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Corneli Druţu University of Oxford
cornelia.drutu@maths.ox.ac.uk

Tobias Ekholm Uppsala University, Sweden
tobias.ekholm@math.uu.se

Mario Eudave-Muñoz Univ. Nacional Autónoma de México
mario@matem.unam.mx

David Futer Temple University
dfuter@temple.edu

John Greenlees University of Warwick
john.greenlees@warwick.ac.uk

Ian Hambleton McMaster University
ian@math.mcmaster.ca

Hans-Werner Henn Université Louis Pasteur
henn@math.u-strasbg.fr

Daniel Isaksen Wayne State University
isaksen@math.wayne.edu

Christine Lescop Université Joseph Fourier
lescop@ujf-grenoble.fr

Robert Lipshitz University of Oregon
lipshitz@uoregon.edu

Norihiko Minami Nagoya Institute of Technology
nori@nitech.ac.jp

Andrés Navas Universidad de Santiago de Chile
andres.navas@usach.cl

Thomas Nikolaus University of Münster
nikolaus@uni-muenster.de

Robert Oliver Université Paris 13
bobol@math.univ-paris13.fr

Birgit Richter Universität Hamburg
birgit.richter@uni-hamburg.de

Jérôme Scherer École Polytech. Féd. de Lausanne
jerome.scherer@epfl.ch

Zoltán Szabó Princeton University
szabo@math.princeton.edu

Ulrike Tillmann Oxford University
tillmann@maths.ox.ac.uk

Maggy Tomova University of Iowa
maggy-tomova@uiowa.edu

Nathalie Wahl University of Copenhagen
wahl@math.ku.dk

Chris Wendl Humboldt-Universität zu Berlin
wendl@math.hu-berlin.de

Daniel T. Wise McGill University, Canada
daniel.wise@mcgill.ca

See inside back cover or msp.org/agt for submission instructions.

The subscription price for 2023 is US $650/year for the electronic version, and $940/year (C$70, if shipping outside the US)
for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Algebraic & Geometric Topology is indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications
and the Science Citation Index.

Algebraic & Geometric Topology (ISSN 1472-2747 printed, 1472-2739 electronic) is published 9 times per year and continu-
ously online, by Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall
#3840, Berkeley, CA 94720-3840. Periodical rate postage paid at Oakland, CA 94615-9651, and additional mailing offices.
POSTMASTER: send address changes to Mathematical Sciences Publishers, c/o Department of Mathematics, University of
California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.

AGT peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2023 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/agt
mailto:etnyre@math.gatech.edu
mailto:kathryn.hess@epfl.ch
mailto:jeb2md@eservices.virginia.edu
mailto:cohf@math.rochester.edu
mailto:tara.brendle@glasgow.ac.uk
mailto:indira.chatterji@math.cnrs.fr
mailto:dranish@math.ufl.edu
mailto:cornelia.drutu@maths.ox.ac.uk
mailto:tobias.ekholm@math.uu.se
mailto:mario@matem.unam.mx
mailto:dfuter@temple.edu
mailto:john.greenlees@warwick.ac.uk
mailto:ian@math.mcmaster.ca
mailto:henn@math.u-strasbg.fr
mailto:isaksen@math.wayne.edu
mailto:lescop@ujf-grenoble.fr
mailto:lipshitz@uoregon.edu
mailto:nori@nitech.ac.jp
mailto:andres.navas@usach.cl
mailto:nikolaus@uni-muenster.de
mailto:bobol@math.univ-paris13.fr
mailto:birgit.richter@uni-hamburg.de
mailto:jerome.scherer@epfl.ch
mailto:szabo@math.princeton.edu
mailto:tillmann@maths.ox.ac.uk
mailto:maggy-tomova@uiowa.edu
mailto:wahl@math.ku.dk
mailto:wendl@math.hu-berlin.de
mailto:daniel.wise@mcgill.ca
http://dx.doi.org/10.2140/agt
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/
http://msp.org/
http://msp.org/


msp
Algebraic & Geometric Topology 23:2 (2023) 509–644

DOI: 10.2140/agt.2023.23.509
Published: 9 May 2023

Parametrized higher category theory

JAY SHAH

We develop foundations for the theory of 1–categories parametrized by a base
1–category. Our main contribution is a theory of indexed homotopy limits and
colimits, which specializes to a theory of G–colimits for G a finite group when the
base is chosen to be the orbit category of G. We apply this theory to show that the
G–1–category of G–spaces is freely generated under G–colimits by the contractible
G–space, thereby affirming a conjecture of Mike Hill.
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510 Jay Shah

1 Introduction

Motivation from equivariant homotopy theory This paper lays foundations for
a theory of 1–categories parametrized by a base 1–category S . Our interest in
this project originates in attempting to locate the core homotopy theories of interest
in equivariant homotopy theory — those of G–spaces and G–spectra — within the
appropriate1–categorical framework. To explain, let G be a finite group and let us
review the definitions of the1–categories of G–spaces and G–spectra, with a view
towards endowing them with universal properties.

Consider a category TopG of (nice) topological spaces equipped with G–action, with
morphisms given by the G–equivariant continuous maps. There are various homotopy
theories that derive from this category, depending on the class of weak equivalences that
one chooses to invert. At one end, we can invert the class W1 of G–equivariant maps
which induce a weak homotopy equivalence of underlying topological spaces, forgetting
the G–action. If we let Spc denote the1–category of spaces (ie1–groupoids), then
inverting W1 obtains the1–category of spaces with G–action

TopG ŒW
�1
1 �' Fun.BG;Spc/:

For many purposes, Fun.BG;Spc/ is the homotopy theory that one wishes to con-
template, but here we instead highlight its main deficiency. Namely, passing to this
homotopy theory blurs the distinction between homotopy fixed points and actual fixed
points, in that the functor TopG! Fun.BG;Spc/ forgets the homotopy types of the
various spaces XH for H a nontrivial subgroup of G. Because many arguments
in equivariant homotopy theory involve comparing XH with the homotopy fixed
points XhH, we want to retain this data. To this end, we can instead let W be the
class of G–equivariant maps which induce an equivalence on H–fixed points for every
subgroup H of G. Let SpcG´ TopG ŒW�1�; this is the1–category of G–spaces.

As with TopG ŒW�11 �, we would like a description of SpcG which eliminates any
reference to topological spaces with G–action, for the purpose of comprehending its
universal property. Elmendorf’s theorem grants such a description: we have

SpcG ' Fun.Oop
G ;Spc/;

where OG is the category of orbits of the group G. Thus, as an1–category, SpcG is
the free cocompletion of OG .

It is a more subtle matter to define the homotopy theory of G–spectra. There are at
least three possibilities:

Algebraic & Geometric Topology, Volume 23 (2023)



Parametrized higher category theory 511

(1) The1–category of Borel G–spectra, ie spectra with G–action. This is

SphG´ Fun.BG;Sp/;

which is the stabilization of Fun.BG;Spc/.

(2) The1–category of “naive” G–spectra, ie spectral presheaves on OG . This is

SpG´ Fun.Oop
G ;Sp/;

which is the stabilization of SpcG .1

(3) The1–category of “genuine” G–spectra, ie spectral Mackey functors on the
category FG of finite G–sets: Let Aeff.FG/ be the effective Burnside .2; 1/–
category of G, given by taking as objects finite G–sets, as morphisms spans
of finite G–sets, and as 2–morphisms isomorphisms between spans. Then the
1–category of genuine G–spectra is defined to be

SpG´ Fun˚.Aeff.FG/;Sp/;

the1–category of direct-sum preserving functors from Aeff.FG/ to Sp.2

The third possibility incorporates essential examples of cohomology theories for G–
spaces, such as equivariant K–theory, because G–spectra in this sense possess transfers
along maps of finite G–sets, encoded by the covariant maps in Aeff.FG/. It is thus
what homotopy theorists customarily mean by G–spectra. However, from a categorical
perspective it is a more mysterious object than the1–category of naive G–spectra,
since it is not the stabilization of G–spaces. We are led to ask:

Question What is the universal property of SpG? More precisely, we have an adjunc-
tion

†1C W SpcG �! � SpG W�1

with the right adjoint given by taking �1 W Sp! Spc objectwise and restricting along
the evident map O

op
G ! Aeff.FG/, and we would like a universal property for †1

C

or �1.

Put another way, what is the categorical procedure which manufactures SpG from
SpcG?

1The usage of a subscript G to indicate presheaves on OG (whether valued in spaces or spectra) is
consistent with our later notation for the S–category of S–objects in an arbitrary 1–category — see
Construction 3.9.
2This is not the definition which first appeared in the literature for G–spectra, but it is equivalent to, for
example, the homotopy theory of orthogonal G–spectra by the pioneering work of Guillou and May [6].
For an1–categorical treatment, see Barwick [1].
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512 Jay Shah

The key idea is that for this procedure of “G–stabilization” one needs to enforce
“G–additivity” over and above the usual additivity satisfied by a stable1–category;
that is, one wants the coincidence of coproducts and products indexed not just by
finite sets but by finite sets with G–action. Reflecting upon the possible homotopical
meaning of such a G–(co)product, we see that for a transitive G–set G=H ,

`
G=H

and
Q
G=H should be interpreted to mean the left and right adjoints to the restriction

functor SpG! SpH , ie the induction and coinduction functors, and G–additivity then
becomes the Wirthmüller isomorphism. In particular, we see that G–additivity is not
a property that SpG can be said to enjoy in isolation, but rather one satisfied by the
presheaf SpG of1–categories indexed by OG ; here, for every G–orbit U , a choice of
basepoint specifying an isomorphismU ŠG=H yields an equivalence SpG.U /' SpH ,
and the functoriality in maps of orbits is that of conjugation and restriction (in particular,
recording the residual actions of the Weyl groups on SpH ). Correspondingly, we must
rephrase our question so as to inquire after the universal property of the morphism
of OG–presheaves, †1

C
W SpcG ! SpG ; where †1

C
is objectwise given by genuine

H–suspension ranging over all subgroups H �G.

We now pause to observe that for the purpose of this analysis the groupG is of secondary
importance as compared to its associated category of orbits OG . Indeed, we focused on
G–additivity as the distinguishing feature of genuine vs naive G–spectra, as opposed
to the invertibility of representation spheres, in order to evade representation theoretic
aspects of equivariant stable homotopy theory. In order to frame our situation in its
proper generality, let us now dispense with the group G and replace OG by an arbitrary
1–category T . Call a presheaf of1–categories on T a T –category. The T –category of
T –spaces SpcT is given by the functor T op!Cat1, t 7!Fun..T =t /op;Spc/. Note that
this specializes to SpcG when T DOG because OH ' .OG/

=.G=H/; slice categories
stand in for subgroups in our theory. With the theory of T –colimits advanced in this
paper, we can then supply a universal property for SpcT as a T –category. Write FunT
for the internal hom in the1–category of T –categories, which is cartesian closed.

1.1 Theorem Suppose T is any1–category. Then SpcT is T –cocomplete , and for
any T –category E which is T –cocomplete , the T –functor of evaluation at the T –final
object3

FunLT .SpcT ; E/! FunT .�T ; E/'E

3We define �T to be the constant T –presheaf valued at �, which is the final object in the1–category of
T –categories.
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Parametrized higher category theory 513

induces an equivalence from the T –category of T –functors SpcT !E which strongly
preserve T –colimits to E. In other words , SpcT is freely generated under T –colimits
by the final T –category.

1.2 Remark The notion of T –cocompleteness needed for the theorem is slightly
more elaborate than one might naively expect. Namely, we say that a T –category C is
T –cocomplete if for all t 2 T , the pullback of C to a T =t–category Ct (Notation 2.29)
admits all (small) T =t–colimits (Definition 5.13). Correspondingly, we say that a
T –functor F W C !D strongly preserves T –colimits if for all t 2 T , the pulled-back
T =t–functor Ft W Ct !Dt preserves all T =t–colimits (Definition 11.2).

When T DOG , this result was originally conjectured by Mike Hill.

To go further and define T –spectra, we need a condition on T so that it supports a
theory of spectral Mackey functors. We say that T is orbital if T admits multipullbacks,
by which we mean that its finite coproduct completion FT admits pullbacks. The
purpose of the orbitality assumption is to ensure that the effective Burnside category
Aeff.FT / is well defined. Note that the slice categories T=t are orbital if T is. We
define the T –category of T –spectra SpT to be the functor T op ! Cat1 given by
t 7! Fun˚.Aeff.FT=t /;Sp/. We then have the following theorem of Denis Nardin
concerning SpT from [15], which resolves our question:

1.3 Theorem [15, Theorem 7.4] Suppose T is an atomic4 orbital1–category. Then
SpT is T –stable , and for any pointed T –category C which has all finite T –colimits ,
the functor of postcomposition by �1

.�1/� W FunT�rex
T .C;SpT /! LinT .C;SpcT /

induces an equivalence from the1–category of T –functors C ! SpT which preserve
finite T –colimits to the 1–category of T –linear functors C ! SpcT , ie those T –
functors which are fiberwise linear and send finite T –coproducts to T –products.

We hope that the two aforementioned theorems will serve to impress upon the reader
the utility of the purely1–categorical work that we undertake in this paper.

1.4 Warning In contrast to this introduction thus far and the conventions adopted
elsewhere — eg in [15] — we will henceforth speak of S–categories, S–colimits, etc
for S D T op.
4This is an additional technical hypothesis which we do not explain here. It will not concern us in the
body of the paper.
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What is parametrized 1–category theory?

Roughly speaking, parametrized1–category theory is an interpretation of the familiar
notions of ordinary or “absolute”1–category theory within the .1; 2/–category of
functors Fun.S;Cat1/, done relative to a fixed “base”1–category S . By “interpreta-
tion”, we mean something along the lines of the program of Emily Riehl and Dominic
Verity [16], which axiomatizes the essential properties of an .1; 2/–category that
one needs to do formal category theory into the notion of an 1–cosmos, of which
Fun.S;Cat1/ is an example. In an1–cosmos, one can write down in a formal way
notions of limits and colimits, adjunctions, Kan extensions, and so forth. Working out
what this means in the example of Cat1–valued functors is the goal of this paper. In
the classical 2–categorical setting, such limits and colimits are referred to as “indexed”
limits and colimits, so another perspective on this paper is that it extends indexed
category theory to the1–categorical setting.

In contrast to Riehl and Verity, we will work within the model of quasicategories and
not hesitate to use special aspects of our model (eg combinatorial arguments involving
simplicial sets). We are motivated in this respect by the existence of a highly developed
theory of cocartesian fibrations due to Jacob Lurie, which we review in Section 2.
Cocartesian fibrations are our preferred way to model Cat1–valued functors, for two
reasons:

(1) The data of a functor F W S ! Cat1 is overdetermined compared to that of
a cocartesian fibration over S , in the sense that to define F one must prescribe an
infinite hierarchy of coherence data, which under the functor-fibration correspondence
amounts to prescribing an infinite sequence of compatible horn fillings.5 Because
of this, specifying a cocartesian fibration (which one ultimately needs to do in order
to connect our theory to applications) is typically an easier task than specifying the
corresponding functor to Cat1.

(2) The Grothendieck construction on a functor S ! Cat1 is made visible in the
cocartesian fibration setup, as the total category of the cocartesian fibration. Many of
our arguments involve direct manipulation of the Grothendieck construction, in order
to relate or reduce notions of parametrized1–category theory to absolute1–category
theory.

We have therefore tailored our exposition to the reader familiar with the first five
chapters of Lurie [9]; the only additional major prerequisite is the part of Lurie [11,

5It is for this reason that one speaks of straightening a cocartesian fibration to a functor.

Algebraic & Geometric Topology, Volume 23 (2023)



Parametrized higher category theory 515

Appendix B] dealing with variants of the cocartesian model structure of [9, Section 3]
and functoriality in the base.

Linear overview

Let us now give a section-by-section summary of the contents of this paper.

In Section 2 we define an S–category as a cocartesian fibration over S , and then
collect some necessary preliminaries on cocartesian fibrations and model structures
on categories of marked simplicial sets. In particular, we recapitulate Lurie’s theo-
rem that establishes conditions under which change-of-base adjunctions are Quillen
(Theorem 2.24). This theorem will allow us to efficiently verify the fibrancy of many
of the simplicial set constructions introduced in this paper.

In Section 3 we first define and study the internal hom FunS .�;�/ of S–categories
(Definition 3.2). We then recall the S–category of S–objects ES in an1–category
E from Barwick, Dotto, Glasman, Nardin and Shah [2] (Construction 3.9), which
computes the right adjoint to the forgetful functor ŒC ! S� 7! C . When S DO

op
G and

E D Spc, this recovers the G–category of G–spaces SpcG .

In Section 4 we first introduce the S–join .�?S �/ (Definition 4.1), which in terms
of presheaves computes the fiberwise join. We then define and study two (canon-
ically equivalent) S–slice constructions: for an S–functor p W K ! C , we have
S–undercategories C.p;S/= and C .p;S/= and S–overcategories C=.p;S/ and C =.p;S/.
The “lower” construction (Definition 4.17) is a direct generalization of Joyal’s slice
construction — cf [9, Proposition 1.2.9.2] — and participates in a Quillen adjunction
with the S–join. The “upper” construction (Definition 4.26) proceeds by taking an
S–fiber of the relevant map of S–functor categories. In practice, the upper S–slice is
far easier to work with as its definition is less bound up with the intricate combinatorics
of the S–join (which need to be thoroughly understood to even establish the fibrancy of
the lower S–slice; see Proposition 4.11). However, it is easier to establish the universal
mapping property of the S–slice using its lower incarnation (Proposition 4.25).

In Section 5 we initiate our study of S–colimits and S–limits by giving the basic
Definition 5.2, and then discuss a few special cases: S–(co)limits in an S–category
of S–objects, S–colimits indexed by constant S–diagrams, and S–colimits indexed
by S–points (ie S–coproducts). We then explain how to deduce results about S–
limits from S–colimits (or vice versa) by means of the vertical opposite construction
(Corollary 5.25).

Algebraic & Geometric Topology, Volume 23 (2023)
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In Section 6 our main goal is to establish an S–analogue of Joyal’s cofinality theorem
[9, Theorem 4.1.3.1]: an S–functor C ! D is S–final if and only if it is fiberwise
final6 (Theorem 6.7). Our strategy is to control the functoriality encoded by the S–slice
category in terms of a construction, the twisted slice (Definition 6.5), fibered over the
twisted arrow category zO.S/; the right Kan extension of the latter will then obtain the
former (Theorem 6.6). In fact, we first do the same for the internal hom FunS itself
(equation (6.3.1)). This may be thought of as a refinement of the end formula for an
1–category of natural transformations (see Remark 6.4).

In Section 7 we introduce the notions of S–fibration, S–(co)cartesian fibration and
S–bifibration (Definitions 7.1 and 7.9). We also introduce the free S–(co)cartesian
fibration as an example (Definition 7.6).

In Section 8 we recall Lurie’s definition of a relative adjunction and specialize it to the
notion of an S–adjunction (Definition 8.3). We then prove a number of fundamental
results about S–adjunctions — most notably, the fact that a left S–adjoint preserve
S–colimits (Corollary 8.9).

In Section 9, given an S–cocartesian fibration � WC !D and an S–functor F WC !E,
we construct the left S–Kan extension �ŠF W D ! E, which will also call the D–
parametrized S–colimit of F . With our assumption on �, we have that for every
object x 2 Ds , .�ŠF /.x/ is computed as the Ss=–colimit of the restriction of F to
the Ss=–fiber Cx . This is precisely analogous to the situation where the left Kan
extension along a cocartesian fibration is computed by taking colimits fiberwise. In
order to construct �ŠF , we need to solve the coherence problem of assembling the
individual Ss=–colimits of Fs W Cx ! Es (ranging over all x 2 Ds) into a single S–
functor out of D. We introduce the S–pairing (Construction 9.1), and subsequently the
D–parametrized slice (Construction 9.8), to facilitate this. The problem of constructing
�ŠF then ultimately reduces to choosing a section of a certain trivial Kan fibration
defined in terms of the D–parametrized slice (Theorem 9.15).

In Section 10 we define left S–Kan extensions in general (Definition 10.1) and prove
the basic existence and uniqueness result about them (Theorem 10.3). In contrast to
the brutal simplex-by-simplex approach taken in [9, Section 4.3.2] to the construction
of Kan extensions (cf [9, Lemma 4.3.2.13]), we instead reduce to the solved coherence
problem for D–parametrized S–colimits via factoring the S–functor � W C ! D to
be extended along through the free S–cocartesian fibration on it. We remark that, to

6We write final and initial for what Lurie calls (left) cofinal and right cofinal, respectively.
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our knowledge, the approach of Sections 9 and 10 give a novel7 and more conceptual
construction of Kan extensions even in the context of ordinary 1–category theory.
Lurie has since independently written up a treatment of (relative) Kan extensions along
these lines in Kerodon [12, Section 7.3].

In Section 11 we recall the S–category of presheaves PS .�/, prove the S–Yoneda
Lemma 11.1, discuss S–mapping spaces, and establish the universal property of PS .�/

as free S–cocompletion (Theorem 11.5), thereby proving Theorem 1.1.

In Section 12 we prove two Bousfield–Kan-style8 decomposition results that express
an arbitrary S–colimit as a geometric realization of either S–coproducts or S–space-
indexed S–colimits (Theorems 12.13 and 12.6). The essential content behind such
formulas lies in replacing a given diagram C with one fibered over �op � S that
possesses an S–final map to C . As a warmup, we first explain how this goes when S
is a point (Corollaries 12.3 and 12.5); the resulting formula appears to be new in the
case of coproducts, whereas the case of spaces was first obtained by Aaron Mazel-Gee
in [14]. We then apply the S–Bousfield–Kan formula to show that, supposing Sop

admits multipullbacks, an S–category is S–cocomplete if and only if it admits all
S–(co)products and geometric realizations (Corollary 12.15).

Notation and conventions

Let C be an1–category. We write

O.C /´ Fun.�1; C /

for the1–category of arrows in C . In this paper, we will frequently encounter fiber
products of the form

A�F;C;ev0 O.C /�ev1;C;G B

where F W A! C and G W B! C are functors. To avoid notational clutter, we adopt
the global convention that, unless otherwise decorated, fiber products with the source
functor ev0 are to be written on the left, and fiber products with the target functor ev1
are to written on the right. Moreover, we will drop F and G from the notation if they
are understood from context. For instance, we would write the preceding expression as
A�C O.C /�C B .

7All these results date to 2017.
8By this, we mean to refer to generalizations of the classical formula for writing a colimit as a coequalizer
of coproducts, which were studied by Bousfield and Kan in the context of homotopy colimits with
coequalizers replaced by geometric realization.
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2 Cocartesian fibrations and model categories of marked
simplicial sets

Let S be an 1–category. In this section, we give a rapid review of the theory of
cocartesian fibrations and the surrounding apparatus of marked simplicial sets. This
primarily serves to fix some of our notation and conventions for the remainder of the
paper; for a more detailed exposition of these concepts, we refer the reader to [4]. In
particular, the reader should be aware of our special notation (Notation 2.29) for the
S–fibers of an S–functor.

Cocartesian fibrations

We begin with the basic definitions:

2.1 Definition Let � WX ! S be a map of simplicial sets. Then � is a cocartesian
fibration if:

(1) It is an inner fibration; for every n > 1, 0 < k < n and commutative square

ƒn
k

X

�n S

�

the dotted lift exists.

(2) For every edge ˛ W s0! s1 in S and x0 2 X with �.x0/ D s0, there exists an
edge e W x0! x1 in X with �.e/D ˛, such that e is �–cocartesian; for every
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n > 1 and commutative square

ƒn0 X

�n S

f

�

with f j�f0;1g D e, the dotted lift exists.

Dually, � is a cartesian fibration if �op is a cocartesian fibration.

A cocartesian (resp. cartesian) fibration � W X ! S is said to be a left (resp. right)
fibration if for every object s 2 S the fiber Xs is a Kan complex.

Now suppose � W X ! S and � W Y ! S are (co)cartesian fibrations. Then a map of
(co)cartesian fibrations f W X ! Y is a map of simplicial sets such that � ı f D �
and f carries �–(co)cartesian edges to �–(co)cartesian edges. The collection of
cocartesian fibrations over S and maps thereof organize into a subcategory Catcocart

1=S of
the overcategory Cat1=S .

In this paper, owing to the importance of these notions we see fit to introduce more
concise and suggestive terminology for cocartesian fibrations and left fibrations over S .

2.2 Definition An S–category (resp. S–space) C is a cocartesian (resp. left) fibration
� W C ! S . An S–functor F W C ! D between S–categories C and D is a map of
cocartesian fibrations over S .

Given an S–category � W C ! S , an S–subcategory D � C is a subcategory such that
the restriction �jD is a cocartesian fibration and an edge inD is �jD–cocartesian if and
only if it is �–cocartesian. The inclusion functor then necessarily preserves cocartesian
edges, so is an S–functor. We further say that D is a full S–subcategory if D � C
is in addition a full subcategory, or equivalently, for every s 2 S , Ds � Cs is a full
subcategory.

2.3 Example (arrow1–categories) The arrow1–category O.S/ of S is cocartesian
over S via the target morphism ev1, and cartesian over S via the source morphism ev0.
An edge

e W Œs0! t0�! Œs1! t1�

in O.S/ is ev1–cocartesian (resp. ev0–cartesian) if and only if ev0.e/ (resp. ev1.e/) is
an equivalence in S .
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The fiber of ev0 W O.S/! S over s is isomorphic to Lurie’s “alternative” slice 1–
category Ss=. Using our knowledge of the ev1–cocartesian edges, we see that ev1
restricts to a left fibration Ss=! S . In the terminology of [9, Proposition 4.4.4.5], this
is a corepresentable left fibration. We will refer to the corepresentable left fibrations as
S–points. Further emphasizing this viewpoint, we will often let s denote Ss=.

To a beginner, the lifting conditions of Definition 2.1 can seem opaque. Under our
standing assumption that S is an1–category, we have a reformulation of the definition
of cocartesian edge, and hence that of cocartesian fibration, which serves to illuminate
its homotopical meaning.

2.4 Proposition Let � W X ! S be an inner fibration (so X is an 1–category).
Then an edge e W x0! x1 in X is �–cocartesian if and only if for every x2 2 X , the
commutative square of mapping spaces

MapX .x1; x2/ MapX .x0; x2/

MapS .�.x1/; �.x2// MapS .�.x0/; �.x2//

e�

� �

�.e/�

is homotopy cartesian.

With some work, Proposition 2.4 can be used to give an alternative, model-independent
definition of a cocartesian fibration. We refer to Mazel-Gee’s paper [13] for an exposi-
tion along these lines.

2.5 Example [9, Section 3.2.2] Let Cat1 denote the (large)1–category of (small)
1–categories. Then there exists a universal cocartesian fibration U!Cat1, which is
characterized up to contractible choice by the requirement that any cocartesian fibration
� WX ! S (with essentially small fibers) fits into a homotopy pullback square

X U

S Cat1

�

F�

Concretely, one can take U to be the subcategory of the arrow category O.Cat1/
spanned by the representable right fibrations and morphisms thereof.
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As suggested by Example 2.5, the functor

Fun.S;Cat1/! Catcocart
1=S

given by pulling back U! Cat1 is an equivalence. The composition

Gr W Fun.S;Cat1/ '�! Catcocart
1=S � Cat1=S

is the Grothendieck construction functor. Since equivalences in Fun.S;Cat1/ are
detected objectwise, Gr is conservative. Moreover, one can check that Gr preserves
limit and colimits, so by the adjoint functor theorem Gr admits both a left and a right
adjoint.

2.6 Notation Let
Fr a Gr aH

denote the left and right adjoints of Gr.

We call Fr the free cocartesian fibration functor (see also [5]); concretely, one has

Fr.X ! S/DX �S O.S/
ev1
�! S;

or as a functor s 7!X �S S=s with functoriality obtained from S=.�/. The functor H
can also be concretely described using its universal mapping property: since

Fr.fsg � S/D Ss=;

the fiber H.X/s is given by Fun=S .Ss=; X/, and the functoriality in S is obtained from
that of S.�/=.

A model structure for cocartesian fibrations

We want a model structure which has as its fibrant objects the cocartesian fibrations
over a fixed simplicial set. However, it is clear that to define it we need some way
to remember the data of the cocartesian edges. This leads us to introduce marked
simplicial sets.

2.7 Definition A marked simplicial set .X; E/ is the data of a simplicial set X and a
subset E �X1 of the edges of X , such that E contains all of the degenerate edges. We
call E the set of marked edges ofX . A map of marked simplicial sets f W .X; E/! .Y;F/
is a map of simplicial sets f WX ! Y such that f .E/� F .
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2.8 Notation We introduce notation for certain classes of marked simplicial sets. Let
X be a simplicial set.

� X[ is X with only the degenerate edges marked. To avoid notational clutter, we
will sometimes suppress this notation and simply write X for X[.

� X] is X with all of its edges marked.
� Suppose that X is an1–category. Then X� is X with its equivalences marked.
� Suppose that � WX!S is an inner fibration. Then \X isX with its �–cocartesian

edges marked, and X \ is X with its �–cartesian edges marked.
� Let n> 0. Let \�n and \ƒn0 denote �n and ƒn0 , respectively, with the edge f0; 1g

marked (if it exists, ie excluding �0 and ƒ10 D f0g) along with the degenerate
edges. Dually, let �n\ and ƒnn

\ denote �n and ƒnn, respectively, with the edge
fn� 1; ng marked.

Note that our choice of notation \�n and \ƒn0 is not meant to be interpreted as a special
instance of marking cocartesian edges (though the map �n!�1 given by 0 7! 0 and
1; : : : ; n 7! 1 renders it as such for the former); rather, we mean to indicate that the
relevant lifting problem for a cocartesian fibration as a marked simplicial set is to lift
along the marked horn inclusion \ƒn0! \�

n (cf Definition 2.9 below), and vice versa
for cartesian fibrations and ƒnn

\
!�n\.

For the rest of this section, fix a marked simplicial set .Z; E/ whereZ is an1–category
and E contains all of the equivalences in Z— in our applications, Z will generally be
some type of fibration over S . Let sSetC

=.Z;E/ denote the category of marked simplicial
sets over .Z; E/. Following Lurie [9, Notation 3.1.0.2], we will also denote sSetC

=Z]

more simply as sSetC
=Z

. We will frequently abuse notation by referring an object
� W .X;F/! .Z; E/ of sSetC

=.Z;E/ by its domain .X;F/, or even just by X .

2.9 Definition An object .X;F/ in sSetC
=.Z;E/ is .Z; E/–fibered9 if:

(1) � WX !Z is an inner fibration.

(2) For every n > 0 and commutative square

\ƒ
n
0 .X;F/

\�
n .Z; E/

9This differs from [11, Definition B.0.19], but nonetheless defines the correct class of anodyne morphisms
[11, Definition B.1.1].
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a dotted lift exists. In other words, letting nD 1, �–cocartesian lifts exist over
marked edges in Z, and letting n > 1, marked edges in X are �–cocartesian.10

(3) For every commutative square

.ƒ21/
][.ƒ21/

[ .�
2/[ .X;F/

.�2/] .Z; E/

a dotted lift exists. In other words, marked edges are closed under composition.11

(4) Let QD�0q�f0;2g �
3q�f1;3g �

0. For every commutative square

Q[ .X;F/

Q] .Z; E/

a dotted lift exists. Since we assumed that E contains all equivalences in Z, this
implies that all equivalences in X are marked.

2.10 Example Let � WX !Z be an inner fibration. Comparing with Definition 2.1,
it is clear that .X;F/ is Z]–fibered if and only if � is a cocartesian fibration and
.X;F/ D \X . At the other extreme, .X;F/ is Z�–fibered if and only if � is a
categorical fibration and .X;F/DX�.

Recall that a model structure, if it exists, is determined by its cofibrations and fibrant
objects. Collecting results of Lurie from [11, Appendix B], we now define a model
structure on sSetC

=.Z;E/ with cofibrations the monomorphisms and fibrant objects given
by the .Z; E/–fibered objects.

2.11 Definition Define functors12

MapZ.�;�/ W sSetC
=.Z;E/

op
� sSetC

=.Z;E/! sSet;

FunZ.�;�/ W sSetC
=.Z;E/

op
� sSetC

=.Z;E/! sSet

10Condition (2) already guarantees that X ! Z is a cocartesian fibration if E D Z1; however, one
additionally needs condition (4) to ensure that all of the �–cocartesian edges are marked in X .
11Strictly speaking, condition (3) by itself only guarantees that for any pair of composable marked edges,
there exists a composite that is again marked. One additionally needs condition (4) to ensure that all
compositions of marked edges are again marked.
12In [11, Appendix B], these functors are denoted as Map]

Z
and Map[

Z
respectively.

Algebraic & Geometric Topology, Volume 23 (2023)



524 Jay Shah

by
Hom.A;MapZ.X; Y //D Hom=.Z;E/.A

]
�X; Y /;

Hom.A;FunZ.X; Y //D Hom=.Z;E/.A
[
�X; Y /:

2.12 Definition A map f W A! B in sSetC
=.Z;E/ is a cocartesian equivalence (with

respect to .Z; E/) if one of the following equivalent conditions hold.

(1) For all .Z; E/–fibered X , f � WMapZ.B;X/!MapZ.A;X/ is an equivalence
of Kan complexes.

(2) For all .Z; E/–fibered X , f � W FunZ.B;X/! FunZ.A;X/ is an equivalence of
1–categories.

2.13 Theorem [11, Theorem B.0.20] There exists a left proper combinatorial model
structure on the category sSetC

=.Z;E/, which we call the cocartesian model structure ,
such that

(1) the cofibrations are the monomorphisms ,

(2) the weak equivalences are the cocartesian equivalences ,

(3) the fibrant objects are the .Z; E/–fibered objects.

Dually, we define the cartesian model structure on sSetC
=.Z;E/ to be the cocartesian

model structure on sSetC
=.Z;E/op under the isomorphism given by taking opposites.

2.14 Remark The underlying1–category of sSetC
=.Z;E/ identifies as the subcategory

of Cat1=Z on those isofibrations13 X ! Z that admit cocartesian lifts over E , and
with morphisms preserving cocartesian edges. In particular, passing to the closure of E
under composition does not change the underlying1–category.

We have the following characterization of the cocartesian equivalences between fibrant
objects — which is unsurprising, in light of the equivalence Catcocart

1=Z ' Fun.Z;Cat1/.

2.15 Proposition [11, Lemma B.2.4] Let X and Y be fibrant objects in sSetC
=.Z;E/

equipped with the cocartesian model structure , and let f WX!Y be a map in sSetC
=.Z;E/.

Then the following are equivalent :

13With this choice, the resulting subcategory is not stable under equivalence. One could alternatively
appeal to a homotopy-invariant notion of cocartesian fibration and instead replace isofibrations with
functors — cf [13], which admits an obvious generalization to this setting.
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(1) f is a cocartesian equivalence.

(2) f is a homotopy equivalence , ie f admits a homotopy inverse; there exists a
map g W Y !X and homotopies h W .�1/] �X !X and h0 W .�1/] �Y ! Y in
sSetC

=.Z;E/ connecting g ıf to idX and f ıg to idY , respectively.

(3) f is a categorical equivalence.

(4) For every (not necessarily marked ) edge ˛ W�1!Z, f˛ W�1�Z X !�1�Z Y

is a categorical equivalence.

If every edge of Z is marked , then (4) can be replaced by the following apparently
weaker condition:

(40) For every object z 2Z, fz WXz! Yz is a categorical equivalence.

We also have the following characterization of the fibrations between fibrant objects.

2.16 Proposition [11, Proposition B.2.7] Let Y D .Y;F/ be a fibrant object
in sSetC

=.Z;E/ equipped with the cocartesian model structure , and let f W X ! Y be a
map in sSetC

=.Z;E/. Then the following are equivalent :

(1) f is a fibration.

(2) X is fibrant , and f is a categorical fibration.

(3) f is fibrant in sSetC
=.Y;F/.

2.17 Corollary SupposeZ!S is a cocartesian fibration. Then the cocartesian model
structure sSetC

=\Z
coincides with the “slice” model structure on .sSetC

=S
/=\Z created by

the forgetful functor to sSetC
=S

equipped with its cocartesian model structure.

Proof This immediately follows from Proposition 2.16.

2.18 Example Suppose that Z is a Kan complex. Then the cocartesian and cartesian
model structures on sSetC

=Z
coincide. In particular, taking Z D�0, we will also refer

to the cocartesian model structure on sSetC as the marked model structure. Since this
model structure on sSetC is unambiguous, we will always regard sSetC as equipped
with it. Then the fibrant objects of sSetC are precisely the1–categories with their
equivalences marked.

Algebraic & Geometric Topology, Volume 23 (2023)



526 Jay Shah

2.19 Example Suppose that .Z; E/DZ�. Then the cocartesian and cartesian model
structures on sSetC

=Z�
coincide. Moreover, we have a Quillen equivalence

.�/[ W .sSetJoyal/=Z �! � sSetC
=Z�
WU

where the functor U forgets the marking. In particular, .�/[ sends categorical equiva-
lences to marked equivalences.

2.20 Example The inclusion functor Spc� Cat1 admits left and right adjoints B
and �, where B is the classifying space functor that inverts all edges and � is the “core”
functor that takes the maximal sub–1–groupoid. These two adjunctions are modeled
by the two Quillen adjunctions

U W sSetC �! � sSetQuillen W.�/
]; .�/] W sSetQuillen �! � sSetC WM:

HereM.X;E/ is the maximal subsimplicial set ofX such that all of its edges are marked.
In particular, .�/] sends weak homotopy equivalences to marked equivalences.

2.21 Proposition [11, Remark B.2.5] The bifunctor

���W sSetC
=.Z1;E1/

� sSetC
=.Z2;E2/

! sSetC
=.Z1�Z2;E1�E2/

is left Quillen. Consequently, the bifunctors

MapZ.�;�/ W sSetC
=.Z;E/

op
� sSetC

=.Z;E/! sSetQuillen;

FunZ.�;�/ W sSetC
=.Z;E/

op
� sSetC

=.Z;E/! sSetJoyal

are right Quillen , so sSetC
=.Z;E/

is both an sSetQuillen–enriched model category (with
respect to MapZ) and sSetJoyal–enriched model category (with respect to FunZ).

2.22 Remark As explained in [16, Digression 1.2.13], by Proposition 2.21 the full
subcategory of sSetC

=.Z;E/ spanned by the fibrant objects is an example of an1–cosmos
[16, Definition 1.2.1].

Finally, we explain how the formalism of marked simplicial sets can be used to extract
the pushforward functors implicitly defined by a cocartesian fibration. First, we need a
lemma.

2.23 Lemma For n > 0, the inclusion in W �n�1 Š �f0g ? �f2;:::;ng ! \�
n is left

marked anodyne. Consequently, for a cocartesian fibration C ! S , the map

Fun.\�
n; \C/! Fun.�n�1; C /�Fun.�n�1;C / Fun.�n; S/

induced by in is a trivial Kan fibration.
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Proof We proceed by induction on n, the base case n D 1 being the left marked
anodyne map �f0g! \�

1 D .�1/]. Consider the commutative diagram

�f0g ? @�n�2 �f0g ?�f2;:::;ng

.�f0g ?ƒn�10 ;E/ \ƒ
n
0

\�
n

S
in�1

in

where E is the collection of edges f0; ig, 0 < i � n (and the degenerate edges). The
square is a pushout, and by the inductive hypothesis, the left-hand vertical map is left
marked anodyne. We deduce that in is left marked anodyne. The second statement
now follows because the lifting problem

A Fun.\�n; \C/

B Fun.�n�1; C /�Fun.�n�1;C / Fun.�n; S/

transposes to
A� \�

n[A��n�1 B ��
n�1

\C

B � \�
n S

and the left-hand vertical map is left marked anodyne for any cofibration A!B by [9,
Proposition 3.1.2.3].

The main case of interest in Lemma 2.23 is when nD 1, which shows that

Ococart.C /! C �S O.S/

is a trivial Kan fibration. Let

P W C �S O.S/! Ococart.C /

be a section that fixes the inclusion C � Ococart.C / (for this, note that C � C �S O.S/

is a cofibration as it is a monomorphism of simplicial sets). Then we say that P or
the further composite P 0 D ev1 ıP is a cocartesian pushforward for C ! S . Given
an edge ˛ of S , P 0˛ W Cs ! Ct is the pushforward functor ˛Š determined under the
equivalence Catcocart

1=S ' Fun.S;Cat1/.
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Functoriality in the base

Let � WX !Z be a map of simplicial sets. Then the pullback functor

�� W sSet=Z! sSet=X

admits a left adjoint �Š, given by postcomposing with � . In addition, since sSet is a
topos, �� also admits a right adjoint ��, which may be thought of as the functor of
relative sections because Hom=X .A; ��.B//Š Hom=Z.A�X Z;B/.

Now supposing that � is a map of marked simplicial sets, ��, �Š, and �� extend to
functors of marked simplicial sets over X or Y in an evident manner. We then seek
conditions under which the adjunctions �Š a �� and �� a �� are Quillen with respect
to the cocartesian model structures. To this end, we have the following theorem of
Lurie.

2.24 Theorem [11, Theorem B.4.2] Let

.Z; E/ �
 � .X;F/ �

�! .X 0;F 0/

be a span of marked simplicial sets such that Z;X;X 0 are 1–categories and the
collections of markings contain all the equivalences.

(i) The adjunction

�Š W sSetC
=.X;F/

�! � sSetC
=.X 0;F 0/ W�

�

is Quillen with respect to the cocartesian model structures.

(ii) Further suppose that :
(1) For every object x 2X and marked edge f W z! �.x/ in Z, there exists a

locally �–cartesian edge x0! x in X lifting f .
(2) � is a flat categorical fibration.
(3) E and F are closed under composition.
(4) Suppose given a commutative diagram

x1

x0 x2

gf

h

in X where g is locally �–cartesian , �.g/ is marked , and �.f / is an
equivalence. Then f is marked if and only if h is marked. (Note in particular
that , taking f to be an identity morphism , every locally �–cartesian edge
lying over a marked edge is itself marked.)
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Then the adjunction

�� W sSetC
=.X;F/

�! � sSetC
=.Z;E/ W��

is Quillen with respect to the cocartesian model structures.

We formulated Theorem 2.24 as a theorem concerning a span Z �
 �X

�
�!X 0 because

in applications we will typically be interested in the composite Quillen adjunction

�Š�
�
W sSetC

=.Z;E/
�! � sSetC

=.X 0;F 0/ W���
�:

Here are two examples.

2.25 Example (pairing cartesian and cocartesian fibrations) Let � W X ! Z be a
cartesian fibration. Then the span

Z] �
 �X \ �

�!Z]

satisfies the hypotheses of Theorem 2.24. Now given a cocartesian fibration Y !Z,
define

eFunZ.X; Y /´ .���
�/.\Y !Z]/:

Then the fiber of eFunZ.X; Y / over an object z 2 Z is Fun.Xz; Yz/, and given a
morphism ˛ W z0! z1, the pushforward functor

˛Š W Fun.Xz0 ; Yz0/! Fun.Xz1 ; Yz1/

is given by precomposition in the source and postcomposition in the target. Note how
this example highlights the relevance of condition (1) in Theorem 2.24(ii).

2.26 Example (right Kan extension) Let f W Y ! Z be a functor. We can apply
Theorem 2.24 to perform the operation of right Kan extension at the level of cocartesian
fibrations. Consider the span

Z]
ev0
 �� .O.Z/�Z;f Y /

] prY��! Y ]:

Then the conditions of Theorem 2.24 are satisfied, so we obtain a Quillen adjunction

.prY /Š.ev0/� W sSetC
=Z
�! � sSetC

=Y
W.ev0/�.prY /

�:

In addition, the map C �Z Y ]! C �Z O.Z/] �Z Y
] induced by the identity section

� WZ! O.Z/ is a cocartesian equivalence in sSetC
=Y

for C !Z fibrant in sSetC
=Z

, by
[2, Lemma 9.8]. Consequently, the induced adjunction of1–categories

.prY /Š.ev0/� W Catcocart
1=Z

�! � Catcocart
1=Y W.ev0/�.prY /

�
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is equivalent to

f � W Fun.Z;Cat1/ �! � Fun.Y;Cat1/ Wf�

under the straightening/unstraightening equivalence (which is natural with respect to
pullback).

Note that as a special case, if Z D�0 we recover the formula FunY .Y ]; \C/' lim
 ��

FC

of [9, Corollary 3.3.3.2] (where C ! Y is a cocartesian fibration and FC W Y ! Cat1
the corresponding functor). Indeed, this construction of the right Kan extension of a
cocartesian fibration is suggested by that result and the pointwise formula for a right
Kan extension.

Finally, we will use the following two observations concerning the interaction of
Theorem 2.24 with compositions and homotopy equivalences of spans — which we
also recorded in [4].

2.27 Lemma Suppose we have spans of marked simplicial sets

X0
�0
 �Z0

�0
�!X1 and X1

�1
 �Z1

�1
�!X2

which each satisfy the hypotheses of Theorem 2.24. Then the span

Z0
pr0
 �Z0 �X1 Z1

pr1
�!Z1

also satisfies the hypothesis of Theorem 2.24.14 Consequently, we obtain a Quillen
adjunction

.�1 ı pr1/Š.�0 ı pr0/
�
W sSetC

=X0
�! � sSetCX2 W.�0 ı pr0/�.�1 ı pr1/

�;

which is the composite of the Quillen adjunction from sSetC
=X0

to sSetC
=X1

with the one
from sSetC

=X1
to sSetC

=X2
.

Proof The assertion that the span satisfies the hypotheses of Theorem 2.24 is by
inspection. The other assertion that the Quillen adjunction factors as a composite
follows from the base-change isomorphism ��0�1;� Š pr0;� ı pr�1 .

14However, one should beware that the “long” span X0  Z0 �X1 Z1 ! X2 may fail to satisfy the
hypotheses of Theorem 2.24, because the composition of locally cartesian fibrations may fail to again be
locally cartesian; this explains the roundabout formulation of the statement.
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2.28 Lemma Suppose a morphism of spans of marked simplicial sets

Z

X Z0 X 0

� �
f

� 0 �0

where �Š�� and .�0/Š.� 0/� are left Quillen with respect to the cocartesian model
structures on X and X 0. Suppose moreover that f is a homotopy equivalence in
sSetC

=X 0
, so that there exists a homotopy inverse g and homotopies

h W id' g ıf and k W id' f ıg:

Then the natural transformation �Š�� ! .�0/Š.�
0/� induced by f is a cocartesian

equivalence on all objects , and , consequently, the adjoint natural transformation
.� 0/�.�

0/�! ���
� is a cocartesian equivalence on all fibrant objects.

Proof The homotopies h and k pull back to show that for all X ! C , the map

idX �C f WX �C K!X �C L

is a homotopy equivalence with inverse idX �C g. The last statement now follows from
[7, Corollary 1.4.4(b)].

Parametrized fibers

In this brief subsection, we record notation for the S–fibers of an S–functor.

2.29 Notation Given an S–category � WD! S and an object x 2D, define

Ox!.D/´fxg �D O.D/:

For the full subcategory of cocartesian edges Ococart.D/� O.D/, also define

x´fxg �D Ococart.D/:

Given an S–functor � W C !D, define

Cx´ x �D;� C:

Note that by definition, the objects of x are �–cocartesian edges in D with source x.
Then by the right cancellative property of �–cocartesian edges [9, Lemma 2.4.2.7],
the morphisms in x are 2–simplices of cocartesian edges with source x; hence x is
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an S–space (via the map ev1 W x! S). In fact, by Lemma 12.10, ev1 W x! S�x= is a
trivial fibration, so we may think of x as an “S–point” of D.

In view of this, we will also regard Cx as an S�x=–category (and we will sometimes
be cavalier about the distinction between x and S�x=). Note however, that the functor
x!D is canonical in our setup, whereas we need to make a choice of cocartesian
pushforward to choose an S–functor S�x=!D that selects x 2D.

3 Functor categories

Let S be an1–category. Then Fun.S;Cat1/ is cartesian closed, so it possesses an
internal hom. As a basic application of Theorem 2.24, we will define this internal hom
at the level of cocartesian fibrations over S .

3.1 Proposition Let C ! S be a cocartesian fibration. Let ev0; ev1 W O.S/�S C ! S

denote the source and target maps. Then the functor

.ev1/Š.ev0/� W sSetC
=S
! sSetC

=O.S/]�S\C
! sSetC

=S

is left Quillen with respect to the cocartesian model structures.

Proof We verify the hypotheses of Theorem 2.24 as applied to the span

S]
ev0
 � O.S/] �S \C

ev1
�! S]:

By [9, Corollary 2.4.7.12], ev0 is a cartesian fibration and an edge e in O.S/�S C

is ev0–cartesian if and only if its projection to C is an equivalence. Thus (1) holds.
Item (2) holds since cartesian fibrations are flat categorical fibrations. Item (3) is
obvious. Item (4) follows from the stability of cocartesian edges under equivalence.

3.2 Definition In the statement of Proposition 3.1, let

FunS .C;�/´ .ev0/�.ev1/� W sSetC
=S
! sSetC

=S
:

We will also write this as FunS .\C;�/ if we wish to emphasize the marking.

Proposition 3.1 implies that ifD!S is a cocartesian fibration, then FunS .C;D/!S is
a cocartesian fibration. Unwinding the definitions, we see that an object of FunS .C;D/
over s 2 S is an Ss=–functor

Ss= �S C ! Ss= �S D;
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and a cocartesian edge of FunS .C;D/ over an edge e W�1!S is a�1�S O.S/–functor

�1 �S O.S/�S C !�1 �S O.S/�S D:

Our first goal is to prove that the construction FunS .C;�/ implements the internal hom
at the level of underlying1–categories. To this end, we have the following lemma
and proposition.

3.3 Lemma Let � W S ! O.S/ be the identity section and regard O.S/] as a marked
simplicial set over S via the target map. Then:

(1) For every marked simplicial set X ! S and cartesian fibration C ! S ,

idX � �� idC WX �S C \!X �S O.S/] �S C
\

is a cocartesian equivalence in sSetC
=S

.

(10) For every marked simplicial set X ! S and cartesian fibration C ! S ,

�� idC WX �S C \! Fun..�1/]; X/�S C \

is a cocartesian equivalence in sSetC
=S

, where the marked edges in Fun..�1/]; X/
are the marked squares in X .

(2) For every marked simplicial set X ! S and cocartesian fibration C ! S ,

idC � �� idX W \C �S X ! \C �S O.S/] �S X

is a homotopy equivalence in sSetC
=S

.

Proof (1) Because ��SC \ preserves cocartesian equivalences, we reduce to the case
where C D S . By definition, X!X �S O.S/] is a cocartesian equivalence if and only
if for every cocartesian fibration Z ! S , Map]S .X �S O.S/]; \Z/! Map]S .X; \Z/
is a trivial Kan fibration. In other words, for every monomorphism of simplicial sets
A! B and cocartesian fibration Z! S , we need to provide a lift in the commutative
square

B] �X tA]�X .A
] �X/�S O.S/] \Z

.B] �X/�S O.S/] S]

�
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Define h0 W O.S/] � .�1/]! O.S/] to be the adjoint to the map O.S/]! O.O.S//]

obtained by precomposing by the map of posets �1��1!�1 which sends .1; 1/ to 1
and the other vertices to 0. Precomposing � by idA]�X � h0, define a homotopy

h W .A] �X/�S O.S/] � .�1/]! \Z

from �jA]�X ı prA]�X to �j.A]�X/�SO.S/] . Using h and �jB]�X , define a map

 W B] �X tA]�X .A
]
�X/�S O.S/]! Fun..�1/]; \Z/

such that  jB]�X is adjoint to �jB]�X ı prB]�X and  j.A]�X/�SO.S/] is adjoint to h.
Then we may factor the above square through the trivial fibration

Fun..�1/]; \Z/! \Z �S O.S/]

to obtain the commutative rectangle:

B] �X tA]�X .A
] �X/�S O.S/] Fun..�1/]; \Z/ \Z

.B] �X/�S O.S/] \Z �S O.S/] S]

 e1

'z 

�j
B]�X

�id

e1

The dotted lift z exists, and e1 ı z is our desired lift.

(10) Repeat the argument of (1) with Fun..�1/]; X/ in place of O.S/].

(2) Let p W C ! S denote the structure map and let P be a lift in the commutative
square

\C Fun..�1/]; \C/

\C �S O.S/] \C �S O.S/]

�C

.e0;O.p//'
P

Let

g D .e1 � idX / ı .P � idX / W \C �S O.S/] �S X ! \C �S X

and note that g is a map over S . We claim that g is a marked homotopy inverse of
f D idC � �� idX . By construction, g ıf D id. For the other direction, define

h0 W Fun..�1/]; \C/� .�
1/]! Fun..�1/]; \C/
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as the adjoint of the map Fun..�1/]; \C/! Fun..�1��1/]; \C/ obtained by precom-
posing by the map of posets �1 ��1 ! �1 which sends .0; 0/ to 0 and the other
vertices to 1. Define

h W \C �S O.S/] �S X � .�
1/]! \C �S O.S/] �S X

as the composite ..e0;O.p//�X/ı .h0�X/ı .P � idX�.�1/]/. Then h is a homotopy
over S from id to f ıg.

3.4 Proposition Let C;C 0;D! S be cocartesian fibrations and let F W C ! C 0 be a
monomorphism of cocartesian fibrations over S (so preserving cocartesian edges). For
all marked simplicial sets Y over S , the map

FunS .\D;FunS .\C 0; Y //! FunS .\D �S \C 0; Y /�FunS .\D�S\C;Y / FunS .\D;FunS .\C; Y //

which precomposes by F is a trivial Kan fibration.

Proof From the defining adjunction, for all X; Y 2 sSetC
=S

we have a natural isomor-
phism

FunS .X;FunS .\C; Y //Š FunS .X �S O.S/] �S \C; Y /

of simplicial sets. Since FunS .�;�/ is a right Quillen bifunctor, the assertion reduces
to showing that

\D �S \C
0
t
\D�S\C \D �S O.S/] �S \C ! \D �S O.S/] �S \C

0

is a trivial cofibration in sSetC
=S

, which follows from Lemma 3.3(2).

In Proposition 3.4, letting C D ∅ and Y D \E for another cocartesian fibration
E ! S , we deduce that FunS .C 0;�/ is right adjoint to C 0 �S � as an endofunctor
of Fun.S;Cat1/. Further setting D D S , we deduce that the category of cocartesian
sections of FunS .\C; \E/ is equivalent to FunS .\C; \E/. We will employ the following
notation to explicitly track objects under this correspondence.

3.5 Notation Given a map f W \C ! \E, let �f denote the cocartesian section
S]! FunS .\C; \E/ given by adjointing the map O.S/] �S \C

prC��! \C
f
�! \E.

We next study varying the second variable in the construction FunS .�;�/.
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3.6 Lemma Let C !D be a fibration of marked simplicial sets over S .

(1) Let K! S be a cocartesian fibration. Then

FunS .\K;C/! FunS .\K;D/�D C

is a fibration in sSetC
=S

.

(2) The map
FunS .S]; C /! FunS .S];D/�D C

is a trivial fibration in sSetC
=S

.

Proof Let i W A! B be a map of marked simplicial sets. For (1), we use that if i is a
trivial cofibration, then

B tAA�S O.S/] �S \K! B �S O.S/�S \K

is a trivial cofibration, which follows from Proposition 3.1. For (2), we use that if i is a
cofibration, then

B tAA�S O.S/]! B �S O.S/

is a trivial cofibration, which follows from Lemma 3.3(1).

The following proposition indicates that we can promote the conclusion FunS .S;�/' id
(as an endofunctor of Fun.S;Cat1/) of Proposition 3.4 to the level of cocartesian
model structures. It will not be used in the sequel and is included only for illustrative
purposes.

3.7 Proposition The Quillen adjunction

��S O.S/] W sSetC
=S
�! � sSetC

=S
WFunS .S];�/

is a Quillen equivalence.

Proof We first check that for every cocartesian fibration C ! S , the counit map

FunS .S]; \C/�S O.S/]! \C

is a cocartesian equivalence. By Lemma 3.3(1), it suffices to show that

FunS .S]; \C/! \C
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is a trivial marked fibration, which follows from Lemma 3.6(2) (taking D D S). We
now complete the proof by checking that ��S O.S/] reflects cocartesian equivalences;
ie given the commutative square

A B

A�S O.S/] B �S O.S/]

if the lower horizontal map is a cocartesian equivalence over S (with respect to the
target map) then the upper horizontal map is a cocartesian equivalence over S . But the
vertical maps are cocartesian equivalences by Lemma 3.3(1).

The construction FunS .�;�/ does not make homotopical sense when the first variable
is not fibrant, so it does not yield a Quillen bifunctor. Nevertheless, we can say the
following about varying the first variable.

3.8 Proposition Let K, L, and C be fibrant marked simplicial sets over S , let
f WK! L be a map and let

f � W FunS .L; C /! FunS .K;C /

denote the induced map.

(1) Suppose that f is a cocartesian equivalence over S . Then f � is a cocartesian
equivalence over S .

(2) Suppose that f is a cofibration. Then f � is a fibration in sSetC
=S

.

Proof (1) It suffices to check that for all s 2 S , f � induces a categorical equivalence
between the fibers over s, ie that

FunS ..Ss=/] �S L;C /! FunS ..Ss=/] �S K;C/

is a categorical equivalence. Our assumption implies that .Ss=/]�S K! .Ss=/]�S L

is a cocartesian equivalence over S , so this holds.

(2) For any trivial cofibration A! B in sSetCS , we need to check that

A�S O.S/�S LtA�SO.S/�SK B �S O.S/�S K! B �S O.S/�S L

is a trivial cofibration in sSetC
=S

. By Proposition 3.1, ��S O.S/�S K preserves trivial
cofibrations and ditto for L. The result then follows.

Algebraic & Geometric Topology, Volume 23 (2023)



538 Jay Shah

A final word on notation: since FunS .�;�/ is only homotopically meaningful (and
fibrant) when both variables are fibrant, we will henceforth cease to denote the markings
on the variables.

S –categories of S –objects

For the convenience of the reader, we briefly review the construction and basic properties
of the S–category of S–objects in an 1–category C . This is a construction, at the
level of marked simplicial sets, of the right adjoint to the Grothendieck construction
functor15

GrU W Catcocart
1=S ! Cat1; .C ! S/ 7! C:

This material is originally due to Denis Nardin in [2, Section 7].

3.9 Construction [2, Definition 7.4] The span

S]
ev0
 �� O.S/\

�
�!�0

defines a right Quillen functor .ev0/��� W sSetC! sSetC
=S

, which sends an1–category
E to eFunS .O.S/; E �S/ (cf Example 2.25). This is the S–category of objects in E,
which we will denote by ES .

The next proposition shows that the functor E 7! ES indeed implements the right
adjoint to GrU .

3.10 Proposition Suppose C an S–category and E an1–category. Then we have an
equivalence

 W FunS .C;ES /
'
�! Fun.C;E/:

Proof Consider the commutative diagram

C� O.S/\ �0

\C S]

�0

15We write GrU to distinguish from Notation 2.6.
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Given an1–categoryE, traveling along the outer span (ie pulling back and then pushing
forward) yields Fun.C;E/, traveling along the two inner spans yields FunS .C;ES /,
and the comparison functor  is induced by the map � W C� ! \C �S O.S/\. By
[2, Proposition 6.2], � is a homotopy equivalence in sSetC

=S
. Therefore, combining

Lemma 2.27 and Lemma 2.28, we deduce the claim.

3.11 Notation Given an S–functor p W C ! ES , let p� W C ! E denote the corre-
sponding functor under the equivalence of Proposition 3.10.

3.12 Example Let E D Spc or Cat1. Then SpcS (resp. Cat1;S ) is the S–category
of S–spaces (resp. S–categories). In particular, suppose E D Spc and S D O

op
G .

Then we also call SpcO
op
G

the G–1–category of G–spaces. Note that the fiber of this
cocartesian fibration over a transitive G–set G=H is equivalent to the1–category of
H–spaces Fun.Oop

H ;Spc/, and the pushforward functors are given by restriction along
a subgroup and conjugation.

3.13 Remark Let C be an S–category and � W X ! C a left fibration. Then �
straightens to a functor F W C ! Spc, which under the equivalence of Proposition 3.10
corresponds to an S–functor F 0 W C ! SpcS . We will say that � S–straightens to F 0.
Similarly, if � is a cocartesian fibration, then � S–straightens to an S–functor valued
in Cat1;S .

4 Join and slice

The join and slice constructions are at the heart of the1–categorical approach to limits
and colimits. In this section, we introduce relative join and slice constructions and
explore their homotopical properties.

The S –join

4.1 Definition Let � W S � @�1 ,! S ��1 be the inclusion. Define the S–join to be
the functor

.�?S �/´ �� W sSet=S�@�1 ! sSet=S��1 :

Define the marked S–join to be the functor

.�?S �/´ �� W sSetC
=S]�.@�1/[

! sSetC
=S]�.�1/[

:

Algebraic & Geometric Topology, Volume 23 (2023)



540 Jay Shah

4.2 Notation Given X and Y , marked simplicial sets over S , we will usually refer to
the structure maps to S by �1 WX ! S , �2 W Y ! S , and � WX ?S Y ! S . Explicitly,
an .iCjC1/–simplex � of X ?S Y is the data of simplices � W�i ! X , � W�j ! Y ,
and �0 W�i ?�j ! S such that the diagram

�i �i ?�j �j

X S Y

� �0 �

�1 �2

commutes; we then have that �0 D � ı�. We will sometimes write �D .�; �/ so as to
remember the data of the i–simplex of X and the j–simplex of Y in the notation. If
given an n–simplex of X ?S Y , we will indicate the decomposition of �n given by the
structure map to �1 as �n0 ?�n1 (with either side possibly empty).

4.3 Proposition Let � W S � @�1 ,! S ��1 be the inclusion. Then

(a) �� W sSet=S�@�1 ! sSet=S��1 is a right Quillen functor.

(b) �� W sSetC
=S]�.@�1/[

! sSetC
=S]�.�1/[

is a right Quillen functor.

Consequently, if X and Y are categorical (resp. cocartesian) fibrations over S , then
X ?S Y is a categorical (resp. cocartesian) fibration over S , with the cocartesian edges
given by those in X and Y .

Proof For (b), we verify the hypotheses of Theorem 2.24(ii). All of the requirements
are immediate except for (1) and (2).

(1) Let .s; i/ be a vertex of S] � .@�1/[, i D 0 or 1. Let f W .s0; i 0/! .s; i/ be a
marked edge in S] � .�1/[. Then i 0 D i and f viewed as an edge in S] � .@�1/[ is
locally �–cartesian.

(2) It is obvious that @�1 ,!�1 is a flat categorical fibration, so by stability of flat
categorical fibrations under base change, S � @�1 ,! S � �1 is a flat categorical
fibration.

Part (a) also follows from (2) by [11, Proposition B.4.5]. By (a), if X and Y are
categorical fibrations over S , X ?S Y is a categorical fibration over S ��1. The
projection map S ��1! S is a categorical fibration, so X ?S Y is also a categorical
fibration over S . By (b), if X and Y are cocartesian fibrations over S , \X ?S \Y is
fibrant in sSetC

=S]�.�1/[
. Since S] � .�1/[ is marked as a cocartesian fibration over S ,

\X ?S \Y is marked as a cocartesian fibration over S .

Algebraic & Geometric Topology, Volume 23 (2023)



Parametrized higher category theory 541

We have the compatibility of the relative join with base change.

4.4 Lemma Let f W T ! S be a functor and let X and Y be (marked ) simplicial sets
over S . Then we have a canonical isomorphism

.X ?S Y /�S T Š .X �S T / ?T .Y �S T /:

Proof From the pullback square

T � @�1 T ��1

S � @�1 S ��1

�T

f �id f �id

�S

we obtain the base-change isomorphism f �.�S /� Š .�T /�f
�.

In [9, Section 4.2.2], Lurie introduces the relative “diamond” join operation ˘S , which
we now recall. Given X and Y marked simplicial sets over S , define

X ˘S Y DX tX�SY�f0gX �S Y � .�
1/[ tX�SY�f1g Y:

There is a comparison map

 .X;Y / WX ˘S Y !X ?S Y D ��.X; Y /;

adjoint to the isomorphism ��.X ?S Y /Š .X; Y /.

4.5 Lemma Let X be a marked simplicial set. Then  .X;S/ W X ˘S S]! X ?S S
]

is a cocartesian equivalence in sSetC
=S

. Dually , if X is in addition fibrant , then

 .S;X/ W S
] ˘S X ! S] ?S X is a cocartesian equivalence in sSetC

=S
.

Proof We first address the map  .X;S/. By left properness of the cocartesian model
structure, the defining pushout forX˘S S] is a homotopy pushout. By Theorem 4.16,16

�?S S
] preserves cocartesian equivalences. Therefore, choosing a fibrant replacement

for X and using naturality of the comparison map  .X;S/, we may reduce to the case
that X is fibrant. Then we have to check that

X � f1g X � .�1/[

S] X ?S S
]

16There is no circularity since Lemma 4.5 is only later referenced in this paper at the beginning of
Section 9.
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is a homotopy pushout square. Since this is a square of fibrant objects, this assertion
can be checked fiberwise, in which case it reduces to the equivalence Xs ˘�0

'
�!XB

of [9, Proposition 4.2.1.2].

The second statement concerning  .S;X/ follows by the same type of argument, but
without the reduction step.

4.6 Warning In general, .X;Y / is not a cocartesian equivalence. As a counterexample,
consider S D�1, X D f0g, and Y D f1g. Then  .X;Y / is the inclusion of

X ˘S Y Š�
f0g
t�f1g

into X ?S Y Š�1, which is not a cocartesian equivalence over �1.

We will later need the following strengthening of the conclusion of Proposition 4.3.

4.7 Proposition (1) Let C;C 0;D! S be inner fibrations and let C;C 0!D be
functors over S . Then C ?D C 0! S is an inner fibration.

(2) Let C;C 0;D ! S be S–categories and let C;C 0 ! D be S–functors. Then
C ?D C

0! S is an S–category with cocartesian edges given by those in C or
C 0, and C ?D C 0!D is an S–functor.

Proof (1) Let 0 < k < n. We need to solve the lifting problem

ƒn
k

C ?D C
0

�n S

�0

�

Let N� W�n!D be a lift in the commutative square

ƒn
k

D

�n S

N�

Define � using the data .�0j�n0 ; �0j�n1 ; N�/. Then � is a valid lift.

(2) Consider C ?D C 0 as a marked simplicial set with marked edges those in \C or
in \C 0. We need to solve the lifting problem

\ƒ
n
0 C ?D C

0

\�
n S

�0

�
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Let N� W�n!D be a lift in the commutative square

\ƒ
n
0 \D

\�
n S

N�

Define � using the data .�0j�n0 ; �0j�n1 ; N�/. Then � is a valid lift. Finally, note that we
may obviously lift against classes (3) and (4) of [9, Definition 3.1.1.1]. We conclude
that C ?D C 0! S is fibrant in sSetC

=S
, hence an S–category with cocartesian edges as

marked.

Since the S–join is defined as a right Kan extension, it is simple to map into. In the
other direction, we can offer the following lemma.

4.8 Lemma Let C , C 0, D, and E be S–categories and let C;C 0!D be S–functors.
Then

FunS .C ?D C 0; E/! FunS .C;E/�FunS .C 0; E/

is a bifibration [9, Definition 2.4.7.2]. Consequently,

FunS .C ?D C 0; E/! FunS .C;E/

is a cartesian fibration with cartesian edges those sent to equivalences in FunS .C 0; E/,
and

FunS .C ?D C 0; E/! FunS .C 0; E/

is a cocartesian fibration with cocartesian edges those sent to equivalences in FunS.C 0;E/.

Proof By inspection, the span

.�1/[ �
 � \.C ?D C

0/ �
0

�! S]

satisfies the hypotheses of Theorem 2.24. Therefore, ��� 0�.\E! S/ is a categorical
fibration over �1. The claim now follows from [9, Proposition 2.4.7.10], and the
consequence from [9, Lemma 2.4.7.5] and its opposite.

The Quillen adjunction between S –join and S –slice

Our next goal is to obtain a relative join and slice Quillen adjunction. To this end, we
need a good understanding of the combinatorics of the relative join (Proposition 4.11).
We prepare for the proof of that proposition with a few lemmas.
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4.9 Lemma Let i; l � �1 and j; k � 0. Then the map

�i ?�j ? @�k ?�l t�j?@�k?�l �
jCkClC2 ,!�iCjCkClC3

is inner anodyne.

Proof Let f W �j�1 ,! �i ?�j�1 and g W ƒkC10 ,! �kC1. The map in question is
f ?g ?�l , so is inner anodyne by [9, Lemma 2.1.2.3].

By [9, Lemma 2.1.2.4], the join of a left anodyne map and an inclusion is left anodyne.
We need a slight refinement of this result:

4.10 Lemma Let f W A0 ,! A be a cofibration of simplicial sets.

(1) Let g W B0 ,! B be a right marked anodyne map between marked simplicial sets.
Then

f [ ?g W A[0 ?B tA[0?B0
A[ ?B0 ,! A[ ?B

is a right marked anodyne map.

(2) Let g W B0 ,! B be a left marked anodyne map between marked simplicial sets.
Then

g ?f [ W B ?A[0 tB0?A[0
B0 ?A

[ ,! B ?A[

is a left marked anodyne map.

Proof We prove (1); the dual assertion (2) is proven by a similar argument. As f lies
in the weakly saturated closure of the inclusions im W @�m ,!�m, it suffices to check
that i[m ? g is right marked anodyne for the four classes of morphisms enumerated
in [9, Definition 3.1.1.1]. For g W .ƒni /

[ ,! .�n/[, 0 < i < n, i[m ? g obtained from
an inner anodyne map by marking common edges, so is marked right anodyne. For
g Wƒnn

\ ,!�n\, i[m ?g is ƒnCmC1nCmC1

\
,!�nCmC1

\, so i[m ?g is marked right anodyne.
For the remaining two classes, i[m?g is the identity because no markings are introduced
when joining two marked simplicial sets.

The following proposition reveals a basic asymmetry of the relative join, which is
related to our choice of cocartesian fibrations to model functors.

Algebraic & Geometric Topology, Volume 23 (2023)



Parametrized higher category theory 545

4.11 Proposition Let K be a marked simplicial set over S .

(1) For every marked left horn inclusion \ƒn0 ,! \�
n over S , the induced map

K ?S .\ƒ
n
0 �S O.S/\/ ,!K ?S .\�

n
�S O.S/\/

is left marked anodyne , where the pullbacks \ƒn0�S O.S/\ and \�n�S O.S/\ are
formed with respect to the source map e0 and are regarded as marked simplicial
sets over S via the target map e1.

(10) For every left horn inclusion ƒn0 ,!�n over S , the induced map

�n �S O.S/tƒn0�SO.S/K ?S .ƒ
n
0 �S O.S// ,!K ?S .�

n
�S O.S//

is an inner anodyne map.

(2) Let e0 W C ! S be a cartesian fibration over S and let e1 W C ! S be any map of
simplicial sets. For every inner horn inclusion ƒn

k
,!�n, 0 < k < n over S , the

induced map

K ?S .ƒ
n
k �S C/ ,!K ?S .�

n
�S C/

is inner anodyne , where the pullbacks ƒn
k
�S C and �n �S C are formed with

respect to e0 and are regarded as simplicial sets over S via e1.

(3) For every marked right horn inclusion ƒnn
\ ,!�n\ over S , the induced map

K ?S ƒ
n
n
\
,!K ?S �

n\

is right marked anodyne.

Proof Let I be the set of simplices of K endowed with a total order such that � < � 0

if the dimension of � is less than that of � 0, where we view the empty set as a simplex
of dimension �1. Let J be the set of epimorphisms � W�j��n�1 endowed with a
total order such that � < �0 if the dimension of � is less than that of �0. Order I �J
by .�; �/ < .� 0; �0/ if � < � 0 or � D � 0 and � < �0. For any simplex � W�j !�n, we
let rk.�/ be the pullback

�rk.�/0 �n�1

�j �n

rk.�/

dk

�

We will let � denote the map under consideration. We first prove (1). Given � 2 I
and � 2 J , let X�;� be the submarked simplicial set of K ?S .\�

n �S O.S/\/ on
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K ?S .\ƒ
n
0 �S O.S/\/ and simplices .� 0; � 0/ W �i ?�j ! K ?S .�

n �S O.S// not in
K ?S .ƒ

n
0 �S O.S// with .� 0; r0.e0 ı � 0// � .�; �/. If .�; �/ < .� 0; �0/, then we have

an obvious inclusion X�;� ,!X� 0;�0 , and we let

X<.�;�/ D .\ƒ
n
0 �S O.S/\/[

� [
.� 0;�0/<.�;�/

X� 0;�0

�
:

Since K ?S .\�
n �S O.S/\/ D colim.�;�/2I�J X�;�, in order to show that � is left

marked anodyne it suffices to show that X<.�;�/ ,!X�;� is left marked anodyne for
all .�; �/ 2 I � J . We will say that a simplex of X�;� is new if it does not belong to
X<.�;�/.

Let � W �i ! K be an element of I and � W �j � �n�1 an element of J . Let
�D .�; �/ W�i ?�j !K?S .�

n�S O.S// be any nondegenerate new simplex of X�;�,
so r0.e0 ı �/ D �. Let N� W �jC1� �n be the unique epimorphism with r0. N�/ D �
and let e W �1! �n �S O.S/ be a cartesian edge over f0; 1g with e.1/ D �.0/. The
inclusion .�1/] t�0 �

j ,! \�
jC1 is right marked anodyne, so we have a lift N� in the

diagram

�1 t�0 �
j �n �S O.S/

�jC1 �n

e[�

N�

N�

By Lemma 4.10,

�i ?�j t�j \�
jC1 ,!�i ? \�

jC1

is right marked anodyne. Using that .e1 ı N�/.e/ is an equivalence, we obtain a lift

�i ?�j t�j \�
jC1 S�

�i ? \�
jC1

��[e1 N�

which allows us to define N� W�i ?�jC1!K?S .�
n�S O.S// extending � and N� . Then

N� is a nondegenerate new simplex of X�;� and every face of N� except for �D diC1. N�/
lies in X<.�;�/. We may thus form the pushoutF

�.ƒ
iCjC2
iC1 ; fi C 1; i C 2g/ X<.�;�/

F
�.�

iCjC2; fi C 1; i C 2g/ X<.�;�/;1
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which factors the inclusion X<.�;�/ ,! X.�;�/ as the composition of a left marked
anodyne map and an inclusion. (There is one further complication involving markings:
in the special case n D 1, � D ∅ and j D 1, we may have that � D � is a marked
edge, ie an equivalence over 1. Then the edges of N� are all marked, so we should
form the pushout via maps .ƒ20/

] ,! .�2/], which are left marked anodyne by [9,
Corollary 3.1.1.7]).

Now for the inductive step suppose that we have defined a sequence of left marked
anodyne maps

X<.�;�/ ,! : : : ,!X<.�;�/;m �X.�;�/

such that for all 0 < l � m all new nondegenerate simplices in X.�;�/ of dimension
i C l C j lie in X<.�;�/;l and admit an extension to an .iClCjC1/–simplex with the
edge fi C l; i C l C 1g marked in X<.�;�/;l , and no new nondegenerate simplices of
dimension > i C l C j C 1 lie in X<.�;�/;l . Let �D .�; �/ be any new nondegenerate
.iCmCjC1/–simplex not in X<.�;�/;m. For 0 � l < m let �l D .�; �l/ be a nonde-
generate .iCmCjC1/–simplex in X<.�;�/;m with diCm.�l/D diClC1.�/ and edge
fi Cm; i CmC 1g marked. � and �0; : : : ; �m�1 together define a map

� 0 WƒmC1mC1 ?�
j�1
!�n �S O.S/

where the domain of � is the subset f0; : : : ; m� 1;mC 1; : : : ; mC j C 1g and the
domain of �l is the subset f0; : : : ; Ol ; : : : ; mC j C 1g. Observe that the map

ƒmC1mC1

\
?�j�1 ,!�mC1

\
?�j�1

is right marked anodyne, since it factors as

ƒmC1mC1

\
?�j�1 ,!�mC1

\
t
ƒ
mC1
mC1

\ ƒ
mC1
mC1

\
?�j�1 ,!�mC1

\
?�j�1

where the first map is obtained as the pushout of the right marked anodyne map
ƒmC1mC1

\
,!�mC1

\ along the inclusion ƒmC1mC1

\
,!ƒmC1mC1

\
?�j�1 and the second map

is obtained by marking a common edge of an inner anodyne map. Let N� W�mCjC1��n

be the unique epimorphism with r0. N�/D �. Then we have a lift N� in the commutative
diagram

ƒmC1mC1 ?�
j�1 �n �S O.S/

�mC1 ?�j�1 �n

� 0

N�

N�
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By Lemma 4.10, the map

�i ?ƒmC1mC1

\
?�j�1 t

ƒ
mC1
mC1

\
?�j�1

�mC1
\
?�j�1 ,!�i ?�mC1

\
?�j�1

is right marked anodyne. Since .e1 ı N�/.fm;mC 1g/ is an equivalence, we may extend�S
l ��l

�
[ �� [ e1 N� to a map �iCmCjC2 ! S , which defines a nondegenerate

.iCmCjC2/–simplex N� with � as its .i CmC 1/th face and which extends N� . By
construction, every other face of N� lies in X<.�;�/;m. Thus we may form the pushout

F
�.ƒ

iCmCjC2
iCmC1 ; fi CmC 1; i CmC 2g/ X<.�;�/;m

F
�.�

iCmCjC2; fi CmC 1; i CmC 2g/ X<.�;�/;mC1

and complete the inductive step. (Again, there is one further complication involving
markings: in the special case i D �1, n D 1, j D 0 and m D 1, we may have that
� is marked. Then every edge of N� is marked since .ƒ22/

] ,! .�2/] is right marked
anodyne, and we form the pushout along maps .ƒ21/

] ,! .�2/]). Passing to the colimit,
we deduce that X<.�;�/ ,!X�;� is marked left anodyne, which completes the proof.

For (10), simply observe that if i > �1 we are attaching along inner horns.

We now modify the above proof to prove (2). Let X�;� be the subsimplicial set of
K?S .�

n�SC/ onK?S .ƒnk�SC/ and simplices .� 0; � 0/ W�i ?�j !K?S .�
n�SC/

not in K ?S .ƒnk �S C/ with .� 0; rk.e0 ı � 0//� .�; �/. Let

X<.�;�/ D .K ? .ƒ
n
k �S C//[

� [
.� 0;�0/<.�;�/

X� 0;�0

�
:

We will show that X<.�;�/ ,!X�;� is inner anodyne for all .�; �/ 2 I �J .

Let � W�i !K be an element of I , � W�j��n�1 an element of J , and let k0 be the
first vertex of � with �.k0/D k. Let �D .�; �/ W�i ?�j !K ?S .�

n �S C/ be any
nondegenerate new simplex of X�;�, so rk.e0 ı �/ D �. Let N� W �jC1� �n be the
unique epimorphism with rk. N�/D �. Combining [9, Lemma 2.1.2.3] and Lemma 4.10,
we see that the inclusion

dk0 W�
j
D�k

0�1 ?�j�k
0

,!�k
0�1 ? \�

j�k0C1
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is right marked anodyne, so we have a lift N� in

�j �n �S C

�jC1 �n

�

N�

N�

where N�.fk0; k0C 1g/ is a cartesian edge. By Lemma 4.9,

�i ?�j t�j �
jC1 ,!�i ?�jC1

is inner anodyne. We thus obtain an extension

�i ?�j t�j �
jC1 S

�i ?�jC1

��[e1 N�

which allows us to define N� W�i ?�jC1!K ?S .�
n �S C/ extending � and N� . Then

N� is nondegenerate and every face of N� except for �D diCk0C1. N�/ lies in X<.�;�/. We
may thus form the pushout

F
�ƒ

iCjC2

iCk0C1
X<.�;�/

F
��

iCjC2 X<.�;�/;1

which factors the inclusion X<.�;�/ ,!X.�;�/ as the composition of an inner anodyne
map and an inclusion.

Now for the inductive step suppose that we have defined a sequence of inner anodyne
maps

X<.�;�/ ,! � � � ,!X<.�;�/;m �X.�;�/

such that for all 0 < l � m all new nondegenerate simplices in X.�;�/ of dimension
i C l C j lie in X<.�;�/;l and admit an extension to an .iClCjC1/–simplex such
that the edge fi C k0C l; i C k0C l C 1g is sent to a cartesian edge of �n �S C , and
no new nondegenerate simplices of dimension > i C l C j C 1 lie in X<.�;�/;l . Let
� D .�; �/ be any new nondegenerate .iCmCjC1/–simplex not in X<.�;�/;m. For
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0 � l < m let �l D .�; �l/ be a nondegenerate .iCmCjC1/–simplex in X<.�;�/;m
with diCmCk0.�l/D diClCk0C1.�/. Then � and �0; : : : ; �m�1 together define a map

� 0 W�k
0�1 ?ƒmC1mC1 ?�

j�k0�1
!�n �S C;

where the domain of � is the subset f0; : : : ; k0Cm� 1; k0CmC 1; : : : ; mC j C 1g
and the domain of �l is the subset f0; : : : ; 1k0C l ; : : : ; mC j C 1g. The map

�k
0�1 ?ƒmC1mC1

\
?�j�k

0�1 ,!�k
0�1 ?�mC1

\
?�j�k

0�1

is �k
0�1 joined with a right marked anodyne map, so is right marked anodyne by

Lemma 4.10. Let N� W�mCjC1��n be the unique epimorphism with rk. N�/D�. Then
we have a lift N� in the following commutative diagram

�k
0�1 ?ƒmC1mC1 ?�

j�k0�1 �n �S C

�mCjC1 �n

� 0

N�

N�

such that N�.fk0Cm; k0CmC 1g/ is a cartesian edge. By Lemma 4.9, the map

�i ?�k
0�1 ? @�m ?�j�k

0

t�k0�1?@�m?�j�k0 �
mCjC1 ,!�iCmCjC2

is inner anodyne. Thus, we may extend
�S

l ��l
�
[��[e1 N� to a map�iCmCjC2!S ,

which defines a nondegenerate .iCmCjC2/–simplex N� with � as its .iCk0CmC1/th

face and which extends N� . By construction every other face of N� lies in X<.�;�/;m.
Thus we may form the pushout

F
�ƒ

iCmCjC2

iCk0CmC1
X<.�;�/;m

F
��

iCmCjC2 X<.�;�/;mC1

and complete the inductive step. Passing to the colimit, we deduce thatX<.�;�/ ,!X�;�

is inner anodyne, which completes the proof.

We finally modify the above proof to prove (3). Given � 2 I and � 2 J , let X�;� be
the submarked simplicial set of K ?S �n\ on K ?S ƒnn

\ and simplices

.� 0; � 0/ W�i ?�j !K ?S �
n\
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not in K ?S ƒnn
\ with .� 0; rn.� 0//� .�; �/. Let

X<.�;�/ D .K ?S ƒ
n
n
\
/[

� [
.� 0;�0/<.�;�/

X� 0;�0

�
:

We will show that X<.�;�/ ,!X�;� is right marked anodyne for all .�; �/ 2 I �J .

Let � W �i ! K be an element of I and � W �j � �n�1 an element of J . Let
� D .�; �/ W �i ? �j ! K ?S �

n\ be any nondegenerate new simplex of X�;�, so
rn.�/ D �. Let N� W �jC1� �n be the unique epimorphism with rn. N�/ D �. By
Lemma 4.9, the inclusion

�i ?�j t�j �
jC1 ,!�i ?�jC1

is inner anodyne, so we have an extension in

�i ?�j t�j �
jC1 S

�i ?�jC1

��[�2 N�

which allows us to define N� W �i ?�jC1! K ?S �
n\ extending � and N�. Then N� is

nondegenerate and every face of N� except for �D diCjC2. N�/ lies in X<.�;�/. We may
thus form the pushout

F
�ƒ

iCjC2
iCjC2

\
X<.�;�/

F
��

iCjC2\ X<.�;�/;1

which factors the inclusion X<.�;�/! X.�;�/ as the composition of a right marked
anodyne map and an inclusion.

Now for the inductive step suppose that we have defined a sequence of right marked
anodyne maps

X<.�;�/ ,! � � � ,!X<.�;�/;m �X.�;�/

such that for all 0 < l � m all new nondegenerate simplices in X.�;�/ of dimension
i C l C j lie in X<.�;�/;l and admit an extension to an .iClCjC1/–simplex, and
no new nondegenerate simplices of dimension > i C l C j C 1 lie in X<.�;�/;l . Let
� D .�; �/ be any new nondegenerate .iCmCjC1/–simplex not in X<.�;�/;m. For
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0 < l � m let �l D .�; �l/ be a nondegenerate .iCmCjC1/–simplex in X<.�;�/;m
with diCmCjC1.�l/D diCjClC1.�/ (note that �l D � ). By Lemma 4.9, the map

�i ?�j ? @�m t�j?@�m �
j ?�m ,!�i ?�j ?�m

is inner anodyne. Therefore, we may extend ��[
�S

l ��l
�

to a map �iCjCmC2! S

and define an .iCjCmC2/–simplex N� of K ?�n\ with

diCjCmC2 N�D � and diCjClC1 N�D �C l:

By construction, every face of N� except for � lies in X<.�;�/;m. Thus we may form the
pushout F

�ƒ
iCjCmC2
iCjCmC2

\
X<.�;�/;m

F
��

iCjCmC2\ X<.�;�/;mC1

and complete the inductive step. Passing to the colimit, we deduce thatX<.�;�/ ,!X�;�

is right marked anodyne, which completes the proof.

4.12 Remark The proof of Proposition 4.11 can be adapted to show that for any
cartesian fibration C ! S , \ƒn0 �S C

\ ,! \�
n �S C

\ is marked left anodyne (in
the � D ∅ case, we only use that e0 W O.S/! S is a cartesian fibration). As well,
letting K D∅, part (2) of Proposition 4.11 shows that ƒn

k
�S C ,!�n �S C is inner

anodyne. This refines the theorem that marked left (resp. inner) anodyne maps pullback
to cocartesian (resp. categorical) equivalences along cartesian fibrations.

For later use, we state a criterion for showing that a functor is left Quillen.

4.13 Lemma Let M and N be model categories and let F WM!N be a functor which
preserves cofibrations. Let I be a weakly saturated [9, Definition A.1.2.2] subset of the
trivial cofibrations in M such that for every object A 2M, we have a map f W A! A0

where f 2 I and A0 is fibrant. Then F preserves trivial cofibrations if and only if

(1) for every f 2 I , F.f / is a trivial cofibration;

(2) F preserves trivial cofibrations between fibrant objects.
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Proof The “only if” direction is obvious. For the other direction, let A! B be a
trivial cofibration in M. We may form the diagram

A B

A0 A0 tAB
�
A0 tAB

�0
where the vertical and lower right horizontal arrows are in I . Then our two assump-
tions along with the two-out-of-three property of the weak equivalences shows that
F.A/! F.B/ is a trivial cofibration.

4.14 Lemma Let K be a simplicial set over S . Then

K ?S �;�?S K W sSet=S ! sSetK==S

are left adjoints. Similarly, for K a marked simplicial set over S ,

K ?S �;�?S K W sSetC
=S
! sSetC

K==S

are left adjoints.

Proof We prove that K ?S � is a left adjoint in the unmarked case and leave the other
cases to the reader. Let F denote K ?S � and define a functor G W sSetK==S ! sSet=S
by letting G.K! C/ be the simplicial set over S which satisfies

Hom=S .�
n; G.K! C//D HomK==S .K ?S �

n; C /I

this is evidently natural in K ! C . Define a unit map � W id! GF on objects X
by sending � W �n ! X to K ?S � W K ?S �

n ! K ?S X , which corresponds to
�n!G.K ?S X/. Define a counit map � W FG! id on objects K! C by sending
�D .�; �/ W�i ?�j !K ?S G.K! C/ to �i ?�j .�;id/��!K ?S �

j � 0
�! C , where � 0

corresponds to � W�j !G.K! C/. Then it is straightforward to verify the triangle
identities, so F is adjoint to G.

For the following pair of results, endow sSetC
=S

with the cocartesian model structure
and sSetC

K==S
D .sSetC

=S
/K= with the model structure created by the forgetful functor

to sSetC
=S

.

4.15 Theorem Let K be a marked simplicial set over S . The functor

K ?S .��S O.S/]/ W sSetC
=S
! sSetC

K==S

is left Quillen.
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Proof We will denote the functor in question by F . First observe that F is the
composite of the three left adjoints e�0 , e1Š, and K ?S �, so F is a left adjoint. F
evidently preserve cofibrations, so it only remains to check that F preserves the trivial
cofibrations. We first verify that F preserves the left marked anodyne maps. Since
F preserves colimits it suffices to check that F preserves a collection of morphisms
which generate the left marked anodyne maps as a weakly saturated class. We verify
that F preserves the four classes of maps enumerated in [9, Definition 3.1.1.1].

(1) For � W .ƒn
k
/[! .�n/[, 0 < k < n, the underlying map of simplicial sets of F.�/ is

inner anodyne by Proposition 4.11. F.�/ is obtained by marking common edges of an
inner anodyne map, so is left marked anodyne.

(2) For � W \ƒn0! \�
n, we observe that the map

K?S .\ƒ
n
0�S O.S/]/t

K?S .\ƒ
n
0�SO.S/\/

K?S .\�
n
�S O.S/\/!K?S .\�

n
�S O.S/]/

in the case nD 1 is marked left anodyne, since every marked edge in the codomain
factors as a composite of two marked edges in the domain, and is the identity if n>1. It
thus suffices to show that K?S .\ƒn0�S O.S/\/!K?S .\�

n�S O.S/\/ is left marked
anodyne, which is the content of part (1) of Proposition 4.11.

(3) and (4) In both of these cases one has a map of marked simplicial sets A! B

whose underlying map is an isomorphism of simplicial sets. Then

A F.A/

B F.B/

is a pushout square, so F.A/! F.B/ is left marked anodyne if A! B is.

Next, let f W \C ! \D be a cocartesian equivalence between cocartesian fibrations
over S . Let g W \D! \C be a homotopy inverse of f , so that there exists a homotopy
h W \C � .�

1/]! \C over S from idC to g ıf . Define a map

� W .K ?S .\C �S O.S/]//� .�1/]!K ?S ..\C �S O.S/]/� .�1/]/

by sending an .iCjC1/–simplex .�; ˛/ given by the data

� W�i !K; � W�j ! \C �S O.S/]; � ı� W�iCjC1!�1; ˛ W�iCjC1!�1
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to an .iCjC1/–simplex �0 given by � , .�; ˛ ı �/ and � ı�, where � W�j !�i ?�j is
the inclusion. It is easy to see that � restricts to an isomorphism on

.K ?S .\C �S O.S/]//� @�1:

We deduce that F.h/ ı � is a homotopy from F.g ı f / to the identity. A similar
argument concerning a chosen homotopy from f ı g to idD shows that F.f / is a
cocartesian equivalence.

Finally, invoking Lemma 4.13 completes the proof.

4.16 Theorem Let K be a marked simplicial set over S . The functor

�?S K W sSetC
=S
! sSetC

K==S

is left Quillen.

Proof As with the proof of Theorem 4.15, the proof will be an application of
Lemma 4.13. We first verify that � ?S K preserves the four classes of left marked
anodyne maps enumerated in [9, Definition 3.1.1.1]. Class (1) is handled by the
dual of part (2) of Proposition 4.11. Class (2) is handled by the dual of part (3) of
Proposition 4.11. Classes (3) and (4) are handled as in the proof of Theorem 4.15.
Finally, the case of A! B a cocartesian equivalence between fibrant objects is also
handled as in the proof of Theorem 4.15.

4.17 Definition Let K;C ! S be marked simplicial sets over S and let p WK! C

be a map over S . Define the marked simplicial set C.p;S/=! S as the value of the
right adjoint to K ?S .��S O.S/]/ on K! C ! S in sSetC

K==S
. By Theorem 4.15, if

C ! S is an S–category, then C.p;S/=! S is an S–category. We will refer to C.p;S/=
as a S–undercategory of C .

Dually, define the marked simplicial set C=.p;S/! S as the value of the right adjoint
to � ?S .K �S O.S/]/ on K ! C ! S in sSetC

K==S
. By Theorem 4.16 applied to

K �S O.S/], if C ! S is an S–category, then C=.p;S/! S is an S–category. We will
refer to C=.p;S/ as an S–overcategory of C .

In the sequel, we will focus our attention on the S–undercategory and leave proofs of
the evident dual assertions to the reader.
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Functoriality in the diagram

We now study the functoriality of the S–undercategory with respect to the diagram
category. Given maps f WK! L and p W L!X of marked simplicial sets over S , we
have an induced map X.p;S/=!X.pf;S/=, which in terms of the functors that X.p;S/=
and X.pf;S/= represent is given by precomposing L?S .A�S O.S/]/!X by f ?S id.

Recall that for a category M admitting pushouts and a map f W K ! L, we have an
adjunction

fŠ WMK=
�! �ML= Wf

�

where fŠ.K!X/DXtKL and f �.L p
�!X/Dpıf . If M is a model category and

MK= and ML= are provided with the model structures induced from M, then .fŠ; f �/ is
a Quillen adjunction. Moreover, if M is a left proper model category and f is a weak
equivalence, then .fŠ; f �/ is a Quillen equivalence.

4.18 Proposition Let f WK!L be a cocartesian equivalence in sSetC
=S

. Let C be an
S–category and let p W L! \C be a map. Then \C.p;S/=! \C.pf;S/= is a cocartesian
equivalence in sSetC

=S
.

Proof Let F D fŠ ı .K ?S .��S O.S/]// and let F 0 D L?S .��S O.S/]/. Let G
and G0 be the right adjoints to F and F 0, respectively. Let ˛ W F ! F 0 be the evident
natural transformation and let ˇ WG0!G be the dual natural transformation, defined by
G0

�G0�!GFG0 G˛G
0

���!GF 0G0 G�
0

�!G. Then ˇC W \C.p;S/=! \C.pf;S/= is the map under
consideration. By Theorem 4.16, ˛X is a cocartesian equivalence for all X 2 sSetC

=S
.

Therefore, by [7, Corollary 1.4.4(b)], ˇC is a cocartesian equivalence.

4.19 Proposition Consider a commutative diagram of marked simplicial sets

K C

L D

i q
p

where i is a cofibration and q is a fibration.

(1) The map
C.p;S/=! C.pi;S/= �D.qpi;S/= D.qp;S/=

is a fibration.
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(2) Let K D∅ and D D S]. Then the map

C.p;S/=! C.pi;S/= Š FunS .S]; C /

is a left fibration (of the underlying simplicial sets).

Proof (1) Given a trivial cofibration A! B , we need to solve lifting problems of
the form

L?S .A�S O.S/]/tK?S .A�SO.S/]/K ?S .B �S O.S/]/ C

L?S .B �S O.S/]/ D

but the left-hand map is a trivial cofibration by Theorem 4.15.

(2) We need to solve lifting problems of the form

.�n/[ �S O.S/] t.ƒn
i
/[ K ?S ..ƒ

n
i /
[ �S O.S/]/ C

K ?S ..�
n/[ �S O.S/]/ S

where 0� i < n, but the left-hand map is a trivial cofibration by Proposition 4.11(10)
and (2).

Combining (2) of the above proposition with Lemma 3.6(2) — which supplies a trivial
marked fibration FunS .S]; C / ! C — we obtain a map C.p;S/= ! C which is a
marked fibration and a left fibration, and such that for any f WK! L, the triangle

C.p;S/= C.pf;S/=

C

commutes.

The universal mapping property of the S –slice

Because the S–join and slice Quillen adjunction is not simplicial, we do not immediately
obtain a universal mapping property characterizing the S–slice. Our goal in this
subsection is to supply such a universal mapping property (Proposition 4.25). We first

Algebraic & Geometric Topology, Volume 23 (2023)



558 Jay Shah

recall how to slice Quillen bifunctors. Suppose V is a closed symmetric monoidal
category and M is enriched, tensored, and cotensored over V. Denote the internal hom
by

Hom.�;�/ WMop
�M! V:

Define bifunctors

Homx=.�;�/ WM
op
x=
�Mx=! V; Hom=x.�;�/ WM

op
=x
�M=x! V

on objects f W x! a, g W x! b and f 0 W a! x, g0 W b! x to be pullbacks

Homx=.f; g/ Hom.a; b/

1 Hom.x; b/

f �

g

Hom=x.f 0; g0/ Hom.a; b/

1 Hom.a; x/

g 0�

f 0

and on morphisms in the obvious way (we abusively denote by g W 1! Hom.x; b/
the map corresponding to g under the natural isomorphisms Hom.1;Hom.x; b// Š
Hom.1˝ x; b/Š Hom.x; b/, and likewise for f 0). It is easy to see that Homx= and
Hom=x preserve limits separately in each variable.

4.20 Lemma In the above situation let M be a model category and P be a monoidal
model category. If Hom.�;�/ is a right Quillen bifunctor , then Homx=.�;�/ and
Hom=x.�;�/ are right Quillen bifunctors , where we endow Mx= and M=x with the
model structures created by the forgetful functor to M.

Proof We prove the assertion for Homx=.�;�/, the proof for Hom=x.�;�/ being
identical. Let i W a! b and f W c! d be morphisms in Mx= (so they are compatible
with the structure maps �a; : : : ; �d ). In the commutative diagram

Homx=.�b; �c/ Hom.b; c/

Homx=.�a; �c/�Homx=.�a;�d / Homx=.�b; �d / Hom.a; c/�Hom.a;d/ Hom.b; d/

1 Hom.x; c/

it is easy to see that the lower square and the rectangle are pullback squares, so the
upper square is a pullback square. It is now clear that if Hom.�;�/ is a right Quillen
bifunctor, then Homx=.�;�/ is as well.
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We apply Lemma 4.20 to the bifunctors

MapK==S .�;�/ W sSetC
K==S

op
� sSetC

K==S
! sSetQuillen;

FunK==S .�;�/ W sSetC
K==S

op
� sSetC

K==S
! sSetJoyal

induced by MapS .�;�/ and FunS .�;�/.

4.21 Lemma Let K, A, and B be simplicial sets and define a map

A� .K ?B/!K ? .A�B/

by sending the data .�n!A;�k!K;�n�k�1!B/ of a n–simplex of A� .K ?B/
to the data .�k!K;�n�k�1! A�B/ of a n–simplex of K ? .A�B/. Then

� W A� .K ?B/tA�K K!K ? .A�B/

is a categorical equivalence.

Proof Recall [9, Proposition 4.2.1.2] that there is a map

�X;Y WX ˘Y DX tX�Y�f0gX �Y ��
1
tX�Y�f1g Y !X ?Y

natural in X and Y which is always a categorical equivalence. Thus

f D .A� �K;B/t idK W A� .K ˘B/tA�K K! A� .K ?B/tA�K K

is a categorical equivalence. The domain is isomorphic to K ˘ .A�B/, and it is easy
to check that the map �K;A�B is the composite

K ˘ .A�B/
f
�! A� .K ?B/tA�K K

�
�!K ? .A�B/:

Using the two-out-of-three property of the categorical equivalences, we deduce that �
is a categorical equivalence.

4.22 Lemma For all L 2 sSetC
=S

, we have a natural equivalence

� W FunS .L; \C.p;S/=/
'
�! FunK==S .K ?S .L�S O.S/]/; \C/:

Proof Define bisimplicial sets X; Y W�op! sSet by

Xn DMapK==S
�
K ?S ..�

n/[ �L�S O.S/]/; \C
�
;

Yn DMap
�
�n;FunK==S .K ?S .L�S O.S/]/; \C/

�
ŠMapK==S

�
.�n/[ �

�
K ?S .L�S O.S/]/t.�n/[�K K; \C

��
:
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and define a map of bisimplicial sets ˆ W X ! Y by precomposing levelwise by the
map

gL;n W .�
n/[ � .K ?S .L�S O.S/]//t.�n/[�K K!K ?S ..�

n/[ �L�S O.S/]/

adjoint as a map over S ��1 to the identity over S � @�1. Taking levelwise zero
simplices then defines the map �, which is clearly natural in L, K, and C . By
Theorem 4.16, taking a fibrant replacement of K we may suppose that K is fibrant.
We first check that X and Y are complete Segal spaces. By [8, Theorem 4.12], Y is a
complete Segal space as it arises from a1–category. For X , since MapK==S .�;�/ is
a right Quillen bifunctor, we only have to observe that:

� Every monomorphism A! B of simplicial sets induces a cofibration

K ?S .A
[
�L�S O.S/]/!K ?S .B

[
�L�S O.S/]/;

so X is Reedy fibrant.

� The spine inclusion �n W Sp.n/!�n induces a trivial cofibration

K ?S .Sp.n/[ �L�S O.S/]/!K ?S ..�
n/[ �L�S O.S/]/:

Since �n is inner anodyne, this follows from Theorem 4.15 and [9, Proposition
3.1.4.2].

� The map � W E!�0, where E is the nerve of the contractible groupoid with
two elements, induces a cocartesian equivalence

K ?S .E
[
�L�S O.S/]/!K ?S .L�S O.S/]/I

�[ is a cocartesian equivalence (as the composite of E[!E] and E]!�0),
so this also follows from Theorem 4.15 and [9, Proposition 3.1.4.2].

We next prove that ˆ is an equivalence in the complete Segal model structure. For this,
we will prove that each map gL;n is a cocartesian equivalence in sSetC

=S
. Both sides

preserve colimits as a functor of L (valued in sSetC
K==S

), so by left properness and the
stability of cocartesian equivalences under filtered colimits we reduce to the case L
is an m–simplex with some marking. In particular, .�m/[ �S O.S/]! S is fibrant in
sSetC

=S
. By [9, Theorem 4.2.4.1] we may check that the square of fibrant objects

.�n/[ �K K

.�n/[ � .K ?S ..�
m/[ ?S O.S/]// K ?S ..�

n/[ � .�m/[ �S O.S/]/
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is a homotopy pushout square in the underlying1–category Catcocart
1;S 'Fun.S;Cat1/,

where colimits are computed objectwise. In other words, we may check that for every
s 2 S , the fiber of the square over s is a homotopy pushout square in sSet, which holds
by Lemma 4.21. Pushing out along the cofibration .�m/[ �S O.S/]! L�S O.S/]

and using left properness, we deduce that gL;m is a cocartesian equivalence. Finally,
we invoke [8, Theorem 4.11] to deduce that � is a categorical equivalence.

4.23 Lemma Let L! S be a cocartesian fibration. Then

idK ? �L WK ?S \L!K ?S .\L�S O.S/]/

is a cocartesian equivalence in sSetC
=S

.

Proof By Theorem 4.16, taking a fibrant replacement of K we may suppose that K is
fibrant. By Proposition A.4, it suffices to show that for every s 2 S ,

K�s ?L
�
s !K�s ? .\L�S .S

=s/]/

is a marked equivalence in sSetC. The cartesian equivalence fsg ! .S=s/] pulls back
by the cocartesian fibration \L! S] to a marked equivalence L�s ! \L�S .S

=s/].
Then, by Theorem 4.15 for S D�0, K�s ?� preserves marked equivalences, which
concludes the proof.

4.24 Notation Suppose we have a commutative square of S–categories and S–
functors:

K D

C M

G

F �

�

Define FunK==M;S .C;D/ to be the pullback

FunK==M;S .C;D/ FunS .C;D/

S FunS .K;M/

.F �;��/

��G

If K D∅, we will also denote FunK==M;S .C;D/ by Fun=M;S .C;D/. If M D S , we
will write FunK==S .C;D/ in place of FunK==S;S .C;D/.

Note that by Propositions 3.8 and 2.16, the defining pullback square is a homotopy
pullback square if F is a monomorphism and � is a categorical fibration.
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4.25 Proposition Let K, L and C be S–categories and let p WK! C and q WL! C

be S–functors.

(1) We have an equivalence

 W FunS .L; C.p;S/=/
'
�! FunK==S .K ?S L;C /:

(2) We have an equivalence

 0 W FunS .L; C=.q;S//
'
�! FunL==S .K ?S L;C /

(3) We have equivalences

Fun=C;S .L; C.p;S/=/
 q

'
�! FunKtL==S .K ?S L;C /

 0p
'
 � Fun=C;S .K;C=.q;S//:

Proof (1) Define the S–functor  as follows. Suppose we are given a marked
simplicial set A and a map A! FunS .L; C.p;S/=/ over S . This is equivalently given
by the datum of a map

fA W \K ?S ..A�S O.S/] �S \L/�S O.S/]/! \C

under K and over S . Let

\KtA�SO.S/]�S\K
.A�SO.S/]/�S .\K?S .\L�SO.S/]//!K?S .A�SO.S/]�S \L�SO.S/]/

be the map over S ��1 adjoint to the identity over S � @�1. Precomposing fA by this
and �L W \L! \L�S O.S/] on that factor defines the desired map

A! FunK==S .K ?S L;C /:

Now to check that  is an equivalence, we may work fiberwise and combine Lemmas
4.22 and 4.23.

(2) This follows by a parallel argument to the proof of (1).

(3) We prove that  q is an equivalence; a parallel argument will work for  0p.
FunKtL==S .K ?S L;C / fits into a diagram

FunKtL==S .K ?S L;C / FunK==S .K ?S L;C / FunS .K ?S L;C /

S FunK==S .K tL;C / FunS .K tL;C /

S FunS .K;C /

�ptq

�p
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in which every square is a pullback square. The map  q is then defined to be the
pullback of the map of spans

FunS .L; C.p;S/=/ FunS .L; C / S

FunK==S .K ?S L;C / FunK==S .K tL;C / S

 pt�

�q

in which the vertical arrows are equivalences. By Proposition 4.19 and FunS .L;�/ be-
ing right Quillen, the top left horizontal arrow is an S–fibration, and by Proposition 3.8,
the bottom left horizontal arrow is an S–fibration, so  q is an equivalence.

In light of Proposition 4.25, we have evident “alternative” S–slice S–categories, whose
definition more closely adheres to the intuition that a slice category is a category of
extensions.

4.26 Definition Let p W K ! C be an S–functor. We define the alternative S–
undercategory

C .p;S/=´ FunK==S .K ?S S;C /:

Similarly, we define the alternative S–overcategory

C =.p;S/´ FunK==S .S ?S K;C/:

4.27 Corollary Let p WK! C and q W L! C be S–functors.

(1) We have equivalences C.p;S/=
'
�! C .p;S/= and C=.q;S/

'
�! C =.q;S/.

(2) We have an equivalence Fun=C;S .L; C .p;S/=/' Fun=C;S .K;C =.q;S// through
a natural zigzag.

Proof For (1), let L D S and K D S in Proposition 4.25(1) and (2), respectively.
For (2), combine the preceding (1) and Proposition 4.25(3).

4.28 Warning When S D�0, the alternative S–undercategory

C .p;S/= Š fpg �Fun.K;C/ Fun.KB; C /

differs from Lurie’s alternative undercategory Cp=. However, we have a comparison
functor

fpg �Fun.K;C/ Fun.KB; C /! Cp=

which is a categorical equivalence and which factors through the categorical equivalence
Cp=! Cp= of [9, Proposition 4.2.1.5].
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Slicing over and under S –points

We give a smaller model for slicing over and under S–points in an S–category C .

4.29 Notation Suppose C an S–category. Let

OS .C /´eFunS .S ��1; C /Š S �O.S/ O.C /

denote the fiberwise arrow S–category of C . Given an object x 2 C , let

C =x´ OS .C /�C x; C x=´ x �C OS .C /:

4.30 Proposition Let x 2 C be an object and denote by ix W x! Cx the x–functor
defined by x. We have natural equivalences of x–categories

Cx
=.x;ix/ ' C =x; Cx

=.ix ;x/ ' C x=:

Proof For any functor S 0 ! S and S–category C , OS .C /�S S
0 Š OS 0.C �S S

0/.
Therefore, OS .C / �C x Š Ox.Cx/ �Cx x and likewise for x �C OS .C /. Changing
base to x, we may suppose S D x and ix D i W S ! C is any S–functor. The identity
section S ! O.S/ induces a morphism of spans

S FunS .S; C / FunS .S ��1; C /

S C eFunS .S ��1; C /

�i

i

with the vertical maps equivalences. Taking pullbacks now yields the claim (where we
use the isomorphism S ?S S Š S ��

1 to identify the upper pullback with the S–slice
category in question).

4.31 Proposition We have a natural equivalence C x= ' C x= of left fibrations over C .

Proof Using the marked left anodyne map \ƒ21! \�
2 and the map of Lemma 2.23

for nD 2, we obtain a span

Fun.\�2; \C/

Fun..�f0;1g/]; \C/�C f1g Fun.�f1;2g; C / Fun.�f0;2g; C /�Sf0;2g Fun.�2; S/

' '
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Pulling back via fxg �C f0g � on the left and ��Sf1;2g S on the right, and using that
the inclusion �f0;2g!�2[�f1;2g �

0 is a categorical equivalence, we get

fxg �C f0g Fun.\�2; \C/�Sf1;2g S

C x= C x=

' '

which completes the proof.

5 Limits and colimits

In this section, we introduce S–colimits and study their basic properties. We then study
the correspondence between S–colimits and S–limits through the vertical opposite
construction of [3].

5.1 Definition Let C be an S–category and � W S ! C be a cocartesian section. We
say that � is a S–initial object if �.s/ is an initial object for all objects s 2 S . Dually,
� is an S–final object if �.s/ is a final object for all s 2 S .

5.2 Definition Let K and C be S–categories. Let Np WK ?S S ! C be an extension
of an S–functor p WK! C . From the commutativity of the diagram

S FunS .K ?S S;C /

S FunS .K;C /

� Np

�p

(recall Notation 3.5 for �.�/) we see that � Np defines a cocartesian section of C .p;S/=

(Definition 4.26), which we also denote by � Np . We say that Np is an S–colimit diagram
if � Np is an S–initial object. If Np is an S–colimit diagram, then NpjS W S ! C is said to
be an S–colimit of p. If S admits an initial object s, we will also identify the S–colimit
with its value on s.

Dually, substituting S ?S K for K ?S S leads in a parallel way to the definition of an
S–limit diagram and an S–limit.

5.3 Remark In view of the comparison result Corollary 4.27, we could also use the
S–slice category C.p;S/= to make the definition of an S–colimit diagram. This would
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yield some additional generality, in that C.p;S/= is defined for an arbitrary marked
simplicial set K. However, the construction C .p;S/= is easier to relate to functor
categories, which we need to do to show that the left adjoint to the restriction along
K �K ?S S computes colimits (a special case of Corollary 9.16).

5.4 Remark SupposeK and C are1–categories, and write � WK!� for the map to
a point. One may define the K–indexed colimit “globally” as the (partially defined) left
adjoint �Š to the restriction functor �� W C ! Fun.K;C /. Given a diagram p WK! C

that admits an extension to a colimit diagram Np WKB! C with cone point fvg, one
then has Npjfvg ' �Š.p/.

To establish a parallel picture for S–colimits, we will first need to introduce the
concept of S–adjunctions (Definition 8.3). If we now let K and C be S–categories
and � WK! S denote the structure map, we will show that if for all s 2 S , Cs admits
Ks–indexed Ss=–colimits, then the restriction S–functor �� WC ! FunS .K;C / admits
a left S–adjoint �Š such that

.�Š/s W FunSs=.Ks; Cs/! Cs

computes the Ss=–colimit (Theorem 10.5 in the special case � D �). Furthermore,
taking cocartesian sections of this S–adjunction then yields an adjunction, which we
may abusively denote by

�Š W FunS .K;C / �! � FunS .S; C / W��;

in which �Š computes the S–colimit.

In proving some of the assertions in this subsection (Corollary 5.9 and Propositions
5.11 and 5.12), it will be convenient to have this relationship between S–colimits and
S–adjunctions established. We note that there is no danger of circularity here since the
proof of Theorem 10.5 (or its simpler predecessor Theorem 9.15) doesn’t use any of
the remainder of this subsection (which, apart from S–(co)limits in an S–category of
S–objects, is only devoted to working out special classes of diagrams in the theory).

There are a couple instances where the notion of S–colimit specializes to a notion of
ordinary category theory. For example, we have the following pair of propositions
computing S–colimits and S–limits in an S–category of objects CS as left or right
Kan extensions in C ; the asymmetry in their formulations arises due to working with
cocartesian fibrations instead of cartesian fibrations to model S–categories. In the
statements, recall Notation 3.11 for the meaning of .�/�.
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5.5 Proposition Let Np W K ?S S ! CS be an S–functor extending p W K ! CS .
Suppose further that a left Kan extension of p� W K ! C to a functor K ?S S ! C

exists. Then the following are equivalent :

(1) Np is an S–colimit diagram.

(2) Np� is a left Kan extension of p�.

(3) Np�jKB
s

is a colimit diagram for all s 2 S .

Proof (2) and (3) are equivalent because left Kan extensions along cocartesian fibra-
tions are computed fiberwise. Suppose (3). To prove (1), we want to show that for
every s 2 S , Nps is an initial object in ..CS /.p;S/=/s . But ..CS /.p;S/=/s is equivalent
to the fiber of Fun.Ks ?s s; C /! Fun.Ks; C / over p�jKs , so to prove the claim it
suffices to show that the functor Np�jKs is a left Kan extension of pjKs . This holds by
the equivalence of (2) and (3) for Ss=.

Conversely, suppose (1). Since we supposed that a left Kan extension of p� exists, left
Kan extensions of p�jKs all exist and any initial object in the fiber of

Fun.Ks ?s s; C /! Fun.Ks; C /

over p�jKs is a left Kan extension of p�jKs , necessarily a fiberwise colimit diagram
(we need this hypothesis because Kan extensions as defined in [9, Section 4.3.2] are
always pointwise Kan extensions). This implies (3).

5.6 Proposition Let Np W S ?S K ! CS be an S–functor extending p W K ! CS .
Suppose further that a right Kan extension of p� WK! C to a functor S ?S K! C

exists. Then the following are equivalent :

(1) Np is an S–limit diagram.

(2) Np� is a right Kan extension of p�.

(20) Np�js?sKs is a right Kan extension of p�jKs for all s 2 S .

(3) Np�jKC
s

is a limit diagram for all s 2 S .

Proof We first observe that because the inclusion S ! S ?S K is left adjoint to the
structure map S ?S K! S of the cocartesian fibration,

.S ?S K/
s=
' Ss= �S .S ?S K/Š s ?s Ks:
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The equivalence of (2) and (20) now follows from the formula for a right Kan extension.
Also, if we view KC

s as mapping to S ?S K via fsg?Ks! s ?sKs! S ?S K, where
the first map is adjoint to .fsg ! s; id/, then (2) and (3) are also equivalent by the
same argument. Finally, (20) implies (1) by definition, and (1) implies (20) under our
additional assumption that a right Kan extension of p� exists (for the same reason as
given in the proof of Proposition 5.5).

If S is a Kan complex, then the notion of S–colimit reduces to the usual notion of
colimit.

5.7 Proposition Let S be a Kan complex. Then an S–functor Np WK ?S S ! C is an
S–colimit diagram if and only if for every object s 2 S , Npjs W .Ks/B! Cs is a colimit
diagram.

Proof If S is a Kan complex, then for every s 2 S , Ss= is a contractible Kan complex.
Therefore, for all s 2 S we have .C .p;S/=/s ' fpsg �Fun.Ks ;Cs/ Fun.KB

s ; Cs/, which
proves the claim.

We say thatK is a constant S–category if it is equivalent to S�L for L an1–category.
We have an isomorphism LB �S ! .L�S/ ?S S (defined as a map over S ��1 to
be the adjoint to the identity on .L�S; S/).

5.8 Proposition An S–functor Np W LB �S ! C is an S–colimit diagram if and only
if for every object s 2 S , Nps W LB! Cs is a colimit diagram.

Proof Observe that

.C .p;S/=/s D fpsg �Fun
Ss=

.L�Ss=;Cs/
FunSs=.L

B
�Ss=; Cs/

' fpsg �Fun.L;Cs/ Fun.LB; Cs/:

Therefore, � Np WS!C .p;S/= is S–initial if and only if f Npsg2fpsg�Fun.L;Cs/Fun.LB;Cs/

is an initial object for all s 2 S , which is the claim.

5.9 Corollary Suppose C is an S–category such that Cs admits all colimits for every
object s 2 S and the pushforward functors ˛Š W Cs! Ct preserve all colimits for every
morphism ˛ W s! t in S . Then C admits all S–colimits indexed by constant diagrams.
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Proof First suppose that S has an initial object s. Suppose that p WL�S!C is an S–
functor. Let Nps WLB!Cs be a colimit diagram extending ps . Let Np WLB�S!C be an
S–functor corresponding to Nps under the equivalence FunS .LB�S;C /'Fun.LB; Cs/,
which we may suppose extends p. By Proposition 5.8, Np is an S–colimit diagram.

The general case follows from Theorem 9.15, taking � W C !D to be L�S ! S .

We now turn to the example of corepresentable fibrations.

5.10 Definition Let s 2 S be an object and let K be an Ss=–category which is
equivalent to a coproduct of corepresentable fibrationsa

i2I

S˛i= '
a
i2I

S ti=
`
˛�
i

��! Ss=

for f˛i W s ! tigi2I a collection of morphisms in S . Let p W K ! C �S S
s= be an

Ss=–functor, so p is precisely the data of objects fxi 2 Cti gi2I . Let

Np WK ?Ss= S
s=
! C �S S

s=

be an Ss=–colimit diagram extending p, and let y D Np.v/ 2Cs for vD ids be the cone
point. Then we say that y is the S–coproduct of fxigi2I along f˛igi2I , and we adopt
the notation y D

`
˛i
xi .

Our choice of terminology is guided by the following result, which shows that an
Ss=–colimit of an Ss=–functor p W S˛=' S t=!C obtains the value of a left adjoint to
the pushforward functor ˛Š on p.t/. In the case of S DO

op
G , C D SpcG or SpG , and

K DO
op
H , this is the induction or indexed coproduct functor from H to G.

5.11 Proposition Let C be an S–category, let ˛ W s! t be a morphism in C , and let
� WM !�1 be a cartesian fibration classified by the pushforward functor ˛Š WCs!Ct .
Let p W S t=!C �S S

s= be an Ss=–functor and let xDp.idt /2Ct . Then the data of an
Ss=–colimit diagram extending p yields a �–cocartesian edge e in M with d0.e/D x
and lifting 0! 1.

Proof Let Np W S t= ?Ss= S
s=! C �S S

s= be an Ss=–colimit diagram extending p. Let
y D Np.ids/ and let f 0 W�1! S t= ?Ss= S

s= be the edge connecting idt to ˛. We may
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suppose that M is given by the relative nerve of ˛Š, so that edges in M over �1 are
given by commutative squares

f1g Cs

�1 Ct

˛Š

Then let e be the edge in M determined by y and f D Np ıf 0 W x! ˛Šy. By definition,
d0.e/D x.

We claim that e is �–cocartesian. This holds if and only if for every y0 2 Cs the map

MapCs .y; y
0/!MapCt .x; ˛Šy

0/

induced by f is an equivalence. But the local variant of the adjunction of Theorem 10.5
implies this (passing to global sections).

S–coproducts also satisfy a base-change condition. This is awkward to articulate in
general, because the pullback of a corepresentable fibration along another need not
be corepresentable. However, if we impose the additional hypothesis that T D Sop

admits multipullbacks, then a pullback of a corepresentable fibration decomposes as
a finite coproduct of corepresentable fibrations. In this case, we have the following
useful reformulation of the base-change condition. Recall from the introduction that
we let FT denote the finite coproduct completion of T . Let X � O.FT / be the full
subcategory on those arrows whose source lies in T and consider the span

.FT /
] ev1
 � \X

ev0
�! T ]:

This satisfies the dual of the hypotheses of Theorem 2.24, so

C�´ .ev0/�.ev1/�..C_/
\
/

is a cartesian fibration over FT (with the cartesian edges marked), where C_! T

is the dual cartesian fibration of [3]. Unwinding the definitions, given a finite T –set
U D

`
i si , we have that the fiber

.C�/U ' FunT

�a
i

T =si ; C_
�
'

Y
i

Csi

(where FunT .�;�/ denotes those functors over T that preserve cartesian edges), and
given a morphism of T –sets ˛ W U ! V , the pullback functor ˛� W .C�/U ! .C�/V is
induced by restriction.
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5.12 Proposition C admits finite S–coproducts if and only if � WC�!FT is a Beck–
Chevalley fibration , ie � is both cocartesian and cartesian , and for every pullback
square

W V 0

U V

˛0

ˇ 0 ˇ

˛

in FT , the natural transformation

(�) .˛0/Š.ˇ
0/�! ˇ�˛Š

adjoint to the equivalence .ˇ0/�˛� ' .˛0/�ˇ� is itself an equivalence.

Proof By Theorem 10.5, C admits finite S–coproducts if and only if for every finite
collection of morphisms f˛i W s! tig, the restriction functor�a

˛i

��
W FunS .Ss=; C /! FunS

�a
i

S ti=; C

�
admits a left S–adjoint, in which case that left S–adjoint is computed by the S–
coproduct along the ˛i . This in turn is immediately equivalent to � being additionally
cocartesian and (�) being an equivalence for ˛ D

`
˛i W

`
ti ! s and all morphisms

ˇ W s0! s in T . Finally, note that the apparently more general case of (�) being an
equivalence for any pullback square is actually determined by this, because any map
˛ WU D

`
ti! V D

`
sj is the data of f W I ! J and f˛ij W sj ! tigi2f �1.j /, whence

˛� D .˛ij /
� W
Q
j Csj !

Q
i Cti , etc yields a decomposition of the map (�) in terms of

the “basic” squares that we already handled.

We conclude this subsection by introducing a bit of useful terminology.

5.13 Definition Let C be an S–category. We say that C is S–cocomplete if, for
every object s 2 S and Ss=–diagram p WK! Cs (with K fiberwise small), p admits
an Ss=–colimit.

5.14 Remark Suppose that E is S–cocomplete. Then takingDDS in Theorem 9.15,
E admits all (small) S–colimits. However, the converse may fail: if we suppose that E
admits all S–colimits, then any Ss=–diagramKs!Es pulled back from an S–diagram
K!E admits an Ss=–colimit; however, not every Ss=–diagram need be of this form.
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Vertical opposites

In this subsection we study the vertical opposite construction of [3], with the goal
of justifying our intuition that the theory of S–limits can be recovered from that of
S–colimits, and vice versa (Corollary 5.25). We first recall the definition of the twisted
arrow1–category from [1, Section 2].

5.15 Definition Given a simplicial set X , we define zO.X/ to be the simplicial set
whose n–simplices are given by the formula

zO.X/n´ Hom..�n/op ?�n; X/:

If X is an1–category, then zO.X/ is the twisted arrow1–category of X .

5.16 Warning By definition, zO.X/ comes equipped with a source and target functors
ev0 W zO.X/! Xop and ev1 W zO.X/! X , respectively. In other words, twisted arrows
are contravariant in the source and covariant in the target. This convention is opposite
to that in [11], but agrees with [3].

5.17 Recollection Suppose X ! T a cocartesian fibration. Then the simplicial set
Xvop is defined to have n–simplices

\
zO.�n/ \X

.�n/] T ]

ev1

The forgetful map Xvop! T is a cocartesian fibration with cocartesian edges given
by zO.�1/] ! \X . For every t 2 T , we have an equivalence .Xt /op '

�! .Xvop/t

implemented by the map which precomposes by ev0 W \zO.�n/! ..�n/op/[, which is
an equivalence in sSetC.

Dually, suppose Y ! T a cartesian fibration. Then the simplicial set Y vop is defined to
have n–simplices

.zO.�n/op/
\

Y \

.�n/] T ]

evop
0
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and the forgetful map Y vop! T is a cartesian fibration with fibers .Y vop/t
'
 � .Yt /

op.
As a warning, note that the definition of the underlying simplicial set of .�/vop changes
depending on whether the input is a cocartesian or cartesian fibration; in particular, the
notation is potentially ambiguous for a bicartesian fibration. We will not apply .�/vop

to bicartesian fibrations in this paper.

Define a functor zO0.�/ W sSetC
=S
! sSetC

=S
by

zO0.A �
�! S/D .zO.A/;EA/

�ıev1
���! S

where an edge e is in EA just in case ev0.e/ is marked in Aop. Note that zO.�/ preserves
colimits since it is defined as precomposition by �op .rev?id/op

�����!�op, and from this it
easily follows that zO0.�/ also preserves colimits. By the adjoint functor theorem, zO0.�/
admits a right adjoint, which we label .�/vop — this agrees with the previously defined
.�/vop for cocartesian fibrations \X ! S].

5.18 Proposition The adjunction

zO0.�/ W sSetC
=S
�! � sSetC

=S
W.�/vop

is a Quillen equivalence with respect to the cocartesian model structure on sSetC
=S

.

Proof We first prove the adjunction is Quillen by employing the criteria of Lemma 4.13.
Consider the four classes of maps which generate the left marked anodyne maps:

(1) i W ƒn
k
,! �n, 0 < k < n: By [1, Lemma 12.15], zO.ƒn

k
/ ,! zO.�n/ is inner

anodyne, so zO0.i/ is left marked anodyne.

(2) i W \ƒ
n
0 ,! \�

n: We can adapt the proof of [1, Lemma 12.16] to show that zO0.i/
is a cocartesian equivalence in sSetC

=S
(even though it fails to be left marked

anodyne). The basic fact underlying this is that a right marked anodyne map is
an equivalence in sSetC, so in sSetC

=S
if it lies entirely over an object; details

are left to the reader.

(3) i WK[ ,!K] for K a Kan complex: Because zO.K/!Kop�K is a left fibration,
zO.K/ is then again a Kan complex. It follows that zO0.i/ is left marked anodyne.

(4) .ƒ21/
][ƒ21

.�2/[ ,! .�2/]: obvious from the definitions.

It remains to show that for a trivial cofibration f W \X ,! \Y between fibrant objects,
zO0.f / is again a trivial cofibration. Since zO.X/ ! zO.Y / is a map of cocartesian
fibrations over S and the marking on zO0.�/ contains these cocartesian edges, by
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Proposition A.4 it suffices to show that for every object s 2 S , zO0.X/s! zO0.Y /s is an
equivalence in sSetC. We have a commutative square

zO0.X/s zO0.Y /s

X
]
s Y

]
s

fs

where the vertical maps are left fibrations and the bottom map is an equivalence in
sSetC. Therefore, the map X]s �Y ]s

zO0.Y /s ! zO
0.Y /s is an equivalence in sSetC.

Applying Proposition A.4 once more, we reduce to showing that for every object
x1 2X , zO0.X/x1 ! zO

0.Y /f .x1/ is an equivalence in sSetC.

Now employing the source maps, we have a commutative square

zO0.X/x1 zO0.Y /f .x1/

Xop\ Y op\f op

where the vertical maps are left fibrations and the bottom horizontal map is a cartesian
equivalence in sSetC

=Sop . Therefore, the map Xop �Y op zO0.Y /s! zO
0.Y /s is a cartesian

equivalence. By a third application of Proposition A.4, we reduce to showing that
for every object x0 2 X , zO0.X/.x0;x1/ ! zO

0.Y /.f .x0/;f .x1// is an equivalence. But
now both sides are endowed with the maximal marking and the map is equivalent to
MapX .x0; x1/

f�
�!MapY .f .x0/; f .x1//, which is an equivalence by assumption.

The fact that this Quillen adjunction is an equivalence follows immediately from [3,
Theorem 1.4].

5.19 Lemma Let C ! S be a cocartesian fibration.

(1) Let f W S 0! S be a functor. Then f �.C vop/Š f �.C /vop.

(2) Let g W S ! T be a cartesian fibration and let C be an S–category. Then there is
a T –functor � W g�.C /vop! g�.C

vop/ natural in C which is an equivalence.

Proof Part (1) is obvious from the definitions. For (2), the map � is defined as follows:
an n–simplex of g�.C /vop over � 2 Tn is given by the data of a commutative diagram

\
zO.�n/�T ] S

]
\C

.�n �T S/
] S]

g��
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and precomposition by the obvious map zO.�n�T S/!zO.�n/�T S yields an n–simplex
of g�.C vop/.

We now show that for all t 2 T , �t is a categorical equivalence. Because �t is obtained
by taking levelwise 0–simplices of the map of complete Segal spaces

MapS .\zO.�
�/�S

]
t ; \C/!MapS .\zO.�

�/� zO.St /
]; \C/;

it suffices to show that for all n, \zO.�n/�zO.St /]! \
zO.�n/�S

]
t is a cocartesian equiv-

alence in sSetC
=S

. As a special case of Proposition 6.3, zO.St /]! S
]
t is a cocartesian

equivalence in sSetC
=St

, so the claim follows.

5.20 Lemma The map evop W .zO.�n/op/
\
! .�n/]� ..�n/op/[ is left marked anodyne.

Proof For convenience, we will relabel zO.�n/op as the nerve of the poset In with
objects ij , 0 � i � j � n and maps ij ! kl for i � k and j � l . Then an edge
ij ! kl is marked in In just in case j D l , and the map evop becomes the projection
�n W In! .�n/] � .�n/[, ij 7! .i; j /. Let fn W .�n/[! In be the map which sends
i to 0i . Then �n ı fn W f0g � .�n/[ ! .�n/] � .�n/[ is left marked anodyne, so by
the right cancellativity of left marked anodyne maps it suffices to show that in is left
marked anodyne. For this, we factor fn as the composition

.�n/[ D In;�1! In;0! � � � ! In;n D In;

where In;k � In is the subcategory on objects ij with i D 0 or j � k (and inherits
the marking from In), and argue that each inclusion gk W In;k � In;kC1 is left marked
anodyne. For this, note that gk fits into a pushout square

f0g � .�kC1/[[f0g�.�k/[ .�
n�k�1/] � .�k/[ .�n�k�1/] � .�kC1/[

In;k In;kC1
gk

with the upper horizontal map marked left anodyne.

5.21 Construction Suppose T is an1–category,X;Z!T are cocartesian fibrations,
Y ! T is a cartesian fibration, and � W \X �T Y \! \Z is a map of marked simplicial
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sets over T . We define a map

�vop
W \X

vop
�T Y

vop\
! \Z

vop

by the following process:

Let Jn be the nerve of the poset with objects ij for 0� i � n, �n� j � n and �j � i ,
and maps ij ! kl if i � k and j � l . Mark edges ij ! kl if j D l . Let In � Jn be
the subcategory on ij with j � 0 and I 0n � Jn be the subcategory on ij with j � 0;
also give In and I 0n the induced markings. We have an inclusion .�n/]! Jn given
by i 7! i0 which restricts to inclusions .�n/]! In, .�n/]! I 0n and induces a map

n W In[.�n/] I

0
n � Jn.

Define auxiliary (unmarked) simplicial sets Z0! T by

Hom=T .�
n; Z0/D Hom=T .Jn; \Z/

and Z00! T by Hom=T .�n; Z00/ D Hom=T .In [.�n/] I
0
n; \Z/, where Jn! �n via

ij 7! i . We have a map r WZ0!Z00 given by restriction along the 
n, which we claim
is a trivial fibration. By a standard reduction, for this it suffices to show that 
n is left
marked anodyne. Indeed, this follows from Lemma 5.20 applied to In! .�n/] ��n

and the observation that the map �n��n[�n I 0n! Jn is inner anodyne, whose proof
we leave to the reader.

Define also a map Z0!Zvop over T by restriction along the map \zO.�n/! Jn which
sends ij to jn if i D 0 and j.�i/ otherwise. Finally, define a map Xvop�T Y

vop!Z00

over T as follows. A map �n!Xvop �T Y
vop is given by the data

\
zO.�n/ \X

.�n/] T ]

.zO.�n/op/
\

Y \

.�n/] T ]

We have isomorphisms \zO.�n/ Š I 0n and .zO.�n/op/
\
Š In, and obvious retractions

In [.�n/] I
0
n ! In; I

0
n given by collapsing the complementary part onto �n. Using

this, we may define
In[.�n/] I

0
n! \X �T Y

\
! \Z;

which is an n–simplex of Z00.

Choosing a section of r , we may compose these maps to define �vop, which is then
easily checked to also preserve the indicated markings. For example, �vop on edges is
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given by0BBBBBBBB@

x11

x00 x01

y01 y11

y00

1CCCCCCCCA
7!

0BBBBB@
�.x11; y11/

�.x00; y01/ �.x01; y11/

�.x00; y00/ ˛Š�.x00; y00/

1CCCCCA 7!
0B@ �.x11; y11/

�.x00; y00/ ˛Š�.x00; y00/

1CA

where ˛Š�.x00; y00/ is a choice of pushforward for the edge ˛ in T that the diagrams
are vertically over.

5.22 Lemma Let C ! T be a cartesian fibration and let D! T be a cocartesian
fibration. There exists a T –equivalence  WeFunT .C;D/vop!eFunT .C vop;Dvop/.

Proof We have a map � WeFunT .C;D/�T C !D adjoint to the identity. Employing
Construction 5.21 on � and then adjointing, we obtain our desired T –functor  . A
chase of the definitions then shows that for all objects t 2 T ,  t is homotopic to the
known equivalence Fun.Ct ;Dt /op ' Fun.C op

t ;D
op
t /.

5.23 Lemma Let K and L be S–categories. Then there exists an S–equivalence

 W .K ?S L/
vop '
�! Lvop ?S K

vop

over S ��1.

Proof Note that .S ��1/vop Š S � .�1/op. View .K ?S L/
vop as lying over S ��1

via the isomorphism .�1/opŠ�1. Since .K ?S L/
vop
0 ŠL

vop and .K ?S L/
vop
1 ŠK

vop,
our S–functor  is adjoint to the identity over S �@�1. Fiberwise,  s is homotopic to
the known isomorphism .Ks ?Ls/

op Š L
op
s ?K

op
s , so  is an equivalence.

5.24 Proposition Suppose K and C are S–categories.

(1) The adjoint of the vertical opposite of the evaluation map induces an equivalence

FunS .K;C /vop '
�! FunS .Kvop; C vop/:

(2) Suppose p WK! C is an S–functor. We have equivalences

.C .p;S/=/vop
' .C vop/=.p

vop;S/; .C =.p;S//vop
' .C vop/.p

vop;S/=:
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Proof (1) Recall from (6.3.1) the equivalence FunS .K;C / ' ��� 0�fK;C gS . By
Lemmas 5.22 and 5.19(1),

fK;C g
vop
S ' fK

vop; C vop
gS :

By Lemma 5.19(1) and (2),

���
0�
fK;C g

vop
S ' .���

0�
fK;C gS /

vop:

Combining these equivalences supplies an equivalence

FunS .K;C /vop
' FunS .Kvop; C vop/:

It is straightforward but tedious to verify that the adjoint of the vertical opposite of the
evaluation map FunS .K;C /vop �S K

vop! C vop is homotopic to this equivalence.

(2) Combine (1), Lemma 5.23, Proposition 5.18 (which shows in particular that .�/vop

is right Quillen), and the definition of the S–slice category.

5.25 Corollary Let Np W S ?S K! C be an S–functor. Then Np is an S–limit diagram
if and only if Npvop WKvop ?S S ! C vop is an S–colimit diagram.

This allows us to deduce statements about S–limits from statements about S–colimits,
and vice versa. For this reason, we will primarily concentrate our attention on proving
statements concerning S–colimits (and eventually, S–left Kan extensions), leaving the
formulation of the dual results to the reader.

5.26 Warning Even with Corollary 5.25, it seems difficult to deduce Proposition 5.6
concerning S–limits in an S–category of objects CS directly from Proposition 5.5 on
S–colimits in CS . This is because the formation of vertical opposites CS 7! .CS /

vop

doesn’t intertwine with any operation at the level of the1–category C .

6 Assembling S –slice categories from ordinary slice
categories

Suppose p W K ! C is an S–functor. For every morphism ˛ W s ! t in S , we have
a functor p˛ W Ks ! Ct , and we may consider the collection of “absolute” slice
categories Cp˛= and examine the functoriality that they satisfy. For this, we have the
following basic observation: given a morphism f W t ! t 0, covariant functoriality of
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slice categories in the target yields a functor Cp˛=! Cpf˛=, and given a morphism
g W s0! s, contravariant functoriality in the source yields a functor Cp˛=! Cp˛g=.
Elaborating, we will show in this section that there exists a functor

F ´ F.p WK! C/ W zO.S/! Cat1

out of the twisted arrow category zO.S/ such that F.˛/'Cp˛=, which encodes all of this
functoriality (Definition 6.5). Moreover, the right Kan extension of F along the target
functor zO.S/! S is C.p;S/= (Theorem 6.6). We will end with some applications of
this result to the theory of cofinality and presentability (Theorem 6.7 and Remark 6.11).

We first record a cofinality result which implies that the values of a right Kan extension
along ev1 W zO.S/! S are computed as ends.

6.1 Lemma The functor zO.Ss=/! zO.S/�S Ss= is initial.

Proof Let .˛ W u! t; ˇ W s! t / be an object of zO.S/�S Ss=. We will prove that

C D zO.Ss=/�zO.S/�SSs= .
zO.S/�S S

s=/=.˛;ˇ/

is weakly contractible. An object of C is the data of an edge

s

x y

f g

h

in Ss=, which we will abbreviate as f h
�! g, and an edge0B@ x y

u t

h


ı

˛

,
s y

t

g

ˇ



1CA
in zO.S/�S Ss=, which we will abbreviate as .h; g/ .ı;
/��! .˛; ˇ/.

Let C0 � C be the full subcategory on objects c D ..f h
�! g/; .h; g/

.ı;
/
��! .˛; ˇ//

such that 
 is a degenerate edge in Ss=. We will first show that C0 is a reflective
subcategory of C by verifying the first condition of [9, Proposition 5.2.7.8]. Given an
object c of C , define c0 to be ..f 
h

�! ˇ/; .
h; ˇ/
.ı;idt /
���! .˛; ˇ// and let e W c! c0 be

the edge given by0BB@ f g

f ˇ

h


idf

h

,
.h; g/ .
h; ˇ/

.˛; ˇ/

.idx ;
/

.ı;
/ .ı;idt /

1CCA :
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We need to show that for all d D ..f 0 h
0

�! ˇ/; .h0; ˇ/
.ı 0;id/
���! .˛; ˇ// 2 C0,

MapC .c
0; d / e

�

�!MapC .c; d/

is a homotopy equivalence. The space MapC .c; d/ lies in a commutative diagram

MapC .c; d/ MapzO.Ss=/.f
h
�! g; f 0 h

0

�! ˇ/

Map.zO.S/�SSs=/=.˛;ˇ/..h; g/; .h
0; ˇ// MapzO.S/�SSs=..h; g/; .h

0; ˇ//

�0 MapzO.S/�SSs=..h; g/; .˛; ˇ//

.ı 0;id/�
.ı;
/

where the two squares are homotopy pullback squares. We also have the analogous
diagram for MapC .c

0; d /, and the map e� is induced by a natural transformation of
these diagrams. The assertion then reduces to checking that the upper square in the
diagram

MapzO.Ss=/.f

h
�! ˇ; f 0 h

0

�! ˇ/ MapzO.Ss=/.f
h
�! g; f 0 h

0

�! ˇ/

MapzO.S/�SSs=..
h; ˇ/; .˛; ˇ// MapzO.S/�SSs=..h; g/; .˛; ˇ//

MapSs=.ˇ; ˇ/ MapSs=.g; ˇ/

.idf ;
/�

.idx ;
/�


�

is a homotopy pullback square. Since .idx; 
/ and .idf ; 
/ are ev1–cocartesian edges
in zO.S/ and zO.Ss=/ respectively, the lower and outer squares are homotopy pullback
squares (where we implicitly use that the map .ı0; id/ covers the identity in Ss= to
identify the long vertical maps with those induced by ev1), and the claim is proven.

To complete the proof, we will show that c D .ˇ D ˇ; .idt ; ˇ/
.˛;idt /
���! .˛; ˇ// is an

initial object in C0. Let d 2 C0 be as above. In the diagram

�0 MapzO.Ss=/.ˇ D ˇ; f
0 h
0

�! ˇ/

�0 MapzO.S/�SSs=..idt ; ˇ/; .˛; ˇ// MapzO.S/.idt ; ˛/

�0 MapSs=.ˇ; ˇ/ MapS .t; t/

.h0;idˇ/

.˛;idt /

idˇ
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we need to show that the upper square is a homotopy pullback square in order to
prove that MapC .c; d/' �. The fiber of zO.S/ over t 2 S is equivalent to .S=t /op; in
particular, idt is an initial object in the fiber over t . Therefore, the two outer squares
are both homotopy pullbacks. Since the lower right square is a homotopy pullback,
this shows that all squares in the diagram are homotopy pullbacks, as desired.

Let K be an S–category. Let Jn be the poset with objects ij for 0� i � j � 2nC 1
which has a unique morphism ij ! kl if and only if k � i � j � l . Let In � Jn be
the full subcategory on objects ij such that i � n. In view of the isomorphisms

Jn Š zO.�
2nC1/Š zO..�n/op ?�n/;

the In and Jn extend to functors

I� � J� Š zO..�
�/op ?��/ W�! sSet:

Viewing In and Jn as marked simplicial sets where ij ! kl is marked just in case
k D i , we moreover have functors to sSetC. Define the simplicial set X W�op! Set to
be the functor

HomsSetC.I�; \K/�Hom.I�;S/ Hom..��/op ?��; S/

where I� � J�! .��/op ?�� is given by the target map. An n–simplex of X is thus
the data of a diagram

knn kn.nC1/ � � � kn.2nC1/

: :
: :::

::: � � �
:::

k11 � � � k1n k1.nC1/ � � � k1.2nC1/

k00 k01 � � � k0n k0.nC1/ � � � k0.2nC1/

where the horizontal edges are cocartesian in K and the vertical edges lie over degen-
eracies in S .
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Declare an edge e in X to be marked if the corresponding map I1 ! \K sends all
edges to marked edges. We have a commutative square of marked simplicial sets

X zO.S/]

.K_/
\

.Sop/]

ev0

where K_ D .Kvop/op! Sop is the dual cartesian fibration and the map X !K_ is
defined by restricting In!K to I 0n!K (where I 0n is the full subcategory of In on
ij with j � n). Let  denote the resulting map from X to the pullback.

6.2 Lemma  WX ! .K_/
\
�.Sop/]

zO.S/] is a trivial fibration of marked simplicial
sets.

Proof Since any lift of a marked edge in .K_/\ �.Sop/]
zO.S/] to an edge in X is

marked, it suffices to prove that the underlying map of simplicial sets is a trivial
fibration.

We first show that I 0n� In is left marked anodyne. Let In;k � In be the full subcategory
on objects ij with i � k and similarly for I 0

n;k
. For 0 � k < n we have a pushout

decomposition

..�n�k/op/[�.�k/][..�n�k�1/op/[�.�k/]..�
n�k�1/op/[�.�nCkC1/]

I 0
n;n�k

[I 0
n;n�k�1

In;n�k�1

..�n�k/op/[�.�nCkC1/] In;n�k

and the left-hand map is left marked anodyne by [9, Proposition 3.1.2.3]. It thus suffices
to show that

I 0n;0 Š .�
n/]! In;0 Š .�

2nC1/]

is left marked anodyne, and this is clear.

We now explain how to solve the lifting problem

@�n X

�n K_ �Sop zO.S/
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To supply the dotted arrow we must provide a lift in the commutative square

@In[@I 0n I
0
n \K

In S]

f

where @In D[Œn�1��Œn�In�1 as a simplicial subset of In and likewise for @I 0n. Then
since I 0n ! @In [@I 0n I

0
n and I 0n ! In are left marked anodyne, f is a cocartesian

equivalence in sSetC
=S

, and the lift exists.

For all s 2 S , we have trivial cofibrations is W Ks
'
�! .K_/s , and thus commutative

squares

Ks zO.S/

K_ Sop

ids

ev0

from which we obtain a cofibration

� W
G
s2S

Ks ,!K_ �Sop zO.S/:

We have an explicit lift �0 of � to X , where Ks ! X is given by precomposition by
In!�n, ij 7! n� i .

By Lemma 6.2, there exists a lift � in the commutative squareF
s2S Ks X

K_ �Sop zO.S/ K_ �Sop zO.S/

�0

�  
�

Let � W X ! K be the functor induced by �n! In, i 7! .n� i/.nC i/. Define the
twisted pushforward

zP WK_ �Sop zO.S/!K

to be the map over S given by the composite � ı � . Then for every object ˛ W s! t in
zO.S/, zP˛ ı is WKs!Kt is a choice of pushforward functor over ˛, which is chosen to
be the identity if ˛ D ids .
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6.3 Proposition For all A 2 sSet=S ,

zP �S idA W .K_/
\
�.Sop/]

zO.S/] �S A
]
! \K �S A

]

is a cocartesian equivalence in sSetC
=A

.

Proof Let .Z;E/ denote the marked simplicial set .K_/\ �.Sop/]
zO.S/]. Viewing

Z as zO.S/�Sop�S .K
_ � S/, we see that Z ! S is a cocartesian fibration with the

cocartesian edges a subset of E. Moreover, every edge in E factors as a cocartesian
edge followed by an edge in E in the fiber over S . By Proposition A.4, it suffices to
verify that for all s 2 S , zPs is a cocartesian equivalence in sSetC. Since ids is an initial
object in zO.S/�S fsg, the inclusion of the fiber .K_/�s � .Zs; Es/ is a cocartesian
equivalence in sSetC by [9, Lemma 3.3.4.1]. We chose zP so as to split the inclusion
of Ks in Z, so this completes the proof.

Consider the commutative diagram

O.S/]�S \K

O.S/]�ev1;S;ev1..K
_/
\
�SopzO.S/]/ .K_/

\
�SopzO.S/] .K_/

\
�S] S]

O.S/]�ev1;S;ev1
zO.S/] zO.S/] .Sop/]�S]

S]

ev0

ev1

pr

pr

idO.S/�S
zP

id�ev1

pr

prS

q_�id

�0

�

ev

where � D ev0 ı prO.S/ and � 0 D przO.S/. Since K_! Sop is a cartesian fibration, by
Theorem 2.24 .q_� id/� is right Quillen. Therefore, given an S–category C , we obtain
a zO.S/–category

fK;C gS ´ .ev� ı.q_ � id/� ı pr�S /.\C/:

Moreover, we saw in Example 2.26 that ��� 0� is right Quillen and computes right Kan
extension along ev1 W zO.S/! S . Finally, the map idO.S/ �S

zP induces an S–functor

(6.3.1) � W FunS .K;C /! ���
0�
fK;C gS ;

natural in K and C . By Proposition 6.3 applied to A D Ss= for all s 2 S , � is an
equivalence.
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6.4 Remark As a corollary, we have that the global sections of fK;C gS are equivalent
to FunS .K;C /. If we knew that under the straightening functor St, fK;C gS was
equivalent to the composite

zO.S/! Sop
�S

StS .K/op�StS .C/
����������! Catop

1 �Cat1 Fun
��! Cat1;

then this would yield another proof of the end formula for the1–category of natural
transformations, as proven in [5, Section 6]. As we manage to always stay within
the environment of cocartesian fibrations, this identification is not necessary for our
purposes.

6.5 Definition Given an S–functor p WK! C and a choice of twisted pushforward
zP for K, define the cocartesian section !p W zO.S/! fK;C gS to be the adjoint to

p ı zP WK_
\
�Sop zO.S/]! \K! \C:

For objects Œ˛ W s! t � in zO.S/, !p.˛/ 2 Fun..K_/s; Ct / is the functor

pt ı zP˛ W .K
_/s!Kt ! Ct :

Define the twisted slice zO.S/–category to be17

C
e.p;S/=

´ zO.S/�fK;C gS fK ?S S;C gS :

Note that the fiber of C e.p;S/= over an object Œ˛ W s! t � is Cptı zP˛=.

We now connect the constructions C e.p;S/= and C .p;S/=. A check of the definitions
reveals that � ı �p D ��� 0�.!p/ for the canonical cocartesian section

�p W S ! FunS .K;C /:

We thus have a morphism of spans

S FunS .K;C / FunS .K ?S S;C /

S ���
0�fK;C gS ���

0�fK ?S S;C gS

�p

' '

���
0�.!p/

with all objects fibrant and the right horizontal maps fibrations by a standard argument.
Taking pullbacks, we deduce:

17We omit the dependence on zP from the notation.
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6.6 Theorem We have an equivalence

���
0�.C

e.p;S/=/ '�! C .p;S/=:

In other words , the right Kan extension ofC e.p;S/=along the target functor ev1W zO.S/!S

is equivalent to C .p;S/=.

Proof Our interpretation of this equivalence is by Example 2.26.

Relative cofinality

Let us now apply Theorem 6.6. We have the S–analogue of the basic cofinality result
[9, Proposition 4.1.1.8].

6.7 Theorem Let f WK! L be an S–functor. The following conditions are equiva-
lent :

(1) For every object s 2 S , fs WKs! Ls is final.

(2) For every S–functor p W L ! C , the functor f � W C .p;S/= ! C .pf;S/= is an
equivalence.

(3) For every S–colimit diagram Np W L ?S S ! C , Np ı f B W K ?S S ! C is an
S–colimit diagram.

Proof (1) D) (2) Factoring f as the composition of a cofibration and a trivial
fibration, we may suppose that f is a cofibration, in which case we may choose
compatible twisted pushforward functors zPK and zPL. Let p W L! C be an S–functor.
Precomposition by f yields a zO.S/–functor zf � W C e.p;S/=! CA.pf;S/=. Passing to the
fiber over an object ˛ W s! t , the compatibility of zPK and zPL implies that the diagram

.K_/s Kt

.L_/s Lt Ct

. zPK/˛

.f _/s ft
.pf /t

. zPL/˛ pt

commutes and that

. zf �/˛ D .f
_/�s W C

ptı. zPL/˛=! C .pf /tı.
zPK/˛=:

By [9, Corollary 4.1.1.10], .f _/s is final, so by [9, Proposition 4.1.1.8], .f _/�s is an
equivalence. Consequently, zf � is an equivalence. Now by Theorem 6.6, f � is an
equivalence.
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(2) D) (3) Immediate from the definition.

(3) D) (1) Let s 2 S be any object and Nps W LB
s ! Spc a colimit diagram. Let

Np W .L?S S/s! Spc be a left Kan extension of Nps along the full and faithful inclusion
LB
s � .L?S S/s . By transitivity of left Kan extensions, Np is a left Kan extension of

its restriction to Ls . By Proposition 5.5, under the equivalence

Fun.L;Spc/' FunS .L;SpcS /;

Np is an Ss=–colimit diagram. By assumption, Np ı .f B/s is an Ss=–colimit diagram.
By Proposition 5.5 again, Nps ıfs is a colimit diagram, as desired.

6.8 Definition Let f WK!L be an S–functor. We say that f is S–final if it satisfies
the equivalent conditions of Theorem 6.7. We say that f is S–initial if f vop is S–final.

6.9 Example Let F W C �! �D WG be an S–adjunction (Definition 8.3). Then F is
S–initial and G is S–final.

6.10 Remark Let C and D be S–categories and F W C !D be an S–functor.

(1) Suppose F is fiberwise a weak homotopy equivalence. Then F is a weak
homotopy equivalence by [9, Proposition 4.1.2.15], [9, Proposition 4.1.2.18],
and [9, Proposition 3.1.5.7].

(2) Suppose F is S–final. Then F is final. Indeed, for any diagram p WD! Spc,
we have that

colim
d2D

p.d/' colim
s2S

colim
d2Ds

p.d/' colim
s2S

colim
c2Cs

pF.c/' colim
c2C

pF.c/:

(3) Suppose F is S–initial. Then F is initial. To show this, by (the dual of) [9,
Theorem 4.1.3.1] it suffices to show that for every d 2D, C �DD=d is weakly
contractible. Let s be the image of d in S . By Lemma 10.9, the inclusion
Cs �Ds .Ds/

=d ! C �D D
=d is final, so in particular is a weak homotopy

equivalence. Hence the desired conclusion follows by our assumption that F is
S–initial and [9, Theorem 4.1.3.1] again.

We conclude by using the twisted slice zO.S/–category to give a criterion for the
presentability of the S–slice.
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6.11 Remark (presentability of the parametrized slice) Suppose that the functor
S!Cat1 classifying the cocartesian fibration C ! S factors through PrR, ie C ! S

is a right presentable fibration. For any X a presentable 1–category and diagram
f W A ! X , Xf= is again presentable and the forgetful functor Xf= ! X creates
limits and filtered colimits. Therefore, the twisted slice zO.S/–category C e.p;S/= is a
right presentable fibration. Since the forgetful functor PrR! Cat1 creates limits, by
Theorem 6.6 we deduce that C .p;S/= is a right presentable fibration. In particular, in
every fiber there exists an initial object. However, these initial objects may fail to be
preserved by the pushforward functors. In fact, even if we assume that C ! S is both
left and right presentable, C may fail to be S–cocomplete.

7 Types of S –fibrations

In this section we introduce some additional classes of fibrations which are all defined
relative to S .

7.1 Definition Let � W C !D be an S–functor. We say that � is an S–fibration if it
is a categorical fibration. We then say that � is an S–cocartesian fibration if it is an
S–fibration such that for every object s 2 S , �s W Cs!Ds is a cocartesian fibration,
and for every square in C

xs xt

ys yt

h

f g

k

with h and k �–cocartesian edges over �.h/D �.k/ W s! t , if f is a �s–cocartesian
edge then g is a �t–cocartesian edge.

Dually, we say that � is an S–cartesian fibration if it is an S–fibration such that for
every object s 2 S , �s W Cs !Ds is a cartesian fibration, and for every square in C
labeled as above, but now with h and k �–cartesian edges over �.h/D �.k/ W s! t , if
f is a �s–cartesian edge then g is a �t–cartesian edge.

Equivalently, � W C ! D is S–(co)cartesian if it is a categorical fibration, fiberwise
a (co)cartesian fibration, and for every edge in S , the cocartesian pushforward along
that edge preserves (co)cartesian edges in the fibers. We formulate our definition as
above so as to avoid having to make any “straightening” constructions such as choosing
pushforward functors.
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7.2 Remark Declare a morphism of S–cocartesian fibrations

ŒC
�
�!D�! ŒC 0

�0
�!D0�

to be a commutative square of S–functors

C C 0

D D0

F

� �0

G

in which for all s 2 S , Fs sends �s–cocartesian edges to �0s cocartesian edges. Let
Ococart:fib.Catcocart

1=S / be the 1–category of S–cocartesian fibrations and morphisms
thereof. Then one has the straightening equivalence

Ococart:fib.Catcocart
1=S /' Fun.S;Ococart:fib.Cat1//:

7.3 Remark � W C ! D is an S–fibration if and only if � W \C ! \D is a marked
fibration.

7.4 Remark In view of [9, Proposition 2.4.2.11, Lemma 2.4.2.7 and Proposition
2.4.2.8], � W C ! D is an S–cocartesian fibration if and only if � is a cocartesian
fibration. However, there is no corresponding simplification of the definition of an
S–cartesian fibration.

7.5 Lemma Let � W C ! D be an S–cartesian fibration and let f W x ! y be a
�s–cartesian edge in Cs . Then f is a �–cartesian edge.

Proof The property of being �–cartesian may be checked after base-change to the
2–simplices of D. Consequently, we may suppose that S D�1 and s D f1g. We have
to verify that for every object w 2 C we have a homotopy pullback square

MapC .w; x/ MapC .w; y/

MapD.�w; �x/ MapD.�w; �y/

f�

�� ��

�.f /�

If w 2 C0, for any choice of cocartesian edge w ! w0 over 0 ! 1, the square is
equivalent to

MapC1.w
0; x/ MapC1.w

0; y/

MapD1.�w
0; �x/ MapD1.�w

0; �y/

f�

�� ��

�.f /�
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Hence we may suppose that w 2 C1, in which case the square is a homotopy pullback
square since f is a �1–cartesian edge.

We next discuss an important example of S–(co)cartesian fibrations. Recall the fiberwise
arrow S–category OS .D/ (Notation 4.29). Fix � W C !D an S–functor.

7.6 Definition The free S–cocartesian and free S–cartesian fibrations on � are the
S–functors

Frcocart.�/´ ev1 ı pr2 W C �D OS .D/!D;

Frcart.�/´ ev0 ı pr1 W OS .D/�D C !D:

7.7 Proposition Frcocart.�/ is an S–cocartesian fibration. Dually, Frcart.�/ is an
S–cartesian fibration.

Proof We prove the second assertion, the proof of the first being similar but easier.
First note that OS .D/�D C is a subcategory of O.D/�D C stable under equivalences.
Therefore, since ev0 W O.D/�DC !D is a cartesian fibration, Frcart.�/ is a categorical
fibration. Moreover, for every object s 2 S , Frcart.�/s W O.Ds/ �Ds Cs is the free
cartesian fibration on �s W Cs!Ds . It remains to show that for every square

.a! �x; x/ .b! �y; y/

.a0! �x0; x0/ .b0! �y0; y0/

h

f g

k

in OS .D/�D C with the horizontal edges cocartesian over S and the left vertical edge
Frcart.�/s–cartesian, the right vertical edge is Frcart.�/t–cartesian. This amounts to
verifying that y! y0 is an equivalence in Ct . The above square yields a square

x y

x0 y0

h

f g

k

in C with x! x0 an equivalence and the horizontal edges cocartesian over S , from
which the claim follows.

We conclude this section with an observation about the interaction between S–joins
and S–cocartesian fibrations which will be used in the sequel.
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7.8 Lemma Let C , C 0 and D be S–categories and let �; �0 W C;C 0 ! D be S–
functors. If � and �0 are S–(co)cartesian , then �?�0 WC ?DC 0!D is S–(co)cartesian.

Proof This is an easy corollary of Proposition 4.7.

7.9 Definition We say that an S–functor F W C ! D �S E is an S–bifibration if
for all objects s 2 S , Fs is a bifibration. Observe it is then automatic that prD F is
S–cartesian and prE F W C !E is S–cocartesian.

7.10 Example The S–functor

FunS .K ?S L;C /! FunS .K;C /�S FunS .L; C /

is an S–bifibration by Lemma 4.8. In particular, for an S–functor p W K ! C , the
S–functors C .p;S/= ! C and C =.p;S/ ! C are S–cocartesian and S–cartesian, re-
spectively.

8 Relative adjunctions

In [11, Section 7.3.2], Lurie introduces the notion of a relative adjunction.

8.1 Definition [11, Definition 7.3.2.2] Suppose we are given categorical fibrations
q W C ! S and p WD! S , and functors F W C !D and G WD! C over S . Suppose
there exists a natural transformation u W idC !GF such that

(1) u exhibits F as a left adjoint to G, and

(2) q.u/ is the identity transformation from q to itself.

Then we say that the adjunction F aG is a relative adjunction with respect to S .

8.2 Recollection By [11, Proposition 7.3.2.5], relative adjunctions are stable under
base-change; in particular, they restrict to adjunctions over every fiber.

8.3 Definition Let C and D be S–categories. We call a relative adjunction (with
respect to S )

F W C �! �D WG

an S–adjunction if F and G are S–functors.
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We prove some basic results about S–adjunctions in this section. Let us first reformulate
the definition of a relative adjunction in terms of a correspondence. Let F W C !D

be an S–functor. By the relative nerve construction, F defines a cocartesian fibration
M !�1 by prescribing, for every �n Š�n0 ?�n1 !�1, the set Hom�1.�

n;M/ to
be the collection of commutative squares

�n0 C

�n D

F

for n1 � 0, and setting Hom�1.�
n;M/D Hom.�n; C / for n1 D �1. Moreover, the

structure maps for C and D to S define a functor M ! S by sending �n!M to
�n ! D ! S if n1 � 0, and �n ! C ! S if n1 < 0. Then M is an S–category,
M ! S ��1 is an S–cocartesian fibration, and F admits a right S–adjoint if and only
if M ! S ��1 is an S–cartesian fibration.

8.4 Proposition Let F W C �! �D WG be an S–adjunction and let I be an S–category.
Then we have adjunctions

F� W FunS .I; C / �! � FunS .I;D/ WG�; G� W FunS .C; I / �! � FunS .D; I / WF �:

Proof Let M ! S ��1 be the S–functor obtained from F . We first produce the
adjunction F� aG�. Invoking Theorem 2.24 on the span

.�1/ �
 � \I � .�

1/] � 0
�! S] � .�1/]

we find that ��� 0� W sSetC
=.S]�.�1/]/

! sSetC
=.�1/]

is right Quillen. LetN D��� 0�.M/.

Then N !�1 is a cocartesian fibration classified by the functor

F� W FunS .I; C /! FunS .I;D/:

Now invoking Theorem 2.24 on the span

..�1/]/op �
 � .I� � .�1/]/op �0

�! .S� � .�1/]/op

we deduce that ���0� W sSetC
=.S��.�1/]/

! sSetC
=.�1/]

, with respect to the cartesian
model structures, is right Quillen. Let N 0 D ���0�M . Since G is right S–adjoint to F ,
N 0!�1 is a cartesian fibration classified by the functor

G� W Fun=S .I;D/! Fun=S .I; C /
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where we view I , C and D as categorical fibrations over S . N is a subcategory of N 0,
and the cartesian edges e in N 0 with d0.e/ 2 N are in N . Hence N ! �1 is also a
cartesian fibration classified by the functor

G� W FunS .I;D/! FunS .I; C /:

We now produce the adjunction G� a F � by similar methods. Let E0 be the collection
of edges e W x! y in M such that e admits a factorization as a cocartesian edge over S
followed by a cartesian edge in the fiber. Note that sinceM!S��1 is an S–cartesian
fibration, E0 is closed under composition of edges. Invoking Theorem 2.24 on the span

.�1/]
�
 � .M;E0/

�0
�! S] � .�1/]

we deduce that ���0� W sSetC
=.S]�.�1/]/

! sSetC
=.�1/]

is right Quillen. Let

P D ���
0�.\I � .�

1/]/:

Then P !�1 is a cocartesian fibration classified by the functor

G� W FunS .C; I /! FunS .D; I /:

Let E1 be the collection of edges e W x! y in M such that e is a cocartesian edge over
an equivalence in S . Now invoking Theorem 2.24 on the span

..�1/]/op �
 � .M;E1/

op �0
�! .S� � .�1/]/op

we deduce that ���0� W sSetC
=.S��.�1/]/

! sSetC
=.�1/]

, with respect to the cartesian

model structures, is right Quillen. Let P 0D ���0�.I��.�1/]/. P 0!�1 is a cartesian
fibration with P as a subcategory. One may check that P !�1 inherits the property
of being a cartesian fibration, which is classified by the functor

F � W FunS .D; I /! FunS .C; I /:

8.5 Corollary Let F W C �! �D WG be an S–adjunction and let I be an S–category.
Then we have S–adjunctions

F� W FunS .I; C / �! � FunS .I;D/ WG�; G� W FunS .C; I / �! � FunS .D; I / WF �:

Proof By Proposition 8.4, for every s 2 S ,

F� W FunSs=.I �S S
s=; C �S S

s=/ �! � FunSs=.I �S S
s=;D �S S

s=/ WG�

is an adjunction, and similarly for the contravariant case.
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To state the next corollary, it is convenient to introduce a definition.

8.6 Definition Suppose � W C ! D is an S–fibration. Define the 1–category
SectD=S .�/ of S–sections of � to be the pullback

SectD=S .�/ FunS .D;C /

�0 FunS .D;D/

��

idD

Define the S–category SectD=S .�/ to be the pullback

SectD=S .�/ FunS .D;C /

S FunS .D;D/

��

�idD

We will often denote SectD=S .�/ by SectD=S .C /, the S–functor � being left implicit.

Note that for any object s 2 S , the fiber SectD=S .�/s is isomorphic to SectDs=s.�s/.

8.7 Corollary Let p WC !E and q WD!E be S–fibrations. Let F WC �! �D WG be
an adjunction relative to E where F and G are S–functors. Then for any S–category I ,

F� W FunS .I; C / �! � FunS .I;D/ WG�

is an adjunction relative to FunS .I; E/. In particular , taking I DE and the fiber over
the identity, we deduce that

F� W SectE=S .p/ �! � SectE=S .q/ WG�

is an adjunction , and also that

F� W SectE=S .p/ �! � SectE=S .q/ WG�

is an S–adjunction.

Proof The proof of Proposition 8.4 shows that the unit for the adjunction F� aG� is
sent by p� to a natural transformation through equivalences.
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8.8 Lemma Let F WC �! �D WG be an S–adjunction. For every S–functor p WK!D,
we have a homotopy pullback square in sSetC

=S

C =.Gp;S/ D=.p;S/

C D

evC0 evD0
F

where the upper horizontal map is defined to be the composite

C =.Gp;S/ F
�! C =.FGp;S/

�.p/Š
���!D=.p;S/:

Dually, for every S–functor p WK!D, we have a homotopy pullback square in sSetC
=S

D.Fp;S/= C .p;S/=

D C:

evD1 evC1
G

where the upper horizontal map is defined to be the composite

D.Fp;S/= G
�! C .GFp;S/=

�.p/�
���! C .p;S/=:

Proof We prove the first assertion; the second then follows by taking vertical opposites.
We first explain how to define the map �.p/Š. Choose a counit transformation

� WD ��1!D

for F aG such that �D ı� is the identity natural transformation from �D to itself. Then
�ı.p� id/ is adjoint to an S–functor �.p/ WS��1! FunS .K;D/ with �.p/0D �FGp
and �.p/0D �p . Because FunS .S ?S K;D/!D�S FunS .K;D/ is an S–bifibration,
from �.p/we obtain a pushforward S–functor �.p/Š WD=.FGp;S/!D=.p;S/ compatible
with the source maps to D.

We need to check that for every object s 2 S , passage to the fiber over s yields a
homotopy pullback square of1–categories. Because .D=.p;S//s Š .D

=.ps ;s/
s /s , we

may replace S by Ss= and thereby suppose that s is an initial object in S .

Let r W fsg?S ! S be a left Kan extension of the identity S ! S . By the formula for
a left Kan extension, r.s/ is an initial object in S , which without loss of generality
we may suppose to be s. Using r ı .id?�K/ as the structure map for fsg?K over S ,
define �0 W fsg? \K! fsg?S \K as adjoint to the identity over S � @�1. It is easy to
show that �0 is a trivial cofibration in sSetC

=S
. Moreover, since the inclusion fsg ! S]
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is a trivial cofibration, fsg ?S \K ! S] ?S \K is a trivial cofibration in sSetC
=S

by
Theorem 4.16. Let � be the composition of these two maps. Then because FunS .�;�/
is a right Quillen bifunctor, �� W FunS .S]?S \K; \D/! FunS .fsg? \K; \D/ is a trivial
Kan fibration.

We further claim that the inclusion

j W FunS .fsg? \K; \D/!Ds �D Fun.fsg?K;D/�Fun.K;D/ FunS .\K; \D/

is an equivalence. Indeed, we have the pullback square

FunS .fsg? \K; \D/ Ds �D Fun.fsg?K;D/�Fun.K;D/ FunS .\K; \D/

�0 fsg �S Fun.fsg?K; S/�Fun.K;S/ f�Kg
rı.id?�K/

and the term in the lower right is contractible since it is equivalent to the full subcategory
Fun0.fsg?K; S/� Fun.fsg?K; S/ of functors which are left Kan extensions of �K .

Now taking the pullback of the composition j ı�� over fpg, we obtain an equivalence

.D=.p;S//s!Ds �DD
=p:

Similarly, we have an equivalence

.C =.Gp;S//s! Cs �C C
=Gp:

Since F aG is in particular an adjunction, by [9, Lemma 5.2.5.5] C =Gp!C �DD
=p

is an equivalence. Taking the fiber over s, we deduce the claim.

8.9 Corollary Let F WC �! �D WG be an S–adjunction. Then F preserves S–colimits
and G preserves S–limits.

Proof Let Np W K ?S S ! C be an S–colimit diagram. To show that F Np is an S–
colimit diagram, it suffices to prove that the restriction map D.F Np;S/=!D.Fp;S/= is
an equivalence. We have the commutative square

D.F Np;S/= C . Np;S/= �C D

D.Fp;S/= C .p;S/= �C D

(here we suppress some details about the naturality of �.�/Š). The right-hand vertical
map is an equivalence by assumption, and the horizontal maps are equivalences by
Lemma 8.8. Thus the left-hand vertical map is an equivalence.
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Free S –(co)cartesian fibrations revisited

With the theory of S–adjunctions, we can now establish a key property of the free
S–(co)cartesian fibration (Definition 7.6). Let � W C !D be an S–functor and define
S–functors

�0 W C ! C �D OS .D/; �1 W C ! OS .D/�D C

via the commutative square
C OS .D/

C D

evi
�

where the upper horizontal map is the composite C �
�! OS .C /! OS .D/.

8.10 Proposition �0 is left S–adjoint to prC . Dually, �1 is right S–adjoint to prC .

Proof We prove the first assertion, the proof of the second being similar. To prove that
we have a relative S–adjunction �0 a prC , we must prove that for each s 2 S we have
an adjunction .�0/s a .prC /s . So suppose that S D�0. Since prC ı�0 D id, it suffices
by [9, Proposition 5.2.2.8] to check that the identity is a unit transformation; that is,
for every x 2 C and .y; �y! a/ 2 C �D O.D/,

prC WMapC�DO.D/..x; id�x/; .y; �y! a//!MapC .x; y/

is an equivalence. Under the fiber product decomposition

MapC�DO.D/..x; id�x/; .y; �y! a//

'MapC .x; y/�MapD.�x;�y/ MapO.D/..id�x/; .�y! b//

the map prC is projection onto the first factor. The adjunction � W D �! � O.D/ Wev0
obtained by exponentiating the adjunction i0 W f0g �! ��1 Wp implies that

MapO.D/..id�x/; .�y! b//!MapD.�x; �y/

is an equivalence, so the claim follows.

8.11 Remark (universal property of the free S–cocartesian fibration) Let � WC !D

be an S–functor and  WE!D be an S–cocartesian fibration. Then we would like to
show that the restriction functor

Funcocart
=D .C �D OS .D/;E/! Fun=D;S .C;E/D S ��� ;FunS .C;D/; � FunS .C;E/
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is an equivalence of 1–categories.18 We prove this in [17, Example 3.8] as an
application of the theory of parametrized factorization systems.

9 Parametrized colimits

In this section, we first introduce a parametrized generalization of Lurie’s pairing
construction [9, Corollary 3.2.2.13]. We then employ it to study D–parametrized S–
(co)limits. This material recovers and extends [9, Section 4.2.2] (in view of Lemma 4.5).
It is a precursor to our study of Kan extensions.

An S –pairing construction

9.1 Construction Let p W C ! S and q WD! S be S–categories and let � W C !D

be an S–functor. Let �; � 0 W Ococart.D/ �D C ! D be given by � D ev0 ı pr1 and
� 0 D ev1 ı pr1. Let E denote the collection of edges e in Ococart.D/�D C such that
�.e/ is q–cocartesian and pr2.e/ is p–cocartesian (so � 0.e/ is q–cocartesian). Then
the span

\D
�
 � .Ococart.D/�D C;E/

� 0
�! \D

defines a functor
���

0�
W sSetC

=\D
! sSetC

=\D
:

For an S–category E and an S–functor  WE!D, define

.eFunD=S .C;E/! \D/´ ���
0�.\E

 
�! \D/:

9.2 Lemma Let q WD! S be an S–category.

(1) ev0 W Ococart.D/ ! D is a cartesian fibration , and an edge e in Ococart.D/ is
ev0–cartesian if and only if .evS;1 ıq/.e/ is an equivalence in S . In particular ,
if ev0.e/ is q–cocartesian , then e is ev0–cartesian if and only if ev1.e/ is an
equivalence in D.

(2) If f W x! y is an edge inD such that q.f / is an equivalence , then there exists a
ev0–cocartesian edge e over f . Moreover , an edge e over f is ev0–cocartesian
if and only if it is ev0–cartesian.

18We use Remark 7.4 to simplify the appearance of the left-hand side, which would otherwise be denoted
by Funcocart

=D;S
.C �D OS .D/;E/.
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Proof ev0 W Ococart.D/!D factors as

Ococart.D/!D �S O.S/!D;

where the first functor is a trivial fibration and the second is a cartesian fibration, as the
pullback of evS;0 W O.S/! S . Thus ev0 is a cartesian fibration with cartesian edges
as indicated. Moreover, since evS;0 W O.S/! S is a categorical fibration, the second
claim follows from [11, Proposition B.2.9].

We have designed our construction so that for any object x 2D and cocartesian section
Sqx=!D, the fiber of eFunD=S .C;E/!D over x is equivalent to

FunSqx=.C �D S
qx=; E �D S

qx=/:

For this reason, we think of eFunD=S .�;�/ as the parametrized generalization of the
pairing construction eFunD.�;�/, to which it reduces when S D�0.

9.3 Theorem With notation as in Construction 9.1, eFunD=S .C;E/ enjoys the follow-
ing functoriality:

(1) If � is either an S–cartesian fibration or an S–cocartesian fibration and  is a
categorical fibration , then eFunD=S .C;E/!S is an S–category with cocartesian
edges marked as indicated in Construction 9.1, and eFunD=S .C;E/! D is a
categorical fibration.

(2) If � is an S–cartesian fibration and  is an S–cocartesian fibration , then
eFunD=S .C;E/!D is an S–cocartesian fibration.

(3) If � is an S–cocartesian fibration and  is an S–cartesian fibration , then
eFunD=S .C;E/!D is an S–cartesian fibration.

Proof (1) It suffices to check that Theorem 2.24 applies to the span

\D
�
 � .Ococart.D/�D C;E/

� 0
�! \D:

In the remainder of this proof we will verify that Ococart.D/ �D C ! D is a flat
categorical fibration. For condition (4) we appeal to Lemma 9.2. The rest of the
conditions are easy verifications.

(2) By Lemmas 9.2 and 7.5, � W Ococart.D/�D C !D is a cartesian fibration (hence
flat) with an edge e �–cartesian if and only if pr1.e/ is ev0–cartesian and pr2.e/ is
�–cartesian. Let E0 be the collection of edges e in Ococart.D/�ev1;D C such that for
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any �–cartesian lift e0 of �.e/, the induced edge d1.e/! d1.e
0/ is in E. Note that

since � is S–cartesian (and not just fiberwise cartesian), E0 is closed under composition.
Invoking Theorem 2.24 on the span

D] �
 � .Ococart.D/�D C;E

0/ �
0

�!D]

we deduce that
���

0�
W sSetC

=D
! sSetC

=D

is right Quillen. Note that there is no conflict of notation with the functor ��� 0�

defined before on sSetC
=\D

since E � E0 and the two restrict to the same collections
of marked edges in the fibers of � . Since S–cocartesian fibrations are cocartesian
fibrations over D (Remark 7.4), we conclude.

(3) First note that � factors as a cocartesian fibration followed by a cartesian fibration,
so is flat. Let F be the collection of edges f in D such that q.f / is an equivalence. By
Lemma 9.2, we have that � W Ococart.D/�ev1;DC !D admits cocartesian lifts of edges
in F. Let E00 be the collection of those �–cocartesian edges. Invoking Theorem 2.24
on the span

.D;F/op �
 � .Ococart.D/�D C;E

00/op �0
�! .D;F/op;

where � D �op and �0 D � 0op, we deduce that with respect to the cartesian model
structures

���
0�
W sSetC

=.D;F/
! sSetC

=.D;F/

is right Quillen. We have that eFunD=S .C;E/ is a full subcategory of ���0�. /. More-
over, the compatibility condition in the definition of an S–cartesian fibration ensures
that eFunD=S .C;E/!D inherits the property of being fibrant in sSetC

=.D;F/
. Another

routine verification shows that eFunD=S .C;E/!D is indeed S–cartesian.

9.4 Lemma Let C ! C 0 be a monomorphism between S–cartesian or S–cocartesian
fibrations over D and let E!D be an S–fibration. Then the induced functor

eFunD=S .C
0; E/!eFunD=S .C;E/

is a categorical fibration.

Proof Given a trivial cofibration A! B in sSetJoyal, we need to solve the lifting
problem

A eFunD=S .C 0; E/

B eFunD=S .C;E/
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This diagram transposes to

A�D Ococart.D/�D C
0[A�DOcocart.D/�DC B �D Ococart.D/�D C E

B �D Ococart.D/�D C
0 D

By the proof of Theorem 9.3, Ococart.D/ �D C ! D is a flat categorical fibration.
Therefore, by [11, Proposition B.4.5] the left vertical arrow is a trivial cofibration in
sSetJoyal.

For later use, we analyze some degenerate instances of the S–pairing construction.

9.5 Lemma There is a natural equivalence eFunD=S .D;E/
'
�! E of S–categories

over D.

Proof The map is induced by the identity section �D WD! Ococart.D/ fitting into a
morphism of spans

\D

\D .Ococart.D/;E/ \D

�D

By Lemma 3.3(10), �D is a cocartesian equivalence in sSetC
=S

via the target map. Since
the cocartesian model structure on sSetC

=\D
is created by the forgetful functor to sSetC

=S
,

the assertion follows.

9.6 Lemma Let C 0!D0 be a cartesian fibration of1–categories and let E 0 be an
S–category. For all s 2 S , there is a natural equivalence

eFunD0�S=S .C
0
�S;D0 �E 0/s

'
�!eFunD0.C 0;D0 �E 0s/

of cartesian fibrations over D0.

Proof The left-hand side is defined using the span

.D0/] � fsg  ..D0/] � fsg/�D0�S .O
cocart.D0 �S/�D0 C

0;E0/! S]

with E0 as in the proof of Theorem 9.3. Cocartesian edges (over S) in D0 � S are
precisely those edges which become equivalences when projected to D0, so

Ococart.D0 �S/Š Fun..�1/]; .D0/�/�O.S/;
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and the identity section �D0 W D0 ! Fun..�1/]; .D0/�/ is a categorical equivalence.
Therefore, the map

.D0 �Ss=/]! ..D0/] � fsg/�D0�S .O
cocart.D0 �S/;E/

induced by �D0 is a cocartesian equivalence in sSetC
=S

. Since C 0 � S ! D0 � S is a
cartesian fibration, it follows that

.C 0/
\
� .Ss=/]! ..D0/] � fsg/�D0�S .O

cocart.D0 �S/�D0 C
0;E0/

is also a cocartesian equivalence in sSetC
=S

. Finally, using the inclusion

C 0 � fsg ! C 0 �Ss=

we obtain a morphism from the span

.D0/] .C 0/
\
! fsg � S]

through a cocartesian equivalence in sSetC
=S

. This yields the claimed equivalence.

Directly from the definition, we have that for an object x 2D, the fiber eFunD=S .C;E/x
is isomorphic to Funx.Cx;Ex/. We now proceed to identify the S–fiber eFunD=S .C;E/x .

9.7 Proposition There is an x–functor

�� WeFunD=S .C;E/x! Funx.Cx; Ex/

which is a cocartesian equivalence in sSetC
=x

.

Proof We first define the x–functor ��. The data of maps of marked simplicial sets

A! \
eFunD=S .C;E/x; A! \Funx.Cx; .E �S D/x/

over x is identical to the data of maps

A�x x
]
�D .O

cocart.D/;E/�D \C ! \E; A�x O.x/] �ev1 ı ev1;D \C ! \E

over \D (where E is the collection of edges e in Ococart.D/ such that ev0.e/ and ev1.e/
are cocartesian). We have a commutative square

O.x/] x]

.Ococart.D/;E/ \D

ev0

O.ev1/ ev1

ev0
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which defines the functor � W O.x/ ! x �D Ococart.D/, and this in turn induces the
functor ��. To show that �� is a cocartesian equivalence, it will suffice to show that � is
a trivial fibration, for then a choice of section � and homotopy � ı �' id will furnish a
strong homotopy inverse to �� in the sense of [9, Proposition 3.1.3.5]. Since we have a
pullback diagram

O.x/ D �Fun.�1;D/ Fun.�1 ��1;D/

x �D Ococart.D/ Fun.ƒ21;D/

� �0

it will further suffice to show that �0 is a trivial Kan fibration. Observe that �0 factors
as the composition

D �Fun.�1;D/ Fun.�1 ��1;D/ �
00

�! Fun.�2;D/ �
000

�! Fun.ƒ21;D/;

where �00 is defined by precomposing by the inclusion i W�2!�1��1 which avoids the
degenerate edge for objects inD�Fun.�1;D/Fun.�1��1;D/, and �000 is precomposition
by ƒ21!�2. Moreover, �000 is a trivial fibration since ƒ21!�2 is inner anodyne. To
argue that �00 is a trivial fibration, first note that �00 inherits the property of being a
categorical fibration from i� W Fun.�1 ��1;D/! Fun.�2;D/. Define an inverse � 00

by precomposing by the unique retraction r W�1 ��1!�2 chosen so that r ı i D id.
Then � 00 is a section of �00 and one can write down an explicit homotopy through
equivalences of the identity functor on D �Fun.�1;D/ Fun.�1 ��1;D/ to � 00 ı �00, so
�00 is a trivial fibration.

D–parametrized slice

We now study another slice construction defined using the S–pairing construction.

9.8 Construction Let � W C !D be an S–cocartesian fibration, let E!D be an
S–fibration, and let F W C ! E be an S–functor over D. Then F defines a section
S–functor

�F WD!eFunD=S .C;E/

as adjoint to the functor Ococart.D/�ev1;D C ! C F
�!E. Define

E.�;F /=S ´D ��F ;fFunD=S .C;E/
eFunD=S .C ?DD;E/

and let �.�;F / denote the projection E.�;F /=S !D.
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Given an object x 2D, the functor �F WD!eFunD=S .C;E/ induces via pullback an
x–functor

�Fx W x!
eFunD=S .C;E/x :

We also have the x–functor

�Fx W x! Funx.Cx; Ex/

adjoint to
O.x/�x Cx

pr2�! Cx
Fx
�!Ex :

An inspection of the definition of the comparison functor �� of Proposition 9.7 shows
that the triangle

x eFunD=S .C;E/x

Funx.Cx; Ex/

�Fx

�Fx ��

commutes. Recalling the definitions

.E.�;F /=S /x D x �fFunD=S .C;E/x
eFunD=S .C ?DD;E/x;

.Ex/
Fx=x D x �Funx.Cx ;Ex/ Funx.Cx ?x x;Ex/;

we therefore obtain a comparison x–functor

 W .E.�;F /=S /x! .Ex/
Fx=x :

9.9 Corollary The functor  is a cocartesian equivalence in sSetC
=x

.

Proof By [9, Proposition 3.3.1.5], we have to verify that  induces a categorical
equivalence on the fibers. But after passage to the fiber over an object e D Œx! y�

in x, by Lemma 4.8  e is a functor between two pullback squares in which one leg is
a cartesian fibration. Therefore, by Proposition 9.7 and [9, Corollary 3.3.1.4],  e is a
categorical equivalence.

9.10 Proposition With setup as in Construction 9.8, suppose in addition that E!D

is an S–cartesian fibration. Then �.�;F / WE.�;F /=S !D is an S–cartesian fibration.

Proof By Lemma 9.4, �.�;F / is a categorical fibration. By Theorem 9.3 and Lemmas
9.4, and 4.8, the functor

.��C /s W
eFunD=S .C ?DD;E/s!eFunD=S .C;E/s
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overDs satisfies the hypotheses of [9, Proposition 2.4.2.11]; hence is a locally cartesian
fibration. To then show that .��C /s is a cartesian fibration, it suffices to check that for
every square

ŒG W Cx ?x x!Ex� ŒG0 W Cy ?y y!Ey �

ŒH W Cx ?x x!Ex� ŒH 0 W Cy ?y y!Ey �

in eFunD=S .C ?DD;E/s lying over an edge e W x! y in Ds , if the horizontal edges
are cartesian lifts over e and the right vertical edge is .��C /s;y–cartesian, then the left
vertical edge is .��C /s;x–cartesian. In other words, if we let eŠ W Cx ?x x! Cy ?y y and
e� WEy!Ex denote choices of pushforward and pullback functors, then we want to
show that given G ' e� ıG0 ı eŠ, H ' e� ıH 0 ı eŠ, and G0jy 'H 0jy , we have that
Gjx 'H jx . But this is clear. We deduce that .�.�;F //s , being pulled back from .��C /s ,
is a cartesian fibration.

For the final verification, let us abbreviate objects

.x 2D; ŒG W Cx ?x x!Ex� WGjCx D Fx/ 2E
.�;F /=S

as ŒG W Cx ?x x!Ex�, the restriction to Cx equaling Fx being left implicit. We must
check that given a square

x x0

y y0

z̨x

e e0

z̨y

in D lying over ˛ W s! t with the vertical edges in the fiber and the horizontal edges
cocartesian lifts of ˛, and given a lift of that square to a square

ŒG W Cx ?x x!Ex� ŒG0 W Cx0 ?x0 x
0!Ex0 �

ŒH W Cy ?y y!Ey � ŒH 0 W Cy0 ?y0 y
0!Ey0 �

in E.�;F /=S with the horizontal edges cocartesian lifts of ˛ and the left vertical edge
.�.�;F //s–cartesian, then the right vertical edge is .�.�;F //t–cartesian. We will once
more translate this compatibility statement into a more obvious looking one so as to
conclude. Let eŠ, e�, e0Š and e0� be defined as above. Let ˛� W x0! x and ˛� W y0! y
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be choices of pullback functors (eg the first sends a cocartesian edge f W x0 ! z to
f ı z̨x W x! z), and also label related functors by ˛�. Then the cocartesianness of the
horizontal edges amounts to the equivalences G0 'G ı˛� and H 0 'H ı˛�, and the
cartesianness of the left vertical edge amounts to the equivalence Gjx ' .e� ıH ıeŠ/jx .
Our desired assertion now is implied by the homotopy commutativity of the diagram

x0 x Ex

y0 y Ey

˛�

e0Š

Gjx

eŠ

˛� H jy

e�

(the content being in the commutativity of the first square), for this demonstrates that
G0jx0 ' .e

0� ıH 0 ı e0
Š
/jx0 .

9.11 Lemma Let p WW ! S and q WD! S be S–categories , and let � WW !D be
an S–fibration such that for every object s 2 S , �s is a cartesian fibration.

(1) Suppose that :

(a) For every object x 2D, there exists an initial object in Wx .

(b) For every p–cocartesian edge w ! w0 in W , if w is an initial object in
W�.w/, then w0 is an initial object in W�.w 0/.

Let W 0 �W be the full simplicial subset of W spanned by those objects w 2W
which are initial in W�.w/ and let � 0 D �jW 0 . Then W 0 is a full S–subcategory
of W and � 0 is a trivial fibration.

(2) Let � WD!W be an S–functor which is a section of � . Then � is a left adjoint
of � relative toD if and only if , for every object x 2D, �.x/ is an initial object
of Wx .

Proof (1) Condition (b) ensures that W 0 is an S–subcategory of W . By [9, Propo-
sition 2.4.4.9], for every object s 2 S , � 0s is a trivial fibration. In particular, � 0 is
S–cocartesian fibration (the compatibility condition being vacuous since all edges in
W 0s are � 0s–cocartesian). By Remark 7.4, � 0 is a cocartesian fibration. As a cocartesian
fibration with contractible fibers, � 0 is a trivial fibration.

(2) Since relative adjunctions are stable under base change, if � is a left adjoint of
� relative to D, passage to the fiber over x 2D shows that �.x/ is an initial object
of Wx . Conversely, if for all x 2 D, �.x/ is an initial object of Wx , then by [9,
Proposition 5.2.4.3], �s is left adjoint to �s for all s 2 S . Since � is already given as
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an S–functor, this implies that � is S–left adjoint to � ; in particular, � is left adjoint
to � . The existence of � implies the hypotheses of (1), so � is fully faithful. Now by
definition, � is left adjoint to � relative to D.

We now connect the construction eFunD=S .�;�/with FunS .�;�/. To this end, consider
the commutative diagram

O.S/] �S \C

O.S/] �S .O
cocart.D/�D C;E/ .Ococart.D/�D C;E/ S]

O.S/] �S \D \D

S]

i

prD

ev0

where the map i is induced by the identity section D! Ococart.D/.

9.12 Lemma The map i is a homotopy equivalence in sSetC
=S

(considered over S via
p W C ! S ).

Proof Define a map h0 W O.S/�S Ococart.D/! Fun.�1;O.S/�S Ococart.D// to be the
product of the following three maps.

(1) Choose a lift �

Fun.�f0;1g; S/ Fun.�2; S/

Fun.ƒ21; S/ Fun.ƒ21; S/

s1

�
�

and let �1 ��1!�2 be the unique map such that the induced map

Fun.�2; S/! Fun.�1 ��1; S/Š Fun.�1;O.S//

sends .s! t ! u/ to Œs! t �! Œs! u�. Use these two maps to define

O.S/�S Ococart.D/�D C ! O.S/�S O.S/Š Fun.ƒ21; S/! Fun.�1;O.S//:
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(2) Use the unique map �1��1!�1 which sends .0; 0/ to 0 and all other vertices
to 1 to define

O.S/�S Ococart.D/�D C ! Ococart.D/! Fun.�1;Ococart.D//:

(3) The degeneracy map s0 W C ! Fun.�1; C / defines

O.S/�S Ococart.D/�D C ! C ! Fun.�1; C /:

Then h0 is adjoint to a map of marked simplicial sets over S ,

h W .�1/] �O.S/] �S .O
cocart.D/�D C;E/! O.S/] �S .O

cocart.D/�D C;E/;

such that h0 D id and h1 factors as a composition

O.S/]�S .O
cocart.D/�D C;E/

r
�! O.S/]�S \C

i
�! O.S/]�S .O

cocart.D/�D C;E/;

where r is defined by

O.S/] �S .O
cocart.D/�D C;E/! Fun.ƒ21; S/

]
�S \C

d1ı�
���! O.S/] �S \C:

Our choice of � ensures that r ı i D id, completing the proof.

Note that for any S–fibration � W X ! D, the S–category SectD=S .�/ defined in
Definition 8.6 may be identified with .ev0/�.prD/

�.\X
�
�! \D/. Combining Lemmas

9.12, 2.27 and 2.28, we see that if E is an S–category and C !D is S–cocartesian or
S–cartesian, then the map induced by i

i� W SectD=S .eFunD=S .C;E �S D//! FunS .C;E/

is an equivalence of S–categories. Moreover, a chase of the definitions reveals that for
every S–functor F W C !E, we have an identification

i� ıSectD=S .�F��/D �F W S ! FunS .C;E/:

We thus have a morphism of spans

S SectD=S .eFunD=S .C;E �S D// SectD=S .eFunD=S .C ?DD;E �S D//

S FunS .C;E/ FunS .C ?DD;E/

SectD=S .�F��/

' '

�F

The right horizontal maps are S–fibrations by Lemma 9.4 and [2, Proposition 9.11(2)],
so taking pullbacks yields an equivalence

(9.12.1) SectD=S ..E �S D/.�;F��/=S /
'
�! S ��F ;FunS .C;E/ FunS .C ?DD;E/:

We are now prepared to introduce the main definition of this section.
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9.13 Definition Let � W C !D be an S–cocartesian fibration. An S–functor

F W C ?DD!E

is a D–parametrized S–colimit diagram if for every object x 2 D, the x–functor
F jCx?xx W Cx ?x x!Es is an s–colimit diagram.

9.14 Proposition Let � W C ! D be an S–cocartesian fibration , let F W C ! E

be an S–functor , and let F W C ?D D! E be a D–parametrized S–colimit diagram
extending F . Then the section

idS � �F W S ! S ��F ;FunS .C;E/ FunS .C ?DD;E/

is an S–initial object.

Proof Combine (9.12.1), Lemma 9.11(2), and Corollary 8.7.

We have the following existence and uniqueness result for D–parametrized S–colimits.

9.15 Theorem Let � W C !D be an S–cocartesian fibration and let F W C !E be an
S–functor. Suppose that for every object x 2D, the s–functor F jCx W Cx!Es admits
an s–colimit. Then there exists a D–parametrized S–colimit diagram F WC ?DD!E

extending F . Moreover , the full subcategory of fF g �FunS .C;E/ FunS .C ?D D;E/
spanned by the D–parametrized S–colimit diagrams coincides with that spanned by
the initial objects.

Proof By Proposition 9.10 and Corollary 9.9, the functor

�.�;F��/ W .E �S D/
.�;F��/=S

!D

is an S–cartesian fibration with x–fibers equivalent to .Es/.F jCx ;s/=. Our hypothesis
ensures that the conditions of Lemma 9.11(1) are satisfied, so �.�;F��/ admits a
section � which is an S–functor that selects an initial object in each fiber. The resulting
S–functor D!eFunD=S .C ?DD;E �S D/ covering �F�� is adjoint to an S–functor
F WC ?DD!E extending F , which is a D–parametrized S–colimit diagram. Having
proven existence, the second statement now follows from Proposition 9.14.

Theorem 9.15 also admits the following “global” consequence.
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9.16 Corollary Let � WC !D be an S–cocartesian fibration and E be an S–category.
Suppose that for every s 2S and x 2Ds , Es admits all Ss=–colimits of shape Cx . Then
U W FunS .C ?DD;E/! FunS .C;E/ admits a left S–adjoint L which is a section of
U such that for every object F W Cs ! Es , L.F / is a Ds–parametrized Ss=–colimit
diagram.

Proof By Example 7.10, Theorem 9.15 and the stability of parametrized colimit
diagrams under base change, the conditions of Lemma 9.11(1) are satisfied for U .
Thus U admits a section L which selects an initial object in each fiber, necessarily a
parametrized colimit diagram. By Lemma 9.11(2), L is a left adjoint of U relative to
FunS .C;E/; in particular, L is S–left adjoint to U .

Application: Functor categories

9.17 Proposition Let K, I , and C be S–categories.

(1) Suppose that for all s 2 S , Cs admits all Ks–indexed colimits. Then

Np WK ?S S ! FunS .I; C /

is an S–colimit diagram if and only if , for every object x 2 I over s,

Ks ?s s
Nps
�! Funs.Is; Cs/

evx
�! Cs

is an Ss=–colimit diagram.

(2) An S–functor p WK! FunS .I; C / admits an extension to an S–colimit diagram
Np if for all x 2 I , evx ıps admits an extension to an Ss=–colimit diagram.

Proof We prove (1), the proof for (2) being similar. Let

Np0 W .K �S I / ?I I Š .K ?S S/�S I ! C

be a choice of adjoint of p under the equivalence

FunS .K ?S S;FunS .I; C //' FunS ..K ?S S/�S I; C /:

By Theorem 9.15 applied to the S–cocartesian fibrationK�S I! I and the hypothesis
on C , there exists an I–parametrized S–colimit diagram p00 extending p0 D Np0jK�SI .
By Proposition 9.14, p00 defines an S–initial object in

S �FunS .K�SI;C/ FunS ..K �S I / ?I I; C /' FunS .I; C /.p;S/=
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so its adjoint is an S–colimit diagram. For the “if” direction, supposing that Np is an
S–colimit diagram, then by the uniqueness of S–initial objects, p00 is equivalent to Np0.
Then evx ı Nps is equivalent to p00x , which is an Ss=–colimit diagram by definition of
I–parametrized S–colimit diagram. For the “only if” direction, supposing that all
the evx Nps are Ss=–colimit diagrams, we get that Np0 is an I–parametrized S–colimit
diagram, so is equivalent to p00.

9.18 Corollary SupposeC is S–cocomplete and I is an S–category. Then FunS .I;C /
is S–cocomplete.

10 Kan extensions

We now combine the theory of S–colimits parametrized by a base S–category D and
that of free S–cocartesian fibrations to establish the theory of left S–Kan extensions.

10.1 Definition Suppose a diagram of S–categories

C E

D

F

�
G

�

where by the “2–cell” � we mean exactly the datum of an S–functor � W C ��1!E

restricting to F on 0 and G ı� on 1. Let

G0 W .C �D OS .D// ?DD
�D
�!D G

�!E;

let
� W .C �D OS .D//��

1
!E

be the natural transformation adjoint to G� W C �D OS .D/! OS .E/, let

�0 W .C �D OS .D//��
1
! C ��1

�
�!E

be the natural transformation obtained from �, and let � 0 D � ı �0 be a choice of
composition in FunS .C �D OS .D/;E/. Let

r W FunS ..C �D OS .D// ?DD;E/! FunS .C �D OS .D/;E/

denote the restriction functor. By Lemma 4.8, we may select an r–cartesian edge e
in FunS ..C �D OS .D// ?DD;E/ with d0.e/DG0 covering � 0, chosen so that ejD is
degenerate. Let G00 D d1.e/.
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We say that G is a left S–Kan extension of F along � if G00 is a D–parametrized
S–colimit diagram.

10.2 Remark The following are equivalent:

(1) G is a left S–Kan extension of F along �.

(2) For all s 2 S , Gs is a left Ss=–Kan extension of Fs along �s .

(3) For all s 2 S and x 2 Ds , Gjx W x ! Es is a left Ss=–Kan extension of
F jCx W Cx!Es along �x W Cx! x.

In other words, our notion of S–Kan extension generalizes the concept of pointwise
Kan extensions.

We can bootstrap Theorem 9.15 to prove existence and uniqueness of left S–Kan
extensions.

10.3 Theorem Let � W C !D and F W C !E be S–functors. Suppose that for every
object x 2D, the Ss=–functor

C �DD
=x
! Cs

Fs
�!Es

admits an Ss=–colimit. Then there exists a left S–Kan extension G W D ! E of F
along �, uniquely specified up to contractible choice.

Proof We spell out the details of existence and leave the proof of uniqueness to the
reader. By Theorem 9.15, there exists a D–parametrized S–colimit diagram

F W .C �D OS .D// ?DD!E

extending C �D OS .D/! C F
�!E. Let G D F jD . Define a map

h W C ��1! .C �D OS .D// ?DD

over D ��1 as adjoint to .C .id;��/
���! C �D OS .D/; C

�
�!D/ and let � D F ı h, so

that � is a natural transformation from F to G ı�.

We claim that � exhibits G as a left Kan extension of F along �. To show this, we
will exhibit an r–cartesian edge e from F to G0 such that the restriction r.e/ of e to
C �D OS .D/ is a choice of composition � ı �0. Define

e0 W .C �D OS .D// ?DD ��
1
! .C �D OS .D// ?DD
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over D��1 as adjoint to .id; �D/, and let eDF ıe0, so that e is an edge from F to G0.
Since .�D/jD D idD , ejD is a degenerate edge in FunS .D;E/, so e is r–cartesian.

To finish the proof, we need to introduce a few more maps. Define

˛ D .prC ; ˛
0/ W C �D OS .D/��

1
! C �D OS .D/

where ˛0 is adjoint to

C �D OS .D/! OS .D/DeFunS .S ��1;D/
min�
��!eFunS .S ��1 ��1;D/:

Here min W�1 ��1!�1 is the functor which takes the minimum. Define

ˇ W C �D OS .D/��
1
! OS .D/��

1 ev
�!D:

Use ˛ and ˇ to define


 W C �D OS .D/��
1
��1! .C �D OS .D// ?DD

so that on objects .c; �c f
�! d/, 
 sends �1 ��1 to the square

.c; �c D �c/ �c

.c; �c
f
�! d/ d

.id;f / f

Then F ı 
 defines a square

F ı prC G ı� ı prC

F ı prC G0

�0

�

r.e/

in FunS .C �D OS .D/;E/, which proves that r.e/' � ı �0.

We also have the Kan extension counterpart to Corollary 9.16.

10.4 Definition Let � W C !D be an S–functor and E an S–category. We say that
E admits the relevant S–colimits for � if for every s 2 S and x 2Ds , Es admits all
Ss=–colimits of shape C �DD=x .

10.5 Theorem Let � W C !D be an S–functor and E an S–category. Suppose that
E admits the relevant S–colimits for �. Then the S–functor

�� W FunS .D;E/! FunS .C;E/
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given by restriction along � admits a left S–adjoint �Š such that for every S–functor
F W C ! E, the unit map F ! ���ŠF exhibits �ŠF as a left S–Kan extension of F
along �.

Proof Factor � as the composition

C
�C
�! C �D OS .D/

i
�! .C �D OS .D// ?DD

�D
�!D:

Then �� factors as the composition

FunS .D;E/
��
D
�!FunS ..C �DOS .D//?DD;E/

i�
�!FunS .C �DOS .D/;E/

��
C
�!FunS .C;E/:

By Proposition 8.10 and Corollary 8.5, pr�C is left S–adjoint to ��C . Since iD is right
S–adjoint to �D , by Corollary 8.5 again i�D is left S–adjoint to ��D . By Corollary 9.16,
i� admits a left S–adjoint L which extends functors to D–parametrized S–colimit
diagrams. Let �Š be the composite of these three functors. The proof of Theorem 10.3
shows that �Š.F / is as asserted.

The next proposition permits us to eliminate the datum of the natural transformation �
from the definition of a left S–Kan extension when � is fully faithful.

10.6 Proposition Suppose � W C !D is the inclusion of a full S–subcategory. Then
for any left S–Kan extension G of F W C ! E along �, � is a natural transformation
through equivalences. Consequently, G is homotopic to a functor F WD! E which
is both an extension of F and a left S–Kan extension (with the natural transformation
F ! F ı� D F chosen to be the identity).

Proof Let G00 W .C �D OS .D// ?D D ! E be as in the definition of a left S–Kan
extension. Because D–parametrized S–colimit diagrams are stable under restriction to
S–subcategories,

.G00/C W .C �D OS .D/�D C/ ?C C !E

is a C–parametrized S–colimit diagram. The additional assumption that C is a full
S–subcategory has the consequence that .C �D OS .D/�DC/Š OS .C /. Also, for any
object x 2 C , the inclusion x–functor ix W x! C =x is x–final, using the first criterion
of Theorem 6.7. Therefore, OS .C /?C C

�C
�!C F

�!E is a C–parametrized S–colimit
diagram extending OS .C /

ev0
�! C F

�!E, so .G00/C ' F ı�C .
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The map h in the proof of Theorem 10.3 factors as

C ��1 h0
�! OS .C / ?C C ! .C �D OS .D// ?DD:

We have the chain of equivalences

�'G00 ı h' F ı�C ı h
0
D F ı prC ;

proving the first assertion. For the second assertion, use that

.\D � f1g/[\C�f1g .\C � .�
1/]/! \D � .�

1/]

is a cocartesian equivalence in sSetC
=S

to extend .G; �/ to a homotopy between G and
an extension F , which is then necessarily a left S–Kan extension.

10.7 Corollary Suppose � WC!D a fully faithful S–functor andE an S–cocomplete
S–category. Then the left S–adjoint �Š to the restriction S–functor �� exists and is
fully faithful.

Proof Combine Theorem 10.5 and Proposition 10.6.

As expected, S–colimit diagrams are examples of S–left Kan extensions.

10.8 Proposition Suppose � WC!D an S–cocartesian fibration and F WC ?DD!E

an S–functor extending F W C !E. Then F is a D–parametrized S–colimit diagram
if and only if F is an S–left Kan extension of F .

Proof We may check the assertion objectwise on D, so let x 2 Ds . Consider the
commutative diagram

Cx Cs

C �C?DD .C ?DD/
=x Es

� Fs

prC

The value of a D–parametrized colimit of F on x is computed as the Ss=–colimit
of .Fs/jCx , and that of an S–left Kan extension of F as the Ss=–colimit of Fs ı prC .
Therefore, it suffices to prove that � is x–final. Let f W x! y be an object in x, ie a
cocartesian edge in D, which lies over s! t . Then �f is equivalent to the inclusion

Cy Š Cy �.Cy/B ..Cy/
B/=f1g! Ct �Ct?DtDt .Ct ?Dt Dt /

=y :

Applying Lemma 10.9 to the map Ct ! Ct ?Dt Dt of cocartesian fibrations over Dt ,
we deduce that �f is final.
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10.9 Lemma Let X ! Y be a map of cocartesian fibrations over Z and let y 2 Y be
an object over z 2 S . Then the inclusion Xz �Yz Y

=y
z !X �Y Y

=y is final.

Proof By the dual of [11, Lemma 3.4.1.10], X �Y Y =y ! Z=z is a cocartesian
fibration. We have a pullback square

Xz �Yz Y
=y
z X �Y Y

=y

fzg Z=z
idz

where, since the bottom horizontal map is final and cocartesian fibrations are smooth,
the top horizontal map is final.

As with S–colimits, S–left Kan extensions reduce to the usual notion of left Kan
extension when taken in an S–category of objects.

10.10 Proposition Suppose we have a diagram of S–categories:

C ES

D

F

�
G

�

The following are equivalent :

(1) G is a left S–Kan extension of F along �.

(2) G� is a left Kan extension of F � along �.

(3) For all objects s 2 S , G�jDs is a left Kan extension of F �jCs along �s .

Proof We first prove that (1) and (2) are equivalent. Factor � W C !D through the
free S–cocartesian fibration on �,

� W C
�C
�! C �D OSD

Frcocart.�/
�����!D:

Since �C is S–left adjoint to prC , it is also left adjoint. Therefore, the S–left (resp. left)
Kan extension of F (resp. F �) along �C is computed by F ı prC (resp. F � ı prC ). By
transitivity of Kan extensions, we thereby reduce to the case that � is S–cocartesian.
The claim now follows easily by combining Propositions 5.5 and 10.8.

We next prove that (2) and (3) are equivalent. For this, it suffices to observe that for all
objects d 2D over some s 2 S , Cs �Ds D

=d
s ! C �D D

=d is final by Lemma 10.9
applied to C !D.
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11 Yoneda lemma

By Proposition 5.5, SpcS is S–cocomplete, so by Corollary 9.18, the S–category of
presheaves

PS .C /´ FunS .C vop;SpcS /

is S–cocomplete. The S–Yoneda embedding j W C !PS .C / was constructed in [2,
Section 10] via S–straightening the left fibration zOS .C /! C vop�S C given fiberwise
by twisted arrows. It was shown there that j is fully faithful [2, Theorem 10.4]. In this
section, we first prove the S–Yoneda lemma and then establish the universal property
of PS .C / as the free S–cocompletion of C .

11.1 Lemma (S–Yoneda lemma) Let j W C !PS .C / denote the S–Yoneda embed-
ding. Then the identity on PS .C / is an S–left Kan extension of j along itself.

Proof By Proposition 9.17, it suffices to show that for every s 2 S and object x 2 Cs ,
evx WPs.Cs/! Spcs is an Ss=–left Kan extension of evx js . To ease notation, let us
replace Ss= by S and suppose that s 2 S is an initial object.

We claim that .evx j /� W C ! Spc is homotopic to MapC .x;�/. By definition of the
S–Yoneda embedding, .evx j /� classifies the left fibration

ev1 W zOS .C /x!! C

pulled back from zOS .C /!C vop�SC via the cocartesian section � WS!C vop defined
by �.s/D x. By [9, Proposition 4.4.4.5], it suffices to show that idx is an initial object
in zOS .C /x!. For this, because s 2 S is an initial object, we reduce to checking that
for all edges ˛ W s ! t , the pushforward of idx by ˛ is an initial object in the fiber
.zOS .C /x!/t . But this fiber is equivalent to zO.Ct /˛Šx! ' .Ct /

˛Šx=.

Applying Proposition 10.10, we reduce to showing that for all t 2 S , .evx/�jPS .C/t is
a left Kan extension of .evx j /�jCt . Note that for y any cocartesian pushforward of x
over the essentially unique edge s! t , we have both that .evx j /�jCt is homotopic to
MapCt .y;�/ and .evx/�jPS .C/t is homotopic to evy (regarding y as an object in C vop

t ).
The inclusion

Ct !PS .C /t ' Fun.C vop
t ;Spc/

factors through P.Ct / with P.Ct /! Fun.C vop
t ;Spc/ left adjoint to precomposition

by the inclusion i W C op
t ! C

vop
t . By the usual Yoneda lemma for 1–categories,

evy WP.Ct /! Spc is the left Kan extension of MapCt .y;�/. The left Kan extension
of evy to PS .C /t is then given by precomposition by i , so is again evy .
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To state the universal property of PS .C /, we need to introduce a bit of terminology.

11.2 Definition Let F W C !D be an S–functor. We say that F strongly preserves
S–(co)limits if for all s 2 S , Fs preserves Ss=–(co)limits.

11.3 Remark If F strongly preserves S–colimits then F preserves S–colimits.
However, the converse is not necessarily true.

11.4 Notation Suppose thatC andD are S–cocomplete S–categories. Let FunLS .C;D/
denote the full subcategory of FunS .C;D/ on the S–functorsF which strongly preserve
S–colimits. Let FunLS .C;D/ denote the full S–subcategory of FunS .C;D/ with fibers
FunL

Ss=
.C;D/ over s 2 S .

11.5 Theorem Let E be an S–cocomplete S–category. Then restriction along the
S–Yoneda embedding defines equivalences

FunLS .PS .C /; E/
'
�! FunS .C;E/; FunLS .PS .C /; E/

'
�! FunS .C;E/

with the inverse given by S–left Kan extension.

We prepare for the proof of Theorem 11.5 with some necessary results concerning S–
mapping spaces. Recall that given an1–category C , we have a number of equivalent
options for describing mapping spaces in C . The relevant ones to consider for us are:

(1) Straightening the left fibration zO.C /! C op �C , we obtain the mapping space
functor

MapC .�;�/ W C
op
�C ! Spc:

(2) Fixing an object x 2 C , straightening the left fibration C x=! C also yields the
functor

MapC .x;�/ W C ! Spc:

(3) Fixing objects x; y 2 C , we have that the space MapC .x; y/ is given by

fxg �C O.C /�C fyg:

Likewise, given an S–category C , we have these possibilities:

(1) The S–functor

MapC .�;�/ W C vop
�S C ! SpcS

given by the S–straightening of zOS .C /! C vop �S C .
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(2) Fixing an object x 2 C , we have the left fibration C x= D x �C OS .C /! C ,
which S–straightens to

MapC .x;�/ W C ! SpcS :

(3) Fixing an object x 2C , we have the left fibration C x=!C , which S–straightens
to

MapC .x;�/ W C ! SpcS :

(4) Fixing objects x 2 C and y 2 Cs , we have the Ss=–space

MapC .x; y/D x �C OS .C /�C y! y '�! Ss=:

In the proof of Lemma 11.1, we showed that (1) and (3) were equivalent, and by
Proposition 4.31, (2) and (3) are equivalent. Finally, (2) specializes to (4) by definition.
We are thus justified in our abuse of notation when we interchangeably refer to any of
these options by MapC .�;�/.

Our next goal is to prove that MapC .�;�/ preserves S–limits in the second variable,
and dually, takes S–colimits in the first variable to S–limits. For this, we need a few
lemmas.

11.6 Lemma Let F W X ! Y be a map of S–cocartesian or S–cartesian fibrations
over an S–category C . The following are equivalent :

(1) F is an equivalence.

(2) For all s 2 S and Ss=–functors Z! Cs ,

Fun=Cs ;Ss=.Z;Xs/! Fun=Cs ;Ss=.Z; Ys/

is an equivalence.

(3) For all s 2 S and c 2 Cs ,

Fun=Cs ;Ss=.c; Xs/! Fun=Cs ;Ss=.c; Ys/

is an equivalence.

(4) For all c 2 C , Fc WXc! Yc is an equivalence.

If X and Y are S–left or S–right fibrations over C , then all instances of Fun can be
replaced by Map.19

19Map refers here to the maximal subleft fibration of Fun and not the S–mapping space functor.
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Proof (1) D) (2) If F is an equivalence, so is Fs for all s 2 S . The map in question
is then induced by a map of pullbacks through equivalences in which two matching
legs are S–fibrations, so is an equivalence.

(2) D) (3) This is obvious.

(3) D) (4) Given c 2 Cs , take fibers over fsg 2 s and note that

Fun=Cs ;Ss=.c; Xs/s ' Fun=Cc .fcg; Xs/'Xc :

(4) D) (1) We must check that Fs is an equivalence for all s 2 S , for which it suffices
to check fiberwise over Cs by the hypothesis.

11.7 Lemma Let Nq W S ?S K! SpcS be an S–functor which extends q WK! SpcS .
Let X ! S ?S K be a left fibration which is an unstraightening of Nq�, and let X D
X �S?SK K. Then Nq is an S–limit diagram if and only if the restriction S–functor

R WMap=S?SK;S .S ?S K;X/!Map=S?SK;S .K;X/ŠMap=K;S .K;X/

is an equivalence.

Proof In view of [9, Corollary 3.3.3.4], Rs is a map from the limit of Nq�js?sKs to the
limit of q�jKs induced by precomposition on the diagram. But by Proposition 5.6, Nq is
an S–limit diagram if and only if Nq� is a right Kan extension of q�, in which case both
of the limits in question are equivalent to Nq�.s/. The assertion now follows.

11.8 Proposition Let Np W S ?S K!C be an S–functor. The following are equivalent :

(1) Np is an S–limit diagram.

(2) For all s 2 S and c 2 Cs ,

MapCs .c; Nps.�// W s ?s Ks! SpcSs=

is an Ss=–limit diagram.

(3) For all s 2 S and c 2 Cs ,

Map=Cs ;Ss=.c; C
=. Nps ;S

s=/
s /!Map=Cs ;Ss=.c; C

=.ps ;S
s=/

s /

is an equivalence.

Moreover , if the above conditions are obtained , then

Map=Cs ;Ss=.c; C
=.ps ;S

s=/
s /'MapCs .c; Nps.v//;

where v is the cone point fsg 2 s ?s Ks .
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Proof (2) () (3) We will show that the statements match after fixing c 2 Cs .
To ease notation, let us replace Ss= by S and suppose that s 2 S is an initial ob-
ject. By Lemma 11.7 and using that C c= is the S–unstraightening of MapC .c;�/,
MapC .c; Np.�// is an S–limit diagram if and only if

Map=C;S .S ?S K;C
c=/!Map=C;S .K;C

c=/

is an equivalence. By Corollary 4.27, this map is equivalent by a zigzag to the map

Map=C;S .c; C
=. Np;S//!Map=C;S .c; C

=.p;S//:

The assertion now follows. The last assertion also follows in view of the equivalence
C =. Np;S/ ' C = Np.v/ and Map=C;S .c; C

= Np.v//' c �C C
= Np.v/

'MapC .c; Np.v//.

(1)() (3) This follows from Lemma 11.6 applied to C =. Np;S/! C =.p;S/, which is
a map of S–right fibrations over C .

11.9 Corollary Let F W C !D be an S–functor. Then

(1) F strongly preserves S–limits if and only if for all s 2 S and d 2Ds ,

MapDs .d; Fs.�// W Cs! SpcSs=

preserves Ss=–limits.

(2) F strongly preserves S–colimits if and only if for all s 2 S and d 2Ds ,

MapDs .Fs.�/; d/DMapDvop
s
.d; F

vop
s .�// W C

vop
s ! SpcSs=

preserves Ss=–limits.

11.10 Corollary Let C be an S–category. The Yoneda embedding j W C !PS .C /

strongly preserves and detects S–limits.

Proof Combine Propositions 11.8 and 9.17.

Proof of Theorem 11.5 By Theorem 10.5, we have an S–adjunction

jŠ W FunS .C;E/ �! � FunS .PS .C /; E/ Wj �

with j �jŠ ' id and the essential image of jŠ spanned by the left Ss=–Kan extensions
ranging over all s 2 S . By Proposition 8.4, taking cocartesian sections yields an
adjunction

jŠ W FunS .C;E/ �! � FunS .PS .C /; E/ Wj �
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again with j �jŠ' id and the essential image of jŠ spanned by the left S–Kan extensions.
Both assertions will therefore follow if we prove that for an S–functor F WPS .C /!E,
F strongly preserves S–colimits if and only if F is a left S–Kan extension of its
restriction f D F jC .

For the “only if” direction, because idPS .C/ is an S–left Kan extension of j by the
S–Yoneda Lemma 11.1, F D F ı idPS .C/ is a left S–Kan extension as it is the
postcomposition of idPS .C/ with a strongly S–colimit preserving functor.

For the “if” direction, we use the criterion of Corollary 11.9. Replacing Ss= by S and
supposing that s 2 S is an initial object, we reduce to showing that for all x 2 Es ,
MapE .F.�/; x/ WPS .C /vop! SpcS preserves S–limits. We first observe that F vop is
an S–right Kan extension (of f vop), hence so is

MapE .F.�/; x/DMapEvop.x;�/ ıF vop

as the postcomposition of an S–right Kan extension with a strongly S–limit preserving
functor. However, by the vertical opposite of the S–Yoneda lemma, for any S–functor
G W C vop! SpcS , the strongly S–limit preserving S–functor MapPS .C/.�; G/ is an
S–right Kan extension of G. Applying this for G DMapE .f .�/; x/, we conclude.

12 Bousfield–Kan formula

In this section, we prove two decomposition formulas for S–colimits which resemble
the classical Bousfield–Kan formula for computing homotopy colimits. We first study
the situation when S D�0.

12.1 Notation Let K be a simplicial set and let �=K be the nerve of the category of
simplices of K. We denote the first vertex map by �K W�

op
=K
!K and the last vertex

map by �K W�=K !K.

By [9, Proposition 4.2.3.14], �K is final. Unfortunately, this is the wrong direction
for the purposes of obtaining a Bousfield–Kan type formula, since �=K is a cartesian
fibration over �. To rectify this state of affairs, we prove that �K is in fact final.

12.2 Proposition Let K be a simplicial set. Then the first vertex map �K W�
op
=K
!K

is final. Equivalently, the last vertex map �Kop is initial.
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Proof Note that �K is natural in K and that �op
=.�/
W sSet! sSet preserves colimits.

Recall from [9, Proposition 4.1.2.5] that a map f WX ! Y is final if and only if it is a
contravariant equivalence in sSet=Y . It follows that the class of final maps is stable
under filtered colimits, so we may suppose that K has finitely many nondegenerate
simplices. Using left properness of the contravariant model structure, by induction we
reduce to the assertion for K D �n. But in this case �K is final by the proof of [9,
Variant 4.2.3.15] (which proves the result when K is the nerve of a category).

For the second assertion, we note that the reversal isomorphism �=Kop Š�=K inter-
changes �Kop and .�K/op.

12.3 Corollary (Bousfield–Kan formula) Suppose that C admits (finite) coproducts.
Then for a (finite) simplicial set K and a map p WK! C , the colimit of p exists if and
only if the geometric realizationˇ̌̌̌ G

x2K0

p.x/
G
˛2K1

p.˛.0//
G
�2K2

p.�.0// � � �

ˇ̌̌̌
exists , in which case the colimit of p is computed by the geometric realization.

Proof The fibers of the cocartesian fibration �K W�
op
=K
!�op are the discrete sets Kn.

Therefore, the left Kan extension of p ı �K along �K exists. By Proposition 12.2,
colimp ' colimp ı�K , and the latter is computed as the colimit of .�K/Š.p ı�K/ by
the transitivity of left Kan extensions.

We also have a variant of Corollary 12.3 where the coproducts over Kn are replaced by
colimits indexed by the spaces Map.�n; K/. To formulate this, we need to introduce
some auxiliary constructions. Let � WW ! �op be the opposite of the relative nerve
of the inclusion �! sSet; this is a cartesian fibration which is an explicit model for
the tautological cartesian fibration over �op pulled back from the universal cartesian
fibration over Catop

1. Let � W�op!W be the “first vertex” section of � which sends
an n–simplex �a0  � � �  �an to the n–simplex

�n � � � �fn�1;ng �fng

�a0 � � � �an�1 �an

.�a/0 .�a/n�1 .�a/n

of W specified by .�a/i .0/D 0 for all 0� i � n.
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For an1–category C , let ZC DeFun�op.W;C ��op/ and let Z0C � ZC be the sub-
simplicial set on the simplices � such that every edge of � is cocartesian (with respect
to the structure map to �op), so that Z0C ! �op is the maximal subleft fibration in
ZC !�op. Define a �op–functor �op

=C
!ZC as adjoint to the map �op

C ��
op W ! C

which sends an n–simplex

�n � � � �fn�1;ng �fng

�a0 � � � �an�1 �an

C

.�a/0 .�a/n�1 .�a/n

�

to � ı .�a/0 2 Cn. Note that since �op
=C
!�op is a left fibration, this functor factors

through Z0C .

Define a “first vertex” functor ‡C W ZC ! C by precomposition with � (using the
isomorphism eFun�op.�op; C ��op/Š C ��op). We then have a factorization of the
first vertex map as

�
op
=C
!Z0C !ZC

‡C
�! C:

12.4 Proposition The functors ‡C and ‡ 0C D .‡C /jZ0C are final.

Proof We first prove that ‡C is final by verifying the hypotheses of [9, Theorem
4.1.3.1]. Let c 2 C . The map ZC ! C is functorial in C , so we have a map
ZCc= !ZC �C Cc=. We claim that this map is a trivial Kan fibration. Unwinding the
definitions, this amounts to showing that for every cofibration A!B of simplicial sets
over �op, we can solve the lifting problem

B [AA��op W Cc=

B ��op W C

where, since the class of left anodyne morphisms is right cancellative, we may suppose
AD¿. It thus suffices to prove that �B D B ��op � W B! B ��op W is left anodyne
for any map of simplicial sets B!�op. Observe that even though � is not a cartesian
section, it is a left adjoint relative to �op to � by [11, Proposition 7.3.2.6] and the
uniqueness of adjoints, since on the fibers it restricts to the adjunction f0g �! � �n.

Algebraic & Geometric Topology, Volume 23 (2023)



Parametrized higher category theory 625

Consequently, for any1–categoryB and functorB!�op, by [11, Proposition 7.3.2.5]
�B is a left adjoint, hence left anodyne. From this, we deduce the general case by using
the characterization in [9, Proposition 4.1.2.1] of the left anodyne maps X ! Y as
the trivial cofibrations in sSet=Y equipped with the covariant model structure. Indeed,
arguing as in the proof of Proposition 12.2, by induction on the nondegenerate simplices
of B we reduce to the known case B D�n.

We next prove that ZC is weakly contractible if C is, which will conclude the proof
for ‡C . For this, another application of (the opposite of) [11, Proposition 7.3.2.6]
shows that the �op–functor C ��op! ZC defined by precomposition by � is a left
adjoint relative to �op to the functor .‡C ; id�op/, because it restricts to the adjunction
� WC �! � Fun.�n; C / Wev0 on the fibers. Hence, jZC j ' jC ��opj ' jC j, and the latter
is contractible by hypothesis.

We employ the same strategy to show that ‡ 0C is final. Since Cc= ! C is con-
servative, the trivial Kan fibration above restricts to yield a trivial Kan fibration
Z0Cc=

!Z0C �C Cc=. Thus it suffices to show that Z0C is weakly contractible if C
is. By (the opposite of) [5, Proposition 7.3], the cocartesian fibration Z0C ! �op is
classified by the functor

�op iop
�! Cat1

Map.�;C /
�����! Spc:

Let R denote the right adjoint to the colimit-preserving functor

L W Fun.�op;Spc/! Cat1

left Kan extended from the inclusion i W � � Cat1; R sends an 1–category to
its corresponding complete Segal space. Then R.C/ ' Map.�; C / ı iop. For any
X� 2 Fun.�op;Spc/, we have colimX ' jL.X�/j, hence

colimR.C/' j.L ıR/.C /j ' jC j;

where L ıR' id by [10, Corollary 4.3.16]. By [9, Corollary 3.3.4.6],

jZ0C j ' colimR.C/;

so we conclude that jZ0C j is contractible.

The following corollary was previously proven by Mazel-Gee in [14].

Algebraic & Geometric Topology, Volume 23 (2023)



626 Jay Shah

12.5 Corollary (Bousfield–Kan formula, “simplicial” variant) Suppose that C
admits colimits indexed by spaces. Then for any1–categoryK and functor p WK!C ,
the colimit of p exists if and only if the geometric realizationˇ̌̌

colim
x2Map.�0;K/

p.x/ colim
˛2Map.�1;K/

p.˛.0// colim
�2Map.�2;K/

p.�.0// � � �
ˇ̌̌

exists , in which case the colimit of p is computed by the geometric realization.

Proof Using Proposition 12.4, we may repeat the proof of Corollary 12.3, now using
the span

�op
 Z0K

‡ 0K
�!K:

We now proceed to relativize the above picture, starting with the map ‡C . Let C ! S

be an S–category. Define the map

‡C;S WeFun�op�S=S .W �S;�
op
�C/! C

to be the composition of the map to eFun�op�S=S .�
op �S;�op �C/ given by precom-

position by �� idS , together with the equivalence of Lemma 9.5 of this to �op�C and
the projection to C . Define ‡ 0C;S to be the restriction of ‡C;S to the maximal subleft
fibration (with respect to �op �S ).

12.6 Theorem The S–functors ‡C;S and ‡ 0C;S are S–final.

Proof For every object s 2 S , we have a commutative diagram

eFun�op�S=S .W �S;�
op �C/s eFun�op�S=S .�

op �S;�op �C/s Cs

eFun�op.W;�op �Cs/ eFun�op.�op; �op �Cs/Š�
op �Cs Cs

.��idS /
�
s

.‡C;S /s

' '

��

‡Cs

prCs

where the left two vertical maps are given by the natural categorical equivalences of
Lemma 9.6; the only point to note is that the equivalences of Lemmas 9.5 and 9.6
coincide when the first variable is trivial. By Proposition 12.4, ‡Cs is final, so .‡C;S /s
is final. By the S–cofinality Theorem 6.7, ‡C;S is S–final. A similar argument shows
that ‡ 0C;S is S–final.
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The process of relativizing �C is considerably more involved. We begin with some
preliminaries on the relative nerve construction. Let J be a category.

12.7 Lemma The adjunctions

FJ W sSet=N.J / �! � Fun.J; sSet/ WNJ ; FCJ W sSetC
=N.J /

�! � Fun.J; sSetC/ WNCJ

of [9, Section 3.2.5] are simplicial.

Proof Let K W J ! sSet denote the constant functor at a simplicial set K. We have an
obvious map �K WN.J /�K!NJ .K/ natural in K and hence a map

.�X ; �K ı pr/ WX �K!NJ .FJX �K/ŠNJFJX �NJ .K/

natural in X and K. We want to show the adjoint

�X;K W FJ .X �K/! FJ .X/�K

is an isomorphism. Both sides preserve colimits separately in each variable, so we may
suppose X D�n! J and K D�m. By [9, Example 3.2.5.6], FI .I /.�/Š N.I=�/,
and by [9, Remark 3.2.5.8], for any functor f W I ! J , the square

sSet=N.I/ sSet=N.J /

Fun.I; sSet/ Fun.J; sSet/

fŠ

FI FJ

fŠ

commutes. Letting I D�n ��m and f W I ! J be the structure map, we have

FI .�
n
��m/.k; l/Š .�n/=k � .�

m/=l Š�
k
��l :

Factoring f as �n ��m g
�!�n h

�! J , we then have

gŠFI .�
n
��m/.k/Š�i ��m:

Let G D gŠFI .�n ��m/, so that FJ .�n ��m/.j /Š .hŠG/.j /. Then

.hŠG/.j /Š colim
�n�JJ=j

..k; h.k/! j / 7!�k/��m Š FJ .�
n/.j /��m

and one can verify that �X;K implements this isomorphism. For FCJ aN
C

J , recall that the
simplicial tensor sSet� sSetC! sSetC is given by .K;X/ 7!K]�X . Consequently,
in the above argument we may simply replace �m by .�m/] to conclude.
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Since NCJ .S
]/DN.J /�S], the adjunction FCJ aN

C

J lifts to an adjunction

FCJ;S W sSetC
=N.J /�S

�! � Fun.J; sSetC
=S
/ WNCJ;S

between the overcategories. Moreover, for any functor f W T ! S , the square

Fun.J; sSetC
=S
/ sSetC

=N.J /�S

Fun.J; sSetC
=T
/ sSetC

=N.J /�T

N
C

J;S

f � .id�f /�

N
C

J;T

commutes.

12.8 Proposition Equip sSetC
=N.J /�S

with the cocartesian model structure and
Fun.J; sSetC

=S
/ with the projective model structure , where sSetC

=S
has the cocartesian

model structure. Then the adjunction

FCJ;S W sSetC
=N.J /�S

�! � Fun.J; sSetC
=S
/ WNCJ;S

is a Quillen equivalence.

Proof We first prove that the adjunction is Quillen. Because this is a simplicial
adjunction between left proper simplicial model categories, it suffices to show that
FCJ;S preserves cofibrations and NCJ;S preserves fibrant objects. Observe that the slice
model structure on

sSetC
=N.J /�S

Š .sSetC
=N.J /

/=.N.J /�S/]

is a localization of the cocartesian model structure. Similarly, the slice model structure
on

Fun.J; sSetC
=S
/Š Fun.J; sSetC/=S]

is a localization of the projective model structure, since the trivial fibrations for the
two model structures coincide and postcomposition by �Š W sSetC

=S
! sSetC gives a

Quillen left adjoint between the projective model structures. Since the lift of a Quillen
adjunction L WM �! �N WR to the adjunction zL WM=R.x/

�! �N=x W zR is Quillen for the
slice model structures, we deduce that FCJ;S preserves cofibrations.

Now suppose F W J ! sSetC
=S

is fibrant. Since S is an 1–category, F ! S is a
fibration in Fun.J; sSet/. Hence NJ;S .F /!N.J /�S is a categorical fibration. We
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verify that it is a cocartesian fibration (with every marked edge cocartesian) by solving
the lifting problem (for n� 1)

\ƒ
n
0 NCJ;S .F /

\�
n .N.J /�S/]

.j�;s�/

Unwinding the definitions, this amounts to solving the lifting problem

\ƒ
n
0 F.jn/

\�
n S]

s�

and the dotted lift exists because F.jn/ is cocartesian over S with the cocartesian
edges marked. Finally, it is easy to see that marked edges compose and are stable under
equivalence. We conclude that NCJ;S .F / is fibrant in sSetC

=N.J /�S
.

To prove that the Quillen adjunction is a Quillen equivalence, we will show that the
induced adjunction of1–categories

F0CJ;S WN..sSetC
=N.J /�S

/ı/ �! �N.Fun.J; sSetC
=S
/ı/ WN 0CJ;S

is an adjoint equivalence, where N 0CJ;S is the simplicial nerve of NCJ;S and F0CJ;S is any
left adjoint to N 0CJ;S . We first check that N 0CJ;S is conservative. Indeed, for this we may
work in the model category: for a natural transformation ˛ W F !G in Fun.J; sSetC

=S
/,

NCJ;S .F /! NCJ;S .G/ on fibers is given by F.j /s ! G.j /s; hence if F and G are
fibrant and NCJ;S .˛/ is an equivalence then ˛ is as well. It now suffices to show
that the unit transformation � W id!N 0CJ;SF

0C

J;S is an equivalence. We have the known
equivalenceN..sSetC

=N.J /�S
/ı/'Fun.N.J /�S;Cat1/ so it further suffices to check

that the map
.id� is/�! .id� is/�N 0CJ;SF

0C

J;S 'N
0C

J i�s F
0C

J;S

is an equivalence for all s 2 S , where is W fsg ! S the inclusion. Equivalently, since
FCJ aN

C

J is a Quillen equivalence by [9, Proposition 3.2.5.18], we must show that the
adjoint map

F0CJ i
�
s ! .id� is/�F0CJ;S

is an equivalence. This statement is in turn equivalent to the adjoint map

� WN 0CJ;S .is/�! .id� is/�N 0CJ
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being an equivalence. Recall that for a functor f W T ! S ,

f� W Fun.T;Cat1/! Fun.S;Cat1/

is induced by ���� W sSetC
=T
! sSetC

=S
for the span

S] �
 � .O.S/�S T /

] �
�! T ]

with � given by evaluation at 0 and � projection to T . Moreover, for a functor
id�f W U �T ! U �S , we may elect to use the span

.U �S/]
id��
 �� .U �O.S/�S T /

] id��
��! .U �T /]

to model .id�f /�. Letting f D is , we see that � is induced by the map

NCJ;S���
�
! .id��/�NCJ;Ss=�

�
Š .id��/�.id� �/�NCJ ;

where the first map is adjoint to the isomorphism .id��/�NCJ;S ŠN
C

J;Ss=
��. Direct

computation reveals that this map is an equivalence on fibrant F W J ! sSetC.

We now return to the situation of interest. Let C be an S–category with structure map
� W C ! S . We first extend our existing notation x for objects x 2 C .

12.9 Notation For an n–simplex � of C , define

� D f�g �Fun.�n�f0g;C / Fun..�n/[ � .�1/]; \C/�Fun.�n�f1g;S/ S:

12.10 Lemma There exists a map b� W � ! f��.n/g �S O.S/D S��.n/= which is a
trivial Kan fibration.

Proof First define a map b0� W � ! �� to be the pullback of the map

.e0;O.�//� W Fun.�n;Ococart.C //! C�
n

�S�n Fun.�n;O.S//

over f�g and S . Since .e0;O.�// is a trivial Kan fibration, so is b0� . Next, let K be the
pushout �n � f0g[fng�f0g fng ��1. We claim that the map

Fun.�n;O.S//�S�n S ! Fun.K; S/

induced by K ��n ��1 is a trivial Kan fibration. For a monomorphism A! B , we
need to solve the lifting problem

A Fun.�n;O.S//�S�n S

B Fun.K; S/
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which transposes to

A��n[A�fngB � fng O.S/

B ��n S

ev0

and the left-hand map is right anodyne by [9, Corollary 2.1.2.7]; hence the dotted lift
exists as ev0 is a cartesian fibration. Now define b00� to be the pullback

�� D f��g �S�n Fun.�n;O.S//�S�n S ! f��g �S�n Fun.K; S/Š S��.n/=:

This is also a trivial Kan fibration. Finally, let b� D b00� ı b
0
� .

We will regard � as an S��.n/= or S–category via b� . We also have a target map
� ! C�

n

induced by �n � f1g ��n ��1. This covers the target map S��.n/=! S

and is an S–functor.

Define a functor FC W�op! sSetC
=S

on objects Œn� by

FC .Œn�/D
G
�2Cn

�]

and on morphisms ˛ W Œm�! Œn� by the map � ! �˛ induced by precomposition by
˛ W�m!�n.

12.11 Remark The map � ! �.n/ is compatible with the maps b� and b�.n/ of
Lemma 12.10, hence is a categorical equivalence (in fact, a trivial Kan fibration).
Consequently, given a morphism f W x! y in C , by choosing an inverse to f '

�! y

we obtain a map f � W y ! x, unique up to contractible choice. Moreover, if f lies
over an equivalence, then f ! x is a trivial Kan fibration, so we also obtain a map
fŠ W x! y.

In order to define the S–first vertex map NC�op;S .FC /!C , we need to introduce a few
preliminary constructions. Let An � O.�n/ be the subsimplicial set where a k–simplex
x0y0! � � � ! xkyk is in An if and only if xk � y0. For the reader’s aid we draw a
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picture of the inclusion An � O.�n/ for nD 2, where dashed edges are not in A2:

00

01 11

02 12 22

12.12 Lemma The inclusion An! O.�n/ is inner anodyne.

Proof In this proof we adopt the notation Œx0y0; : : : ; xkyk� for a k–simplex of O.�n/.
Let E be the collection of edges Œab; xy� in O.�n/ where x > b, and choose a total
ordering � on E such that if we have a factorization

ab xy

a0b0 x0y0

then Œa0b0; x0y0� � Œab; xy�. Index edges in E by I D f0; : : : ; N g. Define simplicial
subsets An;i of O.�n/ such that An;i is obtained by expanding An to contain every k–
simplex Œx0y0; : : : ; xkyk� with Œx0y0; xkyk� in E<i . We will show that each inclusion
An;i ! An;iC1 is inner anodyne. We may divide the nondegenerate k–simplices
Œx0y0; x1y1; : : : ; xkyk� in An;iC1 but not in An;i into six classes:

� A1 x1y1 ¤ x0.y0C 1/ and y1 > y0.

� A2 x1y1 D x0.y0C 1/.

� B1 x1y1 D .x0C 1/y0, y2 > y0, and x2y2 ¤ .x0C 1/.y0C 1/.

� B2 x1y1 D .x0C 1/y0 and x2y2 D .x0C 1/.y0C 1/.

� C1 x1y1 ¤ .x0C 1/y0 and y1 D y0.

� C2 x1y1 D .x0C 1/y0 and y2 D y0.

We have bijections between classes of form 1 and classes of form 2 given by

� A Œx0y0; x1y1; : : : ; xkyk� 7! Œx0y0; x0.y0C 1/; x1y1; : : : ; xkyk�,

� B Œx0y0; x0C 1y1; x2y2; : : : ; xkyk�

7! Œx0y0; .x0C 1/y0; .x0C 1/.y0C 1/; x2y2; : : : ; xkyk�;

� C Œx0y0; x1y1; : : : ; xkyk� 7! Œx0y0; .x0C 1/y0; x1y1; : : : ; xkyk�.
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Moreover, this identifies simplices in a class of form 1 as inner faces of simplices in the
corresponding class of form 2. Let P be the collection of pairs � � � 0 of nondegenerate
k� 1 and k–simplices matched by this bijection. Choose a total ordering on P where
pairs are ordered first by the dimension of the smaller simplex, and then by A<B <C ,
and then randomly. Let J D f0; : : : ;M g be the indexing set for P . We define a
sequence of inner anodyne maps

An;i D An;i;0! An;i;1! � � � ! An;i;MC1 D An;iC1

such that An;i;jC1 is obtained from An;i;j by attaching the j th pair � � � 0 along an
inner horn. For this to be valid, we need the other faces of � 0 to already be in An;i;j .
The ordering on E was chosen so that the outer faces of � 0 are in An;i . The argument
for the inner faces proceeds by cases:

� � 0 is in class A2: The other inner faces are also in class A2 since they contain
x0.y0C 1/, hence were added at some earlier stage.

� � 0 is in class B2: The other inner faces of

Œx0y0; .x0C 1/y0; .x0C 1/.y0C 1/; x2y2; : : : ; xkyk�

are all in class B2, except for Œx0y0; .x0C 1/.y0C 1/; x2y2; : : : ; xkyk�, which
is in class A1. Both of these were added at an earlier stage.

� � 0 is in class C2: The other inner faces are in class C2 or B1 since they contain
.x0C 1/y0, hence were added at some earlier stage.

Let En� .An/1� O.�n/1 be the subset of edges x0y0! x1y1 where y0D y1. Define
simplicial sets C 0 and C 00 to be the pullbacks

C 0
�

Hom..O.��/; E�/; \C/

Hom.��; S/ Hom.O.��/; S/
ev�0

C 00
�

Hom..A�; E�/; \C/

Hom.��; S/ Hom.A�; S/
ev�0

We now show that the map C 0! C 00 induced by precomposition by A�! O.��/ is a
trivial Kan fibration. Indeed, in order to solve the lifting problem

@�n C 0

�n C 00
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we must supply a lift

An[[An�1
�S

O.�n�1/
�

C

O.�n/ S

and the left vertical map is a trivial cofibration by Lemma 12.12. Let � W C 00! C 0 be
any section. Also let ı W C 0! C be the map induced by precomposition by the identity
section ��! O.��/.

Define a map �C;S WNC�op;S .FC /! C over S as follows: the data of an n–simplex of
NC�op;S .FC / consists of

� an n–simplex �a0  � � �  �an in �op (so we have maps fij W�aj !�ai for
i � j );

� an n–simplex s� W�n! S ;

� a choice of a0–simplex �0 2 Ca0 ;

� for 0� i � n, a map 
i W�i ! � i , where �i D �0 ıf0i

such that for all 0� i � j � n, the diagram

�i � i

�j �j

S


i

f0;:::;ig�Œj � f �
ij


j

.s�/jf0;:::;jg

commutes. Let x
i W�i ��ai ��1! C denote the adjoint map.

We now define a map An!C to be that uniquely specified by sending for all 0� k�n
the rectangle �k ��n�k � An given by 00 7! 0k and k.n� k/ 7! kn to

�k ��n�k
id�.�a/k
�����!�k ��ak � f1g

x
i jf1g
���! C;

where the maps .�a/k are obtained from the first vertex section of W !�op restricted
to a� as before. One may check that the composite An! C ! S factors as

An!�n
s�
�! S;
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so this defines a n–simplex of C 00. This procedure is natural in �n 2 �, so yields a
map NC�op;S .FC /!C 00. Finally, postcomposition by ıı� WC 00!C define our desired

map �C;S . By Proposition 12.8, NC�op;S .FC /
� 0
�! S is an S–category with an edge

� 0–cocartesian if and only if it is degenerate when projected to �op. These edges are
evidently sent to �–cocartesian edges in C , so �C is an S–functor.

12.13 Theorem The S–first vertex map �C;S WNC�op;S .FC /! C is fiberwise a weak
homotopy equivalence. Moreover , �C;S is S–final if either C ! S is a left fibration ,
or S is equivalent to the nerve of a 1–category.

Proof Let t 2 S be an object and it W ftg ! S the inclusion. Then

NC�op;S .FC /t ŠN
C

�op.i
�
t FC /:

We have a map
NC�op.i

�
t FC /!�

op
=C
ŠNC�op.C�/

of left fibrations over �op induced by the natural transformation i�t FC ! C� which
collapses each � �S ftg to a point. Moreover, this natural transformation is objectwise
a Kan fibration, so the map itself is a left fibration. Also define a map

NC�op.i
�
t FC /! .S=t /op

as follows: in the above notation, the 
0 map in the data of an n–simplex

.a�; 
i W�
i
! � i �S ftg/

yields a map �
0 W�a0 ! O.S/�S ftg D S
=t , and we send the n–simplex to

�n
.�arev/0
�����! .�a0/op .�
0/

op
����! .S=t /op;

where arev
�

is .�a0/op � � �  .�an/op. Using these maps we obtain a commutative
square

NC�op.i
�
t FC / C op �Sop .S=t /op

�
op
=C

C op�
op
C

We claim that the map

�C;t WN
C

�op.i
�
t FC /! .�

op
=C
/�C op .C �S S

=t /op
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is a categorical equivalence. Since �C;t is a map of left fibrations over �op
=C

, it suffices
to check that for every object � 2�op

=C
, the map on fibers

� �S ftg ! .Sop/t= �Sop f��.n/g ' f��.n/g �S S
=t

is a homotopy equivalence. But this is the pullback of the trivial Kan fibration of
Lemma 12.10 over ftg.

We next define a map NC�op.i
�
t FC /! S=t by sending .a�; 
i / to �
0 ı .�a/0. Then

the outer rectangle

NC�op.i
�
t FC / C �S S

=t S=t

�
op
=C

C S

� 0C;t

�C �

commutes so we obtain the dotted map � 0C;t .

Next, we choose a section P of the trivial Kan fibration Ococart.C /!C �S O.S/ which
restricts to the identity section on C . P restricts to a map

Pt W C �S S
=t
! Ococart.C /�S ftg;

and it is tedious but straightforward to construct a homotopy between the composition
.ev1 Pt /ı� 0C;t and .�C;S /t . Finally, we define a map � 00C;t W�

op
=C�SS=t

!NC�op.i
�
t FC /

as follows: given an n–simplex

�a0 � � � �an

C �S S
=t

�0
�n

let �i D prC ı�i , and define 
i W�i ! � i �S ftg as the composition of the projection to
�0 and the adjoint of the map Pt ı �i . Then .a�; 
i / assembles to yield an n–simplex
of NC�op.i

�
t FC /.

Unwinding the definitions of the various maps, we identify the composition � 0C;t ı�
00
C;t

as given by �C�SS=t , and the composition �C;t ı � 00C;t as given by the map�op
= prC

to the
factor �op

=C
and the map .�C�SS=t /

op to the factor .C �S S=t /op. By Proposition 12.2
and the fact that final maps pull back along cocartesian fibrations, we deduce that in

�
op
=C�SS=t

�
op
=C
�C op .C �S S

=t /op .C �S S
=t /op

Algebraic & Geometric Topology, Volume 23 (2023)



Parametrized higher category theory 637

the long composition and the second map are both final. Consequently, �C;t ı � 00C;t is a
weak homotopy equivalence. Moreover, if S is equivalent to the nerve of a 1–category
then �C;t ı � 00C;t is a categorical equivalence, as may be verified by checking that the
map is a fiberwise equivalence over �op

=C
. Since �C;t is a categorical equivalence, � 00C;t

is then a weak homotopy equivalence (resp. a categorical equivalence). Since �C�SS=t
is final, � 0C;t is then a weak homotopy equivalence (resp. final).

For the last step, let jt W Ct ! C �S S
=t denote the inclusion. As the inclusion of the

fiber over a final object into a cocartesian fibration, jt is final. .ev1 Pt / ı jt D idCt ,
so by right cancellativity of final maps, ev1 Pt is final. We conclude that .�C;S /t is
a weak homotopy equivalence (resp. final). In addition, if C ! S is a left fibration,
.�C;S /t has target a Kan complex, so is final by [11, Lemma 2.3.4.6]. Invoking the
S–cofinality Theorem 6.7, we conclude the proof.

12.14 Remark The above proof that the S–first vertex map �C;S is final in special
cases hinges upon the finality of the map �C;t ı � 00C;t . We believe, but are currently
unable to prove, that this map is always final.

We conclude this section with our main application to decomposing S–colimits.

12.15 Corollary Suppose that Sop admits multipullbacks. Then C is S–cocomplete
if and only C admits all S–coproducts and geometric realizations.

Proof We prove the if direction, the only if direction being obvious. Let K be an
Ss=–category and p WK! Cs an Ss=–diagram. First suppose that K! Ss= is a left
fibration. Consider the diagram

NC
�op;Ss=

.FK/ K Cs

�op �Ss=

�
K;Ss=

�

p

By Theorem 12.13, the Ss=–colimit of p is equivalent to that of p ı �K;Ss= . Since � is
S–cocartesian, by Theorem 9.15 the Ss=–left Kan extension of p ı �K;Ss= along � exists
provided that for all n 2�op and f W s! t , the S t=–colimit exists for .p ı�K;Ss=/.n;f /.
To understand the domain of this map, note that because the pullback of � along
f � W �op � S t= ! �op � Ss= is given by NC

�op;S t=
.f �FK/, the assumption that Sop

admits multipullbacks ensures that the .n; f /–fibers of � decompose as coproducts
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of representable left fibrations. Therefore, these colimits exist since C is assumed to
admit S–coproducts. Now by transitivity of left Ss=–Kan extensions, the Ss=–colimit
of p ı�K;Ss= is equivalent to that of �Š.p ı�K;Ss=/, and this exists since C is assumed
to admit geometric realizations.

Now suppose that K! Ss= is any cocartesian fibration. Consider the diagram

�eFun�op�Ss=.W �S
s=; �op �K/ K Cs

�op �Ss=

‡ 0
K;Ss=

�0

p

By Theorem 12.6, the Ss=–colimit of p is equivalent to that of p ı ‡ 0
K;Ss=

. By
Proposition 9.7, the .n; f /–fiber of �0 is equivalent to �FunS t=.�

n �S t=; K �Ss= S
t=/,

which in any case remains a left fibration. We just showed that for all t 2 S , Ct admits
S t=–colimits indexed by left fibrations. We are thereby able to repeat the above proof
in order to show that the Ss=–colimit of p exists.

Appendix Fiberwise fibrant replacement

In this appendix, we formulate a result (Proposition A.4) which will allow us to
recognize a map as a cocartesian equivalence if it is a marked equivalence on the fibers.
We begin by introducing a marked variant of Lurie’s mapping simplex construction.

A.1 Definition Suppose we have a functor � W Œn�! sSetC, A0! � � � ! An. Define
M.�/ to be the simplicial set which is the opposite of the mapping simplex construction
of [9, Section 3.2.2], so that a m–simplex of M.�/ is given by the data of a map
˛ W�m!�n together with a map ˇ W�m! A˛.0/. Endow M.�/ with a marking by
declaring an edge e D .˛; ˇ/ of M.�/ to be marked if and only if ˇ is a marked edge
of A˛.0/. Note that if each Ai is given the degenerate marking, then the marking on
M.�/ is that of [9, Notation 3.2.2.3].

A.2 Lemma Suppose � W � !  is a natural transformation between functors
Œn�! sSetC such that for all 0� i � n, �i WAi!Bi is a cocartesian equivalence. Then
M.�/ WM.�/!M. / is a cocartesian equivalence in sSetC

=�n
.

Proof Using the decomposition of M.�/ as the pushout

M.�0/[A0��n�1 A0 ��
n
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for �0 W A1 ! � � � ! An, this follows by an inductive argument in view of the left
properness of sSetC

=�n
.

A.3 Construction Let X !�n be a cocartesian fibration, let � be a section of the
trivial Kan fibration Ococart.X/!X ��n O.�n/ which restricts to the identity section
on X , and let P D ev1 ı� be the corresponding choice of pushforward functor. For
0� i < n, define fi WXi ��1!X by P ı .idXi �f

0
i / where f 0i W�

1! O.�n/ is the
edge .i D i/! .i ! i C 1/, and let � W X�0 ! � � � ! X�n be the sequence obtained
from the fi � f1g. We will explain how to produce a map M.�/!X over �n via an
inductive procedure. Begin by defining the map M.�/n DXn!Xn to be the identity.
Proceeding, observe that M.�/ is the pushout

X0 ��
f1;:::;ng X0 ��

n

M.�0/ M.�/




with �0 the composable sequence X1! � � � !Xn and the map 
 given by

X0 ��
n�1
!X1 ��

n�1
!M.�0/:

Given a map g0 WM.�0/!X over �n�1, we have a commutative square

X0 ��
1[X0��f1g

X0 ��
f1;:::;ng X

X0 ��
n �n

.f0;g
0ı
/

and the left vertical map is inner anodyne by [9, Lemma 2.1.2.3] and [9, Corol-
lary 2.3.2.4]. Thus a dotted lift exists and we may extend g0 to g WM.�/!X .

Note that gi is the identity for all 0� i � n. Therefore, if we instead take the marking
on M.�/ which arises from the degenerate marking on the Xi , then g is (the opposite
of) a quasiequivalence in the terminology of [9, Definition 3.2.2.6], hence a cocartesian
equivalence in sSetC

=�n
by [9, Proposition 3.2.2.14]. Now by Lemma A.2, g with the

given marking is a cocartesian equivalence.

This construction of M.�/! X enjoys a convenient functoriality property: given a
cofibration F W X ! Y between cocartesian fibrations over �n, we may first choose
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�X as above, and then define �Y to be a lift in the diagram

.X ��n O.�n//[X Y Ococart.Y /

Y ��n O.�n/ Y ��n O.�n/

.F ı�X ;�/

�
�Y

Consequently, we obtain compatible pushforward functors and a natural transformation
� W �X ! �Y , which yields, by a similar argument, a commutative square

M.�X / M.�Y /

X Y

M.�/

F

where the vertical maps are cocartesian equivalences in sSetC
=�n

.

A.4 Proposition Let p WX ! S and q W Y ! S be cocartesian fibrations over S and
let F WX ! Y be an S–functor. Suppose collections of edges EX and EY of X and Y
such that

(1) EX and EY contain the p– and q–cocartesian edges , respectively;

(2) for E0X � EX the subset of edges which are either p–cocartesian or lie in a fiber ,
we have that .X;E0X /� .X;EX / is a cocartesian equivalence in sSetC

=S
, and ditto

for Y ;

(3) F.EX /� EY ;

(4) for all s 2 S , Fs W .Xs; .EX /s/! .Ys; .EY /s/ is a cocartesian equivalence in
sSetC.

Let X 0 D .X;EX /, Y 0 D .Y;EY /, and F 0 W X 0! Y 0 be the map given on underlying
simplicial sets by F . Then for all simplicial sets U and maps U ! S , F 0U is a
cocartesian equivalence in sSetC

=U
.

Proof Without loss of generality, we may assume that an edge e is in EX if and only if
either e is p–cocartesian or p.e/ is degenerate, and ditto for EY . First suppose that F
is a trivial fibration in sSetC

=S
and for all s 2 S , F 0s reflects marked edges. Then F 0 is

again a trivial fibration because F 0 has the right lifting property against all cofibrations.
For the general case, factor F as X G

�!Z H
�! Y where G is a cofibration and H is a

trivial fibration, and let Z0 D .Z;EZ/ for EZ the collection of edges e where e is in
EZ if and only if H.e/ is in EY . Then for all s 2 S , Z0s! Y 0s is a trivial fibration in
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sSetC, so as we just showed H 0 WZ0! Y 0 is a trivial fibration. We thereby reduce to
the case that F is a cofibration.

Let U denote the collection of simplicial sets U such that for every map U ! S , F 0U is
a cocartesian equivalence in sSetC

=U
. We need to prove that every simplicial set belongs

to U. For this, we will verify the hypotheses of [9, Lemma 2.2.3.5]. Conditions (i) and
(ii) are obvious, condition (iv) follows from left properness of the cocartesian model
structure and [11, Proposition B.2.9], and condition (v) follows from the stability of
cocartesian equivalences under filtered colimits and [11, Proposition B.2.9]. It remains
to check that every n–simplex belongs to U, so suppose S D�n. Let

M.�X / M.�Y /

X Y

M.�/

F

be as in Construction A.3. Let �0X be the sequence X 00! � � � !X 0n, where the maps
are the same as in �X , and similarly define �0Y and �0. Then we have pushout squares

M.�X / M.�0X /

X X 00

M.�Y / M.�0Y /

Y Y 00

with all four vertical maps cocartesian equivalences in sSetC
=�n

. Here we replace X 0

by X 00, which has the same underlying simplicial set X but more edges marked with
X 0 � X 00 left marked anodyne, so that the vertical maps M.�0X /! X 00 are defined
and the squares are pushout squares (again, ditto for Y 00). Note that F defines a map
F 00 WX 00! Y 00.

Finally, we have the commutative square

M.�0X / M.�0Y /

X 00 Y 00

M.�0/

F 00

By assumption, �0 W �0X ! �0Y is a natural transformation through cocartesian equiva-
lences in sSetC. By Lemma A.2, M.�0/ is a cocartesian equivalence in sSetC

=�n
. We

deduce that F 00, hence F 0, is as well.
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A.5 Remark By a simple modification of the above arguments, we may further prove
that for any marked simplicial set A! S , F 0A is a cocartesian equivalence in sSetC

=A
.

We leave the details of this to the reader.

List of symbols

Spc 1–category of spaces 510
O.S/ Arrow1–category of S 520
S s= Slice1–category of S under the object s, Lurie’s “alternative” 520

version [9, Section 4.2.1]
Catcocart
1=S 1–category of cocartesian fibrations over S 520

Cat1=S 1–category of1–categories over S 520
.X; E/ Marked simplicial set 521
X [ Simplicial set X with its degenerate edges marked 522
X] Simplicial set X with all its edges marked 522
X� 1–category X with its equivalences marked 522

\X Inner fibration � WX!S with its �–cocartesian edges marked 522
X \ Inner fibration � WX!S with its �–cartesian edges marked 522

\�
n �n with the edge f0; 1g marked 522

�n\ �n with the edge fn�1; ng marked 522

\ƒ
n
0 ƒn0 with the edge f0; 1g marked 522

ƒnn
\ ƒnn with the edge fn�1; ng marked 522

sSetC
=.Z;E/ The category of marked simplicial sets over .Z; E/ 522

sSetC
=Z

The category of marked simplicial sets over Z] 522

Map.�/.�;�/ Mapping simplicial set relative to marked simplicial set, 523
excludes noninvertible morphisms,1–groupoid when fibrant

Fun.�/.�;�/ Mapping simplicial set relative to marked simplicial set, 524
includes noninvertible morphisms,1–category when fibrant

eFunD.C;E/ Pairing construction 529
x Parametrized point 531
Cx Parametrized fiber 531
FunS .�;�/ S–category of S–functors 532
�f Cocartesian section S!FunS .C;E/ classifying S–functor 535

f WC!E

C S S–category of objects in an1–category C 538
p� Corresponding functor under universal mapping property of C S 539
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X?S Y S–join 539
C.p;S/= S–undercategory of S–category C with respect to p WK!C 555
C=.p;S/ S–overcategory of S–category C with respect to p WK!C 555
FunK==M;S .C;D/ S–category of S–functors, relative variant 561
C .p;S/= S–undercategory of S–category C with respect to p WK!C , 563

alternative version
C =.p;S/ S–overcategory of S–category C with respect to p WK!C , 563

alternative version
OS .C / Fiberwise arrow S–category of C 564
C =x Slice S–category over a point x2C 564
C x= Slice S–category under a point x2C 564`
˛i
xi Indexed coproduct 569

zO.S/ Twisted arrow1–category 572
Xvop Vertical opposite 572

Ce.p;S/= Twisted slice zO.S/–category under an S–functor p WK!C 585
Frcocart.�/ Free S–cocartesian fibration on an S–functor � 590
Frcart.�/ Free S–cartesian fibration on an S–functor � 590
SectD=S .C / S–category of sections 594
eFunD=S .C;E/ Parametrized pairing construction 598
E.�;F /=S D–parametrized slice for S–cocartesian fibration � WC!D 604

and S–functor F WC!E over D
PS .C / Parametrized presheaves 617
MapC .�;�/ Parametrized mapping space 619

�K First vertex map 622
�K Last vertex map 622
‡K First vertex functor, space variant 624
‡C;S Parametrized first vertex functor, space variant 626
�C;S Parametrized first vertex functor 634

References
[1] C Barwick, Spectral Mackey functors and equivariant algebraic K–theory, I, Adv.

Math. 304 (2017) 646–727 MR Zbl

[2] C Barwick, E Dotto, S Glasman, D Nardin, J Shah, Parametrized higher category
theory and higher algebra: Exposé I — Elements of parametrized higher category
theory, preprint (2016) arXiv

Algebraic & Geometric Topology, Volume 23 (2023)

http://dx.doi.org/10.1016/j.aim.2016.08.043
http://msp.org/idx/mr/3558219
http://msp.org/idx/zbl/1348.18020
http://msp.org/idx/arx/1608.03657


644 Jay Shah

[3] C Barwick, S Glasman, D Nardin, Dualizing cartesian and cocartesian fibrations,
Theory Appl. Categ. 33 (2018) 67–94 MR Zbl

[4] C Barwick, J Shah, Fibrations in1–category theory, from “2016 MATRIX annals”
(D R Wood, J de Gier, C E Praeger, T Tao, editors), MATRIX Book Ser. 1, Springer
(2018) 17–42 MR Zbl

[5] D Gepner, R Haugseng, T Nikolaus, Lax colimits and free fibrations in1–categories,
Doc. Math. 22 (2017) 1225–1266 MR Zbl

[6] B Guillou, J P May, Models of G–spectra as presheaves of spectra, preprint (2011)
arXiv

[7] M Hovey, Model categories, Mathematical Surveys and Monographs 63, Amer. Math.
Soc., Providence, RI (1999) MR Zbl

[8] A Joyal, M Tierney, Quasi-categories vs Segal spaces, from “Categories in algebra,
geometry and mathematical physics” (A Davydov, M Batanin, M Johnson, S Lack,
A Neeman, editors), Contemp. Math. 431, Amer. Math. Soc., Providence, RI (2007)
277–326 MR Zbl

[9] J Lurie, Higher topos theory, Annals of Mathematics Studies 170, Princeton Univ.
Press (2009) MR Zbl

[10] J Lurie, .1; 2/–categories and the Goodwillie calculus I, preprint (2009) Available at
https://www.math.ias.edu/~lurie/papers/GoodwillieI.pdf

[11] J Lurie, Higher algebra, book project (2017) Available at https://url.msp.org/
Lurie-HA

[12] J Lurie, Kerodon, online resource (2021) Available at https://kerodon.net

[13] A Mazel-Gee, A user’s guide to co/cartesian fibrations, preprint (2015) arXiv

[14] A Mazel-Gee, On the Grothendieck construction for 1–categories, J. Pure Appl.
Algebra 223 (2019) 4602–4651 MR Zbl

[15] D Nardin, Parametrized higher category theory and higher algebra: Exposé IV —
Stability with respect to an orbital1–category, preprint (2016) arXiv

[16] E Riehl, D Verity, Elements of1–category theory, Cambridge Studies in Advanced
Mathematics 194, Cambridge Univ. Press (2022) MR Zbl

[17] J Shah, Parametrized higher category theory, II: Universal constructions, preprint
(2021) arXiv

Department of Mathematics and Computer Science, University of Münster
Münster, Germany

jay.h.shah@gmail.com

Received: 18 July 2019 Revised: 21 October 2021

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://www.tac.mta.ca/tac/volumes/33/4/33-04abs.html
http://msp.org/idx/mr/3746613
http://msp.org/idx/zbl/1423.18025
https://www.matrix-inst.org.au/wp_Matrix2016/wp-content/uploads/2017/08/BarwickShah.pdf
http://msp.org/idx/mr/3792514
http://msp.org/idx/zbl/1448.18031
http://dx.doi.org/10.4171/dm/593
http://msp.org/idx/mr/3690268
http://msp.org/idx/zbl/1390.18021
http://msp.org/idx/arx/1110.3571
https://bookstore.ams.org/surv-63-s
http://msp.org/idx/mr/1650134
http://msp.org/idx/zbl/0909.55001
http://dx.doi.org/10.1090/conm/431/08278
http://msp.org/idx/mr/2342834
http://msp.org/idx/zbl/1138.55016
http://dx.doi.org/10.1515/9781400830558
http://msp.org/idx/mr/2522659
http://msp.org/idx/zbl/1175.18001
https://www.math.ias.edu/~lurie/papers/GoodwillieI.pdf
https://url.msp.org/Lurie-HA
https://url.msp.org/Lurie-HA
https://kerodon.net
http://msp.org/idx/arx/1510.02402
http://dx.doi.org/10.1016/j.jpaa.2019.02.007
http://msp.org/idx/mr/3955033
http://msp.org/idx/zbl/1428.18046
http://msp.org/idx/arx/1608.07704
http://dx.doi.org/10.1017/9781108936880
http://msp.org/idx/mr/4354541
http://msp.org/idx/zbl/1492.18001
http://msp.org/idx/arx/2109.11954
mailto:jay.h.shah@gmail.com
http://msp.org
http://msp.org


msp
Algebraic & Geometric Topology 23:2 (2023) 645–732

DOI: 10.2140/agt.2023.23.645
Published: 9 May 2023

Floer theory of disjointly supported Hamiltonians
on symplectically aspherical manifolds
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We study the Floer-theoretic interaction between disjointly supported Hamiltonians
by comparing Floer-theoretic invariants of these Hamiltonians with the ones of their
sum. These invariants include spectral invariants, boundary depth and Abbondandolo,
Haug and Schlenk’s action selector. Additionally, our method shows that in certain
situations, the spectral invariants of a Hamiltonian supported in an open subset of a
symplectic manifold are independent of the ambient manifold.
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1 Introduction and results

The paper deals with Hamiltonian diffeomorphisms of symplectic manifolds, which
model the Hamiltonian dynamics on phase spaces in classical mechanics. A central
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tool for studying Hamiltonian diffeomorphisms is Floer theory, which is an infinite-
dimensional version of Morse theory applied to the action functional on the space
of contractible loops. As such, Floer theory associates a chain complex to each
Hamiltonian, which is generated by the critical points of the action functional and
whose differential counts certain negative gradient flow lines, called Floer trajectories.

Our main object of interest is Floer theory for Hamiltonians supported in pairwise dis-
joint open sets, namely F DF1C� � �CFN where Fi is supported in Ui and U1; : : : ; UN
are pairwise disjoint. On the level of dynamics, the Hamiltonian diffeomorphisms 'i
corresponding to Fi do not interact. The Hamiltonian diffeomorphism corresponding
to F is the composition ' D '1 ı � � � ı'N , and the diffeomorphisms 'i commute. How-
ever, it is unclear a priori whether in Floer theory there is any communication between
the disjointly supported Hamiltonians Fi . The Floer-theoretic interaction between
disjointly supported Hamiltonians was studied by Polterovich [15], Seyfaddini [19],
Ishikawa [13] and Humilière–Le Roux–Seyfaddini [12], mostly through the relation
between invariants of the sum of Hamiltonians and invariants of each one. These works
suggest that such an interaction should be quite limited. The main finding of this paper
is a construction, on symplectically aspherical manifolds and under some conditions
on the domains Ui , of what we call a “barricade” — a specific perturbation of the
Hamiltonians Fi near the boundaries of Ui , which prevents Floer trajectories from
entering or exiting these domains. The presence of barricades limits the communication
between disjointly supported Hamiltonians as expected. The construction is motivated
by the following simple idea in Morse theory. Given a smooth function F on a
Riemannian manifold, which is supported inside an open subset U, one can perturb
it into a Morse function f that has a “bump” in a neighborhood of the boundary, as
illustrated in Figure 1. The negative gradient flow-lines of f cannot cross the bump,
and therefore a flow-line starting inside U, and away from the boundary, remains there.
On the other hand, flow-lines that start on the bump can flow both in and out of U.
Since the Morse differential counts negative gradient flow-lines, such constraints can
be used to gain information about it.

This idea can be adapted to Floer theory on symplectically aspherical manifolds (that is,
when the symplectic form ! and the first Chern class c1 vanish on �2.M/), and
under certain assumptions on the domain U. The resulting construction can be used
to study Floer-theoretic invariants, such as spectral invariants and the boundary depth,
of Hamiltonians supported in such domains. Spectral invariants measure the minimal
action required to represent a given homology class in Floer homology. These invariants
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≈F f

Figure 1: We perturb the function F to create a small “bump” along a neigh-
borhood of @U. The dashed lines represent (some of the) flow-lines of
�gradf .

play a central role in the study of symplectic topology and Hamiltonian dynamics. Using
the barricades construction, we prove that the spectral invariants with respect to the
fundamental and the point classes of Hamiltonians supported in certain domains do not
depend on the ambient manifold. This result is stated formally in Section 1.1.1. Another
application of the barricades construction concerns spectral invariants of Hamiltonians
with disjoint supports. This problem was studied in Ishikawa [13], Polterovich [15]
and Seyfaddini [19] and lastly in Humilière, Le Roux and Seyfaddini [12]. Humilière,
Le Roux and Seyfaddini proved that the spectral invariant with respect to the funda-
mental class satisfies a “max formula”, namely, the invariant of a sum of disjointly
supported Hamiltonians is equal to the maximum over the invariants of the summands.
This property does not hold for a general homology class. However, using barricades we
show that an inequality holds in general; see Section 1.1.2. A third application of this
method concerns the boundary depth, which was defined by Usher in [21] and measures
the maximal action gap between a boundary term and its smallest primitive in the Floer
chain complex; see Section 1.1.3. We prove a relation between the boundary depths of
disjointly supported Hamiltonians and that of their sum. The last application concerns
a new invariant that was constructed by Abbondandolo, Haug and Schlenk in [1]. We
give a partial answer to a question they posed, asking whether a version of Humilière,
Le Roux and Seyfaddini’s max formula holds for the new invariant; see Section 1.1.4.

1.1 Results

The limitation in Floer-theoretic interaction between disjointly supported Hamiltonians
is reflected through Floer-theoretic invariants of these Hamiltonians and their sum. In
order to define these invariants, we briefly describe filtered Floer homology. For more
details, see Section 2 and the references therein. Throughout the paper, .M;!/ denotes
a closed symplectically aspherical manifold, namely, !j�2.M/ D 0 and c1j�2.M/ D 0,
where c1 is the first Chern class of M. Given a Hamiltonian F WM �S1!R, its
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symplectic gradient XF is the time-dependent vector field given by the equation

!.XFt ; � /D�dFt . � /; where Ft . � / WD F. � ; t /:

The 1–periodic orbits of the flow of XF , whose set is denoted by P.F /, correspond
to critical points of the action functional associated to F , and generate the Floer
complex CF�.F /. The differential of this chain complex is defined by counting certain
negative-gradient flow lines of the action functional, and therefore decreases the value
of the action. Note that the gradient of the action functional is taken with respect to
a metric induced by an almost complex structure J on M. The homology of this chain
complex, denoted by HF�.F /, is known to be isomorphic to the singular homology
ofM up to a degree-shift,HF�.F /ŠH�Cn.M IZ2/. The complex CF�.F / is filtered
by the action value, namely, for every a 2R, we denote by CF a� .F / the subcomplex
generated by 1–periodic orbits whose action is not greater than a. The homology of
this subcomplex is denoted by HF a� .F /.

In what follows we present four applications of the barricades construction, which
is an adaptation to Floer theory of the idea presented in Figure 1, and is described
in Section 1.2. The barricade construction applies for Hamiltonians supported1 in
certain admissible domains, which include images of symplectic embeddings of nice
star-shaped2 domains in R2n into M. In order to present this class in full generality we
need to recall a few standard notions. Let U �M be a domain with a smooth boundary.
We say that U has a contact type boundary if there exists a vector field Y , called the
Liouville vector field, that is defined on a neighborhood of @U, is transverse to @U,
points outwards from U and satisfies LY! D !. If the Liouville vector field Y extends
to U, the closure of U is called a Liouville domain. Finally, a subset X �M is called
incompressible if the map �� W �1.X/! �1.M/ induced by the inclusion X ,!M is
injective. In particular, every simply connected subset is incompressible.

Definition 1.1 An open subset U � M with a smooth boundary is called a CIB
(Contact Incompressible Boundary) domain if for each connected component Ui of U,
one of the following assertions holds:

(i) @Ui is of contact type and is incompressible.

(ii) The closure of Ui is an incompressible Liouville domain.

1When we say that a Hamiltonian F is supported in a subset U of M, we actually mean that the function
F WM �S1!R is supported in U �S1.
2A nice star-shaped domain is a bounded star-shaped domain in R2n with a smooth boundary, such that
the radial vector field is transverse to the boundary.
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Figure 2: Two embeddings of the annulus into T2. The embedding on the left
is incompressible (as well as its boundary) and hence is a CIB domain. The
embedding on the right is contractible in T2 and therefore not incompressible.

Example 1.2 � The image under a symplectic embedding of a nice star-shaped
domain in R2n into M is a CIB domain.

� A noncontractible annulus in M D T2 is a CIB domain. More generally, if
M DT2nDCn=Z2n, then certain tubular neighborhoods of LDRn=Zn in M
are CIB domains.

Remark 1.3 � A disjoint union of CIB domains is again a CIB domain.

� The interior of every incompressible Liouville domain is a CIB domain.

� Every CIB domain is incompressible, as the fact that @U is incompressible
implies that U is incompressible; see the appendix.

1.1.1 Locality of spectral invariants and Schwarz’s capacities For a homology
class ˛2H�.M IZ2/ and a Hamiltonian F , the spectral invariant c.F I˛/ is the smallest
action value a for which ˛ appears in HF a� .F; J /, namely,

c.F I˛/ WD inffa j ˛ 2 im.�a�/g;

where �a� WHF
a
� .F /!HF�.F / is induced by the inclusion �a W CF a� .F / ,! CF�.F /.

The following result states that the spectral invariants with respect to the fundamental
and the point classes, of a Hamiltonian F supported in a CIB domain, do not depend on
the ambient manifold M. More formally, let U �M be a CIB domain and assume that
there exists a symplectic embedding‰ WU ,!N ofU into another closed symplectically
aspherical manifold .N;�/, such that‰.U / is a CIB domain inN . Denote by cM . � I � /
and cN . � I � / the spectral invariants in the manifolds M and N , respectively.

Theorem 1 Let F WM �S1!R be a Hamiltonian supported in U. Then

(1) cM .F I ŒM �/D cN .‰�F I ŒN �/ and cM .F I Œpt�/D cN .‰�F I Œpt�/;

where ‰�F WN �S1!R is the extension by zero of F ı‰�1.
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The assertion of Theorem 1 does not hold when M is not symplectically aspherical,
or when U is not incompressible in M. This is shown in Example 4.6. Theorem 1
also holds for the spectral invariants defined by Frauenfelder and Schlenk [9] on open
manifolds obtained as completions of compact manifolds with contact-type boundaries;
see Remark 5.1. Moreover, Theorem 1 can be extended to certain other homology
classes, as stated in Claim 5.3. One corollary of Theorem 1 concerns Schwarz’s relative
capacities.3

Definition 1.4 (Schwarz [18]) Let .M;!/ be a symplectically aspherical manifold.
For a subset A�M define the spectral capacity by

(2) c
 .AIM/ WD supfc.F I ŒM �/� c.F I Œpt�/ j suppXF � A�S1g:

In [18], Schwarz shows that if the spectral capacity of the support of XF is finite and
'1F ¤ 1, then the Hamiltonian flow of F has infinitely many geometrically distinct
nonconstant periodic points corresponding to contractible solutions. In Section 4, we
use Theorem 1 to show that when A is a contractible domain with a contact-type
boundary, its spectral capacity does not depend on the ambient manifold.

Corollary 1.5 Let S be the set of contractible compact symplectic manifolds with
contact-type boundaries that can be embedded into symplectically aspherical manifolds ,
eg nice star-shaped domains in R2n. Then:

� Schwarz’s spectral capacities fc
 . � IM/g induce a capacity c
 on the class of
symplectic manifolds X which are exhaustible by elements from S, namely there
exist Ai 2 S such that

A1 � A2 � � � � �X and X D
[
i

Ai :

� c
 .AIM/ is finite for every A�M such that A 2 S and can be symplectically
embedded into .R2n; !/, that is ,

(3) c
 .AIM/D c
 .A/� 2e.AIR
2n/ <1;

where e.AIR2n/ is the displacement energy4 of A in R2n.

3We recall the definition of a capacity in Section 4.
4We recall the definition of the displacement energy in Section 2, equation (20).
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Here we used the fact that every bounded subset of R2n is displaceable with finite
energy. The proof of Corollary 1.5, as well as the definition of c
 , appears in Section 4.

Another corollary of Theorem 1 concerns the notions of heavy and superheavy sets,
which were introduced by Entov and Polterovich in [7]: A closed subset X �M is
called heavy if

�.F /� inf
X�S1

F for all F 2 C1.M �S1/;

and is called superheavy if

�.F /� sup
X�S1

F for all F 2 C1.M �S1/;

where
�.F / WD lim

k!1

c.kF I ŒM �/

k

is the partial symplectic quasistate associated to the spectral invariant c and the funda-
mental class. The following corollary was suggested to us by Polterovich.

Corollary 1.6 Let M be a symplectically aspherical manifold and let A �M be a
contractible domain with a contact-type boundary that can be symplectically embedded
in .R2n; !0/. Then M nA is superheavy. In particular , A does not contain a heavy set.

Corollary 1.6 can be viewed as an extension of the results of [13] to a wider class
of domains, when restricting to symplectically aspherical manifolds. Theorem 1 and
Corollaries 1.5 and 1.6 are proved in Section 4.

1.1.2 Max-inequality for spectral invariants In [12], Humilière, Le Roux and Sey-
faddini proved a max formula for the spectral invariants, with respect to the fundamental
class, of Hamiltonians supported in the interiors of disjoint incompressible Liouville
domains in symplectically aspherical manifolds.

Theorem (Humilière–Le Roux–Seyfaddini [12, Theorem 45]) Let F1; : : : ; FN be
Hamiltonians whose supports are contained , respectively , in the interiors of pairwise
disjoint incompressible Liouville domains U1; : : : ; UN . Then

c.F1C � � �CFN I ŒM �/Dmaxfc.F1I ŒM �/; : : : ; c.FN I ŒM �/g:

The existence of barricades can be used to give an alternative proof for this theorem, as
well as to prove a version of it for other homology classes. Clearly, other homology
classes do not satisfy such a max formula — for example, by Poincaré duality the class
of a point satisfies a min formula. However, an inequality does hold for a general
homology class.
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Theorem 2 Let F and G be Hamiltonians supported in disjoint CIB domains and let
˛ 2H�.M/. Then

(4) c.F CGI˛/�maxfc.F I˛/; c.GI˛/g:

Moreover , when ˛ D ŒM �, we have an equality.

Notice that, by definition, the interior of every incompressible Liouville domain is
a CIB domain. Moreover, a disjoint union of CIB domains is again a CIB domain.
Hence, the inequality for N Hamiltonians follows by induction. We also mention that
a “min inequality” does not hold in general, namely, c.F CGI˛/ might be strictly
smaller than minfc.F; ˛/; c.G; ˛/g, as shown in Example 6.4. Theorem 2 is proved in
Section 6.

1.1.3 The boundary depth of disjointly supported Hamiltonians In [21], Usher
defined the boundary depth of a Hamiltonian F to be the largest action gap between a
boundary term in CF�.F / and its smallest primitive, namely

ˇ.F / WD inffb 2R j CF a� .F /\ @F;J .CF�.F //� @F;J .CF
aCb
� .F // for all a 2Rg:

The following result relates the boundary depths of disjointly supported Hamiltonians
to that of their sum, and is proved in Section 7.

Theorem 3 Let F and G be Hamiltonians supported in disjoint CIB domains. Then

(5) ˇ.F CG/�maxfˇ.F /; ˇ.G/g:

Note that equality does not hold in (5) in general, as shown in Example 7.2.

1.1.4 Min-inequality for the AHS action selector In a recent paper [1], Abbondan-
dolo, Haug and Schlenk presented a new construction of an action selector, denoted
here by cAHS, that does not rely on Floer homology. Roughly speaking, given a
Hamiltonian F , the invariant cAHS.F / is the minimal action value that “survives” under
all homotopies starting at F . In Section 8, we review the definition of this selector
and a few relevant properties. An open problem, stated in [1, Open Problem 7.5], is
whether cAHS coincides with the spectral invariant of the point class. As a starting
point, Abbondandolo, Haug and Schlenk ask whether cAHS satisfies a min formula like
the one proved by Humilière, Le Roux and Seyfaddini in [12] for the spectral invariant
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with respect to the point class.5 Due to a result from [12], this will imply that cAHS

coincides with the spectral invariant with respect to the point class in dimension 2
on autonomous Hamiltonians. In Section 8, we use barricades in order to prove an
inequality for the AHS action selector.

Theorem 4 Let F and G be Hamiltonians supported in the interiors of disjoint
incompressible Liouville domains. Then

(6) cAHS.F CG/�minfcAHS.F /; cAHS.G/g:

1.2 The main tool: barricades

The central construction in this paper is an adaptation of the idea presented in Figure 1
to Floer theory, which is an infinite-dimensional version of Morse theory, applied
to the action functional associated to a given Hamiltonian F WM � S1 ! R. As in
Morse theory, the Floer differential counts certain negative-gradient flow lines of the
action functional. These flow lines are called “Floer trajectories” and correspond to
solutions u WR�S1!M of a certain partial differential equation, called the “Floer
equation” (FE), which converge to 1–periodic orbits of the Hamiltonian flow at the ends,

lim
s!˙1

u.s; t/D x˙.t/ for x˙ 2 P.F /:

In this case we say that u connects x˙; see Section 2 for more details. Following
the idea from Morse theory, given a Hamiltonian F supported in a subset U � M,
we wish to construct a perturbation for which Floer trajectories cannot enter or exit
the domain. Moreover, we extend this construction to homotopies of Hamiltonians,
namely, smooth functions H WM �S1�R!R, for the following reason: most of the
results presented above compare Floer-theoretic invariants of different Hamiltonians.
Such a comparison is usually done using a morphism between the different chain
complexes, which is defined by counting solutions of the Floer equation with respect
to a homotopy between the two Hamiltonians. We consider only homotopies that are
constant outside of a compact set, namely there exists R > 0 such that @sH. � ; � ; s/
is supported in M � S1 � Œ�R;R�. We denote by H˙ WD H. � ; � ;˙R/ the ends of
the homotopy H. Note that we think of single Hamiltonians as a special case of this
setting, by identifying them with constant homotopies, H.x; t; s/D F.x; t/. Given an
almost complex structure J on M, we consider solutions of the Floer equation (FE)

5As mentioned above, they proved a max formula for the spectral invariant of the fundamental class. By
Poincaré duality for spectral invariants, this is equivalent to a min formula for the point class.
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with respect to the pair .H; J /. The property of having a barricade is defined through
constraints on these solutions.

Definition 1.7 Let U and Uı be open subsets of M such that Uı b U. We say that
a pair .H; J / of a homotopy and an almost complex structure has a barricade in U
around Uı if the periodic orbits of H˙ do not intersect the boundaries @U and @Uı,
and for every x˙ 2 P.H˙/ and every solution u WR�S1!M of the corresponding
Floer equation connecting x˙, we have:

(i) If x� � Uı, then im.u/� Uı.

(ii) If xC � U , then im.u/� U.

See Figure 3 for an illustration of solutions satisfying and not satisfying these constraints.
When H is a constant homotopy, corresponding to a Hamiltonian F , the presence
of a barricade yields a decomposition of the Floer complex, in which the differential
admits a triangular block form. To describe this decomposition, let us fix some notation:
for a subset X �M , denote by CX .F /� CF�.F / the subspace generated by orbits
contained in X , and by @jX the map obtained by counting only solutions that are
contained in X . Then, for a Floer-regular pair .F; J / with a barricade in U around Uı,

(7) CF�.F / WD CUı.F /˚CU c .F /˚CUnUı.F /; @F;J D

0@@jUı 0 @jU0 � �

0 0 @jU

1A:
The block form (7) implies that the differential restricts to the subspace CUı.F /. We
study the homology of the resulting subcomplex .CUı.F /; @jUı/ in Section 5.1.

Given a homotopy H that is compactly supported in a CIB domain, we construct a
small perturbation h of H and an almost complex structure J, so that .h; J / has a
barricade.

Theorem 5 Let U be a CIB domain and let H WM � S1 �R! R be a homotopy
of Hamiltonians , supported in U � S1 �R, such that @sH is compactly supported.
Then there exist a C1–small perturbation h of H and an almost complex structure J
such that the pairs .h; J / and .h˙; J / are Floer-regular and have a barricade in U
around Uı. In particular , when H is independent of the R–coordinate (namely, it is a
single Hamiltonian), h can be chosen to be independent of the R–coordinate as well.
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U c

U nUı

Uı

U c

U nUı

Uı

Figure 3: An illustration of allowed solutions, left, and forbidden solutions,
right, for a pair .H; J / with a barricade.

This result is proved in Section 3, by an explicit construction of the perturbation h
and the almost complex structure J. We remark that the assumptions on .M;!/ being
symplectically aspherical and U having either incompressible boundary or being the
interior of an incompressible Liouville domain are crucial for this construction. See
the proofs of Lemmas 3.4–3.5 for details.

1.3 Related works

There have been several works studying the Floer-theoretic interaction between dis-
jointly supported Hamiltonians, mainly through the spectral invariants of these Hamil-
tonians and their sum. Early works in this direction, mainly by Polterovich [15],
Seyfaddini [19] and Ishikawa [13], established upper bounds for the invariant of the
sum of Hamiltonians, which depend on the supports. Later, Humilière, Le Roux and
Seyfaddini [12] proved that in certain cases the invariant of the sum is equal to the
maximum over the invariants of each individual summand. The method was also
conceptually different. While previous works relied solely on the properties of spectral
invariants, Humilière, Le Roux and Seyfaddini studied the Floer complex itself. We also
take this approach and study the interaction between disjointly supported Hamiltonians
on the level of the Floer complex, but our methods are substantially different.

In a broader sense, it is worth mentioning two works which regard symplectic homology.
Symplectic homology is an umbrella term for a type of homological invariant of

Algebraic & Geometric Topology, Volume 23 (2023)



656 Yaniv Ganor and Shira Tanny

symplectic manifolds, or of subsets of symplectic manifolds, constructed via a limiting
process from the Floer complexes of properly chosen Hamiltonians. In this setting,
questions regarding disjointly supported Hamiltonians correspond to local-to-global
relations, such as a Mayer–Vietoris sequence. In [5], Cieliebak and Oancea defined
symplectic homology for Liouville domains and Liouville cobordisms and proved a
Mayer–Vietoris relation. Their method includes ruling out the existence of certain
Floer trajectories, and partially relies on work by Abouzaid and Seidel [2]. Versions of
some of these arguments are being used in Section 3 below. Another work concerning
the Mayer–Vietoris property is by Varolgunes [22], in which he defines an invariant of
compact subsets of closed symplectic manifolds, which is called relative symplectic
homology, and finds a condition under which the Mayer–Vietoris property holds. In
particular, for a union of disjoint compact sets, the relative symplectic homology splits
into a direct sum.

Structure of the paper

In Section 2 we review the necessary preliminaries from Floer theory and contact
geometry. In Section 3 we construct barricades and prove Theorem 5. We then use
it to prove Theorem 1 in Section 4. In Section 5, we discuss the relation to Floer
homology on certain open manifolds and two extensions of Theorem 1. Sections 6–8
are respectively dedicated to the proofs of Theorems 2–4. Finally, in Section 9 we
prove several transversality and compactness claims that are required for establishing
the main results. The appendix contains a claim about incompressibility, whose proof
we include for the sake of completeness.
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2 Preliminaries from Floer theory

In this section we briefly review some preliminaries from Floer theory and contact
geometry on closed symplectically aspherical manifolds — namely, when !j�2.M/ D 0

and c1j�2.M/ D 0, where c1 is the first Chern class of M . For more details see, for
example, [3; 14; 16]. We also fix some notation that will be used later on.

2.1 Floer homology, regularity and notation

Let F WM �S1!R be a Hamiltonian on M. The corresponding action functional AF
is defined on the space of contractible loops in M by

AF .x/ WD
Z 1

0

F.x.t/; t/ dt �

Z
xx�!;

where x W S1!M and xx WD2!M satisfies xx.e2�it /D x.t/. The critical points of
the action functional are the contractible 1–periodic orbits of the flow of XF , and their
set is denoted by P.F /. The Hamiltonian F WM �S1!R is said to be nondegenerate
if the graph of the linearized flow of XF at time 1 intersects the diagonal in TM �TM
transversely. In this case, the flow of XF has finitely many 1–periodic orbits. The Floer
complex CF�.F / is spanned by these critical points, over Z2.6 A time-dependent !–
compatible7 almost complex structure J induces a metric on the space of contractible
loops, in which negative-gradient flow lines of AF are maps u W R� S1 !M that
solve the Floer equation

(FE) @su.s; t/CJ ıu.s; t/ � .@tu.s; t/�XF ıu.s; t//D 0:

The energy of such a solution is defined to be E.u/ WD
R

R�S1 k@suk
2
J ds dt , where

k � kJ is the norm induced by the inner product associated to J, h � ; � iJ WD !. � ; J � /.
When the Hamiltonian F is nondegenerate, for every solution u with finite energy, there
exist x˙ 2 P.F / such that lims!˙1 u.s; t/D x˙.t/, and we say that u connects x˙.
The well-known energy identity for such solutions is a consequence of Stokes’ theorem:

(8) E.u/ WD

Z
R�S1

k@suk
2
J ds dt DAF�.x�/�AFC.xC/:

For two 1–periodic orbits x˙ 2P.F / of F , let M.F;J /.x�; xC/ denote the set of all so-
lutions u WR�S1!M of the Floer equation (FE) satisfying lims!˙1 u.s; t/D x˙.t/.

6The Floer complex can be defined over other coefficient rings; we chose to work in the simplest setting.
7An almost complex structure J is called !–compatible if !. � ; J � / is an inner product on TM. All
almost complex structures considered in this paper are assumed to be !–compatible.
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Notice that R acts on this set by translation in the s variable. We denote by M.F;J /

the set of all finite-energy solutions. It is well known — see eg [3, Theorem 6.5.6] —
that when F is nondegenerate, M.F;J / WD

S
x˙2P.H/M.F;J /.x�; xC/. Moreover,

for nondegenerate Hamiltonians one can define an index � W P.F /! Z, called the
Conley–Zehnder index, which assigns an integer to each orbit; see eg [3, Chapter 7]. The
Floer complex is graded by the index �; namely, for k 2 Z, CFk.F / is the Z2–vector
space spanned by the periodic orbits x 2 P.F / for which �.x/D k.

In order to define the Floer differential for the graded complex CF�.F /, one needs
an almost complex structure J such that the pair .F; J / is Floer-regular. The def-
inition of Floer regularity concerns the surjectivity of a certain linear operator and
is given in Section 9.1. When the pair .F; J / is Floer-regular, the space of solu-
tions M.F;J /.x�; xC/ is a smooth manifold of dimension �.x�/ � �.xC/ for all
x˙ 2 P.F /. Dividing M.F;J /.x�; xC/ by the R action, we obtain a manifold of
dimension �.x�/��.xC/� 1.

Recall that an element a 2 CF�.F / is a formal linear combination a D
P
x ax � x,

where x 2 P.F / and ax 2 Z2. For a Floer-regular pair .F; J /, the Floer differential
@.F;J / W CF�.F /! CF��1.F / is defined by

(9) @.F;J /.a/ WD
X

x�2P.F /

X
xC2P.F /

�.xC/D�.x�/�1

ax� � #2

�
M.F;J /.x�; xC/

R

�
� xC;

where #2 is the number of elements modulo 2. The homology of the complex
.CF�.F /; @.F;J // is denoted by HF�.F; J / or HF�.F /. A fundamental result in
Floer theory states that Floer homology is isomorphic to the singular homology with
a degree shift, HF�.F; J / Š H��n.M IZ2/. The Floer complex admits a natural
filtration by the action value. We denote by CF a� .F / the subcomplex spanned by
critical points with value not greater than a. Since the differential is action decreasing,
it can be restricted to the subcomplex CF a� .F /. The homology of this subcomplex is
denoted by HF a� .F; J /.

It is well known that when F is a C2–small Morse function, its 1–periodic orbits are its
critical points, P.F /Š Crit.F /, and their actions are the values of F , AF .p/D F.p/.
In this case, the Floer complex with respect to a time-independent almost complex struc-
ture J coincides with the Morse complex when the degree is shifted by n (which is half
the dimension of M ), since Morse-ind.p/D�.p/Cn for every p 2 Crit.F /Š P.F /:

.CF�.F /; @
Floer
.F;J //D .CM�Cn.F /; @

Morse
.F;h � ;� iJ /

/:
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For a proof, see, for example, [3, Chapter 10]. We conclude this section by fixing
notation that will be used later on.

Notation 2.1 Let aD
P
x ax � x be an element of CF�.H/.

� We say that x 2 a if ax ¤ 0.

� We denote the maximal action of an orbit from a by

�H .a/ WDmaxfAH .x/ j ax ¤ 0g:

� For a subset X �M, let CX .H/ � CF�.H/ be the subspace spanned by the
1–periodic orbits of H that are contained in X . Let �X W CF�.H/! CX .H/

be the projection onto this subspace. Note that CX .H/ is not necessarily a
subcomplex, and �X is not a chain map in general.

2.2 Communication between Floer complexes using homotopies

Now let H WM �S1�R!R denote a homotopy of Hamiltonians, rather than a single
Hamiltonian. Throughout the paper, we consider only homotopies that are constant
outside of a compact set. Namely, there exists R > 0 such that @sH jjsj>R D 0, and we
denote by H˙.x; t/ WD lims!˙1H.x; t; s/ the ends of the homotopy H. Given an
almost complex structure J, we consider the Floer equation (FE) with respect to the
pair .H; J /,

@su.s; t/CJ ıu.s; t/ � .@tu.s; t/�XHs ıu.s; t//D 0;

where Hs. � ; � / WDH. � ; � ; s/. We sometimes refer to this equation as the s–dependent
Floer equation, to stress that it is defined with respect to a homotopy of Hamiltoni-
ans. For 1–periodic orbits x˙ 2 P.H˙/, we denote by M.H;J /.x�; xC/ the set of
all solutions u W R � S1 ! M of the s–dependent Floer equation (FE) that satisfy
lims!˙1 u.s; t/ D x˙.t/. As before, M.H;J / denotes the set of all finite-energy
solutions and when the ends, H˙, are nondegenerate,

M.H;J / D

[
x˙2P.H˙/

M.H;J /.x�; xC/:

(See, for example, [3, Theorem 11.1.1].) The energy identity for homotopies is

(10) E.u/ WD

Z
R�S1

k@suk
2
J ds dt

DAH�.x�/�AHC.xC/C
Z

R�S1
@sH ıuds dt:
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As in the case of Hamiltonians, the definition of Floer-regularity concerns the surjectivity
of a certain linear operator and is given in Section 9.1. For a Floer-regular pair .H; J /,
the space M.H;J /.x�; xC/ is a smooth manifold of dimension �.x�/��.xC/. In this
case, one can define a degree-preserving chain map ˆ WCF�.H�/!CF�.HC/, called
the continuation map, between the Floer complexes of the ends, by

(11) ˆ.a/D
X
x�2a

X
xC2P.HC/
�.xC/D�.x�/

ax� � #2M.x�; xC/ � xC:

The regularity of the pair guarantees that the map ˆ is a well-defined chain map that
induces an isomorphism on homologies; see eg [3, Chapter 11].

2.3 Contact-type boundaries

In order to construct barricades for Floer solutions around a given domain, we need the
boundary to have a contact structure. Let U �M be a domain with a smooth boundary.
We say that U has a contact type boundary if there exists a vector field Y , called the
Liouville vector field, which is defined on a neighborhood of @U, is transverse to @U,
points outwards from U and satisfies LY! D !. The differential form � WD �Y! is a
primitive of !, namely d�D !; it is called the Liouville form and is defined wherever
Y is defined. The flow  r of Y is called the Liouville flow, and is defined for short
times. The Reeb vector field R is then defined by the equations

(12) R 2 ker d�jT r@U ; �.R/j r@U D e
r :

We stress that the vector field R is defined wherever the Liouville vector field Y is
defined and is nonvanishing. If the Liouville vector field Y extends to U, the closure
of U is called a Liouville domain.

3 Barricades for solutions of the (s–dependent) Floer equation

In what follows, H W M � S1 � R ! R denotes a homotopy of (time-dependent)
Hamiltonians and J denotes a (time-dependent) almost complex structure. We assume
that @sH is compactly supported and write H˙ WD lims!˙1H. � ; � ; s/. Note that we
consider the case where H is a single Hamiltonian as a particular case, by identifying it
with a constant homotopy. Fix a CIB domain U �M, denote by Y and R the Liouville
and Reeb vector fields, respectively, and by �D �Y! the Liouville form. In order to
prove Theorem 5, namely, that there exist a perturbation h of H and an almost complex
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structure J such that .H; J / has a barricade, we construct h and J explicitly. Let us
sketch the idea of this construction before giving the details.

� To construct h, we first add toH a nonnegative bump function in the radial coordinate,
which is defined on a neighborhood of @U using the Liouville flow. Then we take h to
be a small nondegenerate perturbation of it.

� The almost complex structure J is taken to be cylindrical near @U ; see Definition 3.1
below.

We want to rule out the existence of solutions violating the constraints of Definition 1.7.
Suppose there exists a solution u connecting x� � Uı with xC � U cı . Then the image
of u intersects @Uı, say along a loop � . We first bound the action of � (Lemma 3.2),
and then conclude a negative upper bound for the action of xC (Lemma 3.4). Since
h � 0 on U cı � xC, the action of xC can be taken to be arbitrarily close to zero, a
contradiction.

3.1 Preliminary computations

Some of the arguments and results in this section were carried out by Cieliebak and
Oancea in [5] for the setting of completed Liouville domains, instead of closed sym-
plectically aspherical manifolds. Specifically, some of the computations appearing in
the proofs of Lemmas 3.2 and 3.5 can be found in the proof of [5, Lemma 2.2], which
follows Abouzaid and Seidel’s work in [2, Lemma 7.2].

Definition 3.1 We say that a pair .H; J / of a homotopy and an almost complex
structure is ı–cylindrical near @U for ı 2R n f0g, if

(i) J is cylindrical near @U, namely, J Y DR on an open neighborhood of @U,

(ii) @U �S1 �RD fH D cg is a regular level set of H,

(iii) the gradient of H with respect to J satisfies rJH D ıe�rY on  r@U and H
has no 1–periodic orbits near @U.

We remark that conditions (ii) and (iii) in the above definition imply that, near @U,
H does not depend on the R–coordinate. Suppose that .H; J / is ı–cylindrical near @U
and let u WR�S1!M be a solution of the (s–dependent) Floer equation (FE) with
finite energy E.u/ <1. The following lemma gives an upper bound for the integral
of � along the curve � WD im.u/ \ @U oriented as a connected component of the
boundary of im.u/\U c ; see Figure 4.
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@U u\U c

�

�

U

Figure 4: An example of the setting described in Lemma 3.2. The gray region
is the set U �M and the loops � are given by im.u/\ @U D � , oriented as
the boundary of im.u/\U c .

Lemma 3.2 Let .H; J / be a pair that is ı–cylindrical near @U and let u WR�S1!M

be a finite-energy solution of the s–dependent Floer equation connecting x˙ 2 P.H˙/.
Suppose that u intersects @U transversely and write � WD im.u/\@U for the intersection ,
oriented as the boundary of im.u/\U c . Then

(13)
Z
�

��

8<:
�ı if x� � U; xC � U c;
ı if x� � U c; xC � U;
0 if x˙ � U or x˙ � U c:

Proof Set† WDu�1.U c/�R�S1 and denote its boundary by 
 . Then u.
/D� , since
the x˙ do not intersect @U. The orientation on † is given by the positive frame .@s; @t /.
Let 
i be a connected component of 
 . Then �i WD u.
i / is connected. Let � 2 Œ0; Ti �
be a unit-speed parametrization of 
i , and notice that this induces a parametrization
on �i . Denoting by �.�/ the outer normal to † at 
i .�/, then P
i .�/D j�.�/, where
j is the standard complex structure on R� S1, ie j @s D @t . Pushing .�.�/; P
i .�//
to TM , we obtain

N.�/ WDDu.�.�//; P�i .�/DDu. P
i .�//:

We remark that N.�/ is not necessarily normal to @U (with respect to the inner product
induced by J ), but is always pointing inwards (or tangent to the boundary); see Figure 5.
The relation between N.�/ and P�i .�/ goes through the Floer equation (FE), which can
be written in the form

J ıDuDDu ı j �XH ıu � h � ; @sij CJXH ıu � h � ; @t ij :
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@U

�1

�2

Y

u


1


2

†

N.�/

�.�/

u\U c

Figure 5: The normal �.�/ to the component 
1 of @† and its image, N.�/,
under Du.

It follows that P�i .�/ can be written as a linear combination of JN.�/, the gradient
of H and the symplectic gradient of H :

P�i .�/DDu. P
i .�//DDu.j�.�//

D JDu.�.�//CXH ıu � h�.�/; @sij �JXH ıu � h�.�/; @t ij

D JN.�/CXH ıu � h�.�/; @sij �JXH ıu � h�.�/; @t ij :

Using this to compute the integral of � along �i , we obtainZ
�i

�D

Z
�. P�i .�// d� D

Z
!.Y ı�i .�/; P�i .�// d�

D

Z
!.Y ı�i .�/; JN.�// d�C

Z
Œ!.Y;XH /�h�; @sij�!.Y; JXH /�h�; @t ij � d�

D

Z
hY ı�i .�/; N.�/iJ d�

C

Z
Œ!.Y; JrJH/�h�; @sij�!.Y;�rJH/�h�; @t ij � d�:

Recalling our assumptions that rJH D ıY on @U and that J Y is the Reeb vector
field, we obtain

(14)
Z
�i

�D

Z
hY ı�i .�/; N.�/iJ d�

C ı

Z
Œ!.Y; J Y / � h�; @sij �!.Y;�Y / � h�; @t ij � d�

D

Z
hY ı�i .�/; N.�/iJ d� C ı � 1 �

Z
h�; @sij d�:
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Let us estimate separately each term in the sum (14), starting with the first: Since
J Y D R, the vector field Y is perpendicular to the hyperplane T .@U / at each point
and is pointing outwards from U. By our construction, N.�/ points inwards to U — as
it is tangent to im.u/ and points out of im.u/\U c — and therefore hY ı�i ; N i � 0
for all � . We conclude that

(15)
Z
hY ı�i .�/; N.�/iJ d� � 0:

We turn to estimate the second summand in (14): Noticing that h�; @sij Dhj�; j @sij D
h P
i ; @t ij D dt. P
i /, we haveZ

h�; @sij d� D

Z
dt. P
i / d� D

Z

i

dt:

Let y† be the closure of † in the compactification .R[ f˙1g/�S1 of the cylinder.
Then @y†� @†[f˙1g�S1. Notice that @y† contains f�1g�S1 (resp. fC1g�S1)
if and only if x� � U c (resp. xC � U c). As

R
f˙1g�S1 dt D ˙1 and, by Stokes’

theorem,
R
@y†
dt D 0, we conclude that

(16)
X
i

Z

i

dt D

Z



dt D

Z
@y†

dt �

8<:
1 if x� � U; xC � U c;
�1 if x� � U c ; xC � U;
0 if x�; xC � U or x�; xC � U c:

Combining (14), (15) and (16) we obtainZ
�

�D
X
i

Z
�i

�� 0C ı �

8<:
�1 if x� � U; xC � U c;
1 if x� � U c; xC � U;
0 if x�; xC � U or x�; xC � U c:

This completes the proof.

Remark 3.3 The assertion of Lemma 3.2 continues to hold if we take � to be
im.u/\ r.@U / for some r for which the Liouville flow is defined. The proof of the
lemma goes through in this case without any significant changes, under the observation
that !.Y; JrJH/ is independent of r :

!.Y; JrJH/D !.Y; ıe
�rJ Y /D e�rı!.Y; J Y /D ıe�r�.R/D ıe�rer D ı:

When the homotopy H is nonincreasing in U c, Lemma 3.2 can be used to bound the
action of the ends of solutions that cross the boundary of U. Lemma 3.4 below is
similar to a result obtained by Cieliebak and Oancea [5, Lemma 2.2] for the setting of
completed Liouville domains, using neck stretching. The proof of Lemma 3.4 uses a
different approach and is an application of Lemma 3.2 above.
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u

U

†

u\U c

x�

xC

Figure 6: An example for the setting described in Lemma 3.4. The gray
region is the set U �M and † WD u�1.U c/�R�S1.

Lemma 3.4 Suppose that .H; J / is ı–cylindrical near @U and assume in addition that
@sH � 0 on U c. For every finite-energy solution u connecting x˙ 2 P.H˙/,

(i) if x� � U and xC � U c, then AHC.xC/ < c � ı,

(ii) if x� � U c and xC � U, then AH�.x�/ > c � ı,

where c is the value of H on @U.

Proof We prove the first statement, where x��U and xC�U c. The second statement
is proved similarly. As in [5, Lemma 2.2], after replacing U by its image,  rU, under
the Liouville flow8 for small time r , we may assume that u is transverse to @U .9 As
explained in Remark 3.3, Lemma 3.2 still applies after such a replacement. Note that,
since rJH is positively proportional to Y on a neighborhood of @U, H is constant on
@. rU/D  r.@U /. Moreover, choosing the sign of r to be opposite to the sign of ı,
the value of H on  r.@U / is smaller than c— in order to prove the second statement,
choose r to be of the same sign as ı, and then the value of H on  r.@U / will be
greater than c. Write † WD u�1.U c/�R�S1 and let us compute an energy identity
for the restriction uj†:Z

uj†

! D

Z
†

!.@su; @tu/ ds ^ dt
(FE)
D

Z
†

!.@su; J @suCXH ıu/ ds ^ dt(17)

D

Z
†

k@suk
2
J ds ^ dt C

Z
†

dH.@su/ ds ^ dt

8This is an abuse of notation, as the Liouville vector field, and hence its flow, is not necessarily defined on
all of U. We define  rU to be U [

�S
r 0<r  

r 0@U
�

if r � 0, and to be U n
�S

r 02Œr;0�  
r 0@U

�
if r < 0.

9The proof of this statement is similar to that of Thom’s transversality theorem.
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DE.uj†/C

Z
†

@

@s
.H ıu/ ds ^ dt �

Z
†

.@sH/ ıuds ^ dt

DE.uj†/C

Z
†

d..H ıu/ dt/�

Z
†

.@sH/ ıuds ^ dt

�E.uj†/C

Z
†

d.H ıudt/ >

Z
†

d.H ıudt/;

where, in the last two inequalities, we used our assumption that @sH � 0, and the
positivity of the energy, respectively. As before, denoting by y† the closure of † in the
compactification .R[f˙1g/�S1, then @y†D 
 [fC1g�S1. Since H is constant
on @U,

R

 H ı udt D H.@U / �

R

 dt D �H.@U /, where the last equality follows

from (16) for 
 D @†. Therefore, using Stokes’ theorem, we obtain

(18)
Z
†

d.H ıudt/D

Z
@y†

H ıudt D�H.@U /C

Z 1

0

H ı xC:

Let xx˙ be capping disks of x˙, respectively, and let v � xU be a union of disks capping
the connected components of � WD u.
/ such that the contact form � is defined on v.
The existence of such disks follows from our definition of a CIB domain: If the relevant
connected component of U is the interior of an incompressible Liouville domain,
then we can take a capping disk that is contained in that component. Otherwise, the
boundary of the relevant connected component of U is incompressible and we can
take the capping disk to lie in the boundary. Since M is symplectically aspherical and
! D d� where � is defined, we have

(19)
Z
uj†

! D

Z
xxC

!C

Z
v

! D

Z
xxC

!C

Z
�

�:

Combining (18) and (19) yields

AHC.xC/D
Z 1

0

H ı xC�

Z
xxC

! D

Z
†

d.H ıudt/CH.@U /�

Z
uj†

!C

Z
�

�

< cC

Z
�

�;

where the last inequality is due to (17). Using Lemma 3.2 we conclude that

AHC.xC/ < c � ı:

The following lemma is essentially a version of [5, Lemma 2.2] for closed symplectically
aspherical manifolds instead of completed Liouville domains.
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Lemma 3.5 Suppose that .H; J / is ı–cylindrical near @U and that @sH � 0 on U c.
Given any pair x˙ 2 P.H˙/� U, every solution u connecting x˙ is contained in U.

Proof As before, after replacing U by its image,  rU, under the Liouville flow for a
small time r , we may assume that u is transverse to @U. Again setting† WDu�1.U c/�
R�S1 and computing an energy identity, as in (17), for the restriction of u to †, we
have Z

uj†

! �E.uj†/C

Z
@y†

H ıudt;

where, as before, y† is the closure of † in the compactification of the cylinder. This
time, both ends x˙ are contained in U and hence @y†D 
 . Since H is constant on @U,
it follows from (16) thatZ

@y†

H ıudt D

Z



H ıudt DH.@U / �

Z



dt D 0:

On the other hand, taking v � xU to be a union of disks capping the connected compo-
nents of � D u.
/ (which is oriented as the boundary of im.u/\U c) such that � is
defined on v, the fact that M is symplectically aspherical implies thatZ

uj†

! D

Z
v

! D

Z
�

�� 0;

where the last inequality follows from Lemma 3.2 (and Remark 3.3). Combining the
above two inequalities we find

E.uj†/�

Z
uj†

! � 0:

Since we assumed that H˙ are nondegenerate and have no 1–periodic orbits intersect-
ing @U, this implies im.u/\ int.U c/D∅ and hence im.u/� xU. Noticing that we may
argue similarly for the image  rU of U under the Liouville flow for small negative
time r < 0, we conclude that im.u/�  rU � U.

3.2 Constructing the barricade

As before, U denotes a CIB domain and  r is the flow of the Liouville vector field Y ,
which is defined in a neighborhood of the boundary @U. Consider a pair .H; J / of
a homotopy (or, in particular, a Hamiltonian) and an almost complex structure. The
following definition is an adaptation of Figure 1 to Floer theory.
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Y Y

R

rJHrJH Graph.H/

@Uı

@U

Figure 7: An illustration of a pair with a cylindrical bump.

Definition 3.6 We say that the pair .H; J / admits a cylindrical bump of width r > 0
and slope ı > 0 around @U (abbreviate to .r; ı/–bump around @U ) if

(i) @sH � 0,

(ii) H D 0 on @U �S1 �R and on @Uı �S1 �R, where Uı WD  �rU,

(iii) J is cylindrical on a neighborhood of @U which contains @Uı, namely, J Y DR
on an open neighborhood of @U [ @Uı,

(iv) on r
0

@U�S1�R, we haverJH D ıer
0

Y if r 0 is near�r , andrJH D�ıer
0

Y

if r 0 is near 0, and

(v) the only 1–periodic orbits of H˙ that are not contained in Uı are critical points
with values in .�ı; ı/.

In analogy with the discussion in Morse theory, we show that a pair with a cylindrical
bump has a barricade.

Proposition 3.7 Let .H; J / be a pair with a cylindrical bump of width r and slope ı.
Then , the pair .H; J / has a barricade in U around Uı WD  �rU.

Proof The proof essentially follows from Lemmas 3.4 and 3.5, together with the fact
that a pair .H; J / with a .r; ı/–bump around @U is in particular cylindrical near both
@U and @Uı. As explained in Remark 3.3, in this case Lemmas 3.4 and 3.5 apply for
@Uı as well. Let u be a solution of the s–dependent Floer equation with respect to H
and J, which connects x˙ 2 P.H˙/. We need to show that u satisfies the constraints
from Definition 1.7, and therefore we split into two cases:
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(a) Suppose x� � Uı. If xC � Uı we may apply Lemma 3.5 to H, J and Uı, and
conclude that im.u/� Uı, as required. Otherwise, xC � U cı is a critical point of HC
and its value lies in the interval .�ı; ı/. On the other hand, applying Lemma 3.4 to H,
J and Uı yields that AHC.xC/ < �ı, a contradiction.

(b) Suppose xC � U. As before, if x� � U then applying Lemma 3.5 to H, J and U
yields u� U , as required. Otherwise, x� � U c is a critical point of H� and its value
lies in .�ı; ı/. On the other hand, applying Lemma 3.4 to H, J and U, and noticing
that rJH D�ıY on @U, we find that AH�.x�/ > ı, a contradiction.

In order to prove Theorem 5, it remains to guarantee the regularity assertion, for which
we use the result from Section 9.3.1 below.

Proof of Theorem 5 Let H be a homotopy of Hamiltonians that is supported
in U �S1 �R. Then there exists r > 0 small enough that H is supported inside
 �rU DW Uı. Fix an almost complex structure J that is cylindrical near both @U
and @Uı (see Definition 3.6(iii) above), and let h be a C1–small perturbation of H
such that the pair .h; J / admits a .r; ı/–bump around @U and h˙ are nondegenerate.
Notice that, by definition, the pairs .h˙; J / also admit a .r; ı/–bump around @U. By
Proposition 3.7, the pairs .h; J / and .h˙; J / have a barricade in U around Uı.

The pairs .h; J /, .h˙; J / constructed above are not necessarily Floer-regular. In order to
achieve regularity, we perturb the homotopy h and its ends. Proposition 9.21 below states
that for a homotopy h0 that satisfies P.h0

˙
/DP.h˙/ and supp.@sh0/�M �S1 � I for

some fixed finite interval I, if h0 is close enough to h, then .h0; J / also has a barricade
in U around Uı. Therefore, it remains to describe a perturbation that satisfies the above
constraints, and ensures regularity. Starting with the ends and recalling that the h˙ are
nondegenerate, we perturb them without changing their periodic orbits to guarantee
that the pairs .h˙; J / are Floer-regular — the fact that this is possible is a well-known
result from Floer theory, cited in Claim 9.1 below. If the homotopy h is constant,
that is, corresponds to a single Hamiltonian, we are done. Otherwise, let us perturb h
so that its ends will agree with the regular perturbations of h˙. Finally, we perturb the
resulting homotopy on the set M �S1 � I, for some fixed finite interval I, to make the
pair .h; J / Floer-regular. This is possible due to Proposition 9.2 below, which is a slight
modification of standard claims from Floer theory, and is proved in Section 9.1.

Remark 3.8 Proposition 3.7 suggests that, when given a homotopy (or a Hamiltonian)
H that is supported in U �S1�R, we have some freedom in choosing the pair .h; J /
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from Theorem 5. Let us mention some additional properties that can be granted for the
perturbation h and the almost complex structure J, and will be useful in applications.

(i) The almost complex structure J can be taken to be time-independent. Moreover,
if one of the ends of H, say H�, is zero, then h can be chosen such that h� is any
time-independent small Morse function that has a cylindrical bump around @U. To
see this, choose h � H and J such that .h; J / has a cylindrical bump around @U,
and J and h� are time-independent. Then, the pair .h�; J / is Floer-regular and,
by perturbing hC first and then replacing the homotopy by a compactly supported
perturbation, we end up with a pair .h; J / that is Floer-regular, as well as its ends, and
.h�; J / is time-independent.

(ii) When the homotopy H is constant on some domain, we can choose the pertur-
bation h such that, on this domain, its ends h˙ agree on their 1–periodic orbits up to
second order. This follows from the use of Claim 9.1 in the proof of Theorem 5.

(iii) Given an interval Œa; b�� R such that H is a constant homotopy for s … Œa; b�,
we can chose the perturbation h of H to be also constant outside of Œa; b�, namely
supp.@sh/�M �S1� Œa; b�. This follows from the use of Proposition 9.2 in the proof
of Theorem 5.

(iv) Proposition 3.7 also holds when considering a homotopy of almost complex
structures fJsgs2R, but the demand on .h; J / to have a .r; ı/–bump around @U limits
the dependence of Js on s there.

4 Locality of spectral invariants, Schwarz’s capacities and
superheavy sets

In this section we use barricades to prove Theorem 1 and derive Corollaries 1.5 and 1.6.
We will use the definitions and notation from Section 2, in particular Notation 2.1 and
formula (11). We will also use the following properties of spectral invariants (see for
example [16, Proposition 12.5.3]):

� Spectrality c.F I˛/ 2 spec.F /.

� Stability/continuity For any Hamiltonians F , G and homology class ˛ 2H�.M/,Z 1

0

min
x2M

.F.x; t/�G.x; t// dt�c.F I˛/�c.GI˛/�

Z 1

0

max
x2M

.F.x; t/�G.x; t// dt:

In particular, the functional c. � I˛/ W C1.M �S1/!R is continuous.
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� Poincaré duality For any Hamiltonian F , we have c.F I ŒM �/D�c.�F I Œpt�/.

� Energy-capacity inequality If the support of F is displaceable, then c.F I ŒM �/

is bounded by the displacement energy of the support in M, namely c.F I ŒM �/ �

e.supp.F /IM/. Recall that a subset X of a symplectic manifold is displaceable if
there exists a Hamiltonian G such that '1G.X/\X D∅. In this case, the displacement
energy of X is given by

(20) e.X IM/ WD inf
GW'1G.X/\XD∅

Z 1

0

�
max
M

G. � ; t /�min
M
G. � ; t /

�
dt:

Let us sketch the idea of the proof of Theorem 1 before giving the details. We will
prove the statement for the class of a point, and use Poincaré duality to deduce the
same for the fundamental class. We start by showing that the spectral invariant, with
respect to Œpt�, of a Hamiltonian supported in a CIB domain is nonpositive (Lemma 4.1).
Then, after properly choosing regular perturbations with barricades (Lemma 4.4), we
consider a representative of Œpt� of negative action on M. Such a representative must
be a combination of orbits in Uı and thus can be pushed to a cycle on N. Finally, we
use continuation maps, induced by homotopies to small Morse functions, to conclude
that the cycle on N represents Œpt� there.

As mentioned above, our first step towards proving Theorem 1 is showing that the
spectral invariant with respect to Œpt� of a Hamiltonian supported in a CIB domain is
always nonpositive.

Lemma 4.1 Let F WM � S1! R be a Hamiltonian supported in a CIB domain U.
Then c.F I Œpt�/� 0.

Proof Let H be a linear homotopy10 from H� WD 0 to HC WD F . By Theorem 5,
there exist a small perturbation h of H and an almost complex structure J such that
.h; J / and .h˙; J / are Floer-regular and have a barricade in U around Uı, where Uı
contains the support of F . By Remark 3.8(i), we can choose J to be time independent
and h so that h� is a time-independent small Morse function. Moreover, we may
assume that h� has a minimum point p that is contained in U c. Since the Floer
complex and differential of .h�; J / agree with the Morse ones, the point p represents
Œpt� in CF�.h�/ Š CM�Cn.h�/. Denoting by ˆ.h;J / W CF�.h�/ ! CF�.hC/ the
continuation map associated to the pair .h; J /, the presence of the barricade guarantees

10A linear homotopy is a homotopy of the form H.x; t; s/ D H�.x; t/C ˇ.s/.HC.x; t/�H�.x; t//,
where ˇ WR!R is a smooth step function.
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that ˆ.h;J /.p/� CU c .hC/. Indeed, otherwise, we would have a continuation solution
starting at p�U c and ending at some xC�U, a contradiction. The imageˆ.h;J /.p/ is
a cycle representing Œpt� in CF�.hC/ and its action level is close to zero. Indeed, since
hC approximates F , which is supported in Uı, the restriction hCjU cı is a small Morse
function. Its 1–periodic orbits there are critical points and their actions are the critical
values. Therefore, using the stability property of spectral invariants, we conclude that
c.F I Œpt�/� c.hCI Œpt�/C ı � �hC.ˆ.h;J /.p//C ı � 2ı for small ı > 0.

Remark 4.2 � Using Poincaré duality for spectral invariants, the above lemma implies
that c.F I ŒM �/� 0 for every Hamiltonian F supported in a CIB domain. This is already
known for Hamiltonians supported in the interiors of incompressible Liouville domains.
Indeed, it follows easily from the max formula, proved in [12], when applied to the
functions F1 D F and F2 D 0:

c.F C 0I ŒM �/Dmaxfc.F I ŒM �/; c.0I ŒM �/g � 0:

� Lemma 4.1 does not hold if M is not symplectically aspherical. For example, the
equator in S2 is known to be superheavy. Therefore, if F is a Hamiltonian on S2

which is supported on a disk containing the equator, then

�.F /D lim
k!1

c.kF I ŒM �/=k

is not greater than the maximal value that F attains on the equator; see [16, Chapter 6].
Therefore, one can construct a Hamiltonian supported in a disk on S2 with a negative
spectral invariant with respect to the fundamental class.

Our next step towards the proof of Theorem 1 is choosing suitable perturbations for the
Hamiltonians F and ‰�F , as well as homotopies from them to small Morse functions.
Before that, we use the embedding ‰ to define a linear map between subspaces of
Floer complexes of Hamiltonians on M and on N , which agree on U through ‰.

Definition 4.3 Consider nondegenerate Hamiltonians fM on M and fN on N such
that fM and fN ı‰ have the same 1–periodic orbits inU. For an element a2CU .fM /�
CF�.fM / that is a combination of orbits contained in U, we define its pushforward
with respect to the embedding ‰ to be

‰�a WD
X
x2a

ax �‰.x/ 2 C‰.U/.fN /� CF�.fN /:
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Lemma 4.4 (setup) There exist homotopies and time-independent almost complex
structures hM and JM on M, and hN and JN on N, such that the following hold :

(i) The pairs .hM ; JM /, .hM˙; JM /, .hN ; JN / and .hN˙; JN / are all Floer-regular
and have barricades in U around Uı and in ‰.U / around ‰.Uı/, respectively,
for some Uı b U containing the support of F.

(ii) hM� and hN� are small perturbations of F and ‰�F , respectively , and hMC
and hNC are small time-independent Morse functions.

(iii) On ‰.U /, the Hamiltonians hN� and hM� ı‰�1 agree on their periodic orbits
up to second order and JN D‰� ıJM ı‰�1� (abbreviate to JN D‰�JM ).

(iv) The differentials and continuation maps commute with the pushforward map ‰�
when restricted to Uı:

ˆ.hN ;JN / ı‰� ı�Uı D‰� ıˆ.hM ;JM / ı�Uı ;(21)

@.hN˙;JN / ı‰� ı�Uı D‰� ı @.hM˙;JM / ı�Uı :(22)

We postpone the proof of Lemma 4.4, and prove Theorem 1 first.

Proof of Theorem 1 We will prove that cM .F I Œpt�/D cN .‰�F I Œpt�/, and the claim
for the fundamental class will follow from Poincaré duality for spectral invariants.
Suppose that at least one of cM .F I Œpt�/ and cN .‰�F I Œpt�/ is nonzero, otherwise there
is nothing to prove. Without loss of generality, assume that cM .F I Œpt�/ ¤ 0; then,
by Lemma 4.1, cM .F I Œpt�/ < 0. We will show that cM .F I Œpt�/ � cN .‰�F I Œpt�/.
This will imply that cN .‰�F I Œpt�/ < 0 and equality will follow by symmetry. Let
.hM ; JM / and .hN ; JN / be pairs of homotopies and almost complex structures on M
and N , respectively, that satisfy the assertions of Lemma 4.4, and write fM WD hM�
and fN WD hN�. By the continuity of spectral invariants, it is enough to prove the
claim for fM and fN .

Since cM .F I Œpt�/ < 0 and F jU cı D 0, by taking fM to be close enough to F and
F jU cı D 0, we may assume that cM .fM I Œpt�/ < minU cı fM. Recalling that fM is a
small Morse function on U cı , its 1–periodic orbits there are its critical points, and their
actions are the critical values. As a consequence, a representative a 2 CF�.fM / of Œpt�
of action level �fM .a/D cM .fM I Œpt�/ is a combination of orbits that are contained
in Uı, namely a 2 CUı.fM /. Therefore, the pushforward ‰�a 2 CF�.fN / is defined,
and by (22), ‰�a is closed in CF�.fN /. To see that ‰�a represents the class of a point,
we will use (21). Indeed, since a represents Œpt� on M, and continuation maps induce
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isomorphism on homologies, ˆ.hM ;JM /.a/ is a representative of Œpt� in CF�.hMC/.
Since hMC is a small time-independent Morse function (and JM is time-independent),
its Floer complex and differential coincide with the Morse ones,

.CF�.hMC/; @.hMC;JM //Š .CM�Cn.hMC/; @
Morse
.hMC;gJM //:

As a consequence, ˆ.hM ;JM /.a/ is a sum of an odd number of minima.11 Using (21),
we find that ˆ.hN ;JN /.‰�a/ D ‰�.ˆ.hM ;JM /a/ is also a sum of an odd number of
minima, and as such, represents the point class in CM�Cn.hNC/ŠCF�.hNC/. Since
‰�a is closed, we conclude that it represents Œpt� in CF�.fN /. Together with the fact
that, in ‰.U /, fM ı‰�1 and fN agree on their 1–periodic orbits, this implies that

cN .fN I Œpt�/� �fN .‰�a/D �fM .a/D cM .fM I Œpt�/;

where the equality �fN .‰�a/D�fM .a/ follows from the fact that U is incompressible;
see Remark 1.3 and Proposition A.35.

Proof of Lemma 4.4 LetHM WM �S1�R!R be a linear homotopy from F to zero,
that is constant outside of Œ0; 1�, ie @sHM js…Œ0;1�D 0. Then HM is supported in U, and
its pushforward HN WD‰�HM is a linear homotopy from ‰�F to zero on N. Let JM
be a time-independent almost complex structure on M and let h[M be a homotopy with
nondegenerate ends, that is constant outside of Œ0; 1� and approximates HM, and is such
that the pair .h[M ; JM / has a .r; ı/–bump around @U for some r and ı. Set UıD �rU.
Let JN be a time-independent almost complex structure obtained as an extension of
‰�JM from ‰.U / to N .12 Extending h[M ı‰

�1 to N by a homotopy of small Morse
functions with critical values in .�ı; ı/, we obtain a pair .h[N ; JN / with a .r; ı/–bump
around ‰.@U /D @‰.U /. Moreover, h[N is a homotopy with nondegenerate ends, it
approximates HN , and we can choose it to be constant for s … Œ0; 1�. Noticing that the
ends of these homotopies have .r; ı/–bumps as well, Proposition 3.7 guarantees that
the pairs .h[M ; JM /, .h

[
M˙; JM /, .h

[
N ; JN / and .h[N˙; JN / all have barricades in U

around Uı and in ‰.U / around ‰.Uı/, respectively.

Let us now perturb h[M to make all of the pairs defined onM regular. As in the proof of
Theorem 5, we first perturb the ends h[M˙ into hM˙, without changing their periodic
orbits, so that the pairs .hM˙; JM / are Floer-regular (as cited in Claim 9.1 below).

11See, for example, the proof of Proposition 4.5.1 in [3].
12The fact that ‰�JM can be extended to an almost complex structure on N can be deduced from
the path-connectivity of the set of almost complex structures on symplectic vector bundles (see eg [14,
Proposition 2.63]), together with the fact that @U has a tubular neighborhood.
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Then, perturb the homotopy h[M to obtain a homotopy hM whose ends are the regular
perturbations hM˙ and which is constant for s … Œ0; 1�. Finally, Proposition 9.2 below
states that we can perturb the homotopy hM on the set M �S1� Œ0; 1� to make the pair
.hM ; JM / Floer-regular. We stress that after the perturbations the regular homotopy hM
is constant for s … Œ0; 1� as well. Proposition 9.21 guarantees that every small enough
perturbation of h[M that is constant outside of Œ0; 1� and whose ends have the same
periodic orbits as the ends of h[M , also has a barricade in U around Uı, when paired
with JM. Arguing similarly for the ends hM˙ we conclude that the pairs .hM ; JM /
and .hM˙; JM / all have barricades in U around Uı.

We turn to construct the pairs on N. Let h0N be an extension to N of the homotopy
hM ı‰

�1, which is defined on ‰.U /. Notice that by replacing hM with a smaller
perturbation of h[M if necessary, h0N can be taken to be arbitrarily close to h[N . This way,
we can use Proposition 9.21 again to conclude that .h0N ; JN / has a barricade in ‰.U /
around ‰.Uı/. Finally, we repeat the arguments made above and perturb h0N to make
all of the pairs on N Floer-regular. We obtain a homotopy hN that is constant for
s … Œ0; 1�, approximates hM ı‰�1 on ‰.U / and is such that the pairs .hN ; JN / and
.hN˙; JN / are all Floer-regular and have barricades in ‰.U / around ‰.Uı/.

It remains to prove that, in Uı, the pushforward map commutes with the continuation
maps and the differentials for the homotopies hM, hN and their ends, respectively.
We will write the proof for the continuations maps; the proof for the differentials is
analogous. We first show that the continuation maps of hN and h0N agree on ‰.Uı/,
and then prove that the commutation relation (21) holds for hM and h0N , which agree
on U through ‰. Proposition 9.31 (for the differentials, Proposition 9.25) states that the
restriction of the continuation map to C‰.Uı/ does not change under small perturbations,
when the pairs have a barricade and satisfy a certain regularity assumption on ‰.U /.
This assumption holds for Floer-regular pairs, as well as for pairs that coincide on U
with a Floer-regular pair. Therefore, recalling that hN is a small perturbation of h0N ,
and that the pair .h0N ; JN / agrees on ‰.U /, through a symplectomorphism, with
the Floer-regular pair .hM ; JM /, we may apply Proposition 9.31 and conclude that
ˆ.hN ;JN / ı�‰.Uı/ D ˆ.h0N ;JN /

ı�‰.Uı/. In order to prove ˆ.h0N ;JN / ı‰� ı�Uı D
‰� ıˆ.hM ;JM / ı �Uı , recall the definitions of ‰� and the continuation maps (11).
We need to show that for every x˙ 2 P.hM˙/ such that x� � Uı, it holds that
#2M.hM ;JM /.x�; xC/D #2M.h0N ;JN /

.‰.x�/; ‰.xC//. This essentially follows from
the fact that both pairs .hM ; JM / and .h0N ; JN / have barricades, and that hM D h0N ı‰
and JM D JN ı ‰ on U. Indeed, it follows from x� � Uı that ‰.x�/ � ‰.Uı/
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and thus the barricades guarantee that all of the elements of M.hM ;JM /.x�; xC/

and M.h0N ;JN /
.‰.x�/; ‰.xC// are contained in Uı and ‰.Uı/, respectively. The

symplectic embedding ‰ induces a bijection between these two sets, and so it follows
that the counts of their elements coincide.

Having established Theorem 1, we now explain how to derive Corollaries 1.5–1.6. Let
us start by recalling the definition of a symplectic capacity:

Definition 4.5 (see eg [4; 11]) Given a class S of symplectic manifolds, a symplectic
capacity on S is a map c W S! Œ0;1� that satisfies the following properties:

� Monotonicity c.U; !/ � c.V;�/ if there exists a symplectic embedding
.U; !/ ,! .V;�/.

� Conformality c.U; �!/D j� j � c.U; !/ for all � 2R n f0g.

� Nontriviality c.B2n.1/; !0/ > 0 and c.Z2n.1/; !0/ <1, where B2n.1/ is
the unit ball in R2n and Z2n.1/D B2.1/�R2n�2 is the symplectic cylinder.

Recall the class S of contractible compact symplectic manifolds with contact-type
boundaries that can be embedded into symplectically aspherical manifolds, and consider
the class zS of symplectic manifolds X exhaustible by elements from S, namely such
that there exist Ai 2 S such that A1 � A2 � � � � � X and X D

S
i Ai . Let us use

Theorem 1 to show that Schwarz’s relative capacities, which are defined for subsets of
a given closed symplectically aspherical manifold, induce a capacity on the class zS.

Proof of Corollary 1.5 Let A 2 S be a contractible symplectic manifold with a
contact-type boundary that can be embedded into a symplectically aspherical manifold
.M;!/. Abusing notation, we write A �M. We start by showing that such an A is
an incompressible Liouville domain, and hence a CIB domain, in M. If dimA D 2,
then A is symplectomorphic to a disc of the same area (see [6] for example) and in
particular is an incompressible Liouville domain. Suppose now that dimA> 2 and let
us show that the Liouville form (and hence the Liouville vector field) extends to A.
Denote by � the Liouville form defined near the boundary of A. Since A is contractible,
! is exact on A. Let � be a primitive of ! on A. Then � � � is a closed form on a
collar neighborhood of @A on which � is defined. Since dimA> 2, its boundary has a
vanishing first homology group.13 As a consequence, the closed form � �� defined

13The boundary of a 2n–dimensional contractible manifold with boundary has the homology groups of
the .2n�1/–dimensional sphere. This follows from the Lefschetz duality H2n�k.M/ Š Hk.M; @M/

together with the long exact sequence of a pair.

Algebraic & Geometric Topology, Volume 23 (2023)



Floer theory of disjointly supported Hamiltonians 677

near @A is exact. Let f be a primitive, df D � � �, and let � be a cutoff function
supported in the collar neighborhood of @A that is equal to 1 on a smaller neighborhood
of the boundary. Then �0 WD � � d.�f / is a Liouville form which coincides with �
near @A. We conclude that A is a Liouville domain which is incompressible in M , and
hence is a CIB domain.

Recall the definition of Schwarz’s relative capacity (2),

c
 .AIM/ WD supfc.F I ŒM �/� c.F I Œpt�/ W suppXF � A�S1g:

Consider a Hamiltonian F on M such that XF is supported in A � S1. Since A
is contractible, its boundary connected and therefore F is constant on @A, as well
as on the complement, M n A. Denoting C WD F jMnA, the difference F � C is
supported in A. Moreover, it follows from the spectrality and stability of spectral
invariants that cM .F �C I˛/D cM .F I˛/�C for every homology class ˛ 2H�.M/.
In particular, cM .F �C I ŒM �/� cM .F �C I Œpt�/ D cM .F I ŒM �/� cM .F I Œpt�/ and
hence, by replacing F with F �C , we may assume that F is supported in A. Suppose
that A can be embedded into another symplectically aspherical manifold .N;�/. By
Theorem 1, the spectral invariants of Hamiltonians supported inA onM andN coincide,
and therefore the relative capacities of A with respect to M and N agree, and we can
define

c
 .A/ WD c
 .AIM/D c
 .AIN/:

We may extend this definition to elements of the class zS by taking the supremum over
all elements A 2 S in the exhaustion. Before proving that c
 satisfies the axioms of
a symplectic capacity, let us prove the second assertion of the corollary. Given an
A 2 S that can be symplectically embedded into .R2n; !0/, we need to show that
c
 .AIM/ � 2e.AIR2n/. Let Q D Œ�R;R�2n � R2n be a large cube such that the
embedding of A into R2n satisfies e.AIQ/D e.AIR2n/. Then, embedding Q into a
large torus N D R2n=.3RZ2n/Š T2n, we conclude that e.AIN/D e.AIR2n/. By
the energy-capacity inequality, for every Hamiltonian F supported in the embedding
of A into N and for every homology class ˛, one has c.F I˛/� e.AIN/D e.AIR2n/.
Using Theorem 1 we conclude that for every symplectically aspherical M and an
embedding of A into M, c
 .AIM/D c
 .A/� 2e.AIR2n/.

We now briefly explain why c
 satisfies the axioms of a capacity. Nontriviality follows
from the fact that Schwarz’s capacities are not smaller than the Hofer–Zehnder capacity,
and are not greater than twice the displacement energy; see [18]. Monotonicity follows
from the definition of c
 . � IM/, together with the fact that the image of every embedding
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of a domain in S into a symplectically aspherical manifold is a CIB domain. To prove
the conformality property, suppose that .A;�/ 2 S is embedded into .M;!/, and then
.A; � ��/ is embedded into .M; � �!/. In order to prove that

c
 ..A; ��/; .M; �!//D j� j � c
 ..A;�/; .M;!//;

we show that for every F such that supp.XF /� A�S1 and for every homology class
˛ 2H�.M/, it holds that

(23) c.M;�!/.j� j �F I˛/D j� j � c.M;!/.F I˛/:

Starting from the case where � > 0, we notice that the action functional with respect
to the form �! and the Hamiltonian �F is proportional to the action functional with
respect to ! and F . The Floer complexes of .!; J; F / and .�!; J; �F / coincide, while
the action filtration is rescaled by � , and therefore (23) holds. It remains to deal with
�D�1. In this case, the Floer complexes of .!; J; F / and .�!;�J; F / are isomorphic
via the map t 7! �t , and the action filtration is the same. This implies that (23) holds
for negative � as well.

Proof of Corollary 1.6 Let A � M be a contractible domain with a contact-type
boundary that can be symplectically embedded in .R2n; !0/. As in the proof of
Corollary 1.5, let Q �R2n be a large enough cube such that the image of A in R2n is
displaceable inQ. EmbeddingQ into a large torusN ŠT2n, we denote by‰ WA ,!N

the composition of the embeddings. As ‰.A/ is displaceable in N, it follows from
nonnegativity of c. � I ŒM �/ (Lemma 4.1), Theorem 1 and the energy capacity inequality
that for every Hamiltonian F WM �S1!R supported in A,

0� cM .F I ŒM �/D cN .‰�F I ŒN �/� e.AIN/ <1:

As a consequence, the partial symplectic quasistate � associated to c vanishes on
functions supported in A. The fact that the complement of A is superheavy follows
from the following equivalent description of superheavy sets:

Definition [16, Definition 6.1.10] A closed subset X �M is superheavy if �.F /D 0
for every Hamiltonian F that vanishes on X .

The fact that A cannot contain a heavy set can be seen directly from the definition.
Alternatively, this fact follows from the intersection property of heavy and superheavy
sets, established by Entov and Polterovich in [7]: Every superheavy set intersects every
heavy set.
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We conclude this section with two examples, showing that Theorem 1 does not hold in
a more general setting.

Example 4.6 The conditions on the manifolds M, N and the domain U in Theorem 1
are necessary:

� The condition onM andN being symplectically aspherical in Theorem 1 is necessary.
A simple example is to embed the unit disk D�R2 into a small sphere and into a large
sphere. Namely, take M and N to be spheres of areas 1:5� and 2� , respectively. Then
there exist Hamiltonians, supported in the embedding of D into M, with arbitrarily
large spectral invariants with respect to the fundamental class. This follows from the
fact that the embedding of D into M contains the equator, which is a heavy set; see
[16, Chapter 6]. A Hamiltonian F that attains large values on the equator in M has a
large spectral invariant.

On the other hand, the spectral invariant of any Hamiltonian that is supported in the
embedding of D into N is bounded by the displacement energy of this embedded disc
in N, which is equal to � .

� The condition that @U be incompressible is also necessary. Consider the two
embeddings of the annulus A WD int

�
D n 1

2
D
�

into a torus of large area, illustrated in
Figure 2. The image under the first embedding contains the meridian and therefore is
heavy [7] (in this case the boundary is incompressible). The image under the second
embedding is displaceable (and the boundary is not incompressible). As mentioned
above, in the first case one can construct Hamiltonians with arbitrarily large spectral
invariants (with respect to the fundamental class), and in the second case, the spectral
invariant is bounded by the (finite) displacement energy. In particular, the assertion of
Theorem 1 cannot hold in this case.

5 Relation to certain open symplectic manifolds

In this section we discuss an extension of Theorem 1 to CIB domains in certain open
symplectic manifolds. We start by briefly reviewing Floer homology on such manifolds,
following [9].14 Let .W; !/ be a 2n–dimensional compact symplectic manifold with
a contact-type boundary. Using the Liouville vector field Y, we can symplectically

14A lot of our sign choices are opposite to those of [9]. Essentially, the complex defined in [9] for a
Hamiltonian F coincides with the complex defined here for �F .
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identify a neighborhood of the boundary in W with @W � ."; 0� endowed with the
symplectic form d.er�/, where � D �Y! and r is the coordinate on the interval.
The completion of .W; !/ is defined to be

yW WDW [@W @W � Œ0;1/; y! WD

�
! on W;
d.er�/ on @W � .�";1/:

Let J be an y!–compatible almost complex structure on yW that, on @W, maps Y to
the Reeb vector field R and, on @W � Œ0;1/, is time-independent and is invariant
under r–translations. A time-dependent Hamiltonian F on yW is called admissible if it
coincides on @W � Œ0;1/ with �.er/ for a function � W Œ0;1/!R whose derivative
on .0;1/ is positive and smaller than the minimal period of a periodic Reeb orbit —
note that in this case, F has no 1–periodic orbits in W � .0;1/. For a generic
admissible Hamiltonian, the Floer complex of the pair .F; J / on the open manifold
. yW ; y!/ is generated by the 1–periodic orbits of F in W, and the differential is defined
by counting solutions of the Floer equation, as in the closed case; see Section 2. The
above assumptions on F and J guarantee that finite-energy solutions are contained
in W. This follows from a standard application of the max-principle (see for example
[23, Lemma 1.8; 17, Lemma 2.1]), or from Lemma 3.5 above. The homology of this
complex is independent of F and J and is isomorphic to the homology of W. Spectral
invariants on open manifolds were defined in [9, Section 5] in complete analogy with
the closed case.15 These invariants extend by continuity to any Hamiltonian supported
in W.

Remark 5.1 It was suggested to us by Schlenk that Theorem 1 holds for the spectral
invariant with respect to the point class on the above open manifolds as well. Namely,
given a CIB domain U inW and a symplectic embedding‰ W .U; !/! .W 0; !0/ whose
image is a CIB domain in W 0, then for every Hamiltonian F supported in U,

cW .F I Œpt�/D cW 0.‰�F I Œpt�/;

where ‰�F WW 0 �S1!R is the extension by zero of F ı‰�1.

5.1 The homology of the subcomplex CUı.f /

In what follows, .M;!/ denotes a closed symplectic manifold, as always. Given a
Hamiltonian F supported in U, let .f; J / be a Floer-regular pair on M with a barricade

15The definition in [9] is given for the point class, but generalizes as is to any ˛ 2H�.W /.
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in U around Uı for some Uı b U. The block form (7) of the differential implies that
the differential restricts to CUı.f /� CF.f /. In this section we study the homology
of this subcomplex. We show that for a properly chosen pair .f; J /, the homology of
.CUı.f /; @jUı/ coincides with the homology of U, namely,

(24) H�.CUı.f /; @jUı/ŠH�.U /:

To that end, consider a perturbation f [ of F such that .f [; J / has a .r; ı/–bump
around @U (in the sense of Definition 3.6). In particular, we assume that J is cylindrical.
Let f be a C 2–small perturbation of f [ such that the pair .f; J / is Floer-regular. As
argued in the proof of Theorem 5, it follows from Propositions 3.7 and 9.21 that the
pair .f; J / has a barricade in U around Uı WD  �rU. Taking f to be close enough
to f [, the restriction f jUı of f to Uı can be extended to an admissible Hamiltonian
yf WD bf jUı on yU that has no additional 1–periodic orbits. Here . yU ; y!/ is the open

symplectic manifold obtained as the completion of U. As the 1–periodic orbits of
yf in yU coincide with the 1–periodic orbits of f that are contained in Uı, the Floer

complex of yf on the open manifold yU coincides with CUı.f /. Since both in M and
in yU all finite-energy solutions of the Floer equation among orbits in Uı are contained
in Uı, the differentials coincide. We conclude that the homology of .CUı.f /; @jUı/
indeed coincides with H�.U /.

5.2 Locality of spectral invariants with respect to other homology classes

In this section we show how Floer homology on open manifolds is useful in the study
of Floer complexes of Hamiltonians supported in CIB domains in closed manifolds.16

In particular, we explain how to extend Theorem 1 to homology classes in the image
of the map induced by the inclusion � W U ,!M.

Remark 5.2 The map �� WH�.U /!H�.M/ induced by the inclusion of U into M
coincides (under standard isomorphisms) with the map induced by the inclusion of
Floer complexes CUı.f /!CF.f / when .f; J / has a barricade in U around Uı. This
is clear for the case where f is a small Morse function, since its Floer complex and the
Uı–subcomplex coincide with the Morse ones. To see this for a general Hamiltonian f ,
consider a homotopy h between f and a small Morse function hC such that .h; J /
has a barricade in U around Uı. Denoting by ˆ WCF.f /!CF.hC/ŠCM�.hC/ the

16The results in this section can be achieved within the scope of Floer homology on closed manifolds, but
the proof is slightly more complicated and less natural.
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corresponding continuation map, it restricts to the subcomplexes generated by elements
in Uı:

ˆUı WDˆjCUı .f / W CUı.f /! CUı.hC/:

Moreover, the solutions of the Floer equation counted by the map ˆUı are all contained
in Uı due to the barricade — these observations are an adaptation of (7) to continuation
maps instead of differentials. In fact, the map ˆUı coincides with the continuation
map between the Floer and Morse complexes on the completion of Uı, with respect
to a homotopy obtained as a constant (in the s parameter) extension of hjUı to the
completion. Such maps are known to be isomorphisms; see [17, Section 2.9; 24,
Theorem 1.4], for example. Since the diagram

CUı.f /
//

ˆUı
��

CF.f /

ˆ
��

CUı.hC/
// CF.hC/

commutes, the maps induced by inclusions of the Floer and Morse complexes coincide
under the isomorphisms ˆUı and ˆ.

Claim 5.3 For every class ˛ 2 im.��/�H�.M/ and a Hamiltonian F supported in U,

(25) cM .F I˛/D min
ˇ2H�.U /
��.ˇ/D˛

c yU .
yF Iˇ/;

where cM and c yU are the spectral invariants in the manifolds .M;!/ and . yU ; y!/,
respectively, and yF is the extension by zero of F jU to yU.

Proof The proof relies on the observations of Section 5.1: Let f be a perturbation
of F and J an almost complex structure such that .f; J / has a barricade in U around
Uı. Assume in addition that the perturbation is chosen to be arbitrarily close to some f [

for which the pair .f [; J / has a cylindrical bump around @U. As explained previously,
the Floer complex of yf WD bf jUı on . yU ; y!/ coincides with the subcomplex CUı.f / of
CF.f / in M. We will show that formula (25) holds for f and yf up to 2ı for some ı
which can be made arbitrarily small by shrinking the size of the perturbations.

We start by noticing that given a class ˇ 2 ��1� .˛/, every representative b 2 CUı.f /
of ˇ is a representative of ˛ in CF�.f /. This immediately implies that

cM .f I˛/� min
ˇ2��1� .˛/

cUı.
yf Iˇ/:
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To prove inequality in the other direction, let ˇ 2 ��1� .˛/ be a class on which the
minimum in the right-hand side of (25) is attained, and let a2CF�.f / and b 2 CUı.f /
be representatives of ˛ and ˇ of minimal action levels. We need to show that
�f .b/� �f .a/C 2ı, where �f W CF�.f / ! R is the maximal action of an orbit,
as defined in Notation 2.1. Notice that if a 2 CUı.f /, then it represents in CUı.f / a
class in ��1� .a/ and, by our choice of b, �f .b/� �f .a/, which concludes the proof for
this case. Therefore we suppose that a contains critical points in M nUı, which implies
that �f .a/ > �ı. Assume for the sake of contradiction that �f .b/ > �f .a/C 2ı;
then �f .b/ > ı. Recalling that a and b are homologous in CF�.f / (they both repre-
sent ˛), there exists c 2 CF�.f / such that @c D a� b. Consider the decomposition
c D �UıcC�U cı c. Then

b0 WD bC @�Uıc D a� @�U cı c 2 CUı.f /

is homologous to b in CUı.f /. This follows from the fact that @ ı�Uı D @jUı , since
.f; J / has a barricade in U around Uı. Therefore, b0 represents in CUı.f / a class
in ��1� .˛/, and by our choice of b, it holds that �f .b/� �f .b0/. On the other hand,

�f .b
0/D �f .a� @�U cı c/�maxf�f .a/; �f .@�U cı c/g �maxf�f .a/; ıg< �f .b/;

a contradiction.

Remark 5.4 When U is a disjoint union of fUig and ˛D Œpt� 2H�.M/, equality (25)
implies the min formula for the point class, which is equivalent, by Poincaré duality, to
Theorem 45 in [12] (the max formula).

6 Spectral invariants of disjointly supported Hamiltonians

In this section we use barricades to prove Theorem 2, which states that a max inequality
holds for spectral invariants of Hamiltonians supported in disjoint CIB domains, with
respect to a general class ˛ 2H�.M/, and that equality holds when ˛D ŒM �. Suppose
F and G are two Hamiltonians supported in disjoint CIB domains. In order to prove
the max inequality (4) for a homology class ˛ 2H�.M/, we construct a representative
of ˛ in the Floer complex of (a perturbation of) the sum F CG, out of representatives
from the Floer complexes of (perturbations of) F and G. The communication between
the different Floer complexes is through continuation maps, corresponding to (perturba-
tions of) linear homotopies. The barricades will be used to study the continuation maps,
or, more accurately, their restrictions to the CIB domains. In particular, we will use the
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observation that having a barricade for a disjoint union implies having a barricade for
each component:

Remark 6.1 Consider two disjoint domains U and V in M, and a pair .H; J / of a
homotopy (or a Hamiltonian) and an almost complex structure, that has a barricade in
U [V around Uı[Vı for some Uı b U and Vı b V . It follows from Definition 1.7
of the barricade that the pair .H; J / has a barricade in U around Uı (and, similarly,
in V around Vı).

We start by arranging the setup required for the proof of Theorem 2.

Lemma 6.2 (setup) Let F and G be Hamiltonians supported in disjoint CIB domains
U and V, respectively. Then there exist an almost complex structure J and homotopies
hF and hG such that the following hold :

(1) The pairs .hF ; J /, .hF˙; J /, .hG ; J / and .hG˙; J / are all Floer-regular and
have barricades inU[V aroundUı[Vı for someUıbU and VıbV containing
the supports of F and G, respectively.

(2) The left ends hF� and hG� are small perturbations of F and G, respectively.
The right ends coincide — hFC D hGC— and are a small perturbation of the
sum F CG.

(3) On U �S1 (resp. V �S1) the homotopy hF (resp. hG) is a small perturbation
of a constant homotopy , and its ends agree on their 1–periodic orbits up to
second order. In particular , hF� and hFC (resp. hG� and hGC) have the same
1–periodic orbits in U (resp. V ).

Proof Let HF and HG be linear homotopies from F and G, respectively, to the
sum F CG. As in the proof of Lemma 4.4, we consider perturbations h[F and h[G
of the linear homotopies that, when paired with J, have a cylindrical bump around
@U [ @V . We demand in addition that all ends are nondegenerate, that the right ends
coincide, h[FC D h

[
GC, and that the homotopies are constant on U and V, respectively,

h[F jU � h
[
F�
jU and h[G jV � h

[
G�
jV . By Proposition 3.7, these homotopies and their

ends, when paired with J, have barricades in U [ V around Uı [ Vı. It remains
to perturb again to ensure regularity. As in the proof of Theorem 5, we replace the
ends with regular perturbations hF�, hG� and hFC D hGC, without changing their
periodic orbits (as cited in Claim 9.1, for example), then perturb the homotopies to
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glue to these regular perturbed Hamiltonians, and finally perturb the homotopies on
the set M � S1 � I for some fixed finite interval I , to obtain homotopies that are
Floer-regular when paired with J. The last step is possible due to Proposition 9.2 below.
Proposition 9.21 states that barricades survive under perturbations that do not change
the periodic orbits of the ends and are constant (as homotopies) outside of some fixed
finite interval.

The following lemma is actually a part of the proof of Theorem 2 but, in our opinion,
might be interesting on its own.

Lemma 6.3 Let ˛ 2H�.M/ and let F;G WM �S1!R be Hamiltonians supported
in disjoint CIB domains U and V, respectively. Assume in addition that c.F I˛/ < 0.
Then

(26) c.F CGI˛/�minfc.F I˛/; c.GI˛/g:

Proof Let us show that c.F CGI˛/� c.F I˛/. The result will follow by symmetry,
since, if c.GI˛/ < c.F I˛/, then it is in particular negative.

Let hF and J be the homotopy and almost complex structure from the setup lemma,
Lemma 6.2 (we will not use hG in this proof), and denote the left end of the homotopy
by f WD hF�. Then f approximates F and, since c.F I˛/ < 0 and F jU cı D 0, we
may assume that c.f I˛/ < minU cı f . Outside of Uı, f is a small Morse function
and hence its 1–periodic orbits there are critical points, and their actions are the
critical values. As a consequence, a representative a 2 CF�.f / of the class ˛ of
action level �f .a/D c.f I˛/ must be a combination of orbits that are contained in Uı,
namely, a 2 CUı.f /. As the continuation map ˆ.hF ;J / W CF�.f / ! CF�.hFC/

induces isomorphism on homologies, the image ˆ.hF ;J /.a/ of a represents the class ˛
in CF�.hFC/. Recalling that, on U, the homotopy hF is a small perturbation of a
constant homotopy, it follows from Corollary 9.34 that the restriction of the continuation
map ˆ.hF ;J / to orbits contained in Uı is the identity map,

ˆ.hF ;J / ı�Uı D 1 ı�Uı :

Therefore, ˆ.hF ;J /.a/D a is a representative of the class ˛ of action level

�hFC.ˆ.hF ;J /.a//D �f .a/D c.f I˛/:

We conclude that c.hFCI˛/� c.f I˛/, as required.

Algebraic & Geometric Topology, Volume 23 (2023)



686 Yaniv Ganor and Shira Tanny

supp F

x

"

�"
y

supp F supp G

x y

"

�"

Figure 8: An illustration of nondegenerate perturbations of F , top, and FCG,
bottom. A representative of the class ˛Cˇ appears at level� 0 for F , and at
a negative value for F CG.

The following example shows that a strict inequality can be attained in (26).

Example 6.4 Let .M;!/ be a genus-2 surface endowed with an area form, and
let x; y W S1 ! M be two disjoint noncontractible loops representing two different
homology classes ˛; ˇ 2H1.M IZ2/, respectively. Let F;G WM ! R be two small
Morse functions with disjoint supports, which are such that F vanishes on y and takes
a negative value on x, whereas G vanishes on x and is negative on y. See Figure 8 for
an illustration. After perturbing F , G and F CG into Morse functions, representatives
of the sum ˛Cˇ first appear for F and G on a sublevel set of values approximately
zero. However, this sum of classes appears for F CG in a sublevel set with negative
value. We therefore conclude that the spectral invariants of both F and G with respect
to the sum ˛Cˇ vanish. On the other hand, the spectral invariant of F CG is negative,
and thus

c.F CGI˛Cˇ/ < 0Dminfc.F I˛Cˇ/; c.GI˛Cˇ/g:
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The following inequality is a simple application of Lemmas 4.1 and 6.3, and will be
used to prove that equality holds in (4) for the fundamental class.

Lemma 6.5 Let F;G W M � S1 ! R be Hamiltonians supported in disjoint CIB
domains. Then

c.F CGI ŒM �/�maxfc.F I ŒM �/; c.GI ŒM �/g:

Proof By Lemma 4.1, the spectral invariants of F , G and F CG with respect to Œpt�
are nonpositive, and thus, using the Poincaré duality property for spectral invariants,
we conclude that c.F CGI ŒM �/, c.F I ŒM �/ and c.GI ŒM �/ are all nonnegative. If
both c.F I ŒM �/ and c.GI ŒM �/ are equal to zero, the claim is trivial. Thus we assume,
without loss of generality, that c.F I ŒM �/ > 0. By Poincaré duality,

c.�F I Œpt�/D�c.F I ŒM �/ < 0

and we may apply Lemma 6.3 to �F , �G and ˛ D Œpt�:

c.F CGI ŒM �/D�c.�F �GI Œpt�/

� �minfc.�F I Œpt�/; c.�GI Œpt�/g

D �minf�c.F I ŒM �/;�c.GI ŒM �/g

Dmaxfc.F I ŒM �/; c.GI ŒM �/g:

Proof of Theorem 2 In what follows we prove that the spectral invariant of the sum
FCG with respect to a homology class ˛ is not greater than the maximum. The equality
for the fundamental class will follow from Lemma 6.5. Consider the almost complex
structure J, and the homotopies, hF and hG , from the setup lemma, Lemma 6.2, and
write

f WD hF� � F; g WD hG� �G; hC WD hFC D hGC � F CG:

Set � WDmaxfc.f I˛/; c.gI˛/g and notice that, due to Lemma 6.3 and the continuity
of spectral invariants, we may assume that � � �ı if ı > 0 is small enough. Let
za 2 CF�.f /, zb 2 CF�.g/ be representatives of ˛ of action levels �f .za/; �g.zb/ � �.
Then a WD ˆ.hF ;J /za and b WD ˆ.hG ;J /zb are both representatives of ˛ in CF�.hC/.
Notice that a and b might be of action level higher than �. We wish to construct out of
a and b a representative of ˛ of action level approximately bounded by �. Let p be a
primitive of a� b, and set d WD .@.hC;J /�V ��V @.hC;J //p. We claim that

e WD �V caC�V b� d
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is a representative of ˛ of the required action level. Indeed,

Œ�V caC�V b� d�D Œ�V caC�V b� @.hC;J /.�V p/C�V .@.hC;J /p/�

D Œ�V caC�V b� @.hC;J /.�V p/C�V .a� b/�

D Œ�V caC�V b� @.hC;J /.�V p/C�V a��V b�

D Œ�V caC�V a� @.hC;J /.�V p/�D Œa�D ˛:

Let us now bound the action level of e. First, notice that outside of Uı[Vı, hC is a
small Morse function (as it approximates a Hamiltonian that is supported in Uı[Vı).
Therefore, its 1–periodic orbits there are its critical points and their actions are the
critical values, which we may assume to be bounded by ı. It follows that the action
level of the projection �U cı \V cı .e/ is bounded by ı, and so it remains to bound the
action levels of �Uıe and �Vıe. It follows from the fact that .hC; J / has a barricade
in U around Uı and in V around Vı (more specifically, from (7)), that

(27) �Uı ı @.hC;J / ı�U c D 0 and �Vı ı @.hC;J / ı�V c D 0:

Using this observation, we bound the action levels of the projections of e:

� Bounding �hC.�Uıe/ Notice that �Uıd D 0. Indeed,

�Uıd D �Uı ı .@.hC;J / ı�V ��V ı @.hC;J //p D �Uı ı @.hC;J / ı�V p
(27)
D 0:

As a consequence, �Uıe D �UıaD �Uıˆ.hF ;J /za. Since, on U, the homotopy hF is a
perturbation of the constant homotopy, we can apply Corollary 9.34 and conclude that
�Uı ıˆ.hF ;J / D �Uı . Overall we obtain

�hC.�Uıe/D �hC.�Uı ıˆ.hF ;J /za/D �hC.�Uıza/D �f .�Uıza/� �f .za/� �;

where we used the fact that in U, f D hF� and hC D hFC agree on their 1–periodic
orbits, and hence the action of �Uıza with respect to hC coincides with the action with
respect to f .

� Bounding �hC.�Vıe/ Here �Vıd D 0 as well, but the computation is a little
different:

�Vıd D �Vı ı .@.hC;J / ı�V ��V ı @.hC;J //p

D .�Vı ı @.hC;J / ı�V ��Vı ı @.hC;J //p

D .�Vı ı @.hC;J /��Vı ı @.hC;J / ı�V c ��Vı ı @.hC;J //p
(27)
D 0:

Therefore, �Vıe D �Vıb D �Vıˆ.hG ;J /
zb, and since on V , the homotopy hG is a

perturbation of the constant homotopy, we apply Corollary 9.34 and conclude that
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�Vı ıˆ.hG ;J / D �Vı . Overall,

�hC.�Vıe/D �hC.�Vı ıˆ.hG ;J /
zb/D �hC.�Vı

zb/D �g.�Vı
zb/� �g.zb/� �;

where we used the fact that on V, g D hG� and hC D hGC agree on their 1–periodic
orbits, and hence the action of �Vıza with respect to hC coincides with the action with
respect to g.

We conclude that

c.hCI˛/� �hC.e/�maxf�hC.�Uıe/; �hC.�Vıe/; �hC.�U cı \V cı e/g

Dmaxf�; ıg � �C 2ı:

7 Boundary depth of disjointly supported Hamiltonians

In this section, we use barricades to compare the boundary depths of disjointly supported
Hamiltonians and that of their sum. As in the previous section, the communication
between Floer complexes of different Hamiltonians is through continuation maps
corresponding to homotopies that have barricades. Since we replace the Hamiltonians
and their sum by regular perturbations, we will use the continuity property of the
boundary-depth:

Theorem [21, Theorem 1.1] Given two Hamiltonians F and G,

jˇ.F /�ˇ.G/j �

Z 1

0

�
max
M
.F �G/�min

M
.F �G/

�
dt:

As before, we use Notation 2.1. Let us start with a lemma that will enable us to push
certain boundary terms from one Floer complex to another.

Lemma 7.1 Let J be an almost complex structure and h a homotopy such that the pairs
.h; J / and .h˙; J / are Floer-regular and have a barricade in U around Uı. Assume
in addition that on U, h is a small perturbation of a constant homotopy, and that its
ends h˙ agree up to second order on their 1–periodic orbits in U. Then every boundary
term a 2 @.hC;J /CF�.hC/ that is a combination of orbits in Uı, namely a 2 CUı.hC/,
is also a boundary term in CF�.h�/.

Proof We start with the observation that, since h� and hC are close on U and agree on
their periodic orbits there, the vector spaces CU .h�/ and CU .hC/ coincide. Therefore,
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a boundary term a2CF�.hC/ that is a combination of orbits from Uı is also an element
of CUı.h�/. Let us show that a is a boundary term in the Floer complex of .h�; J /.
As the homotopy h is close to a constant homotopy on U, we may use Corollary 9.34
and conclude that ˆ.h;J / ı�Uı D �Uı . Applying this equality to a, we obtain

ˆ.h;J /aDˆ.h;J / ı�UıaD �UıaD aI

namely, a 2 CF�.hC/ is the image of itself under the continuation map. As ˆ.h;J / in-
duces isomorphism on homologies, it is enough to show that a is closed inCF�.h�/, and
it will then follow that it is a boundary term. To see that a is closed in CF�.h�/, notice
that the presence of a barricade (in particular, (7)) implies @.h�;J /a 2CU0.h�/; namely,
@.h�;J /aD�Uı@.h�;J /a. Therefore, @.h�;J /aD�Uı@.h�;J /aD�Uıˆ.h;J /@.h�;J /aD
�Uı@.hC;J /ˆ.h;J /aD �Uı@.hC;J /aD 0:

We are now ready to prove Theorem 3.

Proof of Theorem 3 In what follows we show that ˇ.F CG/� ˇ.F /. Inequality (5)
follows by symmetry. LetH be a linear homotopy from F CG to F . Notice that, since
F and F CG agree on U, H is a constant homotopy there. By Theorem 5, there exist
a perturbation h of H and an almost complex structure J such that the pairs .h; J / and
.h˙; J / are Floer-regular and have a barricade in U [V around Uı[Vı for Uı b U

and Vı b V containing the supports of F and G, respectively. Since H is a constant
homotopy on U, it follows from Remark 3.8(ii) that h can be chosen such that, in U, the
h˙ agree on their 1–periodic orbits up to second order. We stress that h� approximates
F CG and that f WD hC approximates F . Hence, fixing an arbitrarily small ı > 0,
we may assume (by taking h to be close enough to H ) that h�jU cı \V cı and f jU cı are
small Morse functions with values in .�ı; ı/. Due to the continuity of the boundary
depth, it is enough to prove that ˇ.f / is approximately bounded by ˇ.h�/.

Fix a boundary term a 2 CF�.f /, and let us show that there exists a primitive of a
whose action level is bounded by �f .a/Cˇ.h�/C 4ı, for ı that was fixed above. We
prove this claim in two steps:

Step 1 Assume that a is a combination of orbits that are contained in Uı, namely
a 2 CUı.f /. Applying Lemma 7.1 to .h; J /, we find that a 2 CF�.h�/ is also a
boundary term. Therefore, there exists b 2 CF�.h�/ such that @.h�;J /b D a and
�h�.b/� �h�.a/Cˇ.h�/. Let us split into two cases:

� �h�.b/<�ı Since h� is a small Morse function outside of Uı[Vı, its 1–periodic
orbits there are its critical points, and their actions are the critical values, which are all
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contained in the interval .�ı; ı/. As a consequence, b is necessarily a combination of
orbits that are contained in Uı[Vı, namely, b 2 CUı[Vı.h�/. Writing b D �UıbC
�Vıb, the presence of the barricade (in particular, (7)) guarantees that

@.h�;J /�Uıb 2 CUı.h�/ and @.h�;J /�Vıb 2 CVı.h�/:

Recalling that @.h�;J /b D a 2 CUı.h�/, we conclude that @.h�;J /�Vıb D 0:

@.h�;J /�Vıb D �Vı.@.h�;J /�Vıb/

D �Vı.@.h�;J /b� @.h�;J /�Uıb/

D �Vı.a��Uı@.h�;J /�Uıb/D 0:

Replacing b by �Uıb, we still have a primitive of a of no greater action level, as
�h�.b/Dmaxf�h�.�Uıb/; �h�.�Vıb/g. Therefore, we may assume that b 2CUı.h�/,
and so it is also an element of CUı.f /. Recalling that h is a perturbation of a constant
homotopy on U, Corollary 9.34 states that ˆ.h;J / ı�Uı D �Uı , and hence ˆ.h;J /bD b
and ˆ.h;J /aD a. Thus,

@.f;J /.b/D @.f;J /.ˆ.h;J /b/Dˆ.h;J /.@.h�;J /b/Dˆ.h;J /aD a;

ie b is a primitive of a in CF�.f / with small enough action level: �f .b/D �h�.b/�
�f .a/Cˇ.h�/.

� �h�.b/ � �ı Then, writing b D �U b C �U cb, the presence of a barricade
(in particular, (7)) implies that ˆ.h;J /�U cb 2CU c .f / and hence �f .ˆ.h;J /�U cb/� ı.
Turning to bound the action of the projection onto U, recall that h is a perturbation of a
constant homotopy on U, and by Corollary 9.34, �U ıˆ.h;J / D �U. Overall,

�f .ˆ.h;J /b/�maxf�f .ˆ.h;J /�U cb/; �f .ˆ.h;J /�U b/g

�maxfı; �h�.b/g

� �f .a/Cˇ.h�/C 2ı:

Step 2 Let us prove the claim for general a. Note that if �f .a/ <�ı then a 2CUı.f /
and the claim follows from the previous step. Therefore, we assume that �f .a/� �ı.
Let b be any primitive of a inCF�.f /, namely, @.f;J /bDa, and write bD�UıbC�U cı b.
Both �U cı b and @.f;J /�U cı b have action levels bounded by ı. Set a0 WD @.f;J /�Uıb.
Then

�f .a
0/D �f .a� @.f;J /�U cı b/�maxf�f .a/; �f .@.f;J /�U cı b/g � �f .a/C 2ı:

Moreover, the presence of the barricade implies that a0 2 CUı.f /. Therefore, we may
apply the previous step to a0 and obtain b0 2 CF�.f / such that @.f;J /b0 D a0 and
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Figure 9: An illustration of a nondegenerate perturbation of the sum F CG

from Example 7.2.

�f .b
0/� �f .a

0/Cˇ.h�/C 2ı � �f .a/Cˇ.h�/C 4ı. To conclude the proof, notice
that b0C�U cı b is a primitive of a and

�f .b
0
C�U cı b/�maxf�f .b

0/; �f .�Uıb/g � �f .a/Cˇ.h�/C 4ı:

The following example shows that equality does not hold in (5).

Example 7.2 Let M D T2 be the two-dimensional torus equipped with an area form
and take F and G be disjointly supported C2–small nonnegative bumps; see Figure 9.
Approximating F , G and F CG by small Morse functions, their Floer complexes
and differentials are equal to the Morse complexes and differentials. Hence, the Floer
differentials of both F and G vanish and in particular, ˇ.F /D 0D ˇ.G/. On the other
hand, ˇ.F CG/DminfmaxF;maxGg.

8 Min inequality for the AHS action selector

In this section, we use barricades to prove a “min inequality” for the action selector
defined by Abbondandolo, Haug and Schlenk in [1], on symplectically aspherical
manifolds. We start by reviewing the construction of this action selector, which we
denote by cAHS, and state a few of its properties.

Let H WM �S1�R!R be a homotopy of Hamiltonians and let J W S1�R! J! be
a homotopy of time-dependent almost complex structures (that are compatible with !).
Assume that @sH and @sJ have compact support and denote byH˙ and J˙ the ends of
the homotopies. As before, we denote by M.H;J / the set of all finite-energy solutions
of the Floer equation (FE) with respect to .H; J /. On this space, define the functional
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aH� WM.H;J /!R by aH�.u/ WD lims!�1AH�.u.s; � //. The existence of this limit
follows from the fact that the homotopiesH and J are constant outside of a compact set,
and hence, when s approaches �1, the function s!AH�.u.s; � // is nonincreasing
and bounded; see for example [1, page 8]. Given a Hamiltonian F WM � S1 ! R,
denote by D.F / WD f.H; J / j H� D F g the set of all pairs of homotopies that are
constant outside of some compact set, and such that F is the left end of H.

Definition 8.1 [1, Definition 3.1] Let F WM �S1!R be any Hamiltonian and let
.H; J / 2 D.F /. Set

(28) A.H; J / WD min
u2M.H;J/

aF .u/ and cAHS.F / WD sup
.H;J /2D.F /

A.H; J /:

In [1], Abbondandolo, Haug and Schlenk proved that the functional cAHS is continuous
and monotone, and that it takes values in the action spectrum, namely cAHS.F / 2

spec.F /. Let us state the result establishing the continuity of cAHS:

Claim 8.2 [1, Proposition 3.4] For all F;G 2 C1.M �S1/, we haveZ
S1

min
x2M

.F.x; t/�G.x; t// dt�cAHS.F /�cAHS.G/�

Z
S1

max
x2M

.F.x; t/�G.x; t// dt:

In addition, they proved that the action selector takes nonpositive values on Hamiltonians
supported in incompressible Liouville domains.

Claim 8.3 [1, Proposition 5.4] If F has support in an incompressible Liouville
domain , then cAHS.F /�0. In particular , cAHS.F /D0 for all nonnegative Hamiltonians
which are supported in an incompressible Liouville domain.

Using these claims, together with the barricades construction and ideas from the proof
of Proposition 3.3 from [1], one can prove that a min inequality holds for cAHS.

Proof of Theorem 4 Let F and G be Hamiltonians supported in the interiors of
disjoint incompressible Liouville domains, which we denote by U and V, respectively.
Fixing an arbitrarily small ı > 0, we will prove that cAHS.F CG/� cAHS.F /C3ı. The
claim for G will follow by symmetry. We remark that by Claim 8.3, cAHS.F CG/� 0,
and hence the result is immediate if cAHS.F / � �3ı. Therefore, we assume that
cAHS.F / < �3ı. We break the proof into several steps.
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Step 1 Our first step is to perturb F and F CG (as well as a homotopy between
them) to create barricades. Let H be a linear homotopy from F to F CG that is
constant outside of Œ0; 1�, that is, @sH js…Œ0;1� D 0. Then H is supported in U [ V,
which, as the union of the interiors of incompressible Liouville domains, is also a CIB
domain. Applying Theorem 5 to the homotopy H and the domain U [V, we conclude
that there exists a perturbation h of H, an almost complex structure J [ and subsets
Uı b U and Vı b V containing the supports of F and G, respectively, such that the
pairs .h; J [/ and .h˙; J [/ are Floer-regular and have a barricade in U [ V around
Uı [ Vı. In particular, the ends of h are nondegenerate, f WD h� approximates F
and hC approximates F CG. By taking h to be close enough to H, we can assume
that, outside of Uı, f is a small Morse function with values in .�ı; ı/. Moreover, by
Remark 3.8(iii), we can choose the perturbation h such that the homotopy h is constant
outside of Œ0; 1�, namely, @shjs…Œ0;1�D 0. Finally, taking these perturbations to be small
enough, it follows from Claim 8.2 that cAHS.f / < �2ı, and it is sufficient to prove
that cAHS.hC/� cAHS.f /C ı.

Step 2 Recalling the definition of the action selector cAHS, we need to show that for
every .K; J / 2 D.hC/, it holds that A.K; J / � cAHS.f /C ı. Therefore, our second
step is to construct pairs in D.f / out of a given pair in D.hC/. Fix .K; J / 2 D.hC/
and assume, without loss of generality, that K and J stabilize for s � 0, namely,
K.x; t; s/D hC.x; t/ and J.s/D J� for s � 0. We construct a sequence of pairs in
D.f / by concatenating the homotopies .K; J / with shifts of the homotopy h and a
homotopy zJ D f zJ sgs2R of almost complex structures from J [ to J� which is constant
outside of Œ0; 1�, namely, @s zJ js…Œ0;1� D 0. More precisely, for s 2 R, denote by �s
the shift by s, namely, �sh. � ; � ; � / D h. � ; � ; � C s/ and �s zJ . � ; � / D zJ . � ; � C s/, and
consider the sequences

(29) Kn WD

8̂̂̂<̂
ˆ̂:
K; s � 0;

hC; s 2 Œ�2nC 1; 0�;

�2nh; s 2 Œ�2n;�2nC 1�;

f; s � �2n;

and Jn WD

8̂̂̂<̂
ˆ̂:
J; s � 0;

J�; s 2 Œ�nC 1; 0�;

�n zJ ; s 2 Œ�n;�nC 1�;

J [; s � �n:

See Figure 10 for an illustration. Noticing that .Kn; Jn/ 2 D.f / for all n, we wish to
show that there exists an n 2N for which A.K; J /� A.Kn; Jn/C ı.

Step 3 In this step we choose, for each n, a solution minimizing af , and extract
a subsequence that partially converges to a broken trajectory. Namely, there exists
a broken trajectory xv D .v1; : : : ; vN / whose pieces vi are solutions of (FE) with
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Kn

f � F h hC � F CG K KC

Jn

J [ zJ J� J JC

0 R
s

�2n�2nC 1

0 R
s

�n �nC 1

Figure 10: An illustration of the pair of homotopies .Kn; Jn/ 2 D.f / con-
structed out of a given pair .K; J / 2 D.hC/.

respect to the homotopies concatenated in .Kn; Jn/, and are obtained as limits of
nonpositive shifts of elements from fung. In particular, for each i < N, the solution vi
converges to periodic orbits at the ends that match the limits of the adjacent pieces,
ie lims!C1 vi .s; t/D lims!�1 viC1.s; t/. Moreover, the left end of the first piece,
lims!�1 v1.s; t/, coincides with the left end of each element from the subsequence.
We stress that unlike the standard convergence to a broken trajectory, in our case, the
right end of the last piece in xv (as well as the right ends of the solutions un) does
not necessarily converge. The notion of partial convergence to a broken trajectory is
defined formally in Proposition 9.17 below.

Let un 2M.Kn;Jn/ be a minimizer of the functional af , namely

af .un/D min
u2M.Kn;Jn/

af .u/D A.Kn; Jn/:

Since the supports of the homotopies .Hn; Jn/ are not uniformly bounded and the ends
are not all nondegenerate, the sequence of solutions fungn does not necessarily converge
to a broken trajectory. However, noticing that for s � 0, .Hn; Jn/ are concatenations of
homotopies with nondegenerate ends, one can prove a (weaker) convergence statement,
as we do in Section 9.2.2. In this case, Proposition 9.17 guarantees that there exists a
subsequence of fung, which we still denote by fung, partially converging to a broken
trajectory

xv D .fv.f;J
[/;`
g
L1
`D1

; w.h;J
[/; fv.hC;J

[/;`
g
L2
`D1

; w.hC;
zJ/; fv.hC;J�/;`g

L3
`D1

; w.K;J //;

where the v. � ;� /;` 2M. � ;� / denote solutions of s–independent Floer equations, and
the w. � ;� / 2M. � ;� / denote solutions of s–dependent Floer equations. Moreover, the
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subsequence fung is chosen such that for each n, lims!�1 un.s; � /D x1;0. � /, where
x1;0 WD lims!�1 v.f;J

[/;1.s; � / 2 P.f /.

Step 4 We now use the barricades in order to show that the first few pieces of the
broken trajectory xv are contained in Uı. It follows from the arguments made above that

Af .x1;0/D af .un/D A.Kn; Jn/� cAHS.f / < �2ı;

which implies, by our assumptions on f , that x1;0 � Uı. We claim that, since
.f; J [/ and .h; J [/ have barricades in U around Uı, the trajectories fv.f;J

[/;`g
L1
`D1

and
w.h;J

[/ are contained in Uı. Indeed, lims!�1 v.f;J
[/;1.s; � / D x1;0 � Uı implies

that v.f;J
[/;1 � Uı and, in particular, the image of x1;1. � / WD lims!1 v.f;J

[/;1.s; � /

is contained in U0. Since x1;1 is the left end of v.f;J
[/;2, we can repeat this argument

and conclude that v.f;J
[/;2 is contained in Uı. Continuing by induction, we find that

fv.f;J
[/;`g` are all contained in Uı and, in particular,

x1;L1 WD lim
s!1

v.f;J
[/;L1.s; � /D lim

s!�1
w.h;J

[/.s; � /� Uı:

Now, since .h; J [/ has a barricade in U around Uı, we conclude that w.h;J
[/ � Uı as

well.

Step 5 Let us now show that ahC.w
.K;J // � Af .x1;0/C ı D af .un/C ı. To that

end, we bound the action growth along the broken trajectory xv:

(i) Along v. � ;� /;`: these are solutions of the s–independent Floer equations and, by
the energy identity (8), the action is clearly nonincreasing.

(ii) Along w.h;J
[/: this trajectory is contained in Uı, where h approximates a

constant homotopy, asF jU DFCGjU. Taking h to be close enough toH, we may
assume that the derivative @shjUı is bounded by ı. Denoting by x1;L1 2 P.f /
and x2;0 2 P.hC/ the orbits to which w.h;J

[/ converges at the ends, it follows
from the energy identity (10) that

(30) AhC.x
2;0/�Af .x1;L1/�

ˇ̌̌̌Z
R�S1

.@sh/ ıw
.h;J [/ ds dt

ˇ̌̌̌
�

Z
Œ0;1��S1

max
Uı
j@shj ds dt � ı:

(iii) Along w.hC; zJ/: it follows from the energy identity (10) that the action is non-
increasing, since @shC D 0.
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Overall, we conclude that

ahC.w
.K;J // D AhC.x

3;L3/� � � � �AhC.x
2;0/

(30)
� Af .x1;L1/C ı � � � � �Af .x1;0/C ı D af .un/C ı:

Since un were chosen to be minimizers, af .un/DA.Kn; Jn/� cAHS.f /. On the other
hand, the fact that w.K;J / 2M.K;J / implies that ahC.w

.K;J //�minM.K;J /.ahC/D

A.K; J /. We thus have proved that for any .K; J / 2D.hC/, A.K; J /� cAHS.f /C ı,
which yields that cAHS.hC/� cAHS.f /C ı, as required.

9 The required transversality and compactness results

9.1 Perturbing homotopies and Hamiltonians to achieve regularity

Let .M;!/ be a closed symplectically aspherical manifold. Given a nondegenerate
Hamiltonian H and an almost complex structure J, we say that a pair .H; J / is
Floer-regular if for every pair of 1–periodic orbits x˙ of H˙ and for every u 2
M.H;J /.x�; xC/, the differential .dF/u WW 1;p.u�TM/! Lp.u�TM/ of the Floer
map (see Notation 9.9 below) is surjective. In this case, the space of solutions
M.H;J /.x�; xC/ is a smooth manifold of dimension �.x�/��.xC/. It is well known
that for any nondegenerate Hamiltonian H and an almost complex structure J, one
can perturb H, without changing its periodic orbits, in order to make the pair .H; J /
Floer-regular. Let us cite a formal statement of this fact.

Claim 9.1 [8, Theorem 5.1] Let H be a nondegenerate Hamiltonian and let J be an
almost complex structure on M, and let C1" .H/ be the space of perturbations which
vanish on P.H/ up to second order.17 Then there exist a neighborhood of zero in
C1" .H/, and a residual set Hreg in this neighborhood , such that for every h 2Hreg, the
pair .H C h; J / is Floer-regular.

When H is a homotopy whose ends, H˙, are Floer-regular with respect to J, one can
perturb H on a compact set to guarantee that the pair .H; J / is Floer-regular. For the
purposes of this paper, we need to control the size of the support of the perturbation.
In this section we prove that one can take the support of the perturbation to be any
closed interval with nonempty interior. Before making a formal claim, let us fix

17This space is endowed with Floer’s "–norm, which is defined below.

Algebraic & Geometric Topology, Volume 23 (2023)



698 Yaniv Ganor and Shira Tanny

some notation. Throughout this section, we consider homotopies of Hamiltonians,
H WM �S1�R!R, that are constant with respect to the R–coordinate, s, outside of
a compact set, namely supp.@sH/�M �S1 � Œ�R;R� for some R > 0. We assume
that the ends H˙. � ; � / WD lims!˙1H. � ; � ; s/ are Floer-regular with respect to a fixed
almost complex structure J. For a closed finite interval I �R with nonempty interior,
we consider the space C1" .I / of perturbations with support in M � S1 � I , whose
definition is given in Section 9.1.1 below. Our main goal for this section is to prove the
following proposition.

Proposition 9.2 Let H be a homotopy such that .H˙; J / are Floer-regular , where
J is an almost complex structure on M, and let I �R be a closed , finite interval with
a nonempty interior. Then there exists a residual subset Hreg � C1" .I / such that for
every h 2Hreg, the pair .H C h; J / is Floer-regular.

The proof of this proposition is postponed to Section 9.1.2. We start by describing the
space of perturbations and its relevant properties.

9.1.1 The Banach space C1
" .I/ In this section we define the perturbation space

C1" .I / and prove useful properties.

Definition 9.3 Let "D f"ng be a sequence of positive numbers.

� For h 2 C1.M �S1 �R/, Floer’s "–norm is defined to be

khk" WD
X
k�0

"k sup
M�S1�R

jdkhj:

See [3, page 230] for details.

� For a closed and finite interval I � R with a nonempty interior, let C1" .I /
be the space of functions h 2 C1.M � S1 � R/, supported in M � S1 � I ,
whose "–norm is finite, namely khk" <1. Then C1" .I / is a Banach space;
see [20, Theorem B.2]. In what follows we identify between the tangent space
ThC1" .I / at a point h, and the space C1" .I / itself.

The following claims guarantee that the properties that are required of a space of
perturbations hold for C1" .I /.

Claim 9.4 There exists a sequence " for which C1" .I / is dense in C1.I /.

Claim 9.5 The Banach space C1" .I / is separable.
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In order to prove these claims we first state and prove two lemmas. We use notation
and ideas from [3, Section 8.3; 20, Appendix B].

Lemma 9.6 Let E be a finite-dimensional vector bundle over M � S1 �R. Then
the space C0I .E/ of continuous sections of E that are supported in M � S1 � I is
second-countable with respect to the uniform norm.

Proof Embedding M � S1 � I into Œ�N;N �m for some large N and m, the space
C0I .E/ is isometrically embedded into C0.Œ�N;N �mIRk/ for some k 2N.18 By the
Weierstrass approximation theorem, the latter space is separable, and hence (being
a normed space) is also second-countable. We conclude that the same holds for the
closed subspace C0I .E/.

Following [20, Appendix B], setE.0/ WDE andE.kC1/ WDHom.T .M�S1�R/IE.k//.
Then, fixing connections and bundle metrics on both T .M �S1�R/ andE, any section
�2�.E.k// has a covariant derivativer�2�.E.kC1//. Set F .k/ WDE.0/˚ � � �˚E.k/

and consider the countable product
Q
k2N C0I .F

.k// endowed with the product topology.
By Lemma 9.6, each factor is second-countable and therefore so is the product.

Lemma 9.7 The space C1.I / of smooth functions M �S1 �R!R supported on
M �S1 � I is separable with respect to the C1–topology.

Proof The space C1.I / can be embedded into the product
Q
k2N C0I .F

.k// by

� 7! .�; .�;r�/; .�;r�;r2�/; : : : /:

As explained above, the product
Q
k2N C0I .F

.k// is second-countable and hence so is
any closed subspace of it. In particular, C1.I / is separable.

We can now prove Claim 9.4. The proof is exactly that of [3, Proposition 8.3.1].

Proof of Claim 9.4 Let fn 2 C1.I / be a dense sequence, whose existence is guaran-
teed by Lemma 9.7. Let

"n WD
1

2n �maxk�n kfkkCn.M�S1�R/
:

For this choice of a sequence ", it holds that kfnk"<1 for all n, namely, fn2C1" .I /.
18This uses the fact that every vector bundle over a compact base is a subbundle of a trivial vector bundle;
see [10, Proposition 1.4].
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The proof of Claim 9.5 is essentially that of Lemma B.4 and Theorem B.5 from [20];
we include it for the convenience of the reader.

Proof of Claim 9.5 Consider again the product
Q
k2N C0I .F

.k// and let X" be the
space of sequences � WD .�0; �1; �2; : : : / 2

Q
k2N C0I .F

.k// such that

k�kX" WD

1X
kD0

"k � k�
k
kC0 <1:

We will first show that X" is separable and then embed C1" .I / into X" in order to prove
the claim. Indeed, since C0I .F

.k// is separable for each k (by Lemma 9.6), we can fix
a dense countable subset P k � C0I .F

.k//. The set

P WD f.�0; : : : ; �N; 0; 0; : : : / 2X" jN � 0 and for all 0� k �N; �k 2 P kg

is countable and dense in X". Now consider the injective linear map

C1" .I / ,!X"; � 7! .�; .�;r�/; .�;r�;r2�/; : : : /:

It is an isometric embedding, and hence we may view C1" .I / as a closed subspace of
the separable space X". The latter is also second-countable (being a normed space) and
hence so is C1" .I /.

Remark 9.8 The proof of Claim 9.5 shows that spaces of perturbations with compact
support are separable in general. This observation will be used in Section 9.3.2.

9.1.2 Proof of Proposition 9.2 We follow the proofs from Chapters 8 and 11 of [3]
and make the necessary changes. Let us start by recalling the relevant notation.

Notation 9.9 Let H be a homotopy, let J be an almost complex structure, and let x˙
be 1–periodic orbits of H˙, respectively.

� We denote by M.H;J /.x�; xC/ the set of solutions of the (s–dependent) Floer
equation with respect to H;J that converge to x˙ at the ends. We denote by
M.H;J / the set of all finite-energy solutions.

� [3, Definition 8.2.2] Denote by P.x�; xC/ the space of maps R�S1!M of
the form

.s; t/ 7! expw.s;t/ Y.s; t/

for Y 2W 1;p.w�TM/ and w 2 C1
&
.x�; xC/. The latter is the space of smooth

maps R�S1!M converging to x˙ at the ends with exponentially decaying
derivatives. We denote by Lp.x�; xC/ the fiber bundle over P.x�; xC/ whose
fiber at u is Lp.u�TM/.

Algebraic & Geometric Topology, Volume 23 (2023)



Floer theory of disjointly supported Hamiltonians 701

� The Floer map with respect to H is

(31) FH W P.x�; xC/! Lp.x�; xC/;

u 7!
@u

@s
CJ

�
@u

@t
�XH ıu

�
D
@u

@s
CJ

@u

@t
C graduH;

where .graduH/.s; t/ is the gradient of H. � ; t; s/ with respect to J, restricted
to u. In unitary (ie symplectic, orthonormal) coordinates, the differential of
the Floer map, .dFH /u W W 1;p.R� S1Iu�TM/! Lp.R� S1Iu�TM/, can
be written as .dF/u.Y / D x@Y C SY, where S W R � S1 ! End.R2n/; see
[3, Section 8.4 and page 389].

� Set

(32) Z.x�; xC/ WD f.u; h/ 2 P.x�; xC/� C1" .I / j u 2M.HCh;J /.x�; xC/g:

The main ingredients in the proof of Proposition 9.2 are the following two lemmas.

Lemma 9.10 The set Z.x�; xC/ is a Banach manifold.

Lemma 9.11 The projection

� W Z.x�; xC/! C1" .I /; .u; h/ 7! h;

is a Fredholm map.

The outline of the proof is as follows: We first prove that the set Z.x�; xC/ is a Banach
manifold (Lemma 9.10), and then we show that the projection � WZ.x�; xC/! C1" .I /
is a Fredholm map (Lemma 9.11). Taking Hreg to be the set of regular values of � ,
the Sard–Smale theorem guarantees that it is a residual set. We will use the following
claim from [3].

Claim 9.12 [3, Theorem 11.1.7] For every homotopyH such that .H˙; J / are Floer-
regular and every u 2M.H;J /.x�; xC/, the differential .dFH /u of the Floer map at u
is a Fredholm operator of index �.x�/��.xC/.

In order to prove Lemma 9.10, we present Z.x�; xC/ as an intersection of a certain
section with the zero section in a certain vector bundle. The following lemma will be
used to guarantee that this intersection is transversal. Its proof, which is a combination
of the proofs of [3, Propositions 8.1.4 and 11.1.8], contains the main difference between
the proof of Proposition 9.2 and that of [3, Theorem 11.1.6].

Algebraic & Geometric Topology, Volume 23 (2023)



702 Yaniv Ganor and Shira Tanny

Lemma 9.13 For .u; h/ 2 Z.x�; xC/, the linear operator

(33) � WW 1;p.R�S1IR2n/� C1" .I /! Lp.R�S1IR2n/;

(Y; �/ 7! .dFHCh/u.Y /C gradu �;

is surjective and has a continuous right inverse.

Proof Assume for the sake of contradiction that � is not surjective. By Lemma 8.5.1
of [3],19 there exists a nonzero vector field Z 2 Lq.R�S1IR2n/20 of class C1 such
that for every Y 2W 1;p.R�S1IR2n/ and � 2 C1" .I /,

hZ; .dFHCh/u.Y /i D 0;(34)

hZ; gradu �i D 0;(35)

where h � ; � i denotes the pairing of Lq and Lp. As mentioned above, the differential
of the Floer map can be written in unitary coordinates as x@C S.s; t/. Since Z is of
class C1, it follows from (34) thatZ is a zero of the dual operator of .dF/u, which is of
a “perturbed Cauchy–Riemann” type. The continuation principle [3, Proposition 8.6.6]
now implies that if Z has an infinite-order zero, then it is identically zero, Z � 0.

Therefore, let us show that (35) guarantees that Z vanishes on I �S1, and conclude
that it vanishes identically, since we assumed that the interior of I is not empty. The
proof is roughly the same as that of [3, Lemma 11.1.9], but we include it for the sake
of completeness. An equivalent reformulation of (35) isZ

R�S1
d�.Z/ ds dt D 0 for every � 2 C1" .I /:

Consider the map zu W R� S1!M �R� S1 defined by .s; t/ 7! .u.s; t/; s; t/. It is
easy to see that zu is an embedding. Viewing Z as a vector field along zu on M �R�S1

that does not have components in the directions @=@t 2 TS1 and @=@s 2 TR, we see
that it is not tangent to zu at the points where it is not zero. Assume for the sake of
contradiction that there exists a point .s0; t0/ 2 I � S1 at which Z does not vanish.
SinceZ is continuous, there exists a small neighborhood Cı of .s0; t0/ in whichZ.s; t/
does not vanish and therefore is transversal to zu for all .s; t/2Cı . Notice that if .s0; t0/
is not in the interior of I �S1, we may replace it with a point in Cı\.int.I /�S1/, and
then replace Cı by a smaller neighborhood that is contained in int.I /�S1. Therefore
we assume, without loss of generality, that Cı � int.I /�S1. Let ˇ WR�S1!R be a

19This lemma is formulated for a slightly different space, but its proof applies to our case as it is.
20Here 1=pC 1=q D 1.
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smooth function supported in Cı , whose integral is not zero,
R

R�S1 ˇ.s; t/ ds dt ¤ 0.
Define � WM �S1�R!R with support in a tubular neighborhood B of zu.Cı/ in such
a way that if 
.s;t/.�/ is a parametrized integral curve of Z passing through zu.s; t/ at
� D 0, then

�.
.s;t/.�/; t; s/ WD ˇ.s; t/ � � for j� j � �:

The fact that Z is transversal to zu.Cı/ guarantees that � is well defined. We also
assume that B \ im.zu/D zu.Cı/, which means that supp.�/\ im.zu/� zu.Cı/. Let us
compute the integral of d�.Z/:Z

R�S1
d�s;t .Z.s; t// ds dt D

Z
Cı

d�s;t .Z.s; t// ds dt

D

Z
Cı

d�s;t

�
@
s;t .�/

@�

ˇ̌̌̌
�D0

�
ds dt

D

Z
Cı

@

@�
.�.
s;t .�/; t; s//

ˇ̌
�D0

ds dt

D

Z
Cı

@

@�
.ˇ.s; t/ � �/

ˇ̌
�D0

ds dt

D

Z
Cı

ˇ.s; t/ ds dt:

As we chose ˇ to be a function with a nonvanishing integral, we find that (35) does
not hold for the function � constructed above. Note that � is a smooth function,
supported in M �S1 � I , but its "–norm is not necessarily finite. Therefore, to arrive
at a contradiction, it remains to approximate � by �0 2 C1" .I /. This is possible due
to Claim 9.4. When �0 is close to �, the integral of d�0.Z/ will be close to that
of d�.Z/ (since their supports are contained in the compact setM �S1�I ), and hence
equality (35) will not hold for �0 2 C1" .I /, a contradiction.

This shows that � is surjective. The fact that it has a continuous right inverse follows
from [3, Lemma 8.5.6] and Claim 9.12.

Having Lemma 9.13, the proof of Lemma 9.10, which asserts that Z.x�; xC/ is a
Banach manifold, is precisely that of [3, Proposition 8.1.3]:

Proof of Lemma 9.10 Let E WD f.u; h; Y / j Y 2Lp.u�TM/g be a vector bundle over
P.x�; xC/� C1" .I /, and consider the section induced by FHCh:

� W P.x�; xC/� C1" .I /! E ; .u; h/ 7!
�
u; h;

@u

@s
CJ

@u

@t
C gradu.H C h/

�
:
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Notice that the space Z.x�; xC/ is the intersection of � with the zero section in E .
Therefore, in order to prove that Z.x�; xC/ is a Banach manifold, it is sufficient to
show that � intersects the zero section transversely, or, equivalently, that d� composed
with the projection onto the fiber is surjective and has a right inverse, at all points for
which �.u; h/D 0. But this composition is precisely the operator � , whose surjectivity
and right invertibility are guaranteed by Lemma 9.13.

Our next goal is to show that � is a Fredholm map, that is, to prove Lemma 9.11.

Proof of Lemma 9.11 The projection � W Z.x�; xC/! C1" .I / given by �.u; h/D h
is clearly smooth. Let us show that its differential, d� , has a finite-dimensional kernel
and a closed image of finite codimension.

� ker.d�/.u;h/ D f.Y; 0/ 2 T.u;h/Z.x�; xC/g. The tangent space of Z.x�; xC/ is

T.u;h/Z.x�; xC/D f.Y; �/ j .dFHCh/u.Y /C gradu �D 0g;

and therefore, the kernel of .d�/.u;h/ agrees with the kernel of .dFHCh/u, which is
finite-dimensional by Claim 9.12.

� im.d�/.u;h/Df� j 9Y 2W 1;p.R�S1Iu�TM/ with gradu �D�.dFHCh/u.Y /g.
Consider the linear map G W C1" .I /!Lp.R�S1Iu�TM/ defined by G.�/D gradu �.
Then

(36) im.d�/.u;h/ D f� j gradu � 2 im.dFHCh/ug DG�1.im.dFHCh/u/:

By Claim 9.12, the image of .dFHCh/u is closed and of finite codimension. Let
us show that the same properties hold for the image of .d�/.u;h/. Consider the map
induced by G on the quotients,

A WD
C1" .I /

im.d�/.u;h/
G0
�! B WD

Lp.R�S1Iu�TM/

im.dFHCh/u
;

which is well defined due to (36). It is easy to see that G0 is injective and, together with
the fact that B is finite-dimensional, this yields that codim.im.d�/.u;h//D dim.A/ is
finite. This now implies that the image of .d�/.u;h/ is also closed and hence .d�/.u;h/
is a Fredholm operator.

Having proved Lemmas 9.10 and 9.11, we are ready to prove the main proposition.
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Proof of Proposition 9.2 By Lemma 9.11, the projection � W Z.x�; xC/! C1" .I / is
a (smooth) Fredholm map. By Claim 9.5, the space C1" .I / is separable. To see that
Z.x�; xC/ is a separable Banach manifold, recall that it is modeled over a subspace
of the Banach space W 1;p.R� S1IR2n/� C1" .I /. The latter is a separable metric
space, and therefore second-countable. As any subspace of a second-countable space
is also second-countable, and, in particular, separable, we conclude that Z.x�; xC/ is
separable. It follows that we may apply the Sard–Smale theorem to � and conclude that
the set of regular values of � is a countable intersection of open dense sets in C1" .I /.
The set Hreg � C1" .I / is defined to be the intersection of the regular values of the
projections for all choices of 1–periodic orbits x˙.

Let us show that for each h 2Hreg, the pair .HCh; J / is Floer-regular. Fix 1–periodic
orbits x˙. Then h is a regular value of the projection � W Z.x�; xC/! C1" .I /. Let
us show that for every u 2 M.HCh;J /.x�; xC/, the differential of the Floer map,
.dFHCh/u, is surjective. Indeed, otherwise, arguing as in the proof of Lemma 9.13,
there existsZ 2Lq.R�S1IR2n/, where 1

p
C
1
q
D1, such that hZ; .dFHCh/u.Y /i D 0

for all Y . Since .d�/.u;h/ is surjective, for every � 2 C1" .I / there exists Y such that
gradu �D�.dFHCh/u.Y /, and hence hZ; gradu �i D 0 as well. We conclude that Z
satisfies both equations (34) and (35), and, proceeding as in the proof of Lemma 9.13,
we find Z D 0. Thus .dFHCh/u is indeed surjective.

It remains to show that M.HCh;J /.x�; xC/ is a smooth manifold of the correct di-
mension. The inverse image ��1.h/ is the space of maps u 2 P.x�; xC/ of class
W 1;p that are solutions of the Floer equation, FHCh.u/D 0. By elliptic regularity,
these solutions are all smooth, and hence ��1.h/DM.HCh;J /.x�; xC/. Since h is a
regular value of � , we therefore conclude that M.HCh;J /.x�; xC/ is indeed a smooth
manifold. Its dimension is

dim ker.d�/.u;h/ D dim ker.dFHCh/u D ind.dFHCh/u D �.x�/��.xC/;

where the last equality follows from Claim 9.12 above.

9.2 Convergence to broken trajectories

A well-known phenomenon in Floer theory on symplectically aspherical manifolds is
the convergence of sequences of solutions to a broken trajectory. In this section we
formulate and prove results of this sort for the settings that are considered throughout
the paper.
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9.2.1 Convergence for homotopies with nondegenerate ends In what follows we
consider homotopies with nondegenerate ends. We remark that the same arguments
apply for nondegenerate Hamiltonians, when one considers them as constant homotopies.
Let H be a homotopy that is constant outside of M � S1 � Œ�R;R� for some fixed
R > 0, namely, @sH jjsj>RD 0. Let Hn be a sequence of homotopies C1–converging
to H such that for each n,

(37) supp.@sHn/�M �S1 � Œ�R;R� and P.Hn˙/D P.H˙/:

Recall that M.H;J / denotes the set of finite-energy solutions of the Floer equation (FE)
with respect to H and J ; for x˙ 2 P.H˙/, we denote by M.H;J /.x�; xC/�M.H;J /

the subset of solutions connecting x˙. Let

M.x�; xC/ WD
[
n

M.Hn;J /.x�; xC/[M.H;J /.x�; xC/

be the space of all finite-energy solutions connecting x˙ with respect to .H; J / and
.Hn; J / for all n, and set M WD

S
x˙2P.H˙/M.x�; xC/. The following proposition

is an adjustment of [3, Theorems 11.1.10 and 11.3.10] to our case.

Proposition 9.14 Let H be a homotopy with nondegenerate ends , and let Hn be a
sequence converging to H in C1.M � S1 �R/ that satisfies (37) for each n. Given
a sequence un 2M.Hn;J /.x�; xC/ of solutions and a sequence of real numbers f�ng,
there exist

� subsequences of fung and f�ng, which we still denote by fung and f�ng,

� periodic orbits x�Dx0; x1; : : : ; xk 2P.H�/ and y0; y1; : : : ; y`DxC2P.HC/,

� sequences of real numbers fsingn for 1� i � k and fs0jn gn for 1� j � `,

� solutions vi 2M.H�;J /.xi�1; xi / for 1 � i � k and v0j 2M.HC;J /.yj�1; yj /

for 1� j � `,

� a solution w 2M.H;J /.xk; y0/,

such that in C1loc.R�S
1IM/, for 1� i � k and 1� j � `, we have

lim
n!1

un. � C s
i
n; � /D vi ; lim

n!1
un. � C s

0j
n ; � /D v

0
j ; lim

n!1
un D w;

and the sequence un. � C �n; � / converges to one of vi , w or v0j , perhaps up to a shift in
the s–coordinate.
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The finite sequence .v1; : : : ; vk; w; v01; : : : ; v
0
`
/ is called a broken trajectory of .H; J /.

Before proving the above proposition, we state and prove two lemmas. The first is
an analogous statement to [3, Theorem 11.2.7], and gives a uniform bound for the
J –gradient of a solution u of the Floer equation with respect to .H; J / or .Hn; J /.

Lemma 9.15 There exists a constant A > 0 such that for every u 2M and every
.s; t/ 2R�S1, 



@u@s





2
J

C





@u@t




2
J

� A:

Proof For convenience we set H0 WDH. Let x˙ 2 P.H˙/ be periodic orbits such
that u 2M.x�; xC/. Then, by the energy identity (10),

(38) E.u/�AH�.x�/�AHC.xC/C 2R �C
0;

where
C 0 WD sup

�
@Hn

@s
.x; t; s/

ˇ̌̌
.x; t; s/ 2M �S1 �R; n� 0

�
;

and R> 0 is the constant from (37). The fact that C 0 is finite follows from the uniform
convergence (with derivatives) of Hn to H0 DH. Setting

C WD max
x˙2P.H˙/

.AH�.x�/�AHC.xC//C 2R �C
0;

we obtain a uniform bound for the energy,E.u/�C for all u2M. As in [3, Propositions
6.6.2 and 11.1.5], we conclude that there exists A > 0 such that



@u@s





2
J

C





@u@t




2
J

� A:

The next lemma uses the Arzelà–Ascoli theorem and elliptic regularity to show that
every sequence of shifted solutions has a converging subsequence. It is an adjustment
of Theorem 11.3.7 and Lemma 11.3.9 from [3] to our setting.

Lemma 9.16 Let un 2M.Hn;J /.x�; xC/ be a sequence of solutions and let sn 2R

be a sequence of numbers. Then the sequence of shifted solutions �snun. � ; � / D
un. � C sn; � / has a subsequence that converges in the C1loc topology to a limit v.
Moreover:

(i) If sn! � 2R, then v 2M.��H;J/, where ��H.x; t; s/ WDH.x; t; sC �/.

(ii) If sn!�1, then v 2M.H�;J /.

(iii) If sn!C1, then v 2M.HC;J /.
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Proof Lemma 9.15 implies that the sequence vn WD �snun is equicontinuous. By the
Arzelà–Ascoli theorem and elliptic regularity (see [3, Lemma 12.1.1]), there exists
a subsequence, which we still denote by fvng, that converges to a limit v in the C1loc
topology. The fact that the energy of v is finite follows from the uniform bound (38) on
the energies of un. It remains to show that the limit v is a solution of the corresponding
equation for the above choices of shifts sn. For each n, vn is a solution of the equation

0D
@vn

@s
CJ

@vn

@t
C gradvn.�snHn/

D

�
@vn

@s
CJ

@vn

@t
C gradvn.�snH/

�
C gradvn.�sn.Hn�H//:

Since the sequence Hn converges to H uniformly with the derivatives, for every � > 0
there exists N such that for n�N,

(39)




@vn@s CJ @vn@t C gradvn.�snH/





< �:
Let us split into cases:

(i) Assume sn! � 2R. Fix an arbitrarily large r > j� j. Then the derivatives of H
are uniformly continuous on the compact set M �S1 � Œ�r; r�. Using (39) together
with our assumption that sn! � , we have

max
Œ�r;r��S1

ˇ̌̌̌
@vn

@s
CJ

@vn

@t
C gradvn.��H/

ˇ̌̌̌
< �C max

Œ�r;r��S1
jgradvn.��H � �snH/j< 2�

when n is large enough. It follows that the limit v of the sequence vn is a solution of
the s–dependent Floer equation with respect to ��H and J.

(ii) Assume sn!�1. Recalling that the homotopy H is constant for jsj � R, we
have H.x; t; s/DH�.x; t/ whenever s ��R. Since sn!�1, for every r > 0 there
exists N large enough that sn < �R� r whenever n�N. For such n, the restriction
of (39) to the compact subset Œ�r; r��S1 is

max
Œ�r;r��S1

ˇ̌̌̌
@vn

@s
CJ

@vn

@t
C gradvn H�

ˇ̌̌̌
< �;

since �snH.x; t; s/DH.x; t; sC sn/DH� when s 2 Œ�r; r�. Taking the limit when
n!1 (and �! 0), we conclude that v is a solution of the Floer equation with respect
to .H�; J /.

(iii) When sn!1, the proof is as in the previous case.
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Having Lemma 9.16, the proof of Proposition 9.14 (namely, the convergence to a
broken trajectory) is similar to the that of [3, Theorem 11.1.10]. We follow it and make
the necessary adjustments.

Proof of Proposition 9.14 Let us prove the claim for the case where �n!�1; the
other cases are analogous. We start by fixing � > 0 small enough that the open balls

B.x; �/ WD f
 2 LM j d1.x; 
/ < �g

are disjoint for x 2 P.H�/. Here LM is the space of contractible loops in M, en-
dowed with the uniform metric d1. By shrinking � if necessary, we assume that the
balls fB.y; �/gy2P.HC/ are also disjoint. Lemma 9.16 guarantees that after passing
to a subsequence, the sequence ��nun converges in C1loc to a finite-energy solution
v 2M.H�;J /. Since H� is nondegenerate, there exist periodic orbits x0; x1 2 P.H�/
such that v 2M.H�;J /.x0; x1/. Moreover, applying Lemma 9.16 to the sequence un
with zero shifts, we conclude that after extracting a subsequence, it converges to a
finite-energy solution w 2M.H;J /.xk; y0/ for some xk 2 P.H�/ and y0 2 P.HC/.
Let us find the solutions preceding v, connecting v to w and following w in the broken
trajectory:

� Solutions preceding v There exists s? � 0 such that for any s � s?, it holds
that v.s; � / 2 B.x0; �/. Since v D lim ��nun, when n is large enough, it holds that
un.s?C�n; � / 2B.x0; �/ as well. If x0D x�, there are no preceding solutions and we
are done. Otherwise, x0 ¤ x�, and since un converges to x� when s!�1, it must
exit the ball B.x0; �/ for s � s?. Let us denote by sn the first exit point,

sn WD inffs � s? j un.�nC s0; � / 2 B.x0; �/ for s0 2 Œs; s?�g:

Let us now show that sn!�1. Indeed, if fsng were bounded, it would have had a
subsequence converging to some sı 2R. Since ��nun converges to v in C1loc and since
sı � s?, we would get

lim
n!1

un.snC �n; � /D v.sı; � / 2 B.x0; �/;

in contradiction to our choice of sn, namely, that un.�n C sn; � / 2 @B.x0; �/. We
conclude therefore that sn!�1 and, in particular, snC �n!�1 as well. Using
Lemma 9.16 for �snC�nun, we conclude that, after passing to a subsequence, this shifted
sequence converges to some v�1 2M.H�;J /. We need to prove that v�1 converges
to x0 when s!1. Fix s > 0. Then for n sufficiently large, sn < sC sn < s? and

�snC�nun.s; � / 2 B.x0; �/:
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This implies that v�1.s; � /2B.x0; �/ for all s >0, and hence v�1 2M.H�;J /.x�1; x0/

for some x�1 2 P.H�/.

Continuing in this way we find v�2, v�3 and so on, until x�k0 D x�. This process is
finite, since there are finitely many orbits in P.H�/ and the action is strictly decreasing
in each step; namely, AH�.x�i / >AH�.x�i�1/ for 0� i � k0.

� Solutions connecting v to w Recall that ��nun converges to v 2M.H�;J /.x0; x1/

and that un converges to w 2M.H;J /.xk; y0/. Let us find the solutions that connect v
to w (or prove that x1 D xk). In analogy with the previous case, pick s? � 0 such that
v.s; � / 2 B.x1; �/ for all s � s?. Then, for n large enough, un.s?C �n; � / 2 B.x1; �/
as well. Arguing similarly for w 2M.H;J /.xk; y0/, there exists s� � 0 such that
w.s; � / 2 B.xk; �/ for all s � s� and, since the un converge to w, for n large enough
un.s�; � /2B.xk; �/ as well. As �n!�1, we have s?C�n<s� for large n. Consider
the first exit of un from B.x1; �/,

sn WD supfs � s? j un.�nC s0; � / 2 B.x1; �/ for s0 2 Œs?; s�g:

Then, repeating the arguments from the previous step, one sees that sn!1. Moreover,
it follows from the definitions of sn and s� that snC �n < s�. Therefore, the sequence
f�nCsng is either bounded or tends to �1. In the first case, it converges, after passing
to a subsequence, to some number sı 2 R. Moreover, since un converges to w on
compacts, we conclude that ��nCsnun converges to �sıw. In particular, this implies that
x1Dxk . Indeed, for every s <sı and n sufficiently large, s2 Œ�nCs?; �nCsn�, and thus
un.s; � / 2 B.x1; �/. As a consequence, w.s; � / 2 B.x1; �/ for all s < sı, which means
that xk D x1 and we are done. Let us now deal with the case where snC�n!�1. By
Lemma 9.16, there exists a subsequence of �snC�nun that converges to a finite-energy
solution v12M.H�;J /. We need to show that the left end of v1 converges to x1, namely,
that v1 2M.H�;J /.x1; x2/ for some x2 2 P.H�/. Fix s < 0 and let us show that
v1.s; � /2B.x1; �/. Since sn!1, when n is large enough we have that sCsn2 Œs?; sn�.
As we saw above, this implies that ��nCsnun.s; � / D un.sC snC �n; � / 2 B.x1; �/,
and thus v1.s; � / 2 B.x1; �/ as required. Repeating this process, we find solutions
v2; : : : ; vk�1 such that vi 2M.H�;J /.xi ; xiC1/, and therefore these connect v to w.
As in the previous case, this process is finite since every solution vi is action-decreasing
and H� has finitely many 1–periodic orbits.

� Solutions following w The right end of w converges to y0 2 P.HC/, and hence
there exists s? � 0 such that for every s � s?, w.s; � / 2 B.y0; �/. As the un converge
to w in C1loc, for n large enough un.s?; � / 2 B.y0; �/ as well. Assume that y0 ¤ xC,
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x�Dx�k0
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`

xC

.H�; J / .H; J / .HC; J /

Figure 11: An illustration of the broken trajectory as constructed in the proof
of Proposition 9.14.

otherwise there is nothing to prove. Then, since the un converge to xC for each n, it
must leave the ball B.y0; �/ at some point. Consider the first exit,

sn WD supfs � s? j un.s0; � / 2 B.y0; �/ for s0 2 Œs?; s�g:

Then, arguing as above, sn!1. Applying Lemma 9.16 to the sequence un shifted
by sn, it converges (up to a subsequence) to a finite-energy solution v01 2M.HC;J /. We
need to show that the left end of v01 converges to y0, namely, that v012M.HC;J /.y0; y1/

for some y1 2 P.HC/. As before, fix any s < 0. Then when n is large enough,
s C sn 2 Œs?; sn� and therefore, �snun.s; � / D un.s C sn; � / 2 B.y0; �/. Again, we
conclude that v01.s; � /2B.y0; �/, which guarantees that v01 converges to y0. Continuing
by induction and using the fact that each v0j reduces the action concludes the proof.

9.2.2 Concatenation of homotopies with possibly degenerate ends In what follows,
we study the breaking mechanism for solutions of (FE) with respect to homotopies of
Hamiltonians that are obtained as concatenations of finitely many given homotopies,
with possibly degenerate ends. In addition, we consider homotopies of almost complex
structures, as opposed to the constant structures considered previously. When the ends
of the first few concatenated homotopies are nondegenerate, we prove what we call a
partial convergence to a broken trajectory.

Let .H 1; J 1/; : : : ; .HK ; JK/ be pairs of homotopies of Hamiltonians and homotopies
of almost complex structures, respectively, which are constant outside of Œ0; 1�, namely

@sH
k
D 0 and @sJ

k
D 0 for s … Œ0; 1� and k D 1; : : : ; K:

Assume in addition that Hk
C
D HkC1

� and J k
C
D J kC1� for k D 1; : : : ; K � 1. Let

f�1ngn; : : : ; f�
K
n gn be monotone sequences of real numbers such that for each n we

have �1n < � � � < �
K
n , and for each k ¤ j , the sequence of differences f�kn � �

j
n gn is

unbounded. For the rest of this section, we consider the sequences fHng and fJng of
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.H k�1; J k�1/ .H k ; J k/ .H kC1; J kC1/

�k�1n �k�1n C 1 �kn �kn C 1 �kC1n �kC1n C 1

Figure 12: An illustration of the pair .Hn; Jn/, which is a concatenation of
the homotopies .H k ; J k/ shifted by f�kn g.

homotopies of Hamiltonians and almost complex structures obtained by concatenating
the shifts of fHkg and fJ kg by the sequences f��kn g. More formally, Hn and Jn are
the sequences which satisfy, for each k D 1; : : : ; K,

Hn D ���kn
Hk on M �S1 � Œ�kn ; �

k
n C 1�;

Jn D ���kn
J k on S1 � Œ�kn ; �

k
n C 1�;

and which are locally constant elsewhere; see Figure 12. Since the ends of the ho-
motopies Hk might be degenerate, a sequence of solutions un 2M.Hn;Jn/ does not
necessarily admit a subsequence converging to a broken trajectory. However, when
some of the homotopies have nondegenerate ends, a slightly weaker statement holds:

Proposition 9.17 Assume that there exists 1 <K 0 �K such that for every k <K 0, the
ends of the homotopyHk are nondegenerate. Then , for every sequence un 2M.Hn;Jn/,
there exist

� a subsequence of fung, which we still denote by fung,

� periodic orbits xk;` 2 P.HkC1
� / for ` D 0; : : : ; Lk and k D 1; : : : ; K 0, where

x1;0 D lims!�1 un.s; � / for all n,

� real numbers sk;`n 2R for `D 1; : : : ; Lk and k D 1; : : : ; K 0 which are such that
s
k;`
n < �kC1n < s

kC1;`0

n for all `D 1; : : : ; Lk and `0 D 1; : : : ; LkC1,

� solutions of s–independent Floer equations vk;` 2M.Hk
�;J

k
�/
.xk;`�1; xk;`/ for

`D 1; : : : ; Lk and k D 1; : : : ; K 0,

� solutions of s–dependent Floer equations wk 2M.Hk ;Jk/.x
k;Lk ; xkC1;0/ for

k D 1; : : : ; K 0 � 1, and wK
0

2M.HK0 ;JK
0
/ such that lims!�1wK

0

.s; � / D

xK
0;LK0 ,
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such that , in C1loc.R�S
1IM/,

lim
n!1

un. � C �
k
n ; � /D w

k and lim
n!1

un. � C s
k;`
n ; � /D vk;`

for 1� `� Lk and 1� k �K 0.

In this case, we say that fung partially converges to the broken trajectory

xv D .fv1;`g
L1
`D1

; w1; fv2;`g
L2
`D1

; w2; : : : ; wK
0�1; fvK

0;`
g
LK0

`D1
; wK

0

/:

In order to prove Proposition 9.17, we need statements analogous to Lemmas 9.15
and 9.16 adapted for the current setting. Notice that due to our assumption that Hk

has nondegenerate ends for 1� k < K 0, the left end of the homotopies Hn, which is
equal to H 1

�, is nondegenerate. On the other hand, the right end, HnC DHK
C

, might
be degenerate. A solution u of the Floer equation with respect to a homotopy with
degenerate ends does not necessarily converge to periodic orbits at the ends. However,
the following lemma asserts that the action of u.s; � / converges, as s!˙1, to a limit
that belongs to the action spectrum of the corresponding Hamiltonian. The following
statement is proved in the proof of Proposition 2.1(ii) from [1] for the left end of u,
namely, lims!�1AH�.u.s; � //2 spec.H�/. The proof for the right end is completely
analogous and we therefore omit it.

Lemma 9.18 [1] Let .H; J / be a pair of homotopies of Hamiltonians and almost
complex structures. Then , for every finite-energy solution u 2M.H;J /,

lim
s!˙1

AH˙.u.s; � // 2 spec.H˙/:

Denoting by M WD
S
nM.Hn;Jn/ the set of finite-energy solutions, the next lemma

provides a uniform bound for the energy of u2M and is an adjustment of Lemma 9.15
to the current setting.

Lemma 9.19 There exists a constant A > 0 such that for every u 2M and .s; t/ 2
R�S1, one has kgrad.s;t/ uk � A.

Proof For a finite-energy solution u of a homotopy with possibly degenerate ends,
the limits lims!˙1AH˙.u.s; � // exist and u satisfies the energy identity

E.u/D lim
s!�1

AHn�.u.s; � //� lim
s!1

AHnC.u.s; � //C
Z

R�S1
@sHn.u.s; t/; t; s/ ds dt:
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See, for example, [1, page 8]. When u 2M.Hn;Jn/, it follows from Lemma 9.18,
together with the fact that the action spectrum is a compact subset of R, that

E.u/�max spec.Hn�/�min spec.HnC/C
Z

R�S1
@sHn.u.s; t/; t; s/ ds dt

Dmax spec.H 1
�/�min spec.HK

C /C

Z
R�S1

@sHn.u.s; t/; t; s/ ds dt

�max spec.H 1
�/�min spec.HK

C /CK �C;

where, by our construction, K bounds the area of the support of maxx2M @sHn.x; t; s/

in S1 �R, and C is defined by

(40) C WD sup
�
@Hn

@s
.x; t; s/

ˇ̌̌
.x; t; s/ 2M �S1 �R; n� 0

�
D max

k�K
sup

�
@Hk

@s
.x; t; s/

ˇ̌̌
.x; t; s/ 2M �S1 � Œ0; 1�

�
:

We therefore have obtained a uniform bound on the energies of solutions in M. Arguing
as in [3, Propositions 6.6.2 and 11.1.5], we conclude that there exists A > 0 such that
kgrad.s;t/ uk � A.

The last lemma for this section is analogous to Lemma 9.16. It can be viewed as
a special case of Proposition 2.1 from [1], but we include the proof for the sake of
completeness.

Lemma 9.20 Let un 2M.Hn;Jn/ be a sequence of solutions and let sn 2 R be a
sequence of numbers such that for some 0� k �K and for every n, �kn � sn � �

kC1
n ,

where we set �0n D�1 and �KC1n DC1 to simplify notation. Then the sequence of
shifted solutions �snun. � ; � /D un. � C sn; � / has a subsequence that converges in the
C1loc topology to a limit v. Moreover:

(i) If sn� �kn ! � 2R, then v 2M.��Hk ;��Jk/
.

(ii) If sn� �kC1n ! � 2R, then v 2M.��HkC1;��JkC1/
.

(iii) If sn��kC1n !�1 and sn��kn !1, then v 2M.Hk
C
;Jk
C
/ DM.HkC1

� ;JkC1� /.

Proof The proof is very similar to that of Lemma 9.16 and therefore we only sketch the
changes. As before, Lemma 9.19 implies that the sequence vn WD �snun is equicontinu-
ous, and by the Arzelà–Ascoli theorem and elliptic regularity there exists a subsequence
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converging to v. The maps vn solve the Floer equation with respect to the translated
pair .�snHn; �snJn/,

0D
@vn

@s
C .�snJn/

@vn

@t
C grad.�snHn/ ı vn:

In each case, in order to prove that v is a solution of the corresponding equation, one
shows that the translated homotopies .�snHn; �snJn/ converge uniformly on compacts
to the required pair. For example, in the first case, where sn � �kn ! � 2 R, it
follows from the definition of .Hn; Jn/ that, given r > 0, the sequence .��knHn; ��kn Jn/
eventually stabilizes to .Hk; J k/ on fjsj � rg. As a consequence,

.�snHn; �snJn/
C1loc
��! .��H

k; ��J
k/:

We are now ready to sketch the proof of Proposition 9.17. Note that we will skip some
of the details appearing in the proof of Proposition 9.14.

Proof of Proposition 9.17 As mentioned above, for each n, the left end of Hn is a
nondegenerate Hamiltonian. As a consequence, the left end of un converges to a periodic
orbit, namely, there exist xn�2P.Hn�/ such that lims!�1 un.s; � /Dxn�. � /; see, for
example, the proof of Theorem 6.5.6 from [3]. Since P.Hn�/D P.H 1

�/ is a finite set,
we may assume, by passing to a subsequence, that x1;0 WD xn� is independent of n.

Next, let us apply Lemma 9.20 to the sequence fung with the shifts �kn . Then, after
passing to a subsequence, for each k D 1; : : : ; K 0 we obtain wk 2M.Hk ;Jk/ such that

��kn
un

C1loc
�! wk :

Fixing 1 � k � K 0, we need to find solutions fvk;`gLk
`D1

connecting wk�1 to wk

(and x1;0 to w1). The nondegeneracy of Hk
� implies that P.Hk

�/ D P.Hk�1
C

/ is
a finite set (notice that the left end of HK0 is nondegenerate, as it coincides with
the right end of HK0�1). Therefore, we can repeat the arguments from the proof of
Proposition 9.14. For � > 0 small enough, the balls fB.x�; �/gx�2P.Hk

�/
are disjoint,

and writing yk WD lims!�1wk.s; � / and xk;0 D lims!1wk�1.s; � /, there exists
s? 2R such that wk�1.s; � / 2 B.xk;0; �/ for s � s?. It follows from the convergence
of ��k�1n

un to wk�1 that un.s?C�k�1n ; � / 2B.xk;0; �/ when n is large. Denoting the
first exit by

sk;1n WD supfs � s?C �k�1n j un.s
0; � / 2 B.yk; �/ for s0 2 Œs?C �k�1n ; s�g;
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one can argue as in the proof of Proposition 9.14 to show that

sk;1n � �
k�1
n ����!

n!1
1:

Applying Lemma 9.20 to fung shifted by sk;1n , we conclude that �
s
k;1
n
un either converges

to ��wk for some � 2 R, or to vk;1 2M.Hk
�;J

k
�/ DM.Hk�1

C
;Jk�1
C

/. In the first case,
the right end of wk�1 and the left end of wk coincide, namely xk;0 D yk , and we
are done. Otherwise, we continue by induction and find vk;` 2M.Hk

�;J
k
�/ connecting

wk�1 to wk . As argued previously, this process is finite since each vk;` decreases the
action, and spec.Hk

�/ is a finite set.

9.3 Barricades and perturbations

Throughout this section, we fix an almost complex structure J on M, a CIB domain U,
and Uı b U. We will consider nondegenerate Hamiltonians, or homotopies with
nondegenerate ends, which have a barricade in U around Uı, when paired with J.

9.3.1 Barricades survive under small enough perturbations In this section we
show that barricades survive under perturbations of H. Here H denotes a homotopy
with nondegenerate ends and we consider Hamiltonians as a special case, by identifying
them with constant homotopies.

Proposition 9.21 Let H be a homotopy with nondegenerate ends , which is such that
@sH jjsj>RD 0 for some R > 0 (in particular , H can be a nondegenerate Hamiltonian),
and such that the pairs .H; J /, .H˙; J / have a barricade in U around Uı. Then , for
every C1–small enough perturbation H 0 of H that satisfies P.H˙/ D P.H 0

˙
/ and

@sH
0jjsj>RD 0, the pair .H 0; J / has a barricade in U around Uı.

In order to prove this proposition, we will use the convergence to broken trajectories,
which was established in Section 9.2.1. Therefore, we start by showing that barricades
also restrict broken trajectories.

Lemma 9.22 Let H be a homotopy with nondegenerate ends (or , in particular , a non-
degenerate Hamiltonian) such that the pairs .H; J / and .H˙; J / have a barricade in U
around Uı. Then , for a broken trajectory xv D .v1; : : : ; vk; w; v01; : : : ; v

0
`
/ connecting

x˙ 2 P.H˙/, we have:

� If x� � Uı, then xv � Uı.

� If xC � U, then xv � U.
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Proof We prove the first statement; the second statement is completely analogous. Let

xv WD .v1; : : : ; vk; w; v
0
1; : : : ; v

0
`/

be a broken trajectory of .H; J / such that the periodic orbit x0 WD lims!�1 v1.s; � /
is contained in Uı. Then, since .H�; J / has a barricade in U around Uı, it holds that
v1�Uı and in particular, the periodic orbit x1 WD lims!C1 v1.s; � / is contained in xUı.
Moreover, by Definition 1.7 of the barricade, the periodic orbits of H� do not inter-
sect @Uı, and therefore x1�Uı. As xv is a broken trajectory (see Proposition 9.14), x1 is
the negative end of v2, namely x1 D lims!�1 v2.s; � /. Applying the same argument
again and again, we conclude that v2; : : : ; vk � Uı. Now, xk WD lims!C1 vk.s; � /D
lims!�1w.s; � / is also contained in Uı and since .H; J / has a barricade in U
around Uı, this means that w � Uı. Arguing the same way and using the fact that
.HC; J / has a barricade in U around Uı, we conclude that v0j � Uı for all 1� j � `,
and so the broken trajectory is completely contained in Uı.

Given the above lemma, the proof of Proposition 9.21 is a simple application of
Proposition 9.14.

Proof of Proposition 9.21 Let fHng be a sequence of regular homotopies converging
to H, such that for each n, P.Hn˙/D P.H˙/ and @sHnjjsj>R D 0. Assume for the
sake of contradiction that, for each n, there exists a solution un 2M.Hn;J / such that
xn� WD lims!�1 un.s; � / is contained in Uı but un is not. For each n, let �n 2R be such
that un.�n; � / is not contained in Uı. Since xn

˙
2P.Hn˙/DP.H˙/ are elements of a

finite sets, by passing to a subsequence, we may assume that xn
˙
D x˙ are independent

of n, which means that un 2M.x�; xC/ for all n. Applying Proposition 9.14 to the
sequence of solutions fung and the sequence of shifts f�ng, after passing again to a
subsequence, fung converges to a broken trajectory xv of .H; J /, and the sequence
un. � C�n; � / converges to one of the solutions in xv (perhaps up to a shift). Lemma 9.22,
together with our assumption that x� D x0 � Uı, guarantees that the entire broken
trajectory xv is contained in Uı, and in particular limn!1 un. � C �n; � /� Uı. Since
the latter limit is uniform on compacts, it follows that

lim
n!1

un.�n; � /D lim
n!1

un.0C �n; � /

is also contained in Uı. Recalling that we chose �n so that, for each n, the loop
un.�n; � / is not contained in the open set Uı, we arrive at a contradiction.

Similarly, one can prove that when n is large enough, every solution un of the Floer
equation with respect to .Hn; J / ending in U is contained in U.
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9.3.2 Perturbing Hamiltonians that are regular on a subset In this section, we
define the notion of regularity on a subset, U �M , for a pair .H; J / of a Hamiltonian
and an almost complex structure that has a barricade in U around some Uı b U. We
prove that for such a pair, the restriction of the Floer differential to the set is well
defined, and is stable under (regular) perturbations. Since Floer-regularity concerns the
differential of the Floer map we start with a reminder. Given a Hamiltonian H and an
almost complex structure J, the Floer map associated to the pair .H; J / is

F D FH W C1.R�S1IM/! C1.R�S1ITM/; u 7!
@u

@s
CJ

@u

@t
C gradu.Ht /;

where graduH WD rJH ıu is the gradient of H with respect to J, composed with u.

Definition 9.23 Let H be a nondegenerate Hamiltonian such that the pair .H; J / has
a barricade in U around Uı.

(i) We say that the pair .H; J / is regular on U if for every solution u of the Floer
equation that is contained in U, the linearization .dF/u of the Floer map F at u
is surjective.
In particular, by [3, Theorem 8.1.2], for every x˙ 2 P.H/ such that xC � U,
the space of solutions M.H;J /.x�; xC/ is a smooth manifold of dimension
�.x�/��.xC/.

(ii) We say that the pair .H; J / is semiregular on U if for every x˙ 2 P.H/ with
�.x�/� �.xC/ and such that xC � U, we have:
(a) If x� ¤ xC, then M.H;J /.x�; xC/D∅.
(b) If x� D xC, then M.H;J /.x�; xC/ contains only the constant solution

u.s; t/D x�.t/.

Remark 9.24 � If .H; J / is regular on U, then it is also semiregular on U.

� If .H; J / has a barricade in U around Uı and agrees, on U, with a Floer-regular
pair, then it is regular on U.

� For a pair .H; J / that is regular on U, the differential of the Floer complex might
not be defined everywhere. However, using Proposition 9.14 (see also the proof of
Lemma 9.26 below), one can show that when �.x�/��.xC/D 1 and xC � U, the
quotient manifold M.H;J /.x�; xC/=R is compact and of dimension 0, and hence finite.
Therefore, the composition �U ı @.H;J / can be defined by counting the elements of
the latter quotients. This is a slight abuse of notation, as the map @.H;J / is not defined
on its own. Similarly, one can define the composition @.H;J / ı�Uı using the fact that
x� � Uı implies that xC � Uı � U, due to the barricade.
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Our main goal for this section is to prove the following statement.

Proposition 9.25 Suppose that H is a nondegenerate Hamiltonian such that .H; J / is
regular on U. Let H 0 be a small perturbation of H such that the pair .H 0; J / is Floer-
regular and H 0 agrees with H on P.H/ up to second order. Then the compositions of
the differentials and projections agree:

(41) �U ı @.H;J / D �U ı @.H 0;J /; @.H;J / ı�Uı D @.H 0;J / ı�Uı :

We remark that the second equation in (41) follows immediately from the first. Indeed,
due to Proposition 9.21, .H 0; J / also has a barricade, and @ ı�Uı D �U ı @ ı�Uı for
both .H; J / and .H 0; J /. In order to prove Proposition 9.25, we connect H and H 0

by a path of Hamiltonians fH�g�2Œ0;1� such that, for each � 2 Œ0; 1�, H� agrees with
H on the 1–periodic orbits up to second order, and the pair .H�; J / is semiregular
on U. Note that the first condition implies that, for each �, P.H�/D P.H/. Given
x˙ 2 P.H/ such that xC � U, the space

(42) Mƒ.x�; xC/ WD f.�; u/ j u 2M.H�;J /.x�; xC/g

is invariant under the R action u. � ; � / 7! u.� C � ; � /. We show that when

�.x�/��.xC/D 1;

the quotient Mƒ.x�; xC/ DMƒ.x�; xC/=R is a smooth, compact 1–dimensional
manifold with boundary, which realizes a cobordism between M.H;J /.x�; xC/=R

and M.H 0;J /.x�; xC/=R. We will then conclude that the number of elements in the
quotients M.H;J /.x�; xC/=R and M.H 0;J /.x�; xC/=R coincides modulo 2.

The existence of a semiregular path between H and H 0 follows from the fact that
semiregularity is an open condition.

Lemma 9.26 Suppose that .H; J / is semiregular on U. Then , for every Hamilton-
ian H 0 that is close enough to H and agrees with H on P.H/ up to second order , the
pair .H 0; J / is also semiregular on U.

Proof Consider a sequence Hn converging to H which is such that for each n,
Hn agrees with H on P.H/. Then, in particular, P.Hn/D P.H/. Suppose that for
each n, there exists a solution un 2M.Hn;J /.x

n
�; x

n
C
/ for some xn

˙
2 P.Hn/ such

that �.xn�/ � �.x
n
C
/ and xn

C
� U. Moreover, we assume that if xn� D x

n
C

, then un
is nonconstant. Since xn

˙
2 P.H/ are elements of a finite set, we may assume, by

passing to a subsequence, that xn
˙
D x˙ are independent of n. By Proposition 9.14,

there exists a subsequence of the solutions un that converges to a broken trajectory xv
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of .H; J /. Moreover, the ends of the broken trajectory are x˙. Since xC is contained
in U and .H; J / has a barricade in U around Uı, it follows from Lemma 9.22 that the
broken trajectory xv is contained in U. As the pair .H; J / is semiregular on U, for every
nonconstant solution in the broken trajectory, the index difference between the left end
and the right end is positive. Therefore, in the notation of Proposition 9.14, we have

�.x�/D �.x0/ > �.x1/ > � � �> �.xC/:

Together with our assumption that �.x�/ D �.xn�/ � �.x
n
C
/ D �.xC/, this implies

that the broken trajectory xv contains only one solution: v1.s; t/D x�.t/D xC.t/. In
particular, we conclude that un 2M.Hn;J /.x�; xC/ are Floer solutions with equal
ends. By the energy identity (8), the energy of un vanishes,

E.un/DAHn.x�/�AHn.x�/DAH .x�/�AH .x�/D 0;

guaranteeing that un is a constant solution un.s; t/D x�.t/ for all n, a contradiction.

Our next aim is to show that for a suitable choice of a path of Hamiltonians fH�g, the
set (42) is a smooth manifold. Let us start with preliminary definitions. Let fH�g�2Œ0;1�
be a path of Hamiltonians that is stationary for � … Œı; 1� ı� for some fixed ı > 0, and
such that H� agrees with H0 on P.H0/ up to second order for all � 2 Œ0; 1�. We will
consider the space C1" .fH�g�/ (of perturbations) consisting of maps

h WM �S1 � Œ0; 1�!R

with compact support in M �S1� Œı; 1� ı� that vanish on P.H0/� Œ0; 1� up to second
order and are such that khk" <1. Here k � k" is Floer’s "–norm; see Definition 9.3 and
[3, page 230]. We identify the map h with the path of time-dependent Hamiltonians
fh�. � ; � / WD h. � ; � ; �/g�.

The next claim is an adjustment of [3, Theorem 11.3.2] to our setting and is proved
similarly. For the sake of completeness we include the proof, but we postpone it until
the end of this section.

Claim 9.27 Let fH�g�2Œ0;1� be a path of Hamiltonians as above , and assume that
.H0; J / and .H1; J / are regular on U. Then there exist a neighborhood of 0 in
C1" .fH�g�/ and a residual set Hreg in this neighborhood , such that if h2Hreg, then for
ƒD .fH�Ch�g�; J / and every x˙ 2 P.H0/ with xC �U, the space Mƒ.x�; xC/ is
a manifold-with-boundary of dimension �.x�/��.xC/C 1, and its boundary is

(43) @Mƒ.x�; xC/D f0g �M.H;J /.x�; xC/ [ f1g �M.H 0;J /.x�; xC/:
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Proof of Proposition 9.25 Recall that H is a nondegenerate Hamiltonian such that
.H; J / is regular on U. Let H 0 be a small perturbation of H that agrees with H on
P.H/ up to second order, and such that the pair .H 0; J / is Floer-regular. We wish to
show that the compositions of the differentials with respect to .H; J / and .H 0; J / with
the projections onto CU and CUı agree. Let H� be a linear path (or a linear homotopy)
between H and H 0 that is stationary near �D 0; 1, and such that for each �, H� agrees
with H on P.H/ up to second order (in particular, P.H�/D P.H/). Taking H 0 to
be close enough to H, and using Lemma 9.26, one can guarantee that all of the pairs
.H�; J / are semiregular on U.

By Claim 9.27, there exists a small perturbation of the path fH�g such that for ƒD
.fH�C h�g�; J / and for every x˙ 2 P.H0/ with xC � U, the space Mƒ.x�; xC/ is
a manifold with boundary of dimension �.x�/��.xC/C 1. Let us show that when
�.x�/��.xC/D 1, the quotient Mƒ.x�; xC/DMƒ.x�; xC/=R of this manifold
by the R action is compact. Let .�n; un/ 2Mƒ.x�; xC/ be any sequence. Since
�n 2 Œ0; 1�, we may assume, by passing to a subsequence, that the sequence �n
converges to a number �? 2 Œ0; 1�. By the definition of the space Mƒ.x�; xC/,
un2M.H�n ;J /

.x�; xC/ are solutions to the Floer equation with respect to Hamiltonians
converging to H�? . By Proposition 9.14, there exists a subsequence of un converging
to a broken Floer trajectory xv D fv1; : : : ; vkg of .H�? ; J /. Since the pair .H�? ; J /
is semiregular on U, and xC � U, every solution in xv that is nonconstant (in the
s–coordinate) decreases the index:

�.x�/D �.x0/ > �.x1/ > � � �> �.xk/D �.xC/:

Recalling that �.x�/ � �.xC/ D 1, we conclude that xv contains exactly one non-
constant solution, xv D v1 2M.H�? ;J /

.x�; xC/. In other words, given the sequence
.�n; un/2Mƒ.x�; xC/, there exists a sequence of shifts sn 2R such that, after passing
to a subsequence,

.�n; �snun/
C1loc
����!
n!1

.�?; v1/:

In particular, after dividing by the (free, proper and smooth) R–action, the subsequence
.�n; Œun�/ 2Mƒ.x�; xC/ converges to an element of the same space,

.�n; Œun�/ ����!
n!1

.�?; Œv1�/ 2Mƒ.x�; xC/;

and therefore Mƒ.x�; xC/ is compact. Overall, Mƒ.x�; xC/ is a smooth, compact
manifold of dimension �.x�/ � �.xC/C 1 � 1 D 1, and its boundary is the zero-
dimensional compact manifold

@Mƒ.x�; xC/D f0g �M.H;J /.x�; xC/[f1g �M.H 0;J /.x�; xC/:
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Hence, the latter are finite sets with an equal number of elements mod 2:

#2M.H;J /.x�; xC/D #2M.H 0;J /.x�; xC/:

The equalities (41) now follow from the definition of the differential map.

We sketch the proof of Claim 9.27, which follows the arguments in [3, Chapter 11.3.b].

Proof of Claim 9.27 Fix x˙ 2 P.H0/ such that xC �U. We first show that the space
Mƒ.x�; xC/ has a structure of a manifold-with-boundary near the boundary (43), and
afterwards we prove that for perturbed paths the interior is a smooth manifold.

Let ı > 0 be such that the path fH�g is stationary for � … Œı; 1� ı� and every h 2
C1" .fH�g�/ satisfies supp.h/�M �S1 � Œı; 1� ı�. In this case,

H�C h� D

�
H0; �� ı;

H1; �� 1� ı;

for all h2C1" .fH�g�/. Fixing such an h and settingƒD .fH�Ch�g�; J /, we have that

Mƒ.x�; xC/\f� < ıg D Œ0; ı/�M.H0;J /.x�; xC/;

Mƒ.x�; xC/\f� > 1� ıg D .1� ı; 1��M.H1;J /.x�; xC/

are smooth manifolds with boundary, since the pairs .H0; J /, .H1; J / are regular on U
and xC � U. We conclude that near f0g�M.H;J /.x�; xC/[f1g�M.H 0;J /.x�; xC/

the space Mƒ.x�; xC/ has a structure of a manifold with boundary.

Let us now show that the interior of Mƒ.x�; xC/ is a smooth manifold. Since the spaces
M.H;J /.x�; xC/ and M.H 0;J /.x�; xC/ composing the boundary are one-dimensional,
it will follow that dimMƒ.x�; xC/D 2: The following statement is taken from [3],
and states that the linearization .dF/u of the Floer map F is a Fredholm operator.

Lemma 9.28 [3, Theorem 8.1.5] For every nondegenerate Hamiltonian H, every
almost complex structure J compatible with !, and every u 2M.H;J /.x�; xC/, the
linearization .dF/u is a Fredholm operator of index �.x�/��.xC/.

As in Notation 9.9, we denote by P.x�; xC/ the space of maps .s; t/ 7!expw.s;t/ Y.s; t/,
where Y 2W 1;p.w�TM/ for p > 2, and w 2 C1.R�S1IM/ converges to x˙ with
exponential decay. Consider the vector bundle E! P.x�; xC/�C1" .fH�g�/ given by

E D f.u; h; Y / j .u; h/ 2 P.x�; xC/� C1" .fH�g�/; Y 2 L
p.u�TM/g:
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We define a family of sections f��g�2.0;1/ by

��.u; h/D
�
u; h;

@u

@s
CJ.u/

@u

@t
C gradu.H�C h�/

�
:

For fixed �0 2 .0; 1/, the map ��0 is transversal to the zero section of the vector
bundle E if and only if, when ��0.u; h/ D .u; h; 0/, the linearized map .d��0/.u;h/
composed with the projection onto the fiber, namely,

z��0 WW
1;p.R�S1IR2n/� C1" .fH�g�/! Lp.R�S1IR2n/;

.Y; �/ 7! .dFH�0Ch�0 /u.Y /C gradu ��0 ;

is surjective. Here, and in what follows, we identify the linear space C1" .fH�g�/ with
its tangent space. If �0 … .ı; 1 � ı/, then h�0 D 0 and H�0 is equal to either H0
or H1, which are both regular on U, when paired with J. In this case, the surjectivity
of z��0 follows from that of dFH�0Ch�0 , which is guaranteed due to the regularity of
H0 and H1. Let us prove the surjectivity of z��0 for �0 2 .ı; 1� ı/. To do this, we
embed C1" .H0/D C1" .H�0/ into C1" .fH�g�/ by mapping h�0 2 C

1
" .H�0/ to a locally

constant path, h. � ; � ; �/D h�0. � ; � / near �D �0. Here we have used our assumption
that fH�g� all have the same periodic orbits as H0. It is now clear that the surjectivity
of the restricted map,

� WW 1;p.R�S1IR2n/� C1" .H�0/! Lp.R�S1IR2n/;

.Y; �/ 7! .dFH�0Ch�0 /u.Y /C gradu ��0 ;

which is guaranteed by [3, Proposition 8.1.4], implies the surjectivity of z��0 . We con-
clude that for every �0 2 .0; 1/, the section ��0 intersects the zero section transversely.
As a consequence, the section

� W .ı; 1�ı/�P.x�; xC/�C1" .fH�g�/! .ı; 1�ı/�E ; .�; u; h/ 7! .�; ��.u; h//;

also intersects the zero section transversely and we conclude that the intersection

Z.x�; xC/D f.�; u; fH�C h�g�/ j � 2 .ı; 1� ı/; u 2M.H�Ch�;J /.x�; xC/g

is a Banach manifold; see [3, Propositions 8.1.3 and 11.3.4] for the analogous state-
ments. The tangent space of Z.x�; xC/ at a point .�; u; fH�C h�g/ consists of all
.a; Y; �/ 2R�W 1;p.R�S1IR2n/� C1" .fH�g/ that satisfy the equation

(44) a � gradu
@.H�C h�/

@�
C .dFH�Ch�/u.Y /C gradu.��/D 0:

Let � W Z.x�; xC/! C1" .fH�g�/ be the projection. In order to conclude the proof of
the claim, it is sufficient to show that the set of regular values of � is a residual subset
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of C1" .fH�g�/. This will follow from the Sard–Smale theorem (see [3, Theorem 8.5.7])
as soon as we show that � is a Fredholm map; the separability of the spaces fol-
lows from Claim 9.5 and Remark 9.8 above. Let us therefore show that for every
.�; u; fH�C h�g�/ 2 Z.x�; xC/, the operator

.d�/.�;u;fH�Ch�g�/ W T.�;u;fH�Ch�g�/Z.x�; xC/! C1" .fH�g�/; .a; Y; �/ 7! �;

is a Fredholm operator. In analogy with the proof of [3, Proposition 11.3.5], denote by

V WD gradu
@.H�C h�/

@�
2 Lp.u�TM/

the vector field multiplying a in (44). Then the kernel of .d�/.�;u;fH�Ch�g�/ is the
space

f.a; Y; 0/ j .a; Y / 2R�W 1;p.u�TM/ and aV C .dFH�Ch�/u.Y /D 0g:

Let us show that this space is finite-dimensional by splitting into two cases:

(i) Suppose V … im..dFH�Ch�/u/. In this case we find

ker.d�/.�;u;fH�Ch�g�/ D f.0; Y; 0/ j Y 2 ker..dFH�Ch�/u/g;

which is finite-dimensional by Lemma 9.28.

(ii) Suppose V 2 im..dFH�Ch�/u/. Choose a Y0 2W 1;p.u�TM/ such that

.dFH�Ch�/u.Y0/D V:
It follows that

ker.d�/.�;u;fH�Ch�g�/

D f.a; Y; 0/ j a.dFH�Ch�/u.Y0/C .dFH�Ch�/u.Y /D 0g:

This space is isomorphic to RY0 C ker..dFH�Ch�/u/, which is also finite-
dimensional.

Next, let us show that the image of .d�/.�;u;fH�Ch�g�/ is closed and has finite codi-
mension. Indeed, it is the inverse image of the subspace

(45) RV C im..dFH�Ch�/u/� Lp.u�TM/

under the linear map � 7! gradu �, viewed as a map C1" .fH�g�/! Lp.u�TM/. By
Lemma 9.28, the subspace (45) is closed and of finite codimension, and hence we
conclude the same for the image of .d�/.�;u;fH�Ch�g�/. Consequently, � is indeed
a Fredholm map, and by the Sard–Smale theorem, the set of its regular values is a
residual subset C1" .fH�g�/.
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Denote by Hreg � C1" .fH�g�/ the set of regular values of � . Then for any h 2Hreg,
setting ƒD .fh�C h�g�; J /, the set

��1.h/DMƒ.x�; xC/\f� 2 .0; 1/g

is a smooth manifold (with respect to the C1loc topology). Together with the discussion
from the beginning of the proof, this implies that Mƒ.x�; xC/ is a manifold with
boundary.

9.3.3 Perturbing homotopies that are regular on a subset In this section we state
and prove results which are analogous to the ones from Section 9.3.2, but for homotopies
instead of Hamiltonians. Fix an almost complex structure J on M, a CIB domain U,
and Uı b U.

Definition 9.29 Let H be a homotopy of Hamiltonians such that the pair .H; J / has
a barricade in U around Uı.

(i) We say that the pair .H; J / is regular on U if .H˙; J / are regular on U (see
Definition 9.23) and for every solution u of the s–dependent Floer equation with
respect to .H; J /, the linearization .dF/u of the Floer map F is surjective. In
particular, by [3, Theorem 8.1.2], for every x˙ 2 P.H˙/ such that xC � U,
the space of solutions M.H;J /.x�; xC/ is a smooth manifold of dimension
�.x�/��.xC/.

(ii) We say that the pair .H; J / is semiregular on U if .H˙; J / are semiregular
on U (as in Definition 9.23) and for every x˙ 2 P.H˙/ with �.x�/ < �.xC/
and such that xC � U, we have M.H;J /.x�; xC/D∅.

As in Section 9.3.2, if a pair is regular on U, then it is also semiregular on U, and every
Floer-regular pair with a barricade is regular on U.

Remark 9.30 For a pair .H; J / that is regular on U, the continuation map might
not be defined everywhere. However, using Proposition 9.14, one can see that when
�.x�/ D �.xC/ and xC � U, the zero-dimensional manifold M.H;J /.x�; xC/ is
compact and hence finite. The composition �U ıˆ.H;J / can be defined by counting
the elements of such manifolds. We remark that this is a slight abuse of notation, as the
continuation map ˆ.H;J / is not necessarily defined on its own. Due to the barricade,
if x� � Uı then xC � Uı � U. It follows that the composition ˆ.H;J / ı�Uı is well
defined as well.
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Our main goal for this section is to prove the following statement.

Proposition 9.31 Suppose that H is a homotopy such that .H; J / is regular on U, and
let R > 0 be such that @sH jjsj>R D 0. Let H 0 be a homotopy such that

(i) @sH
0jjsj>R D 0,

(ii) H 0 is C1–close to H, and the H 0
˙

agree with H˙ on their 1–periodic orbits up
to second order ,

(iii) .H 0; J / is regular on U.

Then the compositions of the continuation maps and projections agree:

(46) �U ıˆ.H;J / D �U ıˆ.H 0;J /; ˆ.H;J / ı�Uı Dˆ.H 0;J / ı�Uı :

As before, the second equation in (46) follows from the first, since both .H; J / and
.H 0; J / have a barricade in U around Uı and thus ˆı�Uı D �U ıˆı�Uı . In analogy
with the previous section, in order to prove Proposition 9.31, we connect H and H 0

by a linear path (or linear homotopy) of homotopies fH�g�2Œ0;1� such that the pairs
.H�; J / are all semiregular on U. Then, given x˙ 2 P.H˙/, with �.x�/ D �.xC/
and xC � U, we show that the space

(47) Mƒ.x�; xC/ WD f.�; u/ j u 2M.H�;J /.x�; xC/g

is a smooth, compact, 1–dimensional manifold-with-boundary that realizes a cobordism
between M.H;J /.x�; xC/ and M.H 0;J /.x�; xC/. We will then conclude that the
number of elements in M.H;J /.x�; xC/ and M.H 0;J /.x�; xC/ coincides modulo 2.

As for the case of Hamiltonians, semiregularity of homotopies is also an open condition,
as the following lemma guarantees.

Lemma 9.32 Suppose that .H; J / is semiregular on U, and fix R > 0. Then for every
homotopyH 0 that is close enough toH, which is such that @sH 0jjsj>R D 0 and theH 0

˙

agree with H˙ on their 1–periodic orbits up to second order , the pair .H 0; J / is also
semiregular on U.

Proof First, notice that by Proposition 9.21, for every homotopy H 0 that satisfies the
conditions of the lemma, the pair .H 0; J / has a barricade in U around Uı. Assume for
the sake of contradiction that there exists a sequence of homotopies Hn, converging
to H, such that for each n, Hn satisfies the conditions of the lemma, and .Hn; J / is
not semiregular on U. Then, for each n, there exist xn

˙
satisfying �.xn�/ < �.x

n
C
/ and

xn
C
� U, and a solution un 2M.Hn;J /.x

n
�; x

n
C
/. Since xn

˙
2 P.Hn˙/D P.H˙/ are
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elements of finite sets, we may assume, by passing to a subsequence, that xn
˙
D x˙ are

independent of n. By Proposition 9.14, there exists a subsequence of the solutions un
that converges to a broken trajectory

xv D .v1; : : : ; vk; w; v
0
1; : : : ; v

0
`/

of .H; J /. Here vi and v0j are Floer solutions with respect to the Hamiltonians H�
and HC, respectively, and w 2M.H;J / is a solution with respect to the homotopy H.
Moreover, the ends of the broken trajectory are x˙. Since xC is contained in U and
the pairs .H; J / and .H˙; J / all have barricades in U around Uı, it follows from
Lemma 9.22 that the broken trajectory xv is contained in U. As the pair .H; J / is
semiregular on U, for every nonconstant vi or v0j , the index difference between the left
end and the right end is positive. Moreover, the index difference between the ends of w
is nonnegative. Therefore, under the notation of Proposition 9.14, we have

�.x�/D �.x0/ > � � �> �.xk/� �.y0/ > � � �> �.y`/D �.xC/;

which contradicts our assumption that �.xn�/ < �.x
n
C
/.

As in the previous section, we show that for a suitable choice of a path of homo-
topies fH�g, the set (47) is a smooth manifold. Our starting point is a path fH�g�2Œ0;1�
that is stationary for �… Œı; 1�ı� and is such that for all �2 Œ0; 1�,H� satisfies properties
(i)–(ii) from Proposition 9.31. This time the space of perturbations C1" .fH�g�/ will
consist of maps

h WM �S1 �R� Œ0; 1�!R

supported in M � S1 � Œ�R;R�� Œı; 1� ı�, which are such that khk" <1, where
again k � k" is Floer’s norm from Definition 9.3. We identify the map h with the path of
homotopies fh�. � ; � / WD h. � ; � ; �/g�.

The following claim is an adjustment of [3, Theorem 11.3.2] to the case where the
ends of the path, .H0; J / and .H1; J /, are not necessarily Floer-regular, but are
regular on U, and the support of the perturbations is uniformly bounded. The proof is
completely analogous to that of Claim 9.27 above, with the single difference that the
surjectivity of the operator � for homotopies is guaranteed by Lemma 9.13, instead of
by [3, Proposition 8.1.4]. We therefore omit the proof.

Claim 9.33 Let fH�g�2Œ0;1� be a path of homotopies as above , and assume that
.H0; J / and .H1; J / are regular on U. Then there exists a residual subset Hreg �

C1" .fH�g�/ such that if h 2 Hreg, then for ƒ D .fH� C h�g�; J / and for every
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x˙ 2 P.H0˙/ with xC � U, the space Mƒ.x�; xC/ is a manifold-with-boundary
of dimension �.x�/��.xC/C 1, and its boundary is

(48) @Mƒ.x�; xC/D f0g �M.H;J /.x�; xC/[f1g �M.H 0;J /.x�; xC/:

Proof of Proposition 9.31 Recall that H is a homotopy such that .H; J / is regular
on U, and H 0 is a homotopy satisfying properties (i)–(iii) above. Let H� be a linear
path (or linear homotopy) between the homotopies H and H 0 which is stationary
for � … Œı; 1 � ı�. Then, for each �, the homotopy H� is close to H and its ends,
H�˙, agree with the ends of H on P.H˙/. In particular, P.H�˙/D P.H˙/ for all
� 2 Œ0; 1�. Taking H 0 to be close enough to H, Lemma 9.32 guarantees that all of the
homotopies H� are semiregular on U when paired with J. In particular, for each �,
the pairs .H�; J / and .H�˙; J / have a barricade in U around Uı.

By Claim 9.33, there exists a small perturbation h 2 C1" .fH�g�/ such that for ƒD
.fH�C h�g�; J / and for every x˙ 2 P.H0˙/ with xC � U, the space Mƒ.x�; xC/

is a manifold-with-boundary of dimension �.x�/ � �.xC/C 1. Let us show that
when �.x�/ � �.xC/ D 0, the manifold Mƒ.x�; xC/ is compact. Let .�n; un/ 2
Mƒ.x�; xC/ be any sequence. After passing to a subsequence, we have �n! �? 2

Œ0; 1�, and hence un 2M.H�n ;J /
.x�; xC/ are solutions with respect to homotopies that

converge toH�? . By Proposition 9.14, there exists a subsequence of un converging to a
broken trajectory xvDfv1; : : : ; vk; w; v01; : : : ; v

0
`
g of .H�? ; J /. Since the pairs .H�? ; J /

and .H�?˙; J / have a barricade in U around Uı, and since xC � U, Lemma 9.22
guarantees that the broken trajectory is completely contained in U. The fact that
.H�? ; J / is semiregular on U now implies that vi and v0j are index-decreasing, and w
is index-nonincreasing:

�.x�/D �.x0/ > � � �> �.xk/� �.y0/ > � � �> �.y`/D �.xC/:

Recalling that �.x�/��.xC/D 0, we conclude that xv does not contain nonconstant
solutions of the s–independent Floer equations, and hence xvDw 2M.H�? ;J /

.x�; xC/.
This implies that the above subsequence converges to an element of the space,

.�n; un/ ����!
n!1

.�?; w/ 2Mƒ.x�; xC/;

and therefore Mƒ.x�; xC/ is compact.

Overall, Mƒ.x�; xC/ is a smooth, compact manifold of dimension

�.x�/��.xC/C 1D 1;
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and its boundary is

@Mƒ.x�; xC/D f0g �M.H;J /.x�; xC/[f1g �M.H 0;J /.x�; xC/:

Consequently, the latter are finite sets with an equal number of elements mod 2:

#2M.H;J /.x�; xC/D #2M.H 0;J /.x�; xC/:

The equalities (46) follow immediately from the definition of the continuation maps.

Perturbing homotopies that are constant on a subset A particular application of
Proposition 9.31 that will be useful is when H is a homotopy that is constant on
the set U, and whose ends, H˙, are regular on U when paired with J. In this case,
it follows from Definition 9.29 that the pair .H; J / is also regular on U. Moreover,
for periodic orbits x˙ 2 P.H˙/ such that xC � U, the space M.H;J /.x�; xC/ coin-
cides with M.H�;J /.x�; xC/. As a consequence, when �.x�/ D �.xC/, the space
M.H;J /.x�; xC/ is empty if x� ¤ xC, and contains only constant solutions otherwise.
We conclude that the continuation map with respect to .H; J / agrees with the identity
map after composing with the projections:

�U ıˆ.H;J / D �U ı 1 and ˆ.H;J / ı�Uı D 1 ı�Uı :

Applying Proposition 9.31 we conclude that the same holds for perturbations of H.

Corollary 9.34 Suppose that H is a homotopy between two nondegenerate Hamiltoni-
ans H˙ such that .H; J / is constant on U, namely @sH jU D 0, and the .H˙; J / are
regular on U. Fix R > 0 and let H 0 be a C1–small perturbation of H such that

(i) @sH
0jjsj>R D 0,

(ii) the H 0
˙

agree with H˙ on their 1–periodic orbits up to second order , and

(iii) .H 0; J / is regular on U.

Then

(49) ˆ.H 0;J / ı�Uı D 1 ı�Uı and �U ıˆ.H 0;J / D �U ı1:

Appendix Incompressibility of domains with incompressible
boundaries

Let M n be a smooth n–dimensional orientable manifold, and let N n be a smooth
n–dimensional orientable manifold with boundary such that there exists an embedding
� WN !M. Write U WD Im.�.N n @N//, and note that @U D Im.�.@N //.
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Proposition A.35 If @U is incompressible in M, then U is incompressible in M.

Proof In order to show that �� W �1.U /! �1.M/ is injective, it is sufficient to prove
that if a loop 
 in U is contractible in M then it is contractible in U. Let 
 W S1! U

be a loop that is contractible in M. Then there exists a map u W D ! M such that
uj
@D
� 
 , where D �R2 denotes the unit disk.

Without loss of generality we may assume that 
 and u are smooth, and that u t @U.
Indeed, by Whitney’s smooth approximation theorem, u is homotopic to a smooth
map zu. Since Im 
 is compact and U is open, we can choose the smooth approximation
so that z
 WD zuj

@D
is homotopic to 
 in U. Applying Thom’s transversality theorem, we

may assume that zu t @U. We replace the maps 
 and u by z
 and zu, in order to keep
the notation.

Under the assumptions above, the preimageC Du�1.@U / is a compact one-dimensional
submanifold of D, hence a disjoint union of embedded closed curves, C D

F
j Cj .

Some of the curves Cj may encompass others. We call a curve Cj a maximal curve
if it is not encompassed by any other component of C . More formally, for each
component Cj , denote by Dj �D the embedded topological disk such that @Dj D Cj .
The curve Cj is maximal if Cj ªDk for all k¤ j . We denote the set of maximal curves
by Cmax WD fCj1 ; : : : ; Cj`g, and by Dmax WD fDj1 ; : : : ;Dj`g the set of the corresponding
topological disks.

For every 1� i � `, the restriction ujCji is a loop in @U which is contractible in M
by ujDji . By the incompressibility of @U, the loop ujCji is contractible in @U, namely
there exists a map vi WDji ! @U such that vi jCji � ujCji . Using the maps u and vi
we can define a map that contracts 
 inside xU :

yuD

�
vi .x/ if x 2Dji ;
u.x/ otherwise.

Let us check that yu is a contraction of 
 in xU. Indeed, recalling that u.@D/D 
 � U
and that C WD u�1.@U /, it follows from the maximality of the curves in Cmax that for
all x 2D n

F
Dmax

Dji , one has u.x/ 2 U, and therefore yu.x/ 2 U. Moreover, for every
x 2Dji we have yu.x/ 2 @U , and we conclude that Im.yu/� U [ @U.

Using the fact that @U has a collar neighborhood in xU , one can construct a continuous
map w W xU ! U which restricts to the identity on im.
/. The composition w ı yu is the
desired contraction of 
 in U.
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Realization of graded monomial ideal rings modulo torsion

TSELEUNG SO

DONALD STANLEY

Let A be the quotient of a graded polynomial ring ZŒx1; : : : ; xm�˝ƒŒy1; : : : ; yn� by
an ideal generated by monomials with leading coefficients 1. We construct a space
XA such that A is isomorphic to H�.XA/ modulo torsion elements.

55N10; 13F55, 55P99, 55T20

1 Introduction

A classical problem in algebraic topology asks: which commutative graded R–algebras
A are isomorphic to H�.XAIR/ for some space XA? The space XA, if it exists, is
called a realization of A. According to Aguadé [1] the problem goes back to at least
Hopf, and was later explicitly stated by Steenrod [14]. To solve the problem in general
is probably too ambitious, but many special cases have been proven.

One of Quillen’s motivations for his seminal work on rational homotopy theory [13] was
to solve this problem over Q. He showed that all simply connected graded Q–algebras
have a realization. The problem of which polynomial algebras over Z have realizations
has a long history, and a complete solution was given by Anderson and Grodal [2]; see
also Notbohm [12]. More recently Trevisan [15] and later Bahri, Bendersky, Cohen
and Gitler [4] constructed realizations of ZŒx1; : : : ; xm�=I , where jxi j D 2 and I is an
ideal generated by monomials with leading coefficient 1.

We want to consider a related problem that lies between the solved realization problem
over Q and the very difficult realization problem over Z. We do this by modding out
torsion.

Problem 1.1 Which commutative graded R–algebras A are isomorphic to

H�.XAIR/=torsion
for some space XA?
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License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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734 Tseleung So and Donald Stanley

Such an XA is called a realization modulo torsion of A. For example, a polynomial
ring ZŒx� has a realization modulo torsion given by the Eilenberg–Mac Lane space
K.Z; jxj/ if jxj is even, while ZŒx� has a realization (before modding out torsion) if
and only if jxj D 2 or 4 [14]. Here we ask: do all finite type connected commutative
graded Z–algebras have a realization modulo torsion?

Notice that modding out by torsion is different from taking rational coefficients. For
example, both H�.�S2nC1IQ/ and H�.K.Z; 2n/IQ/ are QŒx� generated by x of
degree 2n. But H�.K.Z; 2n//=torsion is ZŒx�, while H�.�S2nC1/Š �Œx� is free as
a Z–module and is the divided polynomial algebra generated by x.

In this paper, we construct realizations modulo torsion of graded monomial ideal ringsA
which are tensors of polynomial algebras and exterior algebras modulo monomial ideals.
More precisely, let P D ZŒx1; : : : ; xm�˝ƒŒy1; : : : ; yn� be a graded polynomial ring
where the xi ’s have arbitrary positive even degrees and the yj ’s have arbitrary positive
odd degrees, and let I D .M1; : : : ;Mr/ be an ideal generated by r minimal monomials

Mj D x
a1j
1 x

a2j
2 � � � x

amj
m ˝y

b1j
1 � � �y

bnj
n ; 1� j � r;

where the indices aij are nonnegative integers and bij are either 0 or 1. Then the
quotient algebra AD P=I is called a graded monomial ideal ring.

Theorem 1.2 (main theorem) Let A be a graded monomial ideal ring. Then there
exists a spaceXA such thatH�.XA/=T is isomorphic toA, where T is the ideal consist-
ing of torsion elements in H�.XA/. Moreover , there is a ring morphism A!H�.XA/

that is right inverse to the quotient map H�.XA/!H�.XA/=T Š A.

If all of the even degree generators are in degree 2, then we do not need to mod out by
torsion and so we get a generalization (Theorem 4.6) of the results of Bahri, Bendersky,
Cohen and Gitler [4, Theorem 2.2] and Trevisan [15, Theorem 3.6].

The structure of the paper is as follows. Section 2 contains preliminaries, algebraic
tools and lemmas that are used in later sections. In Section 3 we recall the definition
of polyhedral products and modify a result of Bahri, Bendersky, Cohen and Gitler [3]
to compute H�..X;�/K/=T . In Sections 4 and 5 we prove Theorem 1.2 in several
steps. First, we prove it in the special case where the ideal I is square-free. Then for
the general case, we construct a fibration sequence inspired by algebraic polarization
method and show that the fiber XA is a realization modulo torsion of A. In Section 6
we illustrate how to construct XA for an easy example of A.

Algebraic & Geometric Topology, Volume 23 (2023)
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2 Preliminaries

2.1 Quotients of algebras by torsion elements

It is natural to study an algebra A by factoring out the torsion elements since the
quotient algebra is torsion-free and has a simpler structure. Driven by this, we start
investigating the quotients of cohomology rings of spaces by their torsion elements.
Since we cannot find related references in the literature, here we fix the notation and
develop lemmas for our purpose.

A graded module A D fAigi2S is a family of indexed modules Ai . Since we are
interested in cochain complexes and cohomology rings of connected, finite type CW–
complexes, we assume A to be a connected, finite type graded module with nonpositive
degrees. That is, S DN�0, A0 D Z and each component Ai is finitely generated. We
follow the convention and denote Ai by A�i .

Remark 2.1 Equivalently we can define a graded module to be a module with a grading
structure, that is the direct sum AD

L
i2S Ai of a family of indexed modules. This

definition is slightly different from the definition above. We will use both definitions
interchangeably.

An element x 2 A is torsion if cx D 0 for some nonzero integer c, and is torsion-free
otherwise. The torsion submodule At of A is the graded submodule consisting of
torsion elements and the torsion-free quotient module Af D A=At is their quotient. If
B is another graded module and g W A! B is a morphism, then it induces a morphism
gf W Af ! Bf sending aCAt 2 Af to g.a/CBt 2 Bf . This kind of structure is
important in abelian categories and was formalized with Dixon’s notion of a torsion
theory [6], but in this paper we only use the structure in a naive way.

Lemma 2.2 If 0! A
g
�! B h

�!C ! 0 is a short exact sequence of graded modules ,
then Cf Š .Bf =Af /f . Furthermore , if the sequence is split exact , then so is

0! Af
gf
�! Bf

hf
�! Cf ! 0:

Proof Consider a commutative diagram as in Figure 1, where gt is the restriction of g
toAt , p and q are the quotient maps, and u and v are the induced maps. By construction
all rows and columns are exact sequences except for the right column. A diagram chase
implies that u is injective and v is surjective. We claim that the column is exact at C .

Algebraic & Geometric Topology, Volume 23 (2023)
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0

��

0

��

0

��

0 // At

��

gt
// Bt

��

p
// Bt=At

u
��

// 0

0 // A

��

g
// B

��

h
// C

v
��

// 0

0 // Af

��

gf
// Bf

��

q
// Bf =Af

��

// 0

0 0 0

Figure 1

Obviously vıu is trivial. Take an element c 2ker.v/ and its preimage b 2B . A diagram
chase implies b D g.a/C b0 for some a 2 A and b0 2 Bt . So c D h.b0/D u ıp.b0/ is
in Im.u/ and the right column 0! Bt=At

u
�! C v

�! Bf =Af ! 0 is exact.

For the first part of the lemma, we show that vf W Cf ! .Bf =Af /f is an isomorphism.
Since v is surjective, so is vf . Take c0 2 ker.vf / and its preimage Qc0 2 C . Then
v. Qc0/ is a torsion element in Bf =Af and mv. Qc0/D 0 for some nonzero integer m. So
m Qc0 2 ker.v/. As ker.v/D Im.u/ consists of torsion elements, m Qc0 is torsion and so
is Qc0. Therefore c0 D 0 in Cf and vf is injective.

Notice that an exact sequence being split is equivalent to BŠA˚C . So Bf ŠAf ˚Cf
and 0! Af

gf
�! Bf

hf
�! Cf ! 0 is a split exact sequence.

A graded algebra .A;m/ consists of a graded module A and an associative bilinear
multiplication m D fmi;j W Ai ˝Aj ! AiCj g such that 1 2 A0 is the multiplicative
identity. A pair .M;�/ is a left (resp. right) A–module if M is a graded module and
� is an associative bilinear multiplication �D f�i;j W Ai ˝M j !M iCj g such that
�.1˝ x/ D x (resp. � D f�i;j WM i ˝Aj !M iCj g such that �.1; x/ D x) for all
x 2M . We check that modding out torsion and multiplications are compatible.

Lemma 2.3 If A andM are graded modules (not necessarily of finite type), then there
is a unique isomorphism � W .A˝M/f ! Af ˝Mf of graded modules making the
diagram

A˝M //

��

Af ˝Mf

.A˝M/f
�

55

commute , where the vertical and the horizontal maps are quotient maps.

Algebraic & Geometric Topology, Volume 23 (2023)
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Proof It suffices to show that .Ai ˝M j /f Š A
i
f
˝M

j

f
for any positive integers i

and j . Consider the commutative diagram

0 // Ait ˝M
j ˚Ai ˝M

j
t

{1
//

a

��

Ai ˝M j �1
// Ai
f
˝M

j

f

b
��

// 0

0 // .Ai ˝M j /t
{2

// Ai ˝M j �2
// .Ai ˝M j /f // 0

where a, {1 and {2 are inclusions, �1 and �2 are quotient maps, and b is the induced
map. We want to show that b is an isomorphism, which is equivalent to showing that a
is an isomorphism. If A and M are of finite type, then a is an isomorphism since Ai

and M j are finitely generated abelian groups. In the general case, a is an isomorphism
by [9, Theorem 61.5].

Corollary 2.4 Let .A;m/ be a graded algebra and let m0
f

be the composition

m0f W Af ˝Af Š .A˝A/f
mf
�! Af :

Then .Af ; m0f / is a graded algebra and there is a commutative diagram

A˝A
m

//

��

A

��

Af ˝Af
m0
f
// Af

where the vertical maps are quotient maps.

Let .M;�/ be a left or right A–module and let �0
f

be the composition

�0f W Af ˝Mf Š .A˝M/f
�f
�!Mf or �0f WMf ˝Af Š .M ˝A/f

�f
�!Mf /;

respectively. Then .Mf ; �0f / is respectively a left or right Af –module and there is a
commutative diagram

A˝M
�
//

��

M

��

Af ˝Mf

�0
f
// Mf

or

M ˝A
�
//

��

M

��

Mf ˝Af
�0
f
// Mf

respectively, where the vertical maps are quotient maps.
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A cochain complex .A; d/ consists of a graded module A and a differential

d D fd i W Ai ! AiC1g

such that d ı d D 0. Let df D fd if W A
i
f
! AiC1

f
g be the induced differential on Af .

Then .Af ; df / forms a cochain complex and its cohomology

H�.Af ; df /D fH
i .Af ; df /gi�0

is a graded module.

A differential graded algebra .A;m; d/ is a cochain complex .A; d/ such that .A;m/
is a graded algebra and d and m satisfy the Leibniz rule. Let dt be the restriction of d
to At . Then .At ; dt / is a differential ideal and .Af ; df / is a differential graded algebra,
so H�.Af ; df / is a graded algebra.

A left (resp. right) dg-algebra module .M;�; ı/ over .A;m; d/ if .M;�/ is a left
(resp. right) .A;m/–module, .M; ı/ is a cochain complex and ı and � satisfy the
Leibniz rule. Then H�.Mf ; ıf / is a left (resp. right) H�.Af /–module.

Even if .Af ; df / is torsion-free, H�.Af ; df / is not necessarily torsion-free. De-
note .H�.A; d//f by H�

f
.A; d/. The following lemma compares H�

f
.A; d/ and

H�
f
.Af ; df /.

Lemma 2.5 Let .A; d/ be a cochain complex. Then there is a monomorphism of
modules

 WH�f .A; d/!H�f .Af ; df /:

IfH iC1.At ; dt /D 0, then  WH i
f
.A; d/!H i

f
.Af ; df / is an isomorphism. Moreover ,

suppose .A;m; d/ is a differential graded algebra. Then  is a morphism of algebras.

Proof Assume .A; d/ is a cochain complex. Let { W .At ; dt /! .A; d/ be the inclusion
and let � W .A; d/! .Af ; df / be the quotient map. Then the short exact sequence of
cochain complexes 0! .At ; dt /

{
�! .A; d/ �

�! .Af ; df /! 0 induces a long exact
sequence

� � � !H i�1.Af ; df /!H i .At ; dt /
{�
�!H i .A; d/

��
�!H i .Af ; df /!H iC1.At ; dt /! � � � :

Take  WH�
f
.A; d/!H�

f
.Af ; df / to be the morphism induced by

�� WH�.A; d/!H�.Af ; df /:

We show that it has the asserted properties.
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To show the injectivity of  , take an equivalence class Œa� 2 H�
f
.A; d/ such that

 Œa�D 0. Represent it by a cocycle class a 2H i .A; d/. Then ��.a/ is torsion and
��.ca/D 0 for some nonzero number c. By exactness, ca 2 Im.{�/. Since H i .At ; dt /

is torsion, so is Im.{�/ and ca is a torsion. Therefore a 2H i .A; d/ is a torsion. By
definition, Œa� 2H i

f
.A; d/ is zero. So  is injective.

Suppose AiC1 has no torsion elements. Then AiC1t D 0 and H iC1.At ; dt /D 0. So
�� is surjective. By definition we have commutative diagram

H i .A; d/
��
//

��

H i .Af ; df /

��

H i
f
.A; d/

 
// H i

f
.Af ; df /

where vertical arrows are quotient maps and are surjective. So

 WH i
f .A; d/!H i

f .Af ; df /

is surjective and hence isomorphic.

If A is a differential graded algebra, then �� WH�.A; d/!H�.Af ; df / is a morphism
of graded algebras. By Corollary 2.4, the induced morphism  is multiplicative.

Example The surjectivity of  WH i
f
.A; d/!H i

f
.Af ; df / may fail if AiC1 contains

torsion elements. Let .A; d/ be a cochain complex where

Ai D

8<:
Z if i D 0;
Z=2Z if i D 1;
0 otherwise;

and d i are trivial for all i except for d0 W Z! Z=2Z being the quotient map. Then
H 0.A/ and H 0.Af / are Z while  WH 0.A/!H 0

f
.A/ is multiplication 2 W Z! Z.

2.2 Eilenberg–Moore spectral sequence

Given a differential graded algebra .A; d/ and a right A–module .M; dM /, we first
define the bar bicomplex B�;�.M;A/ as follows. For any positive integer i , let
B�i .M;A/DM ˝ .A/˝i where AD fAngn>0. Denote an element in B�i .M;A/ by
xŒa1j � � � jai � for x 2M and ai 2A. Let B�i;j .M;A/ be the submodule of B�i .M;A/

Algebraic & Geometric Topology, Volume 23 (2023)
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consisting elements xŒa1j � � � jai � such that jxj C
Pi
kD1 jakj D j . The internal and

external differentials

dI W B�i;j .M;A/! B�i;jC1.M;A/ and dE W B�i;j .M;A/! B�iC1;j .M;A/

are given by

dI .xŒa1j � � � jai �/D .dMx/Œa1j � � � jai �C

iX
jD1

.�1/�j�1xŒa1j � � � jaj�1jdAaj jajC1j � � � jai �;

dE .xŒa1j � � � jai �/D .�1/
jxj.xa1/Œa2j � � � jai �C

i�1X
jD1

.�1/�j xŒa1j � � � jaj�1jaj � ajC1j � � � jai �;

where �k D kCjxjC
Pk
jD1 jaj j. Then we define the bar construction .B.M;A/; dB/

to be a graded module where

B.M;A/n D
M
�iCjDn

B�i;j .M;A/ and dB D
M
�iCjDn

.dI C dE /

for n� 0.

Take the filtration F�p D
L
0�i�p B�i .M;A/. The associated spectral sequence

fE
�;�
r g

1
rD0 is the Eilenberg–Moore spectral sequence converging to H�.B.M;A//;

see [7, Remark 2.3] and [11, Corollary 7.9].

Lemma 2.6 Let A be a simply connected differential graded algebra and M be a
right A–module such that A and M are free as Z–modules. Then there is a monomor-
phism of modules

 W .E
�p;q
2 /f !

�
Tor�p;q

Hf .A/
.Hf .M/;Z/

�
f

which is an isomorphism for p D 0. Moreover , if H.A/ and H.M/ are free modules ,
then E�p;q2 Š Tor�p;q

H.A/
.H.M/;Z/.

Proof The E0–page is given by

E
�p;�
0 D F�p=F�pC1 DM ˝ .A˝p/

and d0 D dI . By the Künneth theorem, the E1–page is given by

E
�p;�
1 ŠH.M/˝ . zH.A/˝p/˚T Š B�p.H.M/;H.A//˚T;

where T is a torsion term and d1 is induced by dE . Denote H.M/ by M 0 and H.A/
by A0 for short. By Lemma 2.3, there is an isomorphism of graded modules

� W .E
�p;�
1 /f Š .B

�p.M 0; A0//f ! B�p.M 0f ; A
0
f /
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such that
B�p.M 0; A0/

�� ((

.B�p.M 0; A0//f
�
// B�p.M 0

f
; A0

f
/

where the downward maps are quotient maps. Let d 0 be the external differential of
B�.M 0

f
; A0
f
/. Then � W ..B�p.M 0; A0//f ; .d1/f /! .B�.M 0

f
; A0
f
/; d 0/ is an isomor-

phism of cochain complexes. By Lemma 2.5, there is a monomorphism of graded
modules

 W .E
�p;q
2 /f DH

�p

f
.E
�;q
1 ; d1/!H

�p

f
..B�;q.M 0; A0//f ; .d1/f /ŠH

�p

f
.B�;q.M 0f ; A

0
f /; d

0/:

Notice that B�.M 0
f
; A0
f
/ŠM 0

f
˝A0

f
B�.A0

f
; A0
f
/ and d 0 D 1˝A0

f
d 00, where d 00 is the

external differential of B�.A0
f
; A0
f
/. Since, by [11, Proposition 7.8],

� � � ! B�1.A0f ; A
0
f /

d 00
�! B0.A0f ; A

0
f /

�
�! Z! 0

is a projective resolution of Z over A0
f

–modules where � W B0.A0
f
; A0
f
/Š A0

f
! Z is

the augmentation, the monomorphism becomes

 W .E
�p;q
2 /f ! .Tor�p;q

A0
f

.M 0f ;Z//f :

Since B1.M 0; A0/D 0,  is isomorphic for p D 0 by Lemma 2.5.

Suppose H.A/ and H.M/ are free Z–modules. By the Künneth theorem,

E
�;�
1 Š B�;�.H.M/;H.A//

and d1 is the external differential. So E�p;q2 Š Tor�p;q
H.A/

.H.M/;Z/.

Let F ! E �
�! X be a fibration sequence where all spaces are connected, finite

type CW–complexes, and X is simply connected. In [7, Theorem III] there is a
quasi-isomorphism

‚ W�.C�� .E/; C�.X//! CN�.F /

of dg-algebra modules, which is natural in � . Here �.�;�/ is the cobar construction,
C�� .E/ is a nonnegative chain complex, C�.X/ is a simply connected chain complex,
CN�.F / is a chain complex, and C�� .E/, C�.X/ and CN�.F / are quasi-isomorphic
to the singular chain complexes of E, X and F , respectively.

Denote the dual of a (co)chain complex C by C_ D Hom.C;Z/. Since X is simply
connected, H 1.X/D 0 and H 2.X/ is free. By [7, Propositions 4.2 and 4.6] there are
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finite type graded free modules V DfV igi�2 andW DfW j gj�0, a quasi-isomorphism
of dg-algebras

� W T .V /! .C�.X//
_

and a quasi-isomorphism of dg-algebra modules

' W T .V /˝W ! .C�� .E//
_;

where T .V / is the tensor algebra on V . Write zX D T .V / and zE D T .V /˝W for
short. Then the compositions

C�.X/
incl
��! .C �.X//_

�_
�! zX_ and C�� .E/

incl
��! .C �.E//_

'_
�! zE_

are quasi-isomorphisms of dg-coalgebras and of dg-coalgebra modules. Since C�.X/
and zX_ are simply connected free chain complexes, and C�� .E/ and zE_ are nonnega-
tive chain complexes, we have a zig-zag of quasi-isomorphisms

�. zE_; zX_/ ' ��.C�� .E/; C�.X//
‚
�! CN�.F /:

Since zE and zX are of finite type, dualize the zig-zag and take cohomology to get an
isomorphism

H�.B. zE; zX// Š�!H�.F /:

The Eilenberg–Moore spectral sequence fE�;�r g1rD0 on F !E �
�!X is the Eilenberg–

Moore spectral sequence given by AD zX andM D zE. Note that this definition depends
on the choice of the pair . zX; zE; �; '/. Any two choices may give spectral sequences
with different E0–pages, but their Er–pages are isomorphic for r � 1.

Lemma 2.7 Let F!E �
�!X be a fibration sequence such that all spaces are finite type

spaces andX is simply connected , and let fE�p;q2 g be theE2–page of Eilenberg–Moore
spectral sequence on this fibration. Then there is a monomorphism

 W .E
�p;q
2 /f !

�
Tor�p;q

H�
f
.X/
.H�f .E/;Z/

�
f

as modules such that  is an isomorphism for p D 0.

Proof Since H. zE/ŠH�.E/ and H. zX/ŠH�.X/, Lemma 2.6 implies that there is
a monomorphism  W .E

�p;q
2 /f !

�
Tor�p;q

H�
f
.X/
.H�
f
.E/;Z/

�
f

such that  is an isomor-
phism at p D 0.
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Recall that the E0–page is given by Ep;�0 DF�p=F�pC1Š zE˝ . zX/˝p . In particular,
if p D 0, then E0;�0 Š zE. On the other hand, fE�;�r g1rD0 is a second quadrant spectral
sequence. So E0;�r is the kernel of the differential map and E0;�rC1 is a quotient group
of E0;�r . For r 2N [f1g, define the edge homomorphism er to be the composition

er WH.E/ŠH. zE/ŠE
0;�
1 !E0;�r

where the unnamed arrow is the quotient map. The following lemma tells how the edge
homomorphisms relate the Er–page to H�.E/ and H�.F /.

Lemma 2.8 Under the hypotheses of Lemma 2.7, the edge homomorphisms make the
diagram

H�.E/

e1
��

H�.E/

e2
��

� � � // H�.E/

e1
��

H�.E/

{�

��

E
0;�
1

|1
// E
0;�
2

|2
// � � � // E

0;�
1

|
// H�.F /

commute , where {� is induced by { W F ! E, | is the inclusion and the |r ’s are the
quotient maps.

Proof We use the notation above. Consider the commutative diagram

F
{
//

{
��

E
�
// X

��

E E
c
// pt

where c is the constant map. We have

�.C�� .E/; C�.X//
‚
//

��

CN�.F /

{�
��

�.C c� .E/; C�.pt// ‚
// CN�.E/

since the quasi-isomorphism ‚ is natural. The supplement Z! .C�.pt//_ is a quasi-
isomorphism of dg-algebras and ' W zE ! .C�� .E//

_ is a quasi-isomorphism of dg-
algebra modules. Using this replacement and taking dual and cohomology of the
diagram, we obtain

(1)

H�. zE/
Š

//

e�
��

H�.E/

{�

��

H�.B. zE; zX// Š
// H�.F /
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where e� is the composition

e� WH�. zE/ŠH�.B. zE;Z// e0
�!H�.B. zE; zX//

and e0 is induced by the inclusion e WB�;�. zE;Z/!B�;�. zE; zX/. Let f yE�;�r g1rD0 be the
Eilenberg–Moore spectral sequence on E D

�!E c
�! pt. Then yE�;�0 Š B�;�. zE;Z/ and

the yE1–page collapses to H�. zE/. The inclusion e W B�;�. zE;Z/! B�;�. zE; zX/ gives
the commutative diagram

H�. zE/

Qe1
��

H�. zE/

Qe2
��

� � � // H�. zE/

Qe1
��

H�. zE/

e�

��

E
0;�
1

|1
// E
0;�
2

|2
// � � � // E

0;�
1

Q|
// H�.B. zE; zX//

where Qer W H�. zE/ Š H�.E/
er
�! E

0;�
r and Q| W E0;�1

|
�! H�.F / Š H�.B. zE; zX//.

Combine this with (1) and obtain the asserted commutative diagram.

2.3 Regular sequences and freeness

Here we use the alternative description of graded objects. A commutative graded
algebra AD

L
i�0Ai is an algebra with a grading such that abD .�1/ij ba for a 2Ai

and b 2 Aj , and a graded A–module M D
L
j�0Mj is the direct sum of a family of

A–modules. A set fr1; : : : ; rng of elements in M is called an M–regular sequence if
the ideal .r1; : : : ; rn/M is not equal to M and the multiplication

ri WM=.r1; : : : ; ri�1/M !M=.r1; : : : ; ri�1/M

is injective for 1 � i � n. In the special case where M is a KŒx1; : : : ; xn�–module
for some field K and the grading of M has a lower bound, M is a free KŒx1; : : : ; xn�–
module if fxigniD1 is a regular sequence in M . We want to extend this fact to the
case where M is a ZŒx1; : : : ; xn�–module. Recall a corollary of the graded Nakayama
lemma.

Lemma 2.9 Let A be a graded ring and letM be an A–module. Suppose A andM are
nonnegatively graded , and I D .r1; : : : ; rn/�A is an ideal generated by homogeneous
elements ri of positive degrees. If fm˛g˛2S is a set of homogeneous elements in M
whose images generate M=IM , then fm˛g˛2S generates M .
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Lemma 2.10 Let M be a ZŒx1; : : : ; xn�–module with nonnegative degrees. If

M=.x1; : : : ; xn/M

is a free Z–module and fx1; : : : ; xng is an M–regular sequence , then M is a free
ZŒx1; : : : ; xn�–module.

Proof Let I D .x1; : : : ; xn/. By assumption there is a set fm˛g˛2S of homogeneous
elements in M such that their quotient images form a basis in M=IM . By Lemma 2.9,
fm˛g˛2S generates M . We need to show that fm˛g˛2S is linear independent over
ZŒx1; : : : ; xn�.

For 0 � i � n, let Mi DM=.x1; : : : ; xn�i /M , Ai D ZŒxnC1�i ; : : : ; xn� and m˛;i be
the quotient image of m˛ in Mi . We prove that Mi is a free Ai–module with a basis
fm˛;ig˛2S by induction on i . For i D 0, M0 DM=IM and A0 DZ. The statement is
true since fm˛;0g˛2S is a basis by construction. Assume the statement holds for i � k.
For i D kC 1, if there is a collection ff˛g˛2S of polynomials satisfying

(2)
X
˛2S

f˛ �m˛;kC1 D 0;

we show that all f˛’s are zero.

If not, then there are finitely many nonzero polynomials fj1 ; : : : ; fjr . Quotient MkC1

and AkC1 by the ideal .xn�k/ and let Nfji be the image of fji in Ak . Then (2) becomes

rX
iD1

Nfji �mji ;k D 0:

By our inductive assumption, fm˛;kg is a basis inMk . So Nfji D0 and fji Dxn�kgji for
some polynomial gji 2 AkC1. Since xn�k is not a zero-divisor, putting fji D xn�kgji
in (2) gives

rX
iD1

gji �mji ;kC1 D 0:

So gj1 ; : : : ; gjr are nonzero polynomials satisfying (2) and jgji j< jfji j for 1� i � r .
Iterating this argument implies that the jfji j’s are arbitrarily large, but this is impossible.
So the fji ’s must be zero and fm˛;kC1g is linearly independent. It follows that MkC1

is a free AkC1–module.
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3 Cohomology rings of polyhedral products

Let Œm�D f1; : : : ; mg, K be a simplicial complex on Œm� and .X;A/D f.Xi ; Ai /gmiD1
be a sequence of pairs of relative CW–complexes. For any simplex � 2K, define

.X;A/� D

�
.x1; : : : ; xm/ 2

mY
iD1

Xi

ˇ̌̌
xi 2 Ai for i … �

�
as a subspace of

Qm
iD1Xi , and define the polyhedral product

.X;A/K D
[
�2K

.X;A/�

to be the union of .X;A/� over � 2K.

If Xi D CP1 and Ai D � for all i , then .CP1;�/K is homotopy equivalent to
Davis–Januszkiewicz space [5, Theorem 4.3.2]. For any principal ideal domain R,
H�..CP1;�/K IR/ is isomorphic to the Stanley–Reisner ring RŒx1; : : : ; xm�=IK .
Here IK is the ideal generated by xj1 � � � xjk for xji 2 zH

�.Xji IR/ and fj1; : : : ; jkg…K,
and is called the Stanley–Reisner ideal of K. In general, a similar formula holds for
H�..X;�/K/ whenever the Xi ’s are any spaces with free cohomology.

Theorem 3.1 [3] Let R be a principal ideal domain , K be a simplicial complex
on Œm� and X D fXigmiD1 be a sequence of CW–complexes. If H�.Xi IR/ is a free
R–module for all i , then

H�..X;�/K IR/Š

mO
iD1

H�.Xi IR/=IK ;

where IK is generated by xj1 ˝ � � �˝ xjk for xji 2 zH
�.Xji IR/ and fj1; : : : ; jkg …K

and is called the generalized Stanley–Reisner ideal of K.

The proof of Theorem 3.1 uses the strong form of the Künneth theorem, which says
that

� W

mO
iD1

H�.Xi IR/!H�
� mY
iD1

Xi IR

�
; x1˝ � � �˝ xm 7! ��1 .x1/[ � � � [�

�
m.xm/;

where ��j is induced by the projection �j W
Qm
iD1Xi ! Xj , is an isomorphism if all

H�.Xi IR/’s are free. In the reduced version of the Künneth theorem,

N� W

mO
iD1

zH�.Xi /! zH�
� m̂

iD1

Xi

�
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is also an isomorphism if all zH�.Xi IR/’s are free. The goal of this section is to modify
Theorem 3.1 by removing the freeness assumption on H�.Xi /. As a trade-off, we need
to mod out the torsion elements of H�.Xi /. First let us refine the Künneth theorem.

Lemma 3.2 Let X D fXigmiD1 be a sequence of spaces Xi . Then the induced mor-
phisms

�f W

mO
iD1

H�f .Xi /!H�f

� mY
iD1

Xi

�
and N�f W

mO
iD1

zH�f .Xi /!
zH�f

� m̂

iD1

Xi

�
:

are isomorphisms as algebras , and there is a commutative diagramNm
iD1
zH�
f
.Xi /

N�f
//

��

zH�
f

�Vm
iD1Xi

�
q�
f

��Nm
iD1H

�
f
.Xi /

�f
// H�

f

�Qm
iD1Xi

�
where q�

f
is induced by the quotient map q W

Qm
iD1Xi !

Vm
iD1Xi .

Proof It suffices to show themD2 case. Let .X;A/ and .Y; B/ be pairs of relative CW–
complexes and let �X W .X � Y;A� Y /! .X;A/ and �Y W .X � Y;X �B/! .Y; B/

be projections. By the generalized version of Künneth theorem [10, Chapter XIII,
Theorem 11.2], the sequence

0!
M
iCjDn

H i .X;A/˝H j .Y; B/
�0
�!Hn.X �Y;X �B [A�Y /! T ! 0;

where T is a torsion term and�0 sends u˝v2H i .X;A/˝H j .Y; B/ to ��X .u/[�
�
Y .v/,

is split exact. By Lemma 2.3 .H�.X;A/˝H�.Y; B//f ŠH�f .X;A/˝H
�
f
.Y; B/ and

by Lemma 2.2

�0f WH
�
f .X;A/˝H

�
f .Y; B/!H�f .X �Y;X �B [A�Y /

is an isomorphism. Since �0 is multiplicative, so is �0
f

. Letting A and B be the
basepoints of X and Y , or be the empty set, gives the isomorphisms

�f WH
�
f .X/˝H

�
f .Y /ŠH

�
f .X �Y / and N�f W zH

�
f .X/˝

zH�f .Y /Š
zH�f .X ^Y /:
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The commutative diagram

Nm
iD1
zH�.Xi /

N�
//

��

zH�
�Vm

iD1Xi
�

q�

��Nm
iD1H

�.Xi /
�
// H�

�Qm
iD1Xi

�
leads to the asserted commutative diagram.

Proposition 3.3 LetXDfXigmiD1 be a sequence of spacesXi , and letK be a simplicial
complex on Œm�. Then the inclusion { W .X;�/K!

Qm
iD1Xi induces a ring isomorphism

H�f ..X;�/
K/Š

� mO
iD1

H�f .Xi /

�
=IK

where IK is generated by xj1 ˝ � � �˝ xjk for xji 2 zH
�
f
.Xji / and fj1; : : : ; jkg …K.

Proof This proof modifies the proofs in [3; 5]. Consider the homotopy cofibration
sequence

.X;�/K {
�!

mY
iD1

Xi
|
�! C;

where C is the mapping cone of { and | is the inclusion. Suspend it and obtain a
diagram of homotopy cofibration sequences

(3)

†.X;�/K
†{

//

a

��

†
�Qm

iD1Xi
� †|

//

b
��

†C

c

��W
J2K †X

^J N{
//
W
J2Œm�†X

^J N|
//
W
J…K †X

^J

where X^J DXj1 ^ � � � ^Xjk for J D fj1; : : : ; jkg, N{ is the inclusion, N| is the pinch
map, a is a homotopy equivalence by [3, Theorem 2.21], b is a homotopy equivalence,
and c is an induced homotopy equivalence. Take cohomology and get the diagram

0 //
L
J…K

zH�.X^J /
N|�
//

c�

��

L
J2Œm�

zH�.X^J /
N{�
//

b�

��

L
J2K

zH�.X^J / //

a�

��

0

0 // zH�.C /
|�

// zH�
�Qm

iD1Xi
� {�

// zH�..X;�/K/ // 0
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where the rows are split exact sequences, all vertical maps are isomorphisms, and all
maps are additive while {� is multiplicative. Apply Lemma 2.2 to the diagram and get:

(4)

0 //
L
J…K

zH�
f
.X^J /

N|�
f
//

c�
f

��

L
J2Œm�

zH�
f
.X^J /

N{�
f
//

b�
f

��

L
J2K

zH�
f
.X^J / //

a�
f

��

0

0 // zH�
f
.C /

|�
f

// zH�
f

�Qm
iD1Xi

� {�
f
// zH�

f
..X;�/K/ // 0

By Lemma 3.2, H�
f

�Qm
iD1Xi

�
Š
Nm
iD1H

�
f
.Xi / so there is a ring isomorphism

H�f ..X;�/
K/Š

� mO
iD1

H�f .Xi /

�
=ker.{�f /:

Since the rows are split exact and the vertical maps are isomorphic in (4), ker.{�
f
/

is generated by xj1 ˝ � � � ˝ xjk for xji 2 zH
�
f
.Xji / and fj1; : : : ; jkg … K. Therefore

ker.{�
f
/D IK and H�

f
..X;�/K/Š

�Nm
iD1H

�
f
.Xi /

�
=IK .

Proposition 3.3 can be refined as follows. If the quotient map H�.Xi /!H�
f
.Xi / has

right inverse for all i , then so does H�..X;�/K/!H�
f
..X;�/K/. To formulate this,

we introduce new definition.

Definition 3.3.1 A graded algebra A is free split if the quotient map � WA!Af has
a section as algebras. In other words, there is a ring morphism s WAf !A making the
diagrams

Af
s
// A

�

��

Af

and

Af ˝Af

s˝s
��

mf
// Af

s
��

A˝A m
// A

commute, where m and mf are multiplications in A and Af . We call s a free splitting
of A.

In general, a free splitting of A is not unique. Any two free splittings s1 and s2 differ
by a torsion element.

Remark 3.4 Not all cohomology rings of spaces are free split. Let C be the mapping
cone of the composite

P 3.2/
�
�! S3

Œ{1;{2�
���! S2 _S2;
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where P 3.2/ is the mapping cone of degree map 2 W S2!S2, � is the quotient map
and Œ{1; {2� is the Whitehead product. Then H�.C /Š ZŒa; b�=.a2 D b2 D 2ab D 0/

where jaj D jbj D 2, and it is not free split.

Lemma 3.5 Under the conditions of Proposition 3.3, if H�.Xi / is free split for all i ,
then H�..X;�/K/ is free split.

Proof Use the notations in the proof of Proposition 3.3. Let si WH�f .Xi /!H�.Xi /,
for 1� i �m, be a free splitting and let s be the composite

s W

mO
iD1

H�f .Xi /

Nm
iD1 si
����!

mO
iD1

H�.Xi /
�
�!H�

� mY
iD1

Xi

�
:

Then s is a free splitting of H�
�Qm

iD1Xi
�
. As {�

f
WH�

f

�Qm
iD1Xi

�
!H�

f
..X;�/K/ is

surjective, define s0 WH�
f
..X;�/K/!H�..X;�/K/ by the diagram

Nm
iD1H

�
f
.Xi /

s
//

{�
f

��

H�
�Qm

iD1Xi
�

{�

��

H�
f
..X;�/K/

s0
// H�..X;�/K/

We need to show that s0 is well defined. For x 2H�
f
.X;�/K , let y; y0 2

Nm
iD1H

�
f
.Xi /

be two preimages of x. Then y � y0 2 ker.{�
f
/D IK . For J …K, s sends zH�

f
.X/˝J

to �. zH�.X/˝J / which is contained in ker.{�/. So {� ı s.y � y0/D 0 and s0 is well
defined. Since s, {� and {�

f
are multiplicative, so is s0. Furthermore, s0 is right inverse

to the quotient map H�..X;�/K/!H�
f
..X;�/K/. So s0 is a free splitting.

4 Realization of graded monomial ideal rings

We follow the idea of [3] and prove Theorem 1.2 in several steps. In Section 4.1 we
use Proposition 3.3 to prove the special case where the ideal I of A is square-free. In
Sections 4.2 and 4.3 we construct a fibration sequence inspired by algebraic polarization
method and show that the fiber XA is a realization modulo torsion of A. More precisely,
we apply the Eilenberg–Moore spectral sequence defined in Section 2.2 to calculate
H�
f
.XA/ and give the E1–page by the end of this section. The extension problem is

long and complicated and will be discussed in Section 5.
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4.1 Quotient rings of square-free ideals

Let P D ZŒx1; : : : ; xm�˝ƒŒy1; : : : ; yn� be a graded polynomial ring where the xi ’s
have arbitrary positive even degrees and the yj ’s have arbitrary positive odd degrees,
and let I D .M1; : : : ;Mr/ be an ideal generated by monomials

Mj D x
a1j
1 � � � x

amj
m ˝y

b1j
1 � � �y

bnj
n ;

where the aij ’s are nonnegative integers and the bij ’s are either 0 or 1. Then AD P=I
is a graded monomial ideal ring. We say that I is square-free if theMj ’s are square-free
monomials, that is all aij ’s are either 0 or 1.

In the following let

� fi1; : : : ; ikgCfj1; : : : ; jlgDfi1; : : : ; ik; j1Cm; : : : ; jlCmg for fi1; : : : ; ikg� Œm�
and fj1; : : : ; jlg � Œn�, and

� X C Y D fX1; : : : ; Xm; Y1 : : : ; Yng for sequences of spaces X D fXigmiD1 and
Y D fYj g

n
jD1.

Given a square-free ideal I of A, take K to be a simplicial complex on ŒmC n� by
removing faces fi1; : : : ; ikgCfj1; : : : ; jlg whenever xi1 � � � xik ˝yj1 � � �yjl 2 I . Then
I is the generalized Stanley–Reisner ideal of K.

Lemma 4.1 LetX DfK.Z; jxi j/gmiD1 and Y DfS jyj jgnjD1 and letK be the simplicial
complex defined as above. Then there is a ring isomorphism H�

f
..X CY ;�/K/Š A.

Furthermore , H�..X CY ;�/K/ is free split.

Proof Since H�
f
.Xi / Š ZŒxi � and H�.Yj / Š ƒŒyj �, the first part follows from

Proposition 3.3.

For the second part, it suffices to show that H�.Xi / and H�.Yj / are free split by
Lemma 3.5. For 1 � j � n, H�.Yj / is free and hence free split. For 1 � i � m, let
x0i be a generator of H jxi j.Xi /Š Z. Then inclusion { W Zhx0i i !H�.Xi / extends to a
ring morphism

s W ZŒx0i �ŠH
�
f .Xi /!H�.Xi /:

Let � WH�.Xi /!H�
f
.Xi / be the quotient map. Since � ı { sends x0i to itself, by the

universal property � ı s is the identity map. So s is a free splitting of H�.Xi /.
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4.2 Polarization of graded monomial ideal rings

Now drop the square-free assumption on I D .xa1j1 � � � x
amj
m ˝y

b1j
1 � � �y

bnj
n j 1� j � r/

and suppose some aij ’s are greater than 1. Following ideas from [3] and [15], we
use polarization to reduce the realization problem of A to the special case when I is
square-free.

For 1� i �m, let ai Dmaxfai1; : : : ; airg be the largest index of xi among the Mj ’s,
and let

�D f.i; j / 2N �N j 1� i �m; 1� j � aig

where .i; j / 2 � are ordered in left lexicographical order, that is .i; j / < .i 0; j 0/ if
i < i 0, or if i D i 0 and j < j 0. Let

P 0 D ZŒxij j .i; j / 2��˝ƒŒy1; : : : ; yn�

D ZŒx11; : : : ; x1a1 ; x21; : : : ; x2a2 ; : : : ; xm1; : : : ; xmam �˝ƒŒy1; : : : ; yn�;

be a graded polynomial ring where jxij j D jxi j, let

M 0j D .x11x12 � � � x1a1j /.x21x22 � � � x2a2j / � � � .xm1xm2 � � � xmamj /˝ .y
b1j
1 � � �y

bnj
n /

and let I 0 D .M 01; : : : ;M
0
r/. Then I 0 is square-free and A0 D P 0=I 0 is called the

polarization of A.

Conversely, we can reverse the polarization process and obtain A back from A0. Let

�D f.i; j / 2N �N j 1� i �m; 2� j � aig

where .i; j / 2 � are ordered in left lexicographical order, and let W be a graded
polynomial ring

W D ZŒwij j.i; j / 2��D ZŒw12; : : : ; w1a1 ; w22; : : : ; w2a2 ; : : : ; wm2; : : : ; wmam �;

where jwij j D jxi j. Define a ring morphism ı W W ! P 0 by ı.wij / D xij � xi1 and
make P 0 a W –module via ı. Then A0 is a W –module and A Š A0=W A0, where
W D fW igi>0.

Lemma 4.2 Let A0 be a square-free graded monomial ideal ring and let W and ı be
defined as above. Then A0 is a free W –module.

Proof Since A0=W A0 is a free Z–module, by Lemma 2.10 it suffices to show that
fwij g.i;j /2� is a A0–regular sequence. Set N D j�j D

Pm
iD1 ai �m. For 1� k �N ,

let .ik; jk/ 2� be the kth pair under lexicographical order and let

Ik D .w12; w13; : : : ; wikjk /:

Algebraic & Geometric Topology, Volume 23 (2023)



Realization of graded monomial ideal rings modulo torsion 753

We need to show that multiplication wikC1jkC1 W A
0=IkA

0! A0=IkA
0 is injective.

Observe that A0=IkA0 D zP= QI , where

zP D ZŒx11; x21; : : : ; xm1; xikC1jkC1 ; xikC2jkC2 ; : : : xiN jN �˝ƒŒy1; : : : ; yn�

and QI D . zM1; : : : ; zMr/ is generated by monomials zMj obtained by identifying xij
with xi1 in M 0j for .i; j /� .ik; jk/. Suppose there is a polynomial p 2 zP such that

.xikC1jkC1 � xikC11/ �p 2
QI :

We can use the combinatorial argument of [8, page 31] to show p 2 QI . Here is an outline
of the argument. Write pD

P
˛ p˛ as a sum of monomials p˛ . For each monomial p˛ ,

it can be shown that xikC1jkC1p˛ and xikC11p˛ are in QI . Counting the indices of vari-
ables implies p˛ 2 QI . So p is in QI and multiplication wikC1jkC1 WA

0=IkA
0!A0=IkA

0

is injective. Therefore fwij g.i;j /2� is a regular sequence and A0 is a freeW –module.

4.3 Constructing a realization modulo torsion XA

Let A0 D P 0=I 0 be the polarization of A and let K be a simplicial complex on�Pm
iD1 ai C n

�
vertices such that I 0 is the generalized Stanley–Reisner ideal of K.

Construct a polyhedral product to realize A0. Take

X D fXij DK.Z; jxi j/ j .i; j / 2�g

D fK.Z; jx1j/; : : : ; K.Z; jx1j/„ ƒ‚ …
a1

; K.Z; jx2j/; : : : ; K.Z; jx2j/„ ƒ‚ …
a2

;

: : : ; K.Z; jxmj/; : : : ; K.Z; jxmj/„ ƒ‚ …
am

g

and
Y D fYk D S

jyk j j 1� k � ng D fS jy1j; S jy2j; : : : ; S jynjg:

By Lemma 4.1, H�
f
..X CY ;�/K/ is isomorphic to A0.

For 1� i �m, define ıi W
Qai
jD1Xij !

Qai
jD2Xij by

ıi .u1; : : : ; uai /D .u2 �u
�1
1 ; : : : ; uai �u

�1
1 /;

and define ı W .X CY ;�/K !
Q
.i;j /2�Xij to be the composite

ı W .X CY ;�/K ,!
Y

.i;j /2�

Xij �

nY
kD1

Yk
proj
��!

Y
.i;j /2�

Xij

Qm
iD1 ıi
����!

Y
.i;j /2�

Xij :

As ı is a fibration, take XA to be its fiber. We claim that H�
f
.XA/Š A.
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Notation 4.3 Let fE�;�r g1rD0 be the Eilenberg–Moore spectral sequence defined in
Section 2.2 on the fibration sequence

(5) XA! .X CY ;�/K ı
�!

Y
.ij /2�

Xij ;

where H�..X CY ;�/K/ is an H�
�Q

.ij /2�Xij
�
–module via ı�.

Lemma 4.4 For the E1–page , .E0;q1 /f Š Aq as modules and .E�p;q1 /f D 0 for
p ¤ 0.

Proof The E2–page is given by E�p;�2 D Tor�p;�
H�.

Q
.ij /2�Xij /

.H�..X CY ;�/K/;Z/.
By Lemma 2.6, there is a monomorphism

� 0 W .E
�p;�
2 /f !

�
Tor�p;�

H�
f
.
Q
.ij /2�Xij /

.H�f ..X CY ;�/
K/;Z/

�
f
;

which is an isomorphism for p D 0. By Lemmas 3.2 and 3.3, H�
f
..X CY ;�/K/ŠA0

and

H�f

� Y
.ij /2�

Xij

�
Š ZŒw12; : : : ; w1a1 ; w22; : : : ; w2a2 ; : : : ; wm2; : : : ; wmam �:

Denote H�
f

�Q
.ij /2�Xij

�
by W . So A0 is a W –module via ı�. By Lemma 4.2, A0 is

a free W –module, so

Tor�p;qW .A0;Z/Š

�
Aq if p D 0;
0 otherwise:

It follows that .E�p;q2 /f is Aq for p D 0 and is zero otherwise.

Suppose .E�p;qr /f is Aq for p D 0 and is zero otherwise. Since .E�p;�r /f is concen-
trated in the column p D 0, any differentials dr in and out of torsion-free elements
are trivial. So we have ker.dr/f D .E

�p;q
r /f and Im.dr/f D 0. By Lemma 2.2,

.E
�p;q
rC1 /f Š .E

�p;q
r /f . Therefore .E�p;q1 /f is isomorphic to Aq for pD 0 and is zero

otherwise.

Lemma 4.5 There is an additive isomorphism H
q

f
.XA/Š A

q .

Proof Since the Eilenberg–Moore spectral sequence strongly converges to H�.XA/,
for any fixed q there is a decreasing filtration fF�pg of H q.XA/ such that

F�1 DH q.XA/; F1 D 0; E�p;pCq1 Š F�p=F�pC1:

By Lemma 2.2, .E�p;pCq1 /f Š
�
.F�p/f =.F

�pC1/f
�
f

. By Lemma 4.4, .E�p;pCq1 /f

is zero unless p D 0, so H q

f
.XA/Š .E

0;q
1 /f Š A

q as modules.
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Before going to the extension problem of the E1–page, we consider the special case
where all of the even degree generators of A are in degree 2. The following theorem
refines Lemma 4.5 and shows that H�.XA/Š A as algebras without modding out the
cohomology by torsion. This generalizes the results of Bahri, Bendersky, Cohen and
Gitler [4, Theorem 2.2] and Trevisan [15, Theorem 3.6].

Theorem 4.6 Let A be a graded monomial ideal ring where its generators have either
degree 2 or arbitrary positive odd degrees. Then H�.XA/Š A as algebras.

Proof The E2–page is given by

E
�p;�
2 D Tor�p;�

H�.
Q
.ij /2�Xij /

.H�..X CY ;�/K/;Z/:

By hypothesis,Xij DCP1 for .i; j /2�, andH�
�Q

.ij /2�Xij
�

andH�..XCY ;�/K

are free. Following the argument in the proof of Lemma 4.4, E�p;q2 is Aq for p D 0
and is zero otherwise. Since the E2–page is concentrated in the column p D 0, the
spectral sequence collapses and H�.XA/Š A as modules.

Let � WXA! .XCY ;�/K be the fiber inclusion. Lemma 2.8 implies the commutative
diagram

A0
Š
//

e

��

H�..X CY ;�/K/

��

��

E
�;�
2

Š
// H�.XA/

where e is surjective. Since �� is surjective and multiplicative and its kernel is W ,
H�.XA/Š A

0=W Š A as algebras.

5 The extension problem

In this section we continue using Notation 4.3. Lemma 4.5 shows that H�
f
.XA/ and A

are free Z–modules of same rank at each degree. We claim that they are isomorphic as
algebras. The idea is to construct a space ZA related to XA such that H�.ZA/ is free
and computable. Then we define a map gA W ZA ! XA and compare H�.XA/ with
H�.ZA/ via g�A.
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Construction of ZA For 1� i �m let jxi j D 2ci , and let

Z D fZij D .CP1/ci j .i; j / 2�g

D
˚
.CP1/c1 ; : : : ; .CP1/c1„ ƒ‚ …

a1

; .CP1/c2 ; : : : ; .CP1/c2„ ƒ‚ …
a2

;

: : : ; .CP1/cm ; : : : ; .CP1/cm„ ƒ‚ …
am

	
and construct the polyhedral product .ZCY ;�/K . Fix a generator z of H 2.CP1/.
For .i; j / 2 � and 1 � k � ci , let �ijk W Zij ! CP1 be the projection onto the kth

copy of CP1 and let zijk D ��ijk.z/. By Theorem 3.1,

H�..ZCY ;�/K/ŠQ0=L0;

whereQ0DZŒzijkj.i; j /2�; 1�k� ci �˝ƒŒy1; : : : ; yn� andL0 is the ideal generated
by monomials

zi1j1k1 � � � zitjtkt ˝yl1 � � �yl�

for
˚
j1C

Pi1�1
sD1 as; : : : ; jt C

Pit�1
sD1 as

	
Cfl1; : : : ; l�g …K. For 1� i �m, define

Qıi W

aiY
jD1

Zij !

aiY
jD2

Zij ; Qıi .u1; : : : ; uai /D .u2 �u
�1
1 ; : : : ; uai �u

�1
1 /;

and define Qı W .ZCY ;�/K !
Q
.i;j /2�Zij to be the composite

Qı W .ZCY ;�/K ,!
Y

.i;j /2�

Zij �

nY
kD1

Yk
proj
��!

Y
.i;j /2�

Zij

Qm
iD1
Qıi

����!

Y
.i;j /2�

Zij :

Lemma 5.1 Let ZA be the fiber of ı0. Then H�.ZA/ŠQ=L, where

QD ZŒzik j 1� i �m; 1� k � ci �˝ƒŒy1; : : : ; yn�

with jzikj D 2 and L is generated by monomials zi1k1 � � � ziNkN ˝y
b1j
1 � � �y

bnj
n satis-

fying

1� j � r; 1� kl � cil and .i1; : : : ; iN /D .1; : : : ; 1„ ƒ‚ …
a1j

; 2; : : : ; 2„ ƒ‚ …
a2j

; : : : ; m; : : : ; m„ ƒ‚ …
amj

/:

Proof Apply the Eilenberg–Moore spectral sequence to the fibration sequence

ZA! .ZCY ;�/K
Qı
�!

Y
.i;j /2�

Zij :
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The E2–page is given by zE�p;�2 D Tor�p;�
H�.

Q
.i;j /2�

Zij /.Z;H�..Z C Y ;�/K//. By
the Künneth theorem,

H�
� Y
.i;j /2�

Zij

�
Š ZŒvijk j .i; j / 2�; 1� k � ci �;

where jvijkjD2. DenoteH�.
Q
.i;j /2�Zij / by V . By definition Qı�.vijk/Dzijk�zi1k .

This gives an action of V on Q0. By Lemma 4.2, Q0=L0 is a free V –module, so

Tor�p;�V .Q0=L0;Z/D

�
.Q0=L0/=.zijk � zilk/ if p D 0;
0 otherwise:

Modding out .zijk � zilk/ identifies zijk with zilk in Q0=L0, so

.Q0=L0/=.zijk � zilk/ŠQ=L:

Since the E2–page is concentrated in the column p D 0, H�.ZA/ŠQ=L.

Lemma 2.8 implies a commutative diagram

Q0
Š
//

e

��

H�..ZCY /K/

��

��

E
�;�
2

Š
// H�.ZA/

where e is surjective and �� is induced by the fiber inclusion � WZA! .ZCY /K . This
implies �� is surjective. Since �� is multiplicative, H�.ZA/ŠQ=L as algebras.

Construction of gA Fix a generator z 2 H 2.CP1/. Let �j W .CP1/ci ! CP1,
for 1 � j � ci , be the projection onto the j th copy of CP1 and let zj D ��j .z/.
For 1 � i � m, take a map gi W .CP1/ci ! K.Z; 2ci / that represents the cocycle
class z1 � � � zci 2H

2ci ..CP1/ci /. For .i; j / 2�, let gij W Zij ! Xij be gi , and for
1� k � n, let hk W Yk! Yk be the identity map. Then fgij ; hk j .i; j / 2�; 1� k � ng
induces a map gK W .ZC Y ;�/K ! .X C Y ;�/K by the functoriality of polyhedral
products.

Lemma 5.2 Let fxij ; yk j .i; j / 2�; 1� k � ng be generators of

H�f ..X CY ;�/
K/Š P 0=I 0

and fzijl ; y0k j .i; j / 2�; 1� l � ci ; 1� k � ng be generators of

H�..ZCY ;�/K/ŠQ0=L0:

Then .g�K/f .xij /D
Qci
lD1

zijl and .g�K/f .yk/D y
0
k

.

Algebraic & Geometric Topology, Volume 23 (2023)



758 Tseleung So and Donald Stanley

Proof There is a commutative diagram

.ZCY ;�/K
|
//

gK
��

Q
.i;j /2�Zij �

Qn
kD1 Yk

g
��

.X CY ;�/K
{
//
Q
.i;j /2�Xij �

Qn
kD1 Yk

where { and | are inclusions, and g D
Q
.i;j /2� gij �

Qn
kD1 hk . Taking cohomology

and modding out torsion elements, we obtain the commutative diagram

P 0
{�
f
//

g�
f
��

P 0=I 0

.g�K/f
��

Q0
|�
// Q0=L0

where {�
f

and |� are the quotient maps. Let Qxij ; Qyk 2P 0 and Qzijl ; Qy0k 2Q
0 be generators

such that {�
f
. Qxij /Dxij , {�

f
. Qyk/Dyk , |�

f
. Qy0
k
/Dy0

k
and |�

f
. Qzijl/Dzijl . By construction

g�
f
. Qxij / D

Qci
lD1
Qzijl and g�

f
. Qyk/ D Qy

0
k

, so we have .g�K/f .xij / D
Qci
lD1

zijl and
.g�K/f .yk/D y

0
k

.

Lemma 5.3 There is a map gA WZA!XA making the diagram

ZA

gA
��

// .ZCY ;�/K

gK
��

XA // .X CY ;�/K

commute , where the horizontal maps are the inclusion maps.

Proof One may want to construct gA by showing the diagram

.ZCY ;�/K
Qı
//

gK
��

Q
.i;j /2�ZijQ

.i;j /2� gij
��

.X CY ;�/K
ı
//
Q
.i;j /2�Xij

commutes. However, as
�Q

.i;j /2� gij
�
ı Nı and ı ıgK induce different morphisms on

cohomology, the diagram cannot commute. Instead, we show that the composite

ZA! .ZCY ;�/K
gK
�! .X CY ;�/K ı

�!

Y
.i;j /2�

Xij

is trivial. If so, there will exist a map gA WZA!XA as asserted since XA is the fiber
of ı.
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By definition of Nı there is a commutative diagram

.ZCY ;�/K
Qı

//

|

��

Q
.i;j /2�Zij

Q
.i;j /2�Zij �

Qn
kD1 Yk

proj
//
Q
.i;j /2�Zij

Qm
iD1
Qıi

OO

where | is the inclusion. Denote
�Qm

iD1
Qıi
�
ı proj by Qı0 and extend the diagram to

ZA //

e

��

.ZCY ;�/K
Qı

//

|

��

Q
.i;j /2�Zij

Qm
iD1.CP1/ci �

Qn
kD1 Yk

40�h
//
Q
.i;j /2�Zij �

Qn
kD1 Yk

Qı 0
//
Q
.i;j /2�Zij

where40 W
Qm
iD1.CP1/ci!

Qai
jD1Zij is the diagonal map, h W

Qn
kD1 Yk!

Qn
kD1 Yk

is the identity map, and e is an induced map. The top and the bottom row are fibration
sequences. The left square fits into the commutative diagram

ZA //

e

��

.ZCY ;�/K
gK

//

|

��

.XCY ;�/K
ı
//

{

��

Q
�Xij

Qm
iD1.CP1/ci �

Qn
jD1 Yj

40�h
//

Q
gi�h **

Q
�Zij �

Qn
jD1 Yj

Q
gij�h

//
Q
�Xij �

Qn
kD1 Yk

ı0
//
Q
�Xij

Qm
iD1K.Z; jxi j/�

Qn
jD1 Yj

4�h

55

where { is the inclusion, 4W
Qm
iD1K.Z; jxi j/!

Qai
jD1Xij is the diagonal map, and

ı0 is the composite

ı0 W
Y

.i;j /2�

Xij �

nY
kD1

Yk
proj
��!

Y
.i;j /2�

Xij

Qm
iD1 ıi
����!

Y
.i;j /2�

Xij :

The middle square is due to the functoriality of polyhedral products, the right square is
due to the definition of ı and the bottom triangle is due to the naturality of diagonal
maps.

The composite of maps from ZA to
Q
.i;j /2�Xij round the bottom triangle is trivial

since
mY
iD1

K.Z; jxi j/�
nY
kD1

Yk
4�h
��!

Y
.i;j /2�

Xij �

nY
kD1

Yk
ı 0
�!

Y
.i;j /2�

Xij
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is a fibration sequence. So the composite in the top row is trivial and this induces a
map gA WZA!XA as asserted.

Since g�K W H
�..X C Y /K/ ! H�..Z C Y /K/ is multiplicative and H�.ZA/ is a

quotient algebra of H�..ZCY /K/, we use gA to compare H�.XA/ and H�.ZA/ and
show that H�

f
.XA/ is a quotient algebra of H�

f
..X CY /K/.

Lemma 5.4 Let � WXA! ..XCY ;�/K/ be the inclusion. Then the induced morphism

��f WH
�
f ..X CY ;�/

K/!H�f .XA/

is surjective and ker.��
f
/ is generated by xij � xi1 for .i; j / 2�.

Proof Fix a positive integer q and let WZA! .ZCY ;�/K be the inclusion. Consider
the commutative diagram

H q..X CY ;�/K/
g�K
//

��

��

e

ww

H q..ZCY ;�/K/

 �

��

E
0;q
1

h
// H q.XA/

g�A
// H q.ZA/

where e is surjective and h is injective. The left triangle commutes due to Lemma 2.8
and the right square commutes due to Lemma 5.3. Mod out torsion elements and take
a generator

xi1j1 � � � xisjs ˝yl1 � � �ylt 2H
q

f
..X CY ;�/K/:

By Lemma 5.2 and the above diagram,

.g�A ı h ı e/f .xi1j1 � � � xisjs ˝yl1 � � �ylt /D . 
�
ıg�K/f .xi1j1 � � � xisjs ˝yl1 � � �ylt /;

.g�A ı h/f .xi1 � � � xis ˝yl1 � � �ylt /D

� sY
uD1

ciuY
kD1

ziujuk

�
˝yl1 � � �ylt :

Since xi1 � � � xis ˝ yl1 � � �ylt and
�Qs

uD1

Qciu
kD1

ziujuk
�
˝yl1 � � �ylt are generators,

.gA ı h/
�
f

is the inclusion of a direct summand into H q

f
.ZA/. By Lemma 4.4, .E0;q1 /f

and H q

f
.XA/ are free modules of same rank, so hf is an isomorphism. Since ef is a

surjection, so is ��
f

.

For the second part of the lemma, suppose there is a polynomial p 2 ker.��
f
/ not con-

tained in .xij �xi1/.i;j /2�. Since ��
f

is a degree 0 morphism, we assume pD
P
˛ p˛

is a sum of monomials p˛ of some fixed degree q. Then the p˛’s are linearly dependent.
So the rank of H q

f
.XA/ is less than the rank of Aq , contradicting to Lemma 4.4. Thus

ker.��
f
/D .xij � xi1/.i;j /2�.
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Next we restate our main theorem (Theorem 1.2) and prove it.

Theorem 5.5 Let A be a graded monomial ideal ring. Then there exists a space XA
such that H�

f
.XA/ is ring isomorphic to A. Moreover , H�.XA/ is free split.

Proof For the first part of the statement, the ring isomorphism H�
f
.XA/Š A follows

from Lemma 5.4.

In Lemma 4.1 we construct a free splitting sK WH�f .X CY ;�/
K !H�.X CY ;�/K

out of free splittings sij W H�f .Xij / ! H�.Xij / and the identity maps on H�.Yk/.
Define a map s WH�

f
.XA/!H�.XA/ by

H�
f
..X CY ;�/K/

sK
//

��
f

��

H�..X CY ;�/K/

��

��

H�
f
.XA/

s
// H�.XA/

We need to show that s is well defined. By Lemma 5.4, ��
f

is a surjection and
ker.��

f
/ is generated by polynomials xij � xi1 for .i; j / 2�. It suffices to show that

�� ı sK.xij �xi1/D 0. Let Qxij 2H 2ci .Xij / and Qx0ij 2H
2ci
f

.Xij / be generators such
that sij . Qx0ij /D Qxij . There is a string of equations

�� ı sK.xij � xi1/D �
�
ı�.sij . Qx

0
ij /� si1. Qx

0
i1//

D �� ı�. Qxij � Qxi1/

D �� ı ı� ı�.1˝ � � �˝ Qxij ˝ � � �˝ 1/

D 0;

where the first line is due to the definition of sK , the third line is due to the naturality
of �, and the last line is due to the fact that ı and � are two consecutive maps in the
fibration sequence XA

�
�! .X CY ;�/K ı

�!
Q
.i;j /2�Xij . So s is well defined.

Obviously s is right inverse to the quotient map H�.XA/!H�
f
.XA/. Since ��

f
, ��

and sK are multiplicative, so is s. Therefore s is a free splitting.

6 An example

Now we illustrate how to construct XA for A D ZŒx�˝ƒŒy�=.x2y/, where jxj D 4
and jyj D 1. First, polarize A by introducing two new variables x1 and x2 of degree 4
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and let

A0 D ZŒx1; x2�˝ƒŒy�=.x1x2y/:

Let K be the boundary of a 2–simplex. Then .x1x2y/ is the Stanley–Reisner ideal
of K. Take

X D fK.Z; 4/;K.Z; 4/g; Y D fS1g

and construct polyhedral product .X CY ;�/K . By Proposition 3.3,

H�f ..X CY ;�/
K/Š ZŒx1; x2�˝ƒŒy�=.x1x2y/:

Define ı W .X C Y ;�/K ! K.Z; 4/ by ı1.u1; u2; t /D u2 � u�11 , and define XA to be
the fiber of ı. By Theorem 5.5, H�

f
.XA/Š A.

Next, we construct ZA and gA to illustrate the proof of the extension problem. In
this case, take Z D f.CP1/2; .CP1/2g. Denote the first .CP1/2 by Z1 and the
second .CP1/2 by Z2. Then H�.Z1/ D ZŒz11; z12� and H�.Z2/ D ZŒz21; z22�,
where jzij j D 2 for i; j 2 f1; 2g, and

H�..ZCY ;�/K/Š ZŒz11; z12; z21; z22�˝ƒŒy�=L
0;

where L0 D .z11z21y; z11z22y; z12z21y; z12z22y/. Define

Qı W .ZCY ;�/K ! .CP1/2; Qı.v1; v2; t /D v2 � v
�1
1 ;

and define ZA to be the fiber of Qı. Then H�
f
.ZA/ Š ZŒz1; z2� ˝ ƒŒy�=L, where

jz1j D jz2j D 2 and LD .z21y; z
2
2y; z1z2y/.

For i D f1; 2g, let gi WZi !K.Z; 4/ be a map representing zi1zi2 2H 4.Zi /, and let
h W S1! S1 be the identity map. Then g1, g2 and h induce

gK W .ZCY ;�/
K
! .X CY ;�/K

such that g�K.xi / D zi1zi2 and g�K.y/ D y. Lemma 5.3 gives a map gA W ZA! XA

making the diagram

ZA //

gA

��

.ZCY ;�/K

gK
��

XA // .X CY ;�/K

commute.
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Nonslice linear combinations of iterated torus knots
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In 1976, Rudolph asked whether algebraic knots are linearly independent in the knot
concordance group. We use twisted Blanchfield pairings to answer this question in
the affirmative for new large families of algebraic knots.

57K10

1 Introduction

A knot is algebraic if it arises as a link of an isolated singularity of a complex curve.
Algebraic knots are special cases of iterated torus knots. In 1976, Rudolph [28] asked
whether the set of algebraic knots is linearly independent in the knot concordance
group. For ease of reference and because of the later literature on the subject, we refer
to this question as a conjecture.

Conjecture 1 (Rudolph’s conjecture [28]) The set of algebraic knots is linearly
independent in the smooth knot concordance group C.

This question has been of particular interest due to its relevance to the slice-ribbon
conjecture: a result of Miyazaki shows that nontrivial linear combinations of iterated
torus knots are not ribbon [26, Corollary 8.4]. In particular, if the slice-ribbon conjecture
holds, then Rudolph’s conjecture holds. Baker [2] and Abe and Tagami [1] recently
noticed that the slice-ribbon conjecture implies a statement stronger than Rudolph’s
conjecture:

Conjecture 2 (Abe and Tagami [1] and Baker [2]) The set of prime fibred strongly
quasipositive knots is linearly independent in the smooth knot concordance group C.

This paper exhibits new large families of knots for which Conjectures 1 and 2 hold.
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License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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1.1 Statement of the results

Evidence of Rudolph’s conjecture was first provided in 1979 by Litherland, who proved
that positive torus knots are linearly independent in C [21]. In 2010, Hedden, Kirk
and Livingston showed that, for an appropriate choice of positive integers fqng1nD1,
the set fT .2; qn/; T .2; 3I 2; qn/g1nD1 is linearly independent in C, where T .p; q/ and
T .p; qI r; s/ denote the .p; q/–torus knot and the .r; s/–cable of T .p; q/, respectively,
and p is coprime to qrs. It is known that an iterated torus knot T .p1; q1I : : : Ipk; qk/
is algebraic if and only if pi ; qi > 0 and qiC1 > qipiC1pi for each i . Our main result,
which relies on metabelian twisted Blanchfield pairings — see Miller and Powell [25]
and Borodzik, Conway and Politarczyk [3; 4; 5] — reads as follows:

Theorem 1.1 Fix a prime power p. Let Sp be the set of iterated torus knots

T .p; q1Ip; q2I : : : Ip; q`/;

where the sequences .q1; q2; : : : ; q`/ of positive integers satisfy

(i) for i D 1; : : : ; `, the integer qi is coprime to p;

(ii) q` is a prime;

(iii) for i D 1; : : : ; `� 1, the integer qi is coprime to q` when ` > 1.

The set Sp is linearly independent in the topological knot concordance group Ctop.

As an immediate corollary of Theorem 1.1, we obtain the following:

Corollary 1.2 For every prime power p, the subset Salg
p � Sp of algebraic knots in Sp

is linearly independent in Ctop and therefore satisfies Conjecture 1.

Since positively iterated torus knots are strongly quasipositive — see Hedden [11,
Theorem 1.2; 13, Proposition 2.1] — Theorem 1.1 also gives infinite families of knots
satisfying Conjecture 2.

Corollary 1.3 For every prime power p, the set Sp satisfies Conjecture 2, and SpXS
alg
p

is an infinite family of nonalgebraic knots satisfying Conjecture 2.

Abe and Tagami also conjecture that the set of L–space knots is linearly independent
in C [1, Conjecture 3.4]. For a knot K with Seifert genus g, the .p; q/–cable Kp;q is an
L–space knot if and only if K is an L–space knot and .2g� 1/p � q; see Hedden [12]
and Hom [16]. Since torus knots are L–space knots, we also obtain the following result:
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Corollary 1.4 For every prime power p, the subset SLp � Sp of L–space knots
in Sp is linearly independent in Ctop, and this statement also holds for the infinite
family SLp XSalg

p of nonalgebraic L–space knots.

Note however that not all our examples are L–spaces knots: since the cable of an
iterated torus knot need not be an L–space knot, Corollary 1.3 shows that the infinite
set SpXSLp contains no L–spaces knots but is nevertheless linearly independent in Ctop.

1.2 Context and comparison with smooth techniques

Litherland used the Levine–Tristram signature to show that torus knots are linearly
independent in C [21]. This approach is insufficient to answer Rudolph’s conjecture,
since Livingston and Melvin showed in [23] that the following linear combinations of
iterated torus knots are algebraically slice:

(1) J.p; q; q1; q2/ WD T .p; qIp; q1/ #�T .p; q1/ #�T .p; qIp; q2/ #T .p; q2/:

Classical knot invariants can thus not obstruct J.p; q; q1; q2/ from being slice.

Hedden, Kirk and Livingston managed to leverage the Casson–Gordon invariants to
provide further evidence of Rudolph’s conjecture [14]. Indeed, they showed that,
for an appropriate choice of fqng1nD1, the knots fJ.2; 3; q2n�1; q2n/g1nD1 generate
an infinite-rank subgroup in C. This result is particularly notable since they observe
that the s–invariant from Khovanov homology and the �–invariant from Heegaard
Floer homology both vanish on J.2; 3; q2n�1; q2n/ [14, Proposition 8.2]. In fact, their
argument (combined with Proposition 5.3) generalises to show that, if K is a linear
combination of algebraically slice knots belonging to Sp , then �.K/D 0 and s.K/D 0.

Next, we observe that the Upsilon invariant ‡K W Œ0; 2�! R from Ozsváth, Stipsicz
and Szabó’s knot Floer homology [27] is also insufficient to prove Theorem 1.1. First
note that, if q1; q2 > p.p� 1/.q� 1/, then T .p; qIp; qi / is an L–space knot [12], and
thus a result of Tange shows that ‡T.p;qIp;qi /.t/D ‡T.p;q/.pt/C‡T.p;qi /.t/ for all
t 2 Œ0; 2� [29, Theorem 3]. The additivity of‡ then establishes that‡J.p;q;q1;q2/.t/D 0
for all t 2 Œ0; 2� whenever q1; q2 > p.p� 1/.q� 1/.

1.3 Strategy and ingredients of the proof

The proof of Theorem 1.1 relies on Casson–Gordon theory [6; 7] — see also Kirk
and Livingston [18] — and more specifically on the metabelian Blanchfield pairings
introduced by Miller and Powell [25] and further developed by the first and third authors
with Maciej Borodzik [3; 4; 5]. Since these invariants are somewhat technical, the next
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paragraphs describe some background and ideas that go into the proof of Theorem 1.1.
For notational simplicity, however, we restrict ourselves to a very particular case: we
apply our strategy to the knot J.p; q; q1; q2/ described in (1).

The sliceness obstruction Let p be a prime power, let †p.J / be the p–fold branched
cover of the knot J WDJ.p; q; q1; q2/, let � be a character onH1.†p.J //, and letMJ be
the 0–framed surgery of J. Associated to these data, there is a nonsingular sesquilinear
and Hermitian metabelian Blanchfield pairing

Bl˛.p;�/.J / WH1.MJ ICŒt
˙1�p/�H1.MJ ICŒt

˙1�p/!C.t/=CŒt˙1�:

Here H1.MJ ICŒt˙1�p/ denotes the homology of MJ twisted by a metabelian rep-
resentation ˛.p; �/ W �1.MJ /! GLp.CŒt˙1�/, whose definition will be recalled in
Section 3. The precise definition of Bl˛.p;�/.J / is irrelevant in this paper: only its
properties are required. Informally, however, the pairing Bl˛.p;�/.J / contains the
information from both twisted polynomial invariants and twisted signature invariants.
We now describe how Bl˛.p;�/.J / provides a sliceness obstruction.

Let �p.J / denote the Q=Z–valued linking form on H1.†p.J //. Miller and Powell
show that if, for every Zp–invariant metaboliserG of �p.J /, there exists a prime power–
order character � that vanishes on G and is such that Bl˛.p;�/.J / is not metabolic,
then J is not slice [25, Theorem 6.10]. In order to make this obstruction more concrete,
we now recall some terminology on linking forms and their metabolisers.

The Witt group of linking forms We focus on linking forms over CŒt˙1�, referring
to Section 4 for a discussion over more general rings. A linking form over CŒt˙1� is a
sesquilinear Hermitian pairing V �V !C.t/=CŒt˙1�, where V is a torsion CŒt˙1�–
module. A linking form .V; �/ is metabolic if there is a submodule L � V such
that L D L?; such an L is called a metaboliser. The Witt group of linking forms,
denoted by W.C.t/;CŒt˙1�/, consists of the monoid of nonsingular linking forms
modulo the submonoid of metabolic linking forms. We write �1 � �2 if two linking
forms agree in W.C.t/;CŒt˙1�/. The Miller–Powell obstruction to sliceness, therefore,
consists of deciding whether a certain twisted Blanchfield pairing Bl˛.p;�/.J / is zero
in the group W.C.t/;CŒt˙1�/. As we will now describe, one of our main ideas is to
transfer a problem of linear independence in Ctop (namely Rudolph’s conjecture) into a
problem of linear independence in W.C.t/;CŒt˙1�/.

From linear independence in Ctop to linear independence in W.C.t/;CŒt˙1�/

Since the knot J D T .p; qIp; q1/ #�T .p; q1/ #�T .p; qIp; q2/ # T .p; q2/ is a con-
nected sum of four knots, both H1.†p.J // and �p.J / can be decomposed into four
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direct summands:

�p.J /D �p.T .p; q1//˚��p.T .p; q1//˚�p.T .p; q2//˚��p.T .p; q2//:

In particular, any character onH1.†p.J // can be written as �D�1˚�2˚�3˚�4. For
each given Zp–invariant metaboliser M of �p.J /, the “sliceness-obstructing character”
that we will produce will be of the form �D �1˚�2˚ � ˚ � , where � denotes the
trivial character. Using the definition of J, together with the direct sum decomposition
of [4, Corollary 4.21], the Witt class of the metabelian Blanchfield pairing of J is given
by

(2) Bl˛.p;�/.J /� Bl˛.p;�1/.T .p; qIp; q1//˚�Bl˛.p;�2/.T .p; q1//

˚�Bl˛.p;�/.T .p; qIp; q2//˚Bl˛.p;�/.T .p; q2//:

This expression can be further decomposed by applying the satellite formula for the
metabelian Blanchfield forms given in [4, Theorem 4.19]. Regardless of the final
expression, the problem has been converted into a question of linear independence
inW.C.t/;CŒt˙1�/. In Proposition 4.3, we describe a criterion for linear independence
in terms of roots of the orders of the underlying modules (recall that the order of a
module over CŒt˙1� is a Laurent polynomial in CŒt˙1�; it is defined up to multiplication
by units of CŒt˙1�). Here is a simplified version of this statement:

Proposition 1.5 If .V1; �1/ and .V2; �2/ are two nonmetabolic linking forms over
CŒt˙1� such that Ord.V1/ and Ord.V2/ have distinct roots , then the Witt classes
ŒV1; �1� and ŒV2; �2� are linearly independent in W.C.t/;CŒt˙1�/.

1.3.1 Computation of twisted Alexander polynomials In order to apply Proposition
1.5, we must therefore understand the roots of the metabelian twisted Alexander
polynomials of T .p; q/ associated to characters on H1

�
†p.T .p; q//

�
(indeed, these

twisted polynomial arise as orders of modules of the form H1.MT.p;q/ICŒt
˙1�p/, the

same modules on which twisted Blanchfield pairings are defined). This is carried out in
Section 3 and relies on our explicit understanding of the p–fold cover Ep.T .p; q//!
E.T .p; q// from Section 2; here E.K/ denotes the exterior of a knot K. Since this
computation of twisted polynomials might be of independent interest, we summarise it
as follows.

Proposition 1.6 (Lemma 3.1 and Corollary 3.4) Let p; q >0 be two coprime integers ,
and set �p D e2�i=p . The abelian group of characters on H1

�
†p.T .p; q//

�
Š Zp�1q is

isomorphic to
fa WD .a1; : : : ; ap/ 2 Zpq j a1C � � �C ap D 0g:
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We write �a for the character associated to a. The metabelian twisted Alexander
polynomial of the 0–framed surgery MT.p;q/ associated to the character

�a WH1
�
†p.T .p; q//

�
! Zq

is given by

�
˛.p;�a/
1 .MT.p;q//D

.�1/p�1.1� tq/p�1

.t�
a1
q � 1/.t�

a2
q � 1/ � � � .t�

ap
q � 1/.t � 1/

:

Main steps of the proof We now return to the knot J D J.p; q; q1; q2/ from (1).
Obstructing J from being slice has three main steps. In fact, the proof of Theorem 1.1
in its full generality, as described in Section 5, follows more complicated versions of
these same steps:

(i) Firstly, we use the previously described ingredients to study the implications of
Bl˛.p;�/.J / being metabolic on the characters �1 and �2; here �D �1˚�2˚
� ˚ � with � the trivial character. This is the content of Section 5.2.2.

(ii) Secondly, we show that, for every metaboliser L of �p.Tp;q1/˚��p.Tp;q1/, it
is possible to build characters �1 and �2 that violate these conditions and are
such that �1˚�2 vanishes on L. This is the content of Section 5.2.3.

(iii) Finally, we combine these two steps to obstruct the sliceness of J : for every
metaboliserG of �p.J /, we are able to build a character �D�1˚�2˚�˚� that
vanishes on G and such that Bl˛.p;�/.K/ is not metabolic. This is the content
of Section 5.2.4.

Remark 1.7 When pD 2, Hedden, Kirk and Livingston also use an obstruction based
on the Casson–Gordon setup to show that, for an appropriate choice of positive integers
fqng

1
nD1, the set fT .2; qn/; T .2; 3I 2; qn/g1nD1 is linearly independent in Ctop [14]. Our

work differs from theirs in two main points:

� While [14] uses a blend of discriminants and signatures to prove its linear
independence result, we use metabelian Blanchfield pairings. In a nutshell,
the Blanchfield pairing encapsulates both the discriminant and (most of) the
signature invariants allowing us to both streamline and generalise several of the
arguments from [14].

� The result of [14] is proved without having to study invariant metabolisers; see
also [5, Section 6]. This is a feature of iterated torus knots T .p;Q/ with p D 2
and fails when p > 2.
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Passing from our outline to obstruct the sliceness of J.p; q; q1; q2/ to the proof of
Theorem 1.1 requires additional steps. As often in Casson–Gordon theory, the main
technical difficulty to overcome concerns the metabolisers of the linking form of the
knot in question. Regarding these metabolisers, our strategy can be summarised as
follows:

(i) Given a metaboliser, we isolate certain technical conditions which guarantee that
a character violates the sliceness obstruction. This is the content of Lemma 5.8.

(ii) We distinguish a certain family of metabolisers, called graph metabolisers,
see Section 4.2.

(iii) The construction of the required character, for any fixed nongraph metaboliser is
not overly challenging; see Cases 1 and 2 in the proof of Lemma 5.8.

(iv) Dealing with graph metabolisers requires more work. In Case 3, we show
that either there exists a character satisfying the conditions from Lemma 5.8,
or the knot in question contains a slice summand K #�K, for some knot K.
Consequently, once we cancel all the summands of the form K #�K, we are
able to construct the desired obstructing character for any graph metaboliser, and
finish the proof.

1.4 Assumptions and outlook

We conclude this introduction by commenting on the various technical assumptions
that appear in Theorem 1.1.

(i) The assumption that the integers qi are coprime to q` is used in Proposition 5.7
to ensure that certain Witt classes are linearly independent in W.C.t/;CŒt˙1�/.
This hypothesis has its roots in the notion of p–independence introduced in [14,
Definition 6.2].

(ii) We assume that p is a prime power in order to use Casson–Gordon theory [6; 7].

(iii) We require that the qi be positive mostly because of our interest in Rudolph’s
conjecture: algebraic knots are iterated torus knots with positive cabling parame-
ters.

(iv) We use that q` is prime in order to obtain the decomposition in (21) and to ensure
that Fq` is a field.

Summarising, our assumptions are made for technical reasons: we have so far not
encountered linear combinations of (algebraically slice) iterated torus knots whose
sliceness is not obstructed by some Casson–Gordon invariants. Furthermore, this paper
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does not fully use the techniques developed in [3; 4; 5] to compute the Casson–Gordon
Witt class. Therefore, it would be interesting to study how far these methods can be
pushed to investigate Rudolph’s conjecture.

Organisation

This paper is organised as follows. In Section 2, we collect several results on the
algebraic topology of the exterior of the torus knot T .p; q/. In Section 3, we use
these results to compute Alexander polynomials of T .p; q/ twisted by metabelian
representations. In Section 4, we review some facts about linking forms. Finally in
Section 5, we prove Theorem 1.1.

Conventions

Manifolds are assumed to be compact and oriented. Throughout the paper, the p–fold
branched cover of a knot is denoted by †p.K/, and �p.K/ denotes the linking form
on H1.†p.K//.
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2 Branched covers of torus knots

The aim of this section is to describe the ZŒZp�–module structure of H1
�
†p.T .p; q//

�
induced from the Zp–covering action on†p.T .p; q//when q is prime. LetE.T .p; q//
be the complement of the torus knot T .p; q/, and let Ep.T .p; q// be its p–fold
cyclic cover. In Section 2.1, to set up some notation, we recall the decomposition
of E.T .p; q// coming from the standard genus 1 Heegaard splitting of S3, as described
in [10, Example 1.24]. In Section 2.2, this decomposition of E.T .p; q// is used to
decompose Ep.T .p; q//; after that, H1

�
†p.T .p; q//

�
can be computed via a Mayer–

Vietoris sequence argument since †p.T .p; q// is a union of Ep.T .p; q// with a solid
torus glued along the torus boundary.
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�
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T .p; q/

�

�

�

Xp

Figure 1: Left: the intersection T .p; q/\ .fxg �D2/. Right: the comple-
ment H1 XT .p; q/ deformation retracts onto a 2–complex Xp .

2.1 The homotopy type of E.T.p; q//

The goal of this subsection is to describe the homotopy type of E.T .p; q//, as well as
describe explicit generators for �1

�
E.T .p; q//

�
. To achieve this, we follow closely

[10, Example 1.24].

Consider the standard decomposition S3 D S1 �D2[D2 �S1 and denote S1 �D2

andD2�S1 byH1 andH2, respectively,H1�R3 being the solid torus. We parametrise
the .p; q/–torus knot T .p; q/ on the torus H1\H2 as follows:

(3) T .p; q/D f.e2�ipt ; e2�iqt / j t 2 Œ0; 1�g � S1 �S1 DH1\H2:

Using this description of T .p; q/, for each x 2 S1, we see that T .p; q/ intersects
fxg �D2 �H1 in p equidistributed points of fxg � @D2; see Figure 1 for p D 3.

As depicted in Figure 1, right, the complementH1XT .p; q/ deformation retracts onto a
2–complex Xp �H1 which is the mapping cylinder of the degree p map fp W S1! c1,
where c1 is the core circle of H1. The same argument shows that H2 X T .p; q/
deformation retracts onto the mapping cylinder Xq of the degree q map fq W S1! c2,
where c2 is the core circle of H2. By perturbing Xp near H1 \H2, we can arrange
that Xp and Xq match up on H1\H2. Next, let Xp;q be the union of Xp and Xq . Note
that Xp;q is homeomorphic to the double mapping cylinder of the maps fp and fq ,
defined by

Xp;q WD S
1
� Œ0; 1�[ c1[ c2=�;

where .z; 0/�fp.z/ and .z; 1/�fq.z/ for all z 2S1 (see Figure 2). By van Kampen’s
theorem,

�1.Xp;q/Š hc1; c2 j c
p
1 D c

q
2 i:

Summarising, we have the following proposition, which is implicit in Hatcher:
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fqfp

S1 � Œ0; 1� c2c1

Figure 2: The double mapping cylinder Xp;q obtained by gluing S1 � Œ0; 1�
with the circles c1 and c2 by the degree p and q maps fp and fq .

Proposition 2.1 [10, Example 1.24] There is a deformation retraction E.T .p; q//!
Xp;q sendingH1XT .p; q/ andH2XT .p; q/ toXp and Xq , respectively. In particular ,
�1
�
E.T .p; q//

�
Š hc1; c2 j c

p
1 D c

q
2 i, where ci is the core circle of Hi for i D 1; 2.

2.2 The computation ofH1

�
†p.T.p; q//

�
as a ZŒZp�–module

In this subsection, we describe the ZŒZp�–module structure of H1
�
†p.T .p; q//

�
. To

do so, we first study the p–fold cyclic covering map � WEp.T .p; q//!E.T .p; q//,
then we compute �1

�
Ep.T .p; q//

�
, and finally we describe H1

�
†p.T .p; q//

�
.

We first use Section 2.1 to describe a deformation retract of Ep.T .p; q//. Using (3),
we see that the torus knot T .p; q/ links respectively q and p times the core circles c1
and c2. Consequently, c1 and c2 are homologous to q� and p� in H1

�
E.T .p; q//

�
,

where �D ck1 c
l
2 is a meridian of T .p; q/ and pkCql D 1. Use .Xp;q/p to denote the

preimage ��1.Xp;q/, and observe that, by Proposition 2.1, Ep.T .p; q// deformation
retracts onto .Xp;q/p.

To describe �1
�
Ep.T .p; q//

�
we study the homotopy type of .Xp;q/p . The (restricted)

covering map � W .Xp;q/p!Xp;q corresponds to the homomorphism �1.Xp;q/! Zp
sending c1 to q 2 Zp and c2 to 0 2 Zp. We use �� W �1..Xp;q/p/ ! �1.Xp;q/ to
denote the induced map. Let a be the preimage ��1.c1/ and let b0; : : : ; bp�1 be the
components of the preimage ��1.c2/; we choose the indices of the bi so that

(4) ��.bi /D �
ic2�

�i for i D 0; : : : ; p� 1:

Since � is a covering map, the induced map �� W �1..Xp;q/p/! �1.Xp;q/ is injective.
For this reason, we shall often identify bi with �ic2��i . Since Xp;q is a double
mapping cylinder, so is .Xp;q/p. More precisely, as illustrated in Figure 3,

.Xp;q/p D

p�1[
iD0

S1i � Œ0; 1�[ a[ b0[ � � � [ bp�1=�;
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fqf1

a b1S11 � Œ0; 1�

fq

f1

b0S10 � Œ0; 1�

fq

f1

:::

bp�1S1p�1 � Œ0; 1�

p copies

Figure 3: The p–fold cyclic cover .Xp;q/p of Xp;q is also a double mapping
cylinder, where f1 and fq denote the degree 1 and the degree q maps, respectively.

where each S1i � f0g is identified with the circle a by the identity map, and S1i � f1g
is identified with the circle bi by the degree q map. By van Kampen’s theorem, we
deduce that

�1..Xp;q/p/Š hb0; b1; : : : ; bp�1 j b
q
i D b

q
j for 0� i ¤ j � p� 1i:

Since Ep.T .p; q// deformation retracts onto .Xp;q/p , we obtain the following propo-
sition:

Proposition 2.2 Let � W Ep.T .p; q//! E.T .p; q// be the p–fold cyclic covering
and let b0; b1; : : : ; bp�1 be the homotopy classes of the components of ��1.c2/ such
that ��.bi /D �ic2��i . Then

�1
�
Ep.T .p; q//

�
D hb0; b1; : : : ; bp�1 j b

q
i D b

q
j for 0� i ¤ j � p� 1i:
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Next, we use this description of �1
�
Ep.T .p; q//

�
to obtain generators of the finite

abelian groupH1
�
†p.T .p; q//

�
DTH1

�
Ep.T .p; q//

�
. First, note that Proposition 2.2

shows that H1
�
Ep.T .p; q//

�
Š Z˚Zp�1q has generators b0; b1; : : : ; bp�1 and rela-

tions qbi D qbj for each i and j. In the remainder of this section, we describe a
set of generators that will be more convenient for the twisted Alexander polynomial
computations of Section 3.

Remark 2.3 While the meridian � of T .p; q/ does not lift to Ep.T .p; q//, a loop
representing �p does. Since the projection-induced map �� W �1

�
Ep.T .p; q//

�
!

�1
�
E.T .p; q//

�
is injective, we slightly abuse notation and also write �p for the

homotopy class of this lift in �1
�
Ep.T .p; q//

�
.

We will make no notational distinction between elements in �1
�
Ep.T .p; q//

�
and

elements in H1
�
Ep.T .p; q//

�
, despite switching from multiplicative to additive nota-

tion. In some rare instances, we will also use the multiplicative notation in homology.
Keeping this in mind, for i D 0; : : : ; p � 1, we consider ��pbi in �1

�
Ep.T .p; q//

�
and xi WD bi ��p in H1

�
Ep.T .p; q//

�
. The next proposition describes the homology

group H1
�
†p.T .p; q//

�
as a ZŒZp�–module.

Proposition 2.4 The abelian groupH1
�
†p.T .p; q//

�
ŠZp�1q is generated by the xiD

bi ��
p, and these elements satisfy the following relations:

(i) x0C x1C � � �C xp�1 D 0.

(ii) xi D t
ix0 for i D 0; : : : ; p� 1, where t denotes the covering transformation of

†p.T .p; q//.

In particular , there exists an isomorphism of ZŒZp�–modules

H1
�
†p.T .p; q//

�
Š ZqŒt �=.1C t C t

2
C � � �C tp�1/:

Proof The proof has four steps. Firstly, we establish a criterion for an element
in H1

�
†p.T .p; q//

�
to be torsion; secondly, we prove that the xi are torsion; thirdly,

we show that that xi generate TH1†p.T .p; q// as an abelian group; fourthly and
finally we prove that the xi satisfy the two identities stated in the lemma.

We assert that an element x D
Pp�1
iD0 aibi in H1

�
Ep.T .p; q//

�
is torsion if and

only if
Pp�1
iD0 ai D 0. The map �� W H1

�
Ep.T .p; q//

�
! H1

�
E.T .p; q//

�
maps

TH1
�
Ep.T .p; q//

�
to zero and maps the infinite cyclic summand isomorphically
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onto pZŠ Zhc2i.1 In particular, a class x 2H1
�
Ep.T .p; q//

�
is torsion if and only

if ��.x/D 0. On the other hand, using Proposition 2.2, we deduce that � induces the
following map on homology, concluding the proof of the assertion:

�� WH1
�
Ep.T .p; q//

�
! pZ� ZDH1

�
E.T .p; q//

�
;

p�qX
iD0

aibi 7!

p�1X
iD0

ai :

We move on to the second step: we prove that the homology classes x0; : : : ; xp�1 are
torsion. Using the criterion, we must show that ��.xi /D0 for each i . Since ��.bi /D1,
this reduces to showing that ��.�p/D 1. We start by computing the abelianisation
of �p. Since �D ck1 c

l
2, we notice that, in �1

�
Ep.T .p; q//

�
,

(5) �p D .ck1 c
l
2c
�k
1 / � .c2k1 c

l
2c
�2k
1 / � � � .c

.p�1/k
1 cl2c

�.p�1/k
1 /c

pk
1 cl2:

In order to compute the abelianisation of this expression, we claim that, for any 0� s �
p � 1 and any k, the equation �sc2��s D cks1 c2c

�ks
1 holds in H1

�
Ep.T .p; q//

�
D

�1
�
Ep.T .p; q//

�ab. This claim is a consequence of the following direct computation
in �1

�
Ep.T .p; q//

�
:

�sc2�
�s
D

� s�1Y
iD1

cki1 c
l
2c
�ki
1

�
� .cks1 c2c

�ks
1 / �

� s�1Y
iD1

cki1 c
�l
2 c
�ki
1

�
:

Using consecutively (5), the equation �sc2��s D cks1 c2c
�ks
1 that we just established,

and the identification bi D�ic2��i from (4) (as well as the presentation in Proposition
2.1 and qkCpl D 1), we obtain the sequence of equalities, in H1

�
Ep.T .p; q//

�
,

(6) �p D .ck1 c
l
2c
�k
1 / � .c2k1 c

l
2c
�2k
1 / � � � .c

.p�1/k
1 cl2c

�.p�1/k
1 /c

pk
1 cl2

D .�cl2�
�1/.�2cl2�

�2/ � � � .�.p�1/cl2�
�.p�1//c

pk
1 cl2

D l.b0C b1C � � �C bp�1/C qkb0:

As ��.bi / D 1 for each i , this implies that ��.�p/ D 1. It follows that ��.xi / D
��.bi / � ��.�

p/ D 0, and therefore each of the xi is torsion. This concludes the
second step of the proof.

Thirdly, we show that every element of TH1
�
Ep.T .p; q//

�
can be written as a linear

combination of the xi for i D 0; 1; : : : ; p � 1: given x D
Pp�1
iD0 aibi , adding and

1For any knotK and prime power n, one has the decompositionH1.En.K//D TH1.En.K//˚Z, where
the Z summand is generated by a lift of the n–fold power of the meridian.
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subtracting �p, using
Pp�1
iD0 ai D 0 (which holds thanks to the first step) and the

definition of xi , we obtain

x D

p�1X
iD0

aibi D

p�1X
iD0

ai�
p
C

p�1X
iD0

ai .bi ��
p/D

p�1X
iD0

aixi :

Fourthly and finally, we establish the relations x0Cx1C� � �Cxp�1D 0 and xi D t ix0.
The latter relation is clear (since bi D t ib0 and t�p D �p) and so we focus on the
former. Using consecutively (6), the relation qbi D qbj , and the fact that plC qk D 1,
we notice that, in H1

�
Ep.T .p; q//

�
,

p�p D pl.b0C b1C � � �C bp�1/Cpqkb0

D pl.b0C b1C � � �C bp�1/C qk.b0C b1C � � �C bp�1/

D .b0C b1C � � �C bp�1/:

The conclusion now promptly follows from the definition of the xi , establishing the
proposition.

Assume that q is a prime. In this case H1
�
†p.T .p; q//

�
becomes an Fq–vector space.

The covering action t is then an Fq–linear endomorphism of Vp;q .

3 Twisted polynomials of torus knots

In this section, we compute the Alexander polynomial of the 0–framed surgeryMT.p;q/

twisted by a metabelian representation ˛T.p;q/.p; �/ W �1.MT.p;q//! GLp.CŒt˙1�/
that frequently appears in Casson–Gordon theory [15]. In Section 3.1, we recall the
definition of ˛K.p; �/ for a general knotK. In Section 3.2, we study this representation
in the case of torus knots. Finally, in Section 3.3, we compute the relevant twisted
Alexander polynomials.

3.1 The metabelian representation ˛K .p;�/

In this subsection, given a knot K and a positive integer p, we recall the defini-
tion of the representation ˛K.p; �/ W �1.MK/ ! GLp.CŒt˙1�/ from [15], where
� WH1.†p.K//! Zm is a character. In what follows, EK denotes the exterior of K
and MK denotes its 0–framed surgery. Finally, we use �m WD e2�i=m to denote the mth

primitive root of unity.

We use
H1.E.K/IZŒt

˙1
K �/Š �1.E.K//

.1/=�1.E.K//
.2/
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to denote the Alexander module of K. In what follows, we shall frequently iden-
tifyH1.†p.K// withH1.E.K/IZŒt˙1K �/=.t

p
K�1/, as for instance in [8, Corollary 2.4].

Consider the composition of canonical projections

(7) qK W �1.MK/
.1/
!H1.E.K/IZŒt

˙1
K �/!H1.†p.K//:

Use �K W �1.E.K//!H1.E.K/IZ/Š ZD htKi to denote the abelianisation homo-
morphism, and fix an element �K in �1.E.K// such that �K.�K/D tK . Note that,
for every g 2 �1.E.K//, we have �K.�

��K.g/
K g/D 1. Since �K is the abelianisation

map, we deduce that ���K.g/K g belongs to �1.E.K//.1/. Combining this notation, we
consider the representation

˛K.p; �/ W �1.E.K//! GLp.CŒt˙1�/
given by

(8) ˛K.p; �/.g/D

0BBB@
0 1 � � � 0
:::
:::
: : :

:::

0 0 � � � 1

t 0 � � � 0

1CCCA
�K .g/

�

0BBBBBB@
�
�.qK .�

��K.g/

K
g//

m 0 � � � 0

0 �
�.tK �qK .�

��K.g/

K
g//

m � � � 0
:::

:::
: : :

:::

0 0 � � � �
�.t
p�1
K

�qK .�
��K.g/

K
g//

m

1CCCCCCA
DWAp.t/

�K .g/Dg :

Note that ˛.p; �/ can equally well be defined on �1.MK/ instead of �1.E.K//: the
definition can be adapted verbatim, and we use the same notation

˛K.p; �/ W �1.MK/! GLp.CŒt˙1�/:

A closely related observation is that ˛.p; �/ is a metabelian representation and therefore
vanishes on the longitude of K; this also explains why ˛K.p; �/ descends to �1.MK/.

3.2 An explicit description of ˛T.p;q/.p;�/

We use the presentation of �1
�
E.T .p; q//

�
from Proposition 2.1 to describe the repre-

sentation ˛T.p;q/.p; �/. Throughout this subsection, we set K WD T .p; q/ in order to
avoid cumbersome notation such as qT.p;q/.

We recall the definition of the generators x0; : : : ; xp�1 of H1.†p.K// Š Zp�1q de-
scribed in Proposition 2.4, referring to Section 2 for further details. Using the notation
of that section, we set xi D bi ��p , where � is a meridian of K. For i D 0; : : : ; p�1,
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thinking of xi as the abelianisation of ��pbi , and using Proposition 2.2 to identify bi
with �ic2��i ,

(9) t iKqK.�
�pc2/D qK.�

�p�ic2�
�i /D qK.�

�pbi /D xi :

Recall furthermore that Proposition 2.4 also established the relations x0C� � �Cxp�1D0
as well as tKxi D xiC1 for i D 0; : : : ; p�1. The next result follows immediately from
these considerations.

Lemma 3.1 Fix two coprime integers p; q > 0 and set K WD T .p; q/. The abelian
group of characters on H1.†p.K// is isomorphic to

fa WD .a1; : : : ; ap/ 2 Zpq j a1C � � �C ap D 0g:

The isomorphism maps a character � to .�.x0/; : : : ; �.xp�1//, and we write �a for the
character associated to a.

Recall that Proposition 2.1 described a two-generator, one-relation presentation for
the knot group �1.E.K//; the generators were denoted by c1 and c2 and the unique
relator was cp1 c

�q
2 . The next proposition describes the image of these generators

under ˛.p; �/ WD ˛K.p; �/. This will be useful in Proposition 3.3 when we compute
the twisted Alexander polynomial of E.K/.

Proposition 3.2 Fix two coprime integers p; q > 0 and set K WD T .p; q/. For a
character � D �a W H1.†p.K//! Zq , the representation ˛.p; �/ is conjugated to a
representation ˛0.p; �/ such that

˛0.p; �/.c2/D t � diag.�a1q ; : : : ; �
ap
q /; ˛0.p; �/.c1/D Ap.t/

q:

Proof We first compute ˛.p; �/.c2/. We know that �K.c2/D p and Ap.t/p D t � id.
In order to compute the diagonal matrix which appears in the definition of ˛.p; �/.c2/
(recall (8)), we use (9) and Lemma 3.1 to obtain �.t i�1K qK.�

�pc2//D �.xi�1/D ai .
The first assertion follows:

˛.p; �/.c2/D t �diag.��.qK.�
�pc2//

q ; : : : ; �
�.t

p�1
K qK.�

�pc2//
q /D t �diag.�a1q ; : : : ; �

ap
q /:

Next, we study the conjugacy class of ˛.p; �/.c1/: we must find an invertible matrix X
such that

X˛.p; �/.c1/X
�1
D Ap.t/

q;(10)

X˛.p; �/.c2/X
�1
D t � diag.�a1q ; : : : ; �

ap
q /:(11)

For v 2H1.†p.K//, we define z̨.v/ WD diag.��.v/q ; �
�.tKv/
q ; : : : ; �

�.t
p�1
K v/

q /. Observe
that, if we set X WD z̨.z/, then (11) is satisfied for any z 2 H1.†p.K//; indeed,
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˛.p; �/.c2/ commutes with X since both are diagonal. Therefore, we just have to
establish the existence of a z 2H1.†p.K// such that (10) is satisfied for X D z̨.z/.

First, for any x 2H1.†p.K//, a computation shows that

z̨.x/Ap.t/
q
z̨.x/�1 D Ap.t/

q
z̨..t

�q
K � 1/x/:

Define y WD qK.�
�qc1/, so that ˛.p; �/.c1/ D Ap.t/

q z̨.y/. Consequently, if we
set X WD z̨.z/ (for any z 2 H1.†p.K//), use the definition of y, the fact that z̨.y/
and X commute (both are diagonal), and the aforementioned identity, then we obtain

X˛.p; �/.c1/X
�1
DXAp.t/

q
z̨.y/X�1 DXAp.t/

qX�1 z̨.y/

D Ap.t/
q
z̨..t

�q
K � 1/zCy/:

Therefore, if we choose z WD �.t�qK � 1/
�1y, then (10) holds. For this to make sense,

however, we must argue that t�qK � 1 is an automorphism of H1.†p.K//. This is
indeed the case: as tK � 1 is an automorphism of H1.†p.K//, the inverse is given
by .t�1K � 1/

�1.1C t
�q
K C t

�2q
K C � � � C t

�.k�1/q
K /, where qk � 1 mod p. Such a k

exists because p and q are coprime. We have therefore found X such that (10) and (11)
hold, and this concludes the proof of the proposition.

3.3 The computation of the twisted polynomial

In this subsection, we compute the twisted Alexander polynomial of the 0–framed
surgery MT.p;q/ with respect to ˛.p; �/.

Recall that, given a space X and a representation ˇ W �1.X/ ! GLp.CŒt˙1�/, the
twisted Alexander polynomial �ˇ1.X/ is defined as the order of the twisted Alexander
moduleH1.X ICŒt˙1�

p

ˇ
/. More generally, we write�ˇi .X/ for the order of the CŒt˙1�–

module Hi .X ICŒt˙1�
p

ˇ
/. Recall that the �ˇi .X/ are defined up to multiplication by

units of CŒt˙1�.

The next proposition describes �˛.p;�/1

�
E.T .p; q//

�
, where E.T .p; q// denotes the

exterior of T .p; q/.

Proposition 3.3 Let p; q > 0 be coprime integers. For �D �a WH1
�
†p.T .p; q//

�
!

Zq , the metabelian twisted Alexander polynomial of E.T .p; q// is given by

�
˛.p;�/
1

�
E.T .p; q//

�
D

.1� tq/p�1

.t�
a1
q � 1/.t�

a2
q � 1/ � � � .t�

ap
q � 1/

:

Proof We use �˛.p;�/.E.K// to denote the Reidemeister torsion of a knot exterior
E.K/ twisted by ˛.p; �/ WD ˛K.p; �/. We refer to [9] for more on the subject, but
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simply note that �˛.p;�/.E.K// is defined since the chain complex C�.E.K/IC.t/p/
of left C.t/–modules is acyclic [6, Corollary after Lemma 4]. Since E.K/ has torus
boundary, by [9, Proposition 2(5)], the twisted Reidemeister torsion and twisted Alexan-
der polynomial are related by

�˛.p;�/.E.K//D
�
˛.p;�/
1 .E.K//

�
˛.p;�/
0 .E.K//

:

Since �˛.p;�/0 .E.K//D 1 for every knot K [4, Lemma 4.1], we are reduced to comput-
ing �˛.p;�/

�
E.T .p; q//

�
. By [19, Theorem A], this torsion invariant can be expressed

via Fox calculus. In our case, using the presentation of �1
�
E.T .p; q//

�
resulting from

Proposition 2.1, we obtain

(12) �˛.p;�/1

�
E.T .p; q//

�
D �˛.p;�/

�
E.T .p; q//

�
D

det
�
˛.p; �/.@.c

p
1 c
�q
2 /=@c1/

�
det.˛.p; �/.c2/� id/

:

Since this expression does not depend on the conjugacy class of ˛.p; �/, we can work
with the representation ˛0.p; �/ described in Proposition 3.2. Using the first item of
Proposition 3.2, the denominator of (12) is given by the formula

(13) det.˛.p; �/.c2/� id/D det.diag.t�a1q � 1; t�
a2
q � 1; : : : ; t�

ap
q � 1//

D

pY
iD1

.t�aiq � 1/:

We will now compute the numerator of (12) and show that it equals .1� tq/p�1. Recall
from (8) that, for g 2 �1.E.K//, the metabelian representation ˛K.p; �/ is given
by ˛K.p; �/.g/D Ap.t/�K.g/Dg . An inductive argument involving the properties of
the Fox derivative shows that

@.c
p
1 c
�q
2 /

@c1
D
@c
p
1

@c1
D 1C c1C c

2
1 C � � �C c

p�1
1 DW g:

We will now apply ˛.p; �/ to g. We recall from Proposition 3.2 that ˛0.p; �/.c1/D
Ap.t/

q , and we now work over CŒt˙1=p�. Indeed, as observed in [15, page 935], in
this ring, the matrix Ap.t/ is conjugated to the diagonal matrix

Bp.t/ WD diag.t1=p; �pt1=p; �2p t
1=p; : : : ; �p�1p t1=p/:

Since (12) only depends on the conjugacy class of the representation ˛.p; �/, we
can work with Bp.t/ instead of Ap.t/. We use � to denote the conjugacy relation.
Since Bp.t/ is diagonal, its powers are easy to compute and, as a consequence, we
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obtain
˛0.p; �/.g/� idCBp.t/qCBp.t/2qC � � �CBp.t/.p�1/q

D diag
�
1� tq

1� tq=p
;

1� tq

1� �
q
p t
q=p

;
1� tq

1� �
2q
p tq=p

; : : : ;
1� tq

1� �
q.p�1/
p tq=p

�
:

Taking the determinant of this expression, we deduce that

(14) det
�
˛.p; �/

�
@.c

p
1 c
�q
2 /

@c1

��
D

p�1Y
jD0

1� tq

1� �
jq
p tq=p

D
.1� tq/p

1� tq
D .1� tq/p�1:

Plugging (13) and (14) into (12) concludes the proof of the proposition.

Using Proposition 3.3, we can compute the twisted polynomial of the 0–framed
surgery MT.p;q/.

Corollary 3.4 Let p; q >0 be coprime integers. For �D�a WH1
�
†p.T .p; q//

�
!Zq ,

the metabelian twisted Alexander polynomial of MT.p;q/ is given by

�
˛.p;�/
1 .MT.p;q//D

.�1/p�1.1� tq/p�1

.t�
a1
q � 1/.t�

a2
q � 1/ � � � .t�

ap
q � 1/.t � 1/

:

Proof By Proposition 3.3, we need only show that .�1/p�1.t � 1/�˛.p;�/1 .MK/D

�
˛.p;�/
1 .E.K// for every knot K, where ˛.p; �/ WD ˛K.p; �/. Using the equal-

ity �˛.p;�/1 .E.K//D �˛.p;�/.E.K// that was obtained in the proof of Proposition 3.3,
Lemma 3 of [9], as well as [9, Propositions 2(8) and 5] and the fact that�˛.p;�/0 .MK/D1

(by [4, Lemma 4.1]), we obtain the sequence of equalities

�
˛.p;�/
1 .E.K//D �˛.p;�/.E.K//D det.˛.p; �/.�K/� id/�˛.p;�/.MK/

D det.˛.p; �/.�K/� id/
�
˛.p;�/
1 .MK/

�
˛.p;�/
0 .MK/�

˛.p;�/
2 .MK/

D det.˛.p; �/.�K/� id/
�
˛.p;�/
1 .MK/

�
˛.p;�/
0 .MK/�

˛.p;�/
0 .MK/

D det.˛.p; �/.�K/� id/�˛.p;�/1 .MK/:

It thus remains to show that det.˛.p; �/.�K/� id/ D .�1/p�1.t � 1/; this follows
from the definition of ˛.p; �/ (recall (8)) since ˛.p; �/.�K/D Ap.t/.

4 Linking forms and their metabolisers

This section collects some facts about linking forms and their metabolisers. This will
be useful in Section 5 since both the metabelian Blanchfield pairing and �p.T .p; q//
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are linking forms. In Section 4.1, we recall some basics on linking forms and their
Witt groups. In Section 4.2, we prove a result on metabolisers of linking forms of the
type .V1˚V2; �1˚��2/.

4.1 The Witt group of linking forms

Let R be a PID with involution and let Q denote its field of fractions. This subsection
is concerned with linking forms. Firstly, we recall the definition of the Witt group
W.Q;R/ of linking forms. Secondly, we collect some facts about W.C.t/;CŒt˙1�/
that are used in Section 5 below.

A linking form over R is a pair .V; �/, where V is a torsion R–module and � W V �V !
Q=R is a sesquilinear and Hermitian pairing. The set of linking forms over R
forms a monoid under the direct sum. A linking form .V; �/ is nonsingular if its
adjoint �� W V ! V �, x 7! �.x;�/ is an isomorphism. In the sequel, our linking forms
will be either over Z or CŒt˙1�. From now on, we also assume that all linking forms
are nonsingular. Given a linking form .V; �/ over R, a submodule L� V is isotropic
if L � L? and is a metaboliser if LD L?. A linking form is metabolic if it admits
a metaboliser. The set of metabolic linking forms over R forms a submonoid of the
monoid of linking forms over R.

Definition 4.1 The Witt group of linking forms, denoted by W.Q;R/, consists of the
monoid of linking forms modulo the submonoid of metabolic linking forms. Two
linking forms .V; �/ and .V 0; �0/ are called Witt equivalent if they represent the same
element in W.Q;R/.

The Witt group of linking forms is known to be an abelian group under direct sum,
where the inverse of the class Œ.V; �/� is represented by .V;��/. Next, we collect some
facts on W.C.t/;CŒt˙1�/ that will be used in Section 5 below.

Remark 4.2 The Witt group W.C.t/;CŒt˙1�/ is known to be free abelian and
is detected by the signature jumps ı�.V;�/ [3, Sections 4 and 5]. In particular, a
linking form .V; �/ over CŒt˙1� is metabolic if and only if all its signature jumps
vanish [3, Theorem 5.3]. Reformulating, ŒV; �� D 0 in W.C.t/;CŒt˙1�/ if and only
if ı�.V;�/.!/D 0 for all ! 2 S1. We refer to [3, Sections 4 and 5] for further details
regarding signatures of linking forms but note that a linking form .V; �/ will have a
trivial jump at ! 2 S1 if the order Ord.T / of the CŒt˙1�–module T does not have a
root at !.
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In particular, Remark 4.2 implies the following result about linear independence
in W.C.t/;CŒt˙1�/:

Proposition 4.3 If .V1; �1/ and .V2; �2/ are two linking forms over CŒt˙1� such that
Ord.V1/ and Ord.V2/ have distinct roots , then the following assertions hold :

(i) If .V1; �1/ and .V2; �2/ are not metabolic , then the Witt classes ŒV1; �1� and
ŒV2; �2� are linearly independent in W.C.t/;CŒt˙1�/.

(ii) If .V1; �1/˚ .V2; �2/ is metabolic , then .V1; �1/ and .V2; �2/ are both meta-
bolic.

Proof We only prove the first assertion as the second assertion follows immediately.
Assume that n1ŒV1; �1�C n2ŒV2; �2� D 0 for some integers n1 and n2. Remark 4.2
implies that all the signature jumps of n1�1 ˚ n2�2 must vanish. Since �1 is not
metabolic, Remark 4.2 also implies that �1 admits a nontrivial signature jump at
some !1 2 S1. As a consequence of these two assertions, we infer that n1�1 and n2�2
must have a nontrivial signature jump at !1. Since Ord.V1/ and Ord.V2/ have distinct
roots, we deduce that n1D 0. The same reasoning shows that n2D 0, thus establishing
the linear independence of ŒV1; �1� and ŒV2; �2� and establishing the proposition.

4.2 Graph metabolisers

Given linking forms .V1; �1/; .V2; �/, we prove a result on metabolisers of linking
forms of the type .V1˚ V2; �1˚��2/. More precisely, Proposition 4.4 provides a
criterion for when such a metaboliser must be a graph. This result will be used in
Section 5 when we study metabolisers of �p.T .p; q//N ˚��p.T .p; q//N.

Given linking forms .V1; �1/ and .V2; �2/, a morphism of linking forms is an R–linear
homomorphism f W V1! V2 such that �2.f .x/; f .y//D �1.x; y/ for all x; y 2 V1.
If the forms are nonsingular, then a morphism is necessarily injective. An isometry of
linking forms is a bijective morphism of linking forms. The graph

�f D f.v; f .v// 2 V1˚V2 j v 2 V1g

of a morphism f W .V1; �1/! .V2; �2/ is an isotropic submodule of .V1˚V2; �1˚��2/.
If f is an isometry, then �f is in fact a metaboliser of .V1˚V2; �1˚��2/. The next
proposition provides an assumption under which the converse also holds.

Proposition 4.4 Let .V1; �1/ and .V2; �2/ be linking forms overR and let L�V1˚V2
be a metaboliser of �1˚��2. The following assertions hold :
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(i) If L\.V1˚0/D0DL\.0˚V2/, thenL is the graph of an isometry f WV1!V2,

LD f.v; f .v// 2 V1˚V2 j v 2 V1g:

(ii) If we additionally work over R D Z, suppose that V1 and V2 are equipped
with an isometric Zp–action , and L is a Zp–invariant metaboliser , then the
isometry f is Zp–equivariant.

Proof We prove the first assertion. The isometry f will be defined by using the
canonical projections pri W V1 ˚ V2 ! Vi for i D 1; 2. Since L \ .V1 ˚ 0/ D 0 D

L\ .0˚ V2/, it follows that pri jL is injective, for i D 1; 2. Set Wi WD pri .L/, for
i D 1; 2, and define f as the composition

f WW1
pr�11
���!
Š

L
pr2
��!
Š
W2:

Since f is an isomorphism of R–modules, it remains to check that it is a morphism of
linking forms. First, however, we use the definition of f to observe that

(15) LD f.v; f .v// 2 V1˚V2 j v 2W1g � V1˚V2:

The fact that f is a morphism now follows from the fact that L is isotropic: for
any v;w 2W1, the pairs .v; f .v//; .w; f .w// belong to L, and therefore

0D .�1˚��2/
�
.v; f .v//; .w; f .w//

�
D �1.v; w/��2.f .v/; f .w//:

Looking at (15), it only remains to show that V1 DW1 and V2 DW2. Since f is an
isomorphism, we have ord.W1/D ord.W2/ and therefore (15) implies that ord.L/2 D
ord.W1/ ord.W2/. Since L is a metaboliser, we deduce that

(16) ord.V1/ ord.V2/D ord.L/2 D ord.W1/ ord.W2/:

By way of contradiction, assume that ord.W1/ divides ord.V1/with ord.W1/¤ord.V1/;
we write ord.W1/− ord.V1/. A glance at (16) shows that ord.V2/− ord.W2/, contra-
dicting the inclusion W2 � V2. We conclude that ord.Wi /D ord.Vi / and consequently
Wi D Vi for i D 1; 2. This concludes the proof of the first assertion.

We prove the second assertion. Use t to denote a generator of Zp . As the metaboliser L
is Zp–invariant, if .v; f .v// 2 L, then .tv; tf .v// 2 L for any v 2 V1. Moreover,
as .tv; f .tv// 2 L and L\ .0˚ V2/ D 0, it follows that .tv; f .tv// D .tv; tf .v//.
We have therefore established that f .tv/D tf .v/ for any v 2 V1, and thus f is Zp–
equivariant, as desired.
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5 Nonslice linear combinations of iterated torus knots

This section aims to prove Theorem 1.1, whose statement we now recall. For an integer
p � 2 and a sequence QD .q1; q2; : : : ; q`/ of integers that are relatively prime to p,
we write iterated torus knots as T .p;Q/ WD T .p; q1Ip; q2I : : : Ip; q`/. Our main result
reads as follows:

Theorem 1.1 Fix a prime power p. Let Sp be the set of iterated torus knots

T .p; q1Ip; q2I : : : Ip; q`/;

where the sequences .q1; q2; : : : ; q`/ of positive integers satisfy

(i) for i D 1; : : : ; `, the integer qi is coprime to p;

(ii) q` is a prime;

(iii) for i D 1; : : : ; `� 1, the integer qi is coprime to q` when ` > 1.

The set Sp is linearly independent in the topological knot concordance group Ctop.

To prove Theorem 1.1, we must obstruct the sliceness of linear combinations of knots
belonging to Sp. The first step, which is carried out in Section 5.1, is to determine
which of these linear combinations are algebraically slice. In Section 5.2, we use
metabelian twisted Blanchfield pairings to obstruct the sliceness of such algebraically
slice linear combinations.

5.1 Algebraically slice linear combinations of algebraic knots

Fix an integer p � 2. For i D 1; : : : ; k, fix sequences Qi D .qi;1; qi;2; : : : ; qi;`i / of `i
positive integers each of which is coprime to p, and let n1; : : : ; nk 2 Z. The goal of
this subsection is to determine when the following knot is algebraically slice:

(17) K D n1T .p;Q1/ #n2T .p;Q2/ # � � � #nkT .p;Qk/:

In order to provide a convenient criterion, we define the s–level of K to be the knot

Ks.K/ WD n1T .p; q1;`1�s/ #n2T .p; q2;`2�s/ # � � � #nkT .p; qk;`k�s/:

Here, it is understood that T .p; qi;`i�s/ is the unknot U if `i � s < 1. As an example
of this notation, we see that, if Q D .q1; : : : ; q`/, then Ks.T .p;Q// D T .p; q`�s/
for 0� s � `� 1 and Ks.T .p;Q//D U for s � `. In particular, the cabling formula
for the classical Blanchfield form implies that

(18) Bl.T .p;Q//Š
M
s�0

Bl
�
Ks.T .p;Q//

�
.tp

s

/:
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Indeed, for a knot L, the cabling formula reads as [24]

Bl.Lp;q/.t/D Bl.T .p; q//.t/˚Bl.L/.tp/:

Next, we move on to a slightly more involved example.

Example 5.1 The s–levels of

J WD T .p; q1Ip; q2/ #T .p; q3/ #�T .p; q1Ip; q3/ #�T .p; q2/

are given by

Ks.J /D

8<:
T .p; q2/ #T .p; q3/ #�T .p; q3/ #�T .p; q2/ if s D 0;
T .p; q1/ #�T .p; q1/ if s D 1;
U if s � 2:

For sD1, we used that K1.J /DT .p; q1/#U #�T .p; q1/#�U is T .p; q1/#�T .p; q1/.
In particular, the formula displayed in (18) also holds for J. As we shall use in
Proposition 5.3 below, it holds for the linear combination of (17).

For later use, we note that the 0–level of K is the most important to us: the first
homology of its p–fold branched cover equals that of K.

Remark 5.2 Since H1.†p.Jp;q//DH1
�
†p.T .p; q//

�
for any knot J, we deduce

H1.†p.K//DH1
�
†p.K0.K//

�
D

kM
iD1

H1
�
†p.T .p; qi;`i //

�
:

The analogous decomposition holds for the linking form �p.K/ [22, Lemma 4].

The next proposition uses s–levels to exhibit a criterion for the algebraic sliceness of K.

Proposition 5.3 Fix an integer p � 2 and choose sequences of positive integers Qi D
.qi;1; : : : ; qi;`i / that are relatively prime to p for i D 1; 2; : : : ; k. The following state-
ments are equivalent :

(i) The knot K D n1T .p;Q1/ # � � � #nkT .p;Qk/ is algebraically slice.

(ii) Each Ks.K/ is slice.

Proof We first assert that the polynomials�Ks.K/.t
ps / and�Ku.K/.t

pu/ have distinct
roots if s ¤ u. For a positive integer m, we set �m WD e2�i=m. The roots of �T.p;q/.t/
occur at those �apq where the integer 1� a � pq is such that neither p nor q divides a,
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ie .�apq/
p ¤ 1 and .�apq/

q ¤ 1. Consequently, the roots of �T.p;q/.tp
s

/ occur at �a
psC1q

such that 1� a � psC1q and neither p nor q divides a.

We argue that, if s ¤ u, then �T.p;q1/.t
ps / and �T.p;q2/.t

pu/ have distinct roots.
Assume to the contrary that they have a common root. This root must be of the form
�a
psC1q1

D �b
puC1q2

, where q1 and p (resp. q2 and p/ do not divide a (resp. b). Without
loss of generality, assume that s <u, so that 1D .�a

psC1q1
/p
sC1q1 D .�b

puC1q2
/p
sC1q1 D

�
bq1
pu�sq2

. This implies that pu�sq2 divides bq1. However, by assumption, p divides
neither q1 nor b, yielding the desired contradiction.

Next, recall from the definition of the s–level that

Ks.K/ WD n1T .p; q1;`1�s/ #n2T .p; q2;`2�s/ # � � � #nkT .p; qk;`k�s/:

Thus, if s ¤ u, then �Ks.K/.t
ps / and �Ku.K/.t

pu/ have distinct roots. This proves
the assertion.

Assume thatK is algebraically slice. By the cabling formula for the Blanchfield pairing
(see Example 5.1),

(19) Bl.K/.t/Š
M
s�0

Bl.Ks.K//.tp
s

/

is metabolic. By the assertion and Proposition 4.3, we deduce that each Bl.Ks.K//.tp
s

/

is metabolic. It follows that the jump function of each Bl.Ks.K//.tp
s

/ is trivial,
which is simply a reparametrisation of the jump function of Bl.Ks.K//.t/, where
the parameter t 2 S1 is changed to tp

r

. Hence, Ks.K/ is a connected sum of torus
knots such that the jump function of �!.Ks/ is trivial. Since Litherland showed in [21,
Lemma 1] that the jump functions of �!.T .p; q// are linearly independent, Ks.K/ is
slice, as desired.

Assume that each Ks.K/ is slice. As a linking form over ZŒt˙1�, Bl.Ks.K// is
metabolic. Combining this with the decomposition displayed in (19), we deduce
that Bl.K/ is metabolic, as a linking form over ZŒt˙1�. This is equivalent to K being
algebraically slice [17], completing the proof of Proposition 5.3.

When K is algebraically slice, we obtain a convenient description of the 0–level of K.

Corollary 5.4 Suppose thatK, p, `i and Qi for i D 1; : : : ; k are as in Proposition 5.3.
If K is algebraically slice , then k is even and , after renumbering if necessary, the 0–
level of K is

K0.K/D
k=2

#
jD1

mj .T .p; qj; j̀ / #�T .p; qj; j̀ //:
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Proof By Proposition 5.3, K0.K/ is a slice linear combination of torus knots. Since
torus knots are linearly independent in the knot concordance group, the conclusion
follows.

5.2 Linearly independent families of iterated torus knots

Fix a prime power p. The goal of this section is to prove Theorem 1.1.

For i D 1; : : : ; k, we choose sequences Qi D .qi;1; qi;2; : : : ; qi;`i / of positive integers,
where qi;`i is prime for all i , and the integer qi;j is coprime to p and to qi;`i for
all j. We also let n1; : : : ; nk 2 Z be integers. We will use metabelian Blanchfield
pairings [25; 3; 4; 5] to obstruct the sliceness of the knot

K D n1T .p;Q1/ #n2T .p;Q2/ # � � � #nkT .p;Qk/:

The sliceness obstruction that we will use, due to Miller and Powell [25, Theorem 6.10],
reads as follows. If, for every Zp–invariant metaboliser G of �p.K/, there exists a
prime power–order character � that vanishes on G and is such that Bl˛.p;�/.K/ is
not metabolic, then K is not slice. Here, we use ˛.p; �/ WD ˛K.p; �/ to denote the
metabelian representation that was described in Section 3.1.

Remark 5.5 The metabelian Blanchfield pairing is a linking form

Bl˛.p;�/.K/ WH1.MK ICŒt
˙1�

p

˛.p;�/
/�H1.MK ICŒt

˙1�
p

˛.p;�/
/!C.t/=CŒt˙1�;

where H1.MK ICŒt˙1�
p

˛.p;�/
/ denotes the homology of the 0–framed surgery of K

twisted by ˛.p; �/. The precise definition of Bl˛.p;�/.K/ is not needed in this paper (the
interested reader can find it in [25; 3; 4; 5]). All we need is the behaviour of Bl˛.p;�/.K/
under satellite operations, and this will be recalled as the argument proceeds.

The strategy behind the proof of Theorem 1.1 is as follows:

(i) Firstly, we study the characters on H1.†p.K//.

(ii) Secondly, we study the consequences of Bl˛.p;�/.K/ being metabolic. This will
impose substantial restrictions on �.

(iii) Thirdly, we build characters that violate these restrictions.

(iv) Finally, we combine these first three steps to conclude the proof.

The reader that wishes to see how these steps combine might glance at the end of the
argument, after the conclusion of the proof of Lemma 5.8; see Section 5.2.4.
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5.2.1 Characters onH1.†p.K// Assume that K is slice. The first step is to study
the possible characters on the p–fold branched cover of K. Since K is algebraically
slice, Corollary 5.4 implies that k is even and, after renumbering if necessary, for some
prime r (which is one of the qj; j̀ ) and some integers m1; : : : ; mk=2, we can write

K0.K/Dm1.T .p; r/ #�T .p; r// #
k=2

#
jD2

mj .T .p; qj; j̀ / #�T .p; qj; j̀ //;

where qi;`i Dr if and only if 1� i�2m1. It follows that, if we setMj Dm1C� � �Cmj�1
for j D 2; : : : ; 1

2
k, then, after further possible renumbering, the knotK can be rewritten

as

(20) K D
m1

#
iD1

.T .p;Q2i�1/ #�T .p;Q2i //

#
k=2

#
jD2

mj

#
iD1

.T .p;Q2MjC2i�1/ #�T .p;Q2MjC2i //:

As Remark 5.2 implies thatH1.†p.K//ŠH1
�
†p.K0.K//

�
, the description of K0.K/,

the primary decomposition and the fact that the qi;`i are prime show that

(21) H1.†p.K//DH1
�
†p.T .p; r//

�m1
˚H1

�
†p.�T .p; r//

�m1
˚

k=2M
jD2

�
H1
�
†p.T .p; qj; j̀ //

�mj
˚H1

�
†p.�T .p; qj; j̀ //

�mj �:
The linking form �p.K/ on †p.K/ decomposes analogously.

From now on, � denotes the trivial character. Also, since H1
�
†p.T .p; r//

�
Š Zp�1r ,

we write characters H1
�
†p.T .p; r//

�
! Zr as �a, where a 2 Zpr . Since r is dis-

tinct from qi;`i for i > 2m1, the decomposition of (21) implies that any character
� WH1.†p.K//! Zr must be of the form

(22) �D

m1M
iD1

.�ai ˚�bi /˚

k=2M
jD2

mjM
iD1

� ˚ �;

where faj gm1jD1 and fbj gm1jD1 are sequences of p elements in Zr .

Remark 5.6 Recall that the Miller–Powell obstruction requires that, for every Zp–
invariant metaboliser G of �p.K/, we construct a prime power–order character � that
vanishes on G and is such that Bl˛.p;�/.K/ is not metabolic. The primary decomposi-
tion implies that every such metaboliser decomposes as a direct sum of metabolisers of
the summands in (21).
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Consequently, thanks to the form of the character in (22), it suffices to prove the follow-
ing result: for every Zp–invariant metaboliser L of �p.T .p; r//m1˚��p.T .p; r//m1 ,
there is a prime power–order character

Lm1
iD1.�ai ˚ �bi / that vanishes on L and is

such that Bl˛.p;�/.K/ is not metabolic, with � as in (22).

5.2.2 The metabelian Blanchfield pairing of K We now study the metabelian
Blanchfield pairing of K. We first use satellite formulas to decompose it, and we then
study the implications of it being metabolic. We use ˛.p; �/ WD ˛K.p; �/ to denote
the metabelian representation that was described in Section 3.1. The behaviour of
metabelian Blanchfield pairings under connected sums [4, Corollary 4.21] implies
that Bl˛.p;�/.K/ is Witt equivalent to the linking form

(23) Bl˛.p;�/.K/

�

m1M
iD1

�
Bl˛.p;�

ai
/.T .p;Q2i�1//˚�Bl˛.p;�

bi
/.T .p;Q2i //

�
˚

k=2M
jD2

mjM
iD1

�
Bl˛.p;�/.T .p;Q2MjC2i�1//˚�Bl˛.p;�/.T .p;Q2MjC2i //

�
:

For a sequence S D .q1; : : : ; qk/, we use T .p; yS/ to denote the iterated torus knot
T .p; q1I : : : Ip; qk�1/. Next, we apply the satellite formula for the metabelian Blanch-
field pairing [4, Theorem 4.19] to both expressions in (23). As we are working with p–
fold covers and the sequences Q2i�1 and Q2i (resp. Q2MjC2i�1 and Q2MjC2i ) both
have r (resp. qj; j̀ ) as the prime in last position, we claim

(24) Bl˛.p;�/.K/

�

m1M
iD1

�
Bl˛.p;�

ai
/.T .p; r//˚�Bl˛.p;�

bi
/.T .p; r//

�
˚

m1M
iD1

pM
uD1

�
Bl.T .p; yQ2i�1//.�

aiu
r t /˚�Bl.T .p; yQ2i //.�

biu
r t /

�
˚

k=2M
jD2

mjM
iD1

�
Bl˛.p;�/.T .p; qj; j̀ //˚�Bl˛.p;�/.T .p; qj; j̀ //

�

˚

k=2M
jD2

mjM
iD1

pM
uD1

�
Bl.T .p; yQ2MjC2i�1//.t/˚�Bl.T .p; yQ2MjC2i //.t/

�
:
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The satellite formula of [4, Theorem 4.19] involves Bl.K/
�
�
�.t i�1Q qQ.�

�w
Q �//

q1 t
�
, where

�Q denotes the meridian of the satellite knotQDP�.K/ with pattern P, companionK
and infection curve �; furthermore, qQ W �1.MQ/! H1.†p.Q// denotes the map
described in (7). Recalling the notation of Section 2, we see that, in our case, � coincides
with the curve c2, and �Q D�T.p;q/. Thus, as explained in (9) for �D �a, we deduce
that �.tu�1Q qQ.�

�w
Q �// D au, and this explains the second summand of (24). The

decomposition in (24) is now justified, concluding the claim.

Next, we wish to apply the cabling formula Bl.Jp;q/.t/D Bl.T .p; q//.t/˚Bl.J /.tp/
for the classical Blanchfield pairing. To make notation more manageable, however, for
s � 1, coprime integers p and q, and a 2 Zpr , we consider the linking form

ƒ.p; q; �a; s/ WD

p�1M
uD0

Bl.T .p; q//.�p
s�1au

r tp
s�1

/:

If the character �a is trivial, then we write ƒ.p; q; s/ instead of ƒ.p; q; �; s/. These
pairings appear as summands of the Blanchfield pairing of a cable. Indeed, using this
notation and the aforementioned untwisted cabling formula, we deduce from (24) that

Bl˛.p;�/.K/

�

m1M
iD1

�
Bl˛.p;�

ai
/.T .p; r//˚�Bl˛.p;�

bi
/.T .p; r//

�
: : :

˚

k=2M
jD2

mjM
iD1

�
Bl˛.p;�/.T .p; qj; j̀ //˚�Bl˛.p;�/.T .p; qj; j̀ //

�

˚

m1M
iD1

M
s�1

.ƒ.p; q2i�1;`2i�1�s; �ai ; s/˚�ƒ.p; q2i;`2i�s; �bi ; s//

˚

k=2M
jD1

mjM
iD2

M
s�1

.ƒ.p; q2MjC2i�1;`2MjC2i�1�s
; s/˚�ƒ.p; q2MjC2i;`2MjC2i�s

; s//

DW B
�
1 ˚B2˚B

�
3 ˚B4:

Now that we have decomposed Bl˛.p;�/.K/, we study the consequences of it being
metabolic.

Claim 1 If Bl˛.p;�/.K/ is metabolic , then B�1 and B�3 ˚B4 are metabolic.

Proof As Bl˛.p;�/.K/ and B2 are metabolic, B�1 ˚ .B
�
3 ˚ B4/ is metabolic. By

Proposition 4.3, it suffices to prove that the orders ofB�1 andB�3˚B4 have distinct roots:
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the roots of the twisted polynomial occur at prime powers of unity (by Proposition 3.3),
while this is never the case for the classical Alexander polynomial [8, proof of Proposi-
tion 3.3(3)].2 This proves Claim 1.

In order to study the consequences of B�3 ˚B4 being metabolic, for s � 1, we set

B
�
3 .s/ WD

m1M
iD1

.ƒ.p; q2i�1;`2i�1�s; �ai ; s/˚�ƒ.p; q2i;`2i�s; �bi ; s//;

B4.s/ WD

k=2M
jD1

mjM
iD2

.ƒ.p; q2MjC2i�1;`2MjC2i�1�s
; s/˚�ƒ.p; q2MjC2i;`2MjC2i�s

; s//:

Using these forms, we derive a further consequence of Bl˛.p;�/.K/ being metabolic.

Claim 2 If B�3 ˚B4 is metabolic , then B�3 .s/˚B4.s/ is metabolic for each s.

Proof By definition, we have the decompositions B�3 D
L
s�1B

�
3 .s/ and B4 DL

s�1B4.s/. For u¤ v, the order of B�3 .u/˚B4.u/ and the order of B�3 .v/˚B4.v/
have distinct roots. By Proposition 4.3, Claim 2 follows.

Consequently, it is sufficient to study the linking forms B�3 .s/˚B4.s/ for a fixed s � 1.
To further decompose B�3 .s/˚B4.s/, we want to group these linking forms according
to the torus knots that appear. We also need to be attentive to the fact that the torus
knot T .p; qi;`i�s/ is trivial when i � `i . As a consequence, for s � 1, we consider the
sets

(25)

I1.q; s/ WD f1� i �m1 j `2i�1 > s; q2i�1;`2i�1�s D qg;

I2.q; s/ WD f1� i �m1 j `2i > s; q2i;`2i�s D qg;

I3.q; s/ WD
k=2[
jD2

f1� i �mj j `2MjC2i�1 > s; q2MjC2i�1;`2MjC2i�1�s
D qg;

I4.q; s/ WD
k=2[
jD2

f1� i �mj j `2MjC2i > s; q2MjC2i;`2MjC2i�s
D qg:

2Here is a topological proof of this fact: for a knot K and an integer q, the order of H1.†q.K//
is
Qq�1
aD1�K.�

a
q / [20, Corollary 9.8]; since q is a prime power, H1.†q.K// is a finite group, and thus

none of the �K.�aq / can vanish.
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Note that, for some q, the set Ii .q; s/ may well be empty. However, from now on, we
will implicitly assume that we only consider q for which this is not the case. In order
to study the consequences of B�3 .s/˚B4.s/ being metabolic, we set

B
�
3 .q; s/ WD

M
k2I1.q;s/

ƒ.p; q; �ak ; s/˚�
M

k2I2.q;s/

ƒ.p; q; �bk ; s/;

B4.q; s/ WD
M

k2I3.q;s/

ƒ.p; q; s/˚�
M

k2I4.q;s/

ƒ.p; q; s/:

Note that B4.q; s/ is not automatically metabolic as the cardinality of I3.q; s/ need
not agree with that of I4.q; s/. Observe however that, if K is algebraically slice,
Proposition 5.3 implies that

(26) #I1.q; s/� #I2.q; s/C #I3.q; s/� #I4.q; s/D 0:

Indeed, note that the sets Ii .q; s/ record where T .p; q/ appears in the s–level of K.
Using the Bi .q; s/, we now derive a further consequence of Bl˛.p;�/.K/ being meta-
bolic.

Claim 3 If B�3 .s/˚B4.s/ is metabolic , then B�3 .q; s/˚B4.q; s/ is metabolic for
each q.

Proof We have decompositionsB�3 .s/D
L
q�1B

�
3 .q; s/ andB4.s/D

L
q�1B4.q; s/.

Since all the qi are positive, for u¤ v, the order of B�3 .u; s/˚B4.u; s/ and the order
of B�3 .v; s/˚B4.v; s/ have distinct roots. By Proposition 4.3, Claim 3 follows.

Summarising these claims, we have shown that, if the metabelian Blanchfield pairing
Bl˛.p;�/.K/ is metabolic, then the linking forms B�3 .q; s/˚B4.q; s/ are metabolic
for all q and s. This concludes the second part of the proof.

5.2.3 Building the characters that vanish on metabolisers The third part con-
sists in showing that, for every Zp–invariant metaboliser L of �p.T .p; r//m1 ˚
��p.T .p; r//

m1 , there are characters �a D
Lm1
iD1 �ai and �b D

Lm1
iD1 �bi such

that �a˚�b vanishes on L, but for which the linking forms B�3 .q; s/˚B4.q; s/ are
not all metabolic, where �D �a˚�b˚ � is as in (22).

The next proposition describes characters for which B�3 .q; s/˚B4.q; s/ is not meta-
bolic.

Algebraic & Geometric Topology, Volume 23 (2023)



796 Anthony Conway, Min Hoon Kim and Wojciech Politarczyk

Proposition 5.7 Let q; s > 0 be positive integers with q coprime to p. If a characterLm1
iD1 �ai ˚�bi satisfies either

(i) �bk D � for every k 2 I2.q; s/ and �ak0 ¤ � for some k0 2 I1.q; s/, or

(ii) �ak D � for every k 2 I1.q; s/ and �bk0 ¤ � for some k0 2 I2.q; s/,

then the linking form B
�
3 .q; s/˚B4.q; s/ is not metabolic.

Proof We will only consider case (i). In order to give the proof in case (ii), just
exchange the roles of �a and �b. Assume that �bk D � for every k 2 I2.q; s/ and
�ak0 ¤ � for some k0 2 I1.q; s/. Since K is algebraically slice, recall from (26) that

#I1.q; s/� #I2.q; s/C #I3.q; s/� #I4.q; s/D 0:

We thus define N WD #I1.q; s/D #I2.q; s/�#I3.q; s/C#I4.q; s/, leading to the Witt
equivalence

(27) B
�
3 .q; s/˚B4.q; s/�

M
k2I1.q;s/

ƒ.p; q; �ai ; s/˚�

p�NM
iD1

Bl.T .p; q//.tp
s�1

/:

We assert that the orders of the modules underlying the summands of the right-hand side
of (27) have distinct roots. First, note that r is coprime to q: as k 2 I1.q; s/, we know
that q 2Qi for some i < 2m1 and, since Qi D .qi;1; qi;2; : : : ; qi;`i�1; r/ for i < 2m1,
this follows from the assumption of Theorem 1.1. It is known that �T.p;q/.�

a1
r t /

and �T.p;q/.�
a2
r t / have distinct roots whenever a1 ¤ a2 and r and q are coprime [14,

Theorem 7.1]. This establishes the assertion.

Thanks to the assertion, we may apply Proposition 4.3. Indeed, the fact that �ak0 ¤ �

and Proposition 4.3 now guarantees that the linking form on the right-hand side of (27)
is not metabolic.

Before constructing the required characters, we introduce some terminology. We say
that the knot K is simplified if there are no indices k1 2 I1.q; s/ and k2 2 I2.q; s/
such that Q2k1�1 DQ2k2 . If K is not simplified, then it contains a slice connected
summand T .p;Q2k1�1/ #�T .p;Q2k1�1/.

Lemma 5.8 Let p be a prime power. If the knot K is simplified , then , for any Zp–
invariant metaboliser L�H1

�
†p.T .p; r//

�m1
˚H1

�
†p.T .p; r//

�m1 , there exist q,
s and a character �a˚�b D

Lm1
iD1 �ai ˚�bi vanishing on L such that either

(i) �bk D � for every k 2 I2.q; s/ and �ak0 ¤ � for some k0 2 I1.q; s/, or

(ii) �ak D � for every k 2 I1.q; s/ and �bk0 ¤ � for some k0 2 I2.q; s/.
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Proof Fix a metaboliser L�H1
�
†p.T .p; r//

�m1
˚H1

�
†p.T .p; r//

�m1 of

�p.T .p; r//
m1 ˚��p.T .p; r//

m1 :

For iD1; 2, consider the projection pri WH1
�
†p.T .p; r//

�m1
˚H1

�
†p.T .p; r//

�m1
!

H1
�
†p.T .p; r//

�m1 onto the i th factor. The proof is divided into three separate cases.

Case 1
�
pr1.L/ is a proper subspace of H1

�
†p.T .p; r//

�m1� In this case, we can
define the characters �a and �b as �b D � and

�a WH1
�
†p.T .p; r//

�m1
!H1

�
†p.T .p; r//

�m1=pr1.L/
nontrivial character
�����������! Zr :

It is not difficult to see that �a and �b satisfy (i) and are such that �a˚�b vanishes
on L.

Case 2
�
pr2.L/ is a proper subspace of H1

�
†p.T .p; r//

�m1� In this case, we ex-
change the roles of �a and �b and repeat the argument from the first case. This way,
we obtain characters �a and �b that satisfy (ii) and are such that �a˚ �b vanishes
on L.

Case 3
�
pr1.L/ D H1

�
†p.T .p; r//

�m1 and pr2.L/ D H1
�
†p.T .p; r//

�m1� We
wish to apply Proposition 4.4 in order to prove that L is a graph. We verify the
hypothesis of this proposition. Using the assumption of Case 3 and the definition of
the projections, we have

0D ker.pr1jL/D L\
�
0˚H1

�
†p.T .p; r//

�m1�;
0D ker.pr2jL/D L\

�
H1
�
†p.T .p; r//

�m1
˚ 0

�
:

Consequently, by Proposition 4.4, L is the graph of an isometry

g W
�
H1
�
†p.T .p; r//

�m1 ; �p.T .p; r//m1�! �
H1
�
†p.T .p; r//

�m1 ; �p.T .p; r//m1�:
For each q, s and j D 1; 2, consider the subsets of H1

�
†p.T .p; r//

�m1
SIj .q;s/ D f.v1; v2; : : : ; vm1/ 2H1

�
†p.T .p; r//

�m1
W vi D 0 for i … Ij .q; s/g

D

M
k2Ij .q;s/

H1
�
†p.T .p;Qk//

�
;

where Ij .q; s/ is as defined in (25).
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Next, we use these sets and the isometry g to describe a sufficient criterion to obtain
the characters �a and �b required by the statement of Lemma 5.8.

Claim 4 If there exist q and s such that g.SI1.q;s//¤ SI2.q;s/, then there are charac-
ters �a and �b satisfying either (i) or (ii) and such that �a˚�b vanishes on L.

Proof If g.SI1.q;s//XSI2.q;s/¤∅, then choose v 2SI1.q;s/ such that g.v/…SI2.q;s/.
Since r is a prime,H1

�
†p.T .p; r//

�m1 is an Fr–vector space and so we obtain a direct-
sum decomposition H1

�
†p.T .p; r//

�m1
D hvi˚W for some Fr–vector space W. We

can then define the characters as

�a.v/D 1; �ajW D �; �b.x/D��a.g
�1.x//:

Such choices of �a and �b satisfy condition (i). We verify that �a˚�b vanishes on L,
where we recall that L is the graph of g. For an element .h; g.h// 2 L of this graph,
one has .�a˚�b/.h; g.h//D �a.h/��a

�
g�1.g.h//

�
D 0. This concludes the proof

in this case.

If, on the other hand, we assume that SI2.q;s/Xg.SI1.q;s//¤∅, the argument is nearly
identical. Choose v2SI2.q;s/Xg.SI1.q;s// and write once moreH1

�
†p.T .p; r//

�m1
D

hvi˚W and define the required characters as

�b.v/D 1; �bjW D �; �a.x/D��b.g.x//:

These choices of �a and �b satisfy condition (ii) and �a˚�b vanishes on L.

By Claim 4, to prove Lemma 5.8, it is enough to show that there always exist q and s such
that g.SI1.q;s//¤SI2.q;s/. Assume by way of contradiction that g.SI1.q;s//DSI2.q;s/
for all q and s. We will show in Claim 5 below that this assumption implies that K
is not simplified. This is a contradiction since we assumed that K is simplified. This
proves Lemma 5.8 modulo Claim 5.

Claim 5 If g.SI1.q;s//D SI2.q;s/ for all q and s, then K is not simplified.

Proof We will observe that, under the assumption of the claim, K contains a summand
of the form T .p;Q2k0�1/#�T .p;Q2k0�1/ for some integer k0. To be precise, choose
1� k0 �m1 such that the length `2k0�1 of the sequence of Q2k0�1 is maximal among
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all the `2k�1 for k D 1; : : : ; m1, and define3

X.k0/D f1� k �m1 jQ2k0�1 DQ2k�1g D

`2k0�1\
sD1

I1.q2k0�1;`2k0�1�s; s/;

Y.k0/D f1� k �m1 jQ2k0�1 DQ2kg D

`2k0�1\
sD1

I2.q2k0�1;`2k0�1�s; s/:

We will need the following properties of these sets:

(a) Since k0 2X.k0/, X.k0/ is nonempty.

(b) If j 2X.k0/, then T .p;Q2j�1/D T .p;Q2k0�1/.

(c) If j 2 Y.k0/, then T .p;Q2j /D T .p;Q2k0�1/.

It is enough to show that Y.k0/ ¤ ∅. By (a)–(c), this would imply that K is not
simplified since K contains a summand of the form T .p;Q2k0�1/ #�T .p;Q2k0�1/.

To show that Y.k0/¤∅, consider the subspaces of H1
�
†p.T .p; r//

�m1
SX.k0/ WD f.v1; v2; : : : ; vm1/ 2H1

�
†p.T .p; r//

�m1
W vi D 0 for i …X.k0/g;

D

M
k2X.k0/

H1
�
†p.T .p;Q2k�1//

�
;

SY.k0/ WD f.v1; v2; : : : ; vm1/ 2H1
�
†p.T .p; r//

�m1
W vi D 0 for i … Y.k0/g

D

M
k2Y.k0/

H1
�
†p.T .p;Q2k//

�
:

The advantage of writing X.k0/ and Y.k0/ as intersections of the Ij .qk0;`k0�s ; s/ is
that the action of g on SX.k0/ can be described as

g.SX.k0//D
\
s�1

Sg.I1.q2k0�1;`2k0�1�s
;s// D

\
s�1

SI2.q2k0�1;`2k0�1�s
;s/ D SY.k0/;

where the second equality follows from the assumption. As g is an Fr–linear auto-
morphism, dimSX.k0/ D dimSY.k0/. Since the Fr–dimension of H1

�
†p.T .p; r//

�
is p� 1, we deduce that

.p� 1/ #X.k0/D dimSX.k0/ D dimSY.k0/ D .p� 1/ #Y.k0/:

It follows that #X.k0/D #Y.k0/. Since X.k0/¤∅ by (a), it follows that Y.k0/¤∅.
As we mentioned, this implies that K is not simplified by (a)–(c) and Claim 5 is
proved.

3Without the maximality assumption on `2k0�1, we would have had to replace the condition Qk0 DQk
by Qk0 �Qk .
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This concludes the third part of the proof.

5.2.4 Conclusion of the proof of Theorem 1.1 Let K be a (nontrivial) linear
combination of iterated torus knots of the form T .p;Qi / for i D 1; : : : ; k. Here,
the Qi D .qi;1; qi;2; : : : ; qi;`i / are sequences of `i positive integers where qi;`i is
prime for all i and the integer qi;j is coprime to p and to qi;`i for all j. Assume that K
is slice to obtain a contradiction. In particular K is algebraically slice and, as we saw
in (20), we can therefore assume without loss generality that it is of the form

(28) K D
m1

#
iD1

.T .p;Q2i�1/ #�T .p;Q2i //

#
k=2

#
jD2

mj

#
iD1

.T .p;Q2MjC2i�1/ #�T .p;Q2MjC2i //:

Here we arranged that qi;`i D r if and only if 1� i � 2m1. Furthermore, we can assume
that K is simplified by cancelling terms of the form J #�J if any such term appears
in (28). We can also assume that there is an index i such that `i >1: otherwise,K would
be a linear combination of torus knots, which is impossible since the latter are linearly
independent in Ctop [21]. To prove that K is not slice, we saw that it is enough to show
that, for every Zp–invariant metaboliser L of �p.T .p; r//m1˚��p.T .p; r//m1 , there
is a character �a˚�bD

Lm1
kD1

.�ak ˚�bk / that vanishes on L such that Bl˛.p;�/.K/
is not metabolic, where �D�a˚�b˚

Lk=2
jD2

Lmj
iD1 �˚� ; recall Remark 5.6. We then

applied satellite formulas to show that Bl˛.p;�/.K/ decomposes (up to Witt equivalence)
as

Bl˛.p;�/.K/� B
�
1 ˚B2˚B

�
3 ˚B4 D B

�
1 ˚B2˚

M
q;s

B
�
3 .q; s/˚

M
q;s

B4.q; s/:

Claim 1 shows that, if Bl˛.p;�/.K/ is metabolic, thenB�1 andB�3˚B4 are metabolic. By
Claims 2 and 3, it follows thatB�3 .q; s/˚B

�
3 .q; s/must be metabolic for all q and s and

all characters �a˚�b. On the other hand, as the knotK is simplified, Lemma 5.8 implies
that, for any Zp–invariant metaboliserL�H1

�
†p.T .p; r//

�m1
˚H1

�
†p.T .p; r//

�m1 ,
there exist q, s and a character �a˚�b vanishing on L such that either

(i) �bk D � for every k 2 I2.q; s/ and �ak0 ¤ � for some k0 2 I1.q; s/, or

(ii) �ak D � for every k 2 I1.q; s/ and �bk0 ¤ � for some k0 2 I2.q; s/.

Applying Proposition 5.7, we deduce that for such characters and such integers q and s,
the linking form B

�
3 .q; s/˚B4.q; s/ is not metabolic. This is the desired contradiction,

and Theorem 1.1 is proved.
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Rectification of interleavings and a
persistent Whitehead theorem
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The homotopy interleaving distance, a distance between persistent spaces, was in-
troduced by Blumberg and Lesnick and shown to be universal, in the sense that it is
the largest homotopy-invariant distance for which sublevel-set filtrations of close-by
real-valued functions are close-by. There are other ways of constructing homotopy-
invariant distances, but not much is known about the relationships between these
choices. We show that other natural distances differ from the homotopy interleaving
distance in at most a multiplicative constant, and prove versions of the persistent
Whitehead theorem, a conjecture of Blumberg and Lesnick that relates morphisms that
induce interleavings in persistent homotopy groups to stronger homotopy-invariant
notions of interleaving.

55N31, 62R40; 18N40, 18N50, 55U10, 55U35

1 Introduction

Context Many of the main theoretical tools of topological data analysis (TDA) come
in the form of stability theorems. One of the best known stability theorems, due to
Cohen-Steiner, Edelsbrunner and Harer [7], implies that if f;g WX !R are sufficiently
tame functions, such as piecewise linear functions on the geometric realization of a
finite simplicial complex, then

dB.Dn.f /;Dn.g//� kf �gk1:

Here, Dn.f / denotes the n–dimensional persistence diagram of f . This consists of
a multiset of points of the extended plane R2 that captures the isomorphism type of
the nth persistent homology of the sublevel sets of f , that is, of the functor R! Vec
obtained by composing the sublevel-set filtration r 7! f �1.�1; r � WR! Top with the
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nth homology functor Hn W Top!Vec, where R denotes the poset of real numbers and
Vec denotes the category of vector spaces over some fixed field. The distance dB is the
bottleneck distance, a combinatorial way of comparing persistence diagrams.

This result was later refined by Chazal, Cohen-Steiner, Glisse, Guibas and Oudot in [4]
to the algebraic stability theorem, which says that for F;G WR!Vec sufficiently tame
functors, one has

dB.D.F /;D.G//� dI .F;G/;

where, as before, D.F / denotes the persistence diagram of F , which describes the
isomorphism type of F , and dI denotes the interleaving distance, a distance between
functors R! C for any fixed category C , which we recall below.

Stability theorems imply that pipelines like the following, popular in TDA, are robust
to perturbations of the input data and can be used for inference purposes:

data ! persistent spaces Hn
�! persistent vector spaces D

�! persistence diagrams

For example, the algebraic stability theorem tells us that the last step is stable, if we
endow persistent vector spaces (VecR) with the interleaving distance and persistence
diagrams with the bottleneck distance, while functoriality implies that the second step
is stable, if we also endow persistent spaces (TopR) with the interleaving distance; see
Bubenik and Scott [3].

Problem statement Although useful in some applications, the interleaving distance
on TopR is often too fine; for instance, it is easy to see that Vietoris–Rips and other
functors S WMet! TopR are not stable with respect to the Gromov–Hausdorff distance
on metric spaces and the interleaving distance on TopR. However, when one composes
these functors with a homotopy-invariant functor, such as homology Hn WTopR

!VecR,
the composite Hn ıS WMet! VecR turns out to be stable; see Chazal, Cohen-Steiner,
Guibas, Mémoli and Oudot [5]. So, in these cases, one way to make the first step in
the pipeline above stable is to force the interleaving distance on TopR to be homotopy-
invariant [2, Section 1.2]. For this reason, many homotopy-invariant adaptations of
the interleaving distance on TopR and related categories have been proposed; see
eg Blumberg and Lesnick [2], Frosini, Landi and Mémoli [8] and Lesnick [15]. In
order to describe some of these adaptations, we recall the definition of the interleaving
distance dI .

Let C be a category. Given ı � 0 2 R and F W R! C , let F ı W R! C be given by
F ı.r/ WDF.rCı/, with the obvious structure morphisms. One says that F;G 2C R are
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ı–interleaved if there exist natural transformations f W F !Gı and g WG! F ı such
that gı ıf WF!F2ı equals the natural transformation F!F2ı given by the structure
morphisms of F , and such that f ı ı g W G ! G2ı equals the natural transformation
G!G2ı given by the structure morphisms of G. Then

dI .F;G/ WD inf.fı � 0 W F and G are ı–interleavedg[ f1g/:

Blumberg and Lesnick [2] define X;Y 2 TopR to be ı–homotopy interleaved if there
exist weakly equivalent persistent spaces X 0 ' X and Y 0 ' Y such that X 0 and Y 0

are ı–interleaved, and use homotopy interleavings to define the homotopy interleaving
distance, denoted dHI. The homotopy interleaving distance is the (metric) quotient of
the interleaving distance by the equivalence relation given by weak equivalence, in the
sense that dHI is the largest homotopy-invariant distance that is bounded above by the
interleaving distance.

Instead of taking a metric quotient, one can take the categorical quotient of TopR by
weak equivalences, and define interleavings directly in the homotopy category, similar
to what is done in eg Frosini, Landi and Mémoli [8] Kashiwara and Schapira [14] and
Lesnick [15]. In order to do this, one notes that the shift functors .�/ı W TopR

! TopR

preserve weak equivalences and thus induce functors .�/ı W Ho.TopR/! Ho.TopR/.
This lets one copy the definition of interleaving, but in the homotopy category, which
gives the notions of interleaving in the homotopy category and of interleaving distance
in the homotopy category, denoted by dIHC.

A third option, also introduced in [2], is to compare objects of TopR using interleav-
ings in Ho.Top/R, called homotopy commutative interleavings, which give rise to the
homotopy commutative interleaving distance, denoted by dHC.

We have described three homotopy-invariant notions of interleaving in decreasing order
of coherence. On one end, homotopy interleavings can be equivalently described as
homotopy coherent diagrams of spaces [2, Section 7]. On the other end, homotopy
commutative interleavings correspond to diagrams in the homotopy category of spaces.
It is clear that dHI � dIHC � dHC, and that any of the homotopy-invariant interleavings
induce interleavings in homotopy groups.

Two questions arise: Are the three distances in some sense equivalent or are they
fundamentally different? If a map induces interleavings in homotopy groups, does it
follow that the map is part of one of the homotopy-invariant notions of interleaving?
A conjectural answer to the second question is given in [2, Conjecture 8.6], where
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it is conjectured that when X and Y are a kind of persistent CW–complex of finite
dimension d 2N, if there exists a morphism between them inducing a ı–interleaving
in homotopy groups, then X and Y are cı–homotopy interleaved for a constant c that
only depends on d .

Contributions Homotopy interleavings compose in any functor category of the form
MRm

for M a cofibrantly generated model category (Proposition 2.3). This allows us
to state some of our results for any cofibrantly generated model category M, or for
a category of spaces S, which can be instantiated to be any of the Quillen equivalent
model categories of topological spaces or simplicial sets (Remark 2.1). Our first
theorem is the following rectification result.

Theorem A Let M be a cofibrantly generated model category, let X;Y 2MR, and
let ı > 0 2 R. If X and Y are ı–homotopy commutative interleaved , then they are
cı–homotopy interleaved for every c > 2.

It follows that we have 2dHC � dHI � dIHC � dHC. The above rectification result is
different from many such results in homotopy theory, where a diagram of a certain shape,
in the homotopy category, is lifted to a strict diagram of the same shape. The difference
lies in the fact that the shape of the strict diagram we construct is different from the
shape of the diagram in the homotopy category. In fact, building on the suggestion
in [2] of using Toda brackets to give a lower bound for the above rectification, we show
(Proposition 3.12) that for MD Top, if cdHC � dHI then c � 3

2
, so that, in particular,

dHC ¤ dHI. This means that rectification in the usual sense is not possible in general,
and thus standard results are not directly applicable. We also show that Theorem A has
no analogue for multipersistent spaces (Section 3.3).

Our second theorem relates morphisms inducing interleavings in homotopy groups to
interleavings in the homotopy category. See Definition 5.7 for the notion of persistent
CW–complex and Definition 5.2 for the notion of interleaving induced in persistent
homotopy groups.

Theorem B Fix m� 1 2N and d 2N. Let X;Y 2 SRm

be (multi )persistent spaces
that are assumed to be projective cofibrant and d–skeletal if S D sSet, or persistent
CW–complexes of dimension d if SDTop. Let ı� 02Rm. If there exists a morphism
in the homotopy category X ! Y ı 2 Ho.SRm

/ that induces ı–interleavings in all
homotopy groups , then X and Y are .4.dC1/ı/–interleaved in the homotopy category.
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Together, Theorems A and B give a positive answer to a version of the persistent
Whitehead conjecture [2, Conjecture 8.6] (see Remark 5.14 for a discussion and
Conjecture 5.15 for a statement of the conjecture).

Structure of the paper In Section 2, we recall and give references for the necessary
background. In Section 3, we prove Theorem A, we provide a lower bound for the
rectification of homotopy commutative interleavings between persistent spaces, and
we show that Theorem A has no analogue for multipersistent spaces. In Section 4, we
characterize projective cofibrant (multi)persistent simplicial sets as filtered simplicial
sets. In Section 5, we prove Theorem B.
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Theorem A, and the referee for helpful feedback.

2 Background and conventions

The main purpose of this section is to fix notation and to provide the reader with
references. This section can be referred to as needed, but we do recommend going over
Section 2.2 as it contains the notions of interleaving relevant to us.

We assume that the reader is comfortable with the language of category theory. Through-
out the paper, we will use the term distance to refer to any extended pseudometric on a
(possibly large) set X , that is, to any function dX WX �X ! Œ0;1� that is symmetric,
satisfies the triangle inequality, and is 0 on the diagonal.

2.1 Spaces and model categories

2.1.1 Spaces We work model-independently whenever possible. This means that
whenever we say space we will mean either topological space or simplicial set. Results
stated for spaces will hold for both possible models. The category of spaces will be
denoted by S.

For a general introduction to simplicial sets, see eg [9] or [12, Chapter 3]. We denote
the geometric realization functor for simplicial sets by j�jW sSet! Top.
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2.1.2 Model categories The theory of model categories was introduced in [18]; for
a modern and thorough development of this theory we recommend [11] and [12].

We recall that two objects x;y 2M of a model category M are said to be weakly
equivalent if they are isomorphic in Ho.M/, which happens if and only if they are
connected by a zigzag of weak equivalences in M. This is an equivalence relation,
which we denote by x ' y. When there is risk of confusion, morphisms in Ho.M/

will be surrounded by square brackets Œf �, to distinguish them from morphisms in M.

Two of the main model structures of interest to us are the Quillen model structure on Top,
the category of topological spaces [12, Chapter 1, Section 2.4], and the Kan–Quillen
model structure on sSet, the category of simplicial sets [12, Chapter 3]. We recall that
the geometric realization functor j�jW sSet! Top is left adjoint to the singular functor
Sing W Top! sSet, and that, together, they form a Quillen equivalence [12, Chapter 1,
Section 1.3, Theorem 3.6.7]. For completeness, we mention that there is a subcategory
TopCGWH � Top, the category of compactly generated weakly Hausdorff topological
spaces (called compactly generated spaces in [12, Definition 2.4.21]), that is often
used instead of Top. The Quillen model structure on Top restricts to a model structure
on TopCGWH, and the inclusion TopCGWH! Top is part of a Quillen equivalence [12,
Theorem 2.4.25]. This model structure is, in some respects, better behaved than the
Quillen model structure on topological spaces, and is in fact the model of space used
in [2]. We will not concern ourselves with these subtleties since, by the observations
in Remark 2.1, there is no essential difference between using Top or TopCGWH when
studying homotopy-invariant notions of interleaving.

We will make use of the notion of cofibrantly generated model category [12, Chap-
ter 2, Section 2.1]. Recall that the Kan–Quillen model structure on simplicial sets is
cofibrantly generated, where a set of generating cofibrations consists of the boundary
inclusions @�n ,!�n for n� 0 [12, Theorem 3.6.5]. The Quillen model structure on
topological spaces is also cofibrantly generated, with a set of generating cofibrations
given by fSn�1 ,!Dngn�0 [12, Theorem 2.4.19].

We conclude by recalling the basic properties of projective model structures. Given
a model category M and a small category I, the projective model structure on the
functor category MI is, when it exists, the model structure whose fibrations (resp. weak
equivalences) are those which are pointwise fibrations (resp. weak equivalences) of M.

The projective model structure on MI exists, and is cofibrantly generated, whenever M
is cofibrantly generated. Moreover, if I and J are, respectively, generating cofibrations
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and generating trivial cofibration for the model structure of M, then

fI.i;�/ˇf W i 2 I; f 2 Ig and fI.i;�/ˇg W i 2 I;g 2 J g

are, respectively, generating cofibrations and generating trivial cofibrations for the
projective model structure, where, given a functor F W I! Set and an object X 2M,
the functor F ˇX W I !M is defined by i 7!

`
a2F.i/X [11, Section 11.6]. For

simplicity, we denote I.i;�/ˇX by i ˇX .

We are especially interested in the projective model structure when the indexing category
is a poset .P;�/. In this case, if r 2 P and X 2M, then r ˇX is the functor that
takes the value X on every s � r , and has as value the initial object of M when s — r .
The nontrivial structure morphisms of this functor are the identity of X .

Note that we have a functor h W Ho.MI/ ! Ho.M/I by the universal property of
Ho.MI/.

2.2 Interleavings and interleavings up to homotopy

2.2.1 Strict interleavings We denote the poset of real numbers with their standard
order by R, and for m 2N, we let Rm be the set of m–tuples of real numbers with the
product order. We set xmD fi W 1� i �mg, so that ."i/i2 xm � .ıi/i2 xm 2Rm if and only
if "i � ıi for all 1� i �m. We denote the element .0; : : : ; 0/ 2Rm by 0.

Fix a category C and a natural number m � 1. An m–persistent object of C is
any functor of the form Rm! C . We often refer to m–persistent objects simply as
persistent objects or as multipersistent objects when we want to stress the fact that m is
not necessarily 1. Fix persistent objects X;Y;Z 2 C Rm

, r; s 2Rm, and "; ı � 0 2Rm.
We use the following conventions.

� For f W X ! Y a natural transformation, denote the r–component of f by
fr WX.r/! Y .r/.

� Assume r � s. The structure morphism X.r/!X.s/ will be denoted by 'X
r;s .

� The ı–shift to the left of X is the functor X ı W Rm ! C defined by X ı.r/ D

X.r C ı/, with structure morphisms 'X ı

r;s WD '
X
rCı;sCı

. Shifting to the left gives
a functor .�/ı W C Rm

! C Rm

. Dually, there is a ı–shift to the right functor
ı � .�/ W C Rm

! C Rm

defined by mapping X to the persistent object ı �X , with
values given by .ı �X /.r/DX.r � ı/.
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� Natural transformations f W X ! Y ı will be referred to as ı–morphisms, and
will often be denoted by f WX !ı Y . Since we have natural bijections

Hom." �X;Y ı/Š Hom.X;Y "Cı/Š Hom.."C ı/ �X;Y /;

we can treat a ı–morphism f WX !ı Y as f WX ! Y ı or as f W ı �X ! Y .

� Assume " � ı and let f W X !" Y . We can compose the r–component of f
with 'Y

rC";rCı
W Y .r C "/! Y .r C ı/, giving 'Y

rC";rCı
ıfr WX.r/! Y .r C ı/.

Together, these components define the shift from " to ı of f , which is a ı–
morphism denoted S";ı.f / WX !ı Y .

� Note that an "–morphism f W X !" Y can be composed with a ı–morphism
g WY !ı Z, yielding an ."Cı/–morphism g"ıf WX!"Cı Y . This composition
is associative and unital, and is natural with respect to shifts of morphisms.

� An ."; ı/–interleaving between X and Y consists of an "–morphism f WX !" Y

together with a ı–morphism g W Y !ı X such that g" ı f D S0;"Cı.idX / and
f ı ıg D S0;"Cı.idY /. By ı–interleaving we mean a .ı; ı/–interleaving.

� If f W X !" Y and g W Y !ı X form an ."; ı/–interleaving, then we write
f WX

ı
 !"Y Wg.

Let "1; "2; ı1; ı2� 02Rm. Note that an ."1; "2/–interleaving between X and Y can be
composed with any .ı1; ı2/–interleaving between Y and Z, yielding an ."1Cı1; "2Cı2/–
interleaving. The fact that interleavings compose implies that, when mD 1, the formula

dI .X;Y /D inf.fı � 0 2R WX and Y are ı–interleavedg[ f1g/

defines an extended pseudometric dI W Obj.C
R/ � Obj.C R/ ! Œ0;1�. This is the

interleaving distance on the class of objects of the category C R. This notion of
distance can be extended to objects of the functor category C Rm

[15], but we will not
make use of this extension.

2.2.2 Interleavings up to homotopy If one is comparing objects of a category of
functors of the form Rm !M, for M a model category, it makes sense to want
to find a homotopy-invariant notion of interleaving. In this paper, we consider the
following three homotopy-invariant relaxations of the notion of interleaving. Let M be
a cofibrantly generated model category and endow MRm

with the projective model
structure. Let X;Y 2MRm

and let "; ı � 0 2Rm.

(1) Following [2], we say that X and Y are ."; ı/–homotopy interleaved if there
exist X 'X 0 and Y ' Y 0 such that X 0 and Y 0 are ."; ı/–interleaved.
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(2) Note that the shift functor .�/ı WMRm

!MRm

maps weak equivalences to weak
equivalences. This implies that all the notions in Section 2.2.1 have analogues
in the category Ho.MRm

/. We say that X and Y are ."; ı/–interleaved in the
homotopy category if they are ."; ı/–interleaved as objects of Ho.MRm

/.

(3) Finally, as also done in [2], we say that X and Y are ."; ı/–homotopy commutative
interleaved if their images hX; hY WRm! Ho.M/ are ."; ı/–interleaved.

An ."; ı/–homotopy interleaving gives rise to an ."; ı/–interleaving in the homotopy
category, which, in turn, gives rise to an ."; ı/–homotopy commutative interleaving.

For each of the three homotopy-invariant notions of interleaving introduced above,
we have a corresponding extended pseudometric on the collection of objects of the
category MR. Let X;Y 2MR. Following [2], we define the homotopy interleaving
distance as

dHI.X;Y /D inf.fı � 0 2R WX and Y are ı–homotopy interleavedg[ f1g/:

The fact that the homotopy interleaving distance satisfies the triangle inequality follows
from Proposition 2.3. The interleaving distance in the homotopy category is

dIHC.X;Y /D inf.fı�02R WX;Y are ı–interleaved in the homotopy categoryg[f1g/:

Again following [2], the homotopy commutative interleaving distance is defined as

dHC.X;Y /D inf.fı�02R WX;Y are ı–homotopy commutative interleavedg[f1g/:

Remark 2.1 If M�N is a Quillen equivalence between cofibrantly generated model
categories, then the induced Quillen equivalence [11, Theorem 11.6.5] MRm � NRm

between the projective model structures respects interleavings, in the sense that shifts
commute with both the left and right adjoints. This implies that, for any of the three
homotopy-invariant notions of interleaving described above, we have that two functors
on one side of the adjunction are ."; ı/–interleaved if and only if their images (along
the derived adjunction) on the other side are ."; ı/–interleaved. In particular, if mD 1,
the two adjoints give an isometry between MR and NR independently of whether we
use dHI, dIHC or dHC.

2.2.3 Composability of homotopy interleavings In this short section, we give a
simplified proof of a generalization of the fact that homotopy interleavings can be
composed, originally proved in [2, Section 4]. This is generalized further in [20,
Theorem 4.1.4].
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Lemma 2.2 Let C admit pullbacks. Fix m � 1 2 N, objects X;Y;B W Rm ! C ,
elements "; ı � 0 2Rm, an ."; ı/–interleaving f WX

ı
 !"Y Wg, and a map h WB! Y .

The pullback of f WX ! Y " along h" WB"! Y ", denoted by k WA!B", is part of an
."; ı/–interleaving k WA

ı
 !"B Wl .

Proof We start by depicting the pullback square in the statement:

A B"

X Y "

k

h"

f

Consider the morphisms i D S0;"Cı.idB/ W ı �B!B" and g ı .ı �h/ W ı �B!X . Since
f ı g ı .ı � h/ D h" ı i , the universal property of A gives us a map l W ı �B ! A, or
equivalently, a map l WB!Aı . By construction, kı ı l D S0;"Cı.idB/ WB!B"Cı . To
prove that l" ı k D S0;"Cı.idA/ WA!A"Cı, or equivalently that

l" ı k D S0;"Cı.idA/ W " �A!Aı;

apply the functor .�/ı W C Rm

! C Rm

to the pullback square above, and use the
uniqueness part of its universal property.

Proposition 2.3 (cf [2, Section 4]) Let M be cofibrantly generated , fix m � 1,
let X;Y;Z W Rm !M, and let "1; "2; ı1; ı2 � 0 2 Rm. If X and Y are ."1; "2/–
homotopy interleaved and Y and Z are .ı1; ı2/–homotopy interleaved , then X and Z

are ."1Cı1; "2Cı2/–homotopy interleaved.

Proof Given interleavings X 0 "2
 !"1

Y 0 and Y 00
ı2
 !ı1

Z0 with

X 'X 0; Y 0 ' Y ' Y 0; Z0 'Z;

we must construct an interleaving X 00
"2Cı2

 !"1Cı1
Z00 with X 00 'X and Z00 'Z.

Since M is cofibrantly generated, the projective model structure on MRm

exists, and, by
applying a functorial fibrant replacement M!M pointwise, we get a functorial fibrant
replacement MRm

!MRm

. By construction, the fibrant replacement MRm

!MRm

commutes with .�/ı WMRm

!MRm

so, in particular, it preserves interleavings. With
this in mind, we can assume that Y 0 and Y 00 are fibrant, which implies — and this is
a general fact — that we have C 2MRm

and trivial fibrations C ! Y 0 and C ! Y 00.
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Using Lemma 2.2, we can pull back the interleavings we were given along the trivial
fibrations, as follows:

X 00 C Z00

X 0 Y 0 Y 00 Z0

"1"2

"1"2

ı1ı2

ı1ı2

Since trivial fibrations are stable under pullback, we have that X 00'X and Z00'Z, and
since interleavings compose, we have that X 00 and Z00 are ."1Cı1; "2Cı2/–interleaved,
as required.

We remark that the idea of using pullbacks to prove a triangle inequality appears in [17].

3 Interleavings in MR and in Ho.M/R

This section is concerned with the rectification of homotopy commutative interleavings
into homotopy interleavings. In Section 3.1, we prove Theorem A, which allows one to
construct, for any c > 2, a cı–homotopy interleaving out of a ı–homotopy commutative
interleaving, when working with 1–persistent objects of any cofibrantly generated
model category M. We think of this result as giving a multiplicative upper bound
of 2 for this rectification. In Section 3.2, we give a multiplicative lower bound of 3

2

for the rectification, when M is the category of spaces. In Section 3.3, we show that
Theorem A has no analogue for multipersistent spaces.

3.1 Upper bound

Let Z�R denote the posets of integers and real numbers respectively. The inclusion
i W Z! R induces a restriction functor i� W C R ! C Z for any category C . Given
A WZ!C , let i�.A/ WR!C be given by A precomposed with the functor b�cWR!Z,
where brc is the largest integer bounded above by r . Note that, given m� 0 2 Z, one
has a notion of m–interleaving between functors A;B WZ!C , and that i� WC

Z!C R

preserves these interleavings.

We start with a few simplifications. For ı >0, let Mı WR!R be given by Mı.r/D ı�r .
The following lemma allows us to work with integer-valued interleavings instead of
ı–interleavings, and its proof is immediate.
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Lemma 3.1 Let ı > 0 2R and m� 1 2 Z. Then X;Y 2 C R are ı–interleaved if and
only if .Mı=m/

�.X / and .Mı=m/
�.Y / are m–interleaved.

The following lemma allows us to work with Z–indexed persistent objects instead of
R–indexed ones. Here, by homotopy interleaving between Z–indexed functors we
mean the obvious adaptation of the notion of homotopy interleaving to Z–indexed
functors with values in a model category.

Lemma 3.2 Let M be cofibrantly generated. Let X;Y 2MR and let m � 1 2 Z.
If i�.X /; i�.Y / 2 MZ are m–homotopy interleaved , then X and Y are .mC2/–
homotopy interleaved.

Proof Note that X is 1–interleaved with i�.i
�.X //, as, for all r 2 R, we have

r � 1 � brc � r � brcC 1. Since i� preserves interleavings and weak equivalences,
it is enough to show that homotopy interleavings between Z–indexed functors with
values in a cofibrantly generated model category compose, which is a straightforward
adaptation of Proposition 2.3 to Z–indexed functors.

The next straightforward lemma gives us a special replacement of an object of the
category MZ, with M a model category, that will be useful when lifting structure from
Ho.M/Z to MZ.

Lemma 3.3 Given a model category M and X 2MZ, there exists X 2MZ and a
weak equivalence X !X such that

� X .i/ is cofibrant in M for every i 2N;

� for every i � 0, the structure morphism fi W X .i/! X .i C 1/ is a cofibration
in M.

Dually, we can replace Y 2MZ by a pointwise fibrant Y whose “negative” maps are
fibrations.

The following lemma will allow us to lift interleavings in Ho.M/Z to homotopy
interleavings in MZ.

Lemma 3.4 Let M be a model category. The functor h W Ho.MZ/! Ho.M/Z is
essentially surjective , conservative and full. In particular , if A;B 2MZ become
isomorphic in Ho.M/Z, then they are weakly equivalent.
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Proof It is clear that the functor is essentially surjective and full, so we only prove the
last property. Assume we are given X;Y 2 Ho.MZ/ together with a map f W hX !

hY . Thanks to Lemma 3.3, we can assume that X (resp. Y ) is pointwise cofibrant
(resp. fibrant) in M, and that all the nonnegative (resp. negative) structural maps in X

(resp. Y ) are cofibrations (resp. fibrations). The map f can therefore be represented
as a family fŒfi �gi2Z of homotopy classes of maps of M. We construct a preimage of
f under h inductively, starting with a choice of representatives f 0i for the homotopy
classes Œfi �. The squares

X.�1/ X.0/ X.1/

Y .�1/ Y .0/ Y .1/

f 0
�1

x�1

f 0
0

x0

f 0
1

y�1 y0

commute up to homotopy, and since x0 and y�1 are, respectively, a cofibration and
a fibration, we can deform f 0

1
and f 0

�1
into homotopic maps f1 W X1 ! Y1 and

f�1 W X�1 ! Y�1, which render the above squares commutative. Inductively, we
can iterate this procedure to find the desired preimage of f under h.

The next result is the main rectification step involved in lifting interleavings in Ho.M/Z

to homotopy interleavings in MZ.

Proposition 3.5 Let M be a model category and let A;B 2MZ. Let m� 1 2 Z. If
hA and hB are m–interleaved in Ho.M/Z, then A and B are 2m–homotopy interleaved
in MZ.

Proof We start by giving the proof for the case mD 1, as in this case the main idea
is more clear. We will use the following constructions. Let e W Z! Z be the functor
that maps even numbers to themselves and an odd number n to n� 1. Similarly, let
o W Z! Z be the functor that maps odd numbers to themselves and an even number n

to n� 1.

Note that, for every C 2MZ, we have that C is .1; 0/–interleaved with e�.C / and
with o�.C /, and that e�.C / and o�.C / are 1–interleaved.

Now assume given a 1–interleaving between hA and hB in Ho.M/Z, that is, assume
that there are morphisms fi W hA.i/! hB.iC1/ and gi W hB.i/! hA.iC1/ in Ho.M/
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rendering the following diagram commutative:

� � � hA.�1/ hA.0/ hA.1/ � � �

� � � hB.�1/ hB.0/ hB.1/ � � �
Œˇ�2�

g�2

Œˇ�1�

g�1

Œˇ0�

g0

Œˇ1�

g1

Œ˛�2�

f�2

Œ˛�1�

f�1

Œ˛0�

f0

Œ˛1�

f1

Consider the object C 0 2 Ho.M/Z given by one of the two diagonal zigzags of the
diagram above; namely, let

C 0 D � � �
f�2
��! hB.�1/

g�1
��! hA.0/

f0
�! hB.1/

g1
�! hA.2/

f2
�! � � � :

Using Lemma 3.4, construct C 2MZ such that hC Š C 0.

Now, by construction, we have that h.e�.A//D e�.hA/D e�.C 0/Š e�.hC /Dh.e�.C //,
so from Lemma 3.4 it follows that e�.A/' e�.C /. Similarly, we have o�.B/' o�.C /.
Since A is .1; 0/–interleaved with e�.A/, e�.C / is 1–interleaved with o�.C /, and o�.B/

is .0; 1/–interleaved with B, Proposition 2.3 implies that A and B are 2–homotopy
interleaved, concluding the proof for the case mD 1.

The proof for general m � 1 2 Z is analogous, replacing the functor e W Z! Z with
em W Z! Z given by em.n/D e.n==m/�m, the functor o W Z! Z with om W Z! Z

given by om.n/D o.n==m/�m, and C 0 2 Ho.M/Z with

C 0.n/D

�
h.e�m.A//.n/ if n==m is even;
h.o�m.B//.n/ if n==m is odd;

where n==m denotes the largest integer l such that l �m� n.

We are now ready to prove the main result of this section.

Theorem A Let M be a cofibrantly generated model category, let X;Y 2MR, and
let ı > 0 2 R. If X and Y are ı–homotopy commutative interleaved , then they are
cı–homotopy interleaved for every c > 2.

Proof Let c > 2 and let m � 1 2 Z be large enough so that .2mC 2/=m � c. By
Lemma 3.1, we may assume that X;Y 2MR are m–homotopy commutative interleaved
and we must show that they are cm–homotopy interleaved. Since 2mC 2 � mc,
Lemma 3.2 reduces the problem to showing that i�.X / and i�.Y / are 2m–homotopy
interleaved in MZ, knowing that they are m–homotopy commutative interleaved.
Proposition 3.5 now finishes the proof.
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3.2 Lower bound

Theorem A implies that we have dHI � cdHC as distances on MR, for c D 2 and for
every cofibrantly generated model category M. One could wonder if the constant cD 2

can be improved. In this section we show that, when MD S, we have c � 3
2

. We do
this by characterizing three-object persistent spaces which are 1–homotopy interleaved
with a trivial persistent space in terms of the vanishing of a Toda bracket. The idea of
using Toda brackets to prove that dHI ¤ dHC is suggested in [2, Example 7.3].

The Toda bracket is an operation on composable triples of homotopy classes of pointed
maps, and was originally defined to compute homotopy groups of spheres [21]. We are
interested in the use of Toda brackets as an algebraic obstruction to the rectification of
diagrams. We now describe the fundamental procedure involved in the definition of
Toda brackets, and the few properties that we are interested in; see eg [1].

Let S� denote the category of pointed spaces. For concreteness, in the arguments of
this section we use SD Top. Let Œ3� denote the category freely generated by the graph

�! �! �! �:

A diagram X 2 Ho.S�/Œ3�, which is given by X.0/;X.1/;X.2/;X.3/ 2 Ho.S�/ and
homotopy classes of pointed maps Œf0� W X.0/ ! X.1/, Œf1� W X.1/ ! X.2/, and
Œf2� WX.2/!X.3/, is a bracket sequence if Œf1� ı Œf0� and Œf2� ı Œf1� are equal to the
null map, that is, to the homotopy class of the constant pointed map.

Let X 0 2Ho.S�/Œ3� be a bracket sequence and let X 2SŒ3�
�

be such that hX ŠX 0, which
exists by Lemma 3.4. We can, and do, assume that X takes values in CW–complexes.
Consider the diagram of pointed spaces and pointed maps

X.0/ X.1/ �

� X.2/ X.3/

f0

f1

f2

Since X 0 is a bracket sequence, we know that there exist (pointed) homotopies filling
the squares in the diagram above. For Y a pointed space, let C Y denote its reduced
cone. Each pair of such homotopies gives us pointed maps ˛ W CX.0/! X.2/ and
ˇ W CX.1/!X.3/ such that ˛ ı i D f1 ıf0 WX.0/!X.2/ and ˇ ı i D f2 ıf1, where
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i is the inclusion into the cone. In particular, we have a commutative square

(3-1)
X.0/ CX.1/

CX.0/ X.3/

iıf0

i ˇ

f2ı˛

which, by noticing that the pushout of the top and left morphisms is a model for the
reduced suspension of X.0/, gives us an element of Œ†X 0.0/;X 0.3/�, where Œ�;��
denotes homotopy classes of pointed maps.

Definition 3.6 Let X 2 Ho.S�/Œ3� be a bracket sequence. Consider the subset of
Œ†X.0/;X.3/� consisting of all elements that can be obtained using the procedure
above. This is the Toda bracket of X . We say that the Toda bracket vanishes if it
contains the null map.

It is well known — see eg [1, Section 1] — that the nonvanishing of a Toda bracket is
an obstruction to the rectification of the bracket sequence, in the following sense.

Proposition 3.7 The Toda bracket of a bracket sequence X 0 2 Ho.S�/Œ3� vanishes if
and only if there exists X 2 SŒ3�

�
with hX ŠX 0 and with f1 ı f0 and f2 ı f1 equal to

the null map.

Although Toda brackets are defined for diagrams of pointed spaces, one can extend them
to unpointed spaces, provided the spaces are simply connected. This is what we do now.
A simply connected space is a nonempty, connected space whose fundamental groupoid
is trivial. Let Ssc and Ssc;� denote the categories of simply connected spaces and of
pointed, simply connected spaces, respectively. We have the following well-known fact
and corollary.

Lemma 3.8 The forgetful functor U W Ho.Ssc;�/ ! Ho.Ssc/ is an equivalence of
categories.

Corollary 3.9 If X 2 Ho.Ssc;�/
Œ3� is such that the composite of consecutive maps of

U�.X / are null-homotopic , then X is a bracket sequence.

Let X;X 0 2 Ho.Ssc;�/
Œ3� be such that U�.X /Š U�.X

0/. Then X is a bracket sequence
if and only if X 0 is; in that case , the Toda bracket of X vanishes if and only if the Toda
bracket of X 0 does.
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Corollary 3.9 implies that, for X 2Ho.Ssc/
Œ3�, there is a well-defined notion of X being

a bracket sequence, namely that any lift X 0 2Ho.Ssc;�/
Œ3� is a bracket sequence; in that

case, we say that the Toda bracket of X vanishes if the Toda bracket of X 0 does.

Let j W SŒ3�! SZ be given by extending X 2 SŒ3� to the right with the singleton space
and to the left with the empty space. Let � 2 SŒ3� be the constant singleton space.

Proposition 3.10 Let X 2 SŒ3�sc . Then

(1) h.j.X // 2 Ho.S/Z is 1–interleaved with h.j.�// if and only if hX is a bracket
sequence;

(2) if h.j.X // 2 Ho.S/Z is 1–interleaved with h.j.�//, then j.X / is 1–homotopy
interleaved with j.�/ if and only if the Toda bracket of hX vanishes.

Proof Statement (1) follows directly from Corollary 3.9. For (2), note that if the
Toda bracket of hX vanishes, then, by Proposition 3.7, there exists X 0 2 SŒ3�sc;� such
that hX 0 Š hX and such that the composite of consecutive maps of X 0 are null maps.
In particular, j.X 0/ is 1–interleaved with j.�/, and, since h.j.X 0//Š h.j.X //, we have
that j.X 0/' j.X / by Lemma 3.4, so j.X / and j.�/ are 1–homotopy interleaved.

For the converse of (2), assume that j.X / and j.�/ are 1–homotopy interleaved. It
follows that there exists a commutative diagram of pointed spaces and pointed maps

X 0.0/ X 0.1/ B

A X 0.2/ X 0.3/

f 0
0

f 0
1

f 0
2

with A and B contractible and X 0 2 SŒ3�
�

such that X 0 'X , as diagrams of unpointed
spaces. It suffices to show that the Toda bracket of X 0 vanishes. For this, note that,
using the diagonal morphism A! B, we can find maps ˛ W CX 0.0/! X 0.2/ and
ˇ W CX 0.1/! X 0.3/ such that ˇ ıCf 0

1
D f 0

2
ı ˛. In particular, in this case, there is

a diagonal filler for the square (3-1) and thus the induced map †X 0.0/! X 0.3/ is
nullhomotopic, as required.

The following lemma is clear.

Lemma 3.11 Let X;Y 2 C Z. If i�.X /; i�.Y / 2 C R are r–interleaved for some
0� r < 3

2
, then X;Y 2 C Z are 1–interleaved.
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We are now ready to prove the lower bound.

Proposition 3.12 Let MD S. If dHI � cdHC then c � 3
2

.

Proof By Lemma 3.11 and Proposition 3.10, it suffices to find a bracket sequence
X 2 Ho.S�/Œ3� valued in simply connected spaces such that its Toda bracket does not
vanish. Examples of this are given in [21]. A classical example, referenced in [2], is
S4! S4! S3! S3 with the first and last maps degree 2 maps, and the middle map
the suspension of the Hopf map.

Remark 3.13 Proposition 3.12 implies in particular that dHI ¤ dHC. As mentioned in
the introduction, we know that we have dHI � dIHC � dHC, so it is natural to wonder
whether we have dHI¤ dIHC or dIHC¤ dHC, or both. We leave these as open questions.

3.3 Impossibility of rectification in higher dimensions

In this section, we show that Theorem A has no analogue for multipersistent spaces;
we thank Alex Rolle for pointing this out to us. We prove this for mD 2 and remark
that a similar argument works for m> 2.

Proposition 3.14 If mD 2, there is no constant c> 02R such that for all ı > 02Rm,
if X;Y 2 SRm

are ı–homotopy commutative interleaved , then they are cı–homotopy
interleaved.

Let sq denote the subposet of R2 spanned by f.0; 0/; .0; 1/; .1; 0/; .1; 1/g, so that a
functor sq! C from sq to a category C corresponds to a commutative square in C .
We will use the following well-known fact, which says that a homotopy commutative
diagram can have different, nonequivalent lifts. For a specific instance see eg [10].

Lemma 3.15 There exist A;B W sq! S such that hAŠ hB 2 Ho.S/sq and such that
A 6' B.

Proof of Proposition 3.14 Given a diagram A W sq!S, consider the bipersistent space
A0 WR2!S such that A0.r; s/D∅ whenever r or s are negative, A0.r; s/DA.brc; bsc/

whenever 0 � r; s < 2, and A0.r; s/ is the singleton space whenever 0 � r; s and
2�max.r; s/. Let A;B W sq!S. Note that if .0; 0/� ı <

�
1
2
; 1

2

�
2R2 and A0;B0 2SR2

are ı–homotopy interleaved, then we have A' B.
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To prove the result, it is enough to show that there exist bipersistent spaces X;Y 2 SR2

that are 0–homotopy commutative interleaved, ie such that hX Š hY , which are not
ı–homotopy interleaved for any 0� ı <

�
1
2
; 1

2

�
2R2. In order to do this, we can let A

and B be as in Lemma 3.15 and take X DA0 and Y D B0.

4 Projective cofibrant persistent simplicial sets

The purpose of this section is to characterize projective cofibrant persistent simplicial
sets as filtered simplicial sets (Proposition 4.5). We work with simplicial sets indexed
by an arbitrary poset .P;�/.

Definition 4.1 A P–filtered simplicial set (filtered simplicial set when there is no risk
of confusion) is a simplicial set X equipped with functions ˇn WXn! P , satisfying

� ˇn�1.di.�//�ˇn.�/ for every n� 1, � 2Xn, and boundary map di WXn!Xn�1;

� ˇnC1.si.�//�ˇn.�/ for every n�0, � 2Xn, and degeneracy map si WXn!XnC1.

When there is no risk of ambiguity, we denote the filtered simplicial set .X; ˇ/ simply
by X .

Definition 4.2 Given a filtered simplicial set .X; ˇ/, define a persistent simplicial set
1.X; ˇ/ 2 sSetP such that for r 2 P we have 1.X; ˇ/.r/n D f� 2Xn W ˇn.�/� rg, with

faces and degeneracies given by restricting the ones of X .

By a standard abuse of language, We say that a persistent simplicial set is a filtered
simplicial set if it is isomorphic to yY for Y a filtered simplicial set.

The following result is a characterization of filtered simplicial sets among persistent
simplicial sets by means of easily verified point-set conditions.

Lemma 4.3 A persistent simplicial set X 2 sSetP is a filtered simplicial set if and
only if the following conditions are satisfied :

(1) The structure morphism X.r/! X.r 0/ is a monomorphism for every r � r 0

in P . In particular , up to isomorphism , we may, and do , assume that X.r/ is a
subsimplicial set of X.r 0/.

(2) For every simplex � 2
S

r2P X.r/, the set ft 2 P W � 2X.t/g has a minimum.
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Proof The only nontrivial part is that if X satisfies the two conditions in the statement
then it is filtered. Set Y D

S
r2P X.r/, which makes sense thanks to condition (1).

Given � 2 Yn, define ˇn.�/ WDminft 2 P W � 2X.t/g, which is well defined thanks to
condition (2). We then have X Š yY . The rest of the proof is clear.

The proof of the following lemma a straightforward application of Lemma 4.3. We
use the term cell attachment to indicate any pushout of a generating cofibration
r ˇ @�n! r ˇ�n.

Lemma 4.4 (1) A retract of a filtered simplicial set is filtered.

(2) If the domain of a cell attachment is a filtered simplicial set , then the codomain
is too.

(3) Let � be a limit ordinal and let X� W�! sSetP be a diagram of persistent simplicial
sets , where for each 
 < � we have that the map X
 !X
C1 is a cell attachment.
If X
 is a filtered simplicial set for every 
 < �, then X� D colim
<� X
 is a
filtered simplicial set.

The recognition principle for projective cofibrant persistent simplicial sets is now a
consequence of Lemma 4.4 and the fact that the cofibrant objects in a cofibrantly
generated model category are precisely the retracts of transfinite compositions of cell
attachments [12, Proposition 2.1.18(b)].

Proposition 4.5 A persistent simplicial set is filtered if and only if it is projective
cofibrant.

In practice, many of the persistent spaces relevant to topological data analysis are
filtered simplicial sets.

Example 4.6 The Vietoris–Rips complex associated to a metric space .X; dX /, usually
defined to be a persistent simplicial complex, can be turned into a persistent simplicial
set by choosing a total order on X . It follows directly from its definition that this
persistent simplicial set is filtered. Other examples of this form include the Čech
complex and the filtrations of [6].

An example of a filtered multipersistent simplicial set is the following. Given a metric
space .X; dX / together with a real-valued function f W X ! R, one can construct a
bifiltered simplicial set as follows. For each s 2R, consider Xs D f

�1.�1; s� and let
Fs;r be the Vietoris–Rips complex of Xs at scale r .
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We remark that persistent simplicial sets whose structure maps are monomorphisms
are not necessarily filtered. This happens in practice when the same simplex “appears
at different times”, that is, when condition (2) in Lemma 4.3 is not satisfied. Examples
of this include the degree-Rips bifiltration [16], and Vietoris–Rips applied to the kernel
density filtration of [19].

5 Interleaving in Ho.SRm

/ and in homotopy groups

In this section, we prove Theorem B. We start by defining the notions of persistent
homotopy groups of a persistent space, and of morphism inducing an interleaving
in persistent homotopy groups. The notion of persistent homotopy group we use is
essentially the same as that of Jardine [13].

We model the nth homotopy group �n.W; w/ of a pointed space .W; w/ by the set of
pointed homotopy classes of pointed maps from the n–dimensional sphere Sn into W .

Definition 5.1 Let X 2 SRm

. The persistent set �0.X / W R
m ! Set is defined by

�0 ıX . Let n � 1, r 2 Rm and x 2 X.r/. The nth persistent homotopy group of X

based at x is the persistent group �n.X;x/ WRm!Grp that is trivial at s � r , and that
is �n.X.s/; '

X
r;s.x// 2 Grp at s � r .

Note that �n is functorial for every n 2N.

Definition 5.2 Let "; ı � 0 2 Rm. Assume given a homotopy class of morphisms
Œf � WX 0! Y 0" 2 Ho.SRm

/. Let X 0 'X be a cofibrant replacement, let Y 0 ' Y be a
fibrant replacement, and let f WX!"Y be a representative of f . We say that Œf � induces
an ."; ı/–interleaving in homotopy groups if the induced map �0.f / W�0.X /!" �0.Y /

is part of an ."; ı/–interleaving of persistent sets, and if for every r 2Rm, every x2X.r/,
and every n� 1 2N, the induced map �n.f / W �n.X;x/!" �n.Y; f .x// is part of an
."; ı/–interleaving of persistent groups.

It is clear that the definition above is independent of the choices of representatives.

A standard result in classical homotopy theory is that a fibration of Kan complexes in-
ducing an isomorphism in all homotopy groups has the right lifting property with respect
to cofibrations [9, Theorem I.7.10]. An analogous, persistent, result (Corollary 5.13),
says that, for a fibration of fibrant objects inducing a ı–interleaving in homotopy
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groups, the lift exists up to a shift, which depends on both ı and on a certain “length”
n 2N associated to the cofibration. To make this precise, we introduce the notion of
n–dimensional extension.

Definition 5.3 Let A;B 2 SRm

and let n 2N. A map j WA!B is an n–dimensional
extension (of A) if there exists a set I , a family of tuples of real numbers fri 2Rmgi2I ,
and commutative squares of the form depicted on the left below, that together give rise
to the pushout square on the right:

@Dn A.ri/

Dn B.ri/

fi

jri

gi

`
i2I ri ˇ .@D

n/ A

`
i ri ˇ .D

n/ B

f

j

g

Here, @Dn ,!Dn stands for Sn�1 ,!Dn if SD Top, and for @�n ,!�n if SD sSet.

A single-dimensional extension is an n–dimensional extension for some n 2N.

Definition 5.4 Let � WA!B be a projective cofibration of SRm

and let n2N. We say
that � is an n–cofibration if it factors as the composite of nC 1 maps f0; : : : ; fn, with
fi an ni–dimensional extension for some ni 2N. We say that A 2 SRm

is n–cofibrant
if the map ∅!A is an n–cofibration.

The next lemma, which follows directly from Proposition 4.5, gives a rich family
of examples of n–cofibrant persistent simplicial sets. Recall that a simplicial set is
n–skeletal if all its simplices in dimensions above n are degenerate.

Lemma 5.5 Let A 2 sSetR
m

and let n 2N. If A is projective cofibrant and pointwise
n–skeletal , then it is n–cofibrant.

Example 5.6 The Vietoris–Rips complex VR.X / of a metric space X , as defined in
Example 4.6, is n–cofibrant if the underlying set of X has finite cardinality jX j D nC1.

If one is interested in persistent (co)homology of some bounded degree n, then one
can restrict computations to the .nC1/–skeleton of a Vietoris–Rips complex, which is
.nC1/–cofibrant.

A result analogous to Lemma 5.5, but for persistent topological spaces, does not hold,
as cells are not necessarily attached in order of dimension. This motivates the following
definition.
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Definition 5.7 Let n 2 N. A persistent topological space A 2 TopRm

is an n–
dimensional persistent CW–complex if the map ∅!X can be factored as a composite
of maps f0; : : : ; fn, with fi an i–dimensional extension.

Example 5.8 The geometric realization of any n–cofibrant persistent simplicial set is
an n–dimensional persistent CW–complex.

Lemma 5.9 Every n–dimensional persistent CW–complex is n–cofibrant.

We now make precise the notion of lifting property up to a shift.

Definition 5.10 Let i W A! B and p W Y ! X be morphisms in SRm

and let ı � 0.
We say that p has the right ı–lifting property with respect to i if for all morphisms
A! Y and B ! X making the square on the left below commute, there exists a
diagonal ı–morphism f W B!ı Y rendering the diagram commutative. The diagram
on the left is shorthand for the one on the right:

A Y A Y Y ı

B X B X X ı

i
ı

p i p

S0;ı.idY /

pı

S0;ı.idX /

We now prove Lemma 5.12, an adaptation of a result of Jardine, which says that
fibrations inducing interleavings in homotopy groups have a shifted right lifting property,
as defined above. The main difference is that we work in the multipersistent setting.
We use simplicial notation and observe that the corresponding statement for persistent
topological spaces follows from the simplicial one by using the singular complex-
realization adjunction. We recall a standard, technical lemma whose proof is given
within that of eg [9, Theorem I.7.10].

Lemma 5.11 Consider a commutative square of simplicial sets

(5-1)
@�n X

�n Y

˛

p

ˇ
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where p is a Kan fibration between Kan complexes. If there is commutative diagram
like the one on the left below , for which the lifting problem on the right admits a
solution ,

@�n

@�n ��1 X @�n X

�n ��1 Y �n Y

�n

.id@�n�f1g/

˛

h

p

hı.id@�n�f0g/

p

g gı.id�n�f0g/

.id�n�f1g/

ˇ

then the initial square (5-1) admits a solution.

Lemma 5.12 (cf [13, Lemma 14]) Let ı � 0, and let f W X ! Y 2 SRm

induce a
.0; ı/–interleaving in homotopy groups. If X and Y are projective fibrant and f is a
projective fibration , then f has the right 2ı–lifting property with respect to boundary
inclusions r ˇ @Dn! r ˇDn for every r 2Rm and every n 2N.

Proof Consider a commutative diagram as on the left below, which corresponds to
the one on the right:

(5-2)
r ˇ @�n X

r ˇ�n Y

a

p

b

@�n X.r/

�n Y .r/

˛

pr

ˇ

We must find a 2ı–lift for the diagram on the right. The proof strategy is to appeal
to Lemma 5.11 to simplify ˛, then prove that at the cost of a ı–shift we can further
reduce ˛ to a constant map, and then show that the simplified lifting problem can be
solved at the cost of another ı–shift. So we end up with a 2ı–lift, as in the statement.
We proceed by proving the claims in opposite order.

We start by showing that (5-2) can be solved up to a ı–shift whenever ˛ is constant. Let
us assume that ˛ is of the form ˛ D � for some � 2X.r/0. Since, then, ˇ represents
an element Œˇ� 2 �n.Y .r/;�/, there exists a map ˛0 W�n!X.r C ı/ whose restriction
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to @�n is constant on � 2X.r/0, and such that there is a homotopy h W ˇ'p˛0 relative
to @�n. We can thus consider

@�n .@�n ��1/[ .�n � f0g/ X.r C ı/

�n �n ��1 Y .r C ı/

id@�n�f1g

i

.�;˛0/

prCı

id�n�f1g h

H

where H is a diagonal filler for the right-hand side square, which exists since the middle
vertical map is a trivial cofibration of simplicial sets and prCı is a Kan fibration by
assumption. The composite map H ı id�n � f1g is a lift for (5-2).

We now assume that ˛ is of a specific, simplified form, and prove that, up to a ı–shift,
we can reduce the lifting problem (5-2) to the case in which ˛ is constant. Let us assume
that di.˛/D � 2X.r/0 for every 0< i � n, and set ˛0 D d0.˛/. Then ˛0 represents
an element Œ˛0� 2 �n�1.X.r/;�/, with the property that pŒ˛0� D 0 2 �n�1.Y .r/;�/.
Since p induces a .0; ı/–interleaving in homotopy groups,

'X
r;rCı.Œ˛0�/D 0 2 �n�1.X.r C ı/;�/;

witnessed by a homotopy h0 W �
n�1 ��1 ! X.r C ı/, constant on @�n�1. If we

set h0i D �W �
n�1 ! X.r C ı/ for every 0 < i � n� 1 and h0

0
D h0, we get a map

h0 W @�n ��1!X.r C ı/. We can now extend

.'Y
r;rCı ıˇ;ph0/ W .�n

� f1g/[ .@�n
��1/! Y .r C ı/

to a homotopy H 0 W�n ��1! Y .r C ı/. Now observe that the lifting problem

@�n X.r C ı/

�n Y .r C ı/

h0
1
ı.id@�n�f0g/

prCı

H 0ı.id�n�f0g

is such that h0 ı .id@�n � f0g/D �, so, thanks to Lemma 5.11, we have reduced this
case to the case in which ˛ is constant.

To conclude, we must show that we can reduce the original lifting problem (5-2)
to one in which all but the 0th faces of ˛ are constant on a point � 2 X.r/0. Let
K Wƒn

0
��1!ƒn

0
be the homotopy that contracts the simplicial horn onto its vertex 0,
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which determines a diagram

ƒn
0

ƒn
0
��1 ƒn

0

@�n X �0

idƒn
0
�f1g

k1

idƒn
0
�f0g

˛ ˛.0/

with k1D ˛ıj ıK, where j Wƒn
0
! @�n is the inclusion of the horn into the boundary.

We can now extend the map .˛;k1/ W .@�
n �f1g/[ .ƒn

0
��1/!X.r/ to a homotopy

k W @�n ��1!X.r/. Similarly, we extend the map

.ˇ;p ı k/ W .�n
� f1g/[ .@�n

��1/! Y .r/

to a homotopy g W�n ��1! Y .r/. It now suffices to consider the diagram

@�n

@�n ��1 X

�n ��1 Y

�n

.id@�n�f1g/

˛

k

p

g

.id�n�f1g/

ˇ

observing that ˛0 WD kj@�n�f0g satisfies di.˛
0/ D � for 0 < i � n, and appeal to

Lemma 5.11.

Corollary 5.13 Let ı � 0 and let f W X !ı Y induce a ı–interleaving in homotopy
groups. If X and Y are projective fibrant and f is a projective fibration , then f has
the right .4.nC1/ı/–lifting property with respect to n–cofibrations for all n 2N.

Proof By assumption, f W X ! Y ı induces a .0; 2ı/–interleaving in all homotopy
groups. Now, an n–cofibration can be written as a composite of nC1 single-dimensional
extensions, and any shift of a single-dimensional extension is again a single-dimensional
extension, so it is enough to show that f has the right 4ı–lifting property with respect
to single-dimensional extensions.
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A single-dimensional extension is the pushout of a coproducta
i2I

ri ˇ .@D
n/!

a
i2I

ri ˇDn;

so it suffices that f has the right 4ı–lifting property with respect to coproducts of that
form, which follows from Lemma 5.12 and the universal property of coproducts.

We are ready to prove Theorem B.

Theorem B Let X;Y 2 SRm

be persistent spaces that are assumed to be projective
cofibrant and d–skeletal if S D sSet, or persistent CW–complexes of dimension at
most d if S D Top. Let ı � 0 2 Rm. If there exists a morphism in the homotopy
category X ! Y ı 2 Ho.SRm

/ that induces ı–interleavings in all homotopy groups ,
then X and Y are .4.dC1/ı/–interleaved in the homotopy category.

Proof By Lemmas 5.5 and 5.9, X and Y are d–cofibrant. Let Œf � W X ! Y ı be as
in the statement. Since Œf � is a morphism in the homotopy category, we begin by
choosing a convenient representative of it. We let p WX 0! Y 0 be a projective fibration
between projective fibrant objects such that there exist trivial cofibrations i WX !X 0

and j W Y ! Y 0 with Œp� ı Œi �D Œj � ı Œf �, in Ho.SRm

/.

Note that Œp� induces a .0; 2ı/–interleaving in homotopy groups, between X 0 and Y 0ı .
Since Y ı is d–cofibrant, Corollary 5.13 guarantees that we can find a .4.dC1/ı/–lift
g0 of p against ∅! Y . We can then construct the lift

Y X 0.4dC3/ı

Y 0

g0

j
g

using the fact that j WY !Y 0 is a trivial cofibration and X 0 is fibrant. We will show that
Sı;4.dC1/ı.Œp�/ WX

0!4.dC1/ı Y 0 and S.4dC3/ı;4.dC1/ı.Œg�/ W Y
0!4.dC1/ı X 0 form a

.4.dC1/ı/–interleaving in the homotopy category between X 0 and Y 0.

On the one hand, note that, by construction, p.4dC3/ı ı g ı j D p.4dC3/ı ı g0 D j ,
so, since Œj � is an isomorphism, it follows that Œp�.4dC3/ı ı Œg�D S4.dC1/ı.ŒidY 0 �/, and
thus that

Sı;4.dC1/ı.Œp�/
4.dC1/ı

ı S.4dC3/ı;4.dC1/ı.Œg�/D S8.dC1/ı.ŒidY 0 �/:
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On the other hand, since X is cofibrant and Y 0 is fibrant, it follows from the previous
paragraph that

p4.dC1/ı
ıgı ıp ı i WX ! Y 0.4dC5/ı

is homotopic to p4.dC1/ı ı S0;4.dC1/ı.i/. Let H W I �X ! Y 0.4dC5/ı be a homotopy
between these maps, which gives the commutative diagram

X
`

X X 04.dC1/ı

I �X Y 0.4dC5/ı

.S0;4.dC1/ı.i/;g
ııpıi/

.i0;i1/ p4.dC1/ı

H

where the left vertical map is the inclusion of into the cylinder. We claim that, since
X is d–cofibrant, the inclusion into the cylinder is a d–cofibration. Indeed, a cell
decomposition of this map is obtained by attaching an .nC1/–cell for each n–cell in
the decomposition of X . Now, by Corollary 5.13, we can find a .4.dC1/ı/–lift of the
diagram, which shows that

S4.dC1/ı;8.nC1/ı.Œg�
ı
ı Œp� ı Œi �/D S0;8.dC1/ı.Œi �/ WX !X 08.dC1/ı:

Since the left-hand side equals S.4dC3/ı;4.dC1/ı.Œg�/
4.dC1/ı ıSı;4.dC1/ı.Œp�ı Œi �/, and

Œi � is an isomorphism, it follows that Œg�4.dC1/ı ıSı;4.dC1/ı.Œp�/D S8.dC1/ı.ŒidX 0 �/.

Remark 5.14 Together, Theorems A and B imply a version of the persistent Whitehead
conjecture, which we recall as Conjecture 5.15. Our result is, in a sense, stronger
than the one conjectured, since Theorem B, which addresses part (i) of the conjecture,
applies to arbitrary multipersistent spaces. In another respect, our result is slightly
weaker, as the conjecture is stated for cofibrant, pointwise CW–complexes, which does
not necessarily imply being a persistent CW–complex in our sense. We believe that
this is not an issue, as many of the cofibrant, pointwise CW–complexes persistent
topological spaces that appear in applications are in fact persistent CW–complexes, as
they are usually the geometric realization of a filtered simplicial complex.

Conjecture 5.15 [2, Conjecture 8.6] Suppose we are given connected , cofibrant
X;Y W R! Top, with each X.r/ and Y .r/ CW–complexes of dimension at most d ,
and f W X ! Y ı inducing a ı–interleaving in all homotopy groups. Then there is a
constant c, depending only on d , such that

(i) f induces a cı–interleaving in the homotopy category Ho.TopR/;

(ii) X and Y are cı–homotopy interleaved.
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Operadic actions on long knots and 2–string links

ETIENNE BATELIER

JULIEN DUCOULOMBIER

We realize the space of 2–string links L as a free algebra over a colored operad
denoted by SCL (for “Swiss-cheese for links”). This result extends works of Burke
and Koytcheff about the quotient of L by its center, and is compatible with Budney’s
freeness theorem for long knots. From an algebraic point of view, our main result
refines Blaire, Burke and Koytcheff’s theorem on the monoid of isotopy classes of
string links. Topologically, it expresses the homotopy type of the isotopy class of a
2–string link in terms of the homotopy types of the classes of its prime factors.
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Introduction

Motivation and context

The study of knots and links is a vast subject that emerged in the late nineteenth
century and saw several renewals in the past thirty years. It is subject to many different
approaches, being at the crossroads of topology, geometry, algebra, combinatorics
and physics. The central theme in classical knot theory is the study of the isotopy
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834 Etienne Batelier and Julien Ducoulombier

classes of knots, ie the isotopy classes of embeddings in Emb.S1; S3/. They are the
set of components �0 Emb.S1; S3/. A common method is to try to chop the knots into
simpler pieces. Two ways of performing such a decomposition have proved themselves
particularly fruitful: the prime decomposition and the satellite decomposition. The
former splits a knot as the connected sum of other knots called its prime factors. The
connected sum is a binary operation on �0 Emb.S1; S3/ denoted by #. It endows
the isotopy classes with a unital commutative monoidal structure. Intuitively, the
product k1 # k2 is the knot obtained by cutting open k1 and k2 and closing them up
into a single knot. This decomposition is fairly well understood thanks to a theorem
of Schubert [28] stating that �0 Emb.S1; S3/ is freely generated as a monoid by the
isotopy classes of the prime knots. There are infinitely many prime knots and they
can be very different in nature. This is why it is often useful to further decompose the
prime knots as satellites of simpler knots. The satellite construction also originates in
Schubert’s work. It consists of a wide family of operations one can carry out on several
knots at a time. Its rigorous definition is a bit more involved but clearly dispensed for
example in Cromwell’s book [10]. Jaco, Shalen, Johannson and Thurston played a
major role in the study of satellite knots, with the results in [19; 20; 31]. Although
they are quite complicated, the satellite operations have the advantage of generating
the whole space of knots from a fairly small and classifiable class of knots. Namely,
Budney shows in [4] — refining a result of [31] — that every knot can be obtained via
successive satellite operations on hyperbolic and torus knots.

This depicts a duality between the two methods of decomposition: one is simple but
leads to potentially complicated primes, while the other is more elaborate but has easier
irreducible pieces. A similar story can be told for links, ie for the isotopy classes of
embeddings in Emb.S1q� � �qS1; S3/. Adapting the connected sum # to this setting
takes some work: problems arise once the components of a link are cut open, as there is
no canonical way to close them up. However, a step-by-step adaptation of the satellite
construction works for links, and a decomposition theorem exists as well. Its building
blocks are the hyperbolic and Seifert-fibered links.

Nowadays, it is more common to study not only the set of components

�0 Emb.S1q� � �qS1; S3/;

but the full homotopy type of the spaces of knots and links. To adapt the decomposition
approach described above, one needs to define an analogue of the connected sum and
satellite operations on the space level, ie directly on the embeddings and not between
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isotopy classes. To rigorously carry out this task, one uses the space of long knots K
and the space of string links L. Coupled with the language of operads, these spaces
enable one to extend the existing operations on �0 to the space level. More precisely,
the different types of operations one can carry out on knots and links can be encoded
in the action of an operad on a space of embeddings. This new framework is due to
Budney in [5; 6] for the case of long knots. Namely, Budney constructs in [5] an action
of the little 2–cubes operad C2 on a space yK homotopy equivalent to K, in such a way
that all the induced operations descend to the connected sum on �0. He builds in [6]
another action on yK of a more intricate operad which he calls the splicing operad. These
operations correspond to the satellite constructions in many ways. In the case of string
links, Burke and Koytcheff build in [8] a complex operad called the infection operad.
It is an adaptation of Budney’s splicing operad and deals with the satellite operations
between string links. The authors mentioned above not only prove the existence of
such actions but also their freeness, refining the unique decomposition results on �0. It
remains to find an operadic encoding of the connected sum of links, if possible, leading
to a free algebra.

Present work

The present paper aims to fill in this gap in the case of 2–stranded string links. Unlike
�0K, the monoid of isotopy classes of 2–string links is neither free nor commutative.
Indeed, as explained by Blair, Burke and Koytcheff in [2], �0L contains invertible
elements in the form of the pure braid group KB2. Together with three copies of �0K,
these invertible elements generate the center of the monoid. Burke and Koytcheff state
a partial result in [8] by building a free action of the little 1–cubes operad C1 on a
subspace of 2–string links that ignores the homotopy center. They mention as an open
problem the extension of such a structure to the whole space of 2–string links. Our main
result provides an answer to this particular question. For this purpose, we introduce
a four-colored operad SCL (standing for “Swiss-cheese for links”) with set of colors
S D fo;";#;lg. An SCL–algebra is in particular a family of spaces .X;A"; A#; Al/,
where X is a C1–algebra and each As , s 2 f";#;lg, is a C2–algebra acting on X . One
can think of the As as independent parts of the homotopy center of X . As in the case
of Budney’s C2–action on long knots, we consider a space yL homotopy equivalent to L
to prove a first result which can be summarized as follows:

Theorem 3.9 The family .yL; yK; yK; yK/ is an SCL–algebra. In particular , the family
.L;K;K;K/ is homotopy equivalent to an explicit SCL–algebra.
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The structure so obtained is compatible with Budney’s action on long knots and Burke
and Koytcheff’s action on their subspace of noncentral string links. It provides a
complete understanding of the connected sum of 2–string links. As expected, we also
prove a freeness result, refining the structure theorem for the monoid of isotopy classes
proved in [2]. In order to do this, we discard the invertible elements by splitting �0 yL
as a product �0 yL0 �KB2 and prove:

Theorem 4.11 The quadruplet of spaces .yL0; yK; yK; yK/ is homotopy equivalent as an
SCL–algebra to the free SCL–algebra generated by prime knots and links.

In addition to these algebraic considerations, this result has a homotopical significance
as it expresses the homotopy type of the isotopy class of a 2–string link as a function of
the homotopy types of the classes of its prime factors. This reduces the computation of
the homotopy type of the whole L to figuring out the homotopy types of the components
of the primes. As mentioned above, the latter can be further decomposed thanks to
Burke and Koytcheff’s infection operad defined in [8].

Organization of the paper

We define in a first section the different spaces of embeddings at stake here: long knots,
string links and their fattened versions yK and yL. The second section sets up the operadic
framework we use. We recall in particular the notion of colored operad and discuss
the resulting algebras. We introduce along the way the operad that will appear in our
main result, the Swiss-cheese operad for links SCL. The third section aims to define
various operadic actions on the spaces of knots and links. We recall the constructions
of Budney, Burke and Koytcheff’s actions and unify them in a single action of SCL
on 2–string links. Finally, the fourth section proves the freeness result sketched above
using low-dimensional and homotopical tools.

Upcoming projects

Our main statements concern the space of string links on two strands. One might natu-
rally wonder what happens in the k–stranded case for some k > 2. The conjecture that
Theorems 3.9 and 4.11 have adaptations to arbitrary string links seems reasonable, since
most of the techniques used in Section 4.1 naturally generalize to the k–stranded case.
However, lots of difficulties arise, even at the level of isotopy classes. Theorem 4.11
generalizes Blair, Burke and Koytcheff’s explicit model for the monoid �0L, but it
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does not provide an alternative proof for it. Actually, Blair, Burke and Koytcheff’s
result is used in the very first line of the proof of our Theorem 4.11. Thus, if one
wants to adapt Theorem 4.11 to the k–stranded case, some preliminary work on the
monoid of isotopy classes of string links on k strands is necessary. A key point is the
understanding of its center. The commutation between string links on k strands has
already been characterized in [2], but there are other relations among prime links that
remain to be understood. For example, the invertible k–stranded string links are the
pure braids on k strands, which already admit a wide family of fairly complex relations
amongst themselves. Moreover, these units are not central anymore, which makes it
harder to study prime decompositions. A solution to these difficulties could be to accept
a less explicit construction for the replacement of SCL, maybe a definition by induction
on k. The operad for k–stranded string links would rely on a large set of colors, and
would restrict to the operad for .k�1/–stranded string links on some subcollections
of colors. The existence and freeness of an action could then be easier to prove, but
the difficulty is only shifted towards understanding these potentially massive operads.

Another interesting question concerns the Goodwillie–Weiss calculus, introduced to
study embedding spaces in [12; 34]. In the context of knots and links, this theory gives
rise to two towers of fibrations fTk yKg and fTk yLg, converging to the so-called polynomial
approximations T1 yK and T1 yL, respectively. Unfortunately, the natural applications
�yK W
yK! T1 yK and �yL W yL! T1 yL are not weak equivalences, but they preserve a lot

of homotopical information. In particular, we know from Budney, Conant, Koytcheff
and Sinha [7] that the map yK! Tk yK is a finite type-.k�1/ knot invariant and it has
been conjectured that Tk yK is actually the universal finite type-.k�1/ invariant. This
conjecture is already proved rationally in Volić’s thesis [32]. Moreover, the polynomial
approximations can be simplified and identified to homotopy totalizations using the
multiplicative Kontsevich operad K3 obtained as a compactification of configurations
of points in R3. Briefly speaking, one has the identifications

yK �yK
�! T1 yK

�yK
 � hoTot.K3 ıSO.3//; yL �yL

�! T1 yL
�yL
 � hoTot.K23 ıSO.3//;

where K23 .k/DK3.2k/ is a shifted version of the Kontsevich operad. The applications
�yK and �yL have been proved to be weak equivalences by Sinha in [29] and Munson and
Volić in [25], respectively. We know that the spaces yK, T1 yK and hoTot.K3ıSO.3// are
C2–algebras by [5], [3] and [11], respectively. However, it is still unknown if �yK and �yK
are C2–algebra maps. All these questions can be extended to the colored case. From
the present work, the family .yL; yK; yK; yK/ is equipped with an explicit SCL–algebra
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structure. We believe that similar structures exist for the families�
T1 yL; T1 yK; T1 yK; T1 yK

�
;�

hoTot.K23 ıSO.3//; hoTot.K3 ıSO.3//; hoTot.K3 ıSO.3//; hoTot.K3 ıSO.3//
�
;

and that the zigzag of morphisms induced by �yK, �yK, �yL and �yL between the corre-
sponding families are morphisms of SCL–algebras.
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General framework and notation

We set up here the global framework we work in as well as some notation that might
not be completely standard.

Topological spaces

By spaces, we understand compactly generated Hausdorff spaces. They form a full
subcategory of topological spaces that we denote by Top by slight abuse of notation.
Many useful properties of Top have been introduced by Steenrod in [30]. The standard
Quillen model structure has then been adapted for it by Hovey in [18]. It is a convenient
category in the sense that the natural curryfication map

Top.X �Y;Z/Š Top.X;Top.Y;Z//

is a homeomorphism for any three spaces X , Y and Z in Top. The need to restrict
ourselves to such a subcategory arises from the following fact: when defining an action
of an algebraic structure that it also a topological space A on a space X , one can ask for
the continuity of either A�X !X or A! Top.X;X/. The homeomorphism above
gives the equivalence between these two approaches and enables one to go back and
forth between both frameworks. This will be useful when dealing with operadic actions.
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Operations on maps

Let f WA!X and g WB! Y be maps between spaces. We use the following notation:

� f qg is the map between coproducts AqB!X qY .

� f ˚g is the map AqB!X when X D Y .

� f �g is the map between products A�B!X �Y .

� .f; g/ is the map A!X �Y when AD B .

� A�n is the product of n copies of A and f �n is the map A�n! B�n.

� Bqn is the coproduct of n copies of B and f qn is the map Aqn! Bqn.

Smooth manifolds

When discussing manifolds, we think of usual (possibly bordered) C1 manifolds.
We write I D Œ0; 1� for the unit interval, J D Œ�1; 1� for the 1–dimensional unit disk
and J k D J�k for the k–dimensional unit cube. The set of C1 maps between two
manifolds M and N is denoted by C1.M;N / and topologized with the usual C1–
topology described in [17]. The space of embeddings, immersions, submersions or
diffeomorphisms between manifolds are topologized as subspaces of the latter. This
turns diffeomorphism groups into topological groups and makes every composition
map continuous.

1 Embedding spaces

This section aims to review the construction of various spaces of embeddings, namely
spaces of knots and 2–stranded links. We start by recalling the definition of the usual
space of knots and introduce three variations: the long knots K, the framed long knots
EC.1;D2/ and the fat long knots yK. These spaces are meant to ease algebraic and
homotopical manipulations. We also discuss the classical monoid structure on the
space of knots, its interactions with these spaces and finally adapt these constructions
to 2–stranded links.

1.1 Knot spaces

The first instance of a space of knots arises as the space of embeddings Emb.S1; S3/.
Its components �0 Emb.S1; S3/ are the isotopy classes of knots in the 3–sphere and
are the central object of study in knot theory. The class of the standardly embedded
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# D

Figure 1: Illustration of the connected sum of two knots.

circle S1 ,!R3 � S3 is called the trivial knot or unknot. Given two (isotopy classes
of) knots k1 and k2, one can define the connected sum k1 # k2 in various ways, as
done for instance in [10]. Intuitively, k1 # k2 is obtained by cutting open k1 and k2
and closing them back into a single knot. An example is provided in Figure 1. This
operation turns out to be associative, commutative and unital with the unknot as unit.
This turns �0 Emb.S1; S3/ into a commutative monoid. The nontrivial elements k
which admit no nontrivial factorization k D k1 # k2 are called prime. They are in a
sense the most elementary knots. However, there are infinitely many of them and a
further decomposition developed in [4] suggests that they form a fairly wide class of
knots. The monoid structure on �0 Emb.S1; S3/ is completely understood thanks to a
theorem of Schubert:

Theorem 1.1 (Schubert [28]) The monoid �0 Emb.S1; S3/ is the free commutative
monoid generated by prime knots.

We now introduce long knots. They are a mild variation of usual knots for which
the connected sum is easier to deal with. Let { W R! R3, with {.t/D .t; 0; 0/ be the
standard embedding of the real line in R3.

Definition 1.2 A long knot is an embedding R ,!R3 that agrees with the standard
embedding { outside of J D Œ�1; 1� and maps the interior of J in the interior of
J �D2 �R3. The space of long knots is denoted by K. One can alternatively think of
a long knot as a proper embedding J ,! J �D2 whose values and derivatives at @J
match those of {.

With these conditions on the embeddings, it is natural to define a binary stacking
operation between long knots as follows. Let L;R W R3! R3 be the maps sending
.x; y; z/ to

�
1
2
.x�1/; y; z

�
and

�
1
2
.xC1/; y; z

�
, respectively. Given k1 and k2 in K, we
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Figure 2: Illustration of the commutativity in the monoid �0K.

define the concatenation of k1 and k2 as the long knot that restricts to t 7!Lık1.2tC1/

on Œ�1; 0� and to t 7!R ık2.2t �1/ on Œ0; 1�. This operation and its commutativity up
to homotopy are illustrated in Figure 2. We still denote this operation by # as it is the
analogue of the connected sum in the following sense. Each long knot is linear outside
of J and can therefore be extended to an embedding S1 ,! S3 by compactifying the
domain and codomain. This specifies an inclusion K ,! Emb.S1; S3/ which turns out
to be a bijection on �0. It is easy to verify that the concatenation of two knots is sent
to their connected sum. The isotopy classes �0K therefore inherit a monoid structure.
When P denotes the collection of long knots which are prime, Schubert’s theorem
applies and gives:

Theorem 1.3 The monoid �0K is the free commutative monoid on the basis �0P .

We now define framed long knots. The latter are meant to approximate the long knots
defined above while being composable. The idea is to thicken the strand R into a long
tube R�D2. This definition is due to Budney and originates in [5]. We define:

Definition 1.4 (Budney [5]) A framed long knot is an embedding R�D2!R�D2

that restricts to the identity outside of J�D2. The space of framed long knots is denoted
by EC.1;D2/. When supp.f / denotes the support of an embedding f W R�D2 ,!
R�D2, ie the closure of f.t; x/ 2R�D2 j f .t; x/¤ .t; x/g, the condition for f to
lie in EC.1;D2/ can be reformulated as supp.f /� J �D2.

Note that this space is still equipped with a stacking operation # defined just as in the
case of long knots. It also still descends to an associative, commutative unital pairing on
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f jR�.0;1/

f jR�.0;0/

Figure 3: A framed long knot f with framing number 4.

isotopy classes. There is a restriction map EC.1;D2/!K, defined by f 7! f jR�.0;0/,
that preserves the concatenation. But, it does not induce a bijection on �0. To see this,
consider the diffeomorphism r of J �D2 that progressively performs a full turn rotation
on the disk factor. One can parametrize r W .t; x/ 7! .t; ei�.tC1/x/. This diffeomorphism
can be isotoped about @J �D2 to be extended into an element of EC.1;D2/. Now,
for any long knot k and f an extension in EC.1;D2/, each composite f ı rın also
extends k but no two are isotopic. This produces infinitely many components in the
fiber over k, which shows that the restriction map does not induce a bijection on �0. As
of here, this twisting phenomenon is an unwanted byproduct of the thickening process.
We will get rid of it when defining yK as an unframed subspace of EC.1;D2/. To do
so, we need to quantify the framing of a knot, which we do via the framing number.

Definition 1.5 We define the framing number !.f / of a framed long knot f of
EC.1;D2/ as the linking number lk.f jR�.0;0/; f jR�.0;1//. Strictly speaking, the
linking number is only defined between disjoint closed curves. We deal with this
problem by identifying the curves above with their extension by compactification
S1! S3 and isotoping f jR�.0;1/ about the point at infinity to keep the disjointness.

Intuitively, the linking number counts the number of times a closed curve winds around
another. Here, we think of !.f / as the number of times a curve on the surface of the
knot wraps around the core f jR�.0;0/. This provides a way to quantify the framing of
the elements of EC.1;D2/ and we have !.rın/D n. Another example is provided in
Figure 3. Since the linking number can be computed by counting crossings in diagrams,
it is easy to see that ! is additive with respect to the stacking product. It is also isotopy
invariant and therefore descends to a morphism of monoids �0EC.1;D2/! Z.

We are finally able to define yK, our preferred model to approximate K. We simply set:

Definition 1.6 (Budney [5]) The space of fat long knots is the subspace yKD !�1.0/.
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Fat long knots are stable under # thanks to the additivity of !. The primes in yK are
denoted by yP . There still is a restriction map yK! K which preserves this structure.
yK is a good approximation for K in the sense that:

Proposition 1.7 (Budney [5]) The restriction map yK!K is a homotopy equivalence.

In particular, we get an isomorphism on �0 which enables us to transfer Schubert’s
theorem to fat long knots:

Corollary 1.8 The monoid �0 yK is the free commutative monoid on the basis �0 yP .

1.2 Link spaces

We now adapt these constructions for 2–links. Most of this generalization work has
already been carried out by Burke and Koytcheff in [8]. The space of usual 2–links arises
as Emb.S1q S1; S3/. There is no canonical version of a connected sum operation
here, as there is no preferred strand in each link for one to merge. As in the case of
long knots, the space of string links L deals with this problem by setting a framework
where a stacking operation is naturally defined. Let {2 WRqR ,!R3 be the embedding
of two copies of the real line in R3 mapping the first copy as t 7!

�
t; 0; 1

2

�
and the

other one as t 7!
�
t; 0; �1

2

�
. We refer to {2 as the standard embedding for links with

two strands. We then define:

Definition 1.9 A 2–string link is an embedding RqR ,! R3 that agrees with {2
outside of J qJ and maps the interior of J qJ in the interior of J �D2 �R3. The
space of 2–string links is denoted by L. One can alternatively think of a 2–string link
as a proper embedding J q J ,! J �D2 whose values and derivatives at @J q @J
match those of {2.

A binary stacking operation # can now be defined on L as in the case of long knots. It
turns �0L into a monoid with unit {2. A 2–string link is said to be prime if it is not
invertible but cannot be factored without an invertible element. There is an injection
L ,! Emb.S1qS1; S3/ obtained by closing a truncated link f jJqJ with two fixed
smooth curves from

�
�1; ˙1

2

�
to
�
1; ˙1

2

�
as illustrated in Figure 4. But, this inclusion

does not induce a bijection on isotopy classes. Indeed, there are pairs of nonisotopic
2–string links that yield isotopic links once closed as shown in Figure 4. Therefore,
studying string links slightly differs from usual link theory.
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6�

� �

7! 7!

Figure 4: The two top string links are not isotopic (closing the first one up
with two vertical lines results in a trivial knot, doing so with the second one
yields a trefoil knot). The corresponding links are however isotopic.

Let us spend some time to investigate �0L. We first identify the invertible elements.
There is a canonical map from the pure braid group on two strands to �0L sending a
pure braid to its isotopy class as a string link. It is a morphism of monoids that only
maps to units in �0L since braids form a group. This association is easily shown to
be injective: the linking number map lk W L! Emb.S1qS1; S3/! Z descends to a
left inverse when one identifies the pure braids on two strands with the integers in the
natural way. This provides a whole collection of invertible elements and it turns out that
every unit in �0L is of this form. Observe as well that these invertible links commute
with every other link: an isotopy exhibiting this relation is suggested by Figure 5. Let
now L0 be the preimage of 0 through the linking number map lk. The injection of the
braid group provides a section in the short exact sequence

�0L0! �0L! Z:

Thus �0L splits as �0L0 �Z and we can focus on the first factor.

The monoid �0L0 is not commutative but it contains several copies of �0K in its center.
Indeed, consider the injective morphism '" W �0K! �0L0 mapping a long knot k
to the string link whose upper strand is knotted according to k and does not interact

Figure 5: Illustration of the commutation between a braid and an arbitrary
string link.
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'".f / '#.f / 'l.f /

Figure 6: Illustration of the morphisms 's , s 2 f";#;lg.

with the unknotted lower strand. An illustration of '" is given in Figure 6. The image
of '" is a copy of �0K lying in �0L0, and one can build a similar morphism '# by
switching the roles of the strands. A third copy of the knot monoid can be found as
follows. Consider the morphism 'l that sends a knot k to the link whose strands are
parallel and unlinked but knotted according to k. This 'l maps to a third copy of �0K
in �0L0.

The images of any two of these morphisms intersect only in the component of {2 so that
�0K�3 actually lives in �0L0. Every string link in the image of a 's , for s 2 f";#;lg,
commutes with any other link. The structure theorem for 2–string links proved by Blair,
Burke and Koytcheff in [2] actually shows that the center of �0L0 is generated by the
images of the maps 's , alongside the fact that the remaining links are freely generated by
some prime elements. More precisely, when Q denotes the prime 2–string links in L that
do not belong to the image of a 's and when Q0DQ\L0, one has the following result:

Theorem 1.10 (Blair, Burke and Koytcheff [2]) The monoid �0L0 is isomorphic
to the product of �0K�3 and the free (noncommutative) monoid on the basis �0Q0.
Moreover , an isomorphism is induced by the inclusion �0Q0 ,!�0L0 and the maps 's .

The string links generated by the images of '" and '# are called split. Such a string
link can also be characterized by the existence of a properly embedded disk separating
the two strands in the complement. The string links generated by the image of 'l and
invertible elements are called double cables. They can alternatively be defined as the
links whose strands are parallel. Note that Theorem 1.10 above tells us that the center
of �0L precisely consists of the split links, double cables and their products, and that
any other string link only commutes with central elements.

We now introduce framed 2–string links. They are the 2–stranded analogue of framed
long knots as they arise by thickening the two strands. Let � W D2qD2 ,! D2 be
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f "jR�.0;1/
f "jR�.0;0/

f #jR�.0;1/
f #jR�.0;0/

Figure 7: A framed 2–string link f with framing number .3;�5/.

the embedding that rescales the disks to make their radii 1
8

and translates them so
that they are centered at

�
0; ˙1

2

�
. We refer to idR � � as the standard embedding

.R�D2/q .R�D2/ ,!R�D2.

Definition 1.11 A framed 2–string link is an embedding

.R�D2/q .R�D2/ ,!R�D2

that restricts to the standard embedding outside of .J �D2/q .J �D2/ and maps the
interior of .J �D2/q .J �D2/ in the interior of J �D2. The space of framed
2–string links is denoted by EC�.1;D2/. When supp�.f / denotes the closure of
f.t; x/2 .R�D2/q.R�D2/ jf .t; x/¤ .t; �.x//g for any embedding f , the condition
for f to lie in EC�.1;D2/ can be reformulated as supp�.f /� .J �D

2/q .J �D2/

and f
�
int..J �D2/q .J �D2//

�
� J �D2.

Framed 2–string links again dispose of a binary concatenation operation # and a restric-
tion map EC�.1;D2/!L preserving it. This endows the isotopy classes �0EC�.1;D2/
with a monoid structure with the standard embedding as unit. An obstruction for the
restriction map to be a homotopy equivalence is again the framing of each strand. We
define the framing number ! of an element of EC�.1;D2/ as in Definition 1.5, except
that it now consists of a pair of integers, one for each strand.

Definition 1.12 Let f be a framed 2–string link with strands f " and f #. We define
the upper framing number !".f / as the linking number lk.f "jR�.0;0/; f "jR�.0;1//.
The lower framing number !#.f / is defined the same way and the whole framing
number !.f / is the pair of integers .!".f /; !#.f //.

The framing number is isotopy invariant and additive with respect to the concatena-
tion for the same reasons as before. This makes it descend to a monoid morphism
�0EC�.1;D2/! Z�2. We are now able to get rid of this twisting phenomenon by
defining:

Algebraic & Geometric Topology, Volume 23 (2023)



Operadic actions on long knots and 2–string links 847

Definition 1.13 The space of fat 2–string links yL is the subspace

!�1.0; 0/� EC�.1;D2/:

Fat 2–string links are stable under concatenation. We denote by yL0, yQ and yQ0 the
elements of yL whose restrictions to .R� .0; 0//q .R� .0; 0// lie in L0, Q and Q0,
respectively. yL is a good approximation for L in the sense that:

Proposition 1.14 (Burke and Koytcheff [8]) The restriction map yL!L is a homotopy
equivalence.

In particular, the monoid �0 yL is completely understood and has the same structure
as �0L, made explicit in Theorem 1.10.

The remainder of this paper is dedicated to the elaboration of an algebraic structure on
the space level of long knots and string links. The stacking products are examples of
binary operations on the space level that relate to the monoids �0K and �0L. We aim to
find a refinement of these operations into a more subtle structure, in order to generalize
Theorems 1.8 and 1.10 to the space level. These structures will be formalized as
operadic actions and the isomorphisms described in the theorems above will generalize
as equivariant homotopy equivalences. Budney’s Theorem 11 in [5] precisely answers
this problem in the case of knots, and Burke and Koytcheff’s Theorem 6.8 in [8] partially
deals with the case of 2–string links. In the following sections, we recall the work
presented in these two papers and treat the case of 2–string links in a wider manner.

2 Operads

The purpose of this section is to recall the definition of (colored) operads, set up some
notation and introduce the two operads of prime interest in this paper: the little cubes
operad Cn and a 4–colored version of the Swiss-cheese operad that we call SCL for
“Swiss-cheese for links”. We also discuss the different types of algebras these objects
encode and review free models for these structures.

2.1 Colored operads and their algebras

We start by reviewing the notion of colored operad. Let S be a set of colors. We
denote by S? the collection of tuples of elements of S . In other words, S? is the union
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`
n�0 S

�n. Each S�n is naturally a right †n–space. The length of a tuple t 2 S? is
denoted by jt j and, for every s 2S , jt js is the number of times s appears in t . Given two
tuples of colors t , u and an integer i � jt j, we denote by t ıi u the .jt jCjuj�1/–tuple

t ıi uD .t1; : : : ; ti�1; u1; : : : ; ujuj; tiC1; : : : ; tjt j/:

Note that jt ıi ujs D jt jsCjujs whenever s¤ ti and jt jsCjujs�1 for sD ti . We write
sn for the tuple .s; : : : ; s/ 2 S�n for every s 2 S and n � 0. We are now in the right
framework to define:

Definition 2.1 A colored operad O over the colors S consists of the following com-
bined data:

(i) for every t 2 S? and s 2 S , a space O.t I s/;

(ii) for every t , u 2 S? and i � jt j, operadic compositions

ıi WO.t I s/�O.uI ti /!O.t ıi uI s/

satisfying the usual associativity, symmetric and unital conditions — the latter
are thoroughly detailed in [35];

(iii) for every permutation � 2†n, t an n–tuple of colors and s a color, a map

�� WO.t I s/!O.t� I s/

such that �� ı �� D .� ı �/� and id� D id;

(iv) for every color s, a unit 1s 2O.sI s/.

The elements of O.t I s/ are called operations with inputs t and output s. The units 1s
are sometimes referred to as identities. We also often write a� for ��.a/ and a ıi b
for ıi .a; b/. A morphism of colored operads f W O ! P is a collection of maps
f.t Is/ WO.t I s/!P.t I s/ preserving operadic compositions, symmetric actions and units.

Example 2.2 The prototypical examples of colored operads are the endomorphism
operads. Let X D .Xs/s2S be an S–tuple of spaces. Given a vector of colors t , we
write X�t for the product

Q
i Xti . Now, for any output color s, we set EX .t I s/ to be

the mapping space Top.X�t ; Xs/. An element � 2†jt j can act on an f 2 EX .t I s/ by
permuting its entries, resulting in an element of EX .t� I s/. Also, when u is another
vector of colors and g lies in EX .uI ti /, one can inject g into the i th entry of f to get
the composite f ıi g 2 EX .t ıi uI s/. This specifies the data of a colored operad EX on
the colors S .

Algebraic & Geometric Topology, Volume 23 (2023)



Operadic actions on long knots and 2–string links 849

Definition 2.3 A colored operad O over a single color s is called an operad. In this
case, we write O.n/ for O.snI s/ and call it the space in arity n. The unit 1s is simply
denoted by 1. The operadic compositions are now maps O.n/�O.m/!O.nCm�1/
and the symmetric structure turns each O.n/ into a right †n–space.

Operads are useful to specify categories of algebraic objects. This is formalized via
operadic actions which we define now.

Definition 2.4 Let O be a colored operad over the set of colors S and X D .Xs/s2S
an S–tuple of spaces. We say that X is an O–algebra if it comes with a morphism of
operads � W O! EX . In other words, an O–algebra structure on X is a collection of
maps

�.t Is/ WO.t I s/! Top.X�t ; Xs/

preserving the operadic compositions, identities and symmetric actions described in [35].
They may also be thought of as maps O.t I s/ �X�t ! Xs , and we shall use each
framework when it is more convenient. A morphism of O–algebras f W X ! Y is a
collection of maps fs WXs! Ys preserving the operadic actions.

Example 2.5 Consider the operad obtained with the one point space in every arity
and trivial symmetric actions and operadic compositions. An action of this operad
on a space X is the data of a single map X�n ! X for every nonnegative n. One
readily checks that the required relations listed in [35] correspond to the associativity
and commutativity of X�2!X , as well as the fact that the element specified by the
zeroth map X�0!X acts as a unit. In other words, an action of this operad on X is a
commutative topological monoid structure on X . This justifies the terminology Com
for this operad.

Example 2.6 Consider the operad whose space in arity n is the discrete symmetric
group †n as an evident right †n–space with the following operadic composition. For
every � 2†n, � 2†m and i � n, � ıi � permutes f1; : : : ; nCm� 1g according to �
while treating fi; : : : ; i Cm� 1g as a single block, then shuffles the latter internally
according to � . An action of this operad on a space X is a data of a map X�n!X for
every ordering of f1; : : : ; ng. One readily checks that the required relations correspond
to the associativity of X�2 ! X and the fact that the element X�0 ! X acts as a
unit. In other words, the algebras over this operad are the not necessarily commutative
topological monoids. This operad is called the associative operad and is denoted by As.
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2.2 Free algebras

Before we introduce the two operads that will act on the spaces of knots and links,
we take some time to discuss free algebras. When O is a colored operad over the
set of colors S , the O–algebras and their morphisms form a category denoted by
O–Alg. There is a forgetful functor U WO–Alg! Top�S mapping an O–algebra to its
underlying S–tuple of spaces. By free O–algebra, we understand the left adjoint OŒ_� to
the forgetful functor U . In other words, the free O–algebra generated by X D .Xs/s2S
should lead to a bijection

O–Alg.OŒX�; Y /Š Top�S .X;U.Y //

for every O–algebra Y . A well-known model for OŒX� is obtained as follows. For
every vector x D .x1; : : : ; xn/ 2 X

�t and permutation � , we will write �x for
.x��1.1/; : : : ; x��1.n// 2X

�t��1 . We set

OŒX�s D
a
t

O.t I s/�X�t
ı
�;

where � identifies each .a;x/ with .a�; ��1x/ for every permutation � . The action of
O is obtained by composing in the O.t I s/ factor. The desired bijection above is then a
formal verification. When O is an uncolored operad, � corresponds to the †n–orbits
and we can simplify

OŒX�D
a
n

O.n/�†n X
�n:

We conclude this subsection with a quick observation about free algebras. When O
is a colored operad with set of colors S , the components �0O naturally inherit an
operad structure. Similarly, if X D .Xs/s2S is an O–algebra, then the components
�0X D .�0Xs/s2S inherit a �0O–algebra structure. Finally, the following result will
come in handy when proving that some actions yield free algebras in Section 4.

Proposition 2.7 Let X be an S–tuple of spaces. Then �0.OŒX�/ is a model for the
free algebra �0OŒ�0X�.

Proof We have the two models

�0.OŒX�s/D�0
�a
t

O.t I s/�X�t
ı
�

�
; �0OŒ�0X�sD

a
t

�0O.t I s/��0X�t
ı
�:

Since �0 commutes with products and coproducts, the right-hand side is equal to the
quotient of �0

�`
t O.t I s/�X�t

�
by the relations Œa;x�� Œa�; ��1x�. The left-hand
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side also matches this description so both spaces are the same. It is a tautological
verification to see that the action of �0O is the same under these identifications.

2.3 The little cubes operad

We introduce the little cubes operad Cn and quickly discuss the algebras it encodes. It
is an uncolored operad originated in [24] in order to understand iterated loop spaces.
Our treatment is very similar to the one of Budney in [5].

Definition 2.8 The real functions of the form x 7! axC b for some positive a are
said to be affine increasing. A little n–cube is an application L W J n! J n of the form
LD l1 � � � � � ln for some affine increasing functions l i . The space of k overlapping
little n–cubes C1n .k/ is the set of configurations of k little n–cubes J nq� � �qJ n!J n.
We set C1n .0/ to be the one point space. Given an element L 2 C1n .k/, we write its
decomposition in little n–cubes LD

L
i L

i . Each Li decomposes uniquely in affine
increasing functions l i;1 � � � � � l i;n, so writing l i;j W x 7! ai;jxC bi;j gives rise to an
injection C1n .k/ ,!R2nk W L 7! .a1;1; b1;1; � � � ; ak;n; bk;n/. This is used to transfer a
topology on C1n .k/. Considering the C1–topology actually has the same outcome.

An element of C1n .k/ is represented by a drawing of the images of its little n–cubes.
We now equip the family of spaces C1n .k/ with an operadic structure. Thereafter, we
define the little n–cubes operad as a suboperad by adding a disjointness conditions on
the cubes.

Definition 2.9 The overlapping little n–cubes operad C1n is the operad specified as
follows.

(i) The space in arity k is the set of configurations of little n–cubes C1n .k/.

(ii) For every positive integer k, l and i � k, the operadic composition is given by

ıi W C1n .k/�C
1
n .l/! C1n .lCk�1/;

.L; P / 7! L1˚� � �˚Li�1˚LiıP 1˚� � �˚LiıP l˚LiC1˚� � �˚Lk :

Composing L 2 C1n .k/ with the one point in C1n .0/ discards the i th cube of L.

(iii) The action of � 2†l on L 2 C1n .l/ permutes the little n–cubes of L, ie

L� D
M
i

L�.i/:

(iv) The unit is the identity little n–cube idJn 2 C1n .1/.
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Figure 8: Illustration of the operadic composition ı2 W C12 .4/� C12 .2/! C12 .5/.

Definition 2.10 Two little n–cubes are said to be almost disjoint if the interiors of
their images are disjoint. The space of k little n–cubes Cn.k/ is the subspace of C1n .k/
consisting of pairwise almost disjoint little n–cubes. We still set Cn.0/ to be the one
point space. Operadic compositions in the overlapping little cubes operad preserve the
property of being almost disjoint so the subspaces Cn.k/ forms a suboperad Cn called
the little n–cubes operad.

Remark 2.11 Budney defines in [6] an operad C0n which he calls “the operad of
overlapping little n–cubes”. The resemblance with our terminology for C1n is only
coincidental. The two objects are not equivalent (Budney’s C0n is equivalent to CnC1,
while C1n has contractible underlying spaces). The operad C0n does not appear in this
article, so there should be no confusion.

We conclude this subsection by taking a look at the operad �0Cn. Given k little n–
cubes L 2 Cn.k/, restricting L to the center of each cube leads to an injective map
f1; : : : ; kg ,! J n, ie an element of the configuration space confk.J n/. Conversely,
given k points x in confk.J n/, one gets an element of Cn.k/ by considering the identical
cubes centered at x whose size is the maximal size that keeps them almost disjoint.
Intuitive straight line homotopies show that these two maps are homotopy inverses, so
that the homotopy type of Cn.k/ is the one of confk.J n/. In particular, when n > 1,
each Cn.k/ is path connected, so �0Cn D Com from Example 2.5. The free algebras
over this operad are the free commutative monoids. In dimension 1, the isotopy classes
of C1.k/ are indexed by the orderings of f1; : : : ; ng, so �0C1 DAs from Example 2.6.
The free As–algebras are the free monoids.

2.4 The operad SCL

We go through the construction of the Swiss-cheese operad for links SCL. It is a 4–
colored operad that is also defined in terms of little cubes. This terminology is motivated
by the fact that SCL restricts to the 2–colored Swiss-cheese operad on several pairs of
colors. We then conclude by investigating the operad of components �0SCL.
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Figure 9: Illustration of the operadic composition in SCL, more precisely of
ı3WSCL.l;o;";l;#;o;"Io/�SCL.";";"I"/!SCL.l;o;";";";l;#;o;"Io/.

Definition 2.12 A little n–cube L D l1 � � � � � ln is said to meet the lower face of
the unit cube if ln.�1/D�1. Visually, this happens when the image of L intersects
J n�1 ��1� J n. The configurations of k almost disjoint little n–cubes meeting the
lower face of J n is denoted by Cın.k/ and these spaces form an operad Cın just as in the
case of Cn.

Consider the set of four colors S D fo;";#;lg. The notation o is meant to remind one
of the “open” color in the Swiss-cheese operad as it will play a similar role. The other
symbols call up to the upper and lower strands of a string link.

Definition 2.13 The Swiss-cheese operad for links SCL is specified as follows.

(i) For s 2 f";#;lg, the only inputs t that do not lead to an empty SCL.t I s/ are the
monochromatic ones such that t D sn. In that case, we set SCL.snI s/D C2.n/.
When s D o, we set SCL.t I o/ to be those L 2 C12 .jt j/ such that each Li with
ti D o meets the lower face of J 2 while being almost disjoint from any other
cube, the Li with ti D" are almost disjoint from each other and the same holds
for ti D# and l.

(ii) The operadic compositions, symmetric actions and units are inherited from C12 .

An element of SCL.t I s/ is represented by a drawing of the images of its little n–cubes.
We decorate the numbering of each little cube with its associated color to distinguish
the cubes that simply happen to meet the lower face of J n from those that have to. The
output color also appears as an index of the whole drawing. Figure 9 gives an example.
It is immediate from its definition that SCL restricts to the (cubic) Swiss-cheese operad
on the pairs of colors fo;"g, fo;#g and fo;lg. It also clearly restricts to the little
cubes operad C2 on ", # and l. Originally, the 2–dimensional Swiss-cheese operad
is a 2–colored operad on the set of colors fo; cg. In some sense, the color o encodes
a homotopy associative algebra and the color c describes part of its center. In the

Algebraic & Geometric Topology, Volume 23 (2023)



854 Etienne Batelier and Julien Ducoulombier

case of 2–string links, the center of �0L0 decomposes as �0K�3. To encode this extra
information, we split the color c into three independent colors f";#;lg.

We now investigate �0SCL and its algebras. Observe that for every k and n > 1, the
projection map Cın.k/! Cn�1.k/ is a homotopy equivalence. A homotopy inverse is
obtained by inflating .n�1/–cubes into n–cubes of some fixed height. This reasoning
can readily be adapted to show that SCL.t I o/ is homotopy equivalent to the product

C1.jt jo/� C2.jt j"/� C2.jt j#/� C2.jt jl/:

In particular, �0SCL.t I s/ is either

� empty if s ¤ o and t ¤ sn,

� a single point if s ¤ o and t D sn,

� the discrete space †jt jo when s D o.

Therefore, an action of �0SCL on X D .Xo; X"; X#; Xl/ is the data of a monoid
structure on each space, such that the Xs are commutative for s¤ o and act on Xo with
compatible actions. With this description, it is easy to see with the universal property
of free objects that the free such quadruplet on the basis .A;B; C;D/ is given by

�0SCLŒA; B; C;D�

D
�
AsŒA�� ComŒB�� ComŒC �� ComŒD�; ComŒB�; ComŒC �; ComŒD�

�
;

where the last three monoids act on the first one on their respective factor.

3 Operadic actions

We gather here the objects introduced in the previous sections and endow the spaces yK
and yL with operadic actions. In the first subsection, the fat long knots yK are equipped
with a C2–algebra structure originally exhibited by Budney in [5]. In the case of fat
2–string links, there is a C1–algebra structure that follows from Burke and Koytcheff’s
work in [8]. We recall its construction in the second subsection and extend it to an
action of SCL in a third one.

3.1 Budney’s action on fat long knots

We start with the little 2–cubes action on yK originated in [5]. Following Budney’s
work, we first define an action of the affine increasing automorphisms of R on the
self-embeddings of R�D2, then proceed to extend it to the 2–dimensional little cubes
operad C2. We denote by CAut1 the group of real affine increasing functions. A
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7�!
1

Figure 10: Illustration of the action of C1.1/ on EC.1;D2/.

little 1–cube is identified with its natural extension to the real line so that C1.1/ lives
in CAut1. We topologize CAut1 as we topologized C1.1/, which coincides with the
C1–topology and turns it into a topological group.

Proposition 3.1 (Budney [5]) The topological group CAut1 acts on the space of
embeddings Emb.R�D2;R�D2/ via

CAut1 �Emb.R�D2;R�D2/! Emb.R�D2;R�D2/;

(L; f / 7! .L� idD2/ ıf ı .L
�1
� idD2/:

Moreover , this restricts to an action of C1.1/ on EC.1;D2/, which we write as
.L; f / 7! Lf .

Proof That this map defines a valid action of a topological group is immediate. To
prove the statement about the restriction, we just need to check that Lf restricts to the
identity outside of J �D2, provided L 2 C1.1/ and f 2 EC.1;D2/. For any t … J ,
L�1.t/ does not lie in J because L.J /� J . So, for every x 2D2, .L�1� idD2/.t; x/
is outside of J �D2, where f restricts to the identity. Thus Lf .t; x/D .t; x/, which
proves the second part of the proposition.

Definition 3.2 (Budney [5]) We define two operations and a partial order on little
2–cubes.

(i) Given a little 2–cube LD l1 � l2, we write L� for the little 1–cube l1. When
L 2 C2.k/, L� denotes

L
i L

i
� . These little 1–cubes may overlap so L� lies in

C11 .k/ but not necessarily in C1.k/.

(ii) For every L D l1 � l2 2 C2.1/, let Lt denote the number l2.�1/. Again, if
L 2 C2.k/, then Lt is the k–tuple of reals .L1t ; : : : ; L

k
t / 2 J

k .

(iii) We define a partial order on the little cubes Li of an element L 2 C2.k/. This
binary relation is the order generated by setting Li <Lj if and only if Lit <L

j
t

and the interiors of Li� and Lj� intersect. Then, a permutation � 2†k is said to
order L if the mapping i 7! L�.i/ is nondecreasing.
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Figure 11: Illustration of the operations ._/� and ._/t . The permutations id,
.12/ and .23/ order L.

We are now ready to define an action of C2 on EC.1;D2/, ie a map of operads � W C2!
EEC.1;D2/. For every element L 2 C2.k/ and permutation � 2†k that orders L, we set

�k.L/ W EC.1;D2/�k! EC.1;D2/;

f D .fi /i 7! .L�.1/� f�.1// ı � � � ı .L
�.k/
� f�.k//:

One can be assured that �k.L/ does not depend on � as follows. Two choices for �
differ by a sequence of transpositions .ab/ such that La and Lb are incomparable,
ie such that La� and Lb� are almost disjoint. Then, supp.La�fa/ and supp.Lb�fb/ are
almost disjoint as well so both orders of composition yield the same outcome. For the
continuity, consider for every � 2†k the map

��k W C2.j /�EC.1;D2/�k! EC.1;D2/;

.L;f / 7! .L�.1/� f�.1// ı � � � ı .L
�.k/
� f�.k//:

�3

1
2

3

7�
!

Figure 12: Illustration of Budney’s action on fat long knots.
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Each ��
k

is continuous and coincides with �k on

F� D fL 2 C2.k/ j � orders Lg �EC.1;D2/�k :

The sets F� are closed and cover C2.k/�EC.1;D2/�k so �k is continuous. In arity 0,
we set �0 to be the map sending the single point in C2.0/�EC.1;D2/�0 to idR�D2 .

Theorem 3.3 (Budney [5]) The operations � turn EC.1;D2/ into a C2–algebra.

Even though a proof of this result is readily available in [5], we provide one here as
the methods and ideas at stake will be reused before the end of this section.

Proof The operation �1 clearly maps the basepoint idJ 2 2 C2.1/ to the identity. We
need to check the compatibility of � with the symmetric group actions and the operadic
compositions. We start with the symmetric structure. Recall that a permutation � acting
on the right of L 2 C2.k/ yields

L
i L

�.i/. It also acts on the left of

f D .fi /i 2 EC.1;D2/�k

to give �f D .f��1.i//i . Thus, if � is a permutation that orders L� , then � ı� orders L.
This proves the needed equality

�k.L�;f /D .L
�ı�.1/
� f�.1// ı � � � ı .L

�ı�.k/
� f�.k//D �k.L; �f /:

We are left to prove that � preserves operadic compositions. Given little 2–cubes
L 2 C2.k/, P 2 C2.l/ and an integer i � k, we need to show that

�kCl�1.L ıi P /D �k.L/ ıi �l.P /:

Let � and � be permutations that respectively order L and P . Unravelling the definition
of � shows that the desired equality boils down to checking that � ıi � orders L ıi P .
Recall the definitions of � ıi � and L ıi P :

� � ıi � shuffles the interval fi; : : : ; i C l � 1g according to � , then permutes
f1; : : : ; kC l � 1g according to � while treating the shuffled interval as a single
block.

� L ıi P is obtained from L by replacing Li with
L
r L

i ıP r .

If Li and Lj are incomparable, Li ıP r and Lj also are, so the result follows.

This recently developed structure on the space of framed long knots generalizes the
stacking operation in the following sense: acting with two side-by-side rectangles of
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width 1 on two knots results in their concatenation. In particular, the Com–algebra struc-
ture on �0EC.1;D2/ induced from C2! EEC.1;D2/ is the monoid structure described
in Section 1.1.

Theorem 3.4 (Budney [5]) The fat long knots yK form a sub-C2–algebra of EC.1;D2/.

Proof As mentioned in Section 1.1, the framing number ! descends to a morphism
of monoids �0EC.1;D2/! Z. Recall also that �0C2 is the commutative operad Com.
The integers Z form an abelian group and thus a commutative monoid. They can
therefore be seen as a C2–algebra via the structure map C2 ! Com ! EZ. In this
framework, the framing number ! is a C2–algebra morphism, hence the result.

We conclude this subsection with a quick discussion about �. Let L be an element
of C2.k/. The heights of the little cubes of L only appear in the formula of �k.L/
to dictate a composition order. This is done via an ordering permutation, which we
defined as an element � 2†k such that the mapping i 7!L�.i/ is nondecreasing. Here,
one can replace the word “decreasing” with “increasing” and define another action with
the same formula. We refer to it as Budney’s reverse action. There is no substantial
difference between these two versions of �, nor is there a reason to prefer one or the
other. We still introduce the two of them now, as they will both play a role in the next
subsections. Informally, the need for a reversed action arises because knots yielding
split links must be tied at the beginning of a composition, while knots yielding cables
must be tied at the end.

3.2 Burke and Koytcheff’s actions on fat 2–string links

This subsection is a first step towards an adaptation of Budney’s work to 2–string links.
Namely, we build an action of C1 on EC�.1;D2/ and yL. This structure has already been
exhibited by Burke and Koytcheff [8, Theorem 6.8], with C1 appearing as a suboperad
of a way bigger object called the infection operad. As before, we start with an action of
CAut1 on the embeddings .R�D2/q .R�D2/ ,!R�D2, then proceed to extend
it to C1.

Proposition 3.5 The topological group CAut1 acts on Emb..R�D2/q2;R�D2/ via

CAut1 �Emb..R�D2/q2;R�D2/! Emb..R�D2/q2;R�D2/;

(L; l/ 7! .L� idD2/ ı l ı .L
�1
� idD2/

q2:

Moreover , this restricts to an action of C1.1/ on EC�.1;D2/, which we write as
.L; l/ 7! Ll .
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Figure 13: Illustration of Burke and Koytcheff’s action on fat 2–string links.

Proof The proof of this is very similar to the proof of Proposition 3.1: the fact that
the formula above specifies a valid action of a topological group is still clear and the
restriction statement is proved just as in the case of framed long knots.

To distinguish Budney’s action from the one we build now, we denote the structure
map by �. The space C1.0/ in arity 0 still consists of a single point that �0 maps to
idR � � from Definition 1.11. For any positive integer k and L 2 C1.k/, we set �k.L/
to the map that concatenates k framed string links according to the configuration of
intervals L. That is, for every f D .fi /i 2 EC�.1;D2/�k ,

�k.L/.f / W .R�D
2/q .R�D2/!R�D2;

.t; x/ 7!

�
Lifi .t; x/ when t 2 Li .J /;
.t; �.x// elsewhere:

The embeddings patch in a differentiable way because the little cubes are almost disjoint.
The outcome lies in EC�.1;D2/ because supp�.L

ifi /D .L
i � idD2/

q2.supp�.fi //.

Theorem 3.6 (Burke and Koytcheff [8]) The operations � turn EC�.1;D2/ into a
C1–algebra.

Proof It is clear that �1.idJ / is the identity on EC�.1;D2/. We check the compatibility
with the symmetric actions. Let � be a permutation, L 2 C1.k/ and f 2 EC�.1;D2/�k .
To prove the desired �k.L�;f /D �k.L; �f /, we show that these maps agree on the
images of every little cube of L. This is enough as they clearly restrict to idR � �
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outside of these intervals. For every i � k, the left-hand side of the equation restricts
to .L�/ifi on .L�/i .J k/. The right-hand side restricts to L�.i/f��1ı�.i/ D .L�/

ifi

so we are done. The associative compatibility is verified the same way.

As in the case of knots, the stacking operation arises as a special case of this recently
developed action. More precisely, acting with two side-by-side intervals of width 1
on two string links results in their concatenation. Therefore, the As–algebra struc-
ture on �0EC�.1;D2/ induced from � W C1 ! EEC�.1;D2/ is the monoid structure on
�0EC�.1;D2/ discussed in Section 1.2. Moreover, as in the case of knots, we can
restrict ourselves to unframed embeddings:

Theorem 3.7 The fat 2–string links yL form a sub-C1–algebra of EC�.1;D2/.

Proof Just as in Theorem 3.4, Z�2 is a group that we can think of as an As–algebra
and therefore a C1–algebra. This turns the framing number ! into a morphism of
C1–algebras, hence the result.

3.3 The action of SCL on fat 2–string links

This section aims to merge the two actions defined above into a single SCL–algebra
structure on the spaces of fat long knots and fat 2–string links. More precisely, we
build an action of SCL on the quadruplet of spaces X D .Xo; X"; X#; Xl/, where
Xo D EC�.1;D2/ and Xs D EC.1;D2/ for every s 2 f";#;lg. We start with a lemma
to ease the construction.

Lemma 3.8 There is a map

EC�.1;D2/�EC.1;D2/�3! EC�.1;D2/; .l; k"; k#; kl/ 7! kl ı l ı Œk"q k#�:

Proof The continuity of this application immediately follows from the continuity of
the composition in the C1–topology. The purpose of this lemma is actually to check
that kl ı l ı Œk"q k#� indeed lives in EC�.1;D2/. This follows from the inclusions
supp.ks/� J �D2 for s 2 f";#;lg, and l

�
int..J �D2/q .J �D2//

�
� J �D2.

This map is in some way a combination of the morphisms 's from Section 1.2. Indeed,
if one restricts this application to the subspace fidR � �g �EC.1;D2/� fidR�D2g

�2,
the formula becomes k" 7! .idR � �/ ı Œk" q idR�D2 �, which is a fattened version
of '". We denote it by O'". The same goes for #. In the case of l, one is left with
kl 7! kl ı .idR � �/. This map sends a long knot kl to the string link whose strands
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are parallel and knotted according to kl. In other words, it is again a fattened version
of 'l, which we denote by O'l.

We are now ready to define the morphism � W SCL! EX for the new action. As the
values of �.t Is/ heavily depend on .t I s/, defining � takes several steps.

We start by specifying the values of � in monochromatic cases. The operad SCL
restricts to the little cubes operad C2 on the colors s 2 f";#g. We set � to Budney’s
action on these colors. In other words, �.sk Is/ D �k from Theorem 3.3. When s Dl,
we similarly set �.lk Il/ to Budney’s reverse action, which we will still denote by �
by slight abuse of notation. On the color o, SCL restricts to the operad Cı2. There is a
morphism ._/� W Cı2! C1 and we set � to the composite � ı ._/� on this suboperad.

For every s 2 f";#;lg, the only input colors t that do not lead to an empty SCL.t I s/
are the monochromatic ones such that t D sk . Thus, we are left to specify �.t Is/ when
s D o and the inputs are mixed. To this end, we introduce color sorting functions. Let
t 2 S?. Consider four injective (not necessarily increasing) maps

˛s W Œjt js�D f1; : : : ; jt jsg ! Œjt j�D f1; : : : ; jt jg; s 2 S;

whose disjoint images cover Œjt j� and such that t˛s.i/ D s for every i 2 Œjt js�. These
maps regroup inputs of the same color and are said to sort the colors of t . Observe that
each ˛s lifts to a map SCL.t I o/! C2.jt js/ that discards the little cubes whose colors
are different from s,

˛s W SCL.t I s/! C2.jt js/; L 7!
M
i

L˛s.i/:

Discarding embeddings also yields a map

˛s WX
�t
!X

�jt js
s ; f 7! ˛sf D .f˛s.1/; : : : ; f˛s.jt js//:

The behavior of these lifts with respect to the symmetric structures on SCL and X�t is
captured by the following relations: for every � 2†jt j, � 2†jt js , L 2 SCL.t I o/ and
f 2X�t ,

.� ı˛s/LD
M
i

L�ı˛s.i/ D
M
i

.L�/˛s.i/ D ˛s.L�/; .� ı˛s/f D ˛s.�
�1f /;

.˛s ı �/LD
M
i

L˛sı�.i/ D
M
i

.˛sL/
�.i/
D .˛sL/�; .˛s ı �/f D �

�1.˛sf /:

We can finally combine the previous actions and define �.t Io/.L/ as the map

�.t Io/.L/ WX
�t
! EC�.1;D2/;

f 7! �.˛lL; ˛lf / ı�.˛oL� ; ˛of / ı
�
�.˛"L; ˛"f /q �.˛#L; ˛#f /

�
;
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Figure 14: Illustration of the action of SCL on fat 2–string links and fat long knots.

where the � on the left-hand side refers to Budney’s reverse action and the other two to
Budney’s regular action.

The continuity of � is immediate and its values do not depend on the color sorting
functions: if one chooses to replace ˛o with ˛o0, there is a permutation � such that
˛o
0 D ˛o ı � . Then, the relations above give

�.˛o
0L� ; ˛o

0f /D �..˛o ı �/L� ; .˛o ı �/f /

D �..˛oL�/�; �
�1.˛of //

D �.˛oL� ; ˛of /:

The same argument with � shows that the remaining ˛s can be replaced as well.

Theorem 3.9 The operations � turn the quadruplet X into an SCL–algebra.

Proof First of all, it is clear that every �.sIs/ sends idJ 2 to the identity. The symmetric
compatibility is also quickly verified: when functions .˛s/s sort the colors of t , the
composites .��1 ı˛s/s sort the colors of t� and the needed equality follows.
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We are left to check the compatibility with the operadic composition. Let L2SCL.t I s/
and P 2 SCL.uI ti / for some i . We need to show that �.Lıi P /D�.L/ıi �.P /. The
validity of Budney, Burke and Koytcheff’s actions (Theorems 3.3 and 3.6) implies the
result when t and u are monochromatic of the same color. Since there is no operation
with output color s 2 f";#;lg and input colors t ¤ sk , we may assume that s D o and
t ¤ ok . When evaluated in embeddings f 2X�tıiu, the desired equality reads

�.tıiuIo/.L ıi P;f /

D �.t Io/
�
L; f1; : : : ; fi�1; �.uIti /.P; fi ; : : : ; fiCjuj�1/; fiCjuj; : : : ; fjtıiuj

�
:

We split cases and unravel the definition of � on both sides of this equation.

Assume first that ti D". This forces uD"juj. Let .˛s/s sort the colors of t . We may
ask for ˛".jt j"/D i . We sort the colors s ¤" in t ıi u with functions .
s/s mapping
j to ˛s.j / if ˛s.j / < i or to ˛s.j /C juj if ˛s.j / > i . The reason for this choice is

s.L ıi P /D ˛sL. For the remaining 
", we use the same construction on Œjt j"� 1�
and extend it to Œjt ıi uj"� via the increasing map onto the interval fi C j; j < jujg.
The equality reduces to

Kl ıƒ ı ŒK
L
"
qK#�DKl ıƒ ı ŒK

R
"
qK#�;

where
ƒD �.˛oL� ; 
of /;

KL
"
D �.
".L ıi P /; 
"f /;

Kl D �.˛lL; 
lf /;

KR
"
D �.˛"L; f˛".1/; : : : ; f˛".jt j"�1/; �.P; fi ; : : : ; fjujCi�1//;

K# D �.˛#L; 
#f /:

Furthermore, 
".LıiP /D˛"Lıjt j"P , so the validity of Budney’s action (Theorem 3.3)
completes the proof in this case. The same manipulations treat the cases ti D# and l.

We are left to treat the case s D o and ti D o. Let .˛s/s and .ˇs/s be color sorting
functions for t and u, respectively. We may again ask for ˛o.jt jo/D i . Let .
s/s be
the color sorting functions for t ıi u one naturally builds from .˛s/s and .ˇs/s . More
precisely, 
s agrees with ˛s on ˛s�1.fl j l < ig/, with ˛s C juj on ˛s�1.fl j l > ig/
and maps the remaining interval to the inputs s in fi C l j l < jujg according to ˇs .
These choices are the ones giving 
s.L ıi P / D ˛sL˚ .L

i ı ˇsP / for every s in
f";#;lg and 
o.L ıi P / D ˛oL ıjt jo ˇoP . The left-hand side of the equality reads
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KL
l
ıƒL ı ŒKL

"
qKL

#
�, where

ƒL D �.˛oL ıjt jo ˇoP; 
of /;

KLs D �.˛sL˚ .L
i
ıˇsP /; 
sf / for every s 2 f";#;lg:

On the other hand, the right-hand side of the equality is KR
l
ıƒR ı ŒKR

"
qKR

#
�, where

ƒR D �.˛oL; f
o.1/; : : : ; f
o.jt jo�1/; �.uIo/.P; fi ; : : : ; fiCjuj�1//;

KRs D �.˛sL; f
s.1/; : : : ; f
s.jt js// for every s 2 f";#;lg:

But �.uIo/.P; fi ; : : : ; fiCjuj�1/ is itself of the form Kl
0
ıƒ0 ı ŒK"

0
qK#

0�, where

ƒ0 D �.ˇoP; f
o.jt jo/; : : : ; f
o.jtıiujo//;

Ks
0
D �.ˇoP; f
s.jt jsC1/; : : : ; f
s.jtıiujs// for every s 2 f";#;lg:

It is easy to check from the definition of � and Theorem 3.6 that

ƒR D LiKl
0
ıƒL ı ŒLiK"

0
qLiK#

0�:

We get the following new expression for the whole right-hand side of the equation:

.KR
l
ıLiKl

0/ ıƒL ı ŒLiK"
0
ıKR
"
qLiK#

0
ıKR
#
�:

Thus we are left to identify K factors. We previously computed

KL
"
D �.˛"L˚ .L

i
ıˇ"P /; 
"f /:

Recall that when evaluating �, one chooses a permutation that orders ˛"L˚.Li ıˇ"P /
and composes the embeddings accordingly. Here, Li is a little 2–cube that meets the
lower face of the unit cube. In other words, Lit D�1 and cannot get any lower. Thus,
the factors .Li ıˇ"P /jf
".jt j"Cj / can be placed in first position when computing KL

"
.

This ultimately shows that
KL
"
D LiK"

0
ıKR
"
:

One deals with # the exact same way. For l, the same phenomenon with Budney’s
reverse action shows that the factors .Li ı ˇlP /jf
l.jt jlCj / can be placed in last
position when computing KL

l
, which again shows the desired

KL
l
DKR

l
ıLiKl

0:

Once again, the concatenation comes as a special case with side-by-side cubes of
equal width. Budney’s action on knots can be recovered and one can also turn a knot
into a double cable or a split link using identity cubes in SCL.sI o/ for s 2 f";#;lg.
More precisely, �.sIo/.idJ 2/D O'

s . This shows that the �0SCL–algebra structure on
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the quadruplet �0X is the data of the usual monoids �0EC.1;D2/ and �0EC�.1;D2/,
together with the three distinct independent actions of �0EC.1;D2/ on �0EC�.1;D2/
given by the O's , s 2 f";#;lg. Finally, the spaces of unframed knots and links are still
stable:

Theorem 3.10 The quadruplet .yL0; yK; yK; yK/ forms a sub-SCL–algebra of X .

Proof Consider the two monoids Z and Z�2. The first one acts on the second one
in three different ways: on the first factor of Z�2, on the second factor or diagonally.
The data of these three actions is precisely that of a �0SCL–algebra structure on the
quadruplet .Z�2;Z;Z;Z/. One can think of this structure as an SCL–algebra structure.
Thanks to the additive properties of the linking number with respect to the concatenation
of curves, one easily checks that the framing number ! turns into a morphism of SCL–
algebras. The result follows.

This action of SCL on .yL0; yK; yK; yK/ combines all the structure we have met on long
knots and 2–string links so far. Moreover, the isotopies exhibiting the commutativity
relations discussed in Section 1.2 can all be obtained with paths in SCL from a config-
uration of cubes to another. The next section aims to show that this correspondence
actually follows from a deeper result: a homotopy equivalence between .yL0; yK; yK; yK/
and a free algebra over SCL.

Remark 3.11 It is possible to extend Theorem 3.9 to manifolds other than the 2–
dimensional disk D2. More precisely, when M is a manifold of dimension n, we can
consider the space EC.k;M/ consisting of the embeddings from Rk �M to itself
that restrict to the identity outside of J k �M . The notation “EC” comes from the
terminology “embedding” and “cubical”. This space has been intensively studied by
Budney and proved to be an algebra over the .kC1/–dimensional little cubes operad
CkC1 in [5].

Similarly, for any fixed embedding � WM qM ,!M , one can define EC�.k;M/, the
space consisting of embeddings from Rk �Mq2 to Rk �M that restrict to idRk � �

outside of J k �Mq2 and map the interior of J k �Mq2 to the interior of J k �M .
Burke and Koytcheff mentioned these spaces in [2], alongside their work on the special
case corresponding to framed string links.

In order to understand the structure on the quadruplet of spaces

XM D .EC�.k;M/;EC.k;M/;EC.k;M/;EC.k;M//;
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we need a higher-dimensional version of the Swiss-cheese operad for links. Roughly
speaking, one can define SCLk the same way we did SCL, except that the operad Ck
is used in the construction, instead of the 2–dimensional little cubes operad C2. We
can then extend Budney’s action on EC.k;M/ in order to get an SCLkC1–algebraic
structure on the quadruplet XM . The precise formula for this action is the same as the
one introduced before Theorem 3.9, and checking that is specifies a valid SCLkC1–
algebra structure boils down to the verifications already carried out in the proof above.

4 Freeness results

We prove here that the operadic actions constructed in Section 3 lead to free algebras
over different operads. More precisely, we first introduce the main result of Budney
in [5], which states that yK is homotopy equivalent as a C2–algebra to C2Œ yP�. A second
theorem proved by Burke and Koytcheff in [8] provides an analogous statement about
the action of C1 on a subspace of yL. We then combine these results to prove the
main theorem of this paper, Theorem 4.11, stating that .yL0; yK; yK; yK/ is homotopy
equivalent to a free SCL–algebra. These three theorems are proved with very similar
methods, most of them coming from 3–manifold topology and homotopy theory. The
first subsection recalls the concepts we need from these fields, and the following three
are each dedicated to a freeness theorem. The proofs of the results of Budney, Burke
and Koytcheff are only quickly outlined, since thorough treatments are available in [5]
and [8]. We still dispense sketches of proofs as the arguments they involve will be
useful for Theorem 4.11.

4.1 Notions of 3–dimensional topology

We introduce some basic concepts of 3–manifold theory. The instances of 3–manifolds
we will encounter mostly lie in R3, so they inherit very nice features. Furthermore, they
are compact, orientable, connected and irreducible. It is very common when studying
3–manifolds to deal with embedded surfaces: we denote by S2 the 2–sphere, D2 the
disk, A the annulus, T 2 the torus and .T 2/#2 the genus 2 oriented surface. We denote
by Pn the n–punctured disk, whose boundary splits as an external component @extPn

and n internal components @intPn. As for common 3–manifolds, we note B D J �D2

the cylinder, homeomorphic to a 3–ball D3, Hn D Pn � I the n–handlebody and
Cf � B the complement of a fat long knot or a fat 2–string link f . The boundary
of Cf is a torus when f is a fat long knot, and a 2–torus when f is a fat 2–string
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link. A recurring procedure in the upcoming proofs is the cutting of Cf along essential
surfaces. We define the latter now.

Definition 4.1 Let S be a (not necessarily connected) orientable surface embedded
in an orientable 3–manifold M properly (ie S \ @M D @S). A disk D � M with
D\S D @D is said to be a compressing disk for S if its boundary does not bound a disk
in S . A surface that admits a compressing disk is said to be compressible, and a surface
different from S2 or D2 admitting no compressing disk is said to be incompressible.

Definition 4.2 Let S be a bordered surface properly embedded in a 3–manifold M .
A @–compressing disk for S is a disk D �M whose boundary consists of two arcs ˛
and ˇ with ˛ � S and ˇ � @M , whose interior is disjoint from S and @M , such that
there is no arc 
 in @S such that 
 [ ˛ bounds a disk in S . A surface that admits a
@–compressing disk is said to be @–compressible. Otherwise, it is @–incompressible.

Definition 4.3 A properly embedded surface S in a 3–manifold M is said to be
@–parallel if it can be isotoped to a piece of @M .

Definition 4.4 A properly embedded orientable surface S in a 3–manifold M is
essential if one of the following holds:

(i) S is a sphere and does not bound a ball.

(ii) S is a disk whose boundary does not bound a disk in @M .

(iii) S is not a sphere nor a disk, it is incompressible, @–incompressible and not
@–parallel.

Spaces of embeddings of incompressible surfaces have been extensively studied by
Hatcher in [14]. He describes in his paper how the homotopy type of such a space
depends on S . This result will be used repeatedly so we formulate a precise version here.

Theorem 4.5 (Hatcher [14]) LetM be an orientable compact connected irreducible 3–
manifold and S ,!M an essential orientable compact surface inM. Let Emb.S;M;@S/
be the space of embeddings of S in M whose values at @S are fixed. Then the
component Emb.S;M; @S/S of S ,! M in Emb.S;M; @S/ is weakly contractible
unless S is closed and the fiber of a bundle structure on M , or if S is a torus. In these
exceptional cases �i Emb.S;M/D 0 for all i > 1. In the bundle case , the inclusion
of the subspace consisting of embeddings with image a fiber induces an isomorphism
on �1. When S is a torus but not the fiber of a bundle structure , the inclusion Diff.S/ ,!
Emb.S;M/ obtained by precomposing S ,!M induces an isomorphism on �1.
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Another tool of 3–manifold theory that will come in handy is the JSJ–decomposition. It
provides a way to cut an irreducible manifold into simpler ones. The cuts are performed
along essential tori, but if one keeps on cutting a manifold until no such torus is available,
the obtained decomposition might not be unique. A manifold that admits no essential
torus is said to be atoroidal. In order to get a unique decomposition, one must agree not
to cut the pieces that are Seifert-fibered. The latter are manifolds consisting of disjoint
parallel circles forming a particular fibering. The precise definition of this fibering is
looser than the notion of fiber bundle with fiber S1. It is specified for example in [15].
The decomposition theorem we use is the following:

Theorem 4.6 (Jaco, Shalen and Johannson [19; 20]) Every orientable , compact ,
irreducible 3–manifold M contains a collection of embedded , incompressible tori
T so that if one removes an open tubular neighborhood of T from M , the outcome
is a disjoint union of Seifert-fibered and atoroidal manifolds. Moreover , a minimal
collection of such tori is unique up to isotopy.

The minimal collection of tori T from Theorem 4.6 (or sometimes its isotopy class)
is called the JSJ–decomposition of M . In the case where @M consists of a single
component, the piece of the cutM containing @M is called the root of the decomposition.
The tori of T bounding the root are referred to as the base-level tori of T .

Our main concern while studying an orientable compact 3–manifold M will actually be
the homotopy type of the group of its boundary-fixing diffeomorphisms Diff.M; @M/.
More precisely, we are interested of the subgroup Diffd.M; @M/ consisting of the
diffeomorphisms whose derivatives at @M agree with those of the identity. This extra
condition is relevant for our work because it enables one to postcompose a fat long
knot by an element of Diffd.B; @B/ and still end up with a fat long knot. The main
ingredient we use to prove the three upcoming freeness theorems is the following
proposition:

Proposition 4.7 Let M be an orientable compact connected irreducible 3–manifold
and S an essential surface which cuts M into pieces Mi , such that the component
Emb.S;M; @S/S is weakly contractible and stable under the postcomposition action of
Diff.M; @M/. Then the inclusionY

i

Diffd.Mi ; @Mi / ,! Diffd.M; @M/

is a weak homotopy equivalence.
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Proof Thanks to the stability condition, we have a well-defined postcomposition
map Diff.M; @M/! Emb.S;M; @S/S . Restriction maps such as this one have been
shown to be locally trivial, and in particular fibrations. This problem, as well as the
local triviality of the restriction map Emb.M;N /! Emb.M 0; N / for a submanifold
M 0 �M , has been treated in several articles: in [26] for the case of closed manifolds
and in [9] for the case of bordered manifolds. A more recent exposition is provided in
the third section of [21]: the precise result we use here is formulated as Corollary 3.7
in [21]. The fiber over S of this map is the subgroup of diffeomorphisms fixing S , ie

Diff.M; @M [S/ Diff.M; @M/ Emb.S;M; @S/S :

The base space is weakly contractible so the inclusion of the fiber is a weak homotopy
equivalence. We are left to add the derivative condition on the diffeomorphisms.

It is proved in Kupers’ book on diffeomorphism groups [22] that the inclusion of the
subgroup Diffd.N; @N / ,! Diff.N; @N / is a weak homotopy equivalence for every
compact manifold N . This justifies the bottom left equivalence in the diagram of
inclusions

Diffd.M; @M [S/ Diff.M; @M [S/ Homeo.M; @M [S/

Q
i Diffd.Mi ; @Mi /

Q
i Diff.Mi ; @Mi /

Q
i Homeo.Mi ; @Mi /

'

' '

while the right horizontal equivalences come from works of Cerf in [9]. The two-out-
of-three rule assures us that the top left inclusion is a weak equivalence as well. This
same rule in the diagram

Diffd.M; @M [S/ Diffd.M; @M/

Diff.M; @M [S/ Diff.M; @M/

' '

'

concludes the proof.

The need to study these diffeomorphism groups arises from the following classical
result in modern knot theory:

Proposition 4.8 Let f be a fat long knot or a fat 2–string link. Then the component yKf
or yLf of f in yK or yL is a model for the classifying space of Diffd.Cf ; @Cf /. Moreover ,
it is a K.G; 1/.
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Proof We treat the case where f is a fat long knot, the other one is treated identically.
When B is the solid cylinder and Cf the complement of f in B , we have the inclusion
and restriction maps

Diffd.Cf ; @Cf / Diffd.B; @B/ yKf :

The application on the right-hand side precomposes a diffeomorphism by f and is a
fibration thanks to [21, Corollary 3.7]. Now, Diffd.B; @B/ ' Diff.B; @B/ is weakly
contractible, as proved in [13]. Thus, Diffd.Cf ; @Cf / acts properly and freely on a
contractible space, and the quotient of this action can be identified to yKf , so yKf is a
model for BDiffd.Cf ; @Cf /. Moreover, spaces of diffeomorphisms of orientable Haken
bordered 3–manifolds which preserve the boundary pointwise always have vanishing
higher homotopy groups by [14, Theorem 2]. Thus, the long exact sequence in homotopy
coming from the fibration above assures us that yKf is a K.�0Diffd.Cf ; @Cf /; 1/.

4.2 Budney’s freeness theorem

We now recall Budney’s main theorem in [5], which is a freeness statement about the
space of fat long knots as a C2–algebra. Recall from Section 1.1 that the prime fat long
knots are denoted by yP � yK, and that they are the embeddings whose isotopy classes
are prime elements in the monoid �0 yK. The result we present appears as Theorem 11
in Budney’s paper, and we only dispense a sketch of proof here, as the complete proof
is fairly long.

Theorem 4.9 (Budney [5]) The restriction of the structure map

� W C2Œ yP�! yK

from Theorem 3.3 is a homotopy equivalence.

Sketch of Proof Thanks to Corollary 1.8, Proposition 2.7 and the fact that applying
�0 to the structure map � W C2! EyK endows �0 yK with its usual monoid structure, we
are assured that � induces a bijection on components. Thus, we are left to prove that it
is a homotopy equivalence on each of these components.

On the component of the unknot, � restricts to the map C2.0/ � yP
�0
! yKidR�D2

.
The complement of an unknot is a 1–handlebody H1, and the diffeomorphism group
Diffd.H1; @H1/' Diff.H1; @H1/ is contractible. Proposition 4.8 therefore gives the
contractibility of yKidR�D2

DBDiffd.H1; @H1/ , so we have an equivalence in this case.
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On the component of a prime knot f 2 yP , � restricts to the map C2.1/� yPf ! yPf D yKf .
The homotopy retracting C2.1/ onto the identity little cube shows that this map is an
equivalence as well.

Suppose now that f is a composite knot f Df1# � � �#fn. Budney proved in [4] that the
base-level tori T of the JSJ–decomposition of the complement of f split Cf into nC1
pieces: the complements of the prime factors Cfi and a root homeomorphic to S1�Pn.
One would like to apply Proposition 4.7 in order to split Diffd.Cf ; @Cf / as a product
of diffeomorphism groups involving each Diffd.Cfi ; @Cfi /. But, cutting along T is
not possible here as the component Emb.T 2q� � �qT 2; Cf /T is not contractible by
Theorem 4.5. It is also not stable under the postcomposition action of Diff.Cf ; @Cf /.
Indeed, when Ti is the torus bounding Cfi , two tori Ti and Tj can be permuted by some
diffeomorphism of Cf if and only if fi and fj are isotopic. Let †f be the subgroup
of †n preserving the partition of f1; : : : ; ng given by i � j if and only if fi and fj
are isotopic. Then, by considering the components of Emb.T 2q� � �qT 2; Cf / where
the image of the i th torus is isotopic to a Tj with i � j , and by quotienting out these
components by the parametrization of each torus, one gets a space homotopy equivalent
to†f . It is stable under the postcomposition action of Diff.Cf ; @Cf / so one can use an
argument similar to the proof of Proposition 4.7 to split Diffd.Cf ; @Cf / into a product
involving each Cfi . Namely, after some manipulations on the diffeomorphisms, Budney
manages to fit Diffd.Cf ; @Cf / up to homotopy in a fibration

KDiff.Pn; @Pn/�
Y
i

Diffd.Cfi ; @Cfi /! Diffd.Cf ; @Cf /!†f ;

for some subgroup KDiff.Pn; @Pn/ homotopy equivalent to the pure braid group on
n strands KBn. Since BKBn D confn.J 2/ ' C2.n/, applying the classifying space
functor B leads to

yKf ' BDiffd.Cf ; @Cf /

' B KDiff.Pn; @Pn/�†f
Y
i

BDiffd.Cfi ; @Cfi /

' C2.n/�†f
Y
i

yKfi D C2Œ yP�f :

At this stage, this equivalence is merely an abstract map. But the vast majority of
the group morphisms we met are inclusion-based, so Budney manages to show that
this equivalence coincides with � via explicit models. Weak equivalences are finally
promoted to strong ones via an application of Whitehead’s theorem.
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This result can be thought of as a generalization of Schubert’s theorem: the connected
sum operation # is extended to an algebraic structure on the space level of yK, and the
isomorphism �0 yKDComŒ�0 yP� is extended to the C2–equivariant homotopy equivalence
yK' C2Œ yP�. Note however that Budney uses Corollary 1.8 in the very first sentence of
the proof, so that this generalization is in no way an alternative argument for Schubert’s
result.

4.3 Burke and Koytcheff’s freeness theorem

We now get to Burke and Koytcheff’s result about fat 2–string links. Recall from
Section 1.2 that yQ0 � yL0 denotes the fat 2–string links which are prime but not in
the image of one of the maps O's , s 2 f";#;lg. The theorem we present here is [8,
Theorem 6.8]. We again provide a quick sketch of proof, as the ideas involved will
reappear in the proof of our main result, Theorem 4.11.

Theorem 4.10 (Burke and Koytcheff [8]) Let yS0 be the subspace of yL0 consisting
of the fat 2–string links whose prime factors lie in yQ0. Then , the restriction of the
structure map

� W C1Œ yQ0�! yS0

from Theorem 3.6 is a homotopy equivalence.

Sketch of proof Thanks to Theorem 1.10, we are assured that � induces a bijection
on components. We are therefore again left to show that it is an equivalence on each of
these components.

On the component of the trivial link, � restricts to the map C1.0/� . yQ0/�0! yL0idR��
.

The complement of idR � � is a 2–handlebody H2, and the diffeomorphism group
Diffd.H2; @H2/' Diff.H2; @H2/ is contractible so we can conclude as in the case of
knots.

Let now f be a nontrivial element of yS0 and f D f1 # � � � # fn its decomposition in
noncentral prime fat 2–string links. According to [2, Theorem 4.1], there are n� 1
twice-punctured disks separating Cf into the complements of the fi . Moreover, as
shown in the fourth step of the proof of this same theorem, these disks are unique up
to isotopy. This enables us to split Diffd.Cf ; @Cf / as the product

Q
i Diffd.Cfi ; @Cfi /

thanks to Proposition 4.7. Applying the classifying space functor yields the equivalences

yS0f D BDiffd.Cf ; @Cf /'
Y
i

BDiffd.Cfi ; @Cfi /'
Y
i

yLfi :
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When we denote by C1.n/.1;:::;n/ the (contractible) component of C1.n/ where the
intervals appear from left to right in the order .1; : : : ; n/, we can go further and write

yS0f '
Y
i

yLfi ' C1.1/.1;:::;n/ �
Y
i

yLfi D C1Œ yQ0�f :

At this stage, the equivalence is still given by an abstract map but it is easy to keep
track of the identifications and see that it coincides with �. Weak equivalences are
finally promoted to strong ones via an application of Whitehead’s theorem.

Again, this result is a generalization of Theorem 1.10 as its provides a free algebraic
structure on the space level of yS0, which descends to the usual free monoid on the
basis yQ0 on isotopy classes.

4.4 Fat long knots and 2–string links form a free SCL–algebra

We combine in this last subsection the theorems of Budney, Burke and Koytcheff
presented above to prove a freeness result for the whole space of fat 2–string links.
Namely, we prove:

Theorem 4.11 The restriction of the structure map

� W SCLŒ yQ0; yP; yP; yP�! .yL0; yK; yK; yK/

from Theorem 3.9 is a homotopy equivalence.

Just as in the preceding subsections, the proof mainly consists in reducing ourselves to
each connected component and splitting the diffeomorphism group of the complement
of a link along suitable surfaces. We state two technical lemmas to prepare this cutting
process, then proceed to the proof of the theorem.

Lemma 4.12 Let f be a fat 2–string link decomposing as

f o # O'".f "/ # O'#.f #/ # O'l.f l/

for some element f o in yS0 and fat long knots f s , s 2 f";#;lg. Then , the three vertical
twice-punctured disks D cutting Cf into Cf o , C O'".f "/, C O'#.f #/ and C O'l.f l/ are
unique up to isotopy fixing the boundary. Moreover , the component Emb.D;Cf ; @D/D
is weakly contractible and stable under the postcomposition action of Diff.Cf ; @Cf /.
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Cf o

D1 D2 D3

C O'".f "/ C O'#.f #/ C O'l.f l/

Figure 15: Illustration of the three disks D DD1qD2qD3 in Cf .

Proof The uniqueness statement is proved in the steps 1 and 3 of Blair, Burke
and Koytcheff’s proof of their Theorem 4.1 in [2]. Applying a diffeomorphism of
Diff.C; @Cf / to the punctured disks D does not change the fact that they split Cf into
pieces homeomorphic to the complement of f o and O's.f s/ for s 2 f";#;lg. Thus,
the component Emb.D;Cf ; @D/D is stable under the postcomposition action of this
diffeomorphism group. Its contractibility immediately follows from Hatcher’s work on
incompressible surfaces (Theorem 4.5).

Lemma 4.13 Let f be a fat long knot and O's.f / the central link obtained from f for
s 2 f";#;lg. Consider the annulus As in the complement C O's.f / specified by

(i) A" D .idR � �/..J � @D
2/q¿/,

(ii) A# D .idR � �/.¿q .J � @D2//,

(iii) Al D f .J � @D
2/.

Then the isotopy class of As is stable under the postcomposition action of

Diff.C O's.f /; @C O's.f //

and the component Emb.A; C O's.f /; @A/As is weakly contractible.

Proof We first treat the case where s D". Consider a horizontal disk E � C O'".f /
separating the two strands of O'".f /. Cutting along E yields two manifolds: an upper
piece containing A", homeomorphic to Cf , and a lower one that is a 1–handlebody H1.
Any two disks in C O'".f / sharing their boundary are isotopic because C O'".f / is irre-
ducible. Therefore, given a diffeomorphism g in Diff.C O'".f /; @C O'".f //, there is an
isotopy from g.E/ to E. It can be extended to a boundary preserving ambient isotopy
and postcomposing g by the latter shows that we may assume that g.E/DE. In other
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A"

Al

Figure 16: Illustration of the annuli A" and Al.

words, g preserves the cut and in particular g.A"/ lies in the upper piece. But A" is
boundary parallel after the cut, so it is unique up to boundary-fixing isotopy in its piece,
which concludes the proof in this case. The weak contractibility statement immediately
follows from Theorem 4.5. The case where s D# is treated the exact same way.

We now deal with the case where s Dl. The proof of the stability statement uses the
JSJ–decomposition recalled in Theorem 4.6, especially the uniqueness part. The idea
is to show that the JSJ–decomposition of C O'l.f / admits a single base-level torus Tl,
which must be unique up to isotopy, and that Al is a suitable piece of it.

Let Al0 be the annulus J � @D2 � @C O'l.f /. The two annuli Al and Al0 share their
boundary so that their union is a torus in C O'l.f /. Let Tl be the torus obtained by
pushing Al [Al0 in the interior of C O'l.f /. It is essential and cuts C O'l.f / into two
manifolds, one containing @C O'l.f /, Al and Al0 that we denote by V , the other one
homeomorphic to Cf . We now proceed to show that Tl is the base-level torus of the
JSJ–decomposition of C O'l.f /.

Claim 1 Let P2 be a twice-punctured disk and 
l a curve in the interior of P2 parallel
to the external boundary circle. Then V is homeomorphic to a 2–handlebody J �P2
deprived of a solid torus that is a tubular neighborhood of 0� 
l.

Proof This unknotting process is similar to Budney’s “untwisted reembedding” de-
scribed in the beginning of his paper on knot complements [4]. Cutting V along Al
results in two pieces: an external one containing Tl and an internal one that is a
(knotted) 2–handlebody H2. The torus Tl is boundary parallel in the external part, so
this piece is a fattened torus T 2 � I . This shows that V is the manifold obtained by
gluing a 2–handlebody H2 and a fattened torus T 2 � I along specific annuli in their
boundaries. This description also matches our new model for V so we are done.

This new model makes a lot of considerations easier since it forgets all the complexity
of the knotting of f . We call the two unknotted annuli J � @intP2 the strands of @V .
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Al

Figure 17: Illustration of the new model for V and Al.

Through this identification, Al turns into the annulus bounding a neighborhood of the
two strands not containing Tl, as illustrated in Figure 17. The second annulus Al0

remains in the boundary as J � @D2.

Claim 2 V is atoroidal.

Proof In many cases including that of V , the definition of an atoroidal 3–manifold can
be reformulated algebraically using the fundamental group. More precisely, one defines
a peripheral subgroup of a 3–manifoldM to be a subgroup of �1M that lies in the image
of the inclusion of a boundary component, then declares M to be atoroidal if every
subgroup of �1M isomorphic to Z�2 is conjugate to a peripheral subgroup. The equiva-
lence between the two definitions is alluded for example in the beginning of [1], but the
implication we are about to use follows from Corollary 5.5 in Waldhausen’s article [33].

We start by computing �1V . The application of van Kampen’s theorem summarized
in Figure 18 gives

�1V D h˛1; ˛2; ˇ j ˛1ˇ˛
�1
1 D ˛2ˇ˛

�1
2 i:

We can further write

�1V Š ha; b; c j ab D bai D Z�2 �Z

via ˛1 7! c, ˛2 7! ca�1 and ˇ 7! b.

H2 Š

P2 Š

H2 Š

˛1

˛2

ˇ

Figure 18: Applying van Kampen’s theorem to compute �1V .
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The inclusion of the toric boundary component Tl � V has image in �1 the sub-
group generated by a and b. It corresponds to the Z�2 factor under the isomorphism
�1V Š Z�2 � Z. We prove that any subgroup of Z�2 � Z isomorphic to Z�2 is
conjugate to a subgroup of the latter. Consider an arbitrary injection Z�2 ,! Z�2 �Z

and denote by x and y the images of .0; 1/ and .1; 0/. These x and y commute, they
are nontrivial and they are not allowed to be powers of some third element. Now,
applying Theorem 4.5 on page 209 of the book [23] on groups and presentations yields
the following three possibilities for x and y:

(i) x or y may be trivial;

(ii) if neither x nor y is trivial, but x is in the conjugate of a factor, then y is in that
same conjugate of a factor;

(iii) if neither x nor y is in a conjugate of a factor, then they are powers of a third
element of Z�2 �Z.

Thanks to our observations, (i) and (iii) are ruled out and x and y must lie in the same
conjugate of a factor of Z�2�Z. The Z factor does not admit any subgroup isomorphic
to Z�2, so we are done.

At this point, we showed that Tl and the tori of the JSJ–decomposition ofCf cutC O'l.f /
into atoroidal and Seifert-fibered pieces. Finally, Tl cannot be removed to obtain a
smaller decomposition because V can never be part of a Seifert-fibered manifold,
having a boundary component homeomorphic to a 2–torus. This shows that Tl and
the tori of the JSJ–decomposition of Cf form a minimal decomposition of C O'l.f /
into atoroidal and Seifert-fibered manifolds, which proves that this collection is the
JSJ–decomposition of C O'l.f /. The root V is bounded by @C O'l.f / and Tl, so Tl is
the only base-level torus. Its image is therefore unique up to isotopy.

Consider now g 2 Diff.C O'l.f /; @C O'l.f //. Thanks to the work above, there is an
isotopy from g.Tl/ to Tl. It can be extended to a boundary-fixing ambient isotopy,
and postcomposing g by the latter shows that we may assume that g.Tl/ D Tl. In
other words, g preserves the cut along Tl and g.Al/ lies in V . Let us now take a
look at the (boundary-fixing) isotopy classes of annuli in V with boundary @Al. We
prove that there are only two of them: the one of Al and the one of Al0. Let A� V
be an arbitrary annulus with adequate boundary. We may assume that the interiors
of A and Al0 are disjoint because Al0 is @–parallel. Now, A[Al0 is an embedded
torus in V . Its image in �1 is generated by ˛�12 ˛1 D a and some other element y that
commutes with a. Using [23, Theorem 4.5] again, we see that y is either trivial or in
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the Z�2 factor of Z�2 �ZŠ �1V . If y is trivial or a power of a, then A[Al0 bounds
a solid torus and the two annuli are isotopic. If y is not just a power of a, then A[Al0

is incompressible and must parallel to Tl by Claim 2. In this situation, A is isotopic
to Al. The two annuli cannot be permuted by a diffeomorphism of V because Al0 is
@–parallel and Al is not. This shows that gjV .Al/ is isotopic to Al via an isotopy that
fixes the boundary in V . This concludes this second case. The weak contractibility of
the component in the embedding space again follows from Theorem 4.5.

We now implement all the tools at our disposal to complete the proof of Theorem 4.11.

Proof of Theorem 4.11 Thanks to Theorems 1.8 and 1.10 and Proposition 2.7, we
are assured that � induces a bijection on components. Thus, we are left to prove that it
is a homotopy equivalence on each of these components.

On the component of the unlink, � restricts to the map

SCL.¿I o/� . yQ0; yP; yP; yP/�¿
! yLidR��:

The space SCL.¿I o/ consists of a single point. The complement of the unlink is a
2–handlebody H2, and the diffeomorphism group Diffd.H2; @H2/'Diff.H2; @H2/ is
contractible. Proposition 4.8 then gives the contractibility of yLidR��DBDiffd.H2; @H2/,
so we have an equivalence in this case.

On the component of a fat long knot or an element of yS0, Theorems 4.9 and 4.10 imply
the result because the action of SCL restricts to � and � on these components.

Now let f be a nontrivial fat 2–string link. The action map � restricts on the component
of f to the map SCLŒ yQ0; yP; yP; yP�f ! yLf . Suppose f decomposes as the concatenation
f o # O'".f "/ # O'#.f #/ # O'l.f l/ for some element f o of yS0 and some fat long knots
f s for s 2 f";#;lg. We denote by f oD #i�jf jo f oi and f s D #i�jf js f si the prime
decompositions of f o and f s . Then, one readily checks with the usual model presented
in Section 2.2 that the component SCLŒ yQ0; yP; yP; yP�f in the free algebra is given by

SCL.ojf jo;"jf j";#jf j#;ljf jl I o/.1;:::;jf jo/�.†f "�†f #�†f l /
Y
i�jf jo

yLf o
i
�

Y
s

Y
i�jf js

yKf s
i
;

where SCL.ojf jo ;"jf j" ;#jf j# ;ljf jl I o/.1;:::;jf jo/ is the component of

SCL.ojf jo ;"jf j" ;#jf j# ;ljf jl I o/

where the cubes indexed by o appear from left to right in the order .1; : : : ; jf jo/
and where †f s is the subgroup of †jf js preserving the partition specified by i � j
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if and only if f si is isotopic to f sj . This group acts on the cubes indexed by s in
SCL.ojf jo ;"jf j" ;#jf j# ;ljf jl I o/.1;:::;jf jo/ and permutes the entries in

Q
i�jf js

yKf s
i

.
The inclusion

SCL.ojf jo ;"jf j" ;#jf j# ;ljf jl I o/.1;:::;jf jo/ ,! Cı2.jf jo/.1;:::;jf jo/ �
Y
s

C2.jf js/

is a homotopy equivalence, so that we have, by rearranging terms in the product, the
natural equivalences

SCLŒ yQ0; yP; yP; yP�f '
�
Cı2.jf jo/.1;:::;jf jo/�

Y
i

yLf o
i

�
�

Y
s

�
C2.jf js/�†f s

Y
i

yKf s
i

�
' C1Œ yQ0�f o�

Y
s

C2Œ yP�f s :

On the other hand, thanks to Proposition 4.8, we know that yLf is a model for the
classifying space of Diffd.Cf ; @Cf /. The three vertical twice-punctured disks D from
Lemma 4.12 splitting Cf as Cf o , C O'".f "/, C O'#.f #/ and C O'l.f l/ are stable under
the action of Diff.Cf ; @Cf / and have their component in Emb.D;Cf ; @D/ weakly
contractible. Therefore, Proposition 4.7 gives the inclusion-based weak equivalence

Diffd.Cf o ; @Cf o/�
Y
s

Diffd.C O's.f s/; @C O's.f s// ,! Diffd.Cf ; @Cf /:

Now, Lemma 4.13 states that the three annuli As also satisfy the conditions of
Proposition 4.7. They each split C O's.f s/ into a 2–handlebody H2 and a manifold
diffeomorphic to Cf s . Actually, this second piece is precisely the image of Cf s
under idR � � when s 2 f";#g and Cf l itself when s Dl. The diffeomorphism group
Diffd.H2; @H2/ is contractible so we get the further natural equivalences

Diffd.Cf s ; @Cf s / ,!Diffd.Cf s ; @Cf s /�Diffd.H2; @H2/ ,!Diffd.C O's.f s/; @C O's.f s//:

Composing these results with Proposition 4.8 yields the natural equivalences

yLf o �
Y
s

yKf s ' BDiffd.Cf o ; @Cf o/�
Y
s

BDiffd.Cf s ; @Cf s /

' BDiffd.Cf ; @Cf /

' yLf :

We are now able to use Budney, Burke and Koytcheff’s freeness results (Theorems 4.9
and 4.10) and our previous discussion to get the equivalence

SCLŒ yQ0; yP; yP; yP�f ' C1Œ yQ0�f o �
Y
s

C2Œ yP�f s ' yLf o �
Y
s

yKf s ' yLf :
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We merely have an abstract equivalence at this stage. To show that it coincides with �,
we need to check the commutativity up to homotopy of the diagram

BDiffd.Cf o ; @Cf o/�
Y
s

BDiffd.Cf s ; @Cf s / BDiffd.Cf ; @Cf /

yLf o �
Y
s

yKf s yLf

'

'
'

�

but the spaces at stake are K.G; 1/’s by Proposition 4.8, so it is enough to check
the commutativity in �1. This verification is very similar to the end of Budney’s
proof of Theorem 11 in [5]. An element of �1 yLf is (a homotopy class of) a based
path in yLf , ie an isotopy from f to f . The elements of �1BDiffd.Cf ; @Cf / can
canonically be identified with �0Diffd.Cf ; @Cf / in the long exact sequence of the
fibration realizing yLf as BDiffd.Cf ; @Cf / in Proposition 4.8. In this framework,
picking a class � 2 �0Diffd.Cf o ; @Cf o/ and chasing the diagram along the clockwise
route turns it into an element of �0Diffd.Cf ; @Cf / with its support lying between
�1�D2 andD1�Cf , then converts it into an isotopy of f according to the construction
in Proposition 4.8. Chasing � along the counterclockwise route converts it into an
isotopy of f o in �1 yLf o , then applies � to it. The outcome is the same as each
O's.f s/ is fixed all along this last isotopy. The same argument shows that picking a
class in �0Diffd.Cf s ; @Cf s / and chasing the diagram in either direction has the same
effect. When evaluated in �1, the upper-left product is a direct product, on which a
factor-by-factor verification is thus sufficient to get the commutativity.

Finally, Hatcher and McCullough proved in [16] that the classifying spaces of the
diffeomorphism groups at stake here have the homotopy types of (aspherical finite) CW–
complexes (what we use here could also be deduced from Palais’ earlier article [27]).
Thus, Whitehead’s theorem promotes the weak homotopy equivalence � to a strong
one.

References
[1] M Aschenbrenner, S Friedl, H Wilton, 3–Manifold groups, Eur. Math. Soc., Zürich

(2015) MR Zbl

[2] R Blair, J Burke, R Koytcheff, A prime decomposition theorem for the 2–string link
monoid, J. Knot Theory Ramifications 24 (2015) art. id. 1550005 MR Zbl

Algebraic & Geometric Topology, Volume 23 (2023)

http://dx.doi.org/10.4171/154
http://msp.org/idx/mr/3444187
http://msp.org/idx/zbl/1326.57001
http://dx.doi.org/10.1142/S0218216515500054
http://dx.doi.org/10.1142/S0218216515500054
http://msp.org/idx/mr/3334658
http://msp.org/idx/zbl/1344.57003


Operadic actions on long knots and 2–string links 881

[3] P Boavida de Brito, M Weiss, Manifold calculus and homotopy sheaves, Homology
Homotopy Appl. 15 (2013) 361–383 MR Zbl

[4] R Budney, JSJ–decompositions of knot and link complements in S3, Enseign. Math. 52
(2006) 319–359 MR Zbl

[5] R Budney, Little cubes and long knots, Topology 46 (2007) 1–27 MR Zbl

[6] R Budney, An operad for splicing, J. Topol. 5 (2012) 945–976 MR Zbl

[7] R Budney, J Conant, R Koytcheff, D Sinha, Embedding calculus knot invariants are
of finite type, Algebr. Geom. Topol. 17 (2017) 1701–1742 MR Zbl

[8] J Burke, R Koytcheff, A colored operad for string link infection, Algebr. Geom. Topol.
15 (2015) 3371–3408 MR Zbl

[9] J Cerf, Topologie de certains espaces de plongements, Bull. Soc. Math. France 89
(1961) 227–380 MR Zbl

[10] P R Cromwell, Knots and links, Cambridge Univ. Press (2004) MR Zbl

[11] J Ducoulombier, D Kosanovic, On the C2–algebra structure of long knots, in prepara-
tion

[12] T G Goodwillie, M Weiss, Embeddings from the point of view of immersion theory, II,
Geom. Topol. 3 (1999) 103–118 MR Zbl

[13] A E Hatcher, A proof of the Smale conjecture, Diff.S3/' O.4/, Ann. of Math. 117
(1983) 553–607 MR Zbl

[14] A E Hatcher, Spaces of incompressible surfaces, technical note (1999) Available at
http://pi.math.cornell.edu/~hatcher/Papers/emb.pdf

[15] A E Hatcher, Notes on basic 3–manifold topology, course notes (2007) Available at
http://pi.math.cornell.edu/~hatcher/3M/3Mfds.pdf

[16] A Hatcher, D McCullough, Finiteness of classifying spaces of relative diffeomorphism
groups of 3–manifolds, Geom. Topol. 1 (1997) 91–109 MR Zbl

[17] M W Hirsch, Differential topology, Graduate Texts in Math. 33, Springer (1994) MR
Zbl

[18] M Hovey, Model categories, Mathematical Surveys and Monographs 63, Amer. Math.
Soc., Providence, RI (1999) MR Zbl

[19] W Jaco, P B Shalen, A new decomposition theorem for irreducible sufficiently-large
3–manifolds, from “Algebraic and geometric topology, II” (R J Milgram, editor), Proc.
Sympos. Pure Math. 32, Amer. Math. Soc., Providence, RI (1978) 71–84 MR Zbl

[20] K Johannson, Homotopy equivalences of 3–manifolds with boundaries, Lecture Notes
in Math. 761, Springer (1979) MR Zbl

[21] J Kalliongis, D McCullough, Fiber-preserving diffeomorphisms and imbeddings,
preprint (1998) arXiv 9802003

Algebraic & Geometric Topology, Volume 23 (2023)

http://dx.doi.org/10.4310/HHA.2013.v15.n2.a20
http://msp.org/idx/mr/3138384
http://msp.org/idx/zbl/1291.18025
http://dx.doi.org/10.5169/seals-2238
http://msp.org/idx/mr/2300613
http://msp.org/idx/zbl/1114.57004
http://dx.doi.org/10.1016/j.top.2006.09.001
http://msp.org/idx/mr/2288724
http://msp.org/idx/zbl/1114.57003
http://dx.doi.org/10.1112/jtopol/jts024
http://msp.org/idx/mr/3001316
http://msp.org/idx/zbl/1270.57071
http://dx.doi.org/10.2140/agt.2017.17.1701
http://dx.doi.org/10.2140/agt.2017.17.1701
http://msp.org/idx/mr/3677937
http://msp.org/idx/zbl/1377.55011
http://dx.doi.org/10.2140/agt.2015.15.3371
http://msp.org/idx/mr/3450765
http://msp.org/idx/zbl/1337.57012
http://www.numdam.org/item?id=BSMF_1961__89__227_0
http://msp.org/idx/mr/140120
http://msp.org/idx/zbl/0101.16001
http://dx.doi.org/10.1017/CBO9780511809767
http://msp.org/idx/mr/2107964
http://msp.org/idx/zbl/1066.57007
http://dx.doi.org/10.2140/gt.1999.3.103
http://msp.org/idx/mr/1694808
http://msp.org/idx/zbl/0927.57028
http://dx.doi.org/10.2307/2007035
http://msp.org/idx/mr/701256
http://msp.org/idx/zbl/0531.57028
http://pi.math.cornell.edu/~hatcher/Papers/emb.pdf
http://pi.math.cornell.edu/~hatcher/Papers/emb.pdf
http://pi.math.cornell.edu/~hatcher/3M/3Mfds.pdf
http://pi.math.cornell.edu/~hatcher/3M/3Mfds.pdf
http://dx.doi.org/10.2140/gt.1997.1.91
http://dx.doi.org/10.2140/gt.1997.1.91
http://msp.org/idx/mr/1486644
http://msp.org/idx/zbl/0885.57008
http://dx.doi.org/10.1007/978-1-4684-9449-5
http://msp.org/idx/mr/1336822
http://msp.org/idx/zbl/0356.57001
https://bookstore.ams.org/surv-63-s
http://msp.org/idx/mr/1650134
http://msp.org/idx/zbl/0909.55001
https://bookstore.ams.org/pspum-32-2/
https://bookstore.ams.org/pspum-32-2/
http://msp.org/idx/mr/520524
http://msp.org/idx/zbl/0409.57011
http://dx.doi.org/10.1007/BFb0085406
http://msp.org/idx/mr/551744
http://msp.org/idx/zbl/0412.57007
http://msp.org/idx/arx/9802003


882 Etienne Batelier and Julien Ducoulombier

[22] A Kupers, Lectures on diffeomorphism groups of manifolds (2019) Available at
http://people.math.harvard.edu/~kupers/teaching/272x/book.pdf

[23] W Magnus, A Karrass, D Solitar, Combinatorial group theory: Presentations of
groups in terms of generators and relations, 2nd edition, Dover, Mineola, NY (2004)
MR Zbl

[24] J P May, The geometry of iterated loop spaces, Lecture Notes in Math. 271, Springer
(1972) MR Zbl
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A short proof that the Lp–diameter
of Diff0.S; area/ is infinite

MICHAŁ MARCINKOWSKI

We give a short proof that the Lp–diameter of the group of area preserving diffeo-
morphisms isotopic to the identity of a compact surface is infinite.

37E30, 57K10, 58D05

1 Introduction

Let .M; g/ be a Riemannian manifold and let � be the measure induced by the metric g.
We denote the group of all diffeomorphisms of M that preserve � and are isotopic to
the identity by Diff0.M;�/.

In [12] Shnirelman showed that the L2–diameter of Diff0.M;�/ is finite if M is the
n–dimensional ball for n > 2 see also Shnirelman [13]. Conjecturally, the same is true
for any compact simply connected Riemannian manifold of dimension greater than 2
(it is stated in Eliashberg and Ratiu [8] without proof).

The situation is different for 2–dimensional manifolds. In this case it is customary to
denote the measure induced by g by area. For simplicity, let us restrict the discussion
to orientable compact connected Riemannian surfaces .S; g/. Eliashberg and Ratiu [8]
proved that the Lp–diameter (p � 1) of Diff0.S; area/ is infinite if S is a surface
with boundary. They show that the Calabi homomorphism is Lipschitz with respect
to the Lp–norm. Later Gambaudo and Lagrange [9] obtained a similar result for a
huge class of quasimorphisms on Diff0.S; area/ if S is the closed disc (see as well
Brandenbursky [3], Brandenbursky and Shelukhin [6] and Shelukhin [11] for more
results concerning quasimorphisms and the Lp geometry). Their proof makes use of
the braid group of the disc and inequalities relating the geometric intersection number
of a braid and its word-length.
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If S has negative Euler characteristic it is relatively easy to show that the Lp–diameter
for p � 1 of Diff0.S; area/ is infinite; see Proposition 3.2 or Brandenbursky and Kędra
[4, Theorem 1.2]. In the case of the torus one needs to know in addition that the group
of Hamiltonian diffeomorphisms of the torus is simply connected, which is a nontrivial
result from symplectic topology; see Brandenbursky and Shelukhin [7, Appendix A].

The last unsolved case was the sphere. Recently Brandenbursky and Shelukhin [7]
showed that in this case the diameter is also infinite. Moreover, for each p � 1,
Diff0.S

2; area/ contains quasi-isometrically embedded right-angled Artin groups (see
Kim and Koberda [10]) and Rm for each natural m. Their arguments use some new
tools along with the ideas from [9]. However, using intersection numbers in the case of
the sphere requires considerably more work.

Our aim is to give a short and elementary proof of the following theorem:

Theorem 1 Let .S; g/ be a compact surface (with or without boundary). Then for
every p � 1 the Lp–diameter of Diff0.S; area/ is infinite.

Our method gives a unified proof for every compact surface S . It is partially inspired
by [9]; in particular Lemma 5.2 can be seen as a generalization of an inequality obtained
in [9] for the disk. The main simplification comes from the fact that instead of using
the braid group and intersection numbers, we directly look at the geometry of the
configuration space Cn.S/ with a certain complete metric described in Section 4. In
Section 5 we relate the L1–norm of f 2Diff0.S; area/ to an L1–norm, defined by this
complete metric, of the diffeomorphism on Cn.S/ induced by f . This allows us to
apply the simple technique, described in Section 3, of showing the unboundedness of
the Lp–norm in the case where the fundamental group of the manifold is complicated
enough.

Acknowledgments The author was supported by grant Sonatina 2018/28/C/ST1/00542
funded by the Narodowe Centrum Nauki

2 The Lp–norm

Let .M; g/ be a Riemannian manifold and let � be a finite measure on M . Usually
one assumes that � is induced by g, even though the definition of an Lp–norm works
as well if � is any finite measure (then the Lp–norm could be a pseudonorm). We
introduce here a more general definition as it is useful for stating results in Section 5.

Algebraic & Geometric Topology, Volume 23 (2023)



A short proof that the Lp–diameter of Diff0.S; area/ is infinite 885

Suppose f 2 Diff0.M;�/ and let X WM ! TM be a map to a tangent space of M
such that X.x/ 2 Tf .x/M . One can think of X as a tangent vector to Diff0.M;�/ at
the point f . The Lp–norm of X is defined by the formula

kXkp D

�Z
M

jX.x/jp dx

�1
p

:

Let ft 2 Diff0.M;�/ for t 2 Œ0; 1� be a smooth isotopy, ie it defines a smooth map
M � Œ0; 1�!M . We always assume that isotopies are smooth. The Lp–length of fftg

is defined by

lp.fftg/D

Z 1

0

k Pftkp dt;

where Pft .x/D .d=ds/fs.x/jsDt 2 Tft .x/M . Note that if p D 1, then
R 1

0 j
Pft .x/j dt is

the length of the path ft .x/, thus l1.fftg/ can be interpreted as the �–average of the
lengths of all paths ft .x/.

Letting f 2 Diff0.M;�/, we define the Lp–norm of f by

lp.f /D inf lp.fftg/;

where the infimum is taken over all smooth isotopies ft 2 Diff0.M;�/ connecting the
identity on M with f . The assumption that f is �–preserving was not used in the
definition, but it is needed to show that lp satisfies the triangle inequality.

The Lp–diameter of Diff0.M;�/ equals

supflp.f / W f 2 Diff0.M;�/g:

It is worth noting that geodesics in Diff0.M;�/ with the L2–metric are solutions of
the Euler equations of an incompressible fluid. For more on the connection between
the L2–metric and hydrodynamics see [1].

3 The base case

In this section we present the basic method which can be used to show that, for p � 1,
the Lp–diameter of Diff0.M;�/ is infinite if �1.M/ is complicated enough.

Lemma 3.1 Let X be a topological space and let ft 2 Homeo.X/ for t 2 Œ0; 1� be a
loop in Homeo.X/ based at IdX , ie f0 D f1 D IdX . Then for every x 2 X , the loop
ft .x/ for t 2 Œ0; 1� is in the center of �1.X; x/.

Algebraic & Geometric Topology, Volume 23 (2023)
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Proof Let x 2 X and let 
s for s 2 Œ0; 1� be a loop in X based at x. Consider the
map � W S1�S1!X given by .t; s/ 7! ft .
s/, where S1 D Œ0; 1�=0�1. We have that
�.t; 0/ D ft .x/ and �.0; s/ D 
s . Thus loops ft .x/ and 
s are in the image of the
torus S1 �S1, therefore they commute.

Let .M; g/ be a Riemannian manifold. Suppose h 2 �1.M/. Let l.h/ denote the
infimum over lengths of based loops in M that represent h. We denote by Z.�1.M//

the center of �1.M/.

Proposition 3.2 Let .M; g/ be a Riemannian manifold and � the measure induced
by g. Assume that for every r the set fh 2 �1.M/ W l.h/ < rg is finite (it holds eg if M
is compact) and �1.M/=Z.�1.M// is infinite. Then for every p � 1 the Lp–diameter
of Diff0.M;�/ is infinite.

Proof By the Hölder inequality we can assume p D 1. Let z 2M be a basepoint and
let h 2 �1.M; z/. We represent h as a loop 
 based at z.

Let U be a contractible neighborhood of z and let ft 2 Diff0.M;�/ for t 2 Œ0; 1� be a
finger-pushing isotopy that moves U all the way along 
 . For a detailed construction
see [5, proof of Lemma 3.1].

For every x 2 U we choose a path �x contained in U connecting z with x. We can
assume that l.�x/ < diam.U /, where l.�x/ is the length of �x . We denote by ��x the
reverse of �x .

The isotopy ft is defined so that it satisfies:

(1) For every x 2 U , f1.x/D x.

(2) For every x 2U , the concatenation of �x , ft .x/ and ��x is a loop based at z and
its homotopy class equals h.

Let fh D f1 and define Lh Dminfl.hc/ W c 2Z.�1.M; z//g. We shall show that

�.U /.Lh� 2 diam.U //� l1.fh/:

Let gt for t 2 Œ0; 1� be any isotopy connecting the identity on M with fh. Due to
Lemma 3.1, for every x 2U the paths gt .x/ and ft .x/ represent elements of �1.M; x/

that differ by an element of the center. Thus the concatenation of �x , gt .x/ and ��x
represents an element of the form hc 2 �1.M; z/ where c 2 Z.�1.M; z//. Since
l.�x/ < diam.U /, we have that l.gt .x// � Lh � 2 diam.U /. Indeed, otherwise the

Algebraic & Geometric Topology, Volume 23 (2023)



A short proof that the Lp–diameter of Diff0.S; area/ is infinite 887

concatenation of �x , gt .x/ and ��x would be a loop of length less then Lh � l.hc/,
which is impossible.

Since l.gt .x//D
R 1

0 j Pgt .x/j dt , we have

�.U /.Lh� 2 diam.U //�
Z

U

Z 1

0

j Pgt .x/j dt dx �

Z
M

Z 1

0

j Pgt .x/j dt dx D l1.fgtg/:

The isotopy gt was arbitrary, therefore �.U /.Lh� 2 diam.U //� l1.fh/.

By assumption, for every r the set Sh D fh 2 �1.M/ W l.h/ < rg is finite. Therefore,
since �1.M/=Z.�1.M// is infinite, there exists h such that the coset hZ.�1.M// does
not intersect Sh. For such h we have Lh � r . Since the set U does not depend on
the choice of h, and Lh can be arbitrary large, we conclude that the L1–diameter of
Diff0.M;�/ is infinite.

In particular, Proposition 3.2 can be applied when .S; g/ is a compact surface of negative
Euler characteristic (then �1.S/ is infinite and has trivial center). Unfortunately, it says
nothing about the Lp–diameter of Diff0.S; area/ for the remaining surfaces. Our main
goal is to find an argument which is still based on the proof of Proposition 3.2, but
works for any compact surface S .

To this end, one could pass to the configuration space of n ordered points in S , denoted
by Cn.S/ � S

n, with the product Riemannian metric gn. Its fundamental group is
the pure braid group Pn.S/, and Pn.S/=Z.Pn.S// is infinite for every S if n > 3.
However, the problem with this space is that every braid Pn.S/ can be represented as
a based loop in .Cn.S/; g

n/ of length at most 2n diam.S/C 1, thus one cannot apply
Proposition 3.2.

We solve this problem by changing the metric on Cn.S/. We describe it, in a slightly
more general setting, in the next section.

4 A complete metric on a manifold with removed
submanifolds

Let .M; g/ be a compact Riemannian manifold and let D D
Sk

iD1Di , where the Di

are submanifolds of M . The aim of this paragraph is to construct a metric on M �D
satisfying the following property: for every L the number of elements in �1.M �D/

Algebraic & Geometric Topology, Volume 23 (2023)
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that can be represented by a based loop of length less then L is finite. For x 2 M
denote by d.x/ the distance of x to D, that is

d.x/D dg.x;D/Dminfdg.x;Di / W i D 1; : : : ; kg;

where dg is the metric on M induced by g.

Rescaling g by 1=d we define a new quadratic form gb on the tangent space ofM�D by

jvjgb
D
jvjg

d.x/
;

where v 2 Tx.M �D/ is a vector tangent to a point x 2M �D.

Note that d.x/, and consequently gb , are not differentiable. They are only continuous.
In this case gb is called a C 0–Riemannian metric and a smooth manifold with such
a quadratic form is called a C 0–Riemannian manifold. A C 0–Riemannian structure
allows us to define lengths of paths and a metric d on the underlying manifold. The
topology induced by d is equal to the manifold topology.

Lemma 4.1 M �D with the metric gb is a complete C 0–Riemannian manifold.

Proof Let N D .M �D;gb/ and let BN .x; r/ denote the closed ball in N of radius
r and center x 2 N . To show completeness we must show that for every x 2 N the
ball BN

�
x; 1

2

�
is compact.

Let x 2N . We shall show that the distance from BN

�
x; 1

2

�
to D is at least 1

2
d.x/:

BN

�
x; 1

2

�
� L WD

˚
y 2N W d.y/� 1

2
d.x/

	
:

Since L is compact, it follows that BN

�
x; 1

2

�
is compact.

Suppose y 2 BN

�
x; 1

2

�
and d.y/ < d.x/ (otherwise obviously y 2 L). Let � > 0 and

let 
 W Œ0; l�! N be a path connecting x with y such that j P
.t/jgb
D 1 for t 2 Œ0; l�

and l < 1
2
C �.

Let

t0 D supft 2 Œ0; l� W d.
.t//� d.x/g;

ie t0 is the last time when d.
.t0//D d.x/. For t � t0, we have

j P
.t/jg D j P
.t/jgb
d.
.t//D d.
.t//� d.x/:
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Let 
 0 be the restriction of 
 to the interval Œt0; l �. Let lg.
 0/ be the length of 
 0 in the
metric g. Since j P
.t/jg � d.x/, we have

lg.

0/� .l � t0/d.x/�

�
1
2
C �

�
d.x/:

Therefore the distance of y to D in g is at least

d.y/� d.
.t0//� lg.

0/� d.x/�

�
1
2
C �

�
d.x/D 1

2
d.x/� �d.x/:

Since � is arbitrarily small, y 2 L and therefore BN

�
x; 1

2

�
� L.

Before we proceed we need the following simple lemma. Note that this lemma would
be standard if .M �D;gb/ were a complete Riemannian manifold.

Lemma 4.2 Let N D .M �D;gb/ and let zN be the universal cover of N with the
pulled-back C 0–Riemannian metric. Then every closed ball in zN is compact.

Proof By the Weierstrass approximation theorem there exists C 2R and a smooth
function f W N ! R such that C�1f .x/ < 1=d.x/ < Cf .x/ for every x 2 N . Let
gs be a Riemannian metric defined by jvjgs

D f .x/jvjg , where v 2 TxN . Then
C�1jvjgs

< jvjgb
< C jvjgs

, thus the metrics induced by gb and gs are equivalent. By
Lemma 4.1, .N; gs/ is a complete Riemannian manifold and it is a standard fact that
closed balls in the universal cover of .N; gs/ are compact. Clearly it holds as well for
.N; gb/, since the metrics defined by pullbacks of gs and gb to the universal cover are
equivalent.

Let h 2 �1.M �D/. Denote by l.h/ the infimum of lengths (with respect to gb) of
based loops representing h 2 �1.M �D/.

Lemma 4.3 For every r , the set fh 2 �1.M �D/ W l.h/ < rg is finite.

Proof Let N D .M �D;gb/, let x 2 N be a basepoint and let p W zN ! N be the
universal cover of N . Choose y 2 p�1.x/. The preimage p�1.x/ is discrete and
B zN .y; r/�

zN is compact by Lemma 4.2. Thus p�1.x/\B zN .y; r/ is finite for every
r and therefore fh 2 �1.N / W l.h/ < rg is finite.

5 A Lipschitz embedding

In this section we focus on the particular case where M �D is a configuration space.
Let .S; g/ be a compact Riemannian surface and gn be the product metric on Sn.

Algebraic & Geometric Topology, Volume 23 (2023)
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Let Dij D f.x1; : : : ; xn/ 2 S
n W xi D xj g. Denote by Cn.S/ D S

n �
S

i;j Dij the
configuration space of n ordered points in S . On Sn and Cn.S/ we consider the
measure induced by the product metric gn.

We shall now find a formula for dgn.x;Dij / in terms of the metric on S . Let
xD .x1; : : : ; xn/2S

n and letm be the midpoint of a geodesic connecting xi with xj . If
we start moving points xi and xj towardsmwith constant speed, we get a geodesic in Sn

connecting x with the closest point inDij . Since dg.m; xi /Ddg.m; xj /D
1
2
dg.xi ; xj /

and we are in the product metric,

dgn.x;Dij /D
p
dg.m; xi /

2
C dg.m; xj /

2
D

1
p
2
dg.xi ; xj /:

The distance function d has the form

d.x/D
1
p
2

minfdg.xi ; xj / W 1� i < j � ng:

Let gb D .gn/b be the metric on Cn.S/ defined in the previous section, namely
jvjgb

D jvjgn=d.x/, where v 2 Tx.Cn.S//.

Let us fix a point p 2 S and let x D .x1; : : : ; xn�1/ 2 S
n�1. Then .p; x/ 2 Sn and

d..p; x// is the minimum over .1=
p
2/dg.p; xi / for 1� i�n�1 and .1=

p
2/dg.xi ; xj /

for 1� i < j � n� 1.

We need the following technical lemma.

Lemma 5.1 There exists C 2R such that for every p 2 S we haveZ
Sn�1

1

d..p; x//
dx � C:

Proof It can be easily seen using polar coordinates that there exists C 0 such that for
every p 2D2, where D2 is the euclidean disc,Z

D

1

jp�xj
dx < C 0:

Since such C 0 exists for a disc, we have a similar bound for every compact surface S :
for every p 2 S Z

S

1

dg.p; x/
dx < C 0:

After integrating over all possible p 2 S (we assume area.S/D 1),Z
S2

1

dg.p; x/
dp dx < C 0:
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Let x D .x1; : : : ; xn�1/. Since d..p; x// is the minimum over .1=
p
2/dg.p; xi / for

i D 1; : : : ; n� 1 and .1=
p
2/dg.xi ; xj / for 1� i < j � n� 1,

1

d..p; x//
�

X
i

p
2

dg.p; xi /
C

X
i¤j

p
2

dg.xi ; xj /
:

ThusZ
Sn�1

1

d..p; x//
dx �

X
i

Z
Sn�1

p
2

dg.p; xi /
dxC

X
i¤j

Z
Sn�1

p
2

dg.xi ; xj /
dx

D .n� 1/

Z
S

p
2

dg.p; x/
dxC 1

2
n.n� 1/

Z
S2

p
2

dg.x1; x2/
dx1 dx2

�
p
2.n� 1/C 0C

n.n�1/
p
2

C 0 DW C:

Let � be the measure on Cn.S/ induced by the product metric gn. A diffeomorphism
f 2 Diff0.S; area/ defines a product diffeomorphism f� 2 Diff0.Cn.S/; �/. Namely,
for x D .x1; : : : ; xn/ 2 S

n we have f�.x/ D .f .x1/; : : : ; f .xn//. Thus we have a
product embedding Diff0.S; area/ ,! Diff0.Cn.S/; �/.

On Diff0.Cn.S/; �/ we consider the L1–norm defined by the metric gb and the mea-
sure �. Note that here we are in the case where gb and � are not compatible, that is,
the measure induced by gb and the measure � are different.

The following lemma provides a link between the L1–norm on Diff0.S; area/ and the
L1–norm on Diff0.Cn.S/; �/ defined above. Note that in the proof it is essential that
f preserves the area on S .

Lemma 5.2 The product embedding Diff0.S; area/ ,! Diff0.Cn.S/; �/ is Lipschitz ,
ie there exists C such that l1.f�/� Cl1.f /.

Proof Let f 2 Diff0.S; area/ and let X W S ! TS such that X.x/ 2 Tf .x/S . For
x D .x1; : : : ; xn/ 2 Cn.S/ we define X�.x/D .X.x1/; : : : ; X.xn// 2 Tf�.x/Cn.S/.

The set
S

i;j Dij � S
n is of measure zero. This means that we can regard jX�.x/jgb

as a measurable function defined on Sn. Thus in what follows, we integrate jX�.x/jgb

over Sn with the product measure rather then over Cn.S/.

To prove the lemma it is enough to show that there exists C such that for every
f 2Diff0.S; area/ and every map X W S! TS such that X.x/ 2 Tf .x/S the following
inequality holds:

kX�k1 � CkXk1:
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Recall that by definition kX�k1 D
R

Sn jX�.x/jgb
dx. We haveZ

Sn

jX�.x/jgb
dx D

Z
Sn

jX�.x/jgn

d.f�.x//
dx D

Z
Sn

p
jX.x1/j

2
g C � � �C jX.xn/j

2
g

d.f�.x//
dx

�

Z
Sn

jX.x1/jg C � � �C jX.xn/jg

d.f�.x//
dx D n

Z
Sn

jX.x1/jg

d.f�.x//
dx:

Since f� preserves the measure on Sn,Z
Sn

jX.x1/jg

d.f�.x//
dx D

Z
Sn

jX ıf �1.x1/jg

d.x/
dx

D

Z
S

jX ıf �1.x1/jg

�Z
Sn�1

1

d.x1; x/
dx

�
dx1

� C

Z
S

jX ıf �1.x1/jg dx1 (by Lemma 5.1)

D C

Z
S

jX.x1/jgdx1 D CkXk1:

6 Proof of the theorem

Theorem 1 Let .S; g/ be a compact surface (with or without boundary). Then for
every p � 1 the Lp–diameter of Diff0.S; area/ is infinite.

Proof By the Hölder inequality we can assume p D 1. Fix n > 3.

Let z D .z1; : : : ; zn/ 2 Cn.S/ and let Pn.S/ D �1.Cn.S/; z/ denote the pure braid
group on n strings. Suppose Ui � S are disjoint discs such that zi 2 Ui , then let
U D U1 �U2 � � � � �Un � Cn.S/.

Choose h 2 Pn.S/ and 
 a loop in Cn.S/ representing h. Let ft 2 Diff0.S; area/ for
t 2 Œ0; 1� be an isotopy such that .ft /� 2 Diff0.Cn.S/; �/ moves U all the way along

 and has properties (1) and (2) from the proof of Proposition 3.2. Let fh D f1.

It is convenient to imagine that ft moves Ui along the trajectory of zi given by 
 .
In fact, to construct ft satisfying the above properties for a general h 2 Pn.S/, it is
enough to do it for a given finite set of generators of Pn.S/ (or generators of the full
braid group Bn.S/). In [2] one can find a set of generators of Bn.S/ for which the
construction of ft is straightforward.

Recall that on Cn.S/ we consider the complete metric gb . By Lemma 4.3, the set
fh 2 �1.Cn.S// W l.h/ < rg is finite for every r and Pn.S/=Z.Pn.S// is infinite. It
follows from the proof of Proposition 3.2 that l1..fh/�/ can be arbitrarily large.
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Therefore, due to Lemma 5.2, l1.fh/ can be arbitrarily large. Thus the L1–diameter of
Diff0.S; area/ is infinite.
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Extension DGAs and topological Hochschild homology

HALDUN ÖZGÜR BAYINDIR

We study differential graded algebras (DGAs) that arise from ring spectra through the
extension of scalars functor. Namely, we study DGAs whose corresponding Eilenberg–
Mac Lane ring spectrum is equivalent to HZ^E for some ring spectrum E. We call
these DGAs extension DGAs. We also define and study this notion for E1 DGAs.

The topological Hochschild homology (THH) spectrum of an extension DGA splits
in a convenient way. We show that formal DGAs with nice homology rings are
extension, and therefore their THH groups can be obtained from their Hochschild
homology groups in many cases of interest. We also provide interesting examples of
DGAs that are not extension.

In the second part, we study properties of extension DGAs. We show that, in various
cases, topological equivalences and quasi-isomorphisms agree for extension DGAs.
From this, we obtain that dg Morita equivalences and Morita equivalences also agree
in these cases.

18G35, 55P43, 55U99

1 Introduction

In [27], Stanley shows that the homotopy category of differential graded algebras is
equivalent to the homotopy category of HZ–algebras. Later, Shipley [26] improves
this equivalence to a zigzag of Quillen equivalences between the model categories of
DGAs and HZ–algebras. This opens up a new opportunity to study DGAs, ie to study
DGAs using ring spectra.

Dugger and Shipley [9] use this zigzag of Quillen equivalences to define new equiva-
lences between DGAs called topological equivalences; see Definition 1.10 below. They
show nontrivial examples of topologically equivalent DGAs and they use topological
equivalences to develop a Morita theory for DGAs. In [2], the author uses topolog-
ical equivalences to obtain classification results for DGAs. Moreover, topological
equivalences for E1 DGAs are studied by the author in [1].
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In this work, we follow this philosophy in a different way. We study what we call
extension DGAs which are the DGAs that are obtained from ring spectra through the
extension of scalars functor from S–algebras to HZ–algebras, ie the functor HZ^�.
More generally, we work in R–DGAs for a discrete commutative ring R. There is a
zigzag of Quillen equivalences between R–DGAs and HR–algebras [26]. Composing
the corresponding derived functors, one obtains a functor from the category of R–
DGAs to the category of HR–algebras. For a given R–DGA X , we let HX denote
the HR–algebra corresponding to X under this composite functor. We often abuse
notation and denote a cofibrant and fibrant replacement of HX also by HX .

Definition 1.1 An R–DGA X is R–extension if the HR–algebra corresponding to X
is weakly equivalent to HR^E for some cofibrant S–algebra E. For RDZ, we omit
Z and write extension instead of Z–extension.

To define R–extension E1 R–DGAs, we use the zigzag of Quillen equivalences
between E1 R–DGAs and commutative HR–algebras constructed by Richter and
Shipley in [19]. As before, composing the corresponding derived functors, one obtains
a functor from the category of E1 R–DGAs to the category of commutative HR–
algebras. For a given E1 R–DGA X , the corresponding commutative HR–algebra,
which we denote by HE1X , is obtained by applying this composite functor to X .
Again, we often abuse notation and denote a cofibrant and fibrant replacement of
HE1X also by HE1X .

Definition 1.2 An E1 R–DGA X is R–extension if the commutative HR–algebra
corresponding to X is weakly equivalent to HR^E for some cofibrant commutative
S–algebra E. For RD Z, we omit Z and write extension instead of Z–extension.

See Appendix A for a discussion on the compatibility of the two definitions above.

Although we only study the extension problems coming from the definitions above, it is
also interesting to consider the following general extension problem. Let ' WA!B be
a map of commutative S–algebras and let X be a B–algebra. We say X is '–extension
if it is weakly equivalent to B ^A E for some cofibrant A–algebra E. For the map
S!HR, this corresponds to the extension problem coming from Definition 1.1.

Let k be a perfect field of characteristic p and let W.k/ denote the Witt ring of k. The
extension problem corresponding to the canonical map � WHW.k/!Hk is analogous
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to a classical lifting problem for schemes; see for instance Grothendieck [11, Section 6]
and Serre [24]. One of the motivations for the classical Witt-lifting problem is to
understand the crystalline cohomology of smooth algebraic varieties over Fp through
the de Rham cohomology of their lifts to W.Fp/ whenever such a lift exists; see
Berthelot [5, V.2.3.2]. Following this philosophy, Petrov and Vologodsky [18] recently
showed that if an Hk–algebra (ie a k–DGA) X is �–extension, ie X 'Hk^HW.k/E
for some cofibrant HW.k/–algebra (ie a W.k/–DGA) E, then the p–completed peri-
odic topological cyclic homology of X agrees with the p–completed periodic cyclic
homology ofE when p>2. This boils down the computation of a topological homology
theory to the computation of an algebraic homology theory.

Similarly, the extension property we study in this work boils down the computation of
the topological Hochschild homology of an extension DGA to a Hochschild homology
computation. Namely, for an R–extension DGA X (as in Definition 1.1), we have the
following splitting at the level of topological Hochschild homology. This splitting is
possibly well known to the experts in the field; see Schwänzl, Vogt and Waldhausen [20,
Theorem 1] for an instance of this splitting whenX is the Eilenberg–Mac Lane spectrum
of a discrete ring. In the proposition below, HHR.�/ denotes THHHR.�/.

Proposition 1.3 If X is an R–extension R–DGA , then there is an equivalence of
spectra

THH.X/' THH.HR/^HR HHR.X/:

If X is an R–extension E1 R–DGA , then the equivalence above is an equivalence of
commutative S–algebras.

For a map ' W A ! B of commutative S–algebras, there is a similar splitting of
THHA.X/ whenever X is a '–extension B–algebra; see Proposition B.1.

The splitting in Proposition 1.3 simplifies THH calculations significantly in many
situations. Indeed, it is an important stepping stone in many THH calculations in
the literature, particularly for the case where X is a discrete ring, ie a DGA whose
homology is concentrated in degree 0. For example, Larsen and Lindenstrauss [16]
show that this splitting exists at the level of homotopy groups for various discrete rings
of characteristic p. Furthermore, Hesselholt and Madsen [12, Theorem 7.1] prove such
a splitting for discrete rings that have a nice basis with respect to the ground ring R. In
the following theorem, we generalize this result to connective formal DGAs. Note that
a connective DGA is a DGA whose negative homology is trivial.
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Theorem 1.4 Let X be a connective formal R–DGA whose homology has a ho-
mogeneous basis as an R–module containing the multiplicative unit such that the
multiplication of two basis elements is either zero or a basis element. In this situation ,
X is R–extension. As a result , we have the equivalence of spectra

THH.X/' THH.HR/^HR HHR.X/:

Section 5 is devoted to the proof of this theorem. Furthermore, for a given R–DGA
that satisfies the hypothesis of the theorem above, we provide an explicit description
of the corresponding HR–algebra; see Proposition 5.8. The author and Moulinos [3,
4.8 and 6.1] show that for such HR–algebras, one often obtains nontrivial splittings at
the level of topological negative cyclic homology and topological periodic homology.
Using these splittings, the author and Moulinos compute the algebraic K–theory of
THH.HFp/, ie the algebraic K–theory of the formal DGA with homology FpŒx2�. In
a future work, the author plans to compute the algebraic K–theory groups of various
formal DGAs by using Proposition 5.8 and the splittings provided in [3].

Remark 1.5 Another way to state the hypothesis of Theorem 1.4 is the following. Let
M be a monoid in the category of graded pointed sets. From M , one obtains a graded
R–algebra RhM i whose underlying R–module is the free R–module over the graded
set M� obtained by removing the based point from M . The multiplication on RhM i is
given by the multiplication on M where the based point of M is considered as the zero
element in RhM i. A graded R–algebra of the form RhM i is called a graded monoid
R–algebra. With this definition, a connective formal R–DGA satisfies the hypothesis
of Theorem 1.4 if and only if its homology is a graded monoid R–algebra.

Remark 1.6 We mention a few examples of graded rings that satisfy the hypothesis
of the theorem above as homology of X . The polynomial algebra over R with a
nonnegatively graded set S of generatorsRŒS� satisfies the hypothesis if all the elements
of S are in even degrees. The basis of RŒS� is given by the monomials in S and the
unit 1 2 R. Similarly, many examples of quotients of polynomial rings with even
degree generators also satisfy this hypothesis; for example RŒx�=.x2/, RŒx; y�=.y2/
and RŒx; y�=.x2y; y3/ with even jxj and jyj. However, there are rings that do not
satisfy this hypothesis. For example, for RDZ, the exterior algebra on two generators
ƒŒx; y� Š ƒŒx� ˝ ƒŒy� with odd jxj and jyj has a basis given by fx; y; xyg, but
yx D�xy and therefore yx is not one of the basis elements. Indeed, ƒŒx; y� has no
basis that satisfies this hypothesis.
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We prove the following nonextension results.

Theorem 1.7 Let Y be an E1 DGA. For all primes p, if Y is quasi-isomorphic to an
E1 Fp–DGA then Y is not an extension E1 DGA.

Theorem 1.8 Let X be a DGA. If X is quasi-isomorphic to an F2–DGA then X is
not an extension DGA.

Remark 1.9 These theorems should be compared with the two commutative HZ–
algebras X and Y obtained from HZ^HFp through the structure maps

HZŠHZ^S!HZ^HFp and HZŠ S^HZ! S^HFp!HZ^HFp;

respectively. The E1 DGA corresponding to X is an extension E1 DGA and the
E1 DGA corresponding to Y is an E1 Fp–DGA. Although these two E1 DGAs are
E1 topologically equivalent, they are not quasi-isomorphic due to [1, Theorem 5.3]. For
the associative case with p D 2, the distinction between the two DGAs corresponding
to X and Y is due to [9, Example 5.6].

In the results above, we work with (E1) DGAs in mixed characteristic, ie we work in
(E1) Z–DGAs. A natural question to ask is if there are examples of E1 k–DGAs
that are not k–extension for a field k. In Example 1.12 below, we show that there are
E1 Fp–DGAs that are not Fp–extension.

Now we discuss topological equivalences of DGAs and the properties of extension
DGAs regarding topological equivalences.

Definition 1.10 Two DGAs X and Y are topologically equivalent if the corresponding
HZ–algebras HX and HY are weakly equivalent as S–algebras.

The definition of E1 topological equivalences is as follows.

Definition 1.11 Two E1 DGAs X and Y are E1 topologically equivalent if the
corresponding commutative HZ–algebras HE1X and HE1Y are weakly equivalent
as commutative S–algebras.

It follows from these definitions that quasi-isomorphic (E1) DGAs are (E1) topolog-
ically equivalent. However, there are examples of nontrivially topologically equivalent
DGAs, ie DGAs that are topologically equivalent but not quasi-isomorphic [9]. Further-
more, examples of nontrivially E1 topologically equivalent E1 DGAs are constructed
by the author in [1].
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Example 1.12 This is an example of E1 Fp–DGAs that are not Fp–extension. In
[1, Example 5.1], the author constructs nontrivially E1 topologically equivalent E1
Fp–DGAs that we call X and Y , ie X and Y are E1 topologically equivalent but
they are not quasi-isomorphic. Although these E1 Fp–DGAs are E1 topologically
equivalent, their Dyer–Lashof operations are different.

For p D 2, the homology rings of these E1 Fp–DGAs are given by

F2Œx�=.x
4/

for both X and Y where jxj D 1. On the homology of X , the first Dyer–Lashof
operation is trivial, ie Q1xD 0. On the other hand, we have Q1xD x3 on the homology
of Y . Using these properties we show (for all primes) that these E1 Fp–DGAs are
not Fp–extension E1 Fp–DGAs. See Section 3B for a proof of this fact.

By [1, Theorem 1.6], E1 topological equivalences between E1 Fp–DGAs with
trivial first homology preserve Dyer–Lashof operations. We prove a stronger result for
Fp–extension E1 Fp–DGAs.

Theorem 1.13 Let X be an Fp–extension E1 Fp–DGA with H1X D 0 and let Y
be an E1 Fp–DGA. Then X and Y are quasi-isomorphic if and only if they are E1
topologically equivalent.

In the following results, we show various situations where topological equivalences
and quasi-isomorphisms agree.

Theorem 1.14 Let Y be an Fp–DGA and let X be an Fp–extension Fp–DGA. For
odd p, assume that the homology of X is trivial in degrees 2pr � 2 for r � 1 and
2ps �1 for s � 0. For pD 2, assume that the homology of X is trivial in degree 2r �1
for r � 1. Then X and Y are quasi-isomorphic if and only if they are topologically
equivalent.

For the corollary below, note that a coconnective DGA is a DGA with trivial homology
in positive degrees.

Corollary 1.15 LetX be a coconnective extension Fp–DGA and let Y be an Fp–DGA.
Then X and Y are quasi-isomorphic if and only if they are topologically equivalent.
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Theorem 1.16 Let R D Z=.m/ for some integer m¤˙1 and let X be an R–DGA
whose corresponding HR–algebra is equivalent to HR ^ Z for some cofibrant S–
algebra Z whose underlying spectrum is equivalent to a coproduct of (de)suspensions
of the sphere spectrum. Also , let Y be anR–DGA. ThenX and Y are quasi-isomorphic
if and only if they are topologically equivalent.

Our main interest for this theorem is due to its corollary stated below. This follows
by Proposition 5.8 which implies that an R–DGA that satisfies the hypothesis of
Theorem 1.4 also satisfies the hypothesis of the theorem above.

Corollary 1.17 Let RD Z=.m/ for some integer m¤˙1, let Y be an R–DGA and
let X be as in Theorem 1.4. Then X and Y are quasi-isomorphic if and only if they are
topologically equivalent.

Two DGAs X and Y are said to be Morita equivalent if the model categories of X–
modules and Y –modules are Quillen equivalent. There is a stronger notion of Morita
equivalence for DGAs called dg Morita equivalences defined by Keller [14, Section 3.8].
Due to [9, 7.7], two DGAs X and Y are dg Morita equivalent if and only if the model
categories of X–modules and Y –modules are additively Quillen equivalent; see Dugger
and Shipley [8] for the definition of additive Quillen equivalences. This is a strictly
stronger notion of Morita equivalence since there are examples of DGAs that are Morita
equivalent but not dg Morita equivalent [9, Section 8]. However, in the situations where
topological equivalences and quasi-isomorphisms agree, these two notions of Morita
equivalences also agree [9, Proposition 7.7 and Theorem 7.2]. We obtain the following
corollary to Theorems 1.14 and 1.16.

Corollary 1.18 Assume that X and Y are as in Theorem 1.14 or Theorem 1.16. Then
X and Y are Morita equivalent if and only if they are dg Morita equivalent.

Organization In Section 2, we describe the dual Steenrod algebra and the Dyer–Lashof
operations on it. In Section 3, we prove Theorems 1.13, 1.14 and 1.16. Section 4 is
devoted to the proof of Theorems 1.7 and 1.8. In Section 5, we prove Theorem 1.4. This
section is independent from Sections 2, 3 and 4, and it contains explicit descriptions
of the HZ–algebras corresponding to the formal DGAs as in Theorem 1.4, which is
of independent interest. We leave the proof of Theorem 1.4 to the end because it uses
different tools than the rest of the proofs in this work. Appendix A is devoted to a
discussion on the compatibility of Definitions 1.1 and 1.2.
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Terminology We work in the setting of symmetric spectra in simplicial sets; see
Hovey, Shipley and Smith [13]. For commutative ring spectra, we use the positive
S–model structure developed by Shipley in [25]. When we work in the setting of
associative ring spectra, we use the stable model structure of [13]. Throughout this
work, R denotes a general discrete commutative ring except in Section 3C where R
denotes a quotient of Z. When we say (E1) DGA, we mean (E1) Z–DGA.

Acknowledgements The author would like to thank Don Stanley for suggesting to
study extension DGAs and also for showing the construction of the monoid object in
Construction 5.1. I also would like to thank Dimitar Kodjabachev and Tasos Moulinos
for a careful reading of this work.

2 The dual Steenrod algebra

Here, we recall the ring structure and the Dyer–Lashof operations on the dual Steenrod
algebra. Using the standard notation, we denote the dual Steenrod algebra by A�. We
have ��.HFp ^HFp/Š A�. Milnor shows that the dual Steenrod algebra is a free
graded commutative Fp–algebra [17].

For p D 2, A� is given by

A� D F2Œ�r j r � 1�D F2Œ�r j r � 1�;

where j�r j D j�r j D 2r � 1. Let � denote the action of the transpose map of the smash
product on ��.HFp ^HFp). We have �.�r/D �r .

For an odd prime p, the dual Steenrod algebra is described by

A� D FpŒ�r j r � 1�˝Fp ƒ.�s j s � 0/D FpŒ�r j r � 1�˝Fp ƒ. N�s j s � 0/;

where j�r jD j�r jD2.pr�1/ and j�sjD jN�sjD2ps�1. In this case, we have �.�r/D �r
and �.�r/D N�r .

Dyer–Lashof operations are power operations that act on the homotopy rings of H1
HFp–algebras [7]. By forgetting structure, commutative HFp–algebras are examples
of H1 HFp–algebras and therefore Dyer–Lashof operations are also defined on
the homotopy ring of commutative HFp–algebras, and maps of commutative HFp–
algebras preserve these operations. For pD 2, there is a Dyer–Lashof operation denoted
by Qs for ever integer s where Qs increases the degree by s. For odd p, there are
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Dyer–Lashof operations denoted by ˇQs and Qs for every integer s that increase the
degree by 2s.p�1/�1 and 2s.p�1/, respectively. See [7, III.1.1] for further properties
of these operations.

With the unit map
HFp ŠHFp ^S!HFp ^HFp;

HFp ^HFp is a commutative HFp–algebra and therefore Dyer–Lashof operations
are defined on the dual Steenrod algebra. These operations are first studied in [7, III.2].
Steinberger shows that the degree one element �0 for odd p and �1 for pD 2 generates
the dual Steenrod algebra as an algebra with Dyer–Lashof operations, ie as an algebra
over the Dyer–Lashof algebra. In particular for p D 2, we have

Q2
s�2�1 D �s for s > 1:

For odd p, we have

Q.p
s�1/=.p�1/�0 D .�1/

s
N�s; ˇQ.p

s�1/=.p�1/�0 D .�1/
s�s

for s � 1.

3 Proof of the results on topological equivalences and the
nonextension example

In this section, we prove Theorems 1.13, 1.14 and 1.16 which provide comparison
results on (E1) topological equivalences and quasi-isomorphisms of (E1) DGAs for
various cases. At the end, we prove Proposition 3.2 which justifies the last claim in
Example 1.12. This provides examples of E1 Fp–DGAs that are not Fp–extension.

These results are obtained using similar arguments. Therefore, we suggest the reader
to go through their proof in the order presented in this section.

3A Proof of Theorems 1.13 and 1.14

In the proof of Theorems 1.13 and 1.14 and also in the proof of Theorem 1.16 and
Proposition 3.2, we show that for various R–extension (E1) R–DGAs, (E1) topolog-
ical equivalences and quasi-isomorphisms agree.

For this, we use the same technique to produce a quasi-isomorphism, ie an HR–algebra
equivalence, out of a given topological equivalence, ie an S–algebra equivalence. We
start by describing this technique.
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Let us focus on the E1 case. Assume that we are given commutative HR–algebras Y
and HR^Z, where Z denotes a cofibrant commutative S–algebra and assume that we
are given a weak equivalence

' WHR^Z ��! Y

of commutative S–algebras. Using ', we produce a map of commutative HR–algebras
through the composite

 WHR^Z ŠHR^S^Z i
�!HR^HR^Z

HR^'

'
���!HR^Y m

�! Y:

Here, i is the canonical map induced by the unit map S!HR of HR and m is the
commutative HR–algebra structure map of Y . Except Y , we provide the objects in the
composite above with the commutative HR–algebra structure coming from the first
HR factor. The maps i and HR^' are maps of commutative HR–algebras as they are
obtained using the functor HR^� from the category of commutative S–algebras to the
category of commutative HR–algebras. Furthermore, we assume that HR is cofibrant
as a commutative S–algebra in the positive S–model structure of [25]. This implies
that HR is cofibrant as an S–module [25, 4.1] in the model structure of [25], ie HR is
S–cofibrant in the terminology of [13, 5.3.6]. Therefore, HR^' is a weak equivalence
[13, 5.3.10]. Note thatm is the left adjoint of the identity map of Y under the adjunction
between the categories of commutative S–algebras and commutative HR–algebras
whose left adjoint is given by the extension of scalars functor HR^� and whose right
adjoint is given by the restriction of scalars functor. In particular, this shows that m is
also a map of commutative HR–algebras. We deduce that  is a map of commutative
HR–algebras as it is given by a composite of such maps. Compared to the commutative
case, the definition of the map  is slightly more complicated in the associative case
as we consider various cofibrant replacements. The results we prove in this section are
obtained by showing that  is an equivalence under the given hypothesis.

We start with the proof of Theorem 1.13. We provide a restatement of this theorem
below.

Theorem 1.13 Let X be an Fp–extension E1 Fp–DGA with H1X D 0 and let Y
be an E1 Fp–DGA. Then X and Y are quasi-isomorphic if and only if they are E1
topologically equivalent.

In what follows, we denote the category of commutative E–algebras by E–cAlg
and the category of associative E–algebras by E–Alg for a given commutative ring
spectrum E.
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Proof Since quasi-isomorphic E1 DGAs are always E1 topologically equivalent,
we only need to show that if X and Y are E1 topologically equivalent then they are
quasi-isomorphic as E1 Fp–DGAs.

Let HFp denote a cofibrant model of HFp in S–cAlg. The category of commutative
HFp–algebra spectra is the same as the category of commutative S–algebra spectra
underHFp . Therefore we have a model structure onHFp–cAlg where the cofibrations,
fibrations and weak equivalences are precisely the maps that forget to cofibrations,
fibrations and weak equivalences in S–cAlg. We let Y also denote the commutative
HFp–algebra corresponding to theE1 DGA Y . Therefore �1.Y /D0. Taking a fibrant
replacement, we assume Y is fibrant both in HFp–cAlg and in S–cAlg. Furthermore,
we let HFp ^Z denote the commutative HFp–algebra corresponding to the extension
E1 Fp–DGA X , where Z is a cofibrant object in S–cAlg. This ensures thatHFp^Z

is cofibrant in HFp–cAlg. Therefore the composite S �HFp �HFp ^Z is also
a cofibration in S–cAlg; this shows that HFp ^Z is also cofibrant in S–cAlg. To
prove Theorem 1.13, we need to show that HFp ^Z and Y are weakly equivalent in
HFp–cAlg.

Because HFp ^Z and Y are obtained from E1 topologically equivalent E1 DGAs,
they are equivalent as commutative S–algebras. Furthermore HFp^Z is cofibrant and
Y is fibrant; therefore there is a weak equivalence ' WHFp ^Z ��! Y of commutative
S–algebras. We consider the composite map

(1)  WHFp ^Z ŠHFp ^S^Z i
�!HFp ^HFp ^Z

HFp^'
'

����!HFp ^Y
m
�! Y;

where the first map is induced by the unit map uHFp W S!HFp of HFp and the last
map is the HFp structure map of Y . If we consider all the objects in this composite
except Y to have the HFp structure coming from the first smash factor, then all
objects involved are commutative HFp–algebras and the maps involved are maps
of commutative HFp–algebras. Note that i and HFp ^ ' are maps of commutative
HFp–algebras as they are obtained via the functor HFp^�W S–cAlg!HFp–cAlg.
The last map m is a map of commutative HFp–algebras because it is the left adjoint
of the identity map of Y under the usual adjunction between S–cAlg and HFp–cAlg.
Since all the maps in the composite above are maps of commutative HFp–algebras,
we deduce that  is a map of commutative HFp–algebras.

What remains is to show that  is a weak equivalence. For this, we take the homotopy
groups of the composite defining  and show that it is an isomorphism. Firstly, we
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have a splitting

HFp ^HFp ^Z Š .HFp ^HFp/^HFp .HFp ^Z/

in HFp–cAlg where we consider the object on the right-hand side of the equality
with the HFp structure given by the first smash factor instead of the canonical one
given by the smash product ^HFp . Because the homotopy of HFp is a field, we
have ��.HFp ^HFp ^ Z/ Š A� ˝Fp ��.HFp ^ Z/; see [10, IV.4.1]. With this
identification, we obtain that the composite map induced in homotopy by the composite
defining  is given by

(2)  � W ��.HFp ^Z/
i�
�!A�˝Fp ��.HFp ^Z/

��.HFp^'/
Š

�������!HFp�Y
m�
�! Y�:

Note that although we identify the domain of ��.HFp ^'/ as a tensor product, we do
not claim that ��.HFp ^'/ splits as a tensor product of two maps.

Below, we state three claims. Afterwards, we assume these claims and prove that  � is
an isomorphism by showing  � D '�, ie we prove the theorem assuming the claims
below. After that, we provide a proof of the three claims listed below.

Claim 1 The composite m� ı��.HFp ^'/ maps every element of the form a˝Fp x

with jaj> 0 to zero in Y�.

Claim 2 We have m� ı��.HFp^'/.1˝Fp x/D '�.x/ for every x 2 ��.HFp^Z/.

Claim 3 We have i�.x/D 1˝Fp xC†iai ˝Fp xi for some ai 2 A� with jai j > 0
and xi 2 ��.HFp ^Z/.

Now we show that  is a weak equivalence by assuming the claims above. We have

 �.x/Dm� ı��.HFp ^'/ ı i�.x/

Dm� ı��.HFp ^'/.1˝Fp xC†iai ˝Fp xi /

D '�.x/

for some ai 2A� with jai j> 0. Here, the first equality follows by the definition of  �,
the second equality follows by Claim 3 and the third follows by Claims 1 and 2. This
proves that  � is an isomorphism since '� is an isomorphism. Therefore, we deduce
that  is a weak equivalence as desired. What is left to prove is the three claims stated
above.

Proof of Claim 1 The map S!Z induces a map

.HFp ^HFp/^HFp HFp! .HFp ^HFp/^HFp .HFp ^Z/:
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This map is in HFp–cAlg, therefore the induced map in homotopy preserves the
Dyer–Lashof operations. The induced map in homotopy is given by the inclusion
A� ˝Fp Fp ! A� ˝Fp ��.HFp ^Z/ and this shows that Dyer–Lashof operations
on this subset of A�˝Fp ��.HFp ^Z/ are given by the action of the Dyer–Lashof
operations on the dual Steenrod algebra, ie Qs.a˝Fp 1/D .Q

sa/˝Fp 1. Let p be an
odd prime. Since �1.Y / is trivial, m� ı��.HFp^'/.�0˝Fp 1/D 0. Because the dual
Steenrod algebra is generated with the Dyer–Lashof operations by �0, this shows that
m� ı��.HFp ^'/.a˝Fp 1/D 0 for all a 2A� with jaj> 0. Since all maps involved
are ring maps and a˝Fp x D .a˝Fp 1/.1˝Fp x/, this finishes the proof of our claim
m� ı��.HFp ^'/.a˝Fp x/D 0 whenever jaj> 0. Note that for p D 2, one uses �1
instead of �0.

Proof of Claim 2 We consider the commutative diagram

(3)

.S^HFp/^HFp .HFp ^Z/ S^HFp ^Z S^Y

.HFp ^HFp/^HFp .HFp ^Z/ HFp ^HFp ^Z HFp ^Y Y

Š

h

S^'

hY
id

Š HFp^' m

Because Y is in HFp–cAlg, we have m ı hY D id. We also have

m� ı��.HFp ^'/.1˝Fp x/Dm� ı��.HFp ^'/ ı h�.x/:

Carrying x through the top row and then composing withmıhY , we obtain the equality
m� ı��.HFp ^'/.1˝Fp x/D '�.x/ in our claim.

Proof of Claim 3 The composite of the maps below is the identity

HFp ^Z ŠHFp ^S^Z i
�!HFp ^HFp ^Z

mHFp^id
������!HFp ^Z;

where mHFp is the multiplication map of HFp. With the identification

HFp ^HFp ^Z Š .HFp ^HFp/^HFp .HFp ^Z/;

we obtain the composite in homotopy

(4) ��.HFp ^Z/
i�
�!A�˝Fp ��.HFp ^Z/

��.mHFp^id/
��������! ��.HFp ^Z/;

where ��.mHFp ^ id/ is given by the augmentation A� ! Fp. This description of
��.mHFp ^ id/ and the fact that ��.mHFp ^ id/ ı i� D id proves our claim.

This completes the proof of Theorem 1.13.

Algebraic & Geometric Topology, Volume 23 (2023)



908 Haldun Özgür Bayındır

Remark 3.1 The proof of Theorem 1.13 is showing slightly more. For a given
cofibrantZ in S–cAlg and a fibrant Y inHFp–cAlg with �1Y D0 and an equivalence
HFp ^Z ��! Y of S–algebras, the map HFp ^Z! Y in HFp–cAlg given by the
structure map of Y on HFp and the map S^Z! HFp ^Z ��! Y on Z is also a
weak equivalence. Note that to construct this map, we use the fact that HFp ^Z is a
coproduct of HFp and Z in S–cAlg.

The proof of Theorem 1.14 (restated below) is similar to the proof of Theorem 1.13.
Therefore, in the proof of Theorem 1.14, we assume familiarity with the proof of
Theorem 1.13.

Theorem 1.14 Let Y be an Fp–DGA and let X be an Fp–extension Fp–DGA. For
odd p, assume that the homology of X is trivial in degrees 2pr � 2 for r � 1 and
2ps �1 for s � 0. For pD 2, assume that the homology of X is trivial in degree 2r �1
for r � 1. Then X and Y are quasi-isomorphic if and only if they are topologically
equivalent.

Proof Here, we work in the setting of associative algebras. In this case, we need to be
more careful with cofibrant replacements since the forgetful functor from HFp–Alg
to S–Alg does not necessarily preserve cofibrant objects. Let HFp be cofibrant in
S–cAlg (with the model structure of [25]) as before and let Z be cofibrant in S–Alg
such that HFp^Z is an HFp–algebra that corresponds to X . By abuse of notation, let
Y be a fibrant HFp–algebra corresponding to Y . Let T �

��HFp ^Z be a cofibrant
replacement of HFp ^Z in S–Alg. We have the lift

(5)
S T

Z HFp ^Z

�
f

in S–Alg where the bottom map is given by the map ZŠS^Z!HFp^Z. Since T
and Y are obtained from topologically equivalent DGAs, they are equivalent in S–Alg.
Also because T is cofibrant and Y is fibrant, we have a weak equivalence ' W T ��! Y

of S–algebras. We obtain the composite map of HFp–algebras

 WHFp ^Z
i
�!HFp ^T

HFp^'
'

����!HFp ^Y
m
�! Y;

where i D HFp ^ f and m is the HFp structure map of Y . The map m is a map
of HFp–algebras because it is the left adjoint of the identity map of Y under the
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usual adjunction between HFp–Alg and S–Alg. Note that we denote HFp ^f by i
because the map i in the composite above should be compared to the map i in (1).

Again, what remains is to show that  � is an isomorphism. Note that the functor
HFp ^� preserves weak equivalences [13, 5.3.10]. Identifying homotopy groups of
T with homotopy groups of HFp ^Z through the trivial fibration above, and similarly
identifying the homotopy groups of HFp ^ T with those of HFp ^HFp ^Z, we
obtain a description of  � similar to the one in (2),

 � W ��.HFp ^Z/
i�
�!A�˝Fp ��.HFp ^Z/

��.HFp^'/
Š

�������!HFp�Y
m�
�! Y�:

It is sufficient to show that the claims in the proof of Theorem 1.13 also hold in this
case. Claim 1 follows by the hypothesis that ��Y is trivial at the degrees where the
algebra generators of the dual Steenrod algebra are. Claim 2 follows similarly. For
Claim 3, consider the sequence of maps

HFp ^Z
i
�!HFp ^T ��!HFp ^HFp ^Z

mHFp^id
������!HFp ^Z;

where mHFp is the multiplication map of HFp. Due to diagram (5), the composite
above is the identity map. Taking homotopy groups of the composite above and omitting
the equivalence in the middle, one obtains (4). The rest of the proof of Claim 3 follows
as before.

3B Example 1.12

Here, we show that the E1 Fp–DGAs provided in Example 1.12 are not Fp–extension.

Proposition 3.2 Let X and Y be as in Example 1.12. As E1 Fp–DGAs , X and Y
are not Fp–extension.

Proof Recall that in Example 1.12, we provide examples of E1 Fp–DGAs that are
E1 topologically equivalent but not quasi-isomorphic. We prove that X is not an
extension E1 Fp–DGA. In order to show Y is not extension, it suffices to exchange
the roles of X and Y in the proof below.

We assume that X is an extension E1 Fp–DGA and obtain a contradiction by showing
that X and Y are quasi-isomorphic under this assumption. This is similar to the proof
of Theorem 1.13, which we assume familiarity with. Following the constructions there,
we obtain a map of commutative HFp–algebras

 WHFp ^Z ŠHFp ^S^Z i
�!HFp ^HFp ^Z

HFp^'
'

����!HFp ^Y
m
�! Y
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as in (1), where HFp ^Z denotes a commutative HFp–algebra corresponding to X
and Y denotes a commutative HFp–algebra corresponding to the E1 Fp–DGA Y by
abusing notation. This is a map of commutative HFp–algebras as before. Therefore, it
is sufficient to show that  � is an isomorphism.

As in (2),  � is given by

 � W ��.HFp ^Z/
i�
�!A�˝Fp ��.HFp ^Z/

��.HFp^'/
Š

�������!HFp�Y
m�
�! Y�:

By Claim 3 in the proof of Theorem 1.14, for every x 2 ��.HFp ^Z/ we have

(6) i�.x/D 1˝Fp xC†iai ˝Fp xi

for some ai 2A� with jai j> 0 and xi 2 ��.HFp ^Z/.

For p D 2, ��.HFp ^Z/Š F2Œx�=.x4/ with jxj D 1. By degree reasons, we either
have i�.x/D 1˝Fp x or i�.x/D 1˝Fp xC�1˝Fp 1. Since .1˝Fp xC�1˝Fp 1/

4¤ 0

but x4 D 0, the second option is not possible. Therefore we have i�.x/ D 1˝Fp x.
Since i is a map of ring spectra, i� is multiplicative so i�.xl/D 1˝Fp x

l for every l .
By Claim 2 in the proof of Theorem 1.13, this shows that  � is an isomorphism. This
provides a contradiction as X and Y are not quasi-isomorphic as E1 F2–DGAs.

For odd p, we have
��Y Š ��.HFp ^Z/ŠƒFp Œx; y�

with jxj D 1 and jyj D 2p� 2. By (6) above, either

i�.y/D 1˝Fp y or i�.y/D c�1˝Fp 1C 1˝Fp y

for some unit c 2 Fp. However, y2 D 0 but .c�1 ˝Fp 1C 1˝Fp y/
2 ¤ 0 so only

the first option is possible. This shows that  �.y/ D y due to Claim 2 in the proof
of Theorem 1.13. The 2p � 2 Postnikov sections of Y and HFp ^Z agrees with
that of HFp ^HFp in commutative HFp–algebras; see [1, Example 5.1]. Using this
together with the fact that ˇQ1�0 D��1 in the dual Steenrod algebra, ˇQ1x D y up
to a unit both in ��.HFp ^Z/ and in ��Y . Because  is a map of commutative
HFp–algebras,  � preserves Dyer–Lashof operations. Since  �.y/Dy, we obtain that
 �.x/D x up to a unit of Fp . Because  � is a ring map, we deduce that  � is indeed
an isomorphism. Therefore  is a weak equivalence of commutative HFp–algebras
between the commutativeHFp–algebras corresponding to the E1 Fp–DGAs X and Y .
This contradicts the fact that X and Y are not quasi-isomorphic as E1 Fp–DGAs and
finishes our proof.
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3C Proof of Theorem 1.16

Theorem 1.16 Let R D Z=.m/ for some integer m¤˙1 and let X be an R–DGA
whose corresponding HR–algebra is equivalent to HR ^ Z for some cofibrant S–
algebra Z whose underlying spectrum is equivalent to a coproduct of (de)suspensions
of the sphere spectrum. Also , let Y be anR–DGA. ThenX and Y are quasi-isomorphic
if and only if they are topologically equivalent.

Proof LetHR be cofibrant as a commutative S–algebra in Shipley’s convenient model
structure. This guarantees thatHR^� preserves weak equivalences [13, 5.3.10]. Since
HR^� preserves weak equivalences, we can further assume Z to be fibrant.

Let Y be an R–DGA. Since quasi-isomorphic R–DGAs are always topologically
equivalent, we only need to show that X and Y are quasi-isomorphic if they are
topologically equivalent. Abusing notation, we also let Y denote a fibrant HR–algebra
corresponding to the R–DGA Y . We assume that X and Y are topologically equivalent,
ie HR^Z and Y are equivalent as S–algebras. Using this, we are going to show that
there is a weak equivalence

 WHR^Z ��! Y

of HR–algebras.

Let g W T �
��HR^Z be a cofibrant replacement of HR^Z in S–algebras. As in

diagram (5), there exists a map f WZ! T such that

(7)
S T

Z HR^Z

g'

hZ

f

commutes. Here, hZ denotes the canonical map

hZ WZ Š S^Z!HR^Z:

Since X and Y are topologically equivalent, T and Y are equivalent as S–algebras.
Furthermore, T is cofibrant and Y is fibrant; therefore we have a weak equivalence

' W T ��! Y

of S–algebras.

We obtain the composite map

 WHR^Z
HR^f
���!HR^T

HR^'
���!HR^Y m

�! Y
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of HR–algebras where m denotes the HR–module structure map of Y . Note that
the last map above is a map of HR–algebras as it is the left adjoint of the identity
map of Y under the usual adjunction between the categories of HR–algebras and
S–algebras. Since  is a map of HR–algebras, it is sufficient to show that  induces
an isomorphism in homotopy.

We have the commuting diagram

S^T S^Y

HR^T HR^Y Y

S^'

hT
id

HR^' m

where the vertical maps are the canonical maps induced by the unit map uR W S!HR.
This shows that the composite map starting from T Š S^T and ending in Y is given
by ' and therefore is a weak equivalence. In particular, ��.m ı .HR ^ '// is an
isomorphism when it is restricted to the image of the Hurewicz map of T

��hT W ��.S^T /! ��.HR^T /:

Therefore, in order to prove that  � is an isomorphism, it is sufficient to show that the
map

��.HR^f / W ��.HR^Z/! ��.HR^T /

is injective and its image agrees with the image of ��hT . For this, it is sufficient to
prove that the corresponding statements are true after composing with the isomorphism

��.HR^g/ W ��.HR^T /
Š
�! ��.HR^HR^Z/:

In other words, it is sufficient to show that

��.HR^g/ ı��.HR^f /

is injective and the image of this map agrees with the image of ��.HR^g/ ı��hT .
Due to (7), gıf DhZ . Therefore, it is sufficient to show that ��.HR^hZ/ is injective
in homotopy and its image agrees with the image of ��.HR^g/ ı��hT .

The composite

HR^Z
HR^hZ
�����!HR^HR^Z m^id

���!HR^Z

is the identity map, where m denotes the multiplication map of HR and id denotes the
identity map of Z. From this, we deduce that ��.HR^ hZ/ is injective in homotopy,
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as desired. What remains to prove is that the image of ��.HR^ hZ/ agrees with the
image of ��.HR^g/ ı��hT .

Due to the commuting diagram

S^T S^HR^Z

HR^T HR^HR^Z

g

'

hT hHR^Z

HR^g

'

the image of the map ��.HR^g/ ı��hT is given by the image of the Hurewicz map

��.hHR^Z/ W ��.S^HR^Z/! ��.HR^HR^Z/

of HR^Z. Note that hHR^Z is induced by the unit map of HR as usual. Therefore,
it is sufficient to show that the image of ��.HR ^ hZ/ agrees with the image of
��.hHR^Z/.

The map HR^ hZ is the canonical map

HR^Z ŠHR^S^Z!HR^HR^Z:

This is the same as the composite

(8) HR^Z Š S^HR^Z
hHR^Z
����!HR^HR^Z �^id

���!HR^HR^Z;

where � is the transposition map of the monoidal structure. Since the map hHR^Z in
the middle of the composite in (8) induces ��.hHR^Z/, it is sufficient to show that
��.� ^ id/ is the identity map on the image of ��.hHR^Z/.

By hypothesis, the underlying spectrum of Z is a wedge of suspensions of the sphere
spectrum. Let

E D
_
a2A

†jajS

be weakly equivalent to Z as a spectrum where A is a graded set. Since E is cofibrant
and Z is fibrant, there is a weak equivalence of spectra E ��!Z.

This equivalence induces the vertical maps in the commuting diagram of S–modules,

HR^E HR^HR^E HR^HR^E

HR^Z HR^HR^Z HR^HR^Z

hHR^E

'

�^id

' '

hHR^Z �^id
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where hHR^E denotes the canonical map that induces the Hurewicz map of HR^E
in homotopy. In order to show that ��.� ^ id/ (of the bottom row) is the identity map
on the image of ��.hHR^Z/, it is sufficient to show that ��.� ^ id/ (of the top row) is
given by the identity map on the image of ��.hHR^E /. For this, it is sufficient to show
that the composite of the maps on the top row is given by ��.hHR^E / in homotopy.

Note that the canonical R–module basis elements of

��.HR^E/D ��

�
HR^

�_
a2A

†jajS

��
Š

M
a2A

†jajR

are also abelian group generators because RD Z=.m/ for some integer m. Therefore,
it is sufficient to show that

��.� ^ id/ ı��.hHR^E /.x/D ��.hHR^E /.x/

for every canonical basis element x. Such an x is represented by a map

uHR ^ ia W S^†
jajS!HR^

�_
a2A

†jajS

�
DHR^E;

where ia is the inclusion of the cofactor corresponding to an a 2 A.

In other words, it is sufficient to show that the composite

S^†jajS
uHR^ia
�����!HR^E

hHR^E
����!HR^HR^E �^id

���!HR^HR^E

agrees with the composite

S^†jajS
uHR^ia
�����!HR^E

hHR^E
����!HR^HR^E:

To see this, note that the composite maps above are of the form � ^ ia and � ^ ia,
respectively, where � and � are S–algebra maps from S to HR^HR. Since S is the
initial object in the category of S–algebras, we deduce that � D �. Therefore, the two
composites above agree, as claimed.

4 E–infinity Fp–DGAs are not extension

This section is devoted to the proof of Theorems 1.7 and 1.8. We restate these theorems
below. Recall that when we say extension (E1) DGA, we mean Z–extension (E1)
Z–DGA.

Theorem 1.7 Let Y be an E1 DGA. For all primes p, if Y is quasi-isomorphic to an
E1 Fp–DGA then Y is not an extension E1 DGA.
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Theorem 1.8 Let X be a DGA. If X is quasi-isomorphic to an F2–DGA then X is not
an extension DGA.

In the proof of these theorems, we use the ring structure and the Dyer–Lashof operations
on ��.HFp ^HZ/DHFp�HZ. For odd p, the ring structure is given by

HFp�HZŠ FpŒ�r j r � 1�˝Fp ƒ. N�s j s � 1/;

where the degrees of the generators are the same as those of the dual Steenrod algebra.
Note that HFp�HZ has the same generators as the dual Steenrod algebra except that
HFp�HZ does not contain the degree 1 generator �0. Indeed, the map

HFp�HZ!HFp�HFp DA�

induced by HZ! HFp is the canonical inclusion [21, II.10.26]. This inclusion is
induced by a map of commutative HFp–algebras and therefore it preserves the Dyer–
Lashof operations. Therefore through this map, the Dyer–Lashof operations on the dual
Steenrod algebra determine the Dyer–Lashof operations on HFp�HZ; see [7, III.2].

For p D 2, we have

HF2�HZD F2Œ�
2
1 �˝F2 F2Œ�r j r � 2�;

where j�i j D 2i � 1 for i � 2 and j�21 j D 2. Again, the canonical map

HF2�HZ!HF2�HF2 DA�

is the canonical inclusion and this determines the Dyer–Lashof operations onHF2�HZ.

For the rest of this section, we assume thatHZ is cofibrant as a commutative S–algebra
and HFp is cofibrant as a commutative HZ–algebra in the model structure developed
in [25]. Since the category of commutative HZ–algebras is the same as the category
of commutative S–algebras under HZ, cofibrations of commutative HZ–algebras
forget to cofibrations of commutative S–algebras. Therefore, HZ! HFp is also
a cofibration of commutative S–algebras. This ensures that HFp is also cofibrant
as a commutative S–algebra and therefore the functor HFp ^� preserves all weak
equivalences [13, 5.3.10].

We start by proving the following lemma. This lemma is obvious if one assumes
that for a map of discrete commutative rings R! R0, the Quillen equivalences of
[19; 26] are compatible with the restriction of scalars functors from (E1) R0–DGAs to
(E1)R–DGAs and from (commutative)HR0–algebras to (commutative)HR–algebras.
However, there is no such compatibility result available in the literature and proving it
is beyond the scope of this work.
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Lemma 4.1 LetX be anE1 DGA that is quasi-isomorphic to anE1 Fp–DGA. Then
there is a map of commutative HZ–algebras

HFp!HE1X;

where HE1X denotes a fibrant commutative HZ–algebra corresponding to the E1
DGA X .

If X is a DGA that is quasi-isomorphic to an Fp–DGA , then there is a map of HZ–
algebras

c.HFp/!HX;

whereHX denotes a fibrantHZ–algebra corresponding to the DGAX . Here , c.HFp/

denotes a cofibrant replacement of HFp in HZ–algebras.

Proof We only prove the E1 case; the associative case follows in a similar manner.
Assume that we are using a unital E1 operad, ie an operad given by the monoidal
unit Fp in operadic degree zero. The Barratt–Eccles operad is an example of a unital
E1–operad [4]. In this situation, Fp is the free E1 Fp–DGA generated by the trivial
Fp–chain complex 0. Therefore, Fp is the initial object in E1 Fp–DGAs. This,
together with the fact that X is quasi-isomorphic to an E1 Fp–DGA implies that there
is a map Fp!X in the homotopy category of E1 DGAs.

The equivalence of categories between the homotopy categories of commutative HZ–
algebras and E1 DGAs implies that there is also a map HFp ! HE1X in the
homotopy category of commutative HZ–algebras. Since HE1X is fibrant in commu-
tative HZ–algebras and HFp is cofibrant in commutative HZ–algebras due to our
standing assumptions, there is a map HFp!HE1X of commutative HZ–algebras
as desired.

The following starts with the proof of Theorem 1.7, and at the end we mention how
this also shows Theorem 1.8.

Proof of Theorems 1.7 and 1.8 Assume to the contrary that there is an extension E1
DGA X that is quasi-isomorphic to an E1 Fp–DGA. It follows by Lemma 4.1 that
there is a map HFp!HE1X of commutative HZ–algebras where HE1X denotes
a fibrant commutative HZ–algebra corresponding to the E1 DGA X . In particular,
the HZ–structure map HZ!HE1X of HE1X factors as

HZ
'HFp
���!HFp!HE1X;

where 'HFp denotes the canonical map.
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Since X is a Z–extension E1 DGA, there is a cofibrant commutative S–algebra Y
such that HZ^Y is weakly equivalent to HE1X in commutative HZ–algebras.

Note that HZ^Y is cofibrant as a commutative HZ–algebra; this is the case because
HZ^� is a left Quillen functor from commutative S–algebras to commutative HZ–
algebras and therefore it preserves cofibrant objects.

Since HE1X is fibrant and HZ^Y is cofibrant, there is a weak equivalence of com-
mutative HZ–algebras  WHZ^Y ��!HE1X . Because  is a map of commutative
HZ–algebras, we obtain a commutative diagram

HZ

HFp

HZ^Y HE1X

'HFp

'HZ^Y

'

 

where the composite on the right from HZ to HE1X is the composite given above.
The map 'HZ^Y is the HZ–structure map of HZ^Y which is given by

HZŠHZ^S!HZ^Y:

Applying the homology functor HFp� to this diagram and inverting HFp� , we
obtain

HFp�HZ

HFp�HFp

HFp�HZ˝Fp HFp�Y HFp�HE1X

HFp�'HFp

HFp�'HZ^Y

Š

.HFp� /
�1

By the Künneth spectral sequence in [10, IV.4.1],

HFp�.HZ^Y /ŠHFp�HZ˝Fp HFp�Y

and the morphism on the left is given by

(9) HFp�'HZ^Y .a/D a˝Fp 1:

Since the diagram above commutes, HFp�'HZ^Y factors as

(10) HFp�'HZ^Y WHFp�HZ
HFp�'HFp
�������!HFp�HFp

f
�!HFp�HZ˝FpHFp�Y;
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where the second map f is the composite in the triangle above starting fromHFp�HFp
and ending in the bottom left corner. Both maps in the composite above are ring maps
that preserve the Dyer–Lashof operations.

Let p denote an odd prime; we discuss the case p D 2 at the end of this proof.
We have ˇQ1�0 D �1 (up to a unit we are going to omit) in HFp�HFp. Note that
f .�1/D �1˝Fp 1. This follows by considering the composite in (10), equality (9) and
by noting that HFp�'HFp is the canonical inclusion. Since f preserves Dyer–Lashof
operations,

ˇQ1f .�0/D f .ˇQ1�0/D f .�1/D �1˝Fp 1:

We conclude that ˇQ1f .�0/D �1˝Fp 1 in HFp�HZ˝Fp HFp�Y .

We obtain a contradiction by showing that there is no z in HFp�HZ˝FpHFp�Y that
satisfies ˇQ1z D �1˝Fp 1, ie there is no candidate for f .�0/. For an element of the
form 1˝Fp y 2HFp�HZ˝Fp HFp�Y , we have that ˇQ1.1˝Fp y/D 1˝Fp ˇQ1y
does not contain �1 ˝Fp 1 as a summand. Now consider an element of the form
a˝Fp y 2HFp�HZ˝Fp HFp�Y with jaj> 0. By the Cartan formula and the fact
that the Bockstein operation is a derivation, ˇQ1.a˝Fp y/ is a sum of elements of the
form a0˝Fp y

0 where a
0

is obtained by applying a Dyer–Lashof operation to a. In
particular, ja0j > jaj � j�1j; therefore ˇQ1.a˝Fp y/ does not contain �1˝Fp 1 as a
summand either. We deduce that ˇQ1z does not contain �1˝Fp 1 as a summand for
all z 2HFp�HZ˝Fp HFp�Y .

For p D 2, we do not need to use the Dyer–Lashof operations. In this case, we have
f .�21/ D �

2
1 ˝F2 1 due to the composite in (10). We obtain that f .�1/2 D �21 ˝F2 1.

However, there is no element inHF2�HZ˝F2HF2�Y that squares to �21˝F2 1. Since
this does not use Dyer–Lashof operations, this argument at pD 2 also works for DGAs
and HZ–algebras and provides a proof of Theorem 1.8.

5 Formal DGAs to H Z–algebras

This section is devoted to the proof of Proposition 5.8 which provides an explicit
description of the HR–algebra corresponding to a formal R–DGA whose homology
satisfies the hypothesis of Theorem 1.4. This description provides Theorem 1.4. Recall
that we also use Proposition 5.8 to obtain Corollary 1.17.

We work in several different monoidal categories in this section. When we work in
the category of chain complexes or in the category of differential graded algebras,
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we denote the monoidal product by ˝. For the categories of HR–modules and HR–
algebras, we denote the smash product by ^HR as before. In all the other cases, we let
^ denote the monoidal product. In this section, HR denotes the Eilenberg–Mac Lane
spectrum of a general discrete commutative ring as in [13, 1.2.5].

LetX be anR–DGA satisfying the hypothesis of Theorem 1.4. Recall from Remark 1.5
that there is a monoid M in graded pointed sets for which H�.X/ Š RhM i as R–
algebras where the underlying R–module of RhM i is the free graded R–module over
the graded set M� obtained by removing the base point of M . Furthermore, the
multiplication on RhM i is the canonical one induced by that of M . For the rest of this
section, let M denote a monoid in nonnegatively graded pointed sets.

5A A monoid object corresponding to M

Here, we construct a monoid in a general monoidal category by using M . Furthermore,
we show that this construction is preserved by strong monoidal Quillen pairs.

We start by explaining a notation we use for the symmetric monoidal pointed model
categories we consider in this section. For a cofibrant C , †C denotes the pushout of
the diagram N�� C � N�, where N� is obtained by a factorization C � N�

�
�� � of

the map C !� by a cofibration followed by a trivial fibration, and � denotes the final
object. For the unit I of the monoidal structure, †kI denotes .†I/^k for k > 0 and
denotes I for k D 0.

Construction 5.1 Let .C;^; I/ denote a pointed cofibrantly generated closed sym-
metric monoidal model category whose unit I is cofibrant. Furthermore, assume that
C satisfies the monoid axiom and the smallness axioms of [22]. This implies that the
category of modules over a monoid in C carries an induced model structure where the
weak equivalences and the fibrations are those created by the forgetful functor to C [22,
4.1]. For a given M as above, we construct a monoid structure on_

m2M�

†jmjI;

where _ denotes the coproduct in C. The multiplication map

(11)
� _
m2M�

†jmjI

�
^

� _
n2M�

†jnjI

�
Š

_
.m;n/2M��M�

†jmjCjnjI!
_

m2M�

†jmjI

is given (on the cofactor corresponding to .m; n/ 2M �M ) by the inclusion of the
cofactor corresponding to mn 2M if mn¤ 0 and given by the zero map if mnD 0.
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Note that in a pointed model category, there is a unique zero map between every pair
of objects which is defined to be the map that factors through the point object. One
easily checks that the multiplication above is associative and unital.

If E is a commutative monoid in C, then the category of E–modules is also a symmetric
monoidal model category [22, 4.1]. We let

W
m2M�

†jmjE denote the monoid we
obtain by applying the construction above in the category of E–modules. In particular,W
m2M�

†jmjE is an E–algebra.

Using the construction above, we obtain an HR–algebra
W
m2M�

†jmjHR. In order to
prove Theorem 1.4, we go through the zigzag of Quillen equivalences between the model
categories of R–DGAs and HR–algebras to show that the HR–algebra corresponding
to the formal R–DGA with homology RhM i is given by

W
m2M�

†jmjHR [26]. We
deduce that the formal R–DGA with homology RhM i is R–extension by showing thatW
m2M�

†jmjHR is weakly equivalent to HR^ c
�W

m2M�
†jmjS

�
in HR–algebras

where c denotes the cofibrant replacement functor in S–algebras. For this, we start
with the following lemmas.

Lemma 5.2 Assume that .C;^; IC/ and .D;^; ID/ are pointed and closed symmetric
monoidal model categories with cofibrant units. Furthermore , let

C D
F

G

be a Quillen pair , where F denotes the left adjoint. If there is a weak equivalence
� W F.IC/ ��! ID, then there exists a weak equivalence

' W F.†IC/ ��!†ID:

Proof By factoring the map IC!� by a cofibration followed by a trivial fibration,
we obtain a factorization F.IC/� F. N�/ ��! F.�/Š �. Note that the isomorphism
follows by the fact that F is a left adjoint functor between pointed categories. To
see that the second map is a weak equivalence, note that � is cofibrant in the pointed
model category C and that F preserves all weak equivalences between cofibrant objects.
Similarly, we have a factorization ID � N�

�
�� � consisting of a cofibration followed

by a trivial fibration. We use the equivalence � W F.IC/ ��! ID and the lift in the square

F.IC/ ID N�

F. N�/ F.�/Š �

�
�

�
�

�
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to obtain a weak equivalence of diagrams

.F. N�/� F.IC/� F. N�// ��! . N�� ID � N�/:

This in turn gives a map ' of the corresponding pushouts of these diagrams. This is a
weak equivalence because these are diagrams consisting only of cofibrations between
cofibrant objects; therefore their pushout is the homotopy pushout. Since the pushout
of the diagram on the left-hand side is F.†IC/ and the pushout of the diagram on the
right-hand side is †ID, we obtain the weak equivalence

' W F.†IC/ ��!†ID

we wanted to construct.

Lemma 5.3 Assume that .C;^; IC/ and .D;^; ID/ are pointed and closed symmetric
monoidal model categories with cofibrant units as in Construction 5.1. Furthermore , let

C D
F

G

be a Quillen pair where the left adjoint F is a strong monoidal functor. In this situation ,
Fc
�W

m2M�
†jmjIC

�
and

W
m2M�

†jmjID are weakly equivalent as monoids in D,
where c denotes the cofibrant replacement functor in the model category of monoids
in C [22, 4.1].

Proof Since F is a strong monoidal functor, we have a natural isomorphism

F.X/^F.Y /Š F.X ^Y /

and an isomorphism F.IC/Š ID. This isomorphism provides the weak equivalence � in
the hypothesis of Lemma 5.2. Thus, there is a weak equivalence ' W F.†IC/ ��!†ID.

Using ', we produce a weak equivalence of monoids,

ˆ W F

� _
m2M�

†jmjIC

�
Š

_
m2M�

F.†jmjIC/ ��!
_

m2M�

†jmjID:

Here, ˆ is the coproduct of maps given by the isomorphism F.IC/Š ID for jmj D 0
and the map

F.†jmjIC/D F..†IC/
^jmj/Š F.†IC/

^jmj '
^jmj

�
���! .†ID/

^jmj
D†jmjID

for jmj> 0, where the first and the last equalities follow by our definition of †k� for
k > 0 and the second isomorphism comes from the strong monoidal structure of F .
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Also, note that '^jmj is a weak equivalence because it is a smash product of weak
equivalences between cofibrant objects. Since ˆ is a coproduct of weak equivalences
between cofibrant objects, it is a weak equivalence by [28, Lemma 4.7]. It is clear thatˆ
is a map of monoids by the definition of the monoidal structure on both sides and from
the fact that left adjoint functors between pointed categories preserve the zero maps.
This shows that ˆ is a weak equivalence of monoids between F

�W
m2M�

†jmjIC
�

andW
m2M�

†jmjID.

Therefore, in order to finish the proof of the lemma, it is sufficient to show that the
monoids Fc

�W
m2M�

†jmjIC
�

and F
�W

m2M�
†jmjIC

�
are weakly equivalent. Since c

is the cofibrant replacement functor in the category of monoids, there is a weak
equivalence of monoids

f W c

� _
m2M�

†jmjIC

�
��!

_
m2M�

†jmjIC :

By [22, Theorem 4.1], the source of f is cofibrant in C. This means that f is a
weak equivalence between cofibrant objects and therefore F.f / is a weak equivalence.
Furthermore, F.f / is a weak equivalence of monoids because a strong monoidal
functor preserves maps of monoids. Therefore, the monoids Fc

�W
m2M�

†jmjIC
�

and
F
�W

m2M�
†jmjIC

�
are weakly equivalent as desired.

5B From DGAs to H Z–algebras

Here, we carry out our discussion for the case R D Z. The case of general discrete
commutative ring R follows similarly.

The DGA corresponding to an HZ–algebra is obtained using the zigzag of monoidal
Quillen equivalences of [26]

HZ-Mod Sp†.sAB/ Sp†.ChC/ Ch;
Z

U ��N

L D

R

where the left adjoints are the top arrows and the pairs .Z;U / and .D;R/ are both
strong monoidal Quillen equivalences. The pair .L; ��N/ is a weak monoidal Quillen
equivalence. See [23, 3.6] for the definitions of strong monoidal Quillen equivalences
and weak monoidal Quillen equivalences. We often use the fact that the model categories
in the zigzag above are pointed.

Since each Quillen equivalence in the zigzag is a monoidal Quillen equivalence, there
is an induced zigzag of Quillen equivalences of the corresponding model categories
of monoids. This gives the induced derived functors H W DGA ! HZ–Alg and
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‚ WHZ–Alg! DGA in [26, Theorem 1.1]. We have

‚DDc��NZc; HD ULmoncR;

where Lmon is the induced left adjoint at the level of monoids and c denotes the
cofibrant replacement functors in the corresponding model category of monoids. See
[23, Section 3.3] for a definition of the induced left adjoint at the level of monoids.
Recall that for a given DGA X , we often write HX to denote HX or a cofibrant and/or
fibrant replacement of HX as an HZ–algebra.

In the lemmas below, I1 and I2 denote the monoidal units of Sp†.sAB/ and Sp†.ChC/
respectively. Note that the units of the monoidal model categories in the zigzag above
are all cofibrant [26, Definition 2.1 and Corollary 3.4]. By Construction 5.1, we
have the monoids

W
m2M�

†jmjI1 and
W
m2M�

†jmjI2 in Sp†.sAB/ and Sp†.ChC/,
respectively.

Lemma 5.4 In Sp†.sAB/, Zc
�W

m2M�
†jmjHZ

�
and

W
m2M�

†jmjI1 are weakly
equivalent as monoids. In Ch, Dc.

W
m2M�

†jmjI2/ and the formal DGA with homol-
ogy ZhM i are quasi-isomorphic as DGAs.

Proof The first statement is a direct consequence of Lemma 5.3. We prove the second
statement of the lemma. It again follows by Lemma 5.3 that Dc

�W
m2M�

†jmjI2
�

and
L
m2M�

†jmjZ are quasi-isomorphic as DGAs (ie weakly equivalent as monoids
in Ch).

Therefore, it is sufficient to show that
L
m2M�

†jmjZ is quasi-isomorphic to the formal
DGA with homology ZhM i. Let N0 denote the chain complex consisting of Z in degrees
0 and 1 and the trivial module in the rest of the degrees; its differentials are trivial except
degree 1 where the differential is the identity. There is a factorization Z � N0 ��� 0 of
the trivial map Z! 0 as a cofibration followed by a trivial fibration.

Let �Z denote the chain complex consisting of Z in degree 1 and the trivial module in
the rest of the degrees. This is the pushout of the diagram N0� Z! 0.

Note that due to our conventions, †Z is the pushout of the diagram N0 � Z ! N0.
Since the category of chain complexes is left proper, there is a weak equivalence
' W †Z ��! �Z. Let �nZ denote .�Z/˝n. Following Construction 5.1, we obtain a
formal DGA

L
m2M�

� jmjZ. Similar to the map ˆ in the proof of Lemma 5.3, we
obtain a quasi-isomorphism of DGAs

ˆ W
M
m2M�

†jmjZ ��!

M
m2M�

� jmjZ
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given by the identity map for jmj D 0 and given by 'jmj for jmj> 0. This shows thatL
m2M�

†jmjZ and
L
m2M�

� jmjZ are quasi-isomorphic as DGAs where the latter
is the formal DGA with homology ZhM i.

We state and prove the following two lemmas, which we use in the proof of Lemma 5.7.

Lemma 5.5 The functor ��N preserves colimits.

Proof The category of symmetric spectra in a closed symmetric monoidal model
category C is the category of modules over a monoid in symmetric sequences in C; see
[26, Definition 2.7]. Since symmetric sequences in C is a diagram category in C, the
colimits in symmetric sequences are levelwise. Furthermore, the forgetful functor from
modules over a monoid to the underlying closed monoidal category preserves colimits.
Therefore colimits of symmetric spectra in C are also levelwise.

Here, N is the normalization functor sAB! ChC of the Dold–Kan correspondence,
an equivalence of categories, applied levelwise. Therefore it preserves colimits. Fur-
thermore, �� is the restriction of scalars functor between the categories of modules
over two monoids induced by a map of these monoids in symmetric sequences in ChC;
see [26, page 358]. Therefore �� is the identity functor on the underlying symmetric
sequences and therefore it also preserves colimits.

Lemma 5.6 For every cofibrant A in Sp†.ChC/ and every B in Sp†.sAB/, a map
L.A/! B is a weak equivalence if and only if its adjoint A! ��N.B/ is a weak
equivalence.

Proof This follows from the fact that ��N preserves weak equivalences. LetB ��!fB

be a fibrant replacement of B . The adjoint of the composite L.A/! B ��! fB is
given by the composite A! ��N.B/ ��! ��N.fB/ whose first map is the adjoint of
the map L.A/! B . Because .L; ��N/ is a Quillen equivalence, the first composite
is a weak equivalence if and only if the second composite is a weak equivalence. The
result follows by the two-out-of-three property of weak equivalences.

The following lemma takes care of the middle step in the zigzag of Quillen equivalences
between the model categories of HZ–algebras and DGAs. Note that since .L; ��N/ is
a weak monoidal Quillen pair, ��N is a lax monoidal functor; see [23, Definition 3.3].
Therefore, ��N carries monoids to monoids. In particular, ��N

�W
m2M�

†jmjI1
�

is
a monoid.
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Lemma 5.7 In Sp†.ChC/, ��N
�W

m2M�
†jmjI1

�
and

W
m2M�

†jmjI2 are weakly
equivalent as monoids.

Proof By Lemma 5.5, ��N preserves coproducts. Therefore, there is an isomorphism

(12) ��N

� _
m2M�

†jmjI1

�
Š

_
m2M�

��N.†jmjI1/:

Similar to Construction 5.1, the object on the right-hand side above carries a canonical
monoid structure given by the multiplication on M and the lax monoidal structure
of ��N . Namely, the multiplication map_

m2M�

��N.†jmjI1/^
_
n2M�

��N.†jnjI1/!
_

m2M�

��N.†jmjI1/

is given (on the cofactor corresponding to .m; n/ 2M� �M�) by the composite

��N.†jmjI1/^�
�N.†jnjI1/! ��N.†jmjI1 ^†

jnjI1/D �
�N.†jmnjI1/

followed by the inclusion of the cofactor corresponding to mn 2M if mn ¤ 0 and
given by the zero map if mnD 0. Note that the map above is the lax monoidal structure
map of ��N and the equality above follows by our definition of †k�. Furthermore,
one checks using this definition that the isomorphism in (12) is an isomorphism of
monoids. Therefore, in order to prove the lemma, it is sufficient to show that there is
an isomorphism of monoids between

W
m2M�

��N.†jmjI1/ and
W
m2M�

†jmjI2.

There is a weak equivalence L.I2/ ��! I1 since .L; ��N/ is a weak monoidal Quillen
pair; see [23, 3.6]. Therefore, there is also a weak equivalence ' W L.†I2/ ��!†I1 by
Lemma 5.2. Let

 W†I2! ��N.†I1/

be the adjoint of '.

Let  0 denote the unit I2! ��N.I1/ of the lax monoidal structure of ��N and let
 1 denote  . For ` > 1, let  ` denote the composite

 ` W†`I2 D .†I2/
^`  

^`

��! .��N.†I1//
^`
! ��N..†I1/

^`/D ��N.†`I1/;

where the equalities follow by our definition of †` and the second map is obtained by
successive applications of the transformation ��N.�/^��N.�/! ��N.�^�/ that
is a part of the lax monoidal structure of ��N ; see [23, 3.3].
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Now we define a map of monoids

‰ W
_

m2M�

†jmjI2!
_

m2M�

��N.†jmjI1/

as the coproduct of  jmj over m 2M�. By the associativity and the unitality of the lax
monoidal structure on ��N and by the fact that right adjoint functors preserve the zero
maps between pointed categories, ‰ is a map of monoids; see [6, 6.4.1].

Finally, we need to show that ‰ is a weak equivalence. By Lemmas 5.5 and 5.6, it is
sufficient to show that the adjoint of ‰ is a weak equivalence. Since both ��N and L
preserve coproducts and since ‰ is a coproduct of maps  jmj, the adjoint of ‰ is a
coproduct of the adjoints of the maps  jmj. Note that a coproduct of weak equivalences
of cofibrant objects is again a weak equivalence by [28, 4.7]. Since the adjoint of  `

is a map between cofibrant objects, it is sufficient to show that the adjoint of  ` is a
weak equivalence for each `� 0.

For the case `D 0, we have that the adjoint of  0 is the weak equivalence L.I2/ ��! I1
mentioned above. For ` D 1, the adjoint of  1 is the map ' above which is also a
weak equivalence.

We show the `D 2 case and the rest follow similarly. Let m��N denote the natural
transformation

m��N W �
�N.�^�/! ��N.�/^��N.�/

that is part of the lax monoidal structure of ��N . We show that the adjoint to the
composite defining  2

 2 W†I2 ^†I2
 ^ 
���! ��N.†I1/^�

�N.†I1/
m��N
���! ��N.†I1 ^†I1/

is the composite map

(13) L.†I2 ^†I2/
cL
'
�! L.†I2/^L.†I2/

'^'

'
��!†I1 ^†I1:

The first map in this composite is the comonoidal map induced by the lax monoidal
structure of ��N and this is a weak equivalence since .L; ��N/ is a weak monoidal
Quillen pair [26, 4.4]. Furthermore, the second map in the composite is a smash product
of weak equivalences between cofibrant objects; therefore, it is also a weak equivalence.
This shows that the composite is a weak equivalence.

To show that  2 is the adjoint to this composite, first note that by the discussion on
equation (3.4) in [23], the comonoidal map cL is the adjoint of the composite map

†I2 ^†I2
�^�
��! ��NL.†I2/^�

�NL.†I2/
m��N
���! ��N.L.†I2/^L.†I2//;
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where � denotes the unit of the adjunction .L; ��N/. Considering the adjoint of
the composite (13) as the adjoint of the first map cL in the composite followed by
��N.' ^'/, we obtain that the adjoint of (13) is given by the composite

†I2^†I2
�^�
��! ��NL.†I2/^�

�NL.†I2/
m��N
���! ��N.L.†I2/^L.†I2//

��N.'^'/
������! ��N.†I1^†I1/:

By the naturality of m��N , this composite is equal to the canonical composite

†I2^†I2
�^�
��! ��NL.†I2/^�

�NL.†I2/
��N.'/^��N.'/
����������! ��N.†I1/^�

�N.†I1/
m��N
���! ��N.†I1^†I1/:

Note that the composition of the first two maps is the smash product of adjoints of '
which is  ^ . Therefore, this composite is precisely the composite that defines  2

above. This shows that the adjoint of  2 is the composite weak equivalence in (13).

5C Proof of Theorem 1.4

We prove the following proposition which provides an explicit description of the HR–
algebra corresponding to the formal R–DGA with homology RhM i. After that, we
use this description to prove Theorem 1.4.

Proposition 5.8 The R–DGA corresponding to the HR–algebra
W
m2M�

†jmjHR is
the formal R–DGA with homology RhM i. Furthermore , there is an equivalence of
HR–algebras _

m2M�

†jmjHR'HR^ c

� _
m2M�

†jmjS

�
;

where c denotes the cofibrant replacement functor in S–algebras.

Proof For the first statement, we discuss the case R D Z, the proof for general R
follows similarly. The first statement is a consequence of Lemmas 5.4 and 5.7.

Now we prove the second statement. Recall that HR ^� is a symmetric monoidal
functor between S–modules and HR–modules. Therefore, the second statement is
consequence of Lemma 5.3.
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Theorem 1.4 Let X be a connective formal R–DGA whose homology has a ho-
mogeneous basis as an R–module containing the multiplicative unit such that the
multiplication of two basis elements is either zero or a basis element. In this situation ,
X is R–extension. As a result , we have the equivalence of spectra ,

THH.X/' THH.HR/^HR HHR.X/:

Proof Recall from Remark 1.5 that the homology of X is RhM i for some monoid M
in nonnegatively graded pointed sets. In other words, X is the formal R–DGA with
homologyRhM i. Using Proposition 5.8, we deduce that theHR–algebra corresponding
to X is

W
m2M�

†jmjHR. By the equivalence given in Proposition 5.8, X is an R–
extension R–DGA.

Since X is an R–extension R–DGA, the splitting for THH.X/ is a consequence of
Proposition 1.3.

We are ready to prove the following corollaries of our results.

Corollary 1.17 Let RD Z=.m/ for some integer m¤˙1, let Y be an R–DGA and
let X be as in Theorem 1.4. Then X and Y are quasi-isomorphic if and only if they are
topologically equivalent.

Proof By Remark 1.5, X is the formal R–DGA with homology RhM i for some
monoid M in nonnegatively graded pointed sets. Using Proposition 5.8, we de-
duce that the HR–algebra corresponding to X is given by HR^ c

�W
m2M�

†jmjS
�
,

where c denotes the cofibrant replacement functor in HR–algebras. In particular,
Z D c

�W
m2M�

†jmjS
�

is weakly equivalent as a spectrum to a wedge of suspensions
of the sphere spectrum. We deduce that X satisfies the hypothesis of Theorem 1.16.
This implies that X and Y are quasi-isomorphic if and only if they are topologically
equivalent.

Corollary 1.18 Assume that X and Y are as in Theorem 1.14 or Theorem 1.16. Then
X and Y are Morita equivalent if and only if they are dg Morita equivalent.

Proof We need to show that the model categories of X–modules and Y –modules
are additively Quillen equivalent if and only if they are Quillen equivalent [9, 7.7].
By definition, additively Quillen equivalent additive model categories are Quillen
equivalent [8]. Therefore, we only need to prove one direction.

If the model categories of X–modules and Y –modules are Quillen equivalent then
there exists a fibrant and cofibrant representative P of a compact generator of the
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homotopy category of Y –modules such that the endomorphism DGA EndY –mod.P / of
P is topologically equivalent toX [9, 7.2]. Since Y is anR–DGA, EndY –mod.P / is also
an R–DGA. It follows by Theorems 1.14 and 1.16 that EndY –mod.P / quasi-isomorphic
to X . By [9, 7.2], this implies that the model categories of X–modules and Y –modules
are additively Quillen equivalent, as desired.

Appendix A

Here, we provide a short discussion on the compatibility of Definitions 1.1 and 1.2.

If we choose our E1 operad to be the Barratt–Eccles operad, then every E1 R–DGA
is at the same time an R–DGA; see [4, Section 1.1.1]. Let X be an R–extension E1
R–DGA and let U.X/ denote its underlying R–DGA. The canonical compatibility
question asks if U.X/ is R–extension as an R–DGA. In other words, we want to know
if every R–extension E1 R–DGA forgets to an R–extension R–DGA.

Let HE1X denote the commutative HR–algebra corresponding to X and let HU.X/
denote theHR–algebra corresponding toU.X/. For the moment, assume thatHE1X is
weakly equivalent to HU.X/ as an HR–algebra. Under this assumption, we conclude
that U.X/ is R–extension. To see this, let HE1X ' HR ^ E for some cofibrant
commutative S–algebra E and let c denote the cofibrant replacement functor in S–
algebras. Since cofibrant (commutative) S–algebras forget to cofibrant S–modules
[22; 25] and since the left Quillen functorHR^� preserves weak equivalences between
cofibrant objects, we deduce that HR^E is equivalent to HR^ cE in HR–algebras.
Hence, HU.X/ is weakly equivalent to HR^ cE and therefore U.X/ is R–extension,
as desired.

However, it is not known whether HE1X and HU.X/ are weakly equivalent in HR–
algebras. In other words, it is not known if the zigzag of Quillen equivalences between
HR–algebras and R–DGAs in [26] is compatible with the zigzag of Quillen equiva-
lences between commutative HR–algebras and E1 R–DGAs in [19]. In conclusion, if
we assume that these Quillen equivalences are compatible, then Definitions 1.1 and 1.2
are also compatible in the sense described above.

Appendix B

Here, we provide a proof of Proposition 1.3. Indeed, we prove the following more
general statement.
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Proposition B.1 Let ' W A! B be a map of commutative S–algebras and let X be a
B–algebra. If X is '–extension , ie if X ' B ^A E for some cofibrant A–algebra E,
then there is the equivalence of spectra

THHA.X/' THHA.B/^B THHB.X/:

Furthermore , if X is a commutative B–algebra that is weakly equivalent to B ^AE for
some cofibrant commutative A–algebra E, then the equivalence above is an equivalence
of commutative ring spectra.

Proof Let X ' B ^A E for some cofibrant A–algebra E. The equivalence in the
proposition is given by the composite of the chain of equivalences

(14) THHA.B ^AE/' THHA.B/^A THHA.E/

' THHA.B/^B .B ^A THHA.E//

' THHA.B/^B THHB.B ^AE/:

The first equivalence follows by the fact that THHA.�/ is a monoidal functor and
the last equivalence follows by the base change formula for topological Hochschild
homology; see [15, Conventions]. The base change formula and the monoidality of
THHA.�/ can be easily shown using the cyclic bar construction defining topological
Hochschild homology [10, IX.2.1].

When E is a cofibrant commutative A–algebra, the equivalences given in (14) are those
of commutativeA–algebras. This is because THHA.�/ is a symmetric monoidal functor
and the base change formula provides an equivalence of commutative A–algebras.

The following is the special case of the proposition above corresponding to the map
of commutative S–algebras S!HR. Note that for an R–DGA X , we let THH.X/
denote THH.HX/ and HHR.X/ denote THHHR.HX/. For an E1 R–DGA X , we
let THH.X/ denote THH.HE1X/ and HHR.X/ denote THHHR.HE1X/.

Proposition 1.3 If X is an R–extension R–DGA , then there is an equivalence of
spectra

THH.X/' THH.HR/^HR HHR.X/:

If X is an R–extension E1 R–DGA , then the equivalence above is an equivalence of
commutative S–algebras.

Proof For an R–extension R–DGA X , we have that HX satisfies the first hypothesis
of Proposition B.1 for the map of commutative S–algebras ' W S!HR. This provides
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the equivalence in the proposition. Similarly, for an R–extension E1 R–DGA X ,
HE1X satisfies the last hypothesis of Proposition B.1. This provides the second
statement of the proposition.
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We introduce a bounded version of Bredon cohomology for groups relative to a family
of subgroups. Our theory generalizes bounded cohomology and differs from Mineyev
and Yaman’s relative bounded cohomology for pairs. We obtain cohomological
characterizations of relative amenability and relative hyperbolicity, analogous to the
results of Johnson and Mineyev for bounded cohomology.
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1 Introduction

Bounded cohomology is a homotopy invariant of topological spaces with deep connec-
tions to Riemannian geometry via the simplicial volume of manifolds; see Gromov [7].
An astonishing phenomenon known as Gromov’s mapping theorem is that for every
CW–complex X , the classifying map X !B�1.X / induces an isometric isomorphism
on bounded cohomology. This emphasizes the importance of the corresponding theory
of bounded cohomology for groups, which is also of independent interest due to its
plentiful applications in geometric group theory; see Frigerio [6] and Monod [20; 21].
The bounded cohomology H n

b
.GIV / of a (discrete) group G with coefficients in a

normed G–module V is the cohomology of the cochain complex of bounded G–maps
GnC1!V . The inclusion of bounded G–maps into (not necessarily bounded) G–maps
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induces the so-called comparison map H n
b
.GIV /!H n.GIV /. On the one hand, the

bounded cohomology groups are very difficult to compute in general. On the other
hand, they characterize interesting group-theoretic properties such as amenability —
Johnson [11] — and hyperbolicity — Mineyev [17; 18].

Theorem 1.1 (Johnson) Let G be a group. The following are equivalent :

(i) G is amenable.

(ii) H n
b
.GIV #/D 0 for all dual normed RG–modules V # and all n� 1.

(iii) H 1
b
.GIV #/D 0 for all dual normed RG–modules V #.

Theorem 1.2 (Mineyev) Let G be a finitely presented group. The following are
equivalent :

(i) G is hyperbolic.

(ii) The comparison map H n
b
.GIV /!H n.GIV / is surjective for all normed QG–

modules V and all n� 2.

(iii) The comparison map H 2
b
.GIV /!H 2.GIV / is surjective for all normed RG–

modules V .

There are well-studied notions of relative amenability and relative hyperbolicity in
the literature; see Hruska [8] and Ji, Ogle and Ramsey [10]. In the present article we
introduce a new “relative bounded cohomology theory” characterizing these relative
group-theoretic properties as a bounded version of Bredon cohomology. For a group G, a
family of subgroups F is a nonempty set of subgroups which is closed under conjugation
and taking subgroups. For a set of subgroups H of G, we denote by FhHi the smallest
family containing H. The Bredon cohomology H n

F .GIV / with coefficients in a G–
module V (or more general coefficient systems) is a generalization of group cohomology,
which is recovered when F consists only of the trivial subgroup. A fundamental
feature of Bredon cohomology is that for a normal subgroup N of G there is an
isomorphism H n

FhN i.GIV /ŠH n.G=N IV N /. From a topological point of view, the
Bredon cohomology of G can be identified with the equivariant cohomology of the
classifying space EFG for the family F , which is a terminal object in the G–homotopy
category of G–CW–complexes with stabilizers in F . Especially the classifying spaces
EFING and EVCYG for the family of finite groups and virtually cyclic groups have
received a lot of attention in recent years due to their prominent role in the isomorphism
conjectures of Baum–Connes and Farrell–Jones, respectively.
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We introduce the bounded Bredon cohomology H n
F;b.GIV / of G with coefficients

in a normed G–module V , which generalizes bounded cohomology (Definition 3.1).
Our theory still is well-behaved with respect to normal subgroups (Corollary 3.11)
and admits a topological interpretation in terms of classifying spaces for families
(Theorem 3.10). We obtain the following generalizations of Theorems 1.1 and 1.2. A
group G is called amenable relative to a set of subgroups H if there exists a G–invariant
mean on the G–set

`
H2H G=H .

Theorem 1.3 Let G be a group and H be a set of subgroups. The following are
equivalent :

(i) G is amenable relative to H.

(ii) H n
FhHi;b.GIV

#/D 0 for all dual normed RG–modules V # and all n� 1.

(iii) H 1
FhHi;b.GIV

#/D 0 for all dual normed RG–modules V #.

Theorem 1.3 is a special case of the more general Theorem 4.5. We also provide
a characterization of relative amenability in terms of relatively injective modules
(Proposition 4.8). Recall that a finite set of subgroups H is called a malnormal (resp. al-
most malnormal) collection if for all Hi ;Hj 2H and g 2G we have that Hi\gHj g�1

is trivial (resp. finite), unless i D j and g 2Hi . A group G is said to be of type Fn;F

for a family of subgroups F , if there exists a model for the classifying space EFG

with cocompact n–skeleton.

Theorem 1.4 (Theorem 5.4) Let G be a finitely generated torsionfree group and H
be a finite malnormal collection of subgroups. Suppose that G is of type F2;FhHi (eg
G and all subgroups in H are finitely presented ). Then the following are equivalent :

(i) G is hyperbolic relative to H.

(ii) The comparison map H n
FhHi;b.GIV /!H n

FhHi.GIV / is surjective for all normed
QG–modules V and all n� 2.

(iii) The comparison map H 2
FhHi;b.GIV /!H 2

FhHi.GIV / is surjective for all normed
RG–modules V .

In Theorem 1.4 the equivalence of (i) and (iii) still holds if the group G contains
torsion and H is almost malnormal, see Remark 5.5. Note that condition (iii) is trivially
satisfied for groups of Bredon cohomological dimension cdFhHi equal to 1.
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The topological interpretation of bounded Bredon cohomology via classifying spaces for
families was used by Löh and Sauer [12] to give a new proof of the nerve theorem and
vanishing theorem for amenable covers. We prove a converse of [12, Proposition 5.2],
generalizing a recent result of Moraschini and Raptis [23, Theorem 3.1.3], where the
case of a normal subgroup is treated.

Theorem 1.5 Let G be a group and F be a family of subgroups. The following are
equivalent :

(i) All subgroups in F are amenable.

(ii) The canonical map H n
F;b.GIV

#/!H n
b
.GIV #/ is an isomorphism for all dual

normed RG–modules V # and all n� 0.

(iii) The canonical map H 1
F;b.GIV

#/!H 1
b
.GIV #/ is an isomorphism for all dual

normed RG–modules V #.

Theorem 1.5 is a special case of the more general Theorem 4.5. As an application of
Theorem 1.5, the comparison map vanishes for groups which admit a “small” model
for EFG, where F is any family consisting of amenable subgroups (Corollary 4.6).
Examples are graph products of amenable groups (eg right-angled Artin groups) and
fundamental groups of graphs of amenable groups.

There is another natural relative cohomology theory given by the relative cohomology of
a pair of spaces. For a set of subgroups H, it gives rise to the cohomology H n.G;HIV /
of the group pair .G;H/ introduced by Bieri and Eckmann [2]. A bounded version
H n

b
.G;HIV / was defined by Mineyev and Yaman [19] to give a characterization of

relative hyperbolicity; see also Franceschini [5]. A characterization of relative amenabil-
ity in terms of this relative theory was obtained in [10]. There is a canonical map
H n

FhHi.GIV /!H n.G;HIV / for n� 2 which is an isomorphism if H is malnormal;
see Remark 2.1. Similarly, there is a map for the bounded versions but we do not
know when it is an isomorphism due to the failure of the excision axiom for bounded
cohomology; see Remark 3.12. We also mention that Mineyev and Yaman’s relative
bounded cohomology was extended to pairs of groupoids by Blank in [3].
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2 Preliminaries on Bredon cohomology and classifying spaces

In this section we briefly recall the notion of Bredon cohomology for groups and
its topological interpretation as the equivariant cohomology of classifying spaces for
families of subgroups. For an introduction to Bredon cohomology we refer to [4] and
for a survey on classifying spaces to [13].

Let G be a group, which shall always mean a discrete group. A family of subgroups F
is a nonempty set of subgroups of G that is closed under conjugation by elements of G

and under taking subgroups. Typical examples are

T RD f1g;

FIN D ffinite subgroupsg;

VCY D fvirtually cyclic subgroupsg;

ALLD fall subgroupsg:

We will moreover be interested in AME D famenable subgroupsg. For a subgroup
H of G, we denote by F jH the family fL \H j L 2 Fg of subgroups of H . (In
the literature this family is sometimes denoted by F \ H instead.) For a set of
subgroups H, one can consider the smallest family containing H which is defined
by FhHi D fconjugates of elements in H and their subgroupsg and called the family
generated by H. When H consists of a single subgroup H , we denote FhHi instead
by FhH i and call it the family generated by H . We denote by G=H the G–set`

H2H G=H .

Let R be a ring and ModR denote the category of R–modules. We will often suppress
the ring R, so that G–modules are understood to be RG–modules. The (F–restricted)
orbit category OFG has as objects G–sets of the form G=H with H 2 F and as
morphisms G–maps. An OFG–module is a contravariant functor M WOFG!ModR ,
the category of which is denoted by OFG–ModR. Note that OT RG–ModR can be
identified with the category of G–modules (see eg [4, Chapter 1, Section 4]). For
a G–module V , there is a coinduced OFG–module V ? given by V ?.G=H / D V H .
(In the literature this is sometimes called a fixed-point functor.) Observe that . � /? is
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right-adjoint to the restriction OFG–ModR ! OT RG–ModR, M 7! M.G=1/; see
eg [4, Proposition 1.31]. That is, for every OFG–module M and G–module V there
is a natural isomorphism

(2-1) HomOFG–ModR
.M;V ?/Š HomRG.M.G=1/;V /:

For a G–space X and a G–CW–complex Y with stabilizers in F , there are singular
and cellular OFG–chain complexes

C�.X
?/.G=H /D C�.X

H / and C cell
� .Y ?/.G=H /D C cell

� .Y H /;

where C�.X
H / and C cell

� .Y H / denote the usual singular and cellular chain complexes,
respectively.

The Bredon cohomology of G with coefficients in an OFG–module M is defined as
the R–module

H n
F .GIM / WD ExtnOFG–ModR

.R;M /

for n� 0, where R is regarded as a constant OFG–module. It can be computed as the
cohomology of the cochain complex HomOFG–ModR

.RŒ..G=F/�C1/?�;M /; see eg [4,
Proposition 3.5]. We define the G–chain complex CF

� .G/ given by G–modules

CF
n .G/ WDRŒ.G=F/nC1�

with the diagonal G–action and differentials @n W C
F
n .G/! CF

n�1
.G/,

@n.g0H0; : : : ;gnHn/D

nX
iD0

.�1/i.g0H0; : : : ;1giHi ; : : : ;gnHn/:

For a G–module V , the G–cochain complex C �F .GIV / is given by

C n
F .GIV / WD HomR.C

F
n .G/;V /

so that by adjunction (2-1),

H n
F .GIV / WDH n

F .GIV
?/ŠH n.C �F .GIV /

G/:

For a G–space X with stabilizers in F , the Bredon cohomology of X with coefficients
in an OFG–module M is defined as

H n
G.X IM / WDH n.HomOFG–ModR

.C�.X
?/;M //

for n�0. If X is a G–CW–complex, then H n
G
.X IM / can be computed using C cell

� .X ?/

instead of C�.X
?/.
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A classifying space EFG for the family F is a terminal object in the G–homotopy
category of G–CW–complexes with stabilizers in F . It can be shown that a G–CW–
complex X is a model for EFG if and only if the fixed-point set X H is contractible
for H 2 F and empty otherwise; see eg [13, Theorem 1.9]. An explicit model is given
by the geometric realization Y of the semisimplicial set f.G=F/nC1 j n� 0g with the
usual face maps. Then Y has (nonequivariant) n–cells corresponding to .G=F/nC1 and
we refer to Y as the simplicial model for EFG. Note that a model for ET RG is given
by EG and a model for EALLG is the point G=G. The cellular OFG–chain complex
of any model for EFG is a projective resolution of the constant OFG–module R (see
eg [4, Proposition 2.9]) and thus we have

(2-2) H n
F .GIM /ŠH n

G.EFGIM /

for all OFG–modules M . If N is a normal subgroup of G, then a model for EFhN iG

is given by E.G=N / regarded as a G–CW–complex and we find

(2-3) H n
FhN i.GIM /ŠH n.G=N IM.G=N //

(see eg [1, Corollary 4.11]).

For a subgroup H of G, when viewed as an H–space EFG is a model for EF jH H

which induces the restriction map

(2-4) resn
H�G WH

n
F .GIM /!H n

F jH .H IM /

for all OFG–modules M . For two families of subgroups F �G, the up to G–homotopy
unique G–map EFG!EGG induces the canonical map

(2-5) cann
F�G WH

n
G .GIM /!H n

F .GIM /

for all OGG–modules M .

Remark 2.1 (Bieri and Eckmann’s relative cohomology) For a group G and a set
of subgroups H, Bieri and Eckmann [2] have introduced the relative cohomology
H n.G;HIV / of the pair .G;H/ with coefficients in a G–module V . It can be iden-
tified with the relative cohomology H n

G

�
EG;

`
H2H G �H EH IV

�
of the pair of

G–spaces
�
EG;

`
H2H G �H EH

�
. Here a model for EG is chosen that contains`

H2H G�H EH as a subcomplex by taking mapping cylinders. Hence there is a long
exact sequence

� � � !H n.G;HIV /!H n.GIV /!
Y

H2H

H n.H IV /! � � � ;

which is one of the main features of the relative cohomology groups.
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There is a relation between Bredon cohomology and Bieri and Eckmann’s relative
cohomology as follows. Consider the G–space X obtained as the G–pushout`

H2H G �H EH //

��

EG

��`
H2H G=H // X

where the left vertical map is induced by collapsing each EH to a point. Then the
G–space X has stabilizers in FhHi and hence admits a G–map X !EFhHiG. For an
OFG–module M , we have maps

H n
G
.X IM / H n

G
.X;

`
H2H G=H IM /oo

Š

��

H n
G
.EFhHiGIM /

OO

H n
G
.EG;

`
H2H G �H EH IM /

where the right vertical map is an isomorphism by excision. Now, if H is a malnormal
collection, then X is a model for EFhHiG and

H n
FhHi.GIM /ŠH n.G;HIM.G=1//

for n� 2. This was shown in [1, Theorem 4.16] for the special case when H consists
of a single subgroup.

3 Bounded Bredon cohomology

In this section we introduce a bounded version of Bredon cohomology and develop
some of its basic properties. We follow the exposition in [6] for bounded cohomology.
Throughout, let G be a group and F be a family of subgroups.

From now on, let the ring R be one of Z, Q or R. A normed G–module V is a G–
module equipped with a G–invariant norm k�kWV !R. (That is, for all v;u2V , r 2R,
and g 2G we have kvkD 0 if and only if vD 0, krvk� jr j �kvk, kvCuk� kvkCkuk,
and kg � vk D kvk.) A morphism f W V !W of normed G–modules is a morphism
of G–modules with finite operator-norm kf k1. We denote by bHomR.V;W / the
G–module of R–linear maps f WV !W with finite operator-norm, where the G–action
is given by .g � f /.v/D g � f .g�1v/. We denote the topological dual bHomR.V;R/

of V by V #. For a set S and a normed module V , we denote by bMap.S;V / the
module of functions S ! V with bounded image. Instead of bMap.S;R/ we also
write `1.S/.
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The following is our key definition. Recall the notation G=F D
`

H2F G=H and
consider CF

n .G/DRŒ.G=F/nC1� as a normed G–module equipped with the `1–norm
with respect to the R–basis .G=F/nC1. For a normed G–module V , we define the
cochain complex C �F;b.GIV / of normed G–modules by

C n
F;b.GIV / WD bHomR.C

F
n .G/;V /

together with the differentials ın W C n
F;b.GIV /! C nC1

F;b .GIV /,

ın.f /.g0H0; : : : ;gnC1HnC1/D

nC1X
iD0

.�1/if .g0H0; : : : ;1giHi ; : : : ;gnC1HnC1/:

Definition 3.1 (bounded Bredon cohomology of groups) The bounded Bredon coho-
mology of G with coefficients in a normed G–module V is defined as

H n
F;b.GIV / WDH n.C �F;b.GIV /

G/

for n� 0. The inclusion C n
F;b.GIV /� C n

F .GIV / induces a map

cn
F WH

n
F;b.GIV /!H n

F .GIV /;

called the comparison map.

Note that for F D T R, Definition 3.1 recovers the usual definition of bounded coho-
mology.

Remark 3.2 (coefficient modules) We only consider normed G–modules as coeffi-
cients, rather than more general OFG–modules equipped with a “compatible norm”.
Hence strictly speaking our theory is a bounded version of Nucinkis’ cohomology
relative to the G–set G=F [24], rather than a bounded version of Bredon cohomology.

Remark 3.3 (canonical seminorm) The `1–norm on C n
F;b.GIV / descends to a

canonical seminorm on H n
F;b.GIV /. However, we do not consider seminorms any-

where in this article and regard H n
F;b.GIV / merely as an R–module.

Bounded Bredon cohomology satisfies the following basic properties.

Lemma 3.4 The following hold :

(i) Let 0! V0! V1! V2! 0 be a short exact sequence of normed G–modules
such that 0! V H

0
! V H

1
! V H

2
! 0 is exact for each H 2 F . Then there

exists a long exact sequence

0!H 0
F;b.GIV0/!H 0

F;b.GIV1/!H 0
F;b.GIV2/!H 1

F;b.GIV0/! � � � :
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(ii) H 0
F;b.GIV /Š V G for all normed G–modules V .

(iii) H 1
F;b.GIR/D 0.

Proof (i) For a G–set S D
`

i2I G=Hi and a normed G–module V , we can identify
the module bMapG.S;V / with the submodule of

Q
i2I V Hi consisting of the elements

.vi/i2I satisfying supi2I kvik<1. It follows that for a G–set S with stabilizers in F ,
the sequence of modules

0! bMapG.S;V0/! bMapG.S;V1/! bMapG.S;V2/! 0

is exact. Applying the above to the G–sets .G=F/nC1 for n � 0, we obtain that the
sequence of cochain complexes

0! C �F;b.GIV0/
G
! C �F;b.GIV1/

G
! C �F;b.GIV2/

G
! 0

is exact. Then the associated long exact sequence on cohomology is as desired.

(ii) We have H 0
F;b.GIV /D ker.ı0/, where

ı0
W bHomRG.RŒG=F �;V /! bHomRG.RŒ.G=F/2�;V /

is given by ı0.f /.g0H0;g1H1/ D f .g1H1/ � f .g0H0/. Hence ker.ı0/ consists
precisely of the constant G–maps G=F ! V , which are in correspondence to V G .

(iii) We identify

C n
F;b.GIR/

G
Š bMap

� a
H0;:::;Hn2F

H0n.G=H1 � � � � �G=Hn/;R

�
for n� 1 and C 0

F;b.GIR/
G Š bMap

�`
H02F �H0

;R
�
. The differentials of this “inho-

mogeneous” complex in low degrees are given by

ı0.f /.H0g1H1/D f .�H1
/�f .�H0

/;

ı1.'/.H0.g1H1;g2H2//D '.H1g�1
1 g2H2/�'.H0g2H2/C'.H0g1H1/:

Then it is not difficult to check that ker.ı1/D im.ı0/.

We also define the bounded cohomology of a G–space X as follows. Denote by Sn.X /

the set of singular n–simplices in X and consider Cn.X /DRŒSn.X /� equipped with
the `1–norm as a normed G–module. For a normed G–module V , we define the
cochain complex C �

b
.X IV / of normed G–modules by

C n
b .X IV / WD bHomR.Cn.X /;V /

together with the usual differentials.
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Definition 3.5 (bounded cohomology of G–spaces) The (G–equivariant) bounded
cohomology of a G–space X with coefficients in a normed G–module V is defined as

H n
G;b.X IV / WDH n.C �b .X IV /

G/

for n� 0. The inclusion C n
b
.X IV /� C n.X IV / induces a map

cn
X WH

n
G;b.X IV /!H n

G.X IV /

called the comparison map.

Note that the functors H�
G;b

are G–homotopy invariant and that H n
G;b
.G=H IV / is

isomorphic to V H for nD0 and trivial otherwise. However, beware that H�
G;b

is neither
a G–cohomology theory, nor can it be computed cellularly for G–CW–complexes, as
is the case already when G is the trivial group; see eg [6, Remark 5.6].

Relative homological algebra We develop the relative homological algebra that will
allow us to compute bounded Bredon cohomology via resolutions, analogous to Ivanov’s
approach for bounded cohomology [9].

A map p W A! B of G–modules is called F–strongly surjective if for each H 2 F
there exists a map �H WB!A of H–modules such that p ı�H D idB . A G–module P

is called relatively F–projective if for every F–strongly surjective G–map p WA! B

and every G–map � W P ! B, there exists a G–map ˆ W P !A such that p ıˆD �.
A chain complex of G–modules is called relatively F–projective if each chain module
is relatively F–projective. A resolution .C�; @�/ of G–modules is called F–strong if
it is contractible as a resolution of H–modules for each H 2 F . (That is, there exist
H–maps kH

� W C�! C�C1 such that @nC1 ı kH
n C kH

n�1
ı @n D idCn

.)

Lemma 3.6 The following hold :

(i) If S is a G–set with stabilizers in F , then the G–module RŒS � is relatively
F–projective.

(ii) If S is a G–set with SH ¤∅ for all H 2 F , then the resolution RŒS�C1�!R

of G–modules is F–strong.

(iii) If X is a G–space with contractible fixed-point set X H for each H 2 F , then
the resolution C�.X /!R of G–modules is F–strong.
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Proof (i) Given a lifting problem as in the definition of relative F–projectivity,

RŒS �

�
��

ˆ

}}

A
p
// B //

�H

cc
0

we construct a lift ˆ as follows. Let T be a set of representatives of GnS and denote
the stabilizer of an element t 2 T by Gt . Then for every s 2 S there exist unique
elements ts 2 T and gsGts

2 G=Gts
such that g�1

s s D ts . Define ˆ W RŒS �! A on
generators by

ˆ.s/D gs � �Gts
.�.g�1

s s//

which is independent of the choice of gs , since the map �Gts
is Gts

–equivariant. Then
ˆ is a G–equivariant lift of �.

(ii) For H 2 F , fix an element sH 2 SH and define kH
� W RŒS

�C1�! RŒS�C2� on
generators by

kH
n .s0; : : : ; sn/D .sH ; s0; : : : ; sn/:

Then kH
� is an H–equivariant contraction.

(iii) For H 2F , fix a point xH 2X H and define a contraction kH
� WC�.X /!C�C1.X /

of H–chain complexes inductively as follows. Starting with kH
�1
WR! C0.X /, given

by r 7! r � xH , we may assume that kH
n�1

has been constructed. Let s be a singular
n–simplex in X and denote its stabilizer by Hs . Then there exists a singular .nC1/–
simplex s0 with 0th vertex xH and opposite face s satisfying @nC1.s

0/CkH
n�1

.@n.s//D s.
Moreover, since X Hs is contractible we may choose s0 such that its image is contained
in X Hs . Now, for each H–orbit of singular n–simplices in X choose a representative s,
define kH

n .s/ to be s0, and then extend H–equivariantly.

The proof of the following proposition is standard and omitted.

Proposition 3.7 Let f W V ! W be a map of G–modules , P� ! V be a G–chain
complex with Pn relatively F–projective for all n� 0, and C�!W be an F–strong
resolution of G–modules. Then there exists a G–chain map f� W P�! C� extending f ,
which is unique up to G–chain homotopy.

While relatively F–projective F–strong resolutions are useful to compute Bredon
homology, the following dual approach will compute bounded Bredon cohomology.
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A map i W A! B of normed G–modules is called F–strongly injective if for each
H 2 F there exists a map �H W B ! A of normed H–modules with k�H k1 � K

such that �H ı i D idA, for a uniform constant K � 0. A normed G–module I is
called relatively F–injective if for every F–strongly injective G–map i WA! B and
every map  WA! I of normed G–modules, there exists a map ‰ WB! I of normed
G–modules such that ‰ ı i D  . A chain complex of normed G–modules is called
relatively F–injective if each chain module is relatively F–injective. A resolution of
normed G–modules is called F–strong if it is contractible as a resolution of normed
H–modules for each H 2 F .

Dually to Lemma 3.6 and Proposition 3.7 we obtain the following.

Lemma 3.8 Let V be a normed G–module. The following hold :

(i) If S is a G–set with stabilizers in F , then bHomR.RŒS �;V / is a relatively
F–injective normed G–module.

(ii) If S is a G–set with SH ¤∅ for all H 2 F , then the resolution

V ! bHomR.RŒS
�C1�;V /

of normed G–modules is F–strong.

(iii) If X is a G–space with contractible fixed-point set X H for each H 2 F , then
the resolution V ! C �

b
.X IV / of normed G–modules is F–strong.

Proof Given an extension problem as in the definition of relative F–injectivity,

0 // A
i

//

 
��

B

�H

ww

‰xx

bHomR.RŒS �;V /

we construct an extension ‰ as follows. Let T be a set of representatives of GnS

and denote the stabilizer of an element t 2 T by Gt . Then for every s 2 S there exist
unique elements ts 2 T and gsGts

2G=Gts
such that g�1

s s D ts . Define

‰ W B! bHomR.RŒS �;V /

for b 2 B and s 2 S by

‰.b/.s/D  .gs � �Gts
.g�1

s b//.s/:

One checks that ‰ is a well-defined map of normed RG–modules extending  .
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The proofs of (ii) and (iii) are dual to those of Lemma 3.6(ii) and (iii), respectively,
and are left to the reader.

Proposition 3.9 Let f W V !W be a map of normed G–modules , V ! C � be an
F–strong resolution of normed G–modules , and W ! I� be a G–chain complex with
In relatively F–injective for all n� 0. Then there exists a G–chain map f � W C �! I�

extending f , which is unique up to G–chain homotopy.

As a consequence of Proposition 3.9, we may use any relatively F–injective F–strong
resolution to compute bounded Bredon cohomology. We obtain the isomorphisms
analogous to (2-2) and (2-3) for Bredon cohomology.

Theorem 3.10 Let G be a group , F be a family of subgroups , and V be a normed
G–module. For all n� 0 there is an isomorphism

H n
F;b.GIV /ŠH n

G;b.EFGIV /:

Proof Both C �F;b.GIV / and C �
b
.EFGIV / are relatively F–injective F–strong reso-

lutions of V by Lemma 3.8; hence G–chain homotopy equivalent by Proposition 3.9.

Corollary 3.11 Let G be a group , N be a normal subgroup of G, and V be a normed
G–module. For all n� 0 there is an isomorphism

H n
FhN i;b.GIV /ŠH n

b .G=N IV
N /:

Proof As a model for EFhN iG we take E.G=N / regarded as a G–space. Then it
suffices to observe that

bHomRG.RŒSn.E.G=N //�;V /Š bHomRŒG=N �.RŒSn.E.G=N //�;V N /

and to apply Theorem 3.10 twice.

Analogous to (2-4) and (2-5) for Bredon cohomology, for a subgroup H of G and two
families of subgroups F � G, we have the maps

resn
H�G;b WH

n
F;b.GIV /!H n

F jH ;b.H IV /; cann
F�G;b WH

n
G;b.GIV /!H n

F;b.GIV /

for all normed G–modules V .
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Remark 3.12 (Mineyev and Yaman’s relative bounded cohomology) Mineyev and
Yaman have introduced the bounded analogue of Bieri and Eckmann’s relative coho-
mology for pairs (Remark 2.1) in [19]. For a group G, a finite set of subgroups H, and
a normed G–module V , their relative bounded cohomology groups H n

b
.G;HIV / can

be identified with H n
G;b

�
EG;

`
H2H G �H EH IV

�
and therefore fit in a long exact

sequence

� � � !H n
b .G;HIV /!H n

b .GIV /!
Y

H2H

H n
b .H IV /! � � � :

As in Remark 2.1, we denote by X the G–space obtained as a G–pushout from EG

by collapsing G �H EH to G=H for each H 2H. Then we have maps

H n
G;b
.X IV / H n

G;b
.X;

`
H2H G=H IV /oo

��

H n
G;b
.EFhHiGIV /

OO

H n
G;b
.EG;

`
H2H G �H EH IV /

where, for n� 2, the horizontal map is an isomorphism by the long exact sequence of
a pair, using the fact that H�

G;b
.G=H IV /D 0 for � � 1. Hence for n� 2 we obtain a

map
H n

FhHi;b.GIV /!H n
b .G;HIV /:

However, even if H is a malnormal collection in which case X is a model for EFhHiG,
this map need not be an isomorphism due to the failure of the excision axiom for
bounded cohomology.

4 Characterization of relative amenability

In this section we prove a characterization of relatively amenable groups in terms of
bounded Bredon cohomology analogous to Theorem 1.1.

Recall that a G–invariant mean on a G–set S is an R–linear map m W `1.S/! R

which is normalized, nonnegative, and G–invariant. (That is, for the constant function
1 2 `1.S/, f 2 `1.S/, and g 2 G we have m.1/ D 1, m.f / � 0 if f � 0, and
m.g � f /Dm.f /.) Note that for a G–map S1! S2 of G–sets, a G–invariant mean
on S1 is pushed forward to a G–invariant mean on S2.

Definition 4.1 (relative amenability) A group G is amenable relative to a set of
subgroups H if the G–set G=H admits a G–invariant mean. When G is amenable
relative to H consisting of a single subgroup H , we say that H is coamenable in G.
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When H is a finite set of subgroups, we recover the notion of relative amenability
studied in [10]; see also [22].

Example 4.2 Let G be a group, H be a subgroup, and H be a set of subgroups.

(i) If G is amenable, then G is amenable relative to H.

(ii) If H is a normal subgroup, then H is coamenable in G if and only if the quotient
group G=H is amenable.

(iii) If H has finite index in G or contains the commutator subgroup ŒG;G�, then H

is coamenable in G.

(iv) If H is finite and G is amenable relative to H, then H contains an element that
is coamenable in G.

(v) G is amenable relative to H if and only if G is amenable relative to FhHi.

The following lemma is proved analogously to [6, Lemma 3.2]; see also [20, Corol-
lary 5.3.8].

Lemma 4.3 Let G be a group and H be a set of subgroups. Then G is amenable
relative to H if and only if there exists a nontrivial G–invariant element in `1.G=H/#.

By Proposition 3.9 bounded Bredon cohomology can be computed using relatively
F–injective F–strong resolutions. If one considers coefficients in dual normed RG–
modules, then such resolutions can be obtained from G–sets whose stabilizers are
amenable relative to F .

Lemma 4.4 Let G be a group , F be a family of subgroups , and V # be a dual normed
RG–module. If S is a G–set such that every stabilizer Gs is amenable relative to F jGs

,
then the normed RG–module bHomR.RŒS

nC1�;V #/ is relatively F–injective for all
n� 0.

Proof Since the stabilizers of SnC1 are intersections of stabilizers of S , and relative
amenability passes to subgroups, it is enough to consider the case n D 0. Let an
extension problem as in the definition of relative F–injectivity

0 // A
i

//

 
��

B

‰ww

�H

ww

bHomR.RŒS �;V
#/
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be given. Let T be a set of representatives of GnS . We denote the stabilizer of an
element t 2 T by Gt and by assumption there exists a Gt –invariant mean mt on
Gt=F jGt

. Note that any subgroup L 2 F jGt
can also be viewed as an element in F .

Now, for every s 2 S there exist unique elements ts 2 T and gsGts
2G=Gts

such that
g�1

s s D ts . Define ‰ W B! bHomR.RŒS �;V
#/ for b 2 B, s 2 S , and v 2 V by

‰.b/.s/.v/Dmts

�
gL 7! .gsg � .�L.g

�1g�1
s b///.s/.v/

�
:

One checks that ‰ is a well-defined map of normed RG–modules extending  .

For a family of subgroups F , consider the short exact sequence of normed RG–modules

0!R! `1.G=F/! `1.G=F/=R! 0;

where R is regarded as the constant functions. Then the sequence of topological duals

0! .`1.G=F/=R/#! `1.G=F/#!R! 0

is exact, since an R–linear split R! `1.G=F/# is given by evaluation at the trivial
coset of the trivial subgroup in G=F . We define the relative Johnson class

ŒJF � 2H 1
F;b.GI .`

1.G=F/=R/#/

as the cohomology class of the 1–cocycle JF 2 C 1
F;b.GI .`

1.G=F/=R/#/ given by

JF .g0H0;g1H1/D �g1H1
� �g0H0

;

where �gi Hi
is the evaluation map at giHi for i D 0; 1.

Theorem 4.5 Let G be a group and F�G be two families of subgroups. The following
are equivalent :

(i) Every subgroup H 2 G is amenable relative to F jH .

(ii) The canonical map H n
G;b.GIV

#/!H n
F;b.GIV

#/ is an isomorphism for all dual
normed RG–modules V # and all n� 0.

(iii) The canonical map H 1
G;b.GIV

#/!H 1
F;b.GIV

#/ is an isomorphism for all dual
normed RG–modules V #.

(iv) The relative Johnson class ŒJF � 2H 1
F;b.GI .`

1.G=F/=R/#/ lies in the image of
the canonical map can1

F�G;b .
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Proof Suppose that every subgroup H 2 G is amenable relative to F jH . Then the
resolution of normed RG–modules V #! C �G .GIV

#/ is F–strong and relatively F–
injective by Lemmas 3.8(ii) and 4.4 applied to the G–set G=G. Hence the canonical
map cann

F�G;b is an isomorphism for all n� 0 by Proposition 3.9.

The implications (ii) D) (iii) D) (iv) are obvious. Suppose that the relative Johnson
class ŒJF � lies in the image of the canonical map can1

F�G;b and let V WD `1.G=F/=R.
We claim that for every subgroup H 2 G, the image of ŒJF � under the restriction map

res1
H�G;b WH

1
F;b.GIV

#/!H 1
F jH ;b.H IV

#/

is trivial. Indeed, there is a commutative diagram

H 1
G;b
.EGGIV #/

can1
F�G;b

//

��

H 1
G;b
.EFGIV #/

��

res1
H �G;b

((

H 1
H ;b

.EGGIV #/ // H 1
H ;b

.EFGIV #/
Š
// H 1

H ;b
.EF jH H IV #/

where the vertical maps are induced by viewing a G–space as an H–space. Observe
that the lower left corner H 1

H ;b
.EGGIV #/ is trivial, since when viewed as an H–space

EGG is a model for EALLjH H and hence H–equivariantly contractible. This proves
the claim.

Now, fix a subgroup H 2 G and denote W WD `1.H=F jH /=R. Consider the commu-
tative diagram of normed RH–modules

0 // V # //

��

`1.G=F/# //

��

R // 0

0 // W # // `1.H=F jH /# // R // 0

where the rows are exact, and remain exact when restricted to L–fixed-points for every
L 2 F jH . By Lemma 3.4 there are associated long exact sequences

0 // .V #/H //

��

.`1.G=F/#/H //

��

R
@0

V #
// H 1

F jH ;b
.H IV #/ //

��

� � �

0 // .W #/H // .`1.H=F jH /#/H // R
@0

W #
// H 1

F jH ;b
.H IW #/ // � � �

on bounded cohomology. Observe that the image of @0
V # is precisely R � res1

H�G;b
ŒJF �

and hence trivial by the claim above. This implies that the map @0
W # is trivial and hence
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there exists a nontrivial H–invariant element in `1.H=F jH /#. Thus H is amenable
relative to F jH by Lemma 4.3. This finishes the proof.

As special cases of Theorem 4.5 we obtain Theorem 1.3 by taking G D ALL and
Theorem 1.5 by taking F D T R. The case when F D T R and G D ALL recovers
Theorem 1.1.

Corollary 4.6 Let X be a CW–complex with fundamental group G and F be a family
consisting of amenable subgroups of G. Suppose that there exists a model for EFG

whose orbit space GnEFG is homotopy equivalent to a k–dimensional CW–complex.
Then the comparison map cn

X
WH n

b
.X IR/!H n.X IR/ vanishes for all n> k.

Proof By Gromov’s mapping theorem [7, page 40] — see also [6, Theorem 5.9] — the
comparison map cn

X
vanishes if the comparison map

cn
EG WH

n
G;b.EGIR/!H n

G.EGIR/

vanishes. The G–map EG!EFG induces a commutative square

H n
G;b
.EGIR/

cn
EG

// H n
G
.EGIR/

H n
G;b
.EFGIR/

cann
T R�F;b Š

OO

cn
EFG

// H n
G
.EFGIR/

cann
T R�F

OO

where the canonical map cann
T R�F;b is an isomorphism by Theorem 1.5. Since we

are considering trivial coefficients, the lower right corner can be identified with the
(nonequivariant) cohomology of the orbit space

H n
G.EFGIR/ŠH n.GnEFGIR/

(see eg [4, Theorem 4.2]).

As an application of Corollary 4.6 we obtain the following well-known examples.

Example 4.7 The comparison map vanishes in all positive degrees for CW–complexes
whose fundamental groups are

(i) graph products of amenable groups (eg right-angled Artin groups);

(ii) fundamental groups of graphs of groups with amenable vertex groups.
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Indeed, if G� is a graph product of amenable groups, we consider the family F generated
by the vertex groups and direct products of vertex groups whenever the corresponding
vertices form a clique in the underlying graph � . We claim that there exists a model
for EF .G�/ with contractible orbit space. If � is a complete graph, then a model for
EF .G�/ is given by the point. Otherwise, � can be written as �1[�0

�2, where �i is
a proper full subgraph of � for i D 0; 1; 2, and we have G� ŠG�1

�G�0
G�2

. Let Fi

be the corresponding family of subgroups of G�i
for i D 0; 1; 2. Then a model for the

classifying space EF .G�/ can be constructed as the following G–pushout:

G� �G�0
EF0

.G�0
/�S0 //

��

G� �G�1
EF1

.G�1
/
`

G� �G�2
EF2

.G�2
/

��

G� �G�0
EF0

.G�0
/�D1 // EF .G�/

By induction on the number of vertices of � , the classifying spaces EFi
.G�i

/ have
contractible orbit spaces for i D 0; 1; 2, and hence so does EF .G�/.

If G is the fundamental group of a graph of groups with amenable vertex groups, we
consider the family F generated by the vertex groups. Then the Bass–Serre tree is a
1–dimensional model for EFG. Recall that the comparison map always vanishes in
degree 1, since H 1

b
.GIR/ is trivial for every group G.

We also obtain a characterization of relative amenability via relatively F–injective
modules, analogous to [6, Proposition 4.18]; see also [20, Theorem 5.7.1].

Proposition 4.8 Let G be a group and F be a family of subgroups. The following are
equivalent :

(i) G is amenable relative to F .

(ii) Every dual normed RG–module V # is relatively F–injective.

(iii) The trivial normed RG–module R is relatively F–injective.

Proof Suppose that G is amenable relative to F and let mF be a G–invariant mean on
G=F . The inclusion V #! C 0

F;b.GIV
#/ of normed G–modules admits a right inverse

r given by
r.f /.v/DmF .gH 7! f .gH /.v//

for f 2 C 0
F;b.GIV

#/ and v 2 V . Then the relative F–injectivity of V # follows from
the relative F–injectivity of C 0

F;b.GIV
#/.
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Clearly, condition (ii) implies (iii). Suppose that R is relatively F–injective. Consider
the strongly F–injective map i W R! `1.G=F/ of normed G–modules that has an
H–section �H given by �H .f /Df .eH / for each H 2F . Then the identity idR admits
an extension along i which yields a nontrivial G–invariant element in `1.G=F/#. By
Lemma 4.3 this finishes the proof.

Characterization of relative finiteness Analogously to Theorem 4.5, when instead
considering all (not necessarily dual) normed RG–modules, one obtains the theorem
below. Let G be a group and F be a family of subgroups.

Let `1.G=F/ denote the normed RG–module of summable functions f WG=F!R with
kf k1 D

P
gH2G=F jf .gH /j. Let `1

0
.G=F/ be the kernel of the map `1.G=F/! R,

given by f 7!
P

gH2G=F f .gH /. We define the class ŒKF � 2H 1
F;b.GI `

1
0
.G=F// as

the cohomology class of the 1–cocycle KF 2 C 1
F;b.GI `

1
0
.G=F// given by

KF .g0H0;g1H1/D �g1H1
��g0H0

;

where �gi Hi
is the characteristic function supported at giHi for i D 0; 1.

We say that G is finite relative to F , if F contains a finite index subgroup of G.

Theorem 4.9 Let G be a group and F�G be two families of subgroups. The following
are equivalent :

(i) Every subgroup H 2 G is finite relative to F jH .

(ii) The canonical map H n
G;b.GIV /!H n

F;b.GIV / is an isomorphism for all normed
RG–modules V and all n� 0.

(iii) The canonical map H 1
G;b.GIV /!H 1

F;b.GIV / is an isomorphism for all normed
RG–modules V .

(iv) The class ŒKF � 2 H 1
F;b.GI `

1
0
.G=F// lies in the image of the canonical map

can1
F�G;b .

Proof We only give a sketch of the proof which is entirely analogous to that of
Theorem 4.5. Suppose that every subgroup H 2 G is finite relative to F jH . One shows
that the resolution of normed RG–modules V ! C �G .GIV / is relatively F–injective
by taking averages over finite sets of cosets. Moreover, the resolution is F–strong by
Lemma 3.8(ii) and hence the canonical map cann

F�G;b is an isomorphism for all n� 0

by Proposition 3.9.
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The implications (ii) D) (iii) D) (iv) are obvious. Suppose that the class ŒKF � lies
in the image of the canonical map can1

F�G;b . Fix a subgroup H 2 G and consider the
diagram

0 // `1
0
.G=F/ //

��

`1.G=F/ //

��

R // 0

0 // `1
0
.H=F jH / // `1.H=F jH / // R // 0

of normed RH–modules. Following the proof of Theorem 4.5, one obtains a nontrivial
H–invariant element f 2 `1.H=F jH /. Since f is constant on H–orbits, nontrivial,
and summable, there exists a finite H–orbit in H=F jH . Thus H is finite relative
to F jH .

Theorem 4.9 has the following interesting special cases. If F is arbitrary and GDALL,
we characterize that F contains a finite index subgroup of G. If F D T R and G is
arbitrary, we characterize that all subgroups in G are finite, generalizing [23, Theorem B].
We recover the characterization of finite groups [6, Theorem 3.12] for F D T R and
G DALL.

5 Characterization of relative hyperbolicity

In this section we prove a characterization of relatively hyperbolic groups in terms of
bounded Bredon cohomology analogous to Theorem 1.2.

Let G be a finitely generated group and H be a finite set of subgroups. Recall that G

is hyperbolic relative to H if the coned–off Cayley graph is hyperbolic and fine; see
eg [8]. For example, hyperbolic groups are hyperbolic relative to the trivial subgroup,
free products G1 �G2 are hyperbolic relative to fG1;G2g, and fundamental groups of
finite volume hyperbolic manifolds are hyperbolic relative to the cusp subgroups. If G

is hyperbolic relative to H, then H is almost malnormal and hence malnormal if G is
torsionfree.

From now on, let the ring R be either Q or R. A map f W C ! B of normed RG–
modules is called undistorted if there exists a constant K� 0 such that for all b 2 im.f /
there exists c 2 C with f .c/D b such that kckC �K � kbkB . A normed RG–module
P is called boundedly projective if for every undistorted epimorphism f W C ! B

and every map � W P ! B of normed RG–modules, there exists a map ˆ W P ! C of
normed RG–modules such that f ıˆD �.
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The following lemma [19, Lemma 52] is useful to construct G–equivariant maps.

Lemma 5.1 (Mineyev and Yaman) Let G be a group and S be a G–set with finite
stabilizers. Then QŒS � is projective as a QG–module and boundedly projective as a
normed QG–module when equipped with the `1–norm.

Let X be a G–CW–complex with cocompact .nC1/–skeleton and consider for k � 0

the cellular chains C cell
k
.X IR/ as a normed RG–module equipped with the `1–norm.

We say that X satisfies a linear homological isoperimetric inequality over R in degree n

if the boundary map

@nC1 W C
cell
nC1.X IR/! C cell

n .X IR/

is undistorted. Equivalently, there exists a constant K � 0 such that for every cellular
n–boundary b 2 Bcell

n .X IR/ we have kbk@ �K � kbk1, where

kbk@ WD inffkck1 j c 2 C cell
nC1.X IR/; @nC1.c/D bg

(which is sometimes called the filling norm). (In [16], the terminology of the uniform
boundary condition is used for a linear homological isoperimetric inequality.)

If G is hyperbolic relative to H, Mineyev and Yaman [19, Theorem 41] have constructed
the so-called “ideal complex” X . It is in particular a cocompact G–CW–complex
with precisely one equivariant 0–cell G=H for each H 2H and finite edge-stabilizers.
Moreover, X is (nonequivariantly) contractible and hence a model for EFhHiG provided
that G is torsionfree. We summarize some of its properties [19, Theorems 47 and 51].

Theorem 5.2 (Mineyev and Yaman) Let G be a finitely generated torsionfree group
and H be a finite set of subgroups. If G is hyperbolic relative to H, then there exists a
cocompact model X for EFhHiG such that

(i) X satisfies linear homological isoperimetric inequalities over Q in degree n for
all n� 1;

(ii) there exists a map q WX .0/�X .0/!C cell
1
.X IQ/ with @1.q.a; b//D b�a, called

a homological Q–bicombing , that is G–equivariant and satisfies

kq.a; b/C q.b; c/� q.a; c/k1 �K

for all a; b; c 2X .0/ and a uniform constant K � 0.
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The following criterion for relative hyperbolicity is a combination of [5, Proposition 8.3
and Theorem 8.5]; see also [14, Theorems 1.6 and 1.10].

Theorem 5.3 (Franceschini [5] and Martínez-Pedroza [14]) Let G be a group and
H be a finite set of subgroups. Then G is hyperbolic relative to H if there exists a
G–CW–complex Z such that

(i) Z is simply connected ;

(ii) the 2–skeleton Z.2/ is cocompact ;

(iii) H is a set of representatives of distinct conjugacy classes of vertex-stabilizers
such that each infinite stabilizer is represented ;

(iv) the edge-stabilizers of Z are finite;

(v) Z satisfies a linear homological isoperimetric inequality over R in degree 1.

We prove the following characterization of relative hyperbolicity closely following
Mineyev’s original proof of Theorem 1.2 — [17, Theorem 11] and [18, Theorem 9].

Theorem 5.4 Let G be a finitely generated torsionfree group and H be a finite malnor-
mal collection of subgroups. Let F be the family FhHi and suppose that G is of type
F2;F . Then the following are equivalent :

(i) G is hyperbolic relative to H.

(ii) The comparison map H n
F;b.GIV / ! H n

F .GIV / is surjective for all normed
QG–modules V and all n� 2.

(iii) The comparison map H 2
F;b.GIV / ! H 2

F .GIV / is surjective for all normed
RG–modules V .

Proof Suppose that G is hyperbolic relative to H. Let X be the model for EFG

that is given by Mineyev and Yaman’s ideal complex (Theorem 5.2) and Y be the
simplicial model for EFG with (nonequivariant) n–cells corresponding to .G=F/nC1

for all n� 0. We claim that there is a G–chain map

'� W C
cell
� .Y IQ/! C cell

� .X IQ/

with 'n bounded for all n� 2, admitting a G–homotopy left inverse. We construct '�
inductively as follows. In degree 0, we define

'0 W C
cell
0 .Y IQ/DQŒG=F �! C cell

0 .X IQ/
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to map a generator of the form eH to the vertex of X with stabilizer containing H .
Then extend G–equivariantly and Q–linearly to all of QŒG=F �. In degree 1, we define
'1 W C

cell
1
.Y IQ/! C cell

1
.X IQ/ on generators by

'1.g0H0;g1H1/D q.'0.g0H0/; '0.g1H1//;

where q is the homological Q–bicombing on X from Theorem 5.2(ii). Since both q

and '0 are G–equivariant, so is '1. In degree 2, we consider the maps

(5-1)

C cell
2
.Y IQ/

@Y
2
// C cell

1
.Y IQ/

'1

��

C cell
2
.X IQ/

@X
2
// C cell

1
.X IQ/

and observe that the composition '1 ı @
Y
2

is bounded by properties of q and that @X
2

is
undistorted by Theorem 5.2(i). There is a G–invariant decomposition

C cell
2 .Y IQ/ŠQŒS1�˚QŒS2�;

where S1 and S2 denote the sets of 2–cells of Y with trivial and nontrivial stabilizers,
respectively. We obtain a bounded G–map '2 W C

cell
2
.Y IQ/! C cell

2
.X IQ/ by using

the bounded projectivity of QŒS1� (Lemma 5.1) and by setting '2 to be zero on QŒS2�.
This renders the square (5-1) commutative because the edge-stabilizers of X are trivial.

Assuming that 'n has been constructed, one analogously defines a bounded G–map
'nC1 using that @X

nC1
is undistorted by Theorem 5.2(i). Thus one obtains a G–chain

map '� with 'n bounded for n� 2. To conclude the claim, we note that C cell
� .Y IQ/

is a relatively F–projective F–strong resolution of Q by Lemma 3.6. Hence by
Proposition 3.7 any G–chain map  � W C cell

� .X IQ/! C cell
� .Y IQ/ extending idQ is a

G–homotopy left inverse of '�.

Now, let V be a normed QG–module. Applying HomQG. � ;V / yields a cochain map

'� W C �cell.X IV /
G
! C �cell.Y IV /

G

with homotopy right inverse  �. In particular, the composition '� ı � induces the
identity on H�.C �cell.Y IV /

G/ŠH�F .GIV /. Finally, for n� 2 let c 2C n
cell.Y IV /

G be
a cocycle. Then 'n. n.c// and c represent the same cohomology class in H n

F .GIV /.
We have

k'n. n.c//k1 D k 
n.c/ ı'nk1 � k 

n.c/k1 � k'nk1;
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where 'n is bounded by construction and so is  n.c/ 2 C n
cell.X IV /

G because X

has only finitely many orbits of n–cells. Thus we have shown that for n � 2 every
cohomology class in H n

F .GIV / admits a bounded representative.

Obviously condition (ii) implies (iii). Suppose that the comparison map is surjective in
degree 2 for coefficients in every normed RG–module. Let Z be a model for EFG

with cocompact 2–skeleton. Since H is malnormal, by collapsing fixed-point sets of
Z we may assume that for every nontrivial subgroup H 2 F the fixed-point set ZH

consists of precisely one point. In other words, Z has one equivariant 0–cell of the
form G=H for each H 2H and all other cells have trivial stabilizers. In order to apply
Theorem 5.3 and conclude that G is hyperbolic relative to H, it remains to verify that
Z satisfies a linear homological isoperimetric inequality over R in degree 1.

We take as coefficients the cellular 1–boundaries V WD Bcell
1
.ZIR/ equipped with the

norm k�k@. Let Y be the simplicial model for EFG. Then there is a G–chain homotopy
equivalence

 � W C
cell
� .ZIR/! C cell

� .Y IR/

with G–homotopy inverse '�. Applying HomRG. � ;V / yields a cochain homotopy
equivalence

 � W C �cell.Y IV /
G
! C �cell.ZIV /

G

with homotopy inverse '�. In particular, the composition  � ı'� induces the identity
on H�.C �cell.ZIV /

G/ŠH�F .GIV /. Consider the 2–cocycle u 2 C 2
cell.ZIV /

G given
by the boundary map

uD @2 W C
cell
2 .ZIR/! Bcell

1 .ZIR/D V:

Then we can write

(5-2) uD . 2
ı'2/.u/C ı1

Z .v/

for some v 2 C 1
cell.ZIV /

G . Since the comparison map H 2
F;b.GIV /!H 2

F .GIV / is
surjective by hypothesis, we can write

(5-3) '2.u/D u0C ı1
Y .v
0/

for a bounded 2–cocycle u0 2 C 2
cell.Y IV /

G and some v0 2 C 1
cell.Y IV /

G . For a fixed
vertex y 2Y .0/DG=F , let Coney WC

cell
1
.Y IR/!C cell

2
.Y IR/ be defined on generators

by
Coney..g0H0;g1H1//D .y;g0H0;g1;H1/:
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Obviously Coney preserves the `1–norms. For a G–CW–complex W , we denote the
evaluation pairing by

h�; �iW W C
�
cell.W IV /

G
�C cell
� .W IR/! V:

Now, for b 2 C cell
1
.ZIR/ and c 2 C cell

2
.ZIR/ with @2.c/D b, we find by (5-2) that

b D hu; ciZ D h. 
2
ı'2/.u/C ı1

Z .v/; ciZ

D h. 2
ı'2/.u/; ciZ Chv; @

Y
2 .c/iZ

D h'2.u/;  2.c/iY Chv; biZ :

Since '2.u/ is a cocycle and  2.c/�Coney.@
Y
2
. 2.c/// is a cycle and hence a bound-

ary,

h'2.u/;  2.c/iY D h'
2.u/;Coney.@

Y
2 . 2.c///iY

D h'2.u/;Coney. 1.b//iY

D hu0C ı1
Y .v
0/;Coney. 1.b//iY

D hu0;Coney. 1.b//iY Chv
0; @Y

2 .Coney. 1.b///iY

D hu0;Coney. 1.b//iY Chv
0;  1.b/iY

D hu0;Coney. 1.b//iY Ch 
1.v0/; biZ ;

where we used (5-3). Together, we have

b D hu0;Coney. 1.b//iY Ch 
1.v0/C v; biZ :

We claim that khu0;Coney. 1.b//iY k@ �ku
0k1 �kConey. 1.b//k1. Indeed, consider

the map induced by @2 on coefficients

.@2/� W C
2
cell.Y IC

cell
2 .ZIR//G! C 2

cell.Y IV /
G :

Since @2 is surjective, there exists a preimage Qu0 2 C 2
cell.Y IC

cell
2
.ZIR//G of u0 under

.@2/� with k Qu0k1 � ku0k1. Then h Qu0;Coney. 1.b//iY 2 C cell
2
.ZIR/ is a preimage

of hu0;Coney. 1.b//iY under @2 witnessing the desired inequality. Similarly, one
shows that kh 1.v0/C v; biZk@ � k 

1.v0/C vk1 � kbk1. It follows that

kbk@ � khu
0;Coney. 1.b//iY k@Ckh 

1.v0/C v; biZk@

� ku0k1 � kConey. 1.b//k1Ck 
1.v0/C vk1 � kbk1

D ku0k1 � k 1.b/k1Ck 
1.v0/C vk1 � kbk1

� .ku0k1 � k 1k1Ck 
1.v0/C vk1/ � kbk1:
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Finally, u0 is bounded by construction and so are  1 and  1.v0/C v because they are
G–maps with domain C cell

1
.ZIR/ and Z has only finitely many orbits of 1–cells. Thus

we have shown that Z satisfies a linear homological isoperimetric inequality over R in
degree 1. This finishes the proof.

Remark 5.5 (groups with torsion) In Theorem 5.4, if the group G is not assumed to
be torsionfree and H is instead assumed to be almost malnormal, one can still prove
the equivalence of (i) and (iii). However, a few modifications are necessary which we
shall only outline.

Assuming that G is hyperbolic relative to H, Mineyev and Yaman’s ideal complex has to
be replaced by a Rips type construction X due to Martínez-Pedroza and Przytycki that
is a model for EF[FING. This complex X satisfies a linear homological isoperimetric
inequality over Z in degree 1 [15, Corollary 1.5]. It is part of a hyperbolic tuple in
the sense of [19, Definition 38] and hence admits a homological Q–bicombing by [19,
Theorem 47]. Then one can construct a G–chain map '� with '2 bounded similarly
as before and conclude surjectivity of the comparison map in degree 2 for the family
F [FIN . This implies the same for the family F over the ring R.

For the converse implication, since H is almost malnormal, there exists a model Z for
EFG such that for every infinite subgroup H 2 F the fixed-point set ZH consists of
precisely one point. Then one shows as before that Z satisfies a linear homological
isoperimetric inequality over R in degree 1 and concludes by Theorem 5.3.

We do not know whether condition (ii) is equivalent to (i) and (iii) in this case.
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