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510 Jay Shah

1 Introduction

Motivation from equivariant homotopy theory This paper lays foundations for
a theory of oco—categories parametrized by a base co—category S. Our interest in
this project originates in attempting to locate the core homotopy theories of interest
in equivariant homotopy theory — those of G—spaces and G—spectra— within the
appropriate co—categorical framework. To explain, let G be a finite group and let us
review the definitions of the co—categories of G—spaces and G—spectra, with a view
towards endowing them with universal properties.

Consider a category Topg of (nice) topological spaces equipped with G—action, with
morphisms given by the G—equivariant continuous maps. There are various homotopy
theories that derive from this category, depending on the class of weak equivalences that
one chooses to invert. At one end, we can invert the class W'; of G—equivariant maps
which induce a weak homotopy equivalence of underlying topological spaces, forgetting
the G—action. If we let Spc denote the co—category of spaces (ie co—groupoids), then
inverting W'y obtains the co—category of spaces with G—action

Topg[W7'] ~ Fun(BG, Spe).

For many purposes, Fun(BG, Spc) is the homotopy theory that one wishes to con-
template, but here we instead highlight its main deficiency. Namely, passing to this
homotopy theory blurs the distinction between homotopy fixed points and actual fixed
points, in that the functor Top; — Fun(BG, Spc) forgets the homotopy types of the
various spaces X for H a nontrivial subgroup of G. Because many arguments
in equivariant homotopy theory involve comparing X ¥ with the homotopy fixed
points X hH, we want to retain this data. To this end, we can instead let W be the
class of G—equivariant maps which induce an equivalence on H—fixed points for every
subgroup H of G. Let Speg := Topg [W™']; this is the co—category of G—spaces.

As with TopG[Wl_l], we would like a description of Speg which eliminates any
reference to topological spaces with G—action, for the purpose of comprehending its
universal property. Elmendorf’s theorem grants such a description: we have

Speg ~ Fun(0g, Spe),

where Og is the category of orbits of the group G. Thus, as an co—category, Speg is
the free cocompletion of Og.

It is a more subtle matter to define the homotopy theory of G—spectra. There are at
least three possibilities:
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(1) The co—category of Borel G—spectra, ie spectra with G—action. This is
Sp”S := Fun(BG, Sp),
which is the stabilization of Fun(BG, Spc).

(2) The co—category of “naive” G—spectra, ie spectral presheaves on Og. This is
Spg := Fun(ng, Sp).
which is the stabilization of Speg.!

(3) The co—category of “genuine” G—spectra, ie spectral Mackey functors on the
category Fg of finite G—sets: Let A°(Fg) be the effective Burnside (2, 1)—
category of G, given by taking as objects finite G—sets, as morphisms spans
of finite G—sets, and as 2—morphisms isomorphisms between spans. Then the
oo—category of genuine G—spectra is defined to be

Sp* := Fun®(A*"(F;). Sp).
the co—category of direct-sum preserving functors from A°T(Fg) to Sp.?

The third possibility incorporates essential examples of cohomology theories for G—
spaces, such as equivariant K—theory, because G—spectra in this sense possess transfers
along maps of finite G—sets, encoded by the covariant maps in A°"(Fg). It is thus
what homotopy theorists customarily mean by G—spectra. However, from a categorical
perspective it is a more mysterious object than the co—category of naive G—spectra,
since it is not the stabilization of G—spaces. We are led to ask:

Question What is the universal property of SpG? More precisely, we have an adjunc-
tion

X Speg = Sp% Q>
with the right adjoint given by taking 2°°: Sp — Spc objectwise and restricting along

the evident map O?;p — A°(Fg), and we would like a universal property for DD
or Q.

Put another way, what is the categorical procedure which manufactures SpG from
SpCG?

IThe usage of a subscript G to indicate presheaves on Qg (whether valued in spaces or spectra) is
consistent with our later notation for the S—category of S—objects in an arbitrary co—category — see
Construction 3.9.

2This is not the definition which first appeared in the literature for G—spectra, but it is equivalent to, for
example, the homotopy theory of orthogonal G—spectra by the pioneering work of Guillou and May [6].
For an co—categorical treatment, see Barwick [1].
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The key idea is that for this procedure of “G-stabilization” one needs to enforce
“G—additivity” over and above the usual additivity satisfied by a stable co—category;
that is, one wants the coincidence of coproducts and products indexed not just by
finite sets but by finite sets with G—action. Reflecting upon the possible homotopical
meaning of such a G—(co)product, we see that for a transitive G—set G/H, |5 /H
and [ [ /g should be interpreted to mean the left and right adjoints to the restriction
functor SpG — SpH , ie the induction and coinduction functors, and G—additivity then
becomes the Wirthmiiller isomorphism. In particular, we see that G—additivity is not
a property that SpG can be said to enjoy in isolation, but rather one satisfied by the
presheaf SpC of co—categories indexed by Og; here, for every G—orbit U, a choice of
basepoints_pecifying an isomorphism U = G/H yields an equivalence Sp% (U) ~ SpH ,
and the functoriality in maps of orbits is that of conjugation and restriction (in particular,
recording the residual actions of the Weyl groups on SpH ). Correspondingly, we must
rephrase our question so as to inquire after the universal property of the morphism
of Og-presheaves, £ Speg — S_pG, where % is objectwise given by genuine
H—suspension ranging over all subgroups H < G.

We now pause to observe that for the purpose of this analysis the group G is of secondary
importance as compared to its associated category of orbits O¢. Indeed, we focused on
G-additivity as the distinguishing feature of genuine vs naive G—spectra, as opposed
to the invertibility of representation spheres, in order to evade representation theoretic
aspects of equivariant stable homotopy theory. In order to frame our situation in its
proper generality, let us now dispense with the group G and replace O¢g by an arbitrary
oo—category 7T'. Call a presheaf of co—categories on T' a T—category. The T—category of
T—spaces Sper is given by the functor 7°° — Catoo, 7 > Fun((7/%)°, Spc). Note that
this specializes to Speg when 7' = Og because Og = ( Og)/ (G/H), glice categories
stand in for subgroups in our theory. With the theory of 7—colimits advanced in this
paper, we can then supply a universal property for Sper as a T—category. Write Funr
for the internal hom in the co—category of T—categTries, which is cartesian closed.

1.1 Theorem Suppose T is any oo—category. Then Sper is T—cocomplete, and for
any T —category E which is T —cocomplete, the T —functor of evaluation at the T —final
object’

Funf (Sper. E) — Fung (x7. E) ~ E

3We define #7 to be the constant T—presheaf valued at %, which is the final object in the co—category of
T—categories.
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induces an equivalence from the T'—category of T'—functors Sper — E' which strongly
preserve T'—colimits to E. In other words, Sper is freely generated under T —colimits
by the final T —category.

1.2 Remark The notion of 7T'—cocompleteness needed for the theorem is slightly
more elaborate than one might naively expect. Namely, we say that a T'—category C is
T—cocomplete if for all t € T, the pullback of C to a T/t —category C; (Notation 2.29)
admits all (small) 7/—colimits (Definition 5.13). Correspondingly, we say that a
T—functor F: C — D strongly preserves T —colimits if for all # € T', the pulled-back
T/*—functor F,: C; — D, preserves all T/!—colimits (Definition 11.2).

When T = Og, this result was originally conjectured by Mike Hill.

To go further and define 7—spectra, we need a condition on 7" so that it supports a
theory of spectral Mackey functors. We say that 7" is orbital if T admits multipullbacks,
by which we mean that its finite coproduct completion Fr admits pullbacks. The
purpose of the orbitality assumption is to ensure that the effective Burnside category
A®(Fr) is well defined. Note that the slice categories T); are orbital if 7' is. We
define the T—category of T—spectra S_pT to be the functor 7°° — Cats, given by
t — Fun®(4°"(Fr,,),Sp). We then have the following theorem of Denis Nardin
concerning S_pT from [15], which resolves our question:

1.3 Theorem [15, Theorem 7.4] Suppose T is an atomic* orbital co—category. Then
S_pT is T —stable, and for any pointed T —category C which has all finite T —colimits,
the functor of postcomposition by 2°°

(%), : Funl. ™ (C,Sp”) — Lin” (C, Sper)

induces an equivalence from the co—category of T—functors C — SpT which preserve
finite T —colimits to the oco—category of T —linear functors C — Sper, ie those T—
functors which are fiberwise linear and send finite T —coproducts to T —products.

We hope that the two aforementioned theorems will serve to impress upon the reader
the utility of the purely oco—categorical work that we undertake in this paper.

1.4 Warning In contrast to this introduction thus far and the conventions adopted
elsewhere —eg in [15] — we will henceforth speak of S—categories, S—colimits, etc
for S = T°P.

#This is an additional technical hypothesis which we do not explain here. It will not concern us in the
body of the paper.
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What is parametrized oco—category theory?

Roughly speaking, parametrized co—category theory is an interpretation of the familiar
notions of ordinary or “absolute” oco—category theory within the (oo, 2)—category of
functors Fun(S, Cat), done relative to a fixed “base” oco—category S. By “interpreta-
tion”, we mean something along the lines of the program of Emily Riehl and Dominic
Verity [16], which axiomatizes the essential properties of an (oo, 2)—category that
one needs to do formal category theory into the notion of an co—cosmos, of which
Fun(S, Cats,) is an example. In an co—cosmos, one can write down in a formal way
notions of limits and colimits, adjunctions, Kan extensions, and so forth. Working out
what this means in the example of Cats—valued functors is the goal of this paper. In
the classical 2—categorical setting, such limits and colimits are referred to as “indexed”
limits and colimits, so another perspective on this paper is that it extends indexed
category theory to the co—categorical setting.

In contrast to Riehl and Verity, we will work within the model of guasicategories and
not hesitate to use special aspects of our model (eg combinatorial arguments involving
simplicial sets). We are motivated in this respect by the existence of a highly developed
theory of cocartesian fibrations due to Jacob Lurie, which we review in Section 2.
Cocartesian fibrations are our preferred way to model Caty,—valued functors, for two
reasons:

(1) The data of a functor F': § — Caty, is overdetermined compared to that of
a cocartesian fibration over S, in the sense that to define F' one must prescribe an
infinite hierarchy of coherence data, which under the functor-fibration correspondence
amounts to prescribing an infinite sequence of compatible horn fillings.> Because
of this, specifying a cocartesian fibration (which one ultimately needs to do in order
to connect our theory to applications) is typically an easier task than specifying the
corresponding functor to Catye.

(2) The Grothendieck construction on a functor § — Caty is made visible in the
cocartesian fibration setup, as the total category of the cocartesian fibration. Many of
our arguments involve direct manipulation of the Grothendieck construction, in order
to relate or reduce notions of parametrized oo—category theory to absolute co—category
theory.

We have therefore tailored our exposition to the reader familiar with the first five
chapters of Lurie [9]; the only additional major prerequisite is the part of Lurie [11,

31t is for this reason that one speaks of straightening a cocartesian fibration to a functor.
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Appendix B] dealing with variants of the cocartesian model structure of [9, Section 3]
and functoriality in the base.

Linear overview

Let us now give a section-by-section summary of the contents of this paper.

In Section 2 we define an S—category as a cocartesian fibration over S, and then
collect some necessary preliminaries on cocartesian fibrations and model structures
on categories of marked simplicial sets. In particular, we recapitulate Lurie’s theo-
rem that establishes conditions under which change-of-base adjunctions are Quillen
(Theorem 2.24). This theorem will allow us to efficiently verify the fibrancy of many
of the simplicial set constructions introduced in this paper.

In Section 3 we first define and study the internal hom Fung (—, —) of S—categories
(Definition 3.2). We then recall the S—category of S—objects E s in an co—category
E from Barwick, Dotto, Glasman, Nardin and Shah [2] (Construction 3.9), which
computes the right adjoint to the forgetful functor [C — S|+ C. When S = 02? and
E = Spc, this recovers the G—category of G-spaces Spcg .

In Section 4 we first introduce the S—join (— xg —) (Definition 4.1), which in terms
of presheaves computes the fiberwise join. We then define and study two (canon-
ically equivalent) S—slice constructions: for an S—functor p: K — C, we have
S—undercategories C(,, s), and C P8/ and S—overcategories C/(p,s) and c/S,
The “lower” construction (Definition 4.17) is a direct generalization of Joyal’s slice
construction —cf [9, Proposition 1.2.9.2] — and participates in a Quillen adjunction
with the S—join. The “upper” construction (Definition 4.26) proceeds by taking an
S—fiber of the relevant map of S—functor categories. In practice, the upper S—slice is
far easier to work with as its definition is less bound up with the intricate combinatorics
of the S—join (which need to be thoroughly understood to even establish the fibrancy of
the lower S—slice; see Proposition 4.11). However, it is easier to establish the universal
mapping property of the S—slice using its lower incarnation (Proposition 4.25).

In Section 5 we initiate our study of S—colimits and S—limits by giving the basic
Definition 5.2, and then discuss a few special cases: S—(co)limits in an S—category
of S—objects, S—colimits indexed by constant S—diagrams, and S—colimits indexed
by S—points (ie S—coproducts). We then explain how to deduce results about S—
limits from S—colimits (or vice versa) by means of the vertical opposite construction
(Corollary 5.25).
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In Section 6 our main goal is to establish an S—analogue of Joyal’s cofinality theorem
[9, Theorem 4.1.3.1]: an S—functor C — D is S—final if and only if it is fiberwise
final® (Theorem 6.7). Our strategy is to control the functoriality encoded by the S—slice
category in terms of a construction, the twisted slice (Definition 6.5), fibered over the
twisted arrow category 6(5 ); the right Kan extension of the latter will then obtain the
former (Theorem 6.6). In fact, we first do the same for the internal hom Fung itself
(equation (6.3.1)). This may be thought of as a refinement of the end formula for an
oo—category of natural transformations (see Remark 6.4).

In Section 7 we introduce the notions of S—fibration, S—(co)cartesian fibration and
S-bifibration (Definitions 7.1 and 7.9). We also introduce the free S—(co)cartesian
fibration as an example (Definition 7.6).

In Section 8 we recall Lurie’s definition of a relative adjunction and specialize it to the
notion of an S—adjunction (Definition 8.3). We then prove a number of fundamental
results about S—adjunctions — most notably, the fact that a left S—adjoint preserve
S—colimits (Corollary 8.9).

In Section 9, given an S—cocartesian fibration ¢: C — D and an S—functor F: C — E,
we construct the left S—Kan extension ¢ F: D — E, which will also call the D—
parametrized S—colimit of F. With our assumption on ¢, we have that for every
object x € Dy, (¢ F)(x) is computed as the S s/_colimit of the restriction of F to
the S/ —fiber Cyx. This is precisely analogous to the situation where the left Kan
extension along a cocartesian fibration is computed by taking colimits fiberwise. In
order to construct ¢n F', we need to solve the coherence problem of assembling the
individual S*/—colimits of Fy: Cy — Ej (ranging over all x € Dy) into a single S—
functor out of D. We introduce the S—pairing (Construction 9.1), and subsequently the
D—parametrized slice (Construction 9.8), to facilitate this. The problem of constructing
¢ F then ultimately reduces to choosing a section of a certain trivial Kan fibration
defined in terms of the D—parametrized slice (Theorem 9.15).

In Section 10 we define left S—Kan extensions in general (Definition 10.1) and prove
the basic existence and uniqueness result about them (Theorem 10.3). In contrast to
the brutal simplex-by-simplex approach taken in [9, Section 4.3.2] to the construction
of Kan extensions (cf [9, Lemma 4.3.2.13]), we instead reduce to the solved coherence
problem for D—parametrized S—colimits via factoring the S—functor ¢: C — D to
be extended along through the free S—cocartesian fibration on it. We remark that, to

SWe write final and initial for what Lurie calls (left) cofinal and right cofinal, respectively.
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our knowledge, the approach of Sections 9 and 10 give a novel” and more conceptual
construction of Kan extensions even in the context of ordinary oco—category theory.
Lurie has since independently written up a treatment of (relative) Kan extensions along
these lines in Kerodon [12, Section 7.3].

In Section 11 we recall the S—category of presheaves Pg(—), prove the S—Yoneda
Lemma 11.1, discuss S—mapping spaces, and establish the universal property of Pg(—)
as free S—cocompletion (Theorem 11.5), thereby proving Theorem 1.1.

In Section 12 we prove two Bousfield-Kan-style® decomposition results that express
an arbitrary S—colimit as a geometric realization of either S—coproducts or S—space-
indexed S—colimits (Theorems 12.13 and 12.6). The essential content behind such
formulas lies in replacing a given diagram C with one fibered over AP x S that
possesses an S—final map to C. As a warmup, we first explain how this goes when S
is a point (Corollaries 12.3 and 12.5); the resulting formula appears to be new in the
case of coproducts, whereas the case of spaces was first obtained by Aaron Mazel-Gee
in [14]. We then apply the S—Bousfield—Kan formula to show that, supposing S°P
admits multipullbacks, an S—category is S—cocomplete if and only if it admits all
S—(co)products and geometric realizations (Corollary 12.15).

Notation and conventions

Let C be an co—category. We write
0(C) := Fun(A!, C)

for the co—category of arrows in C. In this paper, we will frequently encounter fiber
products of the form
A XF,C,CV() O(C) XCV],C,G B

where F: A — C and G: B — C are functors. To avoid notational clutter, we adopt
the global convention that, unless otherwise decorated, fiber products with the source
functor evg are to be written on the left, and fiber products with the target functor ev,
are to written on the right. Moreover, we will drop F and G from the notation if they
are understood from context. For instance, we would write the preceding expression as
Axc O0(C)xc B.

7All these results date to 2017.

8By this, we mean to refer to generalizations of the classical formula for writing a colimit as a coequalizer
of coproducts, which were studied by Bousfield and Kan in the context of homotopy colimits with
coequalizers replaced by geometric realization.
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2 Cocartesian fibrations and model categories of marked
simplicial sets

Let S be an co—category. In this section, we give a rapid review of the theory of
cocartesian fibrations and the surrounding apparatus of marked simplicial sets. This
primarily serves to fix some of our notation and conventions for the remainder of the
paper; for a more detailed exposition of these concepts, we refer the reader to [4]. In
particular, the reader should be aware of our special notation (Notation 2.29) for the
S—fibers of an S—functor.

Cocartesian fibrations

We begin with the basic definitions:

2.1 Definition Let 7: X — S be a map of simplicial sets. Then 7 is a cocartesian
fibration if:

(1) Itis an inner fibration; for every n > 1, 0 < k < n and commutative square
A — X

A —> S
the dotted lift exists.

(2) For every edge «: so — s1 in S and x9 € X with 7w (xg) = s, there exists an
edge e: xo — x1 in X with (e) = «, such that e is w—cocartesian; for every
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n > 1 and commutative square

A’&L)X

~
o
A" —> S
with f|xc0.13 = e, the dotted lift exists.

Dually, 7 is a cartesian fibration if 7w°P is a cocartesian fibration.

A cocartesian (resp. cartesian) fibration 7: X — S is said to be a left (resp. right)
fibration if for every object s € §' the fiber X is a Kan complex.

Now suppose 7: X — S and p: ¥ — § are (co)cartesian fibrations. Then a map of
(co)cartesian fibrations f: X — Y is a map of simplicial sets such that po f ==
and f carries w—(co)cartesian edges to p—(co)cartesian edges. The collection of
cocartesian fibrations over S and maps thereof organize into a subcategory Cat‘c’:éc/ag.t of
the overcategory Caty) .

In this paper, owing to the importance of these notions we see fit to introduce more
concise and suggestive terminology for cocartesian fibrations and left fibrations over S.

2.2 Definition An S—category (resp. S—space) C is a cocartesian (resp. left) fibration
7w:C — S. An S—functor F: C — D between S—categories C and D is a map of
cocartesian fibrations over S.

Given an S—category w: C — S, an S—subcategory D C C is a subcategory such that
the restriction 7 |p is a cocartesian fibration and an edge in D is 7 | p—cocartesian if and
only if it is w—cocartesian. The inclusion functor then necessarily preserves cocartesian
edges, so is an S—functor. We further say that D is a full S—subcategory if D C C
is in addition a full subcategory, or equivalently, for every s € S, Dy C Cj is a full
subcategory.

2.3 Example (arrow co—categories) The arrow co—category O(S) of S is cocartesian
over S via the target morphism ev;, and cartesian over S via the source morphism evy.
An edge

e:[so — to] = [s1 — t1]

in O(S) is evy—cocartesian (resp. evg—cartesian) if and only if evg(e) (resp. evy(e)) is
an equivalence in .

Algebraic € Geometric Topology, Volume 23 (2023)



520 Jay Shah

The fiber of evg: O(S) — S over s is isomorphic to Lurie’s “alternative” slice co—
category S s/ Using our knowledge of the evj—cocartesian edges, we see that ev
restricts to a left fibration S/ — . In the terminology of [9, Proposition 4.4.4.5], this
is a corepresentable left fibration. We will refer to the corepresentable left fibrations as
S—points. Further emphasizing this viewpoint, we will often let s denote S s/

To a beginner, the lifting conditions of Definition 2.1 can seem opaque. Under our
standing assumption that S is an co—category, we have a reformulation of the definition
of cocartesian edge, and hence that of cocartesian fibration, which serves to illuminate
its homotopical meaning.

2.4 Proposition Let w: X — S be an inner fibration (so X is an oco—category).
Then an edge e: xg — X1 in X is w—cocartesian if and only if for every x, € X, the
commutative square of mapping spaces

Mapy (x1, x2) - Mapy (xo, x2)

Mapy (7 (x1). 7(x2)) =25 Mapg (7 (xo). 7(x2))

is homotopy cartesian.

With some work, Proposition 2.4 can be used to give an alternative, model-independent
definition of a cocartesian fibration. We refer to Mazel-Gee’s paper [13] for an exposi-
tion along these lines.

2.5 Example [9, Section 3.2.2] Let Caty, denote the (large) co—category of (small)
oo—categories. Then there exists a universal cocartesian fibration U — Cato, which is
characterized up to contractible choice by the requirement that any cocartesian fibration
w: X — S (with essentially small fibers) fits into a homotopy pullback square

X —u

o

s I caty,

Concretely, one can take AU to be the subcategory of the arrow category O(Catyo)
spanned by the representable right fibrations and morphisms thereof.
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As suggested by Example 2.5, the functor
Fun(S, Cateo) — Catg‘;?ag
given by pulling back U — Cat, is an equivalence. The composition
Gr: Fun(S, Caty,) = Catg‘;“/ag C Catoy/s

is the Grothendieck construction functor. Since equivalences in Fun(S, Caty) are
detected objectwise, Gr is conservative. Moreover, one can check that Gr preserves
limit and colimits, so by the adjoint functor theorem Gr admits both a left and a right
adjoint.

2.6 Notation Let
Frd4Gr-4 H

denote the left and right adjoints of Gr.

We call Fr the free cocartesian fibration functor (see also [5]); concretely, one has
Fr(X — §) = X x5 0(S) =5 S,

or as a functor s = X Xg §/; with functoriality obtained from §,(_). The functor H
can also be concretely described using its universal mapping property: since

Fr({s} C §) = S/,

the fiber H(X); is given by Fun,g(Ss/, X), and the functoriality in § is obtained from
that of S(_)/.

A model structure for cocartesian fibrations

We want a model structure which has as its fibrant objects the cocartesian fibrations
over a fixed simplicial set. However, it is clear that to define it we need some way
to remember the data of the cocartesian edges. This leads us to introduce marked

simplicial sets.

2.7 Definition A marked simplicial set (X, &) is the data of a simplicial set X and a
subset £ C X of the edges of X, such that £ contains all of the degenerate edges. We
call £ the set of marked edges of X. A map of marked simplicial sets f: (X, &) — (Y, F)
is a map of simplicial sets f: X — Y such that f(£) C F.
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2.8 Notation We introduce notation for certain classes of marked simplicial sets. Let
X be a simplicial set.

o X" is X with only the degenerate edges marked. To avoid notational clutter, we
will sometimes suppress this notation and simply write X for X b,

o X*is X with all of its edges marked.
¢ Suppose that X is an oco—category. Then X~ is X with its equivalences marked.

* Suppose that 7 : X — §'is an inner fibration. Then y X is X with its 7—cocartesian
edges marked, and X "is X with its w—cartesian edges marked.

e Letn>0. Let yA" and yAf denote A" and Af, respectively, with the edge {0, 1}
marked (if it exists, ie excluding A? and A(l) = {0}) along with the degenerate
edges. Dually, let A" and AZ“ denote A" and A7, respectively, with the edge
{n — 1, n} marked.

Note that our choice of notation ;A" and yAf is not meant to be interpreted as a special
instance of marking cocartesian edges (though the map A" — Al given by 0 — 0 and
1,...,n 1 renders it as such for the former); rather, we mean to indicate that the
relevant lifting problem for a cocartesian fibration as a marked simplicial set is to lift
along the marked horn inclusion HAS — A" (cf Definition 2.9 below), and vice versa
for cartesian fibrations and AZ” — A,

For the rest of this section, fix a marked simplicial set (Z, £) where Z is an co—category
and & contains all of the equivalences in Z — in our applications, Z will generally be
some type of fibration over S. Let sSet;r( Z.6) denote the category of marked simplicial
sets over (Z, £). Following Lurie [9, Notation 3.1.0.2], we will also denote sSetj’Z11
more simply as sSet;"Z. We will frequently abuse notation by referring an object
(X, F)—>(Z,€) of sSet;"(Z £ by its domain (X, F), or even just by X.

2.9 Definition An object (X, F) in sSetjr( 2.6y 18 (Z, E)~fibered if:

(1) m:X — Z is an inner fibration.

(2) For every n > 0 and commutative square

qu e (X, .7:)

uAn — (Z,8)

9This differs from [11, Definition B.0.19], but nonetheless defines the correct class of anodyne morphisms
[11, Definition B.1.1].
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a dotted lift exists. In other words, letting n = 1, w—cocartesian lifts exist over

marked edges in Z, and letting n > 1, marked edges in X are m—cocartesian.!?
(3) For every commutative square
(A%)'i U(A%)b (Az)b — (X, F)
(W) (Z.6)
11

a dotted lift exists. In other words, marked edges are closed under composition.

4) LetQ = A 11 AL0.23 A3 1T Al1.33 A%, For every commutative square

0" —— (X, F)

ok —> (Z,8)

a dotted lift exists. Since we assumed that £ contains all equivalences in Z, this
implies that all equivalences in X are marked.

2.10 Example Let: X — Z be an inner fibration. Comparing with Definition 2.1,
it is clear that (X, F) is Z"fibered if and only if 7 is a cocartesian fibration and
(X,F) = yX. At the other extreme, (X, F) is Z~fibered if and only if 7 is a
categorical fibration and (X, F) = X~

Recall that a model structure, if it exists, is determined by its cofibrations and fibrant
objects. Collecting results of Lurie from [11, Appendix B], we now define a model
structure on sSet;"( Z.6) with cofibrations the monomorphisms and fibrant objects given
by the (Z, £)-fibered objects.

2.11 Definition Define functors!?

op
Map(—, —): sSetjr(Z’S) X sSetjr(Z,S) — sSet,

Funz(—,-): sSetjr(Zﬂs)Op X sSetjr(Z,g) — sSet

10Condition (2) already guarantees that X — Z is a cocartesian fibration if € = Z1; however, one
additionally needs condition (4) to ensure that all of the w—cocartesian edges are marked in X .

I Strictly speaking, condition (3) by itself only guarantees that for any pair of composable marked edges,
there exists a composite that is again marked. One additionally needs condition (4) to ensure that all

compositions of marked edges are again marked.

1214 [11, Appendix B, these functors are denoted as Maan and Mapl’Z respectively.
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Hom(A4, Mapz (X, Y)) = Hom,(z.¢)(A* x X, Y),
Hom(A4, Funz(X,Y)) = Hom/(z (A" x X, Y).

2.12 Definition A map f: A — B in sSet;"(Z € is a cocartesian equivalence (with
respect to (Z, £)) if one of the following equivalent conditions hold.

(1) Forall (Z,&)-fibered X, f*: Map,(B, X) — Map, (A4, X) is an equivalence
of Kan complexes.

(2) Forall (Z,&)-fibered X, f*:Funz(B, X) — Funz (A, X) is an equivalence of
oco—categories.

2.13 Theorem [11, Theorem B.0.20] There exists a left proper combinatorial model
structure on the category sSetj'( Z.6) which we call the cocartesian model structure,
such that

(1) the cofibrations are the monomorphisms,
(2) the weak equivalences are the cocartesian equivalences,

(3) the fibrant objects are the (Z, £)—fibered objects.

Dually, we define the cartesian model structure on sSet}L( z.e) 0 be the cocartesian

model structure on sSet}L( Z.6) under the isomorphism given by taking opposites.

2.14 Remark The underlying co—category of sSetjr( Z.6) identifies as the subcategory
of Caty,/z on those isofibrations'®> X — Z that admit cocartesian lifts over &, and
with morphisms preserving cocartesian edges. In particular, passing to the closure of £
under composition does not change the underlying co—category.

We have the following characterization of the cocartesian equivalences between fibrant
objects — which is unsurprising, in light of the equivalence Catco(:f/a%t =~ Fun(Z, Cat).

2.15 Proposition [11, Lemma B.2.4] Let X and Y be fibrant objects in sSet}L(Z £)

equipped with the cocartesian model structure, andlet f: X — Y be amap in sSetjr( Z.)"
Then the following are equivalent:
13with this choice, the resulting subcategory is not stable under equivalence. One could alternatively

appeal to a homotopy-invariant notion of cocartesian fibration and instead replace isofibrations with
functors — cf [13], which admits an obvious generalization to this setting.
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(1) f is a cocartesian equivalence.

(2) f is a homotopy equivalence, ie f admits a homotopy inverse; there exists a
map g:Y — X and homotopies h: (A)¥ x X — X andh': (A)¥ xY — Y in
sSetf(Z £) connecting g o f toidy and f o g toidy, respectively.

(3) f is a categorical equivalence.

(4) For every (not necessarily marked) edge o: A' — Z, fy: Al xz X — Al xz Y
is a categorical equivalence.

If every edge of Z is marked, then (4) can be replaced by the following apparently
weaker condition:

(4') Forevery objectz € Z, f,: X, — Y, is a categorical equivalence.
We also have the following characterization of the fibrations between fibrant objects.

2.16 Proposition [11, Proposition B.2.7] Let Y = (Y, F) be a fibrant object
in sSet Nz, g) equipped with the cocartesian model structure, and let f: X — Y be a
map in sSet |, 1(Z.8) Then the following are equivalent:

(1) f is a fibration.
(2) X is fibrant, and f is a categorical fibration.

(3) f isfibrantin sSet/(Y )

2.17 Corollary Suppose Z — S is a cocartesian fibration. Then the cocartesian model
structure sSet’ /\Z coincides with the “slice” model structure on (sSet / S) /,z created by
the forgetful functor to sSet ™, /s equipped with its cocartesian model structure.

Proof This immediately follows from Proposition 2.16. |

2.18 Example Suppose that Z is a Kan complex. Then the cocartesian and cartesian
model structures on sSet 1z coincide. In particular, taking Z = A°, we will also refer
to the cocartesian model structure on sSet™ as the marked model structure. Since this
model structure on sSet™ is unambiguous, we will always regard sSet™ as equipped
with it. Then the fibrant objects of sSet™ are precisely the co—categories with their
equivalences marked.
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2.19 Example Suppose that (Z,&) = Z~. Then the cocartesian and cartesian model
structures on sSeterN coincide. Moreover, we have a Quillen equivalence

(=) (sSetjoyal) )z = sSethN U

where the functor U forgets the marking. In particular, (—)" sends categorical equiva-
lences to marked equivalences.

2.20 Example The inclusion functor Spe C Cats, admits left and right adjoints B
and ¢, where B is the classifying space functor that inverts all edges and ¢ is the “core”
functor that takes the maximal sub—oco—groupoid. These two adjunctions are modeled
by the two Quillen adjunctions

U: sSet"' <:> SSetQuﬂ]en I(—)ﬂ, (—)ﬂi SSetQuﬂ]en <:> sSet"' ‘M.

Here M (X, €) is the maximal subsimplicial set of X such that all of its edges are marked.
In particular, (—)* sends weak homotopy equivalences to marked equivalences.

2.21 Proposition [11, Remark B.2.5] The bifunctor
) + + +
—x—:sSet , o xsSet), o —sSet), o oo
is left Quillen. Consequently, the bifunctors
Mapz(—, —): SSet;r(Z’g)Op X sSetjr(Z’E) — sSetQuilien,
Funz(—,—): sSetjr(Z’g)Op X sSetjr(Z,g) — sSetjoyal

are right Quillen, so sSetjr( Z.E) is both an sSetqyien—enriched model category (with
respect to Map ) and sSetjoy,—enriched model category (with respect to Funy).

2.22 Remark As explained in [16, Digression 1.2.13], by Proposition 2.21 the full
subcategory of sSet;"( 7.6 spanned by the fibrant objects is an example of an co—cosmos
[16, Definition 1.2.1].

Finally, we explain how the formalism of marked simplicial sets can be used to extract
the pushforward functors implicitly defined by a cocartesian fibration. First, we need a
lemma.

marked anodyne. Consequently, for a cocartesian fibration C — S, the map
Fun(yA", 1C) — Fun(A" !, C) Xpypan—1 ¢y Fun(A*, S)

induced by i, is a trivial Kan fibration.
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Proof We proceed by induction on 7, the base case n = 1 being the left marked
anodyne map A0} — uAl = (A!)*. Consider the commutative diagram

A L gAT—2 —y A0} AL2..m)

Ui l

(A{O}*Ag_l,%) _— nAg in

|

TAY

where € is the collection of edges {0,i}, 0 <i < n (and the degenerate edges). The
square is a pushout, and by the inductive hypothesis, the left-hand vertical map is left
marked anodyne. We deduce that i, is left marked anodyne. The second statement
now follows because the lifting problem

A > Fun(yA", 4C)

B ““— Fun(A""!, C) Xpyn(an—1,cy Fun(A", S)

transposes to
AX A" Ugoepn—1 Bx N1 ——4C

BXnAn )

and the left-hand vertical map is left marked anodyne for any cofibration A — B by [9,
Proposition 3.1.2.3]. a

The main case of interest in Lemma 2.23 is when n = 1, which shows that
0 (C) — C x5 0(S)
is a trivial Kan fibration. Let
P:C x5 0(S) — 0°(C)

be a section that fixes the inclusion C C 0°°@(C) (for this, note that C C C x5 O(S)
is a cofibration as it is a monomorphism of simplicial sets). Then we say that P or
the further composite P’ = evy oP is a cocartesian pushforward for C — S. Given
an edge « of S, P}: Cs — C; is the pushforward functor oy determined under the

cocart ~_

equivalence Cat_} s Fun(S, Cateo).
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Functoriality in the base

Let w: X — Z be a map of simplicial sets. Then the pullback functor
n*:sSet)z — sSet,x

admits a left adjoint my, given by postcomposing with . In addition, since sSet is a
topos, * also admits a right adjoint 7., which may be thought of as the functor of
relative sections because Hom, x (A, 7« (B)) = Hom,z (A xx Z, B).

Now supposing that 7 is a map of marked simplicial sets, 7*, my, and 7« extend to
functors of marked simplicial sets over X or Y in an evident manner. We then seek
conditions under which the adjunctions 71y 4 7* and 7* - 74 are Quillen with respect
to the cocartesian model structures. To this end, we have the following theorem of
Lurie.

2.24 Theorem [11, Theorem B.4.2] Let
(Z,&) <& (X, F) L (X', F)
be a span of marked simplicial sets such that Z, X, X' are oo—categories and the
collections of markings contain all the equivalences.
(i) The adjunction

Qg + .
pPr: Sset/(X’]_-) zsset/(X’,f’) Yy

is Quillen with respect to the cocartesian model structures.
(i1) Further suppose that:
(1) For every object x € X and marked edge f: z — mw(x) in Z, there exists a
locally w—cartesian edge xo — x in X lifting f .
(2) m is a flat categorical fibration.
(3) & and F are closed under composition.

(4) Suppose given a commutative diagram

X1
7' x
h
X0 > X2

in X where g is locally w—cartesian, w(g) is marked, and 7w (f) is an

equivalence. Then f is marked if and only if h is marked. (Note in particular
that, taking f to be an identity morphism, every locally —cartesian edge
lying over a marked edge is itself marked.)
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Then the adjunction
* + + .
b4 .sSet/(X’F) <:>sSet/(Z,€) DTk

is Quillen with respect to the cocartesian model structures.
We formulated Theorem 2.24 as a theorem concerning a span Z <% X -5 X’ because
in applications we will typically be interested in the composite Quillen adjunction

o™ sSetf(Z’g) = sSet;“(X,’P) e pt
Here are two examples.
2.25 Example (pairing cartesian and cocartesian fibrations) Let 7: X — Z be a
cartesian fibration. Then the span
VARESD CRAN 4.

satisfies the hypotheses of Theorem 2.24. Now given a cocartesian fibration ¥ — Z,
define
Funz(X,Y) := (man®) (Y — Z).

Then the fiber of ﬁl:?lz(X, Y) over an object z € Z is Fun(X;, Y;), and given a
morphism «: zg — z1, the pushforward functor

ar: Fun(X3;,, Y;,) = Fun(X;,,Y;,)
is given by precomposition in the source and postcomposition in the target. Note how

this example highlights the relevance of condition (1) in Theorem 2.24(ii).

2.26 Example (right Kan extension) Let f:Y — Z be a functor. We can apply
Theorem 2.24 to perform the operation of right Kan extension at the level of cocartesian
fibrations. Consider the span

ZF 0 (0(Z) xz 5 Y)Y Y E
Then the conditions of Theorem 2.24 are satisfied, so we obtain a Quillen adjunction
(pry)i(evo)™: sSeter = sSeth :(evo)«(pry)*.

In addition, the map C xz Y# — C xz 0(Z)# xz Y*# induced by the identity section
t: Z — 0(Z) is a cocartesian equivalence in sSet]LY for C — Z fibrant in sSet]LZ, by
[2, Lemma 9.8]. Consequently, the induced adjunction of co—categories

(pry ) (evo)™: Catggc/ag s Catggc/a;} :(evo)«(pry)*
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is equivalent to
f*:Fun(Z, Catso) == Fun(Y, Cateo) : f

under the straightening/unstraightening equivalence (which is natural with respect to
pullback).

Note that as a special case, if Z = A® we recover the formula Funy (Y, 1C) ~ lim F¢
of [9, Corollary 3.3.3.2] (where C — Y is a cocartesian fibration and F¢:Y — Cats
the corresponding functor). Indeed, this construction of the right Kan extension of a
cocartesian fibration is suggested by that result and the pointwise formula for a right
Kan extension.

Finally, we will use the following two observations concerning the interaction of
Theorem 2.24 with compositions and homotopy equivalences of spans — which we
also recorded in [4].

2.27 Lemma Suppose we have spans of marked simplicial sets
Xo < Zo 2 X1 and X; <L 725 X,
which each satisfy the hypotheses of Theorem 2.24. Then the span
Zo &8 Zoxx, Z1 25 7,

also satisfies the hypothesis of Theorem 2.24.'* Consequently, we obtain a Quillen
adjunction

(p1 opry)i(moopry)™: sSet}"XO s sSet)‘("2 :(mo o prg)«(p1 0pry)*,

which is the composite of the Quillen adjunction from sSeterO to sSet}LX1 with the one

+ +
from sSet/X1 to sSet/XZ.

Proof The assertion that the span satisfies the hypotheses of Theorem 2.24 is by
inspection. The other assertion that the Quillen adjunction factors as a composite
follows from the base-change isomorphism pg 7y « = prg , o pry. |

14However, one should beware that the “long” span Xg < Zg X x, Z1 — X2 may fail to satisfy the
hypotheses of Theorem 2.24, because the composition of locally cartesian fibrations may fail to again be
locally cartesian; this explains the roundabout formulation of the statement.
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2.28 Lemma Suppose a morphism of spans of marked simplicial sets

v Z@X

X ¢ .

4 /

0

where py7* and (p')\(')* are left Quillen with respect to the cocartesian model
structures on X and X’'. Suppose moreover that f is a homotopy equivalence in
sSeter,, so that there exists a homotopy inverse g and homotopies

h:id~gof and k:idx~ fog.
Then the natural transformation pyr* — (p')1(zr")* induced by f is a cocartesian
equivalence on all objects, and, consequently, the adjoint natural transformation
(")« (p)* — m«p* is a cocartesian equivalence on all fibrant objects.
Proof The homotopies / and k pull back to show that for all X — C, the map
idy Xxc f: X xc K— XXxcL
is a homotopy equivalence with inverse idy x¢ g. The last statement now follows from

[7, Corollary 1.4.4(b)]. m|

Parametrized fibers

In this brief subsection, we record notation for the S—fibers of an S—functor.

2.29 Notation Given an S—category w: D — S and an object x € D, define
Ox— (D) :={x} xp O(D).
For the full subcategory of cocartesian edges 0°°**(D) C O(D), also define
X :={x} xp O°(D).
Given an S—functor ¢p: C — D, define
Cx:=xxpgC.
Note that by definition, the objects of x are m—cocartesian edges in D with source x.

Then by the right cancellative property of w—cocartesian edges [9, Lemma 2.4.2.7],
the morphisms in x are 2—simplices of cocartesian edges with source x; hence x is
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an S—space (via the map evy: x — §). In fact, by Lemma 12.10, evy: x — S7X/ s a
trivial fibration, so we may think of x as an “S—point” of D.

In view of this, we will also regard Cy as an S7” x/ —category (and we will sometimes
be cavalier about the distinction between x and S™* /). Note however, that the functor
x — D is canonical in our setup, whereas we need to make a choice of cocartesian
pushforward to choose an S—functor S” X/ - D that selects x € D.

3 Functor categories

Let S be an oo—category. Then Fun(S, Cats) is cartesian closed, so it possesses an
internal hom. As a basic application of Theorem 2.24, we will define this internal hom
at the level of cocartesian fibrations over .

3.1 Proposition Let C — S be a cocartesian fibration. Let evy,evy:0(S)xsC — S
denote the source and target maps. Then the functor

J’_

(evi)i(evp)™: sSetjrS — sSet/G(S)ﬁXSuC

+
— sSet/S

is left Quillen with respect to the cocartesian model structures.

Proof We verify the hypotheses of Theorem 2.24 as applied to the span
S0 0(8)F x5 4C X5 SH

By [9, Corollary 2.4.7.12], evg is a cartesian fibration and an edge ¢ in O(S) xg C
is evg—cartesian if and only if its projection to C is an equivalence. Thus (1) holds.
Item (2) holds since cartesian fibrations are flat categorical fibrations. Item (3) is
obvious. Item (4) follows from the stability of cocartesian edges under equivalence. O
3.2 Definition In the statement of Proposition 3.1, let

Fung (C, —) := (evg)«(evy)™: sSetjrS — sSetjrS.
We will also write this as Fung (;C, —) if we wish to emphasize the marking.
Proposition 3.1 implies that if D — S is a cocartesian fibration, then Fung (C, D) — S is

a cocartesian fibration. Unwinding the definitions, we see that an object of Fung (C, D)
over s € S is an §%/—functor

§% xgC — S xg D,
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and a cocartesian edge of Fung(C, D) over an edge e: Al — S isa Al x 5 0(S)-functor
Al x5 0(S) x5 C — Al x5 0(S) x5 D.

Our first goal is to prove that the construction Fung (C, —) implements the internal hom
at the level of underlying co—categories. To this end, we have the following lemma
and proposition.

3.3 Lemma Let(: S — O(S) be the identity section and regard O(S ) as a marked
simplicial set over S via the target map. Then:

(1) For every marked simplicial set X — S and cartesian fibration C — S,
idy x txidc: X x5 C" — X x5 0(S)* x5 C"
is a cocartesian equivalence in sSet;rS.
(1") For every marked simplicial set X — S and cartesian fibration C — S,
(xidc: X xg C! —>Fun((A1)ﬁ,X) xg C"

is a cocartesian equivalence in sSet;"S, where the marked edges in Fun((A!)#, X)
are the marked squares in X .

(2) For every marked simplicial set X — S and cocartesian fibration C — S,
ide x ¢ xidy: jC x5 X = 4C x5 0(S)* x5 X

is a homotopy equivalence in sSeth.

Proof (1) Because —xgC : preserves cocartesian equivalences, we reduce to the case
where C = S. By definition, X — X xg 0(S)¥ is a cocartesian equivalence if and only
if for every cocartesian fibration Z — §, Map‘_ig (X x5 0(S)H, 1 Z) — Mapi. (X,42)
is a trivial Kan fibration. In other words, for every monomorphism of simplicial sets
A — B and cocartesian fibration Z — S, we need to provide a lift in the commutative
square

B¥ X X Uyzy y (A% x X) x5 O(S)# % nZ

(B¥x X)xgO(S)f ——— S*
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Define hg: 0(S)* x (A)# — 0(S)* to be the adjoint to the map 0(S)* — 0(0(S))*
obtained by precomposing by the map of posets Al x Al — Al which sends (1, 1) to 1
and the other vertices to 0. Precomposing ¢ by id 4z, y X ho, define a homotopy

h: (A% x X) x5 0(S)F x (AHF - 7
from @6 x ©Prasxx 0 @|(atxx)xg0(s):- Using i and @| e x, define a map
¥ B X X Ugsyx (A% X X) x5 0(S)* — Fun((AHY, 1 2)

such that Y| gs, x is adjoint to ¢|gu, x o praexx and V| 4 x)xso(s)t 1S adjoint to A.
Then we may factor the above square through the trivial fibration

Fun((AY¥,,Z) — 1 Z x5 0(S)*
to obtain the commutative rectangle:

B % X Ugerex (A% x X) x5 6(S)F —L Fun((AD)?,,2) —s ,Z

(B¥ x X) x5 O(S)f —————— 1 Z x5 0(S) —— ¥
¢|Bn><XX1d

The dotted lift 1; exists, and e o 1} is our desired lift.
(1) Repeat the argument of (1) with Fun((A)¥, X) in place of @(S)ﬁ.

(2) Let p: C — S denote the structure map and let P be a lift in the commutative

square
{C ——<— Fun((A1*,,0)
L 2 2feoson
1C Xs @(S)ﬁ' 1C x5 0(S)*
Let

g = (e1 xidy) o (P xidy): 4;C x5 O(S)F x5 X — 4C x5 X

and note that g is a map over S. We claim that g is a marked homotopy inverse of
f =id¢ xt xidy. By construction, g o f = id. For the other direction, define

ho: Fun((AhF,4C) x (AH¥ - Fun((AH¥, ,C)
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as the adjoint of the map Fun((A")%, 1C) — Fun((A! x Al)#, 1C ) obtained by precom-
posing by the map of posets Al x Al — Al which sends (0, 0) to 0 and the other
vertices to 1. Define

hiyC x5 0(S) xs X x (AHYF - ,C x5 0(S)* x5 X

as the composite ((eg, O(p)) x X) o (ho X X) o (P Xidy,(a1)z). Then i is a homotopy
over S fromidto f og. |

3.4 Proposition Let C,C’, D — S be cocartesian fibrations and let F: C — C' be a
monomorphism of cocartesian fibrations over S (so preserving cocartesian edges). For
all marked simplicial sets Y over S, the map

Fung (;D, Fung (;C',Y)) — Funs (1D x5 4C", Y) Xpung (;Dx55C.v) Funs (;D, Fung (;C, Y))
which precomposes by F is a trivial Kan fibration.
Proof From the defining adjunction, for all X,Y € sSet?'S we have a natural isomor-

phism
Fung (X, Fung (;C, Y)) = Fung (X x5 0(S)* x5 C,Y)

of simplicial sets. Since Fung (—, —) is a right Quillen bifunctor, the assertion reduces
to showing that

yD X5 UC/UnDXSt]C gD Xs@(S)‘:t xsyC — 4D xg @(S)tt XS nC/

is a trivial cofibration in sSetjrS, which follows from Lemma 3.3(2). m|

In Proposition 3.4, letting C = @ and Y = yE for another cocartesian fibration
E — S, we deduce that Fung(C’, —) is right adjoint to C’ xg — as an endofunctor
of Fun(S, Cat,). Further setting D = S, we deduce that the category of cocartesian
sections of Fung (4C, 1 £) is equivalent to Fung (4C, y£). We will employ the following
notation to explicitly track objects under this correspondence.

3.5 Notation Given a map f: ;C — E, let oy denote the cocartesian section

St Fung (4C,4E) given by adjointing the map 0(S)# xg e e, e AN hE.

We next study varying the second variable in the construction Fung (—, —).
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3.6 Lemma Let C — D be a fibration of marked simplicial sets over S .
(1) Let K — S be a cocartesian fibration. Then
Fung(;K,C) — Fung (4K, D) xp C

is a fibration in sSetjrS.

(2) The map
Fung (S*,C) — Fung(S*, D) xp C

is a trivial fibration in sSetjrS.
Proof Leti: A — B be a map of marked simplicial sets. For (1), we use that if i is a
trivial cofibration, then
By Axs0(S) x5 4K — B xs0(S) xs 1K

is a trivial cofibration, which follows from Proposition 3.1. For (2), we use that if i is a
cofibration, then
By Axg0(S)* > Bxg0(S)

is a trivial cofibration, which follows from Lemma 3.3(1). a
The following proposition indicates that we can promote the conclusion Fung (S, —) ~id
(as an endofunctor of Fun(S, Caty)) of Proposition 3.4 to the level of cocartesian
model structures. It will not be used in the sequel and is included only for illustrative
purposes.
3.7 Proposition The Quillen adjunction

—Xg @(S)ﬂ : sSet;rS = sSeth :mS(Sﬁ, -)

is a Quillen equivalence.

Proof We first check that for every cocartesian fibration C — S, the counit map
Fung (S*,4C) x5 0(S)F — 4C
is a cocartesian equivalence. By Lemma 3.3(1), it suffices to show that

Fung (S%,,C) —C
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is a trivial marked fibration, which follows from Lemma 3.6(2) (taking D = ). We
now complete the proof by checking that — x g O(S )* reflects cocartesian equivalences;
ie given the commutative square

A—— B

! !

Axg0(S)F —— Bxg0(S)H

if the lower horizontal map is a cocartesian equivalence over S (with respect to the
target map) then the upper horizontal map is a cocartesian equivalence over S. But the
vertical maps are cocartesian equivalences by Lemma 3.3(1). a

The construction Fung (—, —) does not make homotopical sense when the first variable
is not fibrant, so it does not yield a Quillen bifunctor. Nevertheless, we can say the
following about varying the first variable.

3.8 Proposition Let K, L, and C be fibrant marked simplicial sets over S, let
f: K — L be amap and let

f*:Fung(L,C) — Fung(K, C)
denote the induced map.

(1) Suppose that f is a cocartesian equivalence over S. Then f* is a cocartesian
equivalence over S.

(2) Suppose that f is a cofibration. Then f* is a fibration in sSetjrS.
Proof (1) It suffices to check that for all s € S, f* induces a categorical equivalence
between the fibers over s, ie that
Fung ((S*/)* xg L, C) — Fung ((S*/)* x5 K, C)

is a categorical equivalence. Our assumption implies that (S5/)# xg K — (S*/)# xg L
is a cocartesian equivalence over S, so this holds.

(2) For any trivial cofibration A — B in sSet'S", we need to check that
Axs0(S)xs LUgxs0(5)xsk B x5 0(S) xs K — B xg50(S) xg L

is a trivial cofibration in sSetjrS. By Proposition 3.1, — x5 O(S) xg K preserves trivial
cofibrations and ditto for L. The result then follows. O
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A final word on notation: since Fung(—, —) is only homotopically meaningful (and
fibrant) when both variables are fibrant, we will henceforth cease to denote the markings
on the variables.

S —categories of S —objects

For the convenience of the reader, we briefly review the construction and basic properties
of the S—category of S—objects in an co—category C. This is a construction, at the
level of marked simplicial sets, of the right adjoint to the Grothendieck construction
functor!®

Gry: Catcoc/agt — Caty,, (C— S)—C.

This material is originally due to Denis Nardin in [2, Section 7].

3.9 Construction [2, Definition 7.4] The span
St 0 g(5)" £

defines a rlght Quillen functor (evg)«p*: sSet™ — sSet /s which sends an co—category
E to Fung (0(S), E x S) (cf Example 2.25). This is the S—category of objects in E,
which we will denote by Eg.

The next proposition shows that the functor £ — E g indeed implements the right
adjoint to Gry .

3.10 Proposition Suppose C an S—category and E an co—category. Then we have an
equivalence
¥ : Fung(C, Eg) = Fun(C, E).

Proof Consider the commutative diagram

C~ —— 0(S)F —— A0

[

nC—)Sﬁ

|

AO

I5We write Gry to distinguish from Notation 2.6.

Algebraic € Geometric Topology, Volume 23 (2023)



Parametrized higher category theory 539

Given an co—category E, traveling along the outer span (ie pulling back and then pushing
forward) yields Fun(C, E), traveling along the two inner spans yields Fung(C, E's),
and the comparison functor v is induced by the map ¢: C~ — {C x5 O(S )11_ By
[2, Proposition 6.2], ¢ is a homotopy equivalence in sSetjrS. Therefore, combining
Lemma 2.27 and Lemma 2.28, we deduce the claim. O

3.11 Notation Given an S—functor p: C — Eg, let pT: C — E denote the corre-
sponding functor under the equivalence of Proposition 3.10.

3.12 Example Let E = Spc or Cats,. Then Speg (resp. Caty, ) is the S—category
of S—spaces (resp. S—categories). In particurar, suppose £ = Spc and § = 02).
Then we also call S_pcozn;: the G—oo—category of G—spaces. Note that the fiber of this
cocartesian fibration over a transitive G—set G/H is equivalent to the co—category of
H—spaces Fun(OE), Spe), and the pushforward functors are given by restriction along
a subgroup and conjugation.

3.13 Remark Let C be an S—category and 7n: X — C a left fibration. Then &
straightens to a functor F': C — Spe, which under the equivalence of Proposition 3.10
corresponds to an S—functor F’: C — Spes. We will say that & S—straightens to F’.
Similarly, if 7 is a cocartesian ﬁbration,ﬁen 7 S—straightens to an S—functor valued
in Cat 5.

4 Join and slice

The join and slice constructions are at the heart of the oo—categorical approach to limits
and colimits. In this section, we introduce relative join and slice constructions and
explore their homotopical properties.

The S —join

4.1 Definition Let:: S x dA! — § x Al be the inclusion. Define the S—join to be
the functor
(— * g —) =k Sset/SXaAl — sSet/SxAl .

Define the marked S—join to be the functor

+

(— x5 —) 1= tx: sSetjr‘S,ﬁX((,)Al)b — sSet/SﬁX(Al)b.
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4.2 Notation Given X and Y, marked simplicial sets over S, we will usually refer to
the structure maps to S by r1: X — S, ma: Y — S,and n: X x5 ¥ — S. Explicitly,
an (i +j+1)-simplex A of X xg Y is the data of simplices 0: A" — X, t: A/ > Y,
and A/: A x A/ — S such that the diagram

JA\ R\ N,V R—V

O

T 2

X > S < Y

commutes; we then have that A’ = 7 o A. We will sometimes write A = (o, ) S0 as to
remember the data of the i —simplex of X and the j—simplex of Y in the notation. If
given an n—simplex of X xg Y, we will indicate the decomposition of A" given by the
structure map to Al as A0 x A" (with either side possibly empty).

4.3 Proposition Let:: S x dA! — § x Al be the inclusion. Then

(@) tx:5Set/ g ga1 — sSet; g, a1 is a right Quillen functor.

(b) tx: sSetj‘SﬁX(aAl)b — sSetj’Snx(Al)»

Consequently, if X and Y are categorical (resp. cocartesian) fibrations over S, then

is a right Quillen functor.

X xg Y is a categorical (resp. cocartesian) fibration over S, with the cocartesian edges
given by those in X and Y .

Proof For (b), we verify the hypotheses of Theorem 2.24(ii). All of the requirements
are immediate except for (1) and (2).

(1) Let (s,i) be a vertex of S¥ x (9A1)?, i = 0 or 1. Let fi(s'i") > (s,i)be a
marked edge in S¥ x (A')*. Then i’ =i and f viewed as an edge in S¥ x (A" is
locally (—cartesian.

(2) Tt is obvious that dA! < Al is a flat categorical fibration, so by stability of flat
categorical fibrations under base change, S x Al < S x Al is a flat categorical
fibration.

Part (a) also follows from (2) by [11, Proposition B.4.5]. By (a), if X and Y are
categorical fibrations over S, X g Y is a categorical fibration over S x Al. The
projection map S x Al — § is a categorical fibration, so X g Y is also a categorical
fibration over S. By (b), if X and Y are cocartesian fibrations over S, p X xg Y is
fibrant in sSet;rSﬁx (Al
1 X *s yY is marked as a cocartesian fibration over S. O

Since S* x (A!)" is marked as a cocartesian fibration over S,
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We have the compatibility of the relative join with base change.

44 Lemma Let f:T — S be a functor and let X and Y be (marked) simplicial sets
over S. Then we have a canonical isomorphism

XxsY)xsT=(XxsT)*x7 (Y xsT).

Proof From the pullback square

Tx Al —L5 T x Al

l fxid l fxid

Sx Al 5 5 x Al
we obtain the base-change isomorphism f*(t5)x = (t7)« f ™. O
In [9, Section 4.2.2], Lurie introduces the relative “diamond” join operation ¢ g, which
we now recall. Given X and Y marked simplicial sets over S, define

Xos¥ =X Uyxgyxioy X xs ¥ x (AN Uysgysqny Y.
There is a comparison map
Vxy): XosY - XxsY =u(X,Y),

adjoint to the isomorphism (*(X x5 Y) = (X, 7).

4.5 Lemma Let X be a marked simplicial set. Then {(x s): X ¢5 St X x5 SH
is a cocartesian equivalence in sSet]LS. Dually, if X is in addition fibrant, then

V(s.x): Stog X — S*xg X is a cocartesian equivalence in sSeth.

Proof We first address the map ¥ (x s). By left properness of the cocartesian model
structure, the defining pushout for X ¢ .S fisa homotopy pushout. By Theorem 4.16,16
—xg SH preserves cocartesian equivalences. Therefore, choosing a fibrant replacement
for X and using naturality of the comparison map ¥(x,s), we may reduce to the case
that X is fibrant. Then we have to check that

X x {1} —— X x (A’

| |

St — 5 X xg St

16There is no circularity since Lemma 4.5 is only later referenced in this paper at the beginning of
Section 9.

Algebraic € Geometric Topology, Volume 23 (2023)



542 Jay Shah

is a homotopy pushout square. Since this is a square of fibrant objects, this assertion
can be checked fiberwise, in which case it reduces to the equivalence X5 o A =» X™
of [9, Proposition 4.2.1.2].

The second statement concerning (s, x) follows by the same type of argument, but
without the reduction step. O
4.6 Warning In general, {¥(x y) is not a cocartesian equ