/ G, (GFp.S)/ 1" ~(p.9)/

Proof We prove the first assertion; the second then follows by taking vertical opposites.
We first explain how to define the map €(p),. Choose a counit transformation

e:DxA' =D

for F 4 G such that p oe is the identity natural transformation from 7 p to itself. Then
€o(p xid) is adjoint to an S—functor €(p): S x Al - Fung (K, D) with €(p)o =0Fgp
and €(p)o = 0p. Because Fung (S x5 K, D) — D xgFung (K, D) is an S—bifibration,
from e(p) we obtain a pushforward S—functor e(p),: D/FGP-S) . p/(P-5) compatible
with the source maps to D.

We need to check that for every object s € S, passage to the fiber over s yields a
homotopy pullback square of co—categories. Because (D/(#-5)), ~ (Dg/ (s ’g))s, we
may replace S by S5/ and thereby suppose that s is an initial object in S.

Let r: {s} S — S be a left Kan extension of the identity S — S. By the formula for
a left Kan extension, r(s) is an initial object in S, which without loss of generality
we may suppose to be 5. Using r o (id x wg) as the structure map for {s} * K over S,
define ¢’: {s} » yK — {s} x5 4K as adjoint to the identity over S x dAL. Tt is easy to
show that ¢’ is a trivial cofibration in sSet]LS. Moreover, since the inclusion {s} — S #
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is a trivial cofibration, {s} xs 1K — § xg yK is a trivial cofibration in sSetjrS by
Theorem 4.16. Let ¢ be the composition of these two maps. Then because Fung (—, —)
is a right Quillen bifunctor, ¢*: Fung (S* x g 1K, yD) — Fung({s} 4K, D) is a trivial
Kan fibration.

We further claim that the inclusion

J:Fung({s} » 4K, 4D) — Dy xp Fun({s} x K, D) Xpun(k,p) Funs (4K, ;D)
is an equivalence. Indeed, we have the pullback square

Fung({s} 1K, yD) —— Dy xp Fun({s} * K, D) Xpyn(k,p) Funs (4K, 1 D)

| |

o(idx
A0 Ty () xs Fun(is) + K. ) Xpun(k,s) (7K}

and the term in the lower right is contractible since it is equivalent to the full subcategory
Fun’({s} x K, S) C Fun({s} * K, S) of functors which are left Kan extensions of .

Now taking the pullback of the composition j o ¢* over {p}, we obtain an equivalence
(D/PS) . Dy xp D/P.
Similarly, we have an equivalence
(C/CPS, - Cs xc C/OP.

Since F - G is in particular an adjunction, by [9, Lemma 5.2.5.5] C/%? — C xp D/P
is an equivalence. Taking the fiber over s, we deduce the claim. m|

8.9 Corollary Let F:C == D :G be an S-adjunction. Then F preserves S—colimits
and G preserves S—limits.

Proof Let p: K xg S — C be an S—colimit diagram. To show that F p is an S—
colimit diagram, it suffices to prove that the restriction map DFEP-.S) 5 pFp.5)/ ig
an equivalence. We have the commutative square

DERS .y ¢G5S o D

| |

DELS s ¢/ x (o D

(here we suppress some details about the naturality of €(—);). The right-hand vertical
map is an equivalence by assumption, and the horizontal maps are equivalences by
Lemma 8.8. Thus the left-hand vertical map is an equivalence. |
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Free S —(co)cartesian fibrations revisited

With the theory of S—adjunctions, we can now establish a key property of the free
S—(co)cartesian fibration (Definition 7.6). Let ¢ : C — D be an S—functor and define
S—functors

to:C > C xp0Os(D), 11:C—>0g(D)xpC

via the commutative square
C —— 0Os(D)

c—"4p

where the upper horizontal map is the composite C — 05(C) — Og (D).
8.10 Proposition ¢ is left S—-adjoint to prc. Dually, t; is right S—adjoint to prc.

Proof We prove the first assertion, the proof of the second being similar. To prove that
we have a relative S—adjunction tp = pre, we must prove that for each s € S we have
an adjunction (tg)s =1 (pr¢)s. So suppose that S = A, Since pr otg = id, it suffices
by [9, Proposition 5.2.2.8] to check that the identity is a unit transformation; that is,
for every x € C and (y, ¢y — a) € C xp O(D),

pre: Mape ., o(p) (X, 1dgx), (v, ¢y — a)) — Mapc (x, )

is an equivalence. Under the fiber product decomposition
Mapcy 0Dy ((x,idgx). (v, ¢y — a))
~ Mapc (X, ¥) XMap, (6x,6y) MaPg(p)((idgx), (¢y — b))

the map pr is projection onto the first factor. The adjunction t: D == 0(D) :evy
obtained by exponentiating the adjunction ig: {0} == Al : p implies that

Mapg(p) ((idgx). (py — b)) — Mapp (¢x. py)

is an equivalence, so the claim follows. O

8.11 Remark (universal property of the free S—cocartesian fibration) Let¢:C — D
be an S—functor and ¥ : E — D be an S—cocartesian fibration. Then we would like to
show that the restriction functor

Fun(/:%art(c xp O0s(D), E) = Fun;p s(C, E) = S X4, Fung (C, D),y Funs (C, E)
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18

is an equivalence of oo—categories.'® We prove this in [17, Example 3.8] as an

application of the theory of parametrized factorization systems.

9 Parametrized colimits

In this section, we first introduce a parametrized generalization of Lurie’s pairing
construction [9, Corollary 3.2.2.13]. We then employ it to study D—parametrized S—
(co)limits. This material recovers and extends [9, Section 4.2.2] (in view of Lemma 4.5).
It is a precursor to our study of Kan extensions.

An S —pairing construction

9.1 Construction Let p: C — S and g: D — S be S—categories and let ¢: C — D
be an S—functor. Let 7, n": 0°°*"(D) xp C — D be given by & = evgopr; and
7’ = evy opry. Let € denote the collection of edges e in 0" (D) xp C such that
7(e) is g—cocartesian and pr,(e) is p—cocartesian (so 7’(e) is g—cocartesian). Then
the span

1D <% (0" (D) xp C.€) *> 1D

defines a functor

J’_

—>sSet/nD.

I% +
T TT .sSet/uD

For an S—category E and an S—functor ¥ : E — D, define

(Funp;s(C, E) — D) := mun*GE 4> D).

9.2 Lemma Letg: D — S be an S—category.

(1) evg: 0°“Y(D) — D is a cartesian fibration, and an edge e in 0°“"(D) is
evo—cartesian if and only if (evs, 1 oq)(e) is an equivalence in S. In particular,
if evp(e) is g—cocartesian, then e is evo—cartesian if and only if evy(e) is an
equivalence in D.

(2) If f:x — yisanedgein D such that q( f') is an equivalence, then there exists a
evo—cocartesian edge e over f. Moreover, an edge e over f is evo—cocartesian
if and only if it is evg—cartesian.

18We use Remark 7.4 to simplify the appearance of the left-hand side, which would otherwise be denoted
by Fun?‘gag (C xp0g(D), E).
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Proof evg: 0°°“™(D) — D factors as
0°*"(D) — D x5 0(S) — D,

where the first functor is a trivial fibration and the second is a cartesian fibration, as the
pullback of evg o: 0(S) — S. Thus evy is a cartesian fibration with cartesian edges
as indicated. Moreover, since evg o: 0(S) — § is a categorical fibration, the second
claim follows from [11, Proposition B.2.9]. O

We have designed our construction so that for any object x € D and cocartesian section
§4%/ — D, the fiber of Funp,s(C, E) — D over x is equivalent to

Funggx/(C Xp s/ E XD qu/).

For this reason, we think of IEEr/lD /8 (=, —) as the parametrized generalization of the
pairing construction Funp (—, —), to which it reduces when S = A°.

9.3 Theorem With notation as in Construction 9.1, Fun p/s(C, E) enjoys the follow-
ing functoriality:

(1) If ¢ is either an S —cartesian fibration or an S—cocartesian fibration and  is a
categorical fibration, then Fun p/s(C, E)— § is an S—category with cocartesian
edges marked as indicated in Construction 9.1, and IEEle/S (C,E)—> Disa
categorical fibration.

(2) If ¢ is an S—cartesian fibration and  is an S—cocartesian fibration, then
Funp,s(C, E) — D is an S—cocartesian fibration.

(3) If ¢ is an S—cocartesian fibration and  is an S—cartesian fibration, then
Iaale/S(C, E) — D is an S—cartesian fibration.

Proof (1) It suffices to check that Theorem 2.24 applies to the span
4D <X (0°Y(D) xp C,€) >y D.

In the remainder of this proof we will verify that 0°°““‘(D) xp C — D is a flat
categorical fibration. For condition (4) we appeal to Lemma 9.2. The rest of the
conditions are easy verifications.

(2) By Lemmas 9.2 and 7.5, 7 : 0°°°*(D) xp C — D is a cartesian fibration (hence
flat) with an edge e w—cartesian if and only if pr, (e) is evo—cartesian and pr,(e) is
¢—cartesian. Let €’ be the collection of edges e in 0°°®(D) x.,, p C such that for
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any r—cartesian lift ¢’ of 7 (e), the induced edge d(e) — dy(e’) is in €. Note that
since ¢ is S—cartesian (and not just fiberwise cartesian), €’ is closed under composition.
Invoking Theorem 2.24 on the span

D¥ <Z (D) xp, C,¢) Z> DF
we deduce that
¥ sSetT, /D™ sSet}LD

is right Quillen. Note that there is no conflict of notation with the functor m.m’*
defined before on sSetz p since € C ¢’ and the two restrict to the same collections
of marked edges in the fibers of 7. Since S—cocartesian fibrations are cocartesian
fibrations over D (Remark 7.4), we conclude.

(3) First note that 7 factors as a cocartesian fibration followed by a cartesian fibration,
so is flat. Let & be the collection of edges f in D such that ¢g( f) is an equivalence. By
Lemma 9.2, we have that 7 : 0°°®(D) X, p C — D admits cocartesian lifts of edges

F. Let €¢” be the collection of those m—cocartesian edges. Invoking Theorem 2.24
on the span )

(D, F)® £ (0°“"(D) xp C,€")® £ (D, F)P,
where p = 7°P and p’ = 7’°P, we deduce that with respect to the cartesian model
structures
o sSet/(D 5 sSet/(D )

is right Quillen. We have that 151\1;11) /s (C, E) is a full subcategory of pxp"* (). More-
over, the compatibility condition in the definition of an S—cartesian fibration ensures
that FunD /s (C, E) — D inherits the property of being fibrant in sSet /(D.5)" Another
routine verification shows that FunD /s(C, E) — D is indeed S—cartesian. a

9.4 Lemma Let C — C’ be a monomorphism between S —cartesian or S—cocartesian
fibrations over D and let E — D be an S—fibration. Then the induced functor

Funp,s(C’, E) — Funp,5(C, E)
is a categorical fibration.

Proof Given a trivial cofibration 4 — B in sSetjoy,, we need to solve the lifting
problem
A —— Funp,s(C', E)

B —— ﬂflp/s(c, E)
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This diagram transposes to

AXp @cocart(D) XD C’ UAXD@COC“”(D)XDC B xp @coc&u’t(D) xp C _$ E

!

B xp 0% D) xp, C’ s D

By the proof of Theorem 9.3, 0°°®(D) xp C — D is a flat categorical fibration.
Therefore, by [11, Proposition B.4.5] the left vertical arrow is a trivial cofibration in
SSetJOyal. O

For later use, we analyze some degenerate instances of the S—pairing construction.

9.5 Lemma There is a natural equivalence Fun p/s(D. E) =5 E of S—categories
over D.

Proof The map is induced by the identity section tp : D — 0°°°4(D) fitting into a

morphism of spans
4D
/ l”\

4D ——— (0°a(D),€) —— 1D

By Lemma 3.3(1"), tp is a cocartesian equivalence in sSeth via the target map. Since
the cocartesian model structure on sSetZ p is created by the forgetful functor to sSetjrS,
the assertion follows. O

9.6 Lemma Let C' — D’ be a cartesian fibration of co—categories and let E’ be an
S —category. For all s € S, there is a natural equivalence
Funp/ys/5(C' xS, D' x E')y =5 Funp/(C', D' x E})

of cartesian fibrations over D’.

Proof The left-hand side is defined using the span
(D) x {5} <= (D) x {s}) xprus (O (D' x §) xpr €' €') — S

with €’ as in the proof of Theorem 9.3. Cocartesian edges (over S) in D’ x S are
precisely those edges which become equivalences when projected to D’, so

0 (D’ x §) = Fun((AH)*, (D')™) x 6(S),
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and the identity section tp/: D' — Fun((AY%, (D)™) is a categorical equivalence.
Therefore, the map

(D' x S = (D) x {5}) X prxs (0D’ x S),€)

induced by tp- is a cocartesian equivalence in sSet}LS. Since C'xS - D'xSisa
cartesian fibration, it follows that

(€ x (85/)F > (D) x {s}) xprxs (0D x ) xpr C',€)
is also a cocartesian equivalence in sSetjrS. Finally, using the inclusion
C'x{st—C' xS
we obtain a morphism from the span
(D) — ()" - {s} c S*

through a cocartesian equivalence in sSeth. This yields the claimed equivalence. O

Directly from the definition, we have that for an object x € D, the fiber Fun p/s(C, E)x
is isomorphic to Funy (Cx, Ex). We now proceed to identify the S—fiber Fun p/s(C,E)x.

9.7 Proposition There is an x—functor
€*: %D/S(C’ E)x — Funy(Cy, Ex)

which is a cocartesian equivalence in sSet;rx.

Proof We first define the x—functor €*. The data of maps of marked simplicial sets
A— gFunps(C. E)y, A — yFuny(Cx, (E x5 D)y)
over x is identical to the data of maps
Axy x¥ xp (O°UY(D), €) xp uC — 4E, A Xy 0(x)* Xey, 0evy, 0 1C = 1E

over D (where € is the collection of edges e in 0°***(D) such that evo(e) and ev (e)
are cocartesian). We have a commutative square

l@ (evy) levl

(0ot ( D) €) l) 1D
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which defines the functor €: O(x) — x xp 0°°“®(D), and this in turn induces the
functor €*. To show that €* is a cocartesian equivalence, it will suffice to show that € is
a trivial fibration, for then a choice of section o and homotopy o o € ~~ id will furnish a
strong homotopy inverse to €* in the sense of [9, Proposition 3.1.3.5]. Since we have a
pullback diagram

0(x) ——— D Xpunar,py Fun(Al x AL, D)

X xXp 0Dy — 5 Fun(A2, D)

it will further suffice to show that €’ is a trivial Kan fibration. Observe that €’ factors
as the composition

D Xpun(al,py Fun(A! x Al, D) €5 Fun(A2, D) €5 Fun(A2, D),

where €” is defined by precomposing by the inclusion i : A> — Al x Al which avoids the
degenerate edge for objects in D Xg,,(at, pyFun(A! x A, D), and €”” is precomposition
by A% — A%. Moreover, €” is a trivial fibration since A7 — A? is inner anodyne. To
argue that €” is a trivial fibration, first note that €” inherits the property of being a
categorical fibration from i *: Fun(A! x Al, D) — Fun(A?, D). Define an inverse o
by precomposing by the unique retraction r: Al x Al — A2 chosen so that r oi = id.
Then ¢” is a section of €” and one can write down an explicit homotopy through
equivalences of the identity functor on D Xgyy(a1, py Fun(A! x A', D) to 6” 0€”, s0
€’ is a trivial fibration. O

D-parametrized slice

We now study another slice construction defined using the S—pairing construction.

9.8 Construction Let¢: C — D be an S—cocartesian fibration, let £ — D be an
S—fibration, and let F: C — E be an S—functor over D. Then F defines a section
S—functor

tr: D — ﬁﬁﬁD/S(C, E)
as adjoint to the functor 0°°*(D) Xy, p C — C £, E. Define

F)/S . _ —~ i
E@PIS:=Dx, @ <c.p)Funp/s(C +p D, E)

and let 74, F) denote the projection E @.F)/S _ p.
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Given an object x € D, the functor tg: D — ﬁll) /s (C, E) induces via pullback an
x—functor
TF, X —> Funp/s(C, E)y.

We also have the x—functor

OF, X — Funy (Cy, Ex)

adjoint to
0(x) xx Cx 22> C; £ E,.

An inspection of the definition of the comparison functor €* of Proposition 9.7 shows

that the triangle
TFy

— Funp,s(C, E)x

UFI l/é*

Funy (Cy, Ex)

commutes. Recalling the definitions

(E@DIS)x = x X, 5.7, Funp/s(C #p D, E)x.

F
(Ex)/* = x Xpun (€. ) Fun (Cx #x X, Ex),
we therefore obtain a comparison x—functor

i (E(dJ,F)/S)E — (EE)Fﬁ/E‘

9.9 Corollary The functor V is a cocartesian equivalence in sSetL.
Proof By [9, Proposition 3.3.1.5], we have to verify that ¥ induces a categorical
equivalence on the fibers. But after passage to the fiber over an object e = [x — Y]
in x, by Lemma 4.8 v, is a functor between two pullback squares in which one leg is
a cartesian fibration. Therefore, by Proposition 9.7 and [9, Corollary 3.3.1.4], ¥, is a
categorical equivalence. O

9.10 Proposition With setup as in Construction 9.8, suppose in addition that E — D
is an S—cartesian fibration. Then (4 F): E @.F)/S _, D is an S—cartesian fibration.

Proof By Lemma 9.4, (4 r) is a categorical fibration. By Theorem 9.3 and Lemmas
9.4, and 4.8, the functor

(t&)s: Funp,s(C »p D, E)s — Funp,s(C, E)s
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over Dy satisfies the hypotheses of [9, Proposition 2.4.2.11]; hence is a locally cartesian
fibration. To then show that ()5 is a cartesian fibration, it suffices to check that for
every square

[G:Cxxxx —> Ex] —— [G,:CX*XX_)EX]

| !

[H:Cxxxx = Ex] — [Hlicz *yy = E,]

in ﬁﬁle/S(C *p D, E)g lying over an edge e: x — y in Dy, if the horizontal edges
are cartesian lifts over e and the right vertical edge is (1(-)s,y—cartesian, then the left
vertical edge is (g )s,x—cartesian. In other words, if we let ey: Cx *x x — Cy *y y and
e*: E, — Ey denote choices of pushforward and pullback functors, then we want to
show that given G ~ ¢* 0 G’ o ey, H ~ ¢* o H' 0 ¢}, and G'|y ~ H'|y, we have that
G|x >~ H|x. But this is clear. We deduce that (74, F))s, beingipulled back from (te)ss
is a cartesian fibration.

For the final verification, let us abbreviate objects
(x € D,[G: Cx *x x — Ex]: G|c, = Fy) € E@F)/S

as [G: Cx xx x — Ey], the restriction to Cy equaling F being left implicit. We must
check that given a square
x —2y !
J/e le/
&
y——)
in D lying over «: s — t with the vertical edges in the fiber and the horizontal edges

cocartesian lifts of «, and given a lift of that square to a square

[G:Cx *x X — Ex] —— [G': Cy/ xyx X' — Ey/]

| !

[H:Cyxyy— Ey] —— [H": Cyr xyr y' — Ey/]

in E@-F)/S with the horizontal edges cocartesian lifts of o and the left vertical edge
(7w (¢, F))s—cartesian, then the right vertical edge is (74, F))—cartesian. We will once
more translate this compatibility statement into a more obvious looking one so as to
conclude. Let ey, e*, ej and e’* be defined as above. Let «*: x" — x and o*: X/ -y
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be choices of pullback functors (eg the first sends a cocartesian edge f: x’ — z to
f odx:x — z), and also label related functors by a*. Then the cocartesianness of the
horizontal edges amounts to the equivalences G’ ~ G oa™® and H' ~ H o«™, and the
cartesianness of the left vertical edge amounts to the equivalence G|, >~ (e* o H oey)|x.
Our desired assertion now is implied by the homotopy commutativity of the diagram

a* Glx

le!/ e Te*
g Hl,
Y ——y —— Ey

(the content being in the commutativity of the first square), for this demonstrates that
G'lx > ("o H oe))|y. O

9.11 Lemma Letp:W — S and q: D — S be S—categories, and let w: W — D be
an S—fibration such that for every object s € S, 7y is a cartesian fibration.

(1) Suppose that:
(a) Forevery object x € D, there exists an initial object in W.
(b) For every p—cocartesian edge w — w’ in W, if w is an initial object in
W (w), then w’ is an initial object in Wy ().
Let W' C W be the full simplicial subset of W spanned by those objects w € W
which are initial in Wy () and let 7’ = mt|w. Then W' is a full S—subcategory
of W and n' is a trivial fibration.

(2) Leto: D — W be an S—functor which is a section of w. Then o is a left adjoint
of m relative to D if and only if, for every object x € D, a(x) is an initial object
of W.

Proof (1) Condition (b) ensures that W’ is an S—subcategory of W. By [9, Propo-
sition 2.4.4.9], for every object s € S, 7, is a trivial fibration. In particular, 7’ is
S—cocartesian fibration (the compatibility condition being vacuous since all edges in
W/ are m;—cocartesian). By Remark 7.4, 7’ is a cocartesian fibration. As a cocartesian
fibration with contractible fibers, 7’ is a trivial fibration.

(2) Since relative adjunctions are stable under base change, if o is a left adjoint of
7 relative to D, passage to the fiber over x € D shows that o(x) is an initial object
of Wy. Conversely, if for all x € D, o(x) is an initial object of Wy, then by [9,
Proposition 5.2.4.3], oy is left adjoint to 5 for all s € S. Since o is already given as
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an S—functor, this implies that o is S—left adjoint to r; in particular, o is left adjoint
to . The existence of o implies the hypotheses of (1), so o is fully faithful. Now by
definition, o is left adjoint to 7 relative to D. O

We now connect the construction Funp /s (=, —) with Fung (—, —). To this end, consider
the commutative diagram

0(S)* x5 4C

where the map i is induced by the identity section D — 0°°“(D),

9.12 Lemma The mapi is a homotopy equivalence in sSetjrS (considered over S via
p:C —9).

Proof Define a map /4’: 0(S) x5 0°(D) — Fun(Al, 0(S) x g 0°°@( D)) to be the
product of the following three maps.

(1) Choose a lift o

Fun(A'%1}, §) — Fun(AZ, S)

l "\, Ni

Fun(A?2,S) Fun(A?, S)

and let Al x Al — A? be the unique map such that the induced map
Fun(A?, S) — Fun(A! x Al, §) 2 Fun(Al, 0(5))
sends (s — ¢t — u) to [s — t] — [s — u]. Use these two maps to define

0(S) x5 0°Y(D) xp C — O(S) x5 0(S) = Fun(A2, §) — Fun(A!, 0(S)).
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(2) Use the unique map A! x Al — Al which sends (0, 0) to 0 and all other vertices
to 1 to define

0(S) x5 0°“Y(D) xp C — 0°U(D) — Fun(Al, 0°°(D)).
(3) The degeneracy map so: C — Fun(Al, C) defines
0(S) x5 0°Y(D) xp C — C — Fun(A!, C).

Then /'’ is adjoint to a map of marked simplicial sets over S,

h: (AYF x 0(S)* x5 (€°(D) xp C,€) — 0(S)* x5 (0<°“Y(D) xp C,€),
such that 1y = id and %, factors as a composition
0(S)* x5 (0°(D) xp C,€) L> 0(S)* x5 ;C > 0(S)* x5 (0°°(D) xp C,%€),
where r is defined by

0(S)* x5 (C°(D) xp C,€) — Fun(A2, §) x5 ;C L% 0(S)% x5 4C.
Our choice of o ensures that » o i = id, completing the proof. |
Note that for any S—fibration 7: X — D, the S—category Sectp,s () defined in
Definition 8.6 may be identified with (evo)«(prp)* (X s D). Combining Lemmas

9.12, 2.27 and 2.28, we see that if E is an S—category and C — D is S—cocartesian or
S—cartesian, then the map induced by i

i*: Sectp,s(Funps(C. E xs D)) > Fung(C. E)

is an equivalence of S—categories. Moreover, a chase of the definitions reveals that for
every S—functor F: C — E, we have an identification

i*oSectp;s(tFxy) = 0F: S — Fung(C, E).
We thus have a morphism of spans

Sectp /5 (TFxg) — —
——— Sectp/s(Funp,s(C, E x5 D)) <— Sectp;s(Funp;s(C xp D, E x5 D))

| |- -

S ki > Fung(C, E) < Fung (C *p D, E)

The right horizontal maps are S—fibrations by Lemma 9.4 and [2, Proposition 9.11(2)],
so taking pullbacks yields an equivalence

(9.12.1)  Sectp;s((E x5 D) PF*P/S) =5 § % pungc.p) Funs(C +p D, E).

We are now prepared to introduce the main definition of this section.
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9.13 Definition Let ¢: C — D be an S—cocartesian fibration. An S—functor
F C x D D—FE
is a D—parametrized S—colimit diagram if for every object x € D, the x—functor

F|c sy x: Cx *x X = Eg is an s—colimit diagram.

9.14 Proposition Let ¢: C — D be an S—cocartesian fibration, let F: C — E
be an S—functor, and let F: C xp D — E be a D—parametrized S—colimit diagram
extending F . Then the section

idg XOF: S— S X g g Fung (C,E) Fung(C xp D, E)

is an S —initial object.
Proof Combine (9.12.1), Lemma 9.11(2), and Corollary 8.7. O
We have the following existence and uniqueness result for D—parametrized S—colimits.

9.15 Theorem Let¢: C — D be an S—cocartesian fibration and let F': C — E be an
S—functor. Suppose that for every object x € D, the s—functor F|c, : Cx — Eg admits
an s—colimit. Then there exists a D—parametrized S—colimit diagram F: C xp D — E
extending F. Moreover, the full subcategory of {F} Xpy(c,E) Funs(C *p D, E)
spanned by the D—parametrized S —colimit diagrams coincides with that spanned by
the initial objects.

Proof By Proposition 9.10 and Corollary 9.9, the functor
T Fxp): (E xs D)&E>D/S . p

is an S—cartesian fibration with x—fibers equivalent to (£ g)(F lex9/ Qur hypothesis
ensures that the conditions of Lemma 9.11(1) are satisfied, so 7y Fxg) admits a
section o which is an S—functor that selects an initial object in each fiber. The resulting
S—functor D — ﬂlD/S(C *xp D, E xg D) covering tfx¢ is adjoint to an S—functor
F:C xp D — E extending F, which is a D—parametrized S—colimit diagram. Having
proven existence, the second statement now follows from Proposition 9.14. O

Theorem 9.15 also admits the following “global” consequence.
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9.16 Corollary Let¢: C — D be an S—cocartesian fibration and E be an S —category.
Suppose that for every s € S and x € Dy, Es admits all S* ! —colimits of shape C x. Then
U:Fung(C xp D, E) — Fung(C, E) admits a left S—adjoint L. which is a section of
U such that for every object F': Cs — Eg, L(F) is a Dg—parametrized S s/ _colimit
diagram.

Proof By Example 7.10, Theorem 9.15 and the stability of parametrized colimit
diagrams under base change, the conditions of Lemma 9.11(1) are satisfied for U.
Thus U admits a section L which selects an initial object in each fiber, necessarily a
parametrized colimit diagram. By Lemma 9.11(2), L is a left adjoint of U relative to
Fung (C, E); in particular, L is S—left adjoint to U. a

Application: Functor categories

9.17 Proposition Let K, I, and C be S—categories.
(1) Suppose that for all s € S, Cs admits all Kg—indexed colimits. Then
p:Kxs S —Fung(I,C)
is an S—colimit diagram if and only if, for every object x € I overs,
Ky %5 25 Fung(I,. Cy) &5 €,

is an S*/ —colimit diagram.

(2) An S-functor p: K — Fung (I, C) admits an extension to an S —colimit diagram
p ifforall x € I, evy op, admits an extension to an S*° ! —colimit diagram.
Proof We prove (1), the proof for (2) being similar. Let
pli(Kxsxjl =(KxsS)xsl —C
be a choice of adjoint of p under the equivalence
Fung(K s S,Fung(/,C)) >~ Fung((K x5 S) xs I, C).

By Theorem 9.15 applied to the S—cocartesian fibration K x g I — I and the hypothesis
on C, there exists an ] —parametrized S—colimit diagram p” extending p’ = p’|kxg1-
By Proposition 9.14, p” defines an S—initial object in

S Xpung (K xs1,c) Fung (K xs 1) %7 I,C) ~ Fung (I, C)®S)/
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so its adjoint is an S—colimit diagram. For the “if” direction, supposing that p is an
S—colimit diagram, then by the uniqueness of S—initial objects, p” is equivalent to p’.
Then evy o py is equivalent to p’, which is an S* /—colimit diagram by definition of
I —parametrized S—colimit diag;am. For the “only if” direction, supposing that all
the evy ps are S s/ _colimit diagrams, we get that p’ is an [—parametrized S—colimit
diagram, so is equivalent to p”. O

9.18 Corollary Suppose C is S—cocomplete and I is an S—category. Then Fung (I, C)
is S—cocomplete.

10 Kan extensions

We now combine the theory of S—colimits parametrized by a base S—category D and
that of free S—cocartesian fibrations to establish the theory of left S—Kan extensions.

10.1 Definition Suppose a diagram of S—categories

c £, E
nYy

o 4

D

where by the “2—cell” 1 we mean exactly the datum of an S—functor n: C x A! — E
restricting to F on 0 and Go¢ on 1. Let

G':(C xp Os(D))*p D ™2 D % E,
let
0:(C xpOs(D))x Al - E

be the natural transformation adjoint to G« : C xp Og(D) — Og(E), let
n':(C xpOs(D))x Al > CxAl' 15 E

be the natural transformation obtained from 7, and let ” = 6 o 1’ be a choice of
composition in Fung(C xp Og(D), E). Let

r:Fung((C xp Os(D))xp D, E) - Fung(C xp Os(D), E)

denote the restriction functor. By Lemma 4.8, we may select an r—cartesian edge e
in Fung ((C xp Og(D)) xp D, E) with dy(e) = G’ covering #’, chosen so that e|p is
degenerate. Let G = d; (e).
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We say that G is a left S—Kan extension of F along ¢ if G” is a D—parametrized
S—colimit diagram.
10.2 Remark The following are equivalent:

(1) G is aleft S—Kan extension of F along ¢.
(2) Forallse S, Gy is aleft S%/—Kan extension of Fs along ¢;.

(3) Forall s € S and x € Dy, G|x: x — Eg is a left $%/_Kan extension of
Flc,: Cx — Eg along ¢y : Cx — X.

In other words, our notion of S—Kan extension generalizes the concept of pointwise

Kan extensions.

We can bootstrap Theorem 9.15 to prove existence and uniqueness of left S—Kan
extensions.

10.3 Theorem Let ¢p:C — D and F: C — E be S—functors. Suppose that for every
object x € D, the S/ —functor
C><DD/5—>C'§£>E:v
admits an S*/ —colimit. Then there exists a left S—Kan extension G: D — E of F
along ¢, uniquely specified up to contractible choice.
Proof We spell out the details of existence and leave the proof of uniqueness to the
reader. By Theorem 9.15, there exists a D—parametrized S—colimit diagram
F:(CxpOg(D)*xp D — E
extending C xp Os(D) — C £, E LetG = F|p. Define a map
h:C x A - (C xp0Og(D)) *p D

over D x Al as adjoint to (C Y494 € xp 05(D),C 25 D) and let n = F o h, so
that 7 is a natural transformation from F to G o ¢.

We claim that n exhibits G as a left Kan extension of F along ¢. To show this, we
will exhibit an r—cartesian edge e from F to G’ such that the restriction r(e) of e to
C xp Og(D) is a choice of composition 6 o n’. Define

e: (C xpO0s(D))*xp Dx Al — (C xp Og(D)) xp D
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over D x Al as adjoint to (id, 7p), and let e = F oe’, so that e is an edge from F to G'.
Since (7p)|p = idp, e|p is a degenerate edge in Fung (D, E), so e is r—cartesian.

To finish the proof, we need to introduce a few more maps. Define

o= (pre.a’): C xp Os(D) x Al = C xp 05(D)
where ' is adjoint to

C xp Og(D) — Os(D) = Fung (S x Al, D) ™% Fung (S x Al x Al, D).
Here min: A! x Al — Al is the functor which takes the minimum. Define
B:C xp0Og(D)x Al - 0g(D) x Al <% D.

Use « and S to define

y:C xp0s(D)x Al x Al - (C xp Og(D)) xp D
so that on objects (c, ¢c Ssd ), ¥ sends Al x Al to the square

(c,pc = pc) —— ¢c

l(id,f ) l s
c.pc L5 dy — > d
Then F oy defines a square

FOpI'C L} GO(i)OpI'C

H ls

F oprc EAC NN Y

in Fung (C xp Og5(D), E), which proves that r(e) ~ 6 on’. O
We also have the Kan extension counterpart to Corollary 9.16.

10.4 Definition Let ¢: C — D be an S—functor and E an S—category. We say that
E admits the relevant S—colimits for ¢ if for every s € § and x € D;, Eg admits all
§/—colimits of shape C xp D/%.

10.5 Theorem Let ¢: C — D be an S—functor and E an S —category. Suppose that
E admits the relevant S'—colimits for ¢. Then the S—functor

¢*:Fung(D, E) — Fung(C, E)
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given by restriction along ¢ admits a left S—adjoint ¢, such that for every S—functor
F:C — E, the unit map F — ¢*¢ F exhibits ¢ F as a left S—Kan extension of F

along ¢.

Proof Factor ¢ as the composition
C LS C xp 0g(D) - (C xp O5(D)) xp D 22> D.
Then ¢* factors as the composition
Funs (D. £) "2 Funs ((C xp €5(D)) xp D. E) > Funs (C xp 05 (D). E) ‘> Funs (C. E).

By Proposition 8.10 and Corollary 8.5, pr¢, is left S—adjoint to ¢. Since ip is right
S—adjoint to p, by Corollary 8.5 again i}, is left S—adjoint to 7;,. By Corollary 9.16,
i* admits a left S—adjoint L which extends functors to D—parametrized S—colimit
diagrams. Let ¢ be the composite of these three functors. The proof of Theorem 10.3
shows that ¢ (F) is as asserted. O

The next proposition permits us to eliminate the datum of the natural transformation 7
from the definition of a left S—Kan extension when ¢ is fully faithful.

10.6 Proposition Suppose ¢: C — D is the inclusion of a full S—subcategory. Then
for any left S—Kan extension G of F': C — E along ¢, 1 is a natural transformation
through equivalences. Consequently, G is homotopic to a functor F : D — E which
is both an extension of F and a left S—Kan extension (with the natural transformation
F — F o¢ = F chosen to be the identity).

Proof Let G”: (C xp Os(D)) xp D — E be as in the definition of a left S—Kan
extension. Because D—parametrized S—colimit diagrams are stable under restriction to
S—subcategories,

(G”)CZ (C XD @S(D) XD C) *C C—>FE

is a C—parametrized S—colimit diagram. The additional assumption that C is a full
S—subcategory has the consequence that (C xp Og (D) xp C) = Og(C). Also, for any
object x € C, the inclusion x—functor i, : x — C /% ig x—final, using the first criterion
of Theorem 6.7. Therefore, Og(C) xc C = C L EisaC —parametrized S—colimit
diagram extending 05 (C) &% C £5 E, 50 (G")¢ ~ F o nc.
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The map 4 in the proof of Theorem 10.3 factors as
CxA' 5 64(C)xc C — (C xp O5(D)) *p D.
We have the chain of equivalences
n~G"oh~Foncoh' = Foprg,
proving the first assertion. For the second assertion, use that
(5D X {1}) U,cxqny (€ x (AHF) — 4D x (A

is a cocartesian equivalence in sSetjrS to extend (G, n) to a homotopy between G and
an extension F, which is then necessarily a left S—Kan extension. O

10.7 Corollary Suppose ¢ : C — D a fully faithful S—functor and E an S —cocomplete
S—category. Then the left S—adjoint ¢, to the restriction S—functor ¢* exists and is
fully faithful.

Proof Combine Theorem 10.5 and Proposition 10.6. O
As expected, S—colimit diagrams are examples of S—left Kan extensions.

10.8 Proposition Suppose ¢: C — D an S—cocartesian fibration and F : C xp D — E
an S—functor extending F: C — E. Then F is a D—parametrized S—colimit diagram
if and only if F is an S—left Kan extension of F .

Proof We may check the assertion objectwise on D, so let x € Ds. Consider the
commutative diagram
CE (—> CS

s

C xcxpp (Cxp D)X —— E

The value of a D—parametrized colimit of F on x is computed as the S* /—colimit
of (Fy)|c,, and that of an S-left Kan extension of F' as the S* /—colimit of F, s OpIc.
Therefore, it suffices to prove that 6 is x—final. Let f: x — y be an object in x, ie a
cocartesian edge in D, which lies over s — ¢. Then 6 is equivalent to the inclusion

Cy = Cy xc,)> (C)™)1 > C; x¢,up, D, (Ct *p, D).

Applying Lemma 10.9 to the map C; — C; xp, D; of cocartesian fibrations over Dy,
we deduce that 0 is final. O
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109 Lemma Let X — Y be a map of cocartesian fibrations over Z and lety € Y be
an object over z € S. Then the inclusion X, Xy, Yz/y — X Xy Y'Y is final.

Proof By the dual of [11, Lemma 3.4.1.10], X xy Y/Y — Z/7 is a cocartesian
fibration. We have a pullback square

Xoxy, Y)Y —— XxyY/¥
id.
(2} ——=— 7/7
where, since the bottom horizontal map is final and cocartesian fibrations are smooth,

the top horizontal map is final. O

As with S—colimits, S—left Kan extensions reduce to the usual notion of left Kan
extension when taken in an S—category of objects.

10.10 Proposition Suppose we have a diagram of S —categories:

C %} ES
n
¢l /
G
D
The following are equivalent:

(1) G is aleft S—Kan extension of F along ¢.
(2) GT is a left Kan extension of FT along ¢.
(3) For all objects s € S, GT|DS is a left Kan extension of FT|CS along ¢y.

Proof We first prove that (1) and (2) are equivalent. Factor ¢p: C — D through the
free S—cocartesian fibration on ¢,

¢:C 1S5 € xpogD IO, b
Since (¢ is S-left adjoint to prc, it is also left adjoint. Therefore, the S—left (resp. left)
Kan extension of F (resp. FT) along ¢ is computed by F o prc (resp. F To pre). By
transitivity of Kan extensions, we thereby reduce to the case that ¢ is S—cocartesian.

The claim now follows easily by combining Propositions 5.5 and 10.8.

We next prove that (2) and (3) are equivalent. For this, it suffices to observe that for all
objects d € D over some s € S, Cs Xp, Dﬁd — C Xp D/ is final by Lemma 10.9
applied to C — D. |
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11 Yoneda lemma

By Proposition 5.5, Speg is S—cocomplete, so by Corollary 9.18, the S—category of
presheaves
Ps(C) :=Fung(C"", Spey)

is S—cocomplete. The S—Yoneda embedding j: C — Pg(C) was constructed in [2,
Section 10] via S—straightening the left fibration 05(C)— CY x5 C given fiberwise
by twisted arrows. It was shown there that j is fully faithful [2, Theorem 10.4]. In this
section, we first prove the S—Yoneda lemma and then establish the universal property
of P5(C) as the free S—cocompletion of C.

11.1 Lemma (S—Yonedalemma) Let j:C — Pg(C) denote the S—Yoneda embed-
ding. Then the identity on P5(C) is an S—left Kan extension of j along itself.

Proof By Proposition 9.17, it suffices to show that for every s € S and object x € Cj,
evy: Ps(Cs) — Speg is an S*° /left Kan extension of evy js. To ease notation, let us
replace ss/ by S and suppose that s € S is an initial object.

We claim that (evy j)T: C — Spe is homotopic to Map (x, —). By definition of the
S—Yoneda embedding, (evy j)' classifies the left fibration

€vi: 65(C)x—> - C

pulled back from Os (C)— CYP x5 C via the cocartesian section o : § — C P defined
by o (s) = x. By [9, Proposition 4.4.4.5], it suffices to show that idy is an initial object
in Og(C)x_s. For this, because s € S is an initial object, we reduce to checking that
for all edges o: s — t, the pushforward of idy, by « is an initial object in the fiber
(65 (C)x—);. But this fiber is equivalent to 6(C,)a!x_> ~ (Cy)x/ .

Applying Proposition 10.10, we reduce to showing that for all 7 € S, (evy)T| Ps(C), 18
a left Kan extension of (evy j)T |c,. Note that for y any cocartesian pushforward of x
over the essentially unique edge s — ¢, we have both that (evy j)T |c, is homotopic to
Mapc, (v, —) and (er)T|PS (C), is homotopic to evy, (regarding y as an object in C;’Op).
The inclusion

C; — Ps(C); ~ Fun(C,”, Spe)

factors through P (C;) with P(C;) — Fun(C, ", Spe) left adjoint to precomposition
by the inclusion i: C;* — CP. By the usual Yoneda lemma for oco—categories,
evy: P(C;) — Spc is the left Kan extension of Mapc, (v, —). The left Kan extension
of evy to Pg(C); is then given by precomposition by i, so is again evy,. O
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To state the universal property of Pg(C), we need to introduce a bit of terminology.

11.2 Definition Let F: C — D be an S—functor. We say that F strongly preserves
S—(co)limits if for all s € §, Fy preserves S s/ _(co)limits.

11.3 Remark If F strongly preserves S—colimits then F preserves S—colimits.
However, the converse is not necessarily true.

11.4 Notation Suppose that C and D are S—cocomplete S—categories. Let Fun§ (C,D)
denote the full subcategory of Fung (C, D) on the S—functors F which strongly preserve
S—colimits. Let Flnlg (C, D) denote the full S—subcategory of Fungs(C, D) with fibers
Funés/ (C,D)overseS.

11.5 Theorem Let E be an S—cocomplete S—category. Then restriction along the
S —Yoneda embedding defines equivalences
Fung (Ps(C), E) => Funs(C, E), Fun§(Ps(C), E) => Funs(C, E)
with the inverse given by S —left Kan extension.
We prepare for the proof of Theorem 11.5 with some necessary results concerning S—

mapping spaces. Recall that given an co—category C, we have a number of equivalent
options for describing mapping spaces in C. The relevant ones to consider for us are:

(1) Straightening the left fibration 6(C ) = C° x C, we obtain the mapping space
functor
Mapc (—,—): C? x C — Spec.

(2) Fixing an object x € C, straightening the left fibration C X/ — C also yields the
functor
Map¢(x,—): C — Spc.

(3) Fixing objects x, y € C, we have that the space Map (x, y) is given by
{x} xc 0(C) xc {y}.
Likewise, given an S—category C, we have these possibilities:
(1) The S—functor
Mapc (—, —): C*? xs C — Speg

given by the S—straightening of Os (C)—>C" xgC.
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(2) Fixing an object x € C, we have the left fibration Cc = xxc 0s(C)—C,
which S—straightens to

Mapc (x, —): C — Spcs.

(3) Fixing an object x € C, we have the left fibration C*/ — C, which S—straightens
to
Mapc (x,—): C — Spes.

(4) Fixing objects x € C and y € Cs, we have the S/ —space
Mapc (x, ) = x x¢ 0s(C) xc y — y => §*/.

In the proof of Lemma 11.1, we showed that (1) and (3) were equivalent, and by
Proposition 4.31, (2) and (3) are equivalent. Finally, (2) specializes to (4) by definition.
We are thus justified in our abuse of notation when we interchangeably refer to any of
these options by Mapc (—, —).

Our next goal is to prove that Mapc (—, —) preserves S—limits in the second variable,
and dually, takes S—colimits in the first variable to S—limits. For this, we need a few
lemmas.

11.6 Lemma Let F: X — Y be a map of S—cocartesian or S—cartesian fibrations
over an S—category C. The following are equivalent:

(1) F is an equivalence.

(2) Forall s € S and S*/ —functors Z — Cs,
Fun,c s/ (Z. Xs) — Ml/cg,ss/(Z, Yy)
is an equivalence.
(3) Forall s € S and c € Cs,
Fun,c  gs/(c. Xs) = Fun, o gs/(c. ¥y)
is an equivalence.

(4) Forall c € C, F.: X, — Y. is an equivalence.

If X and Y are S-left or S—right fibrations over C, then all instances of Fun can be
replaced by Map.1®

19Map refers here to the maximal subleft fibration of Fun and not the S—mapping space functor.

Algebraic € Geometric Topology, Volume 23 (2023)



620 Jay Shah

Proof (1) = (2) If F is an equivalence, so is Fy for all s € S. The map in question
is then induced by a map of pullbacks through equivalences in which two matching
legs are S—fibrations, so is an equivalence.

(2) = (3) This is obvious.
(3) = (4) Given ¢ € Cg, take fibers over {s} € s and note that
M/Cg,ss/ (c, X5)s = Fun, ¢, ({c}, X5) > X.

(4) = (1) We must check that F§ is an equivalence for all s € S, for which it suffices
to check fiberwise over Cy by the hypothesis. O

11.7 Lemma Letg: S xs K — S_pcS be an S —functor which extends q: K — S_pcs.

Let X — S x5 K be a left fibration which is an unstraightening of ', and let X =

X xs+gk K. Then g is an S—limit diagram if and only if the restriction S—functor
R:Map)g,sk,s(S *s K. X) = Map/s.¢k,s(K. X) = Map/g,s(K, X)

is an equivalence.

Proof In view of [9, Corollary 3.3.3.4], R is a map from the limit of éTlg*gKg to the
limit of ¢ K, induced by precomposition on the diagram. But by Proposition 5.6, g is
an S—limit diagram if and only if g7 is a right Kan extension of ¢, in which case both
of the limits in question are equivalent to g7 (s). The assertion now follows. O

11.8 Proposition Let p: S xg K — C be an S—functor. The following are equivalent:
(1) p is an S-limit diagram.
(2) Forall s € S and c € Cs,
Mapc, (¢, fs(=)): s *5 Ky — Spes.s
is an S*/ ~limit diagram.

(3) Forall s € S and ¢ € Cs,

537y

_SJSS/ S
Map, ¢, g5/ (c. C§ 7)) > Map ¢ g/ (c. €75

is an equivalence.

Moreover, if the above conditions are obtained, then

s/
Cg/(p§3s )) ~

Map, ¢, ss/(c. Mapc, (¢, ps(v)),

where v is the cone point {s} € s x5 K.
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Proof (2) < (3) We will show that the statements match after fixing ¢ € C;.
To ease notation, let us replace S/ by S and suppose that s € S is an initial ob-
ject. By Lemma 11.7 and using that C¢/ is the S—unstraightening of Mapc (¢, —),
Mapc (¢, p(—)) is an S—limit diagram if and only if o

Map, ¢ 5(S *5 K, C/) - Map;c s (K, C¢/)
is an equivalence. By Corollary 4.27, this map is equivalent by a zigzag to the map
Map,c,s(c. C'P5)) — Map, ¢ s(c. C'?%).

The assertion now follows. The last assertion also follows in view of the equivalence
C/(#:5) ~ /2O and Map ¢ s(c, C'E®) ~ ¢ xc C/E® ~ Mapc (¢, p(v)).

(1) <= (3) This follows from Lemma 11.6 applied to Cc/®:8) . ¢/(P:5) which is
a map of S—right fibrations over C. O
11.9 Corollary Let F: C — D be an S—functor. Then

(1) F strongly preserves S—limits if and only if for all s € S and d € Dy,

Mapp, (d, Fs(—)): Cs — Spegs/
preserves S/ —limits.
(2) F strongly preserves S—colimits if and only if for all s € S and d € Dy,
MapD§ (Fg(—), d) = Mang{OP(d, F;VOP(—)) . C;Op —> S_pCSS/

preserves S/ —limits.

11.10 Corollary Let C be an S—category. The Yoneda embedding j: C — Ps(C)
strongly preserves and detects S —limits.

Proof Combine Propositions 11.8 and 9.17. O

Proof of Theorem 11.5 By Theorem 10.5, we have an S—adjunction
Jr:Fung(C, E) == Fung(Ps(C), E) : j*

with j* j; ~ id and the essential image of j, spanned by the left S s/_Kan extensions
ranging over all s € S. By Proposition 8.4, taking cocartesian sections yields an
adjunction

Jjr:Fung(C, E) == Fung(Ps(C), E) :j*
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again with j * j; >~ id and the essential image of ji spanned by the left S—Kan extensions.
Both assertions will therefore follow if we prove that for an S—functor F: Pg(C) — E,
F strongly preserves S—colimits if and only if F is a left S—Kan extension of its
restriction f = F|c.

For the “only if”” direction, because idp(c) is an S—left Kan extension of j by the
S—Yoneda Lemma 11.1, F = F oidpg(c) is a left S—Kan extension as it is the
postcomposition of id p;(c) with a strongly S—colimit preserving functor.

For the “if”” direction, we use the criterion of Corollary 11.9. Replacing S* / by S and
supposing that s € S is an initial object, we reduce to showing that for all x € Ej,
Mapg (F(—), x): Ps(C)" — Spes preserves S—limits. We first observe that FY°P is
m—right Kan extension (of fY°P), hence so is

Mapg (F(—), x) = Mapgwp (x,—) o F¥P

as the postcomposition of an S-right Kan extension with a strongly S—limit preserving
functor. However, by the vertical opposite of the S—Yoneda lemma, for any S—functor
G: CY — Spcg, the strongly S-limit preserving S—functor Mapp(c)(—, G) is an
S-right Kan extension of G. Applying this for G = Mapg (f (m), we conclude. O

12 Bousfield—Kan formula

In this section, we prove two decomposition formulas for S—colimits which resemble
the classical Bousfield—Kan formula for computing homotopy colimits. We first study
the situation when S = A°.

12.1 Notation Let K be a simplicial set and let A/ g be the nerve of the category of
simplices of K. We denote the first vertex map by vk : A(}pK — K and the last vertex
map by ug:A/xg — K.

By [9, Proposition 4.2.3.14], uk is final. Unfortunately, this is the wrong direction
for the purposes of obtaining a Bousfield-Kan type formula, since A /g is a cartesian
fibration over A. To rectify this state of affairs, we prove that vk is in fact final.

12.2 Proposition Let K be a simplicial set. Then the first vertex map vk : AO/pK — K

is final. Equivalently, the last vertex map [Lkop 1S initial.
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Proof Note that vk is natural in K and that A(;p(_): sSet — sSet preserves colimits.
Recall from [9, Proposition 4.1.2.5] that a map f: X — Y is final if and only if it is a
contravariant equivalence in sSet;y . It follows that the class of final maps is stable
under filtered colimits, so we may suppose that K has finitely many nondegenerate
simplices. Using left properness of the contravariant model structure, by induction we
reduce to the assertion for K = A". But in this case v is final by the proof of [9,
Variant 4.2.3.15] (which proves the result when K is the nerve of a category).

For the second assertion, we note that the reversal isomorphism A/ gop = A/ g inter-
changes pgor and (vg)°P. O

12.3 Corollary (Bousfield—Kan formula) Suppose that C admits (finite) coproducts.
Then for a (finite) simplicial set K and a map p: K — C, the colimit of p exists if and
only if the geometric realization

L] ro &= || rtewo) &= || rcO) -
x€Ko @€k ceks

exists, in which case the colimit of p is computed by the geometric realization.

Proof The fibers of the cocartesian fibration 7 : A(}pK

Therefore, the left Kan extension of p o vg along mg exists. By Proposition 12.2,

— AP are the discrete sets Kj,.

colim p =~ colim p o vk, and the latter is computed as the colimit of (g )(p o vx) by
the transitivity of left Kan extensions. O

We also have a variant of Corollary 12.3 where the coproducts over K, are replaced by
colimits indexed by the spaces Map(A”, K). To formulate this, we need to introduce
some auxiliary constructions. Let £: W — AP be the opposite of the relative nerve
of the inclusion A — sSet; this is a cartesian fibration which is an explicit model for
the tautological cartesian fibration over A°P pulled back from the universal cartesian
fibration over Caten. Let A: A" — W be the “first vertex” section of £ which sends

an n—simplex A?0 « ...« A% to the n—simplex

A ¢ cee g Aln=1n} . Aln}
l(/\a)o l(la)nq l(/\a)n
A%0 ¢ cee g A%n—1 ¢ Adn

of W specified by (Aa);(0) =0 forall0 <i <n.
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For an oo—category C, let Z¢ = Funpo (W, C x AP) and let Z C Zc be the sub-
simplicial set on the simplices o such that every edge of ¢ is cocartesian (with respect
to the structure map to A%), so that Z,, — A is the maximal subleft fibration in
Zc — A°P. Define a A°P—functor Ao/pc — Zc as adjoint to the map AY xpn W — C
which sends an n—simplex

A ¢ e A{n—l,n} PR A{n}
l(mo l(xa)n_l l(mn
Aa() ¢ Aan | I Aan

l/

to 7 o (Aa)o € Cy. Note that since Ao/pc — A°P is a left fibration, this functor factors
through Z..

Define a “first vertex” functor Y¢: Z¢c — C by precomposition with ¢ (using the
isomorphism Funpae (AP, C x A°P) == C x A°P). We then have a factorization of the
first vertex map as

AP jc ™ Z! c—~Zc Xe, C.

12.4 Proposition The functors Y¢ and Y, = (Y¢)| z,. are final.

Proof We first prove that Y¢ is final by verifying the hypotheses of [9, Theorem
4.1.3.1]. Let c € C. The map Z¢ — C is functorial in C, so we have a map
Zc., —> Zc %¢ Cy. We claim that this map is a trivial Kan fibration. Unwinding the
definitions, this amounts to showing that for every cofibration A — B of simplicial sets
over AP, we can solve the lifting problem

BUAAXAopW E— CC/

Bxpo W ——— C

where, since the class of left anodyne morphisms is right cancellative, we may suppose
A = @. Tt thus suffices to prove that Ap = B Xpaw A1 B — B X a0 W is left anodyne
for any map of simplicial sets B — A°P. Observe that even though A is not a cartesian
section, it is a left adjoint relative to A°P to & by [11, Proposition 7.3.2.6] and the
uniqueness of adjoints, since on the fibers it restricts to the adjunction {0} == A”".
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Consequently, for any co—category B and functor B — A°, by [11, Proposition 7.3.2.5]
Ap is a left adjoint, hence left anodyne. From this, we deduce the general case by using
the characterization in [9, Proposition 4.1.2.1] of the left anodyne maps X — Y as
the trivial cofibrations in sSet;y equipped with the covariant model structure. Indeed,
arguing as in the proof of Proposition 12.2, by induction on the nondegenerate simplices
of B we reduce to the known case B = A".

We next prove that Z¢ is weakly contractible if C is, which will conclude the proof
for T¢. For this, another application of (the opposite of) [11, Proposition 7.3.2.6]
shows that the A°°—functor C x A°? — Z ¢ defined by precomposition by £ is a left
adjoint relative to A°P to the functor (Y, idaw), because it restricts to the adjunction
t: C = Fun(A", C) :evyp on the fibers. Hence, |Z¢| >~ |C x A°P| >~ |C|, and the latter
is contractible by hypothesis.

We employ the same strategy to show that Y, is final. Since C.; — C is con-
servative, the trivial Kan fibration above restricts to yield a trivial Kan fibration
Zz /Cc/ — Z x¢ C¢y. Thus it suffices to show that Z. is weakly contractible if C
is. By (the opposite of) [5, Proposition 7.3], the cocartesian fibration Z, — A is
classified by the functor

AP 5 Catoy Map(—C), Spc.
Let R denote the right adjoint to the colimit-preserving functor

L: Fun(A°?, Spe) — Catoo

left Kan extended from the inclusion i: A C Caty; R sends an oo—category to
its corresponding complete Segal space. Then R(C) ~ Map(—, C) o i°?. For any
X, € Fun(A°P, Spc), we have colim X ~ |L(X,)|, hence

colim R(C) ~ |[(Lo R)(C)| ~|C|,
where L o R ~ id by [10, Corollary 4.3.16]. By [9, Corollary 3.3.4.6],
|Z¢ | ~ colim R(C),

so we conclude that |Z .| is contractible. O
The following corollary was previously proven by Mazel-Gee in [14].
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12.5 Corollary (Bousfield-Kan formula, “simplicial” variant) Suppose that C
admits colimits indexed by spaces. Then for any co—category K and functor p: K — C,
the colimit of p exists if and only if the geometric realization

coim p(x) &—— colim p(x(0)) E colim  p(o(0)) ---

x€Map(A9,K) a€Map(Al,K) Map(AZ2,K)

exists, in which case the colimit of p is computed by the geometric realization.

Proof Using Proposition 12.4, we may repeat the proof of Corollary 12.3, now using
the span

/

T
AP — Zp 5 K. O

We now proceed to relativize the above picture, starting with the map Y¢. Let C — S
be an S—category. Define the map

Yc,s: Funpomxs/s(W x S, A% x C) — C

to be the composition of the map to Fun AnxS /s (AP x S, A x C) given by precom-
position by A xidg, together with the equivalence of Lemma 9.5 of this to A°’ x C and
the projection to C. Define T’C’ 5 to be the restriction of T¢ s to the maximal subleft
fibration (with respect to A’ x S).

12.6 Theorem The S—functors Yc s and Y g are S—final.

Proof For every object s € S, we have a commutative diagram

(Yc.s)s

—_— A Xi ;k —_—
Funaomxs/s (W x 8, A% x C)g 90% Fumt s /s (A% x S, AP x C); C,

: : |

pPrcyg

ﬁ"’onp(W’ A% x Cy) A—*> %AOP(AOP, A% x Cy) = A% x Cy C
TCS

where the left two vertical maps are given by the natural categorical equivalences of
Lemma 9.6; the only point to note is that the equivalences of Lemmas 9.5 and 9.6
coincide when the first variable is trivial. By Proposition 12.4, Y¢, is final, so (Yc¢,s)s
is final. By the S—cofinality Theorem 6.7, Y¢ s is S—final. A similar argument shows
that Y g is S—final. O
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The process of relativizing vc is considerably more involved. We begin with some
preliminaries on the relative nerve construction. Let J be a category.
12.7 Lemma The adjunctions
S7:sSet/n) == Fun(J, sSet) : Ny, 3}“ : sSeth(J) = Fun(J, sSet+) :NJJr
of [9, Section 3.2.5] are simplicial.
Proof Let K:J — sSet denote the constant functor at a simplicial set K. We have an
obvious map yx: N(J) x K — Nj(K) natural in K and hence a map
(x, xkopr): X x K > Nj(FsX xK) = NjFsX x Nj(K)
natural in X and K. We want to show the adjoint
Ox,k: 87 (X X K) > Fs(X)x K

is an isomorphism. Both sides preserve colimits separately in each variable, so we may
suppose X = A" — J and K = A™. By [9, Example 3.2.5.6], §7(/)(—) = N(I,-),
and by [9, Remark 3.2.5.8], for any functor f: 1 — J, the square

S
sSet/ )y ——— sSet/n()

|5 [

Fun(/, sSet) —s Fun(J, sSet)
commutes. Letting [ = A" x A" and f: 1 — J be the structure map, we have
Fr(A" x A™) (e, 1) = (A7) /5 x (A™) )7 =2 AF x Al
Factoring f as A" x A" £5 A" 1, J, we then have
QT (A" x A" (k) = A x A™.
Let G = g&157 (A" x A™), so that F7 (A" x A™")(j) = (hG)(j). Then
(mG)(j) = Aggljil}l/j((k,h(k) — j) > N X AT = F (AN () x A"
and one can verify that 0y, g implements this isomorphism. For § }r N J+, recall that the

simplicial tensor sSet x sSet™ — sSet™ is given by (K, X) — K fxX. Consequently,
in the above argument we may simply replace A™ by (A™)* to conclude. O
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Since NJJr (S%) = N(J) x S*#, the adjunction S}r = NJJr lifts to an adjunction
+ . Qett +5. v+
SJ,S : sSet/N(J)XS <:>Fun(J,sSet/S) .NJ’S

between the overcategories. Moreover, for any functor f: T — S, the square

NT
Fun(J, sSetj'S) L3 sSetj’N(J)XS

l I l(idxf)*
+ Nj—,T +
Fun(/, sSet/7) —— sSet/y ;) r

commutes.

12.8 Proposition Equip sSeter( T)xS with the cocartesian model structure and
Fun(J, sSet?LS) with the projective model structure, where sSetjrS has the cocartesian
model structure. Then the adjunction

+ . + +3 .+
sj’s.sSet/N(J)XS<:>Fun(J,sSet/S).NJ’S

is a Quillen equivalence.

Proof We first prove that the adjunction is Quillen. Because this is a simplicial
adjunction between left proper simplicial model categories, it suffices to show that
3? g preserves cofibrations and N}t ¢ preserves fibrant objects. Observe that the slice
model structure on

+ ~ +
sSet)y(ryxs = (58et/y 1)) /(v ()xs)

is a localization of the cocartesian model structure. Similarly, the slice model structure
on

Fun(J, sSeth) =~ Fun(J, sSet+)/§ﬁ

is a localization of the projective model structure, since the trivial fibrations for the
two model structures coincide and postcomposition by 1: sSet?’S — sSet™ gives a
Quillen left adjoint between the projective model structures. Since the lift of a Quillen
adjunction L: M == N : R to the adjunction L: Mr(x) = N/x ‘R is Quillen for the
slice model structures, we deduce that S}r 5 preserves cofibrations.

Now suppose F': J — sSet}LS is fibrant. Since § is an co—category, FF — S is a
fibration in Fun(J, sSet). Hence Nj s(F) — N(J) x § is a categorical fibration. We
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verify that it is a cocartesian fibration (with every marked edge cocartesian) by solving
the lifting problem (for n > 1)

AL ——— N;S(F)

N —— (N #
A Ty VU xS)
Unwinding the definitions, this amounts to solving the lifting problem

ul\’& I F(Jn)

g —— S

and the dotted lift exists because F(j,) is cocartesian over S with the cocartesian
edges marked. Finally, it is easy to see that marked edges compose and are stable under
equivalence. We conclude that NJJr g(F) is fibrant in sSet;rN( xS

To prove that the Quillen adjunction is a Quillen equivalence, we will show that the
induced adjunction of co—categories

3 N((sSeth( Syxs)’) == N(Fun(J, sSeth)") N

is an adjoint equivalence, where N }+S is the simplicial nerve of NJ+’ s and S’JJFS is any
left adjoint to N }+S We first check that N}J,FS is conservative. Indeed, for this we may
work in the model category: for a natural transformation : F — G in Fun(J, sSetjrS),
NJJF,S(F) — N;F’S(G) on fibers is given by F(j)s — G(j)s; hence if F and G are
fibrant and NJJF’S (o) is an equivalence then « is as well. It now suffices to show
that the unit transformation 7n: id — N }JFS S’;LS is an equivalence. We have the known
equivalence N ((sSetj'N( T)x §)°) =Fun(N(J) xS, Cato) so it further suffices to check
that the map
(id x is)* — (id x is)* N F g ~ NFir3)s
is an equivalence for all s € S, where is: {s} — S the inclusion. Equivalently, since
S}r — N}L is a Quillen equivalence by [9, Proposition 3.2.5.18], we must show that the
adjoint map
§) iy — (idxis) 3 g
is an equivalence. This statement is in turn equivalent to the adjoint map

0: Nitolis)e — (idxis)«NjF
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being an equivalence. Recall that for a functor f: T — S,
fx: Fun(T, Cats,) — Fun(S, Catyo)
is induced by 7. p* sSetJr — sSet+ for the span
< (0(S) xs T)* 2> T

with 7 given by evaluation at 0 and p projection to T. Moreover, for a functor
idx f:UxT — U xS, we may elect to use the span

(U x )t <7 (U x 0(S) xs T)F L2 (U x T)#
to model (id x f)«. Letting f = i5, we see that 6 is induced by the map
Nj_ST[*,O — ([dxm)«N JSY/,O >~ (id x ) (id x p)*N T,

where the first map is adjoint to the isomorphism (id x 7)* N J g = N * 7.5 ,m*. Direct
computation reveals that this map is an equivalence on fibrant F': J — sSet ™. o

We now return to the situation of interest. Let C be an S—category with structure map
m:C — S. We first extend our existing notation x for objects x € C.

12.9 Notation For an n—simplex ¢ of C, define
0 = {0} Xpun(ar x{op,c) Fun((&")" x (AN 1C) Xpun(anxi1y,s) S-

12.10 Lemma There exists amap by : 0 — {wo(n)} x5 0(S) = ST®/ which is a
trivial Kan fibration.
Proof First define a map b : 0 — 7o to be the pullback of the map

(e, 0(1))x : Fun(A", 04 (C)) — CA" x gan Fun(A", 0(S))

over {o} and S. Since (eq, O(:)) is a trivial Kan fibration, so is 5. Next, let K be the
pushout A" x {0} Ugyyxqoy {1} ¥ A'. We claim that the map

Fun(A",0(S)) xgan S — Fun(K, S)

induced by K C A" x Al is a trivial Kan fibration. For a monomorphism A — B, we
need to solve the lifting problem

A —— Fun(A",0(S)) xgan S

B — Fun(K, S)
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which transposes to

AX AN Ugypny Bx{n} —— 0(S)

B x A* >—>S

and the left-hand map is right anodyne by [9, Corollary 2.1.2.7]; hence the dotted lift
exists as evy is a cartesian fibration. Now define b/ to be the pullback

70 = {70} xgan Fun(A", 0(S)) xgan S — {70} x gan Fun(K, S) = 7™/

This is also a trivial Kan fibration. Finally, let by = b o b, O

We will regard o as an S mom)/ or § —category via by. We also have a target map
o — CA" induced by A" x {1} C A" x A. This covers the target map S™®/ — §
and is an S—functor.

Define a functor F¢: A — sSet}LS on objects [n] by

Fe(n) = | | o*

ogeCy

and on morphisms «: [m] — [n] by the map ¢ — o« induced by precomposition by
o A" — A*,

12.11 Remark The map o — o(n) is compatible with the maps by and by (,) of
Lemma 12.10, hence is a categori_(ml equivalence (in fact, a trivial Kan fibration).
Consequently, given a morphism f: x — y in C, by choosing an inverse to ' = y
we obtain a map f*:y — x, unique up to contractible choice. Moreover, if f lies
over an equivalence, then J — x is a trivial Kan fibration, so we also obtain a map

Siix—y.

In order to define the S—first vertex map N Zf,p s(Fc) — C, we need to introduce a few
preliminary constructions. Let A, C O(A") be the subsimplicial set where a k—simplex
X0Yo = +++ —> Xp Yk 1s in A, if and only if x; < yo. For the reader’s aid we draw a
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picture of the inclusion 4, C O(A") for n = 2, where dashed edges are not in A;:

00

01 -

|

02 s 12 ﬁ 22

12.12 Lemma The inclusion A, — O(A") is inner anodyne.

Proof 1In this proof we adopt the notation [x¢yo, . .., Xg yi] for a k—simplex of O(A").
Let E be the collection of edges [ab, xy] in O(A") where x > b, and choose a total
ordering < on E such that if we have a factorization

ab — xy

|

a'b —— x'y’

then [a’b’, x"y’] < [ab, xy]. Index edges in E by I = {0, ..., N}. Define simplicial
subsets A, ; of O(A") such that A, ; is obtained by expanding A4, to contain every k—
simplex [xoYo, ..., Xk Vi) With [xoyo, Xx V] in E<;. We will show that each inclusion
Api — Ap,i+1 is inner anodyne. We may divide the nondegenerate k—simplices
[X0Y0,X1)1, ..., Xk Yk] in Ay i4+1 but notin A, ; into six classes:

e Al x1y1# xo(yo+1) and y1 > yo.

e A2 x1y1=x0(yo+1).

e Bl x1y1 = (xo+ 1)yo, y2 > yo, and x2y2 # (xo + 1)(yo + 1).

* B2 xiy1=(xo+ 1)yo and x2y> = (xo + 1)(yo + 1).

e Cl x1y1# (xo+1)yo and y1 = yo.

e C2 x1y1=(xo+1)yo and y> = yo.

We have bijections between classes of form 1 and classes of form 2 given by

o A [x0Y0,X1)¥1:-. ., Xk Vk] = [X0Yo. Xo(yo + 1), x1¥1, .. .. Xk Yk,
e B [xoy0.Xo+ 1y1,x2y2,..., Xk Vi]
= [x0y0. (xo + 1)yo, (xo + 1) (yo + 1), x2y2, ..., Xg Vi,

o C [X0Y0,X1)1s .- Xk Yi] = [X0Yo. (xo + D)yo. X1¥1, ..., Xk Vkl-
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Moreover, this identifies simplices in a class of form 1 as inner faces of simplices in the
corresponding class of form 2. Let P be the collection of pairs T C t” of nondegenerate
k — 1 and k—simplices matched by this bijection. Choose a total ordering on P where
pairs are ordered first by the dimension of the smaller simplex, and thenby A < B < C,
and then randomly. Let J = {0,..., M} be the indexing set for P. We define a
sequence of inner anodyne maps

An,i = An,i,O - An,i,l —> > An,i,M+1 = An,i+1

such that A, ; j+1 is obtained from A, ; ; by attaching the j t pair ¢ C 7’ along an
inner horn. For this to be valid, we need the other faces of 7’ to already be in A, ; ;.
The ordering on E was chosen so that the outer faces of ¢’ are in A, ;. The argument
for the inner faces proceeds by cases:

e 7/ isin class A2: The other inner faces are also in class A2 since they contain
xo(yo + 1), hence were added at some earlier stage.

e 7’ isin class B2: The other inner faces of

[x0y0, (xo + 1)yo, (xo + 1)(yo + 1), X2¥2, ..., Xk k]

are all in class B2, except for [xoyo, (xo + 1)(yo + 1), x2¥2, ..., Xk V], which
is in class A1. Both of these were added at an earlier stage.

e 7’ isin class C2: The other inner faces are in class C2 or Bl since they contain
(x0 4+ 1)y, hence were added at some earlier stage. O

Let E, C (An)1 C O(A"); be the subset of edges xoyo — x1y1 where yg = y1. Define
simplicial sets C’ and C” to be the pullbacks

C! —— Hom((0(A%). E.).;C) C! —— Hom((A.. E.).;C)
Hom(A®, S) —%5 Hom(0(A®), ) Hom(A®, S) %5 Hom(A., S)

We now show that the map C’ — C” induced by precomposition by 4, — O(A®) is a
trivial Kan fibration. Indeed, in order to solve the lifting problem

o' —— C’

An . ) C//
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we must supply a lift

An Uua,_, (Jo@a"h) —=C

|

ON) —— 4§

and the left vertical map is a trivial cofibration by Lemma 12.12. Let 0: C” — C’ be
any section. Also let §: C’ — C be the map induced by precomposition by the identity
section A* — O(A°).

Define a map vc,s: Ng'op s(Fc) — C over § as follows: the data of an n—simplex of
N;T,p s (Fc) consists of

e an n—-simplex A0 <— ... < A% in AP (so we have maps f;;: A% — A% for
1<)

e an n-simplex s,: A" — §;

e a choice of ap—simplex og € Cqy,;

e for0<i <n,amapy;: AN — g;, where o; = 0g ° fo;

such that for all 0 <i < j <n, the diagram

{0,...,i}c[j]l lf{;

(s.)|<0,“\ l

commutes. Let 7 : AY x A% x Al — C denote the adjoint map.

We now define a map A,, — C to be that uniquely specified by sending for all 0 <k <n
the rectangle A% x A"=% < A, given by 00 — Ok and k(n —k) +— kn to

Ak XAn_k idx(Aa)k Ak x A%k X{l} Vl|{1} C,

where the maps (Aa); are obtained from the first vertex section of W — A°P restricted
to a, as before. One may check that the composite 4, — C — S factors as

Ay —> A" 225 S,
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so this defines a n—simplex of C”. This procedure is natural in A" € A, so yields a
map N;Zp’ s(Fc)— C”. Finally, postcomposition by oo : C"” — C define our desired
map vc,s. By Proposition 12.8, N;f)p’s (Fc) 2, Sis an S—category with an edge
n'—cocartesian if and only if it is degenerate when projected to A°°. These edges are
evidently sent to w—cocartesian edges in C, so vc is an S—functor.

12.13 Theorem The S—first vertex map vc,s: N zf,p s(Fc) — C is fiberwise a weak
homotopy equivalence. Moreover, vc,s is S—final if either C — § is a left fibration,
or S is equivalent to the nerve of a 1—category.

Proof Let? € S be an object and i;: {t} — S the inclusion. Then

Njon s (FC)i = N5 (i Fe).
We have a map
N (if Fo) = AT = N3, (C)

of left fibrations over A°? induced by the natural transformation i Fc — C, which
collapses each o x g {t} to a point. Moreover, this natural transformation is objectwise
a Kan fibration, so the map itself is a left fibration. Also define a map

N7 Fo) — (871
as follows: in the above notation, the yo map in the data of an n—simplex
(@e,vi: & — g x5 {t})
yields a map 7yo: A% — 0(S) xg {t} = S/*, and we send the n—simplex to
A _a™)o (A%0)oP Lyo)™, (S/t)op’

where a®¥ is (A%0)%P « ... « (A%)°P. Using these maps we obtain a commutative
square

Nip(iF Fo) —— C% xgap (/)P

L,

We claim that the map

Oc,i: N (i) Fo) = (M%) xco (C xs s/tyop
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is a categorical equivalence. Since Oc is a map of left fibrations over Ao/pc, it suffices
to check that for every object o € A(;pc, the map on fibers

o xg {t} = (SP)V/ xgw {wo(n)} ~ {mo(n)} xg §'*

is a homotopy equivalence. But this is the pullback of the trivial Kan fibration of
Lemma 12.10 over {t}.

We next define a map NAop(zt*Fc) — S/t by sending (a., y;) to wyg o (Aa)g. Then

N (i Fe) ﬁm s/t
I

A% < _LC TS

the outer rectangle

commutes so we obtain the dotted map v, ,.

Next, we choose a section P of the trivial Kan fibration 0°°**(C) — C x g 0(S) which
restricts to the identity section on C. P restricts to a map

P;:C xg 8!t — 0 (C) xg {1},
and it is tedious but straightforward to construct a homotopy between the composition

(evi Pr)oug, and (uc,s),. Finally, we define a map v¢ - A(;prSS/t — N, (i) Fc)

as follows: given an n—simplex

A¢o ¢

[ /

C xg S/t

let 0; = pr¢ ot;, and define y;: A' — g; x5 {t} as the composition of the projection to
A and the adjoint of the map P; o 7;. Then (a., y;) assembles to yield an n—simplex
of Nj, (i Fo).

Unwinding the definitions of the various maps, we identify the composition v/C OVl
as given by vc ; 5/1, and the composition 6¢c ; o v , as given by the map A /p pre to the
factor A /pc and the map (¢ ¢s/1) to the factor (C xg §/1)°P. By Proposition 12.2
and the fact that final maps pull back along cocartesian fibrations, we deduce that in

Ao/chSsxr —— A% xcw (C x5 S/tyr 5 (C xg /)P
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the long composition and the second map are both final. Consequently, ¢ ; o v’C’.’t isa
weak homotopy equivalence. Moreover, if S is equivalent to the nerve of a 1—category
then O¢ ; o vg.’ , 18 a categorical equivalence, as may be verified by checking that the
map is a fiberwise equivalence over A(;pc. Since Oc; is a categorical equivalence, Ug’l
is then a weak homotopy equivalence (resp. a categorical equivalence). Since Ve ¢ g/1
is final, U/CJ is then a weak homotopy equivalence (resp. final).

For the last step, let j;: C; — C xg S /t denote the inclusion. As the inclusion of the
fiber over a final object into a cocartesian fibration, j; is final. (evy P;) o j; =idc,,
so by right cancellativity of final maps, evy P; is final. We conclude that (vc,s); is
a weak homotopy equivalence (resp. final). In addition, if C — S is a left fibration,
(vc,s): has target a Kan complex, so is final by [11, Lemma 2.3.4.6]. Invoking the
S—cofinality Theorem 6.7, we conclude the proof. O

12.14 Remark The above proof that the S—first vertex map vc,s is final in special
cases hinges upon the finality of the map ¢ o vg ;- We believe, but are currently
unable to prove, that this map is always final.

We conclude this section with our main application to decomposing S—colimits.

12.15 Corollary Suppose that S°P admits multipullbacks. Then C is S—cocomplete
if and only C admits all S —coproducts and geometric realizations.

Proof We prove the if direction, the only if direction being obvious. Let K be an
S/ _category and p: K — Csan S $/_diagram. First suppose that K — S/ is a left
fibration. Consider the diagram

v s/
Ny s/ (FK) = K —= C;
l"
A% x S5/

By Theorem 12.13, the S s/ _colimit of p is equivalent to that of p o g ¢s/. Since p is
S—cocartesian, by Theorem 9.15 the S/ —left Kan extension of p o v k,ss/ along p exists
provided that for all n € A°P and f:s — 1, the S’ /_colimit exists for (pov K.S5/)(n,f)
To understand the domain of this map, note that because the pullback of p aan
F*: AP x St/ — A% x S5/ is given by N;p’sz/(f*FK), the assumption that S°P
admits multipullbacks ensures that the M—ﬁbers of p decompose as coproducts
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of representable left fibrations. Therefore, these colimits exist since C is assumed to
admit S—coproducts. Now by transitivity of left S5/—Kan extensions, the S*/—colimit
of poug gs/ is equivalent to that of py(p o vk gs/), and this exists since C is assumed
to admit geometric realizations.

Now suppose that K — §s/ is any cocartesian fibration. Consider the diagram

/7
K,S8/ p

— T
(Fun pops g5/ (W x S5/, A% x K) » K s C

i :

AP x S8/

By Theorem 12.6, the S s/ _colimit of p is equivalent to that of p o T;{ gs/- BY
Proposition 9.7, the (n, f )—fiber of o is equivalent to tFun g,/ (A" x S*/, K x’Ss/ st/
which in any case remains a left fibration. We just showed that for all 1 € §, C; admits
S*/_colimits indexed by left fibrations. We are thereby able to repeat the above proof
in order to show that the §%/—colimit of D exists. O

Appendix Fiberwise fibrant replacement

In this appendix, we formulate a result (Proposition A.4) which will allow us to
recognize a map as a cocartesian equivalence if it is a marked equivalence on the fibers.
We begin by introducing a marked variant of Lurie’s mapping simplex construction.

A.1 Definition Suppose we have a functor ¢ : [n] — sSet™, 49 — --- — A,. Define
M (¢) to be the simplicial set which is the opposite of the mapping simplex construction
of [9, Section 3.2.2], so that a m—simplex of M(¢) is given by the data of a map
o: A" — A" together with a map B: A™ — Ay (). Endow M (¢) with a marking by
declaring an edge e = («, B) of M(¢) to be marked if and only if 8 is a marked edge
of Ag(0)- Note that if each A; is given the degenerate marking, then the marking on
M (@) is that of [9, Notation 3.2.2.3].

A.2 Lemma Suppose n: ¢ — V is a natural transformation between functors
[n] — sSet™ such that forall0 <i <n, ni . A; — Bj is a cocartesian equivalence. Then
M(n): M(¢) — M(y) is a cocartesian equivalence in sSetj‘A,,.

Proof Using the decomposition of M(¢) as the pushout
M(@) Uggrpn1 Ao x A"
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for ¢': Ay — -+ — Ay, this follows by an inductive argument in view of the left
properness of sSet7rAn. O

A.3 Construction Let X — A" be a cocartesian fibration, let o be a section of the
trivial Kan fibration 0°°®"(X) — X x an O(A™) which restricts to the identity section
on X, and let P = ev; oo be the corresponding choice of pushforward functor. For
0 <i <n,define f;: X; x Al > X by P o (idy, x f) where f: Al — O(A") is the
edge (i =i) - (i —i+1),and let ¢: X;” — --- — X~ be the sequence obtained
from the f; x {1}. We will explain how to produce a map M(¢) — X over A" via an
inductive procedure. Begin by defining the map M(¢), = X, — X, to be the identity.
Proceeding, observe that M(¢) is the pushout

Xo x Atlesmt o x5 AP

b |

M(@") ——— M(9)
with ¢’ the composable sequence X1 — --- — X, and the map y given by
Xox A1 X1 x A1 M(¢)).
Given amap g’: M(¢') — X over A"~!, we have a commutative square

Xox Al Uy nity Xo x Alliny 08700,y
XoxA ﬂ

Xo x A" > A

and the left vertical map is inner anodyne by [9, Lemma 2.1.2.3] and [9, Corol-
lary 2.3.2.4]. Thus a dotted lift exists and we may extend g’ to g: M(¢) — X.

Note that g; is the identity for all 0 <i < n. Therefore, if we instead take the marking
on M(¢) which arises from the degenerate marking on the X;, then g is (the opposite
of) a quasiequivalence in the terminology of [9, Definition 3.2.2.6], hence a cocartesian
equivalence in sSet}LA,, by [9, Proposition 3.2.2.14]. Now by Lemma A.2, g with the
given marking is a cocartesian equivalence.

This construction of M(¢) — X enjoys a convenient functoriality property: given a
cofibration F': X — Y between cocartesian fibrations over A", we may first choose

Algebraic € Geometric Topology, Volume 23 (2023)



640 Jay Shah

ox as above, and then define oyto be a lift in the diagram

(X xpn O(AY)) Uy ¥ —E200 o eocart (y7)

[T T

Y xan O(A") =—————= Y xpn O(A")

Consequently, we obtain compatible pushforward functors and a natural transformation
n: ¢x — ¢y, which yields, by a similar argument, a commutative square

M(gx) 22 M(gy)

Lol
x —F sy

where the vertical maps are cocartesian equivalences in sSetj‘An.

A.4 Proposition Let p: X — S andq:Y — S be cocartesian fibrations over S and
let F: X — Y be an S—functor. Suppose collections of edges €y and €y of X and Y
such that

(1) €x and €y contain the p— and q—cocartesian edges, respectively;

(2) for %?( C ‘éx the subset of edges which are either p—cocartesian or lie in a fiber,
we have that (X, %?() C (X, €y) is a cocartesian equivalence in sSetjrS, and ditto
forY;

(3) F(éx) Céy;

4) foralls € S, Fg: (X5, (€x)s) = (Ys, (€y)s) is a cocartesian equivalence in
sSet™.

Let X' = (X,€x), Y = (Y,éy), and F': X’ — Y’ be the map given on underlying
simplicial sets by F. Then for all simplicial sets U and maps U — S, Fy, is a
cocartesian equivalence in sSeter.

Proof Without loss of generality, we may assume that an edge e is in €y if and only if
either e is p—cocartesian or p(e) is degenerate, and ditto for €y. First suppose that F
is a trivial fibration in sSetjrS and for all s € S, F; reflects marked edges. Then F’ is
again a trivial fibration because F’ has the right lifting property against all cofibrations.
For the general case, factor F' as X G, 7 B,y where G is a cofibration and H is a
trivial fibration, and let Z' = (Z,€ ) for €z the collection of edges e where e is in
€z if and only if H(e) is in €y. Then for all s € S, Z; — Y is a trivial fibration in

Algebraic € Geometric Topology, Volume 23 (2023)



Parametrized higher category theory 641

sSet™, so as we just showed H': Z' — Y is a trivial fibration. We thereby reduce to
the case that I is a cofibration.

Let AU denote the collection of simplicial sets U such that for every map U — S, F (’] is
a cocartesian equivalence in sSeth. We need to prove that every simplicial set belongs
to U. For this, we will verify the hypotheses of [9, Lemma 2.2.3.5]. Conditions (i) and
(ii) are obvious, condition (iv) follows from left properness of the cocartesian model
structure and [11, Proposition B.2.9], and condition (v) follows from the stability of
cocartesian equivalences under filtered colimits and [11, Proposition B.2.9]. It remains
to check that every n—simplex belongs to 9, so suppose S = A”. Let

Migx) 2% M(gy)

be as in Construction A.3. Let ¢} be the sequence Xy — --- — X, where the maps
are the same as in ¢y, and similarly define ¢}, and n’. Then we have pushout squares

M(gx) —— M(dy)  M(¢y) —— M(¢y)

| [ |

X — X’ Y —— Y’

with all four vertical maps cocartesian equivalences in sSethn. Here we replace X’
by X”, which has the same underlying simplicial set X but more edges marked with
X’ C X" left marked anodyne, so that the vertical maps M(¢y) — X" are defined
and the squares are pushout squares (again, ditto for Y"”’). Note that F defines a map
F": X" —>Y".

Finally, we have the commutative square

M) 2 Mg}

| |

X" F” N2

By assumption, 1’: ¢3 — ¢} is a natural transformation through cocartesian equiva-
lences in sSet™. By Lemma A.2, M(n') is a cocartesian equivalence in sSet;rAn. We
deduce that F”, hence F’, is as well. O
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A.5 Remark By a simple modification of the above arguments, we may further prove

that for any marked simplicial set A — S, F is a cocartesian equivalence in sSeth.
We leave the details of this to the reader.

List of symbols

Spc oo—category of spaces

0(S) Arrow oo—category of S

ss/ Slice co—category of S under the object s, Lurie’s “alternative”
version [9, Section 4.2.1]

Cat‘c"';’f/‘j'gwt oo—category of cocartesian fibrations over S

Caty/s oo—category of co—categories over S

(X,8) Marked simplicial set

)& Simplicial set X with its degenerate edges marked

X4 Simplicial set X with all its edges marked

X~ oco—category X with its equivalences marked

%4 Inner fibration 7 : X — S with its w—cocartesian edges marked

X Inner fibration 7 : X — S with its w—cartesian edges marked

A\ A" with the edge {0, 1} marked

A A" with the edge {n—1, n} marked

1A Aj with the edge {0, 1} marked

A"t A7 with the edge {n—1, n} marked

sSetj'( Z.6) The category of marked simplicial sets over (Z, £)

sSet;rZ The category of marked simplicial sets over Z#

Map_)(—, —) Mapping simplicial set relative to marked simplicial set,
excludes noninvertible morphisms, co—groupoid when fibrant

Funy(—,-) Mapping simplicial set relative to marked simplicial set,
includes noninvertible morphisms, co—category when fibrant

%D (C,E) Pairing construction

X Parametrized point

Cx Parametrized fiber

Fung(—, —) S—category of S—functors

or Cocartesian section S — Fung (C, E) classifying S—functor
f:C—E

Cs S—category of objects in an co—category C

pt Corresponding functor under universal mapping property of C g
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We study the Floer-theoretic interaction between disjointly supported Hamiltonians
by comparing Floer-theoretic invariants of these Hamiltonians with the ones of their
sum. These invariants include spectral invariants, boundary depth and Abbondandolo,
Haug and Schlenk’s action selector. Additionally, our method shows that in certain
situations, the spectral invariants of a Hamiltonian supported in an open subset of a
symplectic manifold are independent of the ambient manifold.
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1 Introduction and results

The paper deals with Hamiltonian diffeomorphisms of symplectic manifolds, which
model the Hamiltonian dynamics on phase spaces in classical mechanics. A central
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tool for studying Hamiltonian diffeomorphisms is Floer theory, which is an infinite-
dimensional version of Morse theory applied to the action functional on the space
of contractible loops. As such, Floer theory associates a chain complex to each
Hamiltonian, which is generated by the critical points of the action functional and
whose differential counts certain negative gradient flow lines, called Floer trajectories.

Our main object of interest is Floer theory for Hamiltonians supported in pairwise dis-
joint open sets, namely F' = Fy +---+ Fy where F; is supported in U; and Uy, ..., Un
are pairwise disjoint. On the level of dynamics, the Hamiltonian diffeomorphisms ¢;
corresponding to F; do not interact. The Hamiltonian diffeomorphism corresponding
to F' is the composition ¢ = ¢ o---0¢p, and the diffeomorphisms ¢; commute. How-
ever, it is unclear a priori whether in Floer theory there is any communication between
the disjointly supported Hamiltonians F;. The Floer-theoretic interaction between
disjointly supported Hamiltonians was studied by Polterovich [15], Seyfaddini [19],
Ishikawa [13] and Humiliere—Le Roux—Seyfaddini [12], mostly through the relation
between invariants of the sum of Hamiltonians and invariants of each one. These works
suggest that such an interaction should be quite limited. The main finding of this paper
is a construction, on symplectically aspherical manifolds and under some conditions
on the domains U;, of what we call a “barricade” — a specific perturbation of the
Hamiltonians F; near the boundaries of U;, which prevents Floer trajectories from
entering or exiting these domains. The presence of barricades limits the communication
between disjointly supported Hamiltonians as expected. The construction is motivated
by the following simple idea in Morse theory. Given a smooth function F on a
Riemannian manifold, which is supported inside an open subset U, one can perturb
it into a Morse function f that has a “bump” in a neighborhood of the boundary, as
illustrated in Figure 1. The negative gradient flow-lines of f cannot cross the bump,
and therefore a flow-line starting inside U, and away from the boundary, remains there.
On the other hand, flow-lines that start on the bump can flow both in and out of U.
Since the Morse differential counts negative gradient flow-lines, such constraints can
be used to gain information about it.

This idea can be adapted to Floer theory on symplectically aspherical manifolds (that is,
when the symplectic form @ and the first Chern class ¢y vanish on 7,(M)), and
under certain assumptions on the domain U. The resulting construction can be used
to study Floer-theoretic invariants, such as spectral invariants and the boundary depth,
of Hamiltonians supported in such domains. Spectral invariants measure the minimal
action required to represent a given homology class in Floer homology. These invariants
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Figure 1: We perturb the function F' to create a small “bump” along a neigh-
borhood of dU. The dashed lines represent (some of the) flow-lines of

—grad f.

play a central role in the study of symplectic topology and Hamiltonian dynamics. Using
the barricades construction, we prove that the spectral invariants with respect to the
fundamental and the point classes of Hamiltonians supported in certain domains do not
depend on the ambient manifold. This result is stated formally in Section 1.1.1. Another
application of the barricades construction concerns spectral invariants of Hamiltonians
with disjoint supports. This problem was studied in Ishikawa [13], Polterovich [15]
and Seyfaddini [19] and lastly in Humiliere, Le Roux and Seyfaddini [12]. Humiliere,
Le Roux and Seyfaddini proved that the spectral invariant with respect to the funda-
mental class satisfies a “max formula”, namely, the invariant of a sum of disjointly
supported Hamiltonians is equal to the maximum over the invariants of the summands.
This property does not hold for a general homology class. However, using barricades we
show that an inequality holds in general; see Section 1.1.2. A third application of this
method concerns the boundary depth, which was defined by Usher in [21] and measures
the maximal action gap between a boundary term and its smallest primitive in the Floer
chain complex; see Section 1.1.3. We prove a relation between the boundary depths of
disjointly supported Hamiltonians and that of their sum. The last application concerns
a new invariant that was constructed by Abbondandolo, Haug and Schlenk in [1]. We
give a partial answer to a question they posed, asking whether a version of Humiliere,
Le Roux and Seyfaddini’s max formula holds for the new invariant; see Section 1.1.4.

1.1 Results

The limitation in Floer-theoretic interaction between disjointly supported Hamiltonians
is reflected through Floer-theoretic invariants of these Hamiltonians and their sum. In
order to define these invariants, we briefly describe filtered Floer homology. For more
details, see Section 2 and the references therein. Throughout the paper, (M, @) denotes
a closed symplectically aspherical manifold, namely, |, ) = 0 and ¢1 |, ) = 0,
where ¢ is the first Chern class of M. Given a Hamiltonian F: M x S! — R, its
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symplectic gradient X ¢ is the time-dependent vector field given by the equation
w(XF,,-)=—dF;(-), where F;(-):=F(-,t).

The 1-periodic orbits of the flow of X, whose set is denoted by P(F), correspond
to critical points of the action functional associated to F, and generate the Floer
complex CFy(F). The differential of this chain complex is defined by counting certain
negative-gradient flow lines of the action functional, and therefore decreases the value
of the action. Note that the gradient of the action functional is taken with respect to
a metric induced by an almost complex structure J on M. The homology of this chain
complex, denoted by H Fy«(F’), is known to be isomorphic to the singular homology
of M up to a degree-shift, H Fy(F) = Hyx4,(M; Z5). The complex C Fy(F) is filtered
by the action value, namely, for every a € R, we denote by CFZ(F) the subcomplex
generated by 1—periodic orbits whose action is not greater than a. The homology of
this subcomplex is denoted by HFZ(F).

In what follows we present four applications of the barricades construction, which
is an adaptation to Floer theory of the idea presented in Figure 1, and is described
in Section 1.2. The barricade construction applies for Hamiltonians supported! in
certain admissible domains, which include images of symplectic embeddings of nice
star-shaped? domains in R?” into M. In order to present this class in full generality we
need to recall a few standard notions. Let U C M be a domain with a smooth boundary.
We say that U has a contact type boundary if there exists a vector field Y, called the
Liouville vector field, that is defined on a neighborhood of dU, is transverse to dU,
points outwards from U and satisfies Ly w = w. If the Liouville vector field Y extends
to U, the closure of U is called a Liouville domain. Finally, a subset X C M is called
incompressible if the map tx: 71(X) — w1 (M) induced by the inclusion X — M is
injective. In particular, every simply connected subset is incompressible.

Definition 1.1 An open subset U C M with a smooth boundary is called a CIB
(Contact Incompressible Boundary) domain if for each connected component U; of U,
one of the following assertions holds:

(i) aU; is of contact type and is incompressible.

(i) The closure of U; is an incompressible Liouville domain.

IWhen we say that a Hamiltonian F is supported in a subset U of M, we actually mean that the function
F:M xS! - Ris supportedin U x S!.

2 A nice star-shaped domain is a bounded star-shaped domain in R2” with a smooth boundary, such that
the radial vector field is transverse to the boundary.
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<

)

Figure 2: Two embeddings of the annulus into T?2. The embedding on the left
is incompressible (as well as its boundary) and hence is a CIB domain. The
embedding on the right is contractible in T2 and therefore not incompressible.

<l

Example 1.2 ¢ The image under a symplectic embedding of a nice star-shaped
domain in R?” into M is a CIB domain.

* A noncontractible annulus in M = T? is a CIB domain. More generally, if
M =T?" =C"/Z?", then certain tubular neighborhoods of L = R”/Z" in M
are CIB domains.

Remark 1.3 ¢ A disjoint union of CIB domains is again a CIB domain.
e The interior of every incompressible Liouville domain is a CIB domain.

e Every CIB domain is incompressible, as the fact that dU is incompressible
implies that U is incompressible; see the appendix.

1.1.1 Locality of spectral invariants and Schwarz’s capacities For a homology
class @ € H«(M; Z) and a Hamiltonian F', the spectral invariant ¢ (F'; «) is the smallest
action value a for which « appears in HFZ(F, J), namely,

c(F;a):=inf{a |« € im(:%)},

where (4: HFZ(F) — HF«(F) is induced by the inclusion (*: CFZ(F) < CF«(F).
The following result states that the spectral invariants with respect to the fundamental
and the point classes, of a Hamiltonian F supported in a CIB domain, do not depend on
the ambient manifold M. More formally, let U C M be a CIB domain and assume that
there exists a symplectic embedding W: U < N of U into another closed symplectically
aspherical manifold (N, €2), such that W(U) is a CIB domain in N. Denote by cps(-;-)
and ¢y (-;-) the spectral invariants in the manifolds M and N, respectively.

Theorem 1 Let F: M x S' — R be a Hamiltonian supported in U. Then
(1) cem(Fi[M])=cn(W«F:[N]) and cy(F:[pt]) = cn (U« F: [pt]),

where W, F: N x S! — R is the extension by zero of F o W1,
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The assertion of Theorem 1 does not hold when M is not symplectically aspherical,
or when U is not incompressible in M. This is shown in Example 4.6. Theorem 1
also holds for the spectral invariants defined by Frauenfelder and Schlenk [9] on open
manifolds obtained as completions of compact manifolds with contact-type boundaries;
see Remark 5.1. Moreover, Theorem 1 can be extended to certain other homology
classes, as stated in Claim 5.3. One corollary of Theorem 1 concerns Schwarz’s relative
capacities.>

Definition 1.4 (Schwarz [18]) Let (M, w) be a symplectically aspherical manifold.
For a subset A C M define the spectral capacity by

2) cy(A; M) :=sup{c(F;[M])—c(F;[pt]) | supp XF C A X Sl}.

In [18], Schwarz shows that if the spectral capacity of the support of X F is finite and
(pll, = 1, then the Hamiltonian flow of F has infinitely many geometrically distinct
nonconstant periodic points corresponding to contractible solutions. In Section 4, we
use Theorem 1 to show that when A is a contractible domain with a contact-type
boundary, its spectral capacity does not depend on the ambient manifold.

Corollary 1.5 Let S be the set of contractible compact symplectic manifolds with
contact-type boundaries that can be embedded into symplectically aspherical manifolds,
eg nice star-shaped domains in R?". Then:

e Schwarz’s spectral capacities {cy(-; M)} induce a capacity c, on the class of
symplectic manifolds X which are exhaustible by elements from S, namely there
exist A; € S such that

A1 CAyC---CX and X:UA,-.

1

e ¢y (A; M) is finite for every A C M such that A € S and can be symplectically
embedded into (R?", w), that is,

(3) cy(A; M) = ¢y (A) < 2e(A;R*") < 0,

where e(A; R?") is the displacement energy* of A in R?".

3We recall the definition of a capacity in Section 4.
#We recall the definition of the displacement energy in Section 2, equation (20).
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Here we used the fact that every bounded subset of R?” is displaceable with finite
energy. The proof of Corollary 1.5, as well as the definition of ¢, appears in Section 4.

Another corollary of Theorem 1 concerns the notions of heavy and superheavy sets,
which were introduced by Entov and Polterovich in [7]: A closed subset X C M is

called heavy if
((F)> inf F forall FeC®(M xS,
XxS1

and is called superheavy if

((F)< sup F forall FeC®(M xS"),
XxS1
where
F;[M
C(F):= lim —C(k : [(M1)
k—o00 k

is the partial symplectic quasistate associated to the spectral invariant ¢ and the funda-
mental class. The following corollary was suggested to us by Polterovich.

Corollary 1.6 Let M be a symplectically aspherical manifold and let A C M be a
contractible domain with a contact-type boundary that can be symplectically embedded
in (R2", wg). Then M \ A is superheavy. In particular, A does not contain a heavy set.

Corollary 1.6 can be viewed as an extension of the results of [13] to a wider class
of domains, when restricting to symplectically aspherical manifolds. Theorem 1 and
Corollaries 1.5 and 1.6 are proved in Section 4.

1.1.2 Max-inequality for spectral invariants In [12], Humiliere, Le Roux and Sey-
faddini proved a max formula for the spectral invariants, with respect to the fundamental
class, of Hamiltonians supported in the interiors of disjoint incompressible Liouville
domains in symplectically aspherical manifolds.

Theorem (Humiliere-Le Roux—Seyfaddini [12, Theorem 45]) Let Fy,..., Fx be
Hamiltonians whose supports are contained, respectively, in the interiors of pairwise
disjoint incompressible Liouville domains Uy, ..., Upy. Then

c(Fi+---+ Fy:[M]) = max{c(F1: [M]).....c(Fy:[M])}.

The existence of barricades can be used to give an alternative proof for this theorem, as
well as to prove a version of it for other homology classes. Clearly, other homology
classes do not satisfy such a max formula— for example, by Poincaré duality the class
of a point satisfies a min formula. However, an inequality does hold for a general
homology class.
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Theorem 2 Let F and G be Hamiltonians supported in disjoint CIB domains and let
a € Hy(M). Then

4) c(F+G;a) <max{c(F;a),c(G;a)}.

Moreover, when o = [M], we have an equality.

Notice that, by definition, the interior of every incompressible Liouville domain is
a CIB domain. Moreover, a disjoint union of CIB domains is again a CIB domain.
Hence, the inequality for N Hamiltonians follows by induction. We also mention that
a “min inequality” does not hold in general, namely, c(F + G; «) might be strictly
smaller than min{c(F, «), c(G, @)}, as shown in Example 6.4. Theorem 2 is proved in
Section 6.

1.1.3 The boundary depth of disjointly supported Hamiltonians In [21], Usher
defined the boundary depth of a Hamiltonian F to be the largest action gap between a
boundary term in C Fy(F') and its smallest primitive, namely

B(F):=inf{b e R|CFH(F)NdF, j(CF«(F)) C aF,J(CFf—i_b(F)) for all a € R}.

The following result relates the boundary depths of disjointly supported Hamiltonians
to that of their sum, and is proved in Section 7.

Theorem 3 Let F and G be Hamiltonians supported in disjoint CIB domains. Then

(5) B(F +G) = max{B(F), B(G)}.
Note that equality does not hold in (5) in general, as shown in Example 7.2.

1.1.4 Min-inequality for the AHS action selector In a recent paper [1], Abbondan-
dolo, Haug and Schlenk presented a new construction of an action selector, denoted
here by cags, that does not rely on Floer homology. Roughly speaking, given a
Hamiltonian F, the invariant cags(F') is the minimal action value that “survives” under
all homotopies starting at F'. In Section 8, we review the definition of this selector
and a few relevant properties. An open problem, stated in [1, Open Problem 7.5], is
whether caps coincides with the spectral invariant of the point class. As a starting
point, Abbondandolo, Haug and Schlenk ask whether cays satisfies a min formula like
the one proved by Humiliere, Le Roux and Seyfaddini in [12] for the spectral invariant
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with respect to the point class.® Due to a result from [12], this will imply that capns
coincides with the spectral invariant with respect to the point class in dimension 2
on autonomous Hamiltonians. In Section 8, we use barricades in order to prove an
inequality for the AHS action selector.

Theorem 4 Let FF and G be Hamiltonians supported in the interiors of disjoint
incompressible Liouville domains. Then

(6) cans(F + G) < min{cans(F), cans(G)}.
1.2 The main tool: barricades

The central construction in this paper is an adaptation of the idea presented in Figure 1
to Floer theory, which is an infinite-dimensional version of Morse theory, applied
to the action functional associated to a given Hamiltonian F: M x S! — R. As in
Morse theory, the Floer differential counts certain negative-gradient flow lines of the
action functional. These flow lines are called “Floer trajectories” and correspond to
solutions u: R x S1 — M of a certain partial differential equation, called the “Floer
equation” (FE), which converge to 1—periodic orbits of the Hamiltonian flow at the ends,
lim u(s,t) =x4+(t) for x4 € P(F).
s—=+o0
In this case we say that u connects x4; see Section 2 for more details. Following
the idea from Morse theory, given a Hamiltonian F' supported in a subset U C M,
we wish to construct a perturbation for which Floer trajectories cannot enter or exit
the domain. Moreover, we extend this construction to homotopies of Hamiltonians,
namely, smooth functions H: M x S' x R — R, for the following reason: most of the
results presented above compare Floer-theoretic invariants of different Hamiltonians.
Such a comparison is usually done using a morphism between the different chain
complexes, which is defined by counting solutions of the Floer equation with respect
to a homotopy between the two Hamiltonians. We consider only homotopies that are
constant outside of a compact set, namely there exists R > 0 such that dsH(-,-,s)
is supported in M x S' x [-R, R]. We denote by Hy := H(-,-,£R) the ends of
the homotopy H. Note that we think of single Hamiltonians as a special case of this
setting, by identifying them with constant homotopies, H(x,t,s) = F(x,t). Given an
almost complex structure J on M, we consider solutions of the Floer equation (FE)

5 As mentioned above, they proved a max formula for the spectral invariant of the fundamental class. By
Poincaré duality for spectral invariants, this is equivalent to a min formula for the point class.
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with respect to the pair (H, J). The property of having a barricade is defined through
constraints on these solutions.

Definition 1.7 Let U and U, be open subsets of M such that U, € U. We say that
a pair (H, J) of a homotopy and an almost complex structure has a barricade in U
around U, if the periodic orbits of H1 do not intersect the boundaries dU and dU.,
and for every x4+ € P(H+) and every solution u: R x S — M of the corresponding
Floer equation connecting x+, we have:

(1) If x— C U, then im(u) C U,.

(i) If x4+ C U, thenim(u) C U.

See Figure 3 for an illustration of solutions satisfying and not satisfying these constraints.
When H is a constant homotopy, corresponding to a Hamiltonian F, the presence
of a barricade yields a decomposition of the Floer complex, in which the differential
admits a triangular block form. To describe this decomposition, let us fix some notation:
for a subset X C M, denote by Cx (F) C CF«(F) the subspace generated by orbits
contained in X, and by d|y the map obtained by counting only solutions that are
contained in X. Then, for a Floer-regular pair (F, J) with a barricade in U around U,

v, 0 Ay
(1) CF«(F):=Cy,(F)®Cyc<(F)® Cy\v,(F), drpg=| 0 * x
0 0dy

The block form (7) implies that the differential restricts to the subspace Cy, (F). We
study the homology of the resulting subcomplex (Cy, (F), d|y,) in Section 5.1.

Given a homotopy H that is compactly supported in a CIB domain, we construct a
small perturbation & of H and an almost complex structure J, so that (&, J) has a
barricade.

Theorem 5 Let U be a CIB domain and let H: M x S' xR — R be a homotopy
of Hamiltonians, supported in U x S! x R, such that 3;H is compactly supported.
Then there exist a C°°—small perturbation h of H and an almost complex structure J
such that the pairs (h, J) and (h, J) are Floer-regular and have a barricade in U
around Us. In particular, when H is independent of the R—coordinate (namely, it is a
single Hamiltonian), h can be chosen to be independent of the R—coordinate as well.
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Figure 3: An illustration of allowed solutions, left, and forbidden solutions,
right, for a pair (H, J) with a barricade.

This result is proved in Section 3, by an explicit construction of the perturbation £
and the almost complex structure J. We remark that the assumptions on (M, @) being
symplectically aspherical and U having either incompressible boundary or being the
interior of an incompressible Liouville domain are crucial for this construction. See
the proofs of Lemmas 3.4-3.5 for details.

1.3 Related works

There have been several works studying the Floer-theoretic interaction between dis-
jointly supported Hamiltonians, mainly through the spectral invariants of these Hamil-
tonians and their sum. Early works in this direction, mainly by Polterovich [15],
Seyfaddini [19] and Ishikawa [13], established upper bounds for the invariant of the
sum of Hamiltonians, which depend on the supports. Later, Humiliere, Le Roux and
Seyfaddini [12] proved that in certain cases the invariant of the sum is equal to the
maximum over the invariants of each individual summand. The method was also
conceptually different. While previous works relied solely on the properties of spectral
invariants, Humiliere, Le Roux and Seyfaddini studied the Floer complex itself. We also
take this approach and study the interaction between disjointly supported Hamiltonians
on the level of the Floer complex, but our methods are substantially different.

In a broader sense, it is worth mentioning two works which regard symplectic homology.
Symplectic homology is an umbrella term for a type of homological invariant of
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symplectic manifolds, or of subsets of symplectic manifolds, constructed via a limiting
process from the Floer complexes of properly chosen Hamiltonians. In this setting,
questions regarding disjointly supported Hamiltonians correspond to local-to-global
relations, such as a Mayer—Vietoris sequence. In [5], Cieliebak and Oancea defined
symplectic homology for Liouville domains and Liouville cobordisms and proved a
Mayer—Vietoris relation. Their method includes ruling out the existence of certain
Floer trajectories, and partially relies on work by Abouzaid and Seidel [2]. Versions of
some of these arguments are being used in Section 3 below. Another work concerning
the Mayer—Vietoris property is by Varolgunes [22], in which he defines an invariant of
compact subsets of closed symplectic manifolds, which is called relative symplectic
homology, and finds a condition under which the Mayer—Vietoris property holds. In
particular, for a union of disjoint compact sets, the relative symplectic homology splits
into a direct sum.

Structure of the paper

In Section 2 we review the necessary preliminaries from Floer theory and contact
geometry. In Section 3 we construct barricades and prove Theorem 5. We then use
it to prove Theorem 1 in Section 4. In Section 5, we discuss the relation to Floer
homology on certain open manifolds and two extensions of Theorem 1. Sections 6—8
are respectively dedicated to the proofs of Theorems 2—4. Finally, in Section 9 we
prove several transversality and compactness claims that are required for establishing
the main results. The appendix contains a claim about incompressibility, whose proof
we include for the sake of completeness.
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2 Preliminaries from Floer theory

In this section we briefly review some preliminaries from Floer theory and contact
geometry on closed symplectically aspherical manifolds — namely, when @], ) =0
and c1|x,(m) = 0, where ¢y is the first Chern class of M. For more details see, for
example, [3; 14; 16]. We also fix some notation that will be used later on.

2.1 Floer homology, regularity and notation

Let F: M x S! — R be a Hamiltonian on M. The corresponding action functional Ax
is defined on the space of contractible loops in M by

1
AF(x) :=/0 F(x(t),t)dt—/)?*a),

where x: S' — M and x: D? — M satisfies X(e2"’) = x(¢). The critical points of
the action functional are the contractible 1—periodic orbits of the flow of Xz, and their
set is denoted by P(F). The Hamiltonian F: M x S' — R is said to be nondegenerate
if the graph of the linearized flow of X at time 1 intersects the diagonal in TM x TM
transversely. In this case, the flow of X  has finitely many 1—periodic orbits. The Floer
complex CFy(F) is spanned by these critical points, over Z,.® A time-dependent w—
compatible’ almost complex structure J induces a metric on the space of contractible
loops, in which negative-gradient flow lines of Ar are maps u: R x S! — M that
solve the Floer equation

(FE) osu(s,t)+ Jou(s,t)-(d;u(s,t)— Xrou(s,t)) =0.

The energy of such a solution is defined to be E(u) := [p, o1 |0su ||3 ds dt, where
Il - |l 7 is the norm induced by the inner product associated to J, {-,-)y ;= w(-,J -).
When the Hamiltonian F is nondegenerate, for every solution u with finite energy, there
exist x4 € P(F) such that limg_ 4 oo u(s,7) = x1(¢), and we say that u connects x .
The well-known energy identity for such solutions is a consequence of Stokes’ theorem:

®) Bai= [ 10l dsdr = Ap (o) = Ar, ().

For two 1—periodic orbits x+ € P(F) of F, let M(F, j)(x—, x+) denote the set of all so-
lutions u: R x ST — M of the Floer equation (FE) satisfying limg_s+oc u(s, 1) = x4 ().

5The Floer complex can be defined over other coefficient rings; we chose to work in the simplest setting.
7An almost complex structure J is called w—compatible if w(-,J -) is an inner product on TM. All
almost complex structures considered in this paper are assumed to be w—compatible.
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Notice that R acts on this set by translation in the s variable. We denote by M f )
the set of all finite-energy solutions. It is well known — see eg [3, Theorem 6.5.6] —
that when F is nondegenerate, M(r, y) := UxieP(H) MF,j)(x—, x+). Moreover,
for nondegenerate Hamiltonians one can define an index u: P(F) — Z, called the
Conley—Zehnder index, which assigns an integer to each orbit; see eg [3, Chapter 7]. The
Floer complex is graded by the index p; namely, for k € Z, CFy (F) is the Z,—vector
space spanned by the periodic orbits x € P(F') for which u(x) = k.

In order to define the Floer differential for the graded complex CFx(F'), one needs
an almost complex structure J such that the pair (F, J) is Floer-regular. The def-
inition of Floer regularity concerns the surjectivity of a certain linear operator and
is given in Section 9.1. When the pair (F, J) is Floer-regular, the space of solu-
tions M, y)(x—, x4) is a smooth manifold of dimension p(x-) — u(x4) for all
x+ € P(F). Dividing M(F j)(x—,x4) by the R action, we obtain a manifold of
dimension p(x—) —u(x4) —1.

Recall that an element a € CF(F) is a formal linear combination a = ) ay - x,

where x € P(F) and ay € Z,. For a Floer-regular pair (F, J), the Floer differential
d(F,7): CFx(F) — CFyx—1(F) is defined by

M -
9 I, nla):= Z Z ax-#z( (F,J)Héx x+))'x+’

x_€P(F) x4+ €P(F)
wx4)=p(x-)—1

where #, is the number of elements modulo 2. The homology of the complex
(CF«(F),0(F, ) is denoted by HFy(F,J) or HF«(F). A fundamental result in
Floer theory states that Floer homology is isomorphic to the singular homology with
a degree shift, HF«(F,J) =~ Hy«_,(M;Z5). The Floer complex admits a natural
filtration by the action value. We denote by CFZ(F) the subcomplex spanned by
critical points with value not greater than a. Since the differential is action decreasing,
it can be restricted to the subcomplex C F2(F). The homology of this subcomplex is
denoted by HFZ(F, J).

It is well known that when F is a C2—small Morse function, its 1-periodic orbits are its
critical points, P(F') = Crit(F), and their actions are the values of F', Ar(p) = F(p).
In this case, the Floer complex with respect to a time-independent almost complex struc-
ture J coincides with the Morse complex when the degree is shifted by n (which is half
the dimension of M), since Morse-ind(p) = u(p) + n for every p € Crit(F) = P(F):

(CFx(F), 85 = (CMucin (F) OFE ) )
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For a proof, see, for example, [3, Chapter 10]. We conclude this section by fixing
notation that will be used later on.

Notation 2.1 Leta = ), ax -x be an element of CFyx(H).

e We say that x € a if ax # 0.

¢ We denote the maximal action of an orbit from a by
Ag(a) :=max{Aq (x) | ax # O0}.

e For a subset X C M, let Cx(H) C CF«(H) be the subspace spanned by the
I—periodic orbits of H that are contained in X. Let my: CF«(H) — Cx(H)
be the projection onto this subspace. Note that Cx (H) is not necessarily a
subcomplex, and wx is not a chain map in general.

2.2 Communication between Floer complexes using homotopies

Now let H: M x S xR — R denote a homotopy of Hamiltonians, rather than a single
Hamiltonian. Throughout the paper, we consider only homotopies that are constant
outside of a compact set. Namely, there exists R > 0 such that ds H | |5~ g = 0, and we
denote by Hy(x,t) := limg_, 1o, H(x,¢?,s) the ends of the homotopy H. Given an
almost complex structure J, we consider the Floer equation (FE) with respect to the
pair (H, J),

dsu(s,t) +Jou(s, t)-(eu(s, 1) —Xmg,ou(s,t)) =0,

where Hg(-,-):= H(-,-,s). We sometimes refer to this equation as the s—dependent
Floer equation, to stress that it is defined with respect to a homotopy of Hamiltoni-
ans. For 1-periodic orbits x4 € P(H+), we denote by Mg, j)(x—, x4) the set of
all solutions u: R x S! — M of the s—dependent Floer equation (FE) that satisfy
limg— +00 u(s,7) = x£(7). As before, Mg, ) denotes the set of all finite-energy
solutions and when the ends, H4, are nondegenerate,

Man= | Mant_.xp.
xy€P(Hy)

(See, for example, [3, Theorem 11.1.1].) The energy identity for homotopies is

(10) E(u) :=/ |9sul? ds dt
RxS!

= Apr_ (x0)— An, (x4) + /

RxS

d0sHoudsdt.
1
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As in the case of Hamiltonians, the definition of Floer-regularity concerns the surjectivity
of a certain linear operator and is given in Section 9.1. For a Floer-regular pair (H, J),
the space Mg, j)(x—, x4) is a smooth manifold of dimension 4 (x—) — j4(x+). In this
case, one can define a degree-preserving chain map ®: CF.(H-) — CFy(H4), called
the continuation map, between the Floer complexes of the ends, by

(11) ®(a) = Z Z ax_ - M(x—,x4) X4.
*¥—€a xieP(H+)
mx4)=u(x-)

The regularity of the pair guarantees that the map @ is a well-defined chain map that
induces an isomorphism on homologies; see eg [3, Chapter 11].

2.3 Contact-type boundaries

In order to construct barricades for Floer solutions around a given domain, we need the
boundary to have a contact structure. Let U C M be a domain with a smooth boundary.
We say that U has a contact type boundary if there exists a vector field Y, called the
Liouville vector field, which is defined on a neighborhood of dU, is transverse to dU,
points outwards from U and satisfies Ly w = w. The differential form A :=yw is a
primitive of w, namely dA = w; it is called the Liouville form and is defined wherever
Y is defined. The flow " of Y is called the Liouville flow, and is defined for short
times. The Reeb vector field R is then defined by the equations

(12) REkCI’dlh‘wraU, /\(R)|1/I’BU =e'.

We stress that the vector field R is defined wherever the Liouville vector field Y is
defined and is nonvanishing. If the Liouville vector field Y extends to U, the closure
of U is called a Liouville domain.

3 Barricades for solutions of the (s—dependent) Floer equation

In what follows, H: M x S! x R — R denotes a homotopy of (time-dependent)
Hamiltonians and J denotes a (time-dependent) almost complex structure. We assume
that dg H is compactly supported and write Hy :=limg_, 1o, H(-,-,s). Note that we
consider the case where H is a single Hamiltonian as a particular case, by identifying it
with a constant homotopy. Fix a CIB domain U C M, denote by Y and R the Liouville
and Reeb vector fields, respectively, and by A =ty w the Liouville form. In order to
prove Theorem 5, namely, that there exist a perturbation 4 of H and an almost complex
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structure J such that (H, J) has a barricade, we construct # and J explicitly. Let us
sketch the idea of this construction before giving the details.

e To construct /, we first add to H a nonnegative bump function in the radial coordinate,
which is defined on a neighborhood of dU using the Liouville flow. Then we take 4 to
be a small nondegenerate perturbation of it.

e The almost complex structure J is taken to be cylindrical near dU ; see Definition 3.1
below.

We want to rule out the existence of solutions violating the constraints of Definition 1.7.
Suppose there exists a solution u connecting x— C U, with x4 C US. Then the image
of u intersects dU,, say along a loop I". We first bound the action of ' (Lemma 3.2),
and then conclude a negative upper bound for the action of x4 (Lemma 3.4). Since
h =~ 0on Uf D x4, the action of x4 can be taken to be arbitrarily close to zero, a
contradiction.

3.1 Preliminary computations

Some of the arguments and results in this section were carried out by Cieliebak and
Oancea in [5] for the setting of completed Liouville domains, instead of closed sym-
plectically aspherical manifolds. Specifically, some of the computations appearing in
the proofs of Lemmas 3.2 and 3.5 can be found in the proof of [5, Lemma 2.2], which
follows Abouzaid and Seidel’s work in [2, Lemma 7.2].

Definition 3.1 We say that a pair (H, J) of a homotopy and an almost complex
structure is é—cylindrical near dU for 6 € R \ {0}, if

(i) J is cylindrical near dU, namely, J Y = R on an open neighborhood of dU,
(i) U xS! xR ={H =c} is a regular level set of H,

(iii) the gradient of H with respect to J satisfies V;H = 8e™"Y on " 0U and H
has no 1-periodic orbits near dU.

We remark that conditions (ii) and (iii) in the above definition imply that, near dU,
H does not depend on the R—coordinate. Suppose that (H, J) is §—cylindrical near U
and let u: R x S' — M be a solution of the (s—dependent) Floer equation (FE) with
finite energy E(u) < oo. The following lemma gives an upper bound for the integral
of A along the curve I' := im(u) N dU oriented as a connected component of the
boundary of im(u) N U¢; see Figure 4.
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Figure 4: An example of the setting described in Lemma 3.2. The gray region
is the set U C M and the loops I' are given by im(x) N dU = T', oriented as
the boundary of im(u) N U*€.

Lemma 3.2 Let (H, J) be a pair that is §—cylindrical near 9U and letu: R x S' — M
be a finite-energy solution of the s—dependent Floer equation connecting x4+ € P(H1).
Suppose that u intersects 0U transversely and write I' :=im(u)NaU for the intersection,
oriented as the boundary of im(u) N U€. Then

—§ ifx_CU, xy CUS
(13) /)LS 8§ ifx_cUS xyCU,
r 0 ifxyCUorxseCcUS

Proof Set X:=u~!1(U¢) CRxS! and denote its boundary by y. Thenu(y) =T, since
the x4+ do not intersect dU. The orientation on X is given by the positive frame (ds, d;).
Let y; be a connected component of y. Then I := u(y;) is connected. Let 7 € [0, T;]
be a unit-speed parametrization of y;, and notice that this induces a parametrization
on [;. Denoting by v(t) the outer normal to X at y;(t), then y;(t) = jv(t), where
j is the standard complex structure on R x S!, ie jdy = d,. Pushing (v(7), y; (1))
to TM , we obtain

N(7) = Du(v(v)), [Li(x) = Du(yi(v)).

We remark that N(7) is not necessarily normal to dU (with respect to the inner product
induced by J), but is always pointing inwards (or tangent to the boundary); see Figure 5.
The relation between N(z) and I} (7) goes through the Floer equation (FE), which can
be written in the form

JoDu=Duoj—Xgou-(-,0s); +JXpgou-(-,0;);.
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V(1)

Figure 5: The normal v(7) to the component y; of 33 and its image, N(7),
under Du.

It follows that I} (t) can be written as a linear combination of JN(t), the gradient
of H and the symplectic gradient of H:

I} (x) = Du(yi(r)) = Du(jv(r))
= JDu(v(r))+ Xgou-(v(r),ds); —J Xgou-(v(r),ds);
=JN@)+Xgou-(v(r),ds); —J Xgou-(v(r),0;);.

Using this to compute the integral of A along I, we obtain
[ 2= [rai@nac= [oven. i) ar
I
= /(u(YoF,