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We study the Floer-theoretic interaction between disjointly supported Hamiltonians
by comparing Floer-theoretic invariants of these Hamiltonians with the ones of their
sum. These invariants include spectral invariants, boundary depth and Abbondandolo,
Haug and Schlenk’s action selector. Additionally, our method shows that in certain
situations, the spectral invariants of a Hamiltonian supported in an open subset of a
symplectic manifold are independent of the ambient manifold.
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1 Introduction and results

The paper deals with Hamiltonian diffeomorphisms of symplectic manifolds, which
model the Hamiltonian dynamics on phase spaces in classical mechanics. A central
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646 Yaniv Ganor and Shira Tanny

tool for studying Hamiltonian diffeomorphisms is Floer theory, which is an infinite-
dimensional version of Morse theory applied to the action functional on the space
of contractible loops. As such, Floer theory associates a chain complex to each
Hamiltonian, which is generated by the critical points of the action functional and
whose differential counts certain negative gradient flow lines, called Floer trajectories.

Our main object of interest is Floer theory for Hamiltonians supported in pairwise dis-
joint open sets, namely F DF1C� � �CFN where Fi is supported in Ui and U1; : : : ; UN
are pairwise disjoint. On the level of dynamics, the Hamiltonian diffeomorphisms 'i
corresponding to Fi do not interact. The Hamiltonian diffeomorphism corresponding
to F is the composition ' D '1 ı � � � ı'N , and the diffeomorphisms 'i commute. How-
ever, it is unclear a priori whether in Floer theory there is any communication between
the disjointly supported Hamiltonians Fi . The Floer-theoretic interaction between
disjointly supported Hamiltonians was studied by Polterovich [15], Seyfaddini [19],
Ishikawa [13] and Humilière–Le Roux–Seyfaddini [12], mostly through the relation
between invariants of the sum of Hamiltonians and invariants of each one. These works
suggest that such an interaction should be quite limited. The main finding of this paper
is a construction, on symplectically aspherical manifolds and under some conditions
on the domains Ui , of what we call a “barricade” — a specific perturbation of the
Hamiltonians Fi near the boundaries of Ui , which prevents Floer trajectories from
entering or exiting these domains. The presence of barricades limits the communication
between disjointly supported Hamiltonians as expected. The construction is motivated
by the following simple idea in Morse theory. Given a smooth function F on a
Riemannian manifold, which is supported inside an open subset U, one can perturb
it into a Morse function f that has a “bump” in a neighborhood of the boundary, as
illustrated in Figure 1. The negative gradient flow-lines of f cannot cross the bump,
and therefore a flow-line starting inside U, and away from the boundary, remains there.
On the other hand, flow-lines that start on the bump can flow both in and out of U.
Since the Morse differential counts negative gradient flow-lines, such constraints can
be used to gain information about it.

This idea can be adapted to Floer theory on symplectically aspherical manifolds (that is,
when the symplectic form ! and the first Chern class c1 vanish on �2.M/), and
under certain assumptions on the domain U. The resulting construction can be used
to study Floer-theoretic invariants, such as spectral invariants and the boundary depth,
of Hamiltonians supported in such domains. Spectral invariants measure the minimal
action required to represent a given homology class in Floer homology. These invariants
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≈F f

Figure 1: We perturb the function F to create a small “bump” along a neigh-
borhood of @U. The dashed lines represent (some of the) flow-lines of
�gradf .

play a central role in the study of symplectic topology and Hamiltonian dynamics. Using
the barricades construction, we prove that the spectral invariants with respect to the
fundamental and the point classes of Hamiltonians supported in certain domains do not
depend on the ambient manifold. This result is stated formally in Section 1.1.1. Another
application of the barricades construction concerns spectral invariants of Hamiltonians
with disjoint supports. This problem was studied in Ishikawa [13], Polterovich [15]
and Seyfaddini [19] and lastly in Humilière, Le Roux and Seyfaddini [12]. Humilière,
Le Roux and Seyfaddini proved that the spectral invariant with respect to the funda-
mental class satisfies a “max formula”, namely, the invariant of a sum of disjointly
supported Hamiltonians is equal to the maximum over the invariants of the summands.
This property does not hold for a general homology class. However, using barricades we
show that an inequality holds in general; see Section 1.1.2. A third application of this
method concerns the boundary depth, which was defined by Usher in [21] and measures
the maximal action gap between a boundary term and its smallest primitive in the Floer
chain complex; see Section 1.1.3. We prove a relation between the boundary depths of
disjointly supported Hamiltonians and that of their sum. The last application concerns
a new invariant that was constructed by Abbondandolo, Haug and Schlenk in [1]. We
give a partial answer to a question they posed, asking whether a version of Humilière,
Le Roux and Seyfaddini’s max formula holds for the new invariant; see Section 1.1.4.

1.1 Results

The limitation in Floer-theoretic interaction between disjointly supported Hamiltonians
is reflected through Floer-theoretic invariants of these Hamiltonians and their sum. In
order to define these invariants, we briefly describe filtered Floer homology. For more
details, see Section 2 and the references therein. Throughout the paper, .M;!/ denotes
a closed symplectically aspherical manifold, namely, !j�2.M/ D 0 and c1j�2.M/ D 0,
where c1 is the first Chern class of M. Given a Hamiltonian F WM �S1!R, its
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symplectic gradient XF is the time-dependent vector field given by the equation

!.XFt ; � /D�dFt . � /; where Ft . � / WD F. � ; t /:

The 1–periodic orbits of the flow of XF , whose set is denoted by P.F /, correspond
to critical points of the action functional associated to F , and generate the Floer
complex CF�.F /. The differential of this chain complex is defined by counting certain
negative-gradient flow lines of the action functional, and therefore decreases the value
of the action. Note that the gradient of the action functional is taken with respect to
a metric induced by an almost complex structure J on M. The homology of this chain
complex, denoted by HF�.F /, is known to be isomorphic to the singular homology
ofM up to a degree-shift,HF�.F /ŠH�Cn.M IZ2/. The complex CF�.F / is filtered
by the action value, namely, for every a 2R, we denote by CF a� .F / the subcomplex
generated by 1–periodic orbits whose action is not greater than a. The homology of
this subcomplex is denoted by HF a� .F /.

In what follows we present four applications of the barricades construction, which
is an adaptation to Floer theory of the idea presented in Figure 1, and is described
in Section 1.2. The barricade construction applies for Hamiltonians supported1 in
certain admissible domains, which include images of symplectic embeddings of nice
star-shaped2 domains in R2n into M. In order to present this class in full generality we
need to recall a few standard notions. Let U �M be a domain with a smooth boundary.
We say that U has a contact type boundary if there exists a vector field Y , called the
Liouville vector field, that is defined on a neighborhood of @U, is transverse to @U,
points outwards from U and satisfies LY! D !. If the Liouville vector field Y extends
to U, the closure of U is called a Liouville domain. Finally, a subset X �M is called
incompressible if the map �� W �1.X/! �1.M/ induced by the inclusion X ,!M is
injective. In particular, every simply connected subset is incompressible.

Definition 1.1 An open subset U � M with a smooth boundary is called a CIB
(Contact Incompressible Boundary) domain if for each connected component Ui of U,
one of the following assertions holds:

(i) @Ui is of contact type and is incompressible.

(ii) The closure of Ui is an incompressible Liouville domain.

1When we say that a Hamiltonian F is supported in a subset U of M, we actually mean that the function
F WM �S1!R is supported in U �S1.
2A nice star-shaped domain is a bounded star-shaped domain in R2n with a smooth boundary, such that
the radial vector field is transverse to the boundary.
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Figure 2: Two embeddings of the annulus into T2. The embedding on the left
is incompressible (as well as its boundary) and hence is a CIB domain. The
embedding on the right is contractible in T2 and therefore not incompressible.

Example 1.2 � The image under a symplectic embedding of a nice star-shaped
domain in R2n into M is a CIB domain.

� A noncontractible annulus in M D T2 is a CIB domain. More generally, if
M DT2nDCn=Z2n, then certain tubular neighborhoods of LDRn=Zn in M
are CIB domains.

Remark 1.3 � A disjoint union of CIB domains is again a CIB domain.

� The interior of every incompressible Liouville domain is a CIB domain.

� Every CIB domain is incompressible, as the fact that @U is incompressible
implies that U is incompressible; see the appendix.

1.1.1 Locality of spectral invariants and Schwarz’s capacities For a homology
class ˛2H�.M IZ2/ and a Hamiltonian F , the spectral invariant c.F I˛/ is the smallest
action value a for which ˛ appears in HF a� .F; J /, namely,

c.F I˛/ WD inffa j ˛ 2 im.�a�/g;

where �a� WHF
a
� .F /!HF�.F / is induced by the inclusion �a W CF a� .F / ,! CF�.F /.

The following result states that the spectral invariants with respect to the fundamental
and the point classes, of a Hamiltonian F supported in a CIB domain, do not depend on
the ambient manifold M. More formally, let U �M be a CIB domain and assume that
there exists a symplectic embedding‰ WU ,!N ofU into another closed symplectically
aspherical manifold .N;�/, such that‰.U / is a CIB domain inN . Denote by cM . � I � /
and cN . � I � / the spectral invariants in the manifolds M and N , respectively.

Theorem 1 Let F WM �S1!R be a Hamiltonian supported in U. Then

(1) cM .F I ŒM �/D cN .‰�F I ŒN �/ and cM .F I Œpt�/D cN .‰�F I Œpt�/;

where ‰�F WN �S1!R is the extension by zero of F ı‰�1.
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The assertion of Theorem 1 does not hold when M is not symplectically aspherical,
or when U is not incompressible in M. This is shown in Example 4.6. Theorem 1
also holds for the spectral invariants defined by Frauenfelder and Schlenk [9] on open
manifolds obtained as completions of compact manifolds with contact-type boundaries;
see Remark 5.1. Moreover, Theorem 1 can be extended to certain other homology
classes, as stated in Claim 5.3. One corollary of Theorem 1 concerns Schwarz’s relative
capacities.3

Definition 1.4 (Schwarz [18]) Let .M;!/ be a symplectically aspherical manifold.
For a subset A�M define the spectral capacity by

(2) c
 .AIM/ WD supfc.F I ŒM �/� c.F I Œpt�/ j suppXF � A�S1g:

In [18], Schwarz shows that if the spectral capacity of the support of XF is finite and
'1F ¤ 1, then the Hamiltonian flow of F has infinitely many geometrically distinct
nonconstant periodic points corresponding to contractible solutions. In Section 4, we
use Theorem 1 to show that when A is a contractible domain with a contact-type
boundary, its spectral capacity does not depend on the ambient manifold.

Corollary 1.5 Let S be the set of contractible compact symplectic manifolds with
contact-type boundaries that can be embedded into symplectically aspherical manifolds ,
eg nice star-shaped domains in R2n. Then:

� Schwarz’s spectral capacities fc
 . � IM/g induce a capacity c
 on the class of
symplectic manifolds X which are exhaustible by elements from S, namely there
exist Ai 2 S such that

A1 � A2 � � � � �X and X D
[
i

Ai :

� c
 .AIM/ is finite for every A�M such that A 2 S and can be symplectically
embedded into .R2n; !/, that is ,

(3) c
 .AIM/D c
 .A/� 2e.AIR
2n/ <1;

where e.AIR2n/ is the displacement energy4 of A in R2n.

3We recall the definition of a capacity in Section 4.
4We recall the definition of the displacement energy in Section 2, equation (20).
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Here we used the fact that every bounded subset of R2n is displaceable with finite
energy. The proof of Corollary 1.5, as well as the definition of c
 , appears in Section 4.

Another corollary of Theorem 1 concerns the notions of heavy and superheavy sets,
which were introduced by Entov and Polterovich in [7]: A closed subset X �M is
called heavy if

�.F /� inf
X�S1

F for all F 2 C1.M �S1/;

and is called superheavy if

�.F /� sup
X�S1

F for all F 2 C1.M �S1/;

where
�.F / WD lim

k!1

c.kF I ŒM �/

k

is the partial symplectic quasistate associated to the spectral invariant c and the funda-
mental class. The following corollary was suggested to us by Polterovich.

Corollary 1.6 Let M be a symplectically aspherical manifold and let A �M be a
contractible domain with a contact-type boundary that can be symplectically embedded
in .R2n; !0/. Then M nA is superheavy. In particular , A does not contain a heavy set.

Corollary 1.6 can be viewed as an extension of the results of [13] to a wider class
of domains, when restricting to symplectically aspherical manifolds. Theorem 1 and
Corollaries 1.5 and 1.6 are proved in Section 4.

1.1.2 Max-inequality for spectral invariants In [12], Humilière, Le Roux and Sey-
faddini proved a max formula for the spectral invariants, with respect to the fundamental
class, of Hamiltonians supported in the interiors of disjoint incompressible Liouville
domains in symplectically aspherical manifolds.

Theorem (Humilière–Le Roux–Seyfaddini [12, Theorem 45]) Let F1; : : : ; FN be
Hamiltonians whose supports are contained , respectively , in the interiors of pairwise
disjoint incompressible Liouville domains U1; : : : ; UN . Then

c.F1C � � �CFN I ŒM �/Dmaxfc.F1I ŒM �/; : : : ; c.FN I ŒM �/g:

The existence of barricades can be used to give an alternative proof for this theorem, as
well as to prove a version of it for other homology classes. Clearly, other homology
classes do not satisfy such a max formula — for example, by Poincaré duality the class
of a point satisfies a min formula. However, an inequality does hold for a general
homology class.
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Theorem 2 Let F and G be Hamiltonians supported in disjoint CIB domains and let
˛ 2H�.M/. Then

(4) c.F CGI˛/�maxfc.F I˛/; c.GI˛/g:

Moreover , when ˛ D ŒM �, we have an equality.

Notice that, by definition, the interior of every incompressible Liouville domain is
a CIB domain. Moreover, a disjoint union of CIB domains is again a CIB domain.
Hence, the inequality for N Hamiltonians follows by induction. We also mention that
a “min inequality” does not hold in general, namely, c.F CGI˛/ might be strictly
smaller than minfc.F; ˛/; c.G; ˛/g, as shown in Example 6.4. Theorem 2 is proved in
Section 6.

1.1.3 The boundary depth of disjointly supported Hamiltonians In [21], Usher
defined the boundary depth of a Hamiltonian F to be the largest action gap between a
boundary term in CF�.F / and its smallest primitive, namely

ˇ.F / WD inffb 2R j CF a� .F /\ @F;J .CF�.F //� @F;J .CF
aCb
� .F // for all a 2Rg:

The following result relates the boundary depths of disjointly supported Hamiltonians
to that of their sum, and is proved in Section 7.

Theorem 3 Let F and G be Hamiltonians supported in disjoint CIB domains. Then

(5) ˇ.F CG/�maxfˇ.F /; ˇ.G/g:

Note that equality does not hold in (5) in general, as shown in Example 7.2.

1.1.4 Min-inequality for the AHS action selector In a recent paper [1], Abbondan-
dolo, Haug and Schlenk presented a new construction of an action selector, denoted
here by cAHS, that does not rely on Floer homology. Roughly speaking, given a
Hamiltonian F , the invariant cAHS.F / is the minimal action value that “survives” under
all homotopies starting at F . In Section 8, we review the definition of this selector
and a few relevant properties. An open problem, stated in [1, Open Problem 7.5], is
whether cAHS coincides with the spectral invariant of the point class. As a starting
point, Abbondandolo, Haug and Schlenk ask whether cAHS satisfies a min formula like
the one proved by Humilière, Le Roux and Seyfaddini in [12] for the spectral invariant
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with respect to the point class.5 Due to a result from [12], this will imply that cAHS

coincides with the spectral invariant with respect to the point class in dimension 2
on autonomous Hamiltonians. In Section 8, we use barricades in order to prove an
inequality for the AHS action selector.

Theorem 4 Let F and G be Hamiltonians supported in the interiors of disjoint
incompressible Liouville domains. Then

(6) cAHS.F CG/�minfcAHS.F /; cAHS.G/g:

1.2 The main tool: barricades

The central construction in this paper is an adaptation of the idea presented in Figure 1
to Floer theory, which is an infinite-dimensional version of Morse theory, applied
to the action functional associated to a given Hamiltonian F WM � S1 ! R. As in
Morse theory, the Floer differential counts certain negative-gradient flow lines of the
action functional. These flow lines are called “Floer trajectories” and correspond to
solutions u WR�S1!M of a certain partial differential equation, called the “Floer
equation” (FE), which converge to 1–periodic orbits of the Hamiltonian flow at the ends,

lim
s!˙1

u.s; t/D x˙.t/ for x˙ 2 P.F /:

In this case we say that u connects x˙; see Section 2 for more details. Following
the idea from Morse theory, given a Hamiltonian F supported in a subset U � M,
we wish to construct a perturbation for which Floer trajectories cannot enter or exit
the domain. Moreover, we extend this construction to homotopies of Hamiltonians,
namely, smooth functions H WM �S1�R!R, for the following reason: most of the
results presented above compare Floer-theoretic invariants of different Hamiltonians.
Such a comparison is usually done using a morphism between the different chain
complexes, which is defined by counting solutions of the Floer equation with respect
to a homotopy between the two Hamiltonians. We consider only homotopies that are
constant outside of a compact set, namely there exists R > 0 such that @sH. � ; � ; s/
is supported in M � S1 � Œ�R;R�. We denote by H˙ WD H. � ; � ;˙R/ the ends of
the homotopy H. Note that we think of single Hamiltonians as a special case of this
setting, by identifying them with constant homotopies, H.x; t; s/D F.x; t/. Given an
almost complex structure J on M, we consider solutions of the Floer equation (FE)

5As mentioned above, they proved a max formula for the spectral invariant of the fundamental class. By
Poincaré duality for spectral invariants, this is equivalent to a min formula for the point class.
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with respect to the pair .H; J /. The property of having a barricade is defined through
constraints on these solutions.

Definition 1.7 Let U and Uı be open subsets of M such that Uı b U. We say that
a pair .H; J / of a homotopy and an almost complex structure has a barricade in U
around Uı if the periodic orbits of H˙ do not intersect the boundaries @U and @Uı,
and for every x˙ 2 P.H˙/ and every solution u WR�S1!M of the corresponding
Floer equation connecting x˙, we have:

(i) If x� � Uı, then im.u/� Uı.

(ii) If xC � U , then im.u/� U.

See Figure 3 for an illustration of solutions satisfying and not satisfying these constraints.
When H is a constant homotopy, corresponding to a Hamiltonian F , the presence
of a barricade yields a decomposition of the Floer complex, in which the differential
admits a triangular block form. To describe this decomposition, let us fix some notation:
for a subset X �M , denote by CX .F /� CF�.F / the subspace generated by orbits
contained in X , and by @jX the map obtained by counting only solutions that are
contained in X . Then, for a Floer-regular pair .F; J / with a barricade in U around Uı,

(7) CF�.F / WD CUı.F /˚CU c .F /˚CUnUı.F /; @F;J D

0@@jUı 0 @jU0 � �

0 0 @jU

1A:
The block form (7) implies that the differential restricts to the subspace CUı.F /. We
study the homology of the resulting subcomplex .CUı.F /; @jUı/ in Section 5.1.

Given a homotopy H that is compactly supported in a CIB domain, we construct a
small perturbation h of H and an almost complex structure J, so that .h; J / has a
barricade.

Theorem 5 Let U be a CIB domain and let H WM � S1 �R! R be a homotopy
of Hamiltonians , supported in U � S1 �R, such that @sH is compactly supported.
Then there exist a C1–small perturbation h of H and an almost complex structure J
such that the pairs .h; J / and .h˙; J / are Floer-regular and have a barricade in U
around Uı. In particular , when H is independent of the R–coordinate (namely, it is a
single Hamiltonian), h can be chosen to be independent of the R–coordinate as well.
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U c

U nUı

Uı

U c

U nUı

Uı

Figure 3: An illustration of allowed solutions, left, and forbidden solutions,
right, for a pair .H; J / with a barricade.

This result is proved in Section 3, by an explicit construction of the perturbation h
and the almost complex structure J. We remark that the assumptions on .M;!/ being
symplectically aspherical and U having either incompressible boundary or being the
interior of an incompressible Liouville domain are crucial for this construction. See
the proofs of Lemmas 3.4–3.5 for details.

1.3 Related works

There have been several works studying the Floer-theoretic interaction between dis-
jointly supported Hamiltonians, mainly through the spectral invariants of these Hamil-
tonians and their sum. Early works in this direction, mainly by Polterovich [15],
Seyfaddini [19] and Ishikawa [13], established upper bounds for the invariant of the
sum of Hamiltonians, which depend on the supports. Later, Humilière, Le Roux and
Seyfaddini [12] proved that in certain cases the invariant of the sum is equal to the
maximum over the invariants of each individual summand. The method was also
conceptually different. While previous works relied solely on the properties of spectral
invariants, Humilière, Le Roux and Seyfaddini studied the Floer complex itself. We also
take this approach and study the interaction between disjointly supported Hamiltonians
on the level of the Floer complex, but our methods are substantially different.

In a broader sense, it is worth mentioning two works which regard symplectic homology.
Symplectic homology is an umbrella term for a type of homological invariant of
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symplectic manifolds, or of subsets of symplectic manifolds, constructed via a limiting
process from the Floer complexes of properly chosen Hamiltonians. In this setting,
questions regarding disjointly supported Hamiltonians correspond to local-to-global
relations, such as a Mayer–Vietoris sequence. In [5], Cieliebak and Oancea defined
symplectic homology for Liouville domains and Liouville cobordisms and proved a
Mayer–Vietoris relation. Their method includes ruling out the existence of certain
Floer trajectories, and partially relies on work by Abouzaid and Seidel [2]. Versions of
some of these arguments are being used in Section 3 below. Another work concerning
the Mayer–Vietoris property is by Varolgunes [22], in which he defines an invariant of
compact subsets of closed symplectic manifolds, which is called relative symplectic
homology, and finds a condition under which the Mayer–Vietoris property holds. In
particular, for a union of disjoint compact sets, the relative symplectic homology splits
into a direct sum.

Structure of the paper

In Section 2 we review the necessary preliminaries from Floer theory and contact
geometry. In Section 3 we construct barricades and prove Theorem 5. We then use
it to prove Theorem 1 in Section 4. In Section 5, we discuss the relation to Floer
homology on certain open manifolds and two extensions of Theorem 1. Sections 6–8
are respectively dedicated to the proofs of Theorems 2–4. Finally, in Section 9 we
prove several transversality and compactness claims that are required for establishing
the main results. The appendix contains a claim about incompressibility, whose proof
we include for the sake of completeness.
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2 Preliminaries from Floer theory

In this section we briefly review some preliminaries from Floer theory and contact
geometry on closed symplectically aspherical manifolds — namely, when !j�2.M/ D 0

and c1j�2.M/ D 0, where c1 is the first Chern class of M . For more details see, for
example, [3; 14; 16]. We also fix some notation that will be used later on.

2.1 Floer homology, regularity and notation

Let F WM �S1!R be a Hamiltonian on M. The corresponding action functional AF
is defined on the space of contractible loops in M by

AF .x/ WD
Z 1

0

F.x.t/; t/ dt �

Z
xx�!;

where x W S1!M and xx WD2!M satisfies xx.e2�it /D x.t/. The critical points of
the action functional are the contractible 1–periodic orbits of the flow of XF , and their
set is denoted by P.F /. The Hamiltonian F WM �S1!R is said to be nondegenerate
if the graph of the linearized flow of XF at time 1 intersects the diagonal in TM �TM
transversely. In this case, the flow of XF has finitely many 1–periodic orbits. The Floer
complex CF�.F / is spanned by these critical points, over Z2.6 A time-dependent !–
compatible7 almost complex structure J induces a metric on the space of contractible
loops, in which negative-gradient flow lines of AF are maps u W R� S1 !M that
solve the Floer equation

(FE) @su.s; t/CJ ıu.s; t/ � .@tu.s; t/�XF ıu.s; t//D 0:

The energy of such a solution is defined to be E.u/ WD
R

R�S1 k@suk
2
J ds dt , where

k � kJ is the norm induced by the inner product associated to J, h � ; � iJ WD !. � ; J � /.
When the Hamiltonian F is nondegenerate, for every solution u with finite energy, there
exist x˙ 2 P.F / such that lims!˙1 u.s; t/D x˙.t/, and we say that u connects x˙.
The well-known energy identity for such solutions is a consequence of Stokes’ theorem:

(8) E.u/ WD

Z
R�S1

k@suk
2
J ds dt DAF�.x�/�AFC.xC/:

For two 1–periodic orbits x˙ 2P.F / of F , let M.F;J /.x�; xC/ denote the set of all so-
lutions u WR�S1!M of the Floer equation (FE) satisfying lims!˙1 u.s; t/D x˙.t/.

6The Floer complex can be defined over other coefficient rings; we chose to work in the simplest setting.
7An almost complex structure J is called !–compatible if !. � ; J � / is an inner product on TM. All
almost complex structures considered in this paper are assumed to be !–compatible.
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Notice that R acts on this set by translation in the s variable. We denote by M.F;J /

the set of all finite-energy solutions. It is well known — see eg [3, Theorem 6.5.6] —
that when F is nondegenerate, M.F;J / WD

S
x˙2P.H/M.F;J /.x�; xC/. Moreover,

for nondegenerate Hamiltonians one can define an index � W P.F /! Z, called the
Conley–Zehnder index, which assigns an integer to each orbit; see eg [3, Chapter 7]. The
Floer complex is graded by the index �; namely, for k 2 Z, CFk.F / is the Z2–vector
space spanned by the periodic orbits x 2 P.F / for which �.x/D k.

In order to define the Floer differential for the graded complex CF�.F /, one needs
an almost complex structure J such that the pair .F; J / is Floer-regular. The def-
inition of Floer regularity concerns the surjectivity of a certain linear operator and
is given in Section 9.1. When the pair .F; J / is Floer-regular, the space of solu-
tions M.F;J /.x�; xC/ is a smooth manifold of dimension �.x�/ � �.xC/ for all
x˙ 2 P.F /. Dividing M.F;J /.x�; xC/ by the R action, we obtain a manifold of
dimension �.x�/��.xC/� 1.

Recall that an element a 2 CF�.F / is a formal linear combination a D
P
x ax � x,

where x 2 P.F / and ax 2 Z2. For a Floer-regular pair .F; J /, the Floer differential
@.F;J / W CF�.F /! CF��1.F / is defined by

(9) @.F;J /.a/ WD
X

x�2P.F /

X
xC2P.F /

�.xC/D�.x�/�1

ax� � #2

�
M.F;J /.x�; xC/

R

�
� xC;

where #2 is the number of elements modulo 2. The homology of the complex
.CF�.F /; @.F;J // is denoted by HF�.F; J / or HF�.F /. A fundamental result in
Floer theory states that Floer homology is isomorphic to the singular homology with
a degree shift, HF�.F; J / Š H��n.M IZ2/. The Floer complex admits a natural
filtration by the action value. We denote by CF a� .F / the subcomplex spanned by
critical points with value not greater than a. Since the differential is action decreasing,
it can be restricted to the subcomplex CF a� .F /. The homology of this subcomplex is
denoted by HF a� .F; J /.

It is well known that when F is a C2–small Morse function, its 1–periodic orbits are its
critical points, P.F /Š Crit.F /, and their actions are the values of F , AF .p/D F.p/.
In this case, the Floer complex with respect to a time-independent almost complex struc-
ture J coincides with the Morse complex when the degree is shifted by n (which is half
the dimension of M ), since Morse-ind.p/D�.p/Cn for every p 2 Crit.F /Š P.F /:

.CF�.F /; @
Floer
.F;J //D .CM�Cn.F /; @

Morse
.F;h � ;� iJ /

/:
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For a proof, see, for example, [3, Chapter 10]. We conclude this section by fixing
notation that will be used later on.

Notation 2.1 Let aD
P
x ax � x be an element of CF�.H/.

� We say that x 2 a if ax ¤ 0.

� We denote the maximal action of an orbit from a by

�H .a/ WDmaxfAH .x/ j ax ¤ 0g:

� For a subset X �M, let CX .H/ � CF�.H/ be the subspace spanned by the
1–periodic orbits of H that are contained in X . Let �X W CF�.H/! CX .H/

be the projection onto this subspace. Note that CX .H/ is not necessarily a
subcomplex, and �X is not a chain map in general.

2.2 Communication between Floer complexes using homotopies

Now let H WM �S1�R!R denote a homotopy of Hamiltonians, rather than a single
Hamiltonian. Throughout the paper, we consider only homotopies that are constant
outside of a compact set. Namely, there exists R > 0 such that @sH jjsj>R D 0, and we
denote by H˙.x; t/ WD lims!˙1H.x; t; s/ the ends of the homotopy H. Given an
almost complex structure J, we consider the Floer equation (FE) with respect to the
pair .H; J /,

@su.s; t/CJ ıu.s; t/ � .@tu.s; t/�XHs ıu.s; t//D 0;

where Hs. � ; � / WDH. � ; � ; s/. We sometimes refer to this equation as the s–dependent
Floer equation, to stress that it is defined with respect to a homotopy of Hamiltoni-
ans. For 1–periodic orbits x˙ 2 P.H˙/, we denote by M.H;J /.x�; xC/ the set of
all solutions u W R � S1 ! M of the s–dependent Floer equation (FE) that satisfy
lims!˙1 u.s; t/ D x˙.t/. As before, M.H;J / denotes the set of all finite-energy
solutions and when the ends, H˙, are nondegenerate,

M.H;J / D

[
x˙2P.H˙/

M.H;J /.x�; xC/:

(See, for example, [3, Theorem 11.1.1].) The energy identity for homotopies is

(10) E.u/ WD

Z
R�S1

k@suk
2
J ds dt

DAH�.x�/�AHC.xC/C
Z

R�S1
@sH ıuds dt:
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As in the case of Hamiltonians, the definition of Floer-regularity concerns the surjectivity
of a certain linear operator and is given in Section 9.1. For a Floer-regular pair .H; J /,
the space M.H;J /.x�; xC/ is a smooth manifold of dimension �.x�/��.xC/. In this
case, one can define a degree-preserving chain map ˆ WCF�.H�/!CF�.HC/, called
the continuation map, between the Floer complexes of the ends, by

(11) ˆ.a/D
X
x�2a

X
xC2P.HC/
�.xC/D�.x�/

ax� � #2M.x�; xC/ � xC:

The regularity of the pair guarantees that the map ˆ is a well-defined chain map that
induces an isomorphism on homologies; see eg [3, Chapter 11].

2.3 Contact-type boundaries

In order to construct barricades for Floer solutions around a given domain, we need the
boundary to have a contact structure. Let U �M be a domain with a smooth boundary.
We say that U has a contact type boundary if there exists a vector field Y , called the
Liouville vector field, which is defined on a neighborhood of @U, is transverse to @U,
points outwards from U and satisfies LY! D !. The differential form � WD �Y! is a
primitive of !, namely d�D !; it is called the Liouville form and is defined wherever
Y is defined. The flow  r of Y is called the Liouville flow, and is defined for short
times. The Reeb vector field R is then defined by the equations

(12) R 2 ker d�jT r@U ; �.R/j r@U D e
r :

We stress that the vector field R is defined wherever the Liouville vector field Y is
defined and is nonvanishing. If the Liouville vector field Y extends to U, the closure
of U is called a Liouville domain.

3 Barricades for solutions of the (s–dependent) Floer equation

In what follows, H W M � S1 � R ! R denotes a homotopy of (time-dependent)
Hamiltonians and J denotes a (time-dependent) almost complex structure. We assume
that @sH is compactly supported and write H˙ WD lims!˙1H. � ; � ; s/. Note that we
consider the case where H is a single Hamiltonian as a particular case, by identifying it
with a constant homotopy. Fix a CIB domain U �M, denote by Y and R the Liouville
and Reeb vector fields, respectively, and by �D �Y! the Liouville form. In order to
prove Theorem 5, namely, that there exist a perturbation h of H and an almost complex
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structure J such that .H; J / has a barricade, we construct h and J explicitly. Let us
sketch the idea of this construction before giving the details.

� To construct h, we first add toH a nonnegative bump function in the radial coordinate,
which is defined on a neighborhood of @U using the Liouville flow. Then we take h to
be a small nondegenerate perturbation of it.

� The almost complex structure J is taken to be cylindrical near @U ; see Definition 3.1
below.

We want to rule out the existence of solutions violating the constraints of Definition 1.7.
Suppose there exists a solution u connecting x� � Uı with xC � U cı . Then the image
of u intersects @Uı, say along a loop � . We first bound the action of � (Lemma 3.2),
and then conclude a negative upper bound for the action of xC (Lemma 3.4). Since
h � 0 on U cı � xC, the action of xC can be taken to be arbitrarily close to zero, a
contradiction.

3.1 Preliminary computations

Some of the arguments and results in this section were carried out by Cieliebak and
Oancea in [5] for the setting of completed Liouville domains, instead of closed sym-
plectically aspherical manifolds. Specifically, some of the computations appearing in
the proofs of Lemmas 3.2 and 3.5 can be found in the proof of [5, Lemma 2.2], which
follows Abouzaid and Seidel’s work in [2, Lemma 7.2].

Definition 3.1 We say that a pair .H; J / of a homotopy and an almost complex
structure is ı–cylindrical near @U for ı 2R n f0g, if

(i) J is cylindrical near @U, namely, J Y DR on an open neighborhood of @U,

(ii) @U �S1 �RD fH D cg is a regular level set of H,

(iii) the gradient of H with respect to J satisfies rJH D ıe�rY on  r@U and H
has no 1–periodic orbits near @U.

We remark that conditions (ii) and (iii) in the above definition imply that, near @U,
H does not depend on the R–coordinate. Suppose that .H; J / is ı–cylindrical near @U
and let u WR�S1!M be a solution of the (s–dependent) Floer equation (FE) with
finite energy E.u/ <1. The following lemma gives an upper bound for the integral
of � along the curve � WD im.u/ \ @U oriented as a connected component of the
boundary of im.u/\U c ; see Figure 4.
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@U u\U c

�

�

U

Figure 4: An example of the setting described in Lemma 3.2. The gray region
is the set U �M and the loops � are given by im.u/\ @U D � , oriented as
the boundary of im.u/\U c .

Lemma 3.2 Let .H; J / be a pair that is ı–cylindrical near @U and let u WR�S1!M

be a finite-energy solution of the s–dependent Floer equation connecting x˙ 2 P.H˙/.
Suppose that u intersects @U transversely and write � WD im.u/\@U for the intersection ,
oriented as the boundary of im.u/\U c . Then

(13)
Z
�

��

8<:
�ı if x� � U; xC � U c;
ı if x� � U c; xC � U;
0 if x˙ � U or x˙ � U c:

Proof Set† WDu�1.U c/�R�S1 and denote its boundary by 
 . Then u.
/D� , since
the x˙ do not intersect @U. The orientation on † is given by the positive frame .@s; @t /.
Let 
i be a connected component of 
 . Then �i WD u.
i / is connected. Let � 2 Œ0; Ti �
be a unit-speed parametrization of 
i , and notice that this induces a parametrization
on �i . Denoting by �.�/ the outer normal to † at 
i .�/, then P
i .�/D j�.�/, where
j is the standard complex structure on R� S1, ie j @s D @t . Pushing .�.�/; P
i .�//
to TM , we obtain

N.�/ WDDu.�.�//; P�i .�/DDu. P
i .�//:

We remark that N.�/ is not necessarily normal to @U (with respect to the inner product
induced by J ), but is always pointing inwards (or tangent to the boundary); see Figure 5.
The relation between N.�/ and P�i .�/ goes through the Floer equation (FE), which can
be written in the form

J ıDuDDu ı j �XH ıu � h � ; @sij CJXH ıu � h � ; @t ij :
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@U

�1

�2

Y

u


1


2

†

N.�/

�.�/

u\U c

Figure 5: The normal �.�/ to the component 
1 of @† and its image, N.�/,
under Du.

It follows that P�i .�/ can be written as a linear combination of JN.�/, the gradient
of H and the symplectic gradient of H :

P�i .�/DDu. P
i .�//DDu.j�.�//

D JDu.�.�//CXH ıu � h�.�/; @sij �JXH ıu � h�.�/; @t ij

D JN.�/CXH ıu � h�.�/; @sij �JXH ıu � h�.�/; @t ij :

Using this to compute the integral of � along �i , we obtainZ
�i

�D

Z
�. P�i .�// d� D

Z
!.Y ı�i .�/; P�i .�// d�

D

Z
!.Y ı�i .�/; JN.�// d�C

Z
Œ!.Y;XH /�h�; @sij�!.Y; JXH /�h�; @t ij � d�

D

Z
hY ı�i .�/; N.�/iJ d�

C

Z
Œ!.Y; JrJH/�h�; @sij�!.Y;�rJH/�h�; @t ij � d�:

Recalling our assumptions that rJH D ıY on @U and that J Y is the Reeb vector
field, we obtain

(14)
Z
�i

�D

Z
hY ı�i .�/; N.�/iJ d�

C ı

Z
Œ!.Y; J Y / � h�; @sij �!.Y;�Y / � h�; @t ij � d�

D

Z
hY ı�i .�/; N.�/iJ d� C ı � 1 �

Z
h�; @sij d�:
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Let us estimate separately each term in the sum (14), starting with the first: Since
J Y D R, the vector field Y is perpendicular to the hyperplane T .@U / at each point
and is pointing outwards from U. By our construction, N.�/ points inwards to U — as
it is tangent to im.u/ and points out of im.u/\U c — and therefore hY ı�i ; N i � 0
for all � . We conclude that

(15)
Z
hY ı�i .�/; N.�/iJ d� � 0:

We turn to estimate the second summand in (14): Noticing that h�; @sij Dhj�; j @sij D
h P
i ; @t ij D dt. P
i /, we haveZ

h�; @sij d� D

Z
dt. P
i / d� D

Z

i

dt:

Let y† be the closure of † in the compactification .R[ f˙1g/�S1 of the cylinder.
Then @y†� @†[f˙1g�S1. Notice that @y† contains f�1g�S1 (resp. fC1g�S1)
if and only if x� � U c (resp. xC � U c). As

R
f˙1g�S1 dt D ˙1 and, by Stokes’

theorem,
R
@y†
dt D 0, we conclude that

(16)
X
i

Z

i

dt D

Z



dt D

Z
@y†

dt �

8<:
1 if x� � U; xC � U c;
�1 if x� � U c ; xC � U;
0 if x�; xC � U or x�; xC � U c:

Combining (14), (15) and (16) we obtainZ
�

�D
X
i

Z
�i

�� 0C ı �

8<:
�1 if x� � U; xC � U c;
1 if x� � U c; xC � U;
0 if x�; xC � U or x�; xC � U c:

This completes the proof.

Remark 3.3 The assertion of Lemma 3.2 continues to hold if we take � to be
im.u/\ r.@U / for some r for which the Liouville flow is defined. The proof of the
lemma goes through in this case without any significant changes, under the observation
that !.Y; JrJH/ is independent of r :

!.Y; JrJH/D !.Y; ıe
�rJ Y /D e�rı!.Y; J Y /D ıe�r�.R/D ıe�rer D ı:

When the homotopy H is nonincreasing in U c, Lemma 3.2 can be used to bound the
action of the ends of solutions that cross the boundary of U. Lemma 3.4 below is
similar to a result obtained by Cieliebak and Oancea [5, Lemma 2.2] for the setting of
completed Liouville domains, using neck stretching. The proof of Lemma 3.4 uses a
different approach and is an application of Lemma 3.2 above.
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u

U

†

u\U c

x�

xC

Figure 6: An example for the setting described in Lemma 3.4. The gray
region is the set U �M and † WD u�1.U c/�R�S1.

Lemma 3.4 Suppose that .H; J / is ı–cylindrical near @U and assume in addition that
@sH � 0 on U c. For every finite-energy solution u connecting x˙ 2 P.H˙/,

(i) if x� � U and xC � U c, then AHC.xC/ < c � ı,

(ii) if x� � U c and xC � U, then AH�.x�/ > c � ı,

where c is the value of H on @U.

Proof We prove the first statement, where x��U and xC�U c. The second statement
is proved similarly. As in [5, Lemma 2.2], after replacing U by its image,  rU, under
the Liouville flow8 for small time r , we may assume that u is transverse to @U .9 As
explained in Remark 3.3, Lemma 3.2 still applies after such a replacement. Note that,
since rJH is positively proportional to Y on a neighborhood of @U, H is constant on
@. rU/D  r.@U /. Moreover, choosing the sign of r to be opposite to the sign of ı,
the value of H on  r.@U / is smaller than c— in order to prove the second statement,
choose r to be of the same sign as ı, and then the value of H on  r.@U / will be
greater than c. Write † WD u�1.U c/�R�S1 and let us compute an energy identity
for the restriction uj†:Z

uj†

! D

Z
†

!.@su; @tu/ ds ^ dt
(FE)
D

Z
†

!.@su; J @suCXH ıu/ ds ^ dt(17)

D

Z
†

k@suk
2
J ds ^ dt C

Z
†

dH.@su/ ds ^ dt

8This is an abuse of notation, as the Liouville vector field, and hence its flow, is not necessarily defined on
all of U. We define  rU to be U [

�S
r 0<r  

r 0@U
�

if r � 0, and to be U n
�S

r 02Œr;0�  
r 0@U

�
if r < 0.

9The proof of this statement is similar to that of Thom’s transversality theorem.
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DE.uj†/C

Z
†

@

@s
.H ıu/ ds ^ dt �

Z
†

.@sH/ ıuds ^ dt

DE.uj†/C

Z
†

d..H ıu/ dt/�

Z
†

.@sH/ ıuds ^ dt

�E.uj†/C

Z
†

d.H ıudt/ >

Z
†

d.H ıudt/;

where, in the last two inequalities, we used our assumption that @sH � 0, and the
positivity of the energy, respectively. As before, denoting by y† the closure of † in the
compactification .R[f˙1g/�S1, then @y†D 
 [fC1g�S1. Since H is constant
on @U,

R

 H ı udt D H.@U / �

R

 dt D �H.@U /, where the last equality follows

from (16) for 
 D @†. Therefore, using Stokes’ theorem, we obtain

(18)
Z
†

d.H ıudt/D

Z
@y†

H ıudt D�H.@U /C

Z 1

0

H ı xC:

Let xx˙ be capping disks of x˙, respectively, and let v � xU be a union of disks capping
the connected components of � WD u.
/ such that the contact form � is defined on v.
The existence of such disks follows from our definition of a CIB domain: If the relevant
connected component of U is the interior of an incompressible Liouville domain,
then we can take a capping disk that is contained in that component. Otherwise, the
boundary of the relevant connected component of U is incompressible and we can
take the capping disk to lie in the boundary. Since M is symplectically aspherical and
! D d� where � is defined, we have

(19)
Z
uj†

! D

Z
xxC

!C

Z
v

! D

Z
xxC

!C

Z
�

�:

Combining (18) and (19) yields

AHC.xC/D
Z 1

0

H ı xC�

Z
xxC

! D

Z
†

d.H ıudt/CH.@U /�

Z
uj†

!C

Z
�

�

< cC

Z
�

�;

where the last inequality is due to (17). Using Lemma 3.2 we conclude that

AHC.xC/ < c � ı:

The following lemma is essentially a version of [5, Lemma 2.2] for closed symplectically
aspherical manifolds instead of completed Liouville domains.
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Lemma 3.5 Suppose that .H; J / is ı–cylindrical near @U and that @sH � 0 on U c.
Given any pair x˙ 2 P.H˙/� U, every solution u connecting x˙ is contained in U.

Proof As before, after replacing U by its image,  rU, under the Liouville flow for a
small time r , we may assume that u is transverse to @U. Again setting† WDu�1.U c/�
R�S1 and computing an energy identity, as in (17), for the restriction of u to †, we
have Z

uj†

! �E.uj†/C

Z
@y†

H ıudt;

where, as before, y† is the closure of † in the compactification of the cylinder. This
time, both ends x˙ are contained in U and hence @y†D 
 . Since H is constant on @U,
it follows from (16) thatZ

@y†

H ıudt D

Z



H ıudt DH.@U / �

Z



dt D 0:

On the other hand, taking v � xU to be a union of disks capping the connected compo-
nents of � D u.
/ (which is oriented as the boundary of im.u/\U c) such that � is
defined on v, the fact that M is symplectically aspherical implies thatZ

uj†

! D

Z
v

! D

Z
�

�� 0;

where the last inequality follows from Lemma 3.2 (and Remark 3.3). Combining the
above two inequalities we find

E.uj†/�

Z
uj†

! � 0:

Since we assumed that H˙ are nondegenerate and have no 1–periodic orbits intersect-
ing @U, this implies im.u/\ int.U c/D∅ and hence im.u/� xU. Noticing that we may
argue similarly for the image  rU of U under the Liouville flow for small negative
time r < 0, we conclude that im.u/�  rU � U.

3.2 Constructing the barricade

As before, U denotes a CIB domain and  r is the flow of the Liouville vector field Y ,
which is defined in a neighborhood of the boundary @U. Consider a pair .H; J / of
a homotopy (or, in particular, a Hamiltonian) and an almost complex structure. The
following definition is an adaptation of Figure 1 to Floer theory.
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Y Y

R

rJHrJH Graph.H/

@Uı

@U

Figure 7: An illustration of a pair with a cylindrical bump.

Definition 3.6 We say that the pair .H; J / admits a cylindrical bump of width r > 0
and slope ı > 0 around @U (abbreviate to .r; ı/–bump around @U ) if

(i) @sH � 0,

(ii) H D 0 on @U �S1 �R and on @Uı �S1 �R, where Uı WD  �rU,

(iii) J is cylindrical on a neighborhood of @U which contains @Uı, namely, J Y DR
on an open neighborhood of @U [ @Uı,

(iv) on r
0

@U�S1�R, we haverJH D ıer
0

Y if r 0 is near�r , andrJH D�ıer
0

Y

if r 0 is near 0, and

(v) the only 1–periodic orbits of H˙ that are not contained in Uı are critical points
with values in .�ı; ı/.

In analogy with the discussion in Morse theory, we show that a pair with a cylindrical
bump has a barricade.

Proposition 3.7 Let .H; J / be a pair with a cylindrical bump of width r and slope ı.
Then , the pair .H; J / has a barricade in U around Uı WD  �rU.

Proof The proof essentially follows from Lemmas 3.4 and 3.5, together with the fact
that a pair .H; J / with a .r; ı/–bump around @U is in particular cylindrical near both
@U and @Uı. As explained in Remark 3.3, in this case Lemmas 3.4 and 3.5 apply for
@Uı as well. Let u be a solution of the s–dependent Floer equation with respect to H
and J, which connects x˙ 2 P.H˙/. We need to show that u satisfies the constraints
from Definition 1.7, and therefore we split into two cases:
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(a) Suppose x� � Uı. If xC � Uı we may apply Lemma 3.5 to H, J and Uı, and
conclude that im.u/� Uı, as required. Otherwise, xC � U cı is a critical point of HC
and its value lies in the interval .�ı; ı/. On the other hand, applying Lemma 3.4 to H,
J and Uı yields that AHC.xC/ < �ı, a contradiction.

(b) Suppose xC � U. As before, if x� � U then applying Lemma 3.5 to H, J and U
yields u� U , as required. Otherwise, x� � U c is a critical point of H� and its value
lies in .�ı; ı/. On the other hand, applying Lemma 3.4 to H, J and U, and noticing
that rJH D�ıY on @U, we find that AH�.x�/ > ı, a contradiction.

In order to prove Theorem 5, it remains to guarantee the regularity assertion, for which
we use the result from Section 9.3.1 below.

Proof of Theorem 5 Let H be a homotopy of Hamiltonians that is supported
in U �S1 �R. Then there exists r > 0 small enough that H is supported inside
 �rU DW Uı. Fix an almost complex structure J that is cylindrical near both @U
and @Uı (see Definition 3.6(iii) above), and let h be a C1–small perturbation of H
such that the pair .h; J / admits a .r; ı/–bump around @U and h˙ are nondegenerate.
Notice that, by definition, the pairs .h˙; J / also admit a .r; ı/–bump around @U. By
Proposition 3.7, the pairs .h; J / and .h˙; J / have a barricade in U around Uı.

The pairs .h; J /, .h˙; J / constructed above are not necessarily Floer-regular. In order to
achieve regularity, we perturb the homotopy h and its ends. Proposition 9.21 below states
that for a homotopy h0 that satisfies P.h0

˙
/DP.h˙/ and supp.@sh0/�M �S1 � I for

some fixed finite interval I, if h0 is close enough to h, then .h0; J / also has a barricade
in U around Uı. Therefore, it remains to describe a perturbation that satisfies the above
constraints, and ensures regularity. Starting with the ends and recalling that the h˙ are
nondegenerate, we perturb them without changing their periodic orbits to guarantee
that the pairs .h˙; J / are Floer-regular — the fact that this is possible is a well-known
result from Floer theory, cited in Claim 9.1 below. If the homotopy h is constant,
that is, corresponds to a single Hamiltonian, we are done. Otherwise, let us perturb h
so that its ends will agree with the regular perturbations of h˙. Finally, we perturb the
resulting homotopy on the set M �S1 � I, for some fixed finite interval I, to make the
pair .h; J / Floer-regular. This is possible due to Proposition 9.2 below, which is a slight
modification of standard claims from Floer theory, and is proved in Section 9.1.

Remark 3.8 Proposition 3.7 suggests that, when given a homotopy (or a Hamiltonian)
H that is supported in U �S1�R, we have some freedom in choosing the pair .h; J /
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from Theorem 5. Let us mention some additional properties that can be granted for the
perturbation h and the almost complex structure J, and will be useful in applications.

(i) The almost complex structure J can be taken to be time-independent. Moreover,
if one of the ends of H, say H�, is zero, then h can be chosen such that h� is any
time-independent small Morse function that has a cylindrical bump around @U. To
see this, choose h � H and J such that .h; J / has a cylindrical bump around @U,
and J and h� are time-independent. Then, the pair .h�; J / is Floer-regular and,
by perturbing hC first and then replacing the homotopy by a compactly supported
perturbation, we end up with a pair .h; J / that is Floer-regular, as well as its ends, and
.h�; J / is time-independent.

(ii) When the homotopy H is constant on some domain, we can choose the pertur-
bation h such that, on this domain, its ends h˙ agree on their 1–periodic orbits up to
second order. This follows from the use of Claim 9.1 in the proof of Theorem 5.

(iii) Given an interval Œa; b�� R such that H is a constant homotopy for s … Œa; b�,
we can chose the perturbation h of H to be also constant outside of Œa; b�, namely
supp.@sh/�M �S1� Œa; b�. This follows from the use of Proposition 9.2 in the proof
of Theorem 5.

(iv) Proposition 3.7 also holds when considering a homotopy of almost complex
structures fJsgs2R, but the demand on .h; J / to have a .r; ı/–bump around @U limits
the dependence of Js on s there.

4 Locality of spectral invariants, Schwarz’s capacities and
superheavy sets

In this section we use barricades to prove Theorem 1 and derive Corollaries 1.5 and 1.6.
We will use the definitions and notation from Section 2, in particular Notation 2.1 and
formula (11). We will also use the following properties of spectral invariants (see for
example [16, Proposition 12.5.3]):

� Spectrality c.F I˛/ 2 spec.F /.

� Stability/continuity For any Hamiltonians F , G and homology class ˛ 2H�.M/,Z 1

0

min
x2M

.F.x; t/�G.x; t// dt�c.F I˛/�c.GI˛/�

Z 1

0

max
x2M

.F.x; t/�G.x; t// dt:

In particular, the functional c. � I˛/ W C1.M �S1/!R is continuous.
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� Poincaré duality For any Hamiltonian F , we have c.F I ŒM �/D�c.�F I Œpt�/.

� Energy-capacity inequality If the support of F is displaceable, then c.F I ŒM �/

is bounded by the displacement energy of the support in M, namely c.F I ŒM �/ �

e.supp.F /IM/. Recall that a subset X of a symplectic manifold is displaceable if
there exists a Hamiltonian G such that '1G.X/\X D∅. In this case, the displacement
energy of X is given by

(20) e.X IM/ WD inf
GW'1G.X/\XD∅

Z 1

0

�
max
M

G. � ; t /�min
M
G. � ; t /

�
dt:

Let us sketch the idea of the proof of Theorem 1 before giving the details. We will
prove the statement for the class of a point, and use Poincaré duality to deduce the
same for the fundamental class. We start by showing that the spectral invariant, with
respect to Œpt�, of a Hamiltonian supported in a CIB domain is nonpositive (Lemma 4.1).
Then, after properly choosing regular perturbations with barricades (Lemma 4.4), we
consider a representative of Œpt� of negative action on M. Such a representative must
be a combination of orbits in Uı and thus can be pushed to a cycle on N. Finally, we
use continuation maps, induced by homotopies to small Morse functions, to conclude
that the cycle on N represents Œpt� there.

As mentioned above, our first step towards proving Theorem 1 is showing that the
spectral invariant with respect to Œpt� of a Hamiltonian supported in a CIB domain is
always nonpositive.

Lemma 4.1 Let F WM � S1! R be a Hamiltonian supported in a CIB domain U.
Then c.F I Œpt�/� 0.

Proof Let H be a linear homotopy10 from H� WD 0 to HC WD F . By Theorem 5,
there exist a small perturbation h of H and an almost complex structure J such that
.h; J / and .h˙; J / are Floer-regular and have a barricade in U around Uı, where Uı
contains the support of F . By Remark 3.8(i), we can choose J to be time independent
and h so that h� is a time-independent small Morse function. Moreover, we may
assume that h� has a minimum point p that is contained in U c. Since the Floer
complex and differential of .h�; J / agree with the Morse ones, the point p represents
Œpt� in CF�.h�/ Š CM�Cn.h�/. Denoting by ˆ.h;J / W CF�.h�/ ! CF�.hC/ the
continuation map associated to the pair .h; J /, the presence of the barricade guarantees

10A linear homotopy is a homotopy of the form H.x; t; s/ D H�.x; t/C ˇ.s/.HC.x; t/�H�.x; t//,
where ˇ WR!R is a smooth step function.
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that ˆ.h;J /.p/� CU c .hC/. Indeed, otherwise, we would have a continuation solution
starting at p�U c and ending at some xC�U, a contradiction. The imageˆ.h;J /.p/ is
a cycle representing Œpt� in CF�.hC/ and its action level is close to zero. Indeed, since
hC approximates F , which is supported in Uı, the restriction hCjU cı is a small Morse
function. Its 1–periodic orbits there are critical points and their actions are the critical
values. Therefore, using the stability property of spectral invariants, we conclude that
c.F I Œpt�/� c.hCI Œpt�/C ı � �hC.ˆ.h;J /.p//C ı � 2ı for small ı > 0.

Remark 4.2 � Using Poincaré duality for spectral invariants, the above lemma implies
that c.F I ŒM �/� 0 for every Hamiltonian F supported in a CIB domain. This is already
known for Hamiltonians supported in the interiors of incompressible Liouville domains.
Indeed, it follows easily from the max formula, proved in [12], when applied to the
functions F1 D F and F2 D 0:

c.F C 0I ŒM �/Dmaxfc.F I ŒM �/; c.0I ŒM �/g � 0:

� Lemma 4.1 does not hold if M is not symplectically aspherical. For example, the
equator in S2 is known to be superheavy. Therefore, if F is a Hamiltonian on S2

which is supported on a disk containing the equator, then

�.F /D lim
k!1

c.kF I ŒM �/=k

is not greater than the maximal value that F attains on the equator; see [16, Chapter 6].
Therefore, one can construct a Hamiltonian supported in a disk on S2 with a negative
spectral invariant with respect to the fundamental class.

Our next step towards the proof of Theorem 1 is choosing suitable perturbations for the
Hamiltonians F and ‰�F , as well as homotopies from them to small Morse functions.
Before that, we use the embedding ‰ to define a linear map between subspaces of
Floer complexes of Hamiltonians on M and on N , which agree on U through ‰.

Definition 4.3 Consider nondegenerate Hamiltonians fM on M and fN on N such
that fM and fN ı‰ have the same 1–periodic orbits inU. For an element a2CU .fM /�
CF�.fM / that is a combination of orbits contained in U, we define its pushforward
with respect to the embedding ‰ to be

‰�a WD
X
x2a

ax �‰.x/ 2 C‰.U/.fN /� CF�.fN /:
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Lemma 4.4 (setup) There exist homotopies and time-independent almost complex
structures hM and JM on M, and hN and JN on N, such that the following hold :

(i) The pairs .hM ; JM /, .hM˙; JM /, .hN ; JN / and .hN˙; JN / are all Floer-regular
and have barricades in U around Uı and in ‰.U / around ‰.Uı/, respectively,
for some Uı b U containing the support of F.

(ii) hM� and hN� are small perturbations of F and ‰�F , respectively , and hMC
and hNC are small time-independent Morse functions.

(iii) On ‰.U /, the Hamiltonians hN� and hM� ı‰�1 agree on their periodic orbits
up to second order and JN D‰� ıJM ı‰�1� (abbreviate to JN D‰�JM ).

(iv) The differentials and continuation maps commute with the pushforward map ‰�
when restricted to Uı:

ˆ.hN ;JN / ı‰� ı�Uı D‰� ıˆ.hM ;JM / ı�Uı ;(21)

@.hN˙;JN / ı‰� ı�Uı D‰� ı @.hM˙;JM / ı�Uı :(22)

We postpone the proof of Lemma 4.4, and prove Theorem 1 first.

Proof of Theorem 1 We will prove that cM .F I Œpt�/D cN .‰�F I Œpt�/, and the claim
for the fundamental class will follow from Poincaré duality for spectral invariants.
Suppose that at least one of cM .F I Œpt�/ and cN .‰�F I Œpt�/ is nonzero, otherwise there
is nothing to prove. Without loss of generality, assume that cM .F I Œpt�/ ¤ 0; then,
by Lemma 4.1, cM .F I Œpt�/ < 0. We will show that cM .F I Œpt�/ � cN .‰�F I Œpt�/.
This will imply that cN .‰�F I Œpt�/ < 0 and equality will follow by symmetry. Let
.hM ; JM / and .hN ; JN / be pairs of homotopies and almost complex structures on M
and N , respectively, that satisfy the assertions of Lemma 4.4, and write fM WD hM�
and fN WD hN�. By the continuity of spectral invariants, it is enough to prove the
claim for fM and fN .

Since cM .F I Œpt�/ < 0 and F jU cı D 0, by taking fM to be close enough to F and
F jU cı D 0, we may assume that cM .fM I Œpt�/ < minU cı fM. Recalling that fM is a
small Morse function on U cı , its 1–periodic orbits there are its critical points, and their
actions are the critical values. As a consequence, a representative a 2 CF�.fM / of Œpt�
of action level �fM .a/D cM .fM I Œpt�/ is a combination of orbits that are contained
in Uı, namely a 2 CUı.fM /. Therefore, the pushforward ‰�a 2 CF�.fN / is defined,
and by (22), ‰�a is closed in CF�.fN /. To see that ‰�a represents the class of a point,
we will use (21). Indeed, since a represents Œpt� on M, and continuation maps induce
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isomorphism on homologies, ˆ.hM ;JM /.a/ is a representative of Œpt� in CF�.hMC/.
Since hMC is a small time-independent Morse function (and JM is time-independent),
its Floer complex and differential coincide with the Morse ones,

.CF�.hMC/; @.hMC;JM //Š .CM�Cn.hMC/; @
Morse
.hMC;gJM //:

As a consequence, ˆ.hM ;JM /.a/ is a sum of an odd number of minima.11 Using (21),
we find that ˆ.hN ;JN /.‰�a/ D ‰�.ˆ.hM ;JM /a/ is also a sum of an odd number of
minima, and as such, represents the point class in CM�Cn.hNC/ŠCF�.hNC/. Since
‰�a is closed, we conclude that it represents Œpt� in CF�.fN /. Together with the fact
that, in ‰.U /, fM ı‰�1 and fN agree on their 1–periodic orbits, this implies that

cN .fN I Œpt�/� �fN .‰�a/D �fM .a/D cM .fM I Œpt�/;

where the equality �fN .‰�a/D�fM .a/ follows from the fact that U is incompressible;
see Remark 1.3 and Proposition A.35.

Proof of Lemma 4.4 LetHM WM �S1�R!R be a linear homotopy from F to zero,
that is constant outside of Œ0; 1�, ie @sHM js…Œ0;1�D 0. Then HM is supported in U, and
its pushforward HN WD‰�HM is a linear homotopy from ‰�F to zero on N. Let JM
be a time-independent almost complex structure on M and let h[M be a homotopy with
nondegenerate ends, that is constant outside of Œ0; 1� and approximates HM, and is such
that the pair .h[M ; JM / has a .r; ı/–bump around @U for some r and ı. Set UıD �rU.
Let JN be a time-independent almost complex structure obtained as an extension of
‰�JM from ‰.U / to N .12 Extending h[M ı‰

�1 to N by a homotopy of small Morse
functions with critical values in .�ı; ı/, we obtain a pair .h[N ; JN / with a .r; ı/–bump
around ‰.@U /D @‰.U /. Moreover, h[N is a homotopy with nondegenerate ends, it
approximates HN , and we can choose it to be constant for s … Œ0; 1�. Noticing that the
ends of these homotopies have .r; ı/–bumps as well, Proposition 3.7 guarantees that
the pairs .h[M ; JM /, .h

[
M˙; JM /, .h

[
N ; JN / and .h[N˙; JN / all have barricades in U

around Uı and in ‰.U / around ‰.Uı/, respectively.

Let us now perturb h[M to make all of the pairs defined onM regular. As in the proof of
Theorem 5, we first perturb the ends h[M˙ into hM˙, without changing their periodic
orbits, so that the pairs .hM˙; JM / are Floer-regular (as cited in Claim 9.1 below).

11See, for example, the proof of Proposition 4.5.1 in [3].
12The fact that ‰�JM can be extended to an almost complex structure on N can be deduced from
the path-connectivity of the set of almost complex structures on symplectic vector bundles (see eg [14,
Proposition 2.63]), together with the fact that @U has a tubular neighborhood.
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Then, perturb the homotopy h[M to obtain a homotopy hM whose ends are the regular
perturbations hM˙ and which is constant for s … Œ0; 1�. Finally, Proposition 9.2 below
states that we can perturb the homotopy hM on the set M �S1� Œ0; 1� to make the pair
.hM ; JM / Floer-regular. We stress that after the perturbations the regular homotopy hM
is constant for s … Œ0; 1� as well. Proposition 9.21 guarantees that every small enough
perturbation of h[M that is constant outside of Œ0; 1� and whose ends have the same
periodic orbits as the ends of h[M , also has a barricade in U around Uı, when paired
with JM. Arguing similarly for the ends hM˙ we conclude that the pairs .hM ; JM /
and .hM˙; JM / all have barricades in U around Uı.

We turn to construct the pairs on N. Let h0N be an extension to N of the homotopy
hM ı‰

�1, which is defined on ‰.U /. Notice that by replacing hM with a smaller
perturbation of h[M if necessary, h0N can be taken to be arbitrarily close to h[N . This way,
we can use Proposition 9.21 again to conclude that .h0N ; JN / has a barricade in ‰.U /
around ‰.Uı/. Finally, we repeat the arguments made above and perturb h0N to make
all of the pairs on N Floer-regular. We obtain a homotopy hN that is constant for
s … Œ0; 1�, approximates hM ı‰�1 on ‰.U / and is such that the pairs .hN ; JN / and
.hN˙; JN / are all Floer-regular and have barricades in ‰.U / around ‰.Uı/.

It remains to prove that, in Uı, the pushforward map commutes with the continuation
maps and the differentials for the homotopies hM, hN and their ends, respectively.
We will write the proof for the continuations maps; the proof for the differentials is
analogous. We first show that the continuation maps of hN and h0N agree on ‰.Uı/,
and then prove that the commutation relation (21) holds for hM and h0N , which agree
on U through ‰. Proposition 9.31 (for the differentials, Proposition 9.25) states that the
restriction of the continuation map to C‰.Uı/ does not change under small perturbations,
when the pairs have a barricade and satisfy a certain regularity assumption on ‰.U /.
This assumption holds for Floer-regular pairs, as well as for pairs that coincide on U
with a Floer-regular pair. Therefore, recalling that hN is a small perturbation of h0N ,
and that the pair .h0N ; JN / agrees on ‰.U /, through a symplectomorphism, with
the Floer-regular pair .hM ; JM /, we may apply Proposition 9.31 and conclude that
ˆ.hN ;JN / ı�‰.Uı/ D ˆ.h0N ;JN /

ı�‰.Uı/. In order to prove ˆ.h0N ;JN / ı‰� ı�Uı D
‰� ıˆ.hM ;JM / ı �Uı , recall the definitions of ‰� and the continuation maps (11).
We need to show that for every x˙ 2 P.hM˙/ such that x� � Uı, it holds that
#2M.hM ;JM /.x�; xC/D #2M.h0N ;JN /

.‰.x�/; ‰.xC//. This essentially follows from
the fact that both pairs .hM ; JM / and .h0N ; JN / have barricades, and that hM D h0N ı‰
and JM D JN ı ‰ on U. Indeed, it follows from x� � Uı that ‰.x�/ � ‰.Uı/
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and thus the barricades guarantee that all of the elements of M.hM ;JM /.x�; xC/

and M.h0N ;JN /
.‰.x�/; ‰.xC// are contained in Uı and ‰.Uı/, respectively. The

symplectic embedding ‰ induces a bijection between these two sets, and so it follows
that the counts of their elements coincide.

Having established Theorem 1, we now explain how to derive Corollaries 1.5–1.6. Let
us start by recalling the definition of a symplectic capacity:

Definition 4.5 (see eg [4; 11]) Given a class S of symplectic manifolds, a symplectic
capacity on S is a map c W S! Œ0;1� that satisfies the following properties:

� Monotonicity c.U; !/ � c.V;�/ if there exists a symplectic embedding
.U; !/ ,! .V;�/.

� Conformality c.U; �!/D j� j � c.U; !/ for all � 2R n f0g.

� Nontriviality c.B2n.1/; !0/ > 0 and c.Z2n.1/; !0/ <1, where B2n.1/ is
the unit ball in R2n and Z2n.1/D B2.1/�R2n�2 is the symplectic cylinder.

Recall the class S of contractible compact symplectic manifolds with contact-type
boundaries that can be embedded into symplectically aspherical manifolds, and consider
the class zS of symplectic manifolds X exhaustible by elements from S, namely such
that there exist Ai 2 S such that A1 � A2 � � � � � X and X D

S
i Ai . Let us use

Theorem 1 to show that Schwarz’s relative capacities, which are defined for subsets of
a given closed symplectically aspherical manifold, induce a capacity on the class zS.

Proof of Corollary 1.5 Let A 2 S be a contractible symplectic manifold with a
contact-type boundary that can be embedded into a symplectically aspherical manifold
.M;!/. Abusing notation, we write A �M. We start by showing that such an A is
an incompressible Liouville domain, and hence a CIB domain, in M. If dimA D 2,
then A is symplectomorphic to a disc of the same area (see [6] for example) and in
particular is an incompressible Liouville domain. Suppose now that dimA> 2 and let
us show that the Liouville form (and hence the Liouville vector field) extends to A.
Denote by � the Liouville form defined near the boundary of A. Since A is contractible,
! is exact on A. Let � be a primitive of ! on A. Then � � � is a closed form on a
collar neighborhood of @A on which � is defined. Since dimA> 2, its boundary has a
vanishing first homology group.13 As a consequence, the closed form � �� defined

13The boundary of a 2n–dimensional contractible manifold with boundary has the homology groups of
the .2n�1/–dimensional sphere. This follows from the Lefschetz duality H2n�k.M/ Š Hk.M; @M/

together with the long exact sequence of a pair.
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near @A is exact. Let f be a primitive, df D � � �, and let � be a cutoff function
supported in the collar neighborhood of @A that is equal to 1 on a smaller neighborhood
of the boundary. Then �0 WD � � d.�f / is a Liouville form which coincides with �
near @A. We conclude that A is a Liouville domain which is incompressible in M , and
hence is a CIB domain.

Recall the definition of Schwarz’s relative capacity (2),

c
 .AIM/ WD supfc.F I ŒM �/� c.F I Œpt�/ W suppXF � A�S1g:

Consider a Hamiltonian F on M such that XF is supported in A � S1. Since A
is contractible, its boundary connected and therefore F is constant on @A, as well
as on the complement, M n A. Denoting C WD F jMnA, the difference F � C is
supported in A. Moreover, it follows from the spectrality and stability of spectral
invariants that cM .F �C I˛/D cM .F I˛/�C for every homology class ˛ 2H�.M/.
In particular, cM .F �C I ŒM �/� cM .F �C I Œpt�/ D cM .F I ŒM �/� cM .F I Œpt�/ and
hence, by replacing F with F �C , we may assume that F is supported in A. Suppose
that A can be embedded into another symplectically aspherical manifold .N;�/. By
Theorem 1, the spectral invariants of Hamiltonians supported inA onM andN coincide,
and therefore the relative capacities of A with respect to M and N agree, and we can
define

c
 .A/ WD c
 .AIM/D c
 .AIN/:

We may extend this definition to elements of the class zS by taking the supremum over
all elements A 2 S in the exhaustion. Before proving that c
 satisfies the axioms of
a symplectic capacity, let us prove the second assertion of the corollary. Given an
A 2 S that can be symplectically embedded into .R2n; !0/, we need to show that
c
 .AIM/ � 2e.AIR2n/. Let Q D Œ�R;R�2n � R2n be a large cube such that the
embedding of A into R2n satisfies e.AIQ/D e.AIR2n/. Then, embedding Q into a
large torus N D R2n=.3RZ2n/Š T2n, we conclude that e.AIN/D e.AIR2n/. By
the energy-capacity inequality, for every Hamiltonian F supported in the embedding
of A into N and for every homology class ˛, one has c.F I˛/� e.AIN/D e.AIR2n/.
Using Theorem 1 we conclude that for every symplectically aspherical M and an
embedding of A into M, c
 .AIM/D c
 .A/� 2e.AIR2n/.

We now briefly explain why c
 satisfies the axioms of a capacity. Nontriviality follows
from the fact that Schwarz’s capacities are not smaller than the Hofer–Zehnder capacity,
and are not greater than twice the displacement energy; see [18]. Monotonicity follows
from the definition of c
 . � IM/, together with the fact that the image of every embedding
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of a domain in S into a symplectically aspherical manifold is a CIB domain. To prove
the conformality property, suppose that .A;�/ 2 S is embedded into .M;!/, and then
.A; � ��/ is embedded into .M; � �!/. In order to prove that

c
 ..A; ��/; .M; �!//D j� j � c
 ..A;�/; .M;!//;

we show that for every F such that supp.XF /� A�S1 and for every homology class
˛ 2H�.M/, it holds that

(23) c.M;�!/.j� j �F I˛/D j� j � c.M;!/.F I˛/:

Starting from the case where � > 0, we notice that the action functional with respect
to the form �! and the Hamiltonian �F is proportional to the action functional with
respect to ! and F . The Floer complexes of .!; J; F / and .�!; J; �F / coincide, while
the action filtration is rescaled by � , and therefore (23) holds. It remains to deal with
�D�1. In this case, the Floer complexes of .!; J; F / and .�!;�J; F / are isomorphic
via the map t 7! �t , and the action filtration is the same. This implies that (23) holds
for negative � as well.

Proof of Corollary 1.6 Let A � M be a contractible domain with a contact-type
boundary that can be symplectically embedded in .R2n; !0/. As in the proof of
Corollary 1.5, let Q �R2n be a large enough cube such that the image of A in R2n is
displaceable inQ. EmbeddingQ into a large torusN ŠT2n, we denote by‰ WA ,!N

the composition of the embeddings. As ‰.A/ is displaceable in N, it follows from
nonnegativity of c. � I ŒM �/ (Lemma 4.1), Theorem 1 and the energy capacity inequality
that for every Hamiltonian F WM �S1!R supported in A,

0� cM .F I ŒM �/D cN .‰�F I ŒN �/� e.AIN/ <1:

As a consequence, the partial symplectic quasistate � associated to c vanishes on
functions supported in A. The fact that the complement of A is superheavy follows
from the following equivalent description of superheavy sets:

Definition [16, Definition 6.1.10] A closed subset X �M is superheavy if �.F /D 0
for every Hamiltonian F that vanishes on X .

The fact that A cannot contain a heavy set can be seen directly from the definition.
Alternatively, this fact follows from the intersection property of heavy and superheavy
sets, established by Entov and Polterovich in [7]: Every superheavy set intersects every
heavy set.
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We conclude this section with two examples, showing that Theorem 1 does not hold in
a more general setting.

Example 4.6 The conditions on the manifolds M, N and the domain U in Theorem 1
are necessary:

� The condition onM andN being symplectically aspherical in Theorem 1 is necessary.
A simple example is to embed the unit disk D�R2 into a small sphere and into a large
sphere. Namely, take M and N to be spheres of areas 1:5� and 2� , respectively. Then
there exist Hamiltonians, supported in the embedding of D into M, with arbitrarily
large spectral invariants with respect to the fundamental class. This follows from the
fact that the embedding of D into M contains the equator, which is a heavy set; see
[16, Chapter 6]. A Hamiltonian F that attains large values on the equator in M has a
large spectral invariant.

On the other hand, the spectral invariant of any Hamiltonian that is supported in the
embedding of D into N is bounded by the displacement energy of this embedded disc
in N, which is equal to � .

� The condition that @U be incompressible is also necessary. Consider the two
embeddings of the annulus A WD int

�
D n 1

2
D
�

into a torus of large area, illustrated in
Figure 2. The image under the first embedding contains the meridian and therefore is
heavy [7] (in this case the boundary is incompressible). The image under the second
embedding is displaceable (and the boundary is not incompressible). As mentioned
above, in the first case one can construct Hamiltonians with arbitrarily large spectral
invariants (with respect to the fundamental class), and in the second case, the spectral
invariant is bounded by the (finite) displacement energy. In particular, the assertion of
Theorem 1 cannot hold in this case.

5 Relation to certain open symplectic manifolds

In this section we discuss an extension of Theorem 1 to CIB domains in certain open
symplectic manifolds. We start by briefly reviewing Floer homology on such manifolds,
following [9].14 Let .W; !/ be a 2n–dimensional compact symplectic manifold with
a contact-type boundary. Using the Liouville vector field Y, we can symplectically

14A lot of our sign choices are opposite to those of [9]. Essentially, the complex defined in [9] for a
Hamiltonian F coincides with the complex defined here for �F .
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identify a neighborhood of the boundary in W with @W � ."; 0� endowed with the
symplectic form d.er�/, where � D �Y! and r is the coordinate on the interval.
The completion of .W; !/ is defined to be

yW WDW [@W @W � Œ0;1/; y! WD

�
! on W;
d.er�/ on @W � .�";1/:

Let J be an y!–compatible almost complex structure on yW that, on @W, maps Y to
the Reeb vector field R and, on @W � Œ0;1/, is time-independent and is invariant
under r–translations. A time-dependent Hamiltonian F on yW is called admissible if it
coincides on @W � Œ0;1/ with �.er/ for a function � W Œ0;1/!R whose derivative
on .0;1/ is positive and smaller than the minimal period of a periodic Reeb orbit —
note that in this case, F has no 1–periodic orbits in W � .0;1/. For a generic
admissible Hamiltonian, the Floer complex of the pair .F; J / on the open manifold
. yW ; y!/ is generated by the 1–periodic orbits of F in W, and the differential is defined
by counting solutions of the Floer equation, as in the closed case; see Section 2. The
above assumptions on F and J guarantee that finite-energy solutions are contained
in W. This follows from a standard application of the max-principle (see for example
[23, Lemma 1.8; 17, Lemma 2.1]), or from Lemma 3.5 above. The homology of this
complex is independent of F and J and is isomorphic to the homology of W. Spectral
invariants on open manifolds were defined in [9, Section 5] in complete analogy with
the closed case.15 These invariants extend by continuity to any Hamiltonian supported
in W.

Remark 5.1 It was suggested to us by Schlenk that Theorem 1 holds for the spectral
invariant with respect to the point class on the above open manifolds as well. Namely,
given a CIB domain U inW and a symplectic embedding‰ W .U; !/! .W 0; !0/ whose
image is a CIB domain in W 0, then for every Hamiltonian F supported in U,

cW .F I Œpt�/D cW 0.‰�F I Œpt�/;

where ‰�F WW 0 �S1!R is the extension by zero of F ı‰�1.

5.1 The homology of the subcomplex CUı.f /

In what follows, .M;!/ denotes a closed symplectic manifold, as always. Given a
Hamiltonian F supported in U, let .f; J / be a Floer-regular pair on M with a barricade

15The definition in [9] is given for the point class, but generalizes as is to any ˛ 2H�.W /.
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in U around Uı for some Uı b U. The block form (7) of the differential implies that
the differential restricts to CUı.f /� CF.f /. In this section we study the homology
of this subcomplex. We show that for a properly chosen pair .f; J /, the homology of
.CUı.f /; @jUı/ coincides with the homology of U, namely,

(24) H�.CUı.f /; @jUı/ŠH�.U /:

To that end, consider a perturbation f [ of F such that .f [; J / has a .r; ı/–bump
around @U (in the sense of Definition 3.6). In particular, we assume that J is cylindrical.
Let f be a C 2–small perturbation of f [ such that the pair .f; J / is Floer-regular. As
argued in the proof of Theorem 5, it follows from Propositions 3.7 and 9.21 that the
pair .f; J / has a barricade in U around Uı WD  �rU. Taking f to be close enough
to f [, the restriction f jUı of f to Uı can be extended to an admissible Hamiltonian
yf WD bf jUı on yU that has no additional 1–periodic orbits. Here . yU ; y!/ is the open

symplectic manifold obtained as the completion of U. As the 1–periodic orbits of
yf in yU coincide with the 1–periodic orbits of f that are contained in Uı, the Floer

complex of yf on the open manifold yU coincides with CUı.f /. Since both in M and
in yU all finite-energy solutions of the Floer equation among orbits in Uı are contained
in Uı, the differentials coincide. We conclude that the homology of .CUı.f /; @jUı/
indeed coincides with H�.U /.

5.2 Locality of spectral invariants with respect to other homology classes

In this section we show how Floer homology on open manifolds is useful in the study
of Floer complexes of Hamiltonians supported in CIB domains in closed manifolds.16

In particular, we explain how to extend Theorem 1 to homology classes in the image
of the map induced by the inclusion � W U ,!M.

Remark 5.2 The map �� WH�.U /!H�.M/ induced by the inclusion of U into M
coincides (under standard isomorphisms) with the map induced by the inclusion of
Floer complexes CUı.f /!CF.f / when .f; J / has a barricade in U around Uı. This
is clear for the case where f is a small Morse function, since its Floer complex and the
Uı–subcomplex coincide with the Morse ones. To see this for a general Hamiltonian f ,
consider a homotopy h between f and a small Morse function hC such that .h; J /
has a barricade in U around Uı. Denoting by ˆ WCF.f /!CF.hC/ŠCM�.hC/ the

16The results in this section can be achieved within the scope of Floer homology on closed manifolds, but
the proof is slightly more complicated and less natural.
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corresponding continuation map, it restricts to the subcomplexes generated by elements
in Uı:

ˆUı WDˆjCUı .f / W CUı.f /! CUı.hC/:

Moreover, the solutions of the Floer equation counted by the map ˆUı are all contained
in Uı due to the barricade — these observations are an adaptation of (7) to continuation
maps instead of differentials. In fact, the map ˆUı coincides with the continuation
map between the Floer and Morse complexes on the completion of Uı, with respect
to a homotopy obtained as a constant (in the s parameter) extension of hjUı to the
completion. Such maps are known to be isomorphisms; see [17, Section 2.9; 24,
Theorem 1.4], for example. Since the diagram

CUı.f /
//

ˆUı
��

CF.f /

ˆ
��

CUı.hC/
// CF.hC/

commutes, the maps induced by inclusions of the Floer and Morse complexes coincide
under the isomorphisms ˆUı and ˆ.

Claim 5.3 For every class ˛ 2 im.��/�H�.M/ and a Hamiltonian F supported in U,

(25) cM .F I˛/D min
ˇ2H�.U /
��.ˇ/D˛

c yU .
yF Iˇ/;

where cM and c yU are the spectral invariants in the manifolds .M;!/ and . yU ; y!/,
respectively, and yF is the extension by zero of F jU to yU.

Proof The proof relies on the observations of Section 5.1: Let f be a perturbation
of F and J an almost complex structure such that .f; J / has a barricade in U around
Uı. Assume in addition that the perturbation is chosen to be arbitrarily close to some f [

for which the pair .f [; J / has a cylindrical bump around @U. As explained previously,
the Floer complex of yf WD bf jUı on . yU ; y!/ coincides with the subcomplex CUı.f / of
CF.f / in M. We will show that formula (25) holds for f and yf up to 2ı for some ı
which can be made arbitrarily small by shrinking the size of the perturbations.

We start by noticing that given a class ˇ 2 ��1� .˛/, every representative b 2 CUı.f /
of ˇ is a representative of ˛ in CF�.f /. This immediately implies that

cM .f I˛/� min
ˇ2��1� .˛/

cUı.
yf Iˇ/:
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To prove inequality in the other direction, let ˇ 2 ��1� .˛/ be a class on which the
minimum in the right-hand side of (25) is attained, and let a2CF�.f / and b 2 CUı.f /
be representatives of ˛ and ˇ of minimal action levels. We need to show that
�f .b/� �f .a/C 2ı, where �f W CF�.f / ! R is the maximal action of an orbit,
as defined in Notation 2.1. Notice that if a 2 CUı.f /, then it represents in CUı.f / a
class in ��1� .a/ and, by our choice of b, �f .b/� �f .a/, which concludes the proof for
this case. Therefore we suppose that a contains critical points in M nUı, which implies
that �f .a/ > �ı. Assume for the sake of contradiction that �f .b/ > �f .a/C 2ı;
then �f .b/ > ı. Recalling that a and b are homologous in CF�.f / (they both repre-
sent ˛), there exists c 2 CF�.f / such that @c D a� b. Consider the decomposition
c D �UıcC�U cı c. Then

b0 WD bC @�Uıc D a� @�U cı c 2 CUı.f /

is homologous to b in CUı.f /. This follows from the fact that @ ı�Uı D @jUı , since
.f; J / has a barricade in U around Uı. Therefore, b0 represents in CUı.f / a class
in ��1� .˛/, and by our choice of b, it holds that �f .b/� �f .b0/. On the other hand,

�f .b
0/D �f .a� @�U cı c/�maxf�f .a/; �f .@�U cı c/g �maxf�f .a/; ıg< �f .b/;

a contradiction.

Remark 5.4 When U is a disjoint union of fUig and ˛D Œpt� 2H�.M/, equality (25)
implies the min formula for the point class, which is equivalent, by Poincaré duality, to
Theorem 45 in [12] (the max formula).

6 Spectral invariants of disjointly supported Hamiltonians

In this section we use barricades to prove Theorem 2, which states that a max inequality
holds for spectral invariants of Hamiltonians supported in disjoint CIB domains, with
respect to a general class ˛ 2H�.M/, and that equality holds when ˛D ŒM �. Suppose
F and G are two Hamiltonians supported in disjoint CIB domains. In order to prove
the max inequality (4) for a homology class ˛ 2H�.M/, we construct a representative
of ˛ in the Floer complex of (a perturbation of) the sum F CG, out of representatives
from the Floer complexes of (perturbations of) F and G. The communication between
the different Floer complexes is through continuation maps, corresponding to (perturba-
tions of) linear homotopies. The barricades will be used to study the continuation maps,
or, more accurately, their restrictions to the CIB domains. In particular, we will use the
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observation that having a barricade for a disjoint union implies having a barricade for
each component:

Remark 6.1 Consider two disjoint domains U and V in M, and a pair .H; J / of a
homotopy (or a Hamiltonian) and an almost complex structure, that has a barricade in
U [V around Uı[Vı for some Uı b U and Vı b V . It follows from Definition 1.7
of the barricade that the pair .H; J / has a barricade in U around Uı (and, similarly,
in V around Vı).

We start by arranging the setup required for the proof of Theorem 2.

Lemma 6.2 (setup) Let F and G be Hamiltonians supported in disjoint CIB domains
U and V, respectively. Then there exist an almost complex structure J and homotopies
hF and hG such that the following hold :

(1) The pairs .hF ; J /, .hF˙; J /, .hG ; J / and .hG˙; J / are all Floer-regular and
have barricades inU[V aroundUı[Vı for someUıbU and VıbV containing
the supports of F and G, respectively.

(2) The left ends hF� and hG� are small perturbations of F and G, respectively.
The right ends coincide — hFC D hGC— and are a small perturbation of the
sum F CG.

(3) On U �S1 (resp. V �S1) the homotopy hF (resp. hG) is a small perturbation
of a constant homotopy , and its ends agree on their 1–periodic orbits up to
second order. In particular , hF� and hFC (resp. hG� and hGC) have the same
1–periodic orbits in U (resp. V ).

Proof Let HF and HG be linear homotopies from F and G, respectively, to the
sum F CG. As in the proof of Lemma 4.4, we consider perturbations h[F and h[G
of the linear homotopies that, when paired with J, have a cylindrical bump around
@U [ @V . We demand in addition that all ends are nondegenerate, that the right ends
coincide, h[FC D h

[
GC, and that the homotopies are constant on U and V, respectively,

h[F jU � h
[
F�
jU and h[G jV � h

[
G�
jV . By Proposition 3.7, these homotopies and their

ends, when paired with J, have barricades in U [ V around Uı [ Vı. It remains
to perturb again to ensure regularity. As in the proof of Theorem 5, we replace the
ends with regular perturbations hF�, hG� and hFC D hGC, without changing their
periodic orbits (as cited in Claim 9.1, for example), then perturb the homotopies to
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glue to these regular perturbed Hamiltonians, and finally perturb the homotopies on
the set M � S1 � I for some fixed finite interval I , to obtain homotopies that are
Floer-regular when paired with J. The last step is possible due to Proposition 9.2 below.
Proposition 9.21 states that barricades survive under perturbations that do not change
the periodic orbits of the ends and are constant (as homotopies) outside of some fixed
finite interval.

The following lemma is actually a part of the proof of Theorem 2 but, in our opinion,
might be interesting on its own.

Lemma 6.3 Let ˛ 2H�.M/ and let F;G WM �S1!R be Hamiltonians supported
in disjoint CIB domains U and V, respectively. Assume in addition that c.F I˛/ < 0.
Then

(26) c.F CGI˛/�minfc.F I˛/; c.GI˛/g:

Proof Let us show that c.F CGI˛/� c.F I˛/. The result will follow by symmetry,
since, if c.GI˛/ < c.F I˛/, then it is in particular negative.

Let hF and J be the homotopy and almost complex structure from the setup lemma,
Lemma 6.2 (we will not use hG in this proof), and denote the left end of the homotopy
by f WD hF�. Then f approximates F and, since c.F I˛/ < 0 and F jU cı D 0, we
may assume that c.f I˛/ < minU cı f . Outside of Uı, f is a small Morse function
and hence its 1–periodic orbits there are critical points, and their actions are the
critical values. As a consequence, a representative a 2 CF�.f / of the class ˛ of
action level �f .a/D c.f I˛/ must be a combination of orbits that are contained in Uı,
namely, a 2 CUı.f /. As the continuation map ˆ.hF ;J / W CF�.f / ! CF�.hFC/

induces isomorphism on homologies, the image ˆ.hF ;J /.a/ of a represents the class ˛
in CF�.hFC/. Recalling that, on U, the homotopy hF is a small perturbation of a
constant homotopy, it follows from Corollary 9.34 that the restriction of the continuation
map ˆ.hF ;J / to orbits contained in Uı is the identity map,

ˆ.hF ;J / ı�Uı D 1 ı�Uı :

Therefore, ˆ.hF ;J /.a/D a is a representative of the class ˛ of action level

�hFC.ˆ.hF ;J /.a//D �f .a/D c.f I˛/:

We conclude that c.hFCI˛/� c.f I˛/, as required.
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Figure 8: An illustration of nondegenerate perturbations of F , top, and FCG,
bottom. A representative of the class ˛Cˇ appears at level� 0 for F , and at
a negative value for F CG.

The following example shows that a strict inequality can be attained in (26).

Example 6.4 Let .M;!/ be a genus-2 surface endowed with an area form, and
let x; y W S1 ! M be two disjoint noncontractible loops representing two different
homology classes ˛; ˇ 2H1.M IZ2/, respectively. Let F;G WM ! R be two small
Morse functions with disjoint supports, which are such that F vanishes on y and takes
a negative value on x, whereas G vanishes on x and is negative on y. See Figure 8 for
an illustration. After perturbing F , G and F CG into Morse functions, representatives
of the sum ˛Cˇ first appear for F and G on a sublevel set of values approximately
zero. However, this sum of classes appears for F CG in a sublevel set with negative
value. We therefore conclude that the spectral invariants of both F and G with respect
to the sum ˛Cˇ vanish. On the other hand, the spectral invariant of F CG is negative,
and thus

c.F CGI˛Cˇ/ < 0Dminfc.F I˛Cˇ/; c.GI˛Cˇ/g:
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The following inequality is a simple application of Lemmas 4.1 and 6.3, and will be
used to prove that equality holds in (4) for the fundamental class.

Lemma 6.5 Let F;G W M � S1 ! R be Hamiltonians supported in disjoint CIB
domains. Then

c.F CGI ŒM �/�maxfc.F I ŒM �/; c.GI ŒM �/g:

Proof By Lemma 4.1, the spectral invariants of F , G and F CG with respect to Œpt�
are nonpositive, and thus, using the Poincaré duality property for spectral invariants,
we conclude that c.F CGI ŒM �/, c.F I ŒM �/ and c.GI ŒM �/ are all nonnegative. If
both c.F I ŒM �/ and c.GI ŒM �/ are equal to zero, the claim is trivial. Thus we assume,
without loss of generality, that c.F I ŒM �/ > 0. By Poincaré duality,

c.�F I Œpt�/D�c.F I ŒM �/ < 0

and we may apply Lemma 6.3 to �F , �G and ˛ D Œpt�:

c.F CGI ŒM �/D�c.�F �GI Œpt�/

� �minfc.�F I Œpt�/; c.�GI Œpt�/g

D �minf�c.F I ŒM �/;�c.GI ŒM �/g

Dmaxfc.F I ŒM �/; c.GI ŒM �/g:

Proof of Theorem 2 In what follows we prove that the spectral invariant of the sum
FCG with respect to a homology class ˛ is not greater than the maximum. The equality
for the fundamental class will follow from Lemma 6.5. Consider the almost complex
structure J, and the homotopies, hF and hG , from the setup lemma, Lemma 6.2, and
write

f WD hF� � F; g WD hG� �G; hC WD hFC D hGC � F CG:

Set � WDmaxfc.f I˛/; c.gI˛/g and notice that, due to Lemma 6.3 and the continuity
of spectral invariants, we may assume that � � �ı if ı > 0 is small enough. Let
za 2 CF�.f /, zb 2 CF�.g/ be representatives of ˛ of action levels �f .za/; �g.zb/ � �.
Then a WD ˆ.hF ;J /za and b WD ˆ.hG ;J /zb are both representatives of ˛ in CF�.hC/.
Notice that a and b might be of action level higher than �. We wish to construct out of
a and b a representative of ˛ of action level approximately bounded by �. Let p be a
primitive of a� b, and set d WD .@.hC;J /�V ��V @.hC;J //p. We claim that

e WD �V caC�V b� d
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is a representative of ˛ of the required action level. Indeed,

Œ�V caC�V b� d�D Œ�V caC�V b� @.hC;J /.�V p/C�V .@.hC;J /p/�

D Œ�V caC�V b� @.hC;J /.�V p/C�V .a� b/�

D Œ�V caC�V b� @.hC;J /.�V p/C�V a��V b�

D Œ�V caC�V a� @.hC;J /.�V p/�D Œa�D ˛:

Let us now bound the action level of e. First, notice that outside of Uı[Vı, hC is a
small Morse function (as it approximates a Hamiltonian that is supported in Uı[Vı).
Therefore, its 1–periodic orbits there are its critical points and their actions are the
critical values, which we may assume to be bounded by ı. It follows that the action
level of the projection �U cı \V cı .e/ is bounded by ı, and so it remains to bound the
action levels of �Uıe and �Vıe. It follows from the fact that .hC; J / has a barricade
in U around Uı and in V around Vı (more specifically, from (7)), that

(27) �Uı ı @.hC;J / ı�U c D 0 and �Vı ı @.hC;J / ı�V c D 0:

Using this observation, we bound the action levels of the projections of e:

� Bounding �hC.�Uıe/ Notice that �Uıd D 0. Indeed,

�Uıd D �Uı ı .@.hC;J / ı�V ��V ı @.hC;J //p D �Uı ı @.hC;J / ı�V p
(27)
D 0:

As a consequence, �Uıe D �UıaD �Uıˆ.hF ;J /za. Since, on U, the homotopy hF is a
perturbation of the constant homotopy, we can apply Corollary 9.34 and conclude that
�Uı ıˆ.hF ;J / D �Uı . Overall we obtain

�hC.�Uıe/D �hC.�Uı ıˆ.hF ;J /za/D �hC.�Uıza/D �f .�Uıza/� �f .za/� �;

where we used the fact that in U, f D hF� and hC D hFC agree on their 1–periodic
orbits, and hence the action of �Uıza with respect to hC coincides with the action with
respect to f .

� Bounding �hC.�Vıe/ Here �Vıd D 0 as well, but the computation is a little
different:

�Vıd D �Vı ı .@.hC;J / ı�V ��V ı @.hC;J //p

D .�Vı ı @.hC;J / ı�V ��Vı ı @.hC;J //p

D .�Vı ı @.hC;J /��Vı ı @.hC;J / ı�V c ��Vı ı @.hC;J //p
(27)
D 0:

Therefore, �Vıe D �Vıb D �Vıˆ.hG ;J /
zb, and since on V , the homotopy hG is a

perturbation of the constant homotopy, we apply Corollary 9.34 and conclude that
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�Vı ıˆ.hG ;J / D �Vı . Overall,

�hC.�Vıe/D �hC.�Vı ıˆ.hG ;J /
zb/D �hC.�Vı

zb/D �g.�Vı
zb/� �g.zb/� �;

where we used the fact that on V, g D hG� and hC D hGC agree on their 1–periodic
orbits, and hence the action of �Vıza with respect to hC coincides with the action with
respect to g.

We conclude that

c.hCI˛/� �hC.e/�maxf�hC.�Uıe/; �hC.�Vıe/; �hC.�U cı \V cı e/g

Dmaxf�; ıg � �C 2ı:

7 Boundary depth of disjointly supported Hamiltonians

In this section, we use barricades to compare the boundary depths of disjointly supported
Hamiltonians and that of their sum. As in the previous section, the communication
between Floer complexes of different Hamiltonians is through continuation maps
corresponding to homotopies that have barricades. Since we replace the Hamiltonians
and their sum by regular perturbations, we will use the continuity property of the
boundary-depth:

Theorem [21, Theorem 1.1] Given two Hamiltonians F and G,

jˇ.F /�ˇ.G/j �

Z 1

0

�
max
M
.F �G/�min

M
.F �G/

�
dt:

As before, we use Notation 2.1. Let us start with a lemma that will enable us to push
certain boundary terms from one Floer complex to another.

Lemma 7.1 Let J be an almost complex structure and h a homotopy such that the pairs
.h; J / and .h˙; J / are Floer-regular and have a barricade in U around Uı. Assume
in addition that on U, h is a small perturbation of a constant homotopy, and that its
ends h˙ agree up to second order on their 1–periodic orbits in U. Then every boundary
term a 2 @.hC;J /CF�.hC/ that is a combination of orbits in Uı, namely a 2 CUı.hC/,
is also a boundary term in CF�.h�/.

Proof We start with the observation that, since h� and hC are close on U and agree on
their periodic orbits there, the vector spaces CU .h�/ and CU .hC/ coincide. Therefore,
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a boundary term a2CF�.hC/ that is a combination of orbits from Uı is also an element
of CUı.h�/. Let us show that a is a boundary term in the Floer complex of .h�; J /.
As the homotopy h is close to a constant homotopy on U, we may use Corollary 9.34
and conclude that ˆ.h;J / ı�Uı D �Uı . Applying this equality to a, we obtain

ˆ.h;J /aDˆ.h;J / ı�UıaD �UıaD aI

namely, a 2 CF�.hC/ is the image of itself under the continuation map. As ˆ.h;J / in-
duces isomorphism on homologies, it is enough to show that a is closed inCF�.h�/, and
it will then follow that it is a boundary term. To see that a is closed in CF�.h�/, notice
that the presence of a barricade (in particular, (7)) implies @.h�;J /a 2CU0.h�/; namely,
@.h�;J /aD�Uı@.h�;J /a. Therefore, @.h�;J /aD�Uı@.h�;J /aD�Uıˆ.h;J /@.h�;J /aD
�Uı@.hC;J /ˆ.h;J /aD �Uı@.hC;J /aD 0:

We are now ready to prove Theorem 3.

Proof of Theorem 3 In what follows we show that ˇ.F CG/� ˇ.F /. Inequality (5)
follows by symmetry. LetH be a linear homotopy from F CG to F . Notice that, since
F and F CG agree on U, H is a constant homotopy there. By Theorem 5, there exist
a perturbation h of H and an almost complex structure J such that the pairs .h; J / and
.h˙; J / are Floer-regular and have a barricade in U [V around Uı[Vı for Uı b U

and Vı b V containing the supports of F and G, respectively. Since H is a constant
homotopy on U, it follows from Remark 3.8(ii) that h can be chosen such that, in U, the
h˙ agree on their 1–periodic orbits up to second order. We stress that h� approximates
F CG and that f WD hC approximates F . Hence, fixing an arbitrarily small ı > 0,
we may assume (by taking h to be close enough to H ) that h�jU cı \V cı and f jU cı are
small Morse functions with values in .�ı; ı/. Due to the continuity of the boundary
depth, it is enough to prove that ˇ.f / is approximately bounded by ˇ.h�/.

Fix a boundary term a 2 CF�.f /, and let us show that there exists a primitive of a
whose action level is bounded by �f .a/Cˇ.h�/C 4ı, for ı that was fixed above. We
prove this claim in two steps:

Step 1 Assume that a is a combination of orbits that are contained in Uı, namely
a 2 CUı.f /. Applying Lemma 7.1 to .h; J /, we find that a 2 CF�.h�/ is also a
boundary term. Therefore, there exists b 2 CF�.h�/ such that @.h�;J /b D a and
�h�.b/� �h�.a/Cˇ.h�/. Let us split into two cases:

� �h�.b/<�ı Since h� is a small Morse function outside of Uı[Vı, its 1–periodic
orbits there are its critical points, and their actions are the critical values, which are all
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contained in the interval .�ı; ı/. As a consequence, b is necessarily a combination of
orbits that are contained in Uı[Vı, namely, b 2 CUı[Vı.h�/. Writing b D �UıbC
�Vıb, the presence of the barricade (in particular, (7)) guarantees that

@.h�;J /�Uıb 2 CUı.h�/ and @.h�;J /�Vıb 2 CVı.h�/:

Recalling that @.h�;J /b D a 2 CUı.h�/, we conclude that @.h�;J /�Vıb D 0:

@.h�;J /�Vıb D �Vı.@.h�;J /�Vıb/

D �Vı.@.h�;J /b� @.h�;J /�Uıb/

D �Vı.a��Uı@.h�;J /�Uıb/D 0:

Replacing b by �Uıb, we still have a primitive of a of no greater action level, as
�h�.b/Dmaxf�h�.�Uıb/; �h�.�Vıb/g. Therefore, we may assume that b 2CUı.h�/,
and so it is also an element of CUı.f /. Recalling that h is a perturbation of a constant
homotopy on U, Corollary 9.34 states that ˆ.h;J / ı�Uı D �Uı , and hence ˆ.h;J /bD b
and ˆ.h;J /aD a. Thus,

@.f;J /.b/D @.f;J /.ˆ.h;J /b/Dˆ.h;J /.@.h�;J /b/Dˆ.h;J /aD a;

ie b is a primitive of a in CF�.f / with small enough action level: �f .b/D �h�.b/�
�f .a/Cˇ.h�/.

� �h�.b/ � �ı Then, writing b D �U b C �U cb, the presence of a barricade
(in particular, (7)) implies that ˆ.h;J /�U cb 2CU c .f / and hence �f .ˆ.h;J /�U cb/� ı.
Turning to bound the action of the projection onto U, recall that h is a perturbation of a
constant homotopy on U, and by Corollary 9.34, �U ıˆ.h;J / D �U. Overall,

�f .ˆ.h;J /b/�maxf�f .ˆ.h;J /�U cb/; �f .ˆ.h;J /�U b/g

�maxfı; �h�.b/g

� �f .a/Cˇ.h�/C 2ı:

Step 2 Let us prove the claim for general a. Note that if �f .a/ <�ı then a 2CUı.f /
and the claim follows from the previous step. Therefore, we assume that �f .a/� �ı.
Let b be any primitive of a inCF�.f /, namely, @.f;J /bDa, and write bD�UıbC�U cı b.
Both �U cı b and @.f;J /�U cı b have action levels bounded by ı. Set a0 WD @.f;J /�Uıb.
Then

�f .a
0/D �f .a� @.f;J /�U cı b/�maxf�f .a/; �f .@.f;J /�U cı b/g � �f .a/C 2ı:

Moreover, the presence of the barricade implies that a0 2 CUı.f /. Therefore, we may
apply the previous step to a0 and obtain b0 2 CF�.f / such that @.f;J /b0 D a0 and
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suppF suppG

"

0

�"

Figure 9: An illustration of a nondegenerate perturbation of the sum F CG

from Example 7.2.

�f .b
0/� �f .a

0/Cˇ.h�/C 2ı � �f .a/Cˇ.h�/C 4ı. To conclude the proof, notice
that b0C�U cı b is a primitive of a and

�f .b
0
C�U cı b/�maxf�f .b

0/; �f .�Uıb/g � �f .a/Cˇ.h�/C 4ı:

The following example shows that equality does not hold in (5).

Example 7.2 Let M D T2 be the two-dimensional torus equipped with an area form
and take F and G be disjointly supported C2–small nonnegative bumps; see Figure 9.
Approximating F , G and F CG by small Morse functions, their Floer complexes
and differentials are equal to the Morse complexes and differentials. Hence, the Floer
differentials of both F and G vanish and in particular, ˇ.F /D 0D ˇ.G/. On the other
hand, ˇ.F CG/DminfmaxF;maxGg.

8 Min inequality for the AHS action selector

In this section, we use barricades to prove a “min inequality” for the action selector
defined by Abbondandolo, Haug and Schlenk in [1], on symplectically aspherical
manifolds. We start by reviewing the construction of this action selector, which we
denote by cAHS, and state a few of its properties.

Let H WM �S1�R!R be a homotopy of Hamiltonians and let J W S1�R! J! be
a homotopy of time-dependent almost complex structures (that are compatible with !).
Assume that @sH and @sJ have compact support and denote byH˙ and J˙ the ends of
the homotopies. As before, we denote by M.H;J / the set of all finite-energy solutions
of the Floer equation (FE) with respect to .H; J /. On this space, define the functional
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aH� WM.H;J /!R by aH�.u/ WD lims!�1AH�.u.s; � //. The existence of this limit
follows from the fact that the homotopiesH and J are constant outside of a compact set,
and hence, when s approaches �1, the function s!AH�.u.s; � // is nonincreasing
and bounded; see for example [1, page 8]. Given a Hamiltonian F WM � S1 ! R,
denote by D.F / WD f.H; J / j H� D F g the set of all pairs of homotopies that are
constant outside of some compact set, and such that F is the left end of H.

Definition 8.1 [1, Definition 3.1] Let F WM �S1!R be any Hamiltonian and let
.H; J / 2 D.F /. Set

(28) A.H; J / WD min
u2M.H;J/

aF .u/ and cAHS.F / WD sup
.H;J /2D.F /

A.H; J /:

In [1], Abbondandolo, Haug and Schlenk proved that the functional cAHS is continuous
and monotone, and that it takes values in the action spectrum, namely cAHS.F / 2

spec.F /. Let us state the result establishing the continuity of cAHS:

Claim 8.2 [1, Proposition 3.4] For all F;G 2 C1.M �S1/, we haveZ
S1

min
x2M

.F.x; t/�G.x; t// dt�cAHS.F /�cAHS.G/�

Z
S1

max
x2M

.F.x; t/�G.x; t// dt:

In addition, they proved that the action selector takes nonpositive values on Hamiltonians
supported in incompressible Liouville domains.

Claim 8.3 [1, Proposition 5.4] If F has support in an incompressible Liouville
domain , then cAHS.F /�0. In particular , cAHS.F /D0 for all nonnegative Hamiltonians
which are supported in an incompressible Liouville domain.

Using these claims, together with the barricades construction and ideas from the proof
of Proposition 3.3 from [1], one can prove that a min inequality holds for cAHS.

Proof of Theorem 4 Let F and G be Hamiltonians supported in the interiors of
disjoint incompressible Liouville domains, which we denote by U and V, respectively.
Fixing an arbitrarily small ı > 0, we will prove that cAHS.F CG/� cAHS.F /C3ı. The
claim for G will follow by symmetry. We remark that by Claim 8.3, cAHS.F CG/� 0,
and hence the result is immediate if cAHS.F / � �3ı. Therefore, we assume that
cAHS.F / < �3ı. We break the proof into several steps.
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Step 1 Our first step is to perturb F and F CG (as well as a homotopy between
them) to create barricades. Let H be a linear homotopy from F to F CG that is
constant outside of Œ0; 1�, that is, @sH js…Œ0;1� D 0. Then H is supported in U [ V,
which, as the union of the interiors of incompressible Liouville domains, is also a CIB
domain. Applying Theorem 5 to the homotopy H and the domain U [V, we conclude
that there exists a perturbation h of H, an almost complex structure J [ and subsets
Uı b U and Vı b V containing the supports of F and G, respectively, such that the
pairs .h; J [/ and .h˙; J [/ are Floer-regular and have a barricade in U [ V around
Uı [ Vı. In particular, the ends of h are nondegenerate, f WD h� approximates F
and hC approximates F CG. By taking h to be close enough to H, we can assume
that, outside of Uı, f is a small Morse function with values in .�ı; ı/. Moreover, by
Remark 3.8(iii), we can choose the perturbation h such that the homotopy h is constant
outside of Œ0; 1�, namely, @shjs…Œ0;1�D 0. Finally, taking these perturbations to be small
enough, it follows from Claim 8.2 that cAHS.f / < �2ı, and it is sufficient to prove
that cAHS.hC/� cAHS.f /C ı.

Step 2 Recalling the definition of the action selector cAHS, we need to show that for
every .K; J / 2 D.hC/, it holds that A.K; J / � cAHS.f /C ı. Therefore, our second
step is to construct pairs in D.f / out of a given pair in D.hC/. Fix .K; J / 2 D.hC/
and assume, without loss of generality, that K and J stabilize for s � 0, namely,
K.x; t; s/D hC.x; t/ and J.s/D J� for s � 0. We construct a sequence of pairs in
D.f / by concatenating the homotopies .K; J / with shifts of the homotopy h and a
homotopy zJ D f zJ sgs2R of almost complex structures from J [ to J� which is constant
outside of Œ0; 1�, namely, @s zJ js…Œ0;1� D 0. More precisely, for s 2 R, denote by �s
the shift by s, namely, �sh. � ; � ; � / D h. � ; � ; � C s/ and �s zJ . � ; � / D zJ . � ; � C s/, and
consider the sequences

(29) Kn WD

8̂̂̂<̂
ˆ̂:
K; s � 0;

hC; s 2 Œ�2nC 1; 0�;

�2nh; s 2 Œ�2n;�2nC 1�;

f; s � �2n;

and Jn WD

8̂̂̂<̂
ˆ̂:
J; s � 0;

J�; s 2 Œ�nC 1; 0�;

�n zJ ; s 2 Œ�n;�nC 1�;

J [; s � �n:

See Figure 10 for an illustration. Noticing that .Kn; Jn/ 2 D.f / for all n, we wish to
show that there exists an n 2N for which A.K; J /� A.Kn; Jn/C ı.

Step 3 In this step we choose, for each n, a solution minimizing af , and extract
a subsequence that partially converges to a broken trajectory. Namely, there exists
a broken trajectory xv D .v1; : : : ; vN / whose pieces vi are solutions of (FE) with
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Kn

f � F h hC � F CG K KC

Jn

J [ zJ J� J JC

0 R
s

�2n�2nC 1

0 R
s

�n �nC 1

Figure 10: An illustration of the pair of homotopies .Kn; Jn/ 2 D.f / con-
structed out of a given pair .K; J / 2 D.hC/.

respect to the homotopies concatenated in .Kn; Jn/, and are obtained as limits of
nonpositive shifts of elements from fung. In particular, for each i < N, the solution vi
converges to periodic orbits at the ends that match the limits of the adjacent pieces,
ie lims!C1 vi .s; t/D lims!�1 viC1.s; t/. Moreover, the left end of the first piece,
lims!�1 v1.s; t/, coincides with the left end of each element from the subsequence.
We stress that unlike the standard convergence to a broken trajectory, in our case, the
right end of the last piece in xv (as well as the right ends of the solutions un) does
not necessarily converge. The notion of partial convergence to a broken trajectory is
defined formally in Proposition 9.17 below.

Let un 2M.Kn;Jn/ be a minimizer of the functional af , namely

af .un/D min
u2M.Kn;Jn/

af .u/D A.Kn; Jn/:

Since the supports of the homotopies .Hn; Jn/ are not uniformly bounded and the ends
are not all nondegenerate, the sequence of solutions fungn does not necessarily converge
to a broken trajectory. However, noticing that for s � 0, .Hn; Jn/ are concatenations of
homotopies with nondegenerate ends, one can prove a (weaker) convergence statement,
as we do in Section 9.2.2. In this case, Proposition 9.17 guarantees that there exists a
subsequence of fung, which we still denote by fung, partially converging to a broken
trajectory

xv D .fv.f;J
[/;`
g
L1
`D1

; w.h;J
[/; fv.hC;J

[/;`
g
L2
`D1

; w.hC;
zJ/; fv.hC;J�/;`g

L3
`D1

; w.K;J //;

where the v. � ;� /;` 2M. � ;� / denote solutions of s–independent Floer equations, and
the w. � ;� / 2M. � ;� / denote solutions of s–dependent Floer equations. Moreover, the
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subsequence fung is chosen such that for each n, lims!�1 un.s; � /D x1;0. � /, where
x1;0 WD lims!�1 v.f;J

[/;1.s; � / 2 P.f /.

Step 4 We now use the barricades in order to show that the first few pieces of the
broken trajectory xv are contained in Uı. It follows from the arguments made above that

Af .x1;0/D af .un/D A.Kn; Jn/� cAHS.f / < �2ı;

which implies, by our assumptions on f , that x1;0 � Uı. We claim that, since
.f; J [/ and .h; J [/ have barricades in U around Uı, the trajectories fv.f;J

[/;`g
L1
`D1

and
w.h;J

[/ are contained in Uı. Indeed, lims!�1 v.f;J
[/;1.s; � / D x1;0 � Uı implies

that v.f;J
[/;1 � Uı and, in particular, the image of x1;1. � / WD lims!1 v.f;J

[/;1.s; � /

is contained in U0. Since x1;1 is the left end of v.f;J
[/;2, we can repeat this argument

and conclude that v.f;J
[/;2 is contained in Uı. Continuing by induction, we find that

fv.f;J
[/;`g` are all contained in Uı and, in particular,

x1;L1 WD lim
s!1

v.f;J
[/;L1.s; � /D lim

s!�1
w.h;J

[/.s; � /� Uı:

Now, since .h; J [/ has a barricade in U around Uı, we conclude that w.h;J
[/ � Uı as

well.

Step 5 Let us now show that ahC.w
.K;J // � Af .x1;0/C ı D af .un/C ı. To that

end, we bound the action growth along the broken trajectory xv:

(i) Along v. � ;� /;`: these are solutions of the s–independent Floer equations and, by
the energy identity (8), the action is clearly nonincreasing.

(ii) Along w.h;J
[/: this trajectory is contained in Uı, where h approximates a

constant homotopy, asF jU DFCGjU. Taking h to be close enough toH, we may
assume that the derivative @shjUı is bounded by ı. Denoting by x1;L1 2 P.f /
and x2;0 2 P.hC/ the orbits to which w.h;J

[/ converges at the ends, it follows
from the energy identity (10) that

(30) AhC.x
2;0/�Af .x1;L1/�

ˇ̌̌̌Z
R�S1

.@sh/ ıw
.h;J [/ ds dt

ˇ̌̌̌
�

Z
Œ0;1��S1

max
Uı
j@shj ds dt � ı:

(iii) Along w.hC; zJ/: it follows from the energy identity (10) that the action is non-
increasing, since @shC D 0.
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Overall, we conclude that

ahC.w
.K;J // D AhC.x

3;L3/� � � � �AhC.x
2;0/

(30)
� Af .x1;L1/C ı � � � � �Af .x1;0/C ı D af .un/C ı:

Since un were chosen to be minimizers, af .un/DA.Kn; Jn/� cAHS.f /. On the other
hand, the fact that w.K;J / 2M.K;J / implies that ahC.w

.K;J //�minM.K;J /.ahC/D

A.K; J /. We thus have proved that for any .K; J / 2D.hC/, A.K; J /� cAHS.f /C ı,
which yields that cAHS.hC/� cAHS.f /C ı, as required.

9 The required transversality and compactness results

9.1 Perturbing homotopies and Hamiltonians to achieve regularity

Let .M;!/ be a closed symplectically aspherical manifold. Given a nondegenerate
Hamiltonian H and an almost complex structure J, we say that a pair .H; J / is
Floer-regular if for every pair of 1–periodic orbits x˙ of H˙ and for every u 2
M.H;J /.x�; xC/, the differential .dF/u WW 1;p.u�TM/! Lp.u�TM/ of the Floer
map (see Notation 9.9 below) is surjective. In this case, the space of solutions
M.H;J /.x�; xC/ is a smooth manifold of dimension �.x�/��.xC/. It is well known
that for any nondegenerate Hamiltonian H and an almost complex structure J, one
can perturb H, without changing its periodic orbits, in order to make the pair .H; J /
Floer-regular. Let us cite a formal statement of this fact.

Claim 9.1 [8, Theorem 5.1] Let H be a nondegenerate Hamiltonian and let J be an
almost complex structure on M, and let C1" .H/ be the space of perturbations which
vanish on P.H/ up to second order.17 Then there exist a neighborhood of zero in
C1" .H/, and a residual set Hreg in this neighborhood , such that for every h 2Hreg, the
pair .H C h; J / is Floer-regular.

When H is a homotopy whose ends, H˙, are Floer-regular with respect to J, one can
perturb H on a compact set to guarantee that the pair .H; J / is Floer-regular. For the
purposes of this paper, we need to control the size of the support of the perturbation.
In this section we prove that one can take the support of the perturbation to be any
closed interval with nonempty interior. Before making a formal claim, let us fix

17This space is endowed with Floer’s "–norm, which is defined below.
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some notation. Throughout this section, we consider homotopies of Hamiltonians,
H WM �S1�R!R, that are constant with respect to the R–coordinate, s, outside of
a compact set, namely supp.@sH/�M �S1 � Œ�R;R� for some R > 0. We assume
that the ends H˙. � ; � / WD lims!˙1H. � ; � ; s/ are Floer-regular with respect to a fixed
almost complex structure J. For a closed finite interval I �R with nonempty interior,
we consider the space C1" .I / of perturbations with support in M � S1 � I , whose
definition is given in Section 9.1.1 below. Our main goal for this section is to prove the
following proposition.

Proposition 9.2 Let H be a homotopy such that .H˙; J / are Floer-regular , where
J is an almost complex structure on M, and let I �R be a closed , finite interval with
a nonempty interior. Then there exists a residual subset Hreg � C1" .I / such that for
every h 2Hreg, the pair .H C h; J / is Floer-regular.

The proof of this proposition is postponed to Section 9.1.2. We start by describing the
space of perturbations and its relevant properties.

9.1.1 The Banach space C1
" .I/ In this section we define the perturbation space

C1" .I / and prove useful properties.

Definition 9.3 Let "D f"ng be a sequence of positive numbers.

� For h 2 C1.M �S1 �R/, Floer’s "–norm is defined to be

khk" WD
X
k�0

"k sup
M�S1�R

jdkhj:

See [3, page 230] for details.

� For a closed and finite interval I � R with a nonempty interior, let C1" .I /
be the space of functions h 2 C1.M � S1 � R/, supported in M � S1 � I ,
whose "–norm is finite, namely khk" <1. Then C1" .I / is a Banach space;
see [20, Theorem B.2]. In what follows we identify between the tangent space
ThC1" .I / at a point h, and the space C1" .I / itself.

The following claims guarantee that the properties that are required of a space of
perturbations hold for C1" .I /.

Claim 9.4 There exists a sequence " for which C1" .I / is dense in C1.I /.

Claim 9.5 The Banach space C1" .I / is separable.
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In order to prove these claims we first state and prove two lemmas. We use notation
and ideas from [3, Section 8.3; 20, Appendix B].

Lemma 9.6 Let E be a finite-dimensional vector bundle over M � S1 �R. Then
the space C0I .E/ of continuous sections of E that are supported in M � S1 � I is
second-countable with respect to the uniform norm.

Proof Embedding M � S1 � I into Œ�N;N �m for some large N and m, the space
C0I .E/ is isometrically embedded into C0.Œ�N;N �mIRk/ for some k 2N.18 By the
Weierstrass approximation theorem, the latter space is separable, and hence (being
a normed space) is also second-countable. We conclude that the same holds for the
closed subspace C0I .E/.

Following [20, Appendix B], setE.0/ WDE andE.kC1/ WDHom.T .M�S1�R/IE.k//.
Then, fixing connections and bundle metrics on both T .M �S1�R/ andE, any section
�2�.E.k// has a covariant derivativer�2�.E.kC1//. SetF .k/ WDE.0/˚ � � �˚E.k/

and consider the countable product
Q
k2N C0I .F

.k// endowed with the product topology.
By Lemma 9.6, each factor is second-countable and therefore so is the product.

Lemma 9.7 The space C1.I / of smooth functions M �S1 �R!R supported on
M �S1 � I is separable with respect to the C1–topology.

Proof The space C1.I / can be embedded into the product
Q
k2N C0I .F

.k// by

� 7! .�; .�;r�/; .�;r�;r2�/; : : : /:

As explained above, the product
Q
k2N C0I .F

.k// is second-countable and hence so is
any closed subspace of it. In particular, C1.I / is separable.

We can now prove Claim 9.4. The proof is exactly that of [3, Proposition 8.3.1].

Proof of Claim 9.4 Let fn 2 C1.I / be a dense sequence, whose existence is guaran-
teed by Lemma 9.7. Let

"n WD
1

2n �maxk�n kfkkCn.M�S1�R/
:

For this choice of a sequence ", it holds that kfnk"<1 for all n, namely, fn2C1" .I /.
18This uses the fact that every vector bundle over a compact base is a subbundle of a trivial vector bundle;
see [10, Proposition 1.4].
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The proof of Claim 9.5 is essentially that of Lemma B.4 and Theorem B.5 from [20];
we include it for the convenience of the reader.

Proof of Claim 9.5 Consider again the product
Q
k2N C0I .F

.k// and let X" be the
space of sequences � WD .�0; �1; �2; : : : / 2

Q
k2N C0I .F

.k// such that

k�kX" WD

1X
kD0

"k � k�
k
kC0 <1:

We will first show that X" is separable and then embed C1" .I / into X" in order to prove
the claim. Indeed, since C0I .F

.k// is separable for each k (by Lemma 9.6), we can fix
a dense countable subset P k � C0I .F

.k//. The set

P WD f.�0; : : : ; �N; 0; 0; : : : / 2X" jN � 0 and for all 0� k �N; �k 2 P kg

is countable and dense in X". Now consider the injective linear map

C1" .I / ,!X"; � 7! .�; .�;r�/; .�;r�;r2�/; : : : /:

It is an isometric embedding, and hence we may view C1" .I / as a closed subspace of
the separable space X". The latter is also second-countable (being a normed space) and
hence so is C1" .I /.

Remark 9.8 The proof of Claim 9.5 shows that spaces of perturbations with compact
support are separable in general. This observation will be used in Section 9.3.2.

9.1.2 Proof of Proposition 9.2 We follow the proofs from Chapters 8 and 11 of [3]
and make the necessary changes. Let us start by recalling the relevant notation.

Notation 9.9 Let H be a homotopy, let J be an almost complex structure, and let x˙
be 1–periodic orbits of H˙, respectively.

� We denote by M.H;J /.x�; xC/ the set of solutions of the (s–dependent) Floer
equation with respect to H;J that converge to x˙ at the ends. We denote by
M.H;J / the set of all finite-energy solutions.

� [3, Definition 8.2.2] Denote by P.x�; xC/ the space of maps R�S1!M of
the form

.s; t/ 7! expw.s;t/ Y.s; t/

for Y 2W 1;p.w�TM/ and w 2 C1
&
.x�; xC/. The latter is the space of smooth

maps R�S1!M converging to x˙ at the ends with exponentially decaying
derivatives. We denote by Lp.x�; xC/ the fiber bundle over P.x�; xC/ whose
fiber at u is Lp.u�TM/.
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� The Floer map with respect to H is

(31) FH W P.x�; xC/! Lp.x�; xC/;

u 7!
@u

@s
CJ

�
@u

@t
�XH ıu

�
D
@u

@s
CJ

@u

@t
C graduH;

where .graduH/.s; t/ is the gradient of H. � ; t; s/ with respect to J, restricted
to u. In unitary (ie symplectic, orthonormal) coordinates, the differential of
the Floer map, .dFH /u W W 1;p.R� S1Iu�TM/! Lp.R� S1Iu�TM/, can
be written as .dF/u.Y / D x@Y C SY, where S W R � S1 ! End.R2n/; see
[3, Section 8.4 and page 389].

� Set

(32) Z.x�; xC/ WD f.u; h/ 2 P.x�; xC/� C1" .I / j u 2M.HCh;J /.x�; xC/g:

The main ingredients in the proof of Proposition 9.2 are the following two lemmas.

Lemma 9.10 The set Z.x�; xC/ is a Banach manifold.

Lemma 9.11 The projection

� W Z.x�; xC/! C1" .I /; .u; h/ 7! h;

is a Fredholm map.

The outline of the proof is as follows: We first prove that the set Z.x�; xC/ is a Banach
manifold (Lemma 9.10), and then we show that the projection � WZ.x�; xC/! C1" .I /
is a Fredholm map (Lemma 9.11). Taking Hreg to be the set of regular values of � ,
the Sard–Smale theorem guarantees that it is a residual set. We will use the following
claim from [3].

Claim 9.12 [3, Theorem 11.1.7] For every homotopyH such that .H˙; J / are Floer-
regular and every u 2M.H;J /.x�; xC/, the differential .dFH /u of the Floer map at u
is a Fredholm operator of index �.x�/��.xC/.

In order to prove Lemma 9.10, we present Z.x�; xC/ as an intersection of a certain
section with the zero section in a certain vector bundle. The following lemma will be
used to guarantee that this intersection is transversal. Its proof, which is a combination
of the proofs of [3, Propositions 8.1.4 and 11.1.8], contains the main difference between
the proof of Proposition 9.2 and that of [3, Theorem 11.1.6].
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Lemma 9.13 For .u; h/ 2 Z.x�; xC/, the linear operator

(33) � WW 1;p.R�S1IR2n/� C1" .I /! Lp.R�S1IR2n/;

(Y; �/ 7! .dFHCh/u.Y /C gradu �;

is surjective and has a continuous right inverse.

Proof Assume for the sake of contradiction that � is not surjective. By Lemma 8.5.1
of [3],19 there exists a nonzero vector field Z 2 Lq.R�S1IR2n/20 of class C1 such
that for every Y 2W 1;p.R�S1IR2n/ and � 2 C1" .I /,

hZ; .dFHCh/u.Y /i D 0;(34)

hZ; gradu �i D 0;(35)

where h � ; � i denotes the pairing of Lq and Lp. As mentioned above, the differential
of the Floer map can be written in unitary coordinates as x@C S.s; t/. Since Z is of
class C1, it follows from (34) thatZ is a zero of the dual operator of .dF/u, which is of
a “perturbed Cauchy–Riemann” type. The continuation principle [3, Proposition 8.6.6]
now implies that if Z has an infinite-order zero, then it is identically zero, Z � 0.

Therefore, let us show that (35) guarantees that Z vanishes on I �S1, and conclude
that it vanishes identically, since we assumed that the interior of I is not empty. The
proof is roughly the same as that of [3, Lemma 11.1.9], but we include it for the sake
of completeness. An equivalent reformulation of (35) isZ

R�S1
d�.Z/ ds dt D 0 for every � 2 C1" .I /:

Consider the map zu W R� S1!M �R� S1 defined by .s; t/ 7! .u.s; t/; s; t/. It is
easy to see that zu is an embedding. Viewing Z as a vector field along zu on M �R�S1

that does not have components in the directions @=@t 2 TS1 and @=@s 2 TR, we see
that it is not tangent to zu at the points where it is not zero. Assume for the sake of
contradiction that there exists a point .s0; t0/ 2 I � S1 at which Z does not vanish.
SinceZ is continuous, there exists a small neighborhood Cı of .s0; t0/ in whichZ.s; t/
does not vanish and therefore is transversal to zu for all .s; t/2Cı . Notice that if .s0; t0/
is not in the interior of I �S1, we may replace it with a point in Cı\.int.I /�S1/, and
then replace Cı by a smaller neighborhood that is contained in int.I /�S1. Therefore
we assume, without loss of generality, that Cı � int.I /�S1. Let ˇ WR�S1!R be a

19This lemma is formulated for a slightly different space, but its proof applies to our case as it is.
20Here 1=pC 1=q D 1.
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smooth function supported in Cı , whose integral is not zero,
R

R�S1 ˇ.s; t/ ds dt ¤ 0.
Define � WM �S1�R!R with support in a tubular neighborhood B of zu.Cı/ in such
a way that if 
.s;t/.�/ is a parametrized integral curve of Z passing through zu.s; t/ at
� D 0, then

�.
.s;t/.�/; t; s/ WD ˇ.s; t/ � � for j� j � �:

The fact that Z is transversal to zu.Cı/ guarantees that � is well defined. We also
assume that B \ im.zu/D zu.Cı/, which means that supp.�/\ im.zu/� zu.Cı/. Let us
compute the integral of d�.Z/:Z

R�S1
d�s;t .Z.s; t// ds dt D

Z
Cı

d�s;t .Z.s; t// ds dt

D

Z
Cı

d�s;t

�
@
s;t .�/

@�

ˇ̌̌̌
�D0

�
ds dt

D

Z
Cı

@

@�
.�.
s;t .�/; t; s//

ˇ̌
�D0

ds dt

D

Z
Cı

@

@�
.ˇ.s; t/ � �/

ˇ̌
�D0

ds dt

D

Z
Cı

ˇ.s; t/ ds dt:

As we chose ˇ to be a function with a nonvanishing integral, we find that (35) does
not hold for the function � constructed above. Note that � is a smooth function,
supported in M �S1 � I , but its "–norm is not necessarily finite. Therefore, to arrive
at a contradiction, it remains to approximate � by �0 2 C1" .I /. This is possible due
to Claim 9.4. When �0 is close to �, the integral of d�0.Z/ will be close to that
of d�.Z/ (since their supports are contained in the compact setM �S1�I ), and hence
equality (35) will not hold for �0 2 C1" .I /, a contradiction.

This shows that � is surjective. The fact that it has a continuous right inverse follows
from [3, Lemma 8.5.6] and Claim 9.12.

Having Lemma 9.13, the proof of Lemma 9.10, which asserts that Z.x�; xC/ is a
Banach manifold, is precisely that of [3, Proposition 8.1.3]:

Proof of Lemma 9.10 Let E WD f.u; h; Y / j Y 2Lp.u�TM/g be a vector bundle over
P.x�; xC/� C1" .I /, and consider the section induced by FHCh:

� W P.x�; xC/� C1" .I /! E ; .u; h/ 7!
�
u; h;

@u

@s
CJ

@u

@t
C gradu.H C h/

�
:
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Notice that the space Z.x�; xC/ is the intersection of � with the zero section in E .
Therefore, in order to prove that Z.x�; xC/ is a Banach manifold, it is sufficient to
show that � intersects the zero section transversely, or, equivalently, that d� composed
with the projection onto the fiber is surjective and has a right inverse, at all points for
which �.u; h/D 0. But this composition is precisely the operator � , whose surjectivity
and right invertibility are guaranteed by Lemma 9.13.

Our next goal is to show that � is a Fredholm map, that is, to prove Lemma 9.11.

Proof of Lemma 9.11 The projection � W Z.x�; xC/! C1" .I / given by �.u; h/D h
is clearly smooth. Let us show that its differential, d� , has a finite-dimensional kernel
and a closed image of finite codimension.

� ker.d�/.u;h/ D f.Y; 0/ 2 T.u;h/Z.x�; xC/g. The tangent space of Z.x�; xC/ is

T.u;h/Z.x�; xC/D f.Y; �/ j .dFHCh/u.Y /C gradu �D 0g;

and therefore, the kernel of .d�/.u;h/ agrees with the kernel of .dFHCh/u, which is
finite-dimensional by Claim 9.12.

� im.d�/.u;h/Df� j 9Y 2W 1;p.R�S1Iu�TM/ with gradu �D�.dFHCh/u.Y /g.
Consider the linear map G W C1" .I /!Lp.R�S1Iu�TM/ defined by G.�/D gradu �.
Then

(36) im.d�/.u;h/ D f� j gradu � 2 im.dFHCh/ug DG�1.im.dFHCh/u/:

By Claim 9.12, the image of .dFHCh/u is closed and of finite codimension. Let
us show that the same properties hold for the image of .d�/.u;h/. Consider the map
induced by G on the quotients,

A WD
C1" .I /

im.d�/.u;h/
G0
�! B WD

Lp.R�S1Iu�TM/

im.dFHCh/u
;

which is well defined due to (36). It is easy to see that G0 is injective and, together with
the fact that B is finite-dimensional, this yields that codim.im.d�/.u;h//D dim.A/ is
finite. This now implies that the image of .d�/.u;h/ is also closed and hence .d�/.u;h/
is a Fredholm operator.

Having proved Lemmas 9.10 and 9.11, we are ready to prove the main proposition.
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Proof of Proposition 9.2 By Lemma 9.11, the projection � W Z.x�; xC/! C1" .I / is
a (smooth) Fredholm map. By Claim 9.5, the space C1" .I / is separable. To see that
Z.x�; xC/ is a separable Banach manifold, recall that it is modeled over a subspace
of the Banach space W 1;p.R� S1IR2n/� C1" .I /. The latter is a separable metric
space, and therefore second-countable. As any subspace of a second-countable space
is also second-countable, and, in particular, separable, we conclude that Z.x�; xC/ is
separable. It follows that we may apply the Sard–Smale theorem to � and conclude that
the set of regular values of � is a countable intersection of open dense sets in C1" .I /.
The set Hreg � C1" .I / is defined to be the intersection of the regular values of the
projections for all choices of 1–periodic orbits x˙.

Let us show that for each h 2Hreg, the pair .HCh; J / is Floer-regular. Fix 1–periodic
orbits x˙. Then h is a regular value of the projection � W Z.x�; xC/! C1" .I /. Let
us show that for every u 2 M.HCh;J /.x�; xC/, the differential of the Floer map,
.dFHCh/u, is surjective. Indeed, otherwise, arguing as in the proof of Lemma 9.13,
there existsZ 2Lq.R�S1IR2n/, where 1

p
C
1
q
D1, such that hZ; .dFHCh/u.Y /i D 0

for all Y . Since .d�/.u;h/ is surjective, for every � 2 C1" .I / there exists Y such that
gradu �D�.dFHCh/u.Y /, and hence hZ; gradu �i D 0 as well. We conclude that Z
satisfies both equations (34) and (35), and, proceeding as in the proof of Lemma 9.13,
we find Z D 0. Thus .dFHCh/u is indeed surjective.

It remains to show that M.HCh;J /.x�; xC/ is a smooth manifold of the correct di-
mension. The inverse image ��1.h/ is the space of maps u 2 P.x�; xC/ of class
W 1;p that are solutions of the Floer equation, FHCh.u/D 0. By elliptic regularity,
these solutions are all smooth, and hence ��1.h/DM.HCh;J /.x�; xC/. Since h is a
regular value of � , we therefore conclude that M.HCh;J /.x�; xC/ is indeed a smooth
manifold. Its dimension is

dim ker.d�/.u;h/ D dim ker.dFHCh/u D ind.dFHCh/u D �.x�/��.xC/;

where the last equality follows from Claim 9.12 above.

9.2 Convergence to broken trajectories

A well-known phenomenon in Floer theory on symplectically aspherical manifolds is
the convergence of sequences of solutions to a broken trajectory. In this section we
formulate and prove results of this sort for the settings that are considered throughout
the paper.
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9.2.1 Convergence for homotopies with nondegenerate ends In what follows we
consider homotopies with nondegenerate ends. We remark that the same arguments
apply for nondegenerate Hamiltonians, when one considers them as constant homotopies.
Let H be a homotopy that is constant outside of M � S1 � Œ�R;R� for some fixed
R > 0, namely, @sH jjsj>RD 0. Let Hn be a sequence of homotopies C1–converging
to H such that for each n,

(37) supp.@sHn/�M �S1 � Œ�R;R� and P.Hn˙/D P.H˙/:

Recall that M.H;J / denotes the set of finite-energy solutions of the Floer equation (FE)
with respect to H and J ; for x˙ 2 P.H˙/, we denote by M.H;J /.x�; xC/�M.H;J /

the subset of solutions connecting x˙. Let

M.x�; xC/ WD
[
n

M.Hn;J /.x�; xC/[M.H;J /.x�; xC/

be the space of all finite-energy solutions connecting x˙ with respect to .H; J / and
.Hn; J / for all n, and set M WD

S
x˙2P.H˙/M.x�; xC/. The following proposition

is an adjustment of [3, Theorems 11.1.10 and 11.3.10] to our case.

Proposition 9.14 Let H be a homotopy with nondegenerate ends , and let Hn be a
sequence converging to H in C1.M � S1 �R/ that satisfies (37) for each n. Given
a sequence un 2M.Hn;J /.x�; xC/ of solutions and a sequence of real numbers f�ng,
there exist

� subsequences of fung and f�ng, which we still denote by fung and f�ng,

� periodic orbits x�Dx0; x1; : : : ; xk 2P.H�/ and y0; y1; : : : ; y`DxC2P.HC/,

� sequences of real numbers fsingn for 1� i � k and fs0jn gn for 1� j � `,

� solutions vi 2M.H�;J /.xi�1; xi / for 1 � i � k and v0j 2M.HC;J /.yj�1; yj /

for 1� j � `,

� a solution w 2M.H;J /.xk; y0/,

such that in C1loc.R�S
1IM/, for 1� i � k and 1� j � `, we have

lim
n!1

un. � C s
i
n; � /D vi ; lim

n!1
un. � C s

0j
n ; � /D v

0
j ; lim

n!1
un D w;

and the sequence un. � C �n; � / converges to one of vi , w or v0j , perhaps up to a shift in
the s–coordinate.
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The finite sequence .v1; : : : ; vk; w; v01; : : : ; v
0
`
/ is called a broken trajectory of .H; J /.

Before proving the above proposition, we state and prove two lemmas. The first is
an analogous statement to [3, Theorem 11.2.7], and gives a uniform bound for the
J –gradient of a solution u of the Floer equation with respect to .H; J / or .Hn; J /.

Lemma 9.15 There exists a constant A > 0 such that for every u 2M and every
.s; t/ 2R�S1, 



@u@s





2
J

C





@u@t




2
J

� A:

Proof For convenience we set H0 WDH. Let x˙ 2 P.H˙/ be periodic orbits such
that u 2M.x�; xC/. Then, by the energy identity (10),

(38) E.u/�AH�.x�/�AHC.xC/C 2R �C
0;

where
C 0 WD sup

�
@Hn

@s
.x; t; s/

ˇ̌̌
.x; t; s/ 2M �S1 �R; n� 0

�
;

and R> 0 is the constant from (37). The fact that C 0 is finite follows from the uniform
convergence (with derivatives) of Hn to H0 DH. Setting

C WD max
x˙2P.H˙/

.AH�.x�/�AHC.xC//C 2R �C
0;

we obtain a uniform bound for the energy,E.u/�C for all u2M. As in [3, Propositions
6.6.2 and 11.1.5], we conclude that there exists A > 0 such that



@u@s





2
J

C





@u@t




2
J

� A:

The next lemma uses the Arzelà–Ascoli theorem and elliptic regularity to show that
every sequence of shifted solutions has a converging subsequence. It is an adjustment
of Theorem 11.3.7 and Lemma 11.3.9 from [3] to our setting.

Lemma 9.16 Let un 2M.Hn;J /.x�; xC/ be a sequence of solutions and let sn 2R

be a sequence of numbers. Then the sequence of shifted solutions �snun. � ; � / D
un. � C sn; � / has a subsequence that converges in the C1loc topology to a limit v.
Moreover:

(i) If sn! � 2R, then v 2M.��H;J/, where ��H.x; t; s/ WDH.x; t; sC �/.

(ii) If sn!�1, then v 2M.H�;J /.

(iii) If sn!C1, then v 2M.HC;J /.
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Proof Lemma 9.15 implies that the sequence vn WD �snun is equicontinuous. By the
Arzelà–Ascoli theorem and elliptic regularity (see [3, Lemma 12.1.1]), there exists
a subsequence, which we still denote by fvng, that converges to a limit v in the C1loc
topology. The fact that the energy of v is finite follows from the uniform bound (38) on
the energies of un. It remains to show that the limit v is a solution of the corresponding
equation for the above choices of shifts sn. For each n, vn is a solution of the equation

0D
@vn

@s
CJ

@vn

@t
C gradvn.�snHn/

D

�
@vn

@s
CJ

@vn

@t
C gradvn.�snH/

�
C gradvn.�sn.Hn�H//:

Since the sequence Hn converges to H uniformly with the derivatives, for every � > 0
there exists N such that for n�N,

(39)




@vn@s CJ @vn@t C gradvn.�snH/





< �:
Let us split into cases:

(i) Assume sn! � 2R. Fix an arbitrarily large r > j� j. Then the derivatives of H
are uniformly continuous on the compact set M �S1 � Œ�r; r�. Using (39) together
with our assumption that sn! � , we have

max
Œ�r;r��S1

ˇ̌̌̌
@vn

@s
CJ

@vn

@t
C gradvn.��H/

ˇ̌̌̌
< �C max

Œ�r;r��S1
jgradvn.��H � �snH/j< 2�

when n is large enough. It follows that the limit v of the sequence vn is a solution of
the s–dependent Floer equation with respect to ��H and J.

(ii) Assume sn!�1. Recalling that the homotopy H is constant for jsj � R, we
have H.x; t; s/DH�.x; t/ whenever s ��R. Since sn!�1, for every r > 0 there
exists N large enough that sn < �R� r whenever n�N. For such n, the restriction
of (39) to the compact subset Œ�r; r��S1 is

max
Œ�r;r��S1

ˇ̌̌̌
@vn

@s
CJ

@vn

@t
C gradvn H�

ˇ̌̌̌
< �;

since �snH.x; t; s/DH.x; t; sC sn/DH� when s 2 Œ�r; r�. Taking the limit when
n!1 (and �! 0), we conclude that v is a solution of the Floer equation with respect
to .H�; J /.

(iii) When sn!1, the proof is as in the previous case.
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Having Lemma 9.16, the proof of Proposition 9.14 (namely, the convergence to a
broken trajectory) is similar to the that of [3, Theorem 11.1.10]. We follow it and make
the necessary adjustments.

Proof of Proposition 9.14 Let us prove the claim for the case where �n!�1; the
other cases are analogous. We start by fixing � > 0 small enough that the open balls

B.x; �/ WD f
 2 LM j d1.x; 
/ < �g

are disjoint for x 2 P.H�/. Here LM is the space of contractible loops in M, en-
dowed with the uniform metric d1. By shrinking � if necessary, we assume that the
balls fB.y; �/gy2P.HC/ are also disjoint. Lemma 9.16 guarantees that after passing
to a subsequence, the sequence ��nun converges in C1loc to a finite-energy solution
v 2M.H�;J /. Since H� is nondegenerate, there exist periodic orbits x0; x1 2 P.H�/
such that v 2M.H�;J /.x0; x1/. Moreover, applying Lemma 9.16 to the sequence un
with zero shifts, we conclude that after extracting a subsequence, it converges to a
finite-energy solution w 2M.H;J /.xk; y0/ for some xk 2 P.H�/ and y0 2 P.HC/.
Let us find the solutions preceding v, connecting v to w and following w in the broken
trajectory:

� Solutions preceding v There exists s? � 0 such that for any s � s?, it holds
that v.s; � / 2 B.x0; �/. Since v D lim ��nun, when n is large enough, it holds that
un.s?C�n; � / 2B.x0; �/ as well. If x0D x�, there are no preceding solutions and we
are done. Otherwise, x0 ¤ x�, and since un converges to x� when s!�1, it must
exit the ball B.x0; �/ for s � s?. Let us denote by sn the first exit point,

sn WD inffs � s? j un.�nC s0; � / 2 B.x0; �/ for s0 2 Œs; s?�g:

Let us now show that sn!�1. Indeed, if fsng were bounded, it would have had a
subsequence converging to some sı 2R. Since ��nun converges to v in C1loc and since
sı � s?, we would get

lim
n!1

un.snC �n; � /D v.sı; � / 2 B.x0; �/;

in contradiction to our choice of sn, namely, that un.�n C sn; � / 2 @B.x0; �/. We
conclude therefore that sn!�1 and, in particular, snC �n!�1 as well. Using
Lemma 9.16 for �snC�nun, we conclude that, after passing to a subsequence, this shifted
sequence converges to some v�1 2M.H�;J /. We need to prove that v�1 converges
to x0 when s!1. Fix s > 0. Then for n sufficiently large, sn < sC sn < s? and

�snC�nun.s; � / 2 B.x0; �/:
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This implies that v�1.s; � /2B.x0; �/ for all s >0, and hence v�1 2M.H�;J /.x�1; x0/

for some x�1 2 P.H�/.

Continuing in this way we find v�2, v�3 and so on, until x�k0 D x�. This process is
finite, since there are finitely many orbits in P.H�/ and the action is strictly decreasing
in each step; namely, AH�.x�i / >AH�.x�i�1/ for 0� i � k0.

� Solutions connecting v to w Recall that ��nun converges to v 2M.H�;J /.x0; x1/

and that un converges to w 2M.H;J /.xk; y0/. Let us find the solutions that connect v
to w (or prove that x1 D xk). In analogy with the previous case, pick s? � 0 such that
v.s; � / 2 B.x1; �/ for all s � s?. Then, for n large enough, un.s?C �n; � / 2 B.x1; �/
as well. Arguing similarly for w 2M.H;J /.xk; y0/, there exists s� � 0 such that
w.s; � / 2 B.xk; �/ for all s � s� and, since the un converge to w, for n large enough
un.s�; � /2B.xk; �/ as well. As �n!�1, we have s?C�n<s� for large n. Consider
the first exit of un from B.x1; �/,

sn WD supfs � s? j un.�nC s0; � / 2 B.x1; �/ for s0 2 Œs?; s�g:

Then, repeating the arguments from the previous step, one sees that sn!1. Moreover,
it follows from the definitions of sn and s� that snC �n < s�. Therefore, the sequence
f�nCsng is either bounded or tends to �1. In the first case, it converges, after passing
to a subsequence, to some number sı 2 R. Moreover, since un converges to w on
compacts, we conclude that ��nCsnun converges to �sıw. In particular, this implies that
x1Dxk . Indeed, for every s <sı and n sufficiently large, s2 Œ�nCs?; �nCsn�, and thus
un.s; � / 2 B.x1; �/. As a consequence, w.s; � / 2 B.x1; �/ for all s < sı, which means
that xk D x1 and we are done. Let us now deal with the case where snC�n!�1. By
Lemma 9.16, there exists a subsequence of �snC�nun that converges to a finite-energy
solution v12M.H�;J /. We need to show that the left end of v1 converges to x1, namely,
that v1 2M.H�;J /.x1; x2/ for some x2 2 P.H�/. Fix s < 0 and let us show that
v1.s; � /2B.x1; �/. Since sn!1, when n is large enough we have that sCsn2 Œs?; sn�.
As we saw above, this implies that ��nCsnun.s; � / D un.sC snC �n; � / 2 B.x1; �/,
and thus v1.s; � / 2 B.x1; �/ as required. Repeating this process, we find solutions
v2; : : : ; vk�1 such that vi 2M.H�;J /.xi ; xiC1/, and therefore these connect v to w.
As in the previous case, this process is finite since every solution vi is action-decreasing
and H� has finitely many 1–periodic orbits.

� Solutions following w The right end of w converges to y0 2 P.HC/, and hence
there exists s? � 0 such that for every s � s?, w.s; � / 2 B.y0; �/. As the un converge
to w in C1loc, for n large enough un.s?; � / 2 B.y0; �/ as well. Assume that y0 ¤ xC,
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Figure 11: An illustration of the broken trajectory as constructed in the proof
of Proposition 9.14.

otherwise there is nothing to prove. Then, since the un converge to xC for each n, it
must leave the ball B.y0; �/ at some point. Consider the first exit,

sn WD supfs � s? j un.s0; � / 2 B.y0; �/ for s0 2 Œs?; s�g:

Then, arguing as above, sn!1. Applying Lemma 9.16 to the sequence un shifted
by sn, it converges (up to a subsequence) to a finite-energy solution v01 2M.HC;J /. We
need to show that the left end of v01 converges to y0, namely, that v012M.HC;J /.y0; y1/

for some y1 2 P.HC/. As before, fix any s < 0. Then when n is large enough,
s C sn 2 Œs?; sn� and therefore, �snun.s; � / D un.s C sn; � / 2 B.y0; �/. Again, we
conclude that v01.s; � /2B.y0; �/, which guarantees that v01 converges to y0. Continuing
by induction and using the fact that each v0j reduces the action concludes the proof.

9.2.2 Concatenation of homotopies with possibly degenerate ends In what follows,
we study the breaking mechanism for solutions of (FE) with respect to homotopies of
Hamiltonians that are obtained as concatenations of finitely many given homotopies,
with possibly degenerate ends. In addition, we consider homotopies of almost complex
structures, as opposed to the constant structures considered previously. When the ends
of the first few concatenated homotopies are nondegenerate, we prove what we call a
partial convergence to a broken trajectory.

Let .H 1; J 1/; : : : ; .HK ; JK/ be pairs of homotopies of Hamiltonians and homotopies
of almost complex structures, respectively, which are constant outside of Œ0; 1�, namely

@sH
k
D 0 and @sJ

k
D 0 for s … Œ0; 1� and k D 1; : : : ; K:

Assume in addition that Hk
C
D HkC1

� and J k
C
D J kC1� for k D 1; : : : ; K � 1. Let

f�1ngn; : : : ; f�
K
n gn be monotone sequences of real numbers such that for each n we

have �1n < � � � < �
K
n , and for each k ¤ j , the sequence of differences f�kn � �

j
n gn is

unbounded. For the rest of this section, we consider the sequences fHng and fJng of
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.H k�1; J k�1/ .H k ; J k/ .H kC1; J kC1/

�k�1n �k�1n C 1 �kn �kn C 1 �kC1n �kC1n C 1

Figure 12: An illustration of the pair .Hn; Jn/, which is a concatenation of
the homotopies .H k ; J k/ shifted by f�kn g.

homotopies of Hamiltonians and almost complex structures obtained by concatenating
the shifts of fHkg and fJ kg by the sequences f��kn g. More formally, Hn and Jn are
the sequences which satisfy, for each k D 1; : : : ; K,

Hn D ���kn
Hk on M �S1 � Œ�kn ; �

k
n C 1�;

Jn D ���kn
J k on S1 � Œ�kn ; �

k
n C 1�;

and which are locally constant elsewhere; see Figure 12. Since the ends of the ho-
motopies Hk might be degenerate, a sequence of solutions un 2M.Hn;Jn/ does not
necessarily admit a subsequence converging to a broken trajectory. However, when
some of the homotopies have nondegenerate ends, a slightly weaker statement holds:

Proposition 9.17 Assume that there exists 1 <K 0 �K such that for every k <K 0, the
ends of the homotopyHk are nondegenerate. Then , for every sequence un 2M.Hn;Jn/,
there exist

� a subsequence of fung, which we still denote by fung,

� periodic orbits xk;` 2 P.HkC1
� / for ` D 0; : : : ; Lk and k D 1; : : : ; K 0, where

x1;0 D lims!�1 un.s; � / for all n,

� real numbers sk;`n 2R for `D 1; : : : ; Lk and k D 1; : : : ; K 0 which are such that
s
k;`
n < �kC1n < s

kC1;`0

n for all `D 1; : : : ; Lk and `0 D 1; : : : ; LkC1,

� solutions of s–independent Floer equations vk;` 2M.Hk
�;J

k
�/
.xk;`�1; xk;`/ for

`D 1; : : : ; Lk and k D 1; : : : ; K 0,

� solutions of s–dependent Floer equations wk 2M.Hk ;Jk/.x
k;Lk ; xkC1;0/ for

k D 1; : : : ; K 0 � 1, and wK
0

2M.HK0 ;JK
0
/ such that lims!�1wK

0

.s; � / D

xK
0;LK0 ,
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such that , in C1loc.R�S
1IM/,

lim
n!1

un. � C �
k
n ; � /D w

k and lim
n!1

un. � C s
k;`
n ; � /D vk;`

for 1� `� Lk and 1� k �K 0.

In this case, we say that fung partially converges to the broken trajectory

xv D .fv1;`g
L1
`D1

; w1; fv2;`g
L2
`D1

; w2; : : : ; wK
0�1; fvK

0;`
g
LK0

`D1
; wK

0

/:

In order to prove Proposition 9.17, we need statements analogous to Lemmas 9.15
and 9.16 adapted for the current setting. Notice that due to our assumption that Hk

has nondegenerate ends for 1� k < K 0, the left end of the homotopies Hn, which is
equal to H 1

�, is nondegenerate. On the other hand, the right end, HnC DHK
C

, might
be degenerate. A solution u of the Floer equation with respect to a homotopy with
degenerate ends does not necessarily converge to periodic orbits at the ends. However,
the following lemma asserts that the action of u.s; � / converges, as s!˙1, to a limit
that belongs to the action spectrum of the corresponding Hamiltonian. The following
statement is proved in the proof of Proposition 2.1(ii) from [1] for the left end of u,
namely, lims!�1AH�.u.s; � //2 spec.H�/. The proof for the right end is completely
analogous and we therefore omit it.

Lemma 9.18 [1] Let .H; J / be a pair of homotopies of Hamiltonians and almost
complex structures. Then , for every finite-energy solution u 2M.H;J /,

lim
s!˙1

AH˙.u.s; � // 2 spec.H˙/:

Denoting by M WD
S
nM.Hn;Jn/ the set of finite-energy solutions, the next lemma

provides a uniform bound for the energy of u2M and is an adjustment of Lemma 9.15
to the current setting.

Lemma 9.19 There exists a constant A > 0 such that for every u 2M and .s; t/ 2
R�S1, one has kgrad.s;t/ uk � A.

Proof For a finite-energy solution u of a homotopy with possibly degenerate ends,
the limits lims!˙1AH˙.u.s; � // exist and u satisfies the energy identity

E.u/D lim
s!�1

AHn�.u.s; � //� lim
s!1

AHnC.u.s; � //C
Z

R�S1
@sHn.u.s; t/; t; s/ ds dt:
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See, for example, [1, page 8]. When u 2M.Hn;Jn/, it follows from Lemma 9.18,
together with the fact that the action spectrum is a compact subset of R, that

E.u/�max spec.Hn�/�min spec.HnC/C
Z

R�S1
@sHn.u.s; t/; t; s/ ds dt

Dmax spec.H 1
�/�min spec.HK

C /C

Z
R�S1

@sHn.u.s; t/; t; s/ ds dt

�max spec.H 1
�/�min spec.HK

C /CK �C;

where, by our construction, K bounds the area of the support of maxx2M @sHn.x; t; s/

in S1 �R, and C is defined by

(40) C WD sup
�
@Hn

@s
.x; t; s/

ˇ̌̌
.x; t; s/ 2M �S1 �R; n� 0

�
D max

k�K
sup

�
@Hk

@s
.x; t; s/

ˇ̌̌
.x; t; s/ 2M �S1 � Œ0; 1�

�
:

We therefore have obtained a uniform bound on the energies of solutions in M. Arguing
as in [3, Propositions 6.6.2 and 11.1.5], we conclude that there exists A > 0 such that
kgrad.s;t/ uk � A.

The last lemma for this section is analogous to Lemma 9.16. It can be viewed as
a special case of Proposition 2.1 from [1], but we include the proof for the sake of
completeness.

Lemma 9.20 Let un 2M.Hn;Jn/ be a sequence of solutions and let sn 2 R be a
sequence of numbers such that for some 0� k �K and for every n, �kn � sn � �

kC1
n ,

where we set �0n D�1 and �KC1n DC1 to simplify notation. Then the sequence of
shifted solutions �snun. � ; � /D un. � C sn; � / has a subsequence that converges in the
C1loc topology to a limit v. Moreover:

(i) If sn� �kn ! � 2R, then v 2M.��Hk ;��Jk/
.

(ii) If sn� �kC1n ! � 2R, then v 2M.��HkC1;��JkC1/
.

(iii) If sn��kC1n !�1 and sn��kn !1, then v 2M.Hk
C
;Jk
C
/ DM.HkC1

� ;JkC1� /.

Proof The proof is very similar to that of Lemma 9.16 and therefore we only sketch the
changes. As before, Lemma 9.19 implies that the sequence vn WD �snun is equicontinu-
ous, and by the Arzelà–Ascoli theorem and elliptic regularity there exists a subsequence
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converging to v. The maps vn solve the Floer equation with respect to the translated
pair .�snHn; �snJn/,

0D
@vn

@s
C .�snJn/

@vn

@t
C grad.�snHn/ ı vn:

In each case, in order to prove that v is a solution of the corresponding equation, one
shows that the translated homotopies .�snHn; �snJn/ converge uniformly on compacts
to the required pair. For example, in the first case, where sn � �kn ! � 2 R, it
follows from the definition of .Hn; Jn/ that, given r > 0, the sequence .��knHn; ��kn Jn/
eventually stabilizes to .Hk; J k/ on fjsj � rg. As a consequence,

.�snHn; �snJn/
C1loc
��! .��H

k; ��J
k/:

We are now ready to sketch the proof of Proposition 9.17. Note that we will skip some
of the details appearing in the proof of Proposition 9.14.

Proof of Proposition 9.17 As mentioned above, for each n, the left end of Hn is a
nondegenerate Hamiltonian. As a consequence, the left end of un converges to a periodic
orbit, namely, there exist xn�2P.Hn�/ such that lims!�1 un.s; � /Dxn�. � /; see, for
example, the proof of Theorem 6.5.6 from [3]. Since P.Hn�/D P.H 1

�/ is a finite set,
we may assume, by passing to a subsequence, that x1;0 WD xn� is independent of n.

Next, let us apply Lemma 9.20 to the sequence fung with the shifts �kn . Then, after
passing to a subsequence, for each k D 1; : : : ; K 0 we obtain wk 2M.Hk ;Jk/ such that

��kn
un

C1loc
�! wk :

Fixing 1 � k � K 0, we need to find solutions fvk;`gLk
`D1

connecting wk�1 to wk

(and x1;0 to w1). The nondegeneracy of Hk
� implies that P.Hk

�/ D P.Hk�1
C

/ is
a finite set (notice that the left end of HK0 is nondegenerate, as it coincides with
the right end of HK0�1). Therefore, we can repeat the arguments from the proof of
Proposition 9.14. For � > 0 small enough, the balls fB.x�; �/gx�2P.Hk

�/
are disjoint,

and writing yk WD lims!�1wk.s; � / and xk;0 D lims!1wk�1.s; � /, there exists
s? 2R such that wk�1.s; � / 2 B.xk;0; �/ for s � s?. It follows from the convergence
of ��k�1n

un to wk�1 that un.s?C�k�1n ; � / 2B.xk;0; �/ when n is large. Denoting the
first exit by

sk;1n WD supfs � s?C �k�1n j un.s
0; � / 2 B.yk; �/ for s0 2 Œs?C �k�1n ; s�g;
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one can argue as in the proof of Proposition 9.14 to show that

sk;1n � �
k�1
n ����!

n!1
1:

Applying Lemma 9.20 to fung shifted by sk;1n , we conclude that �
s
k;1
n
un either converges

to ��wk for some � 2 R, or to vk;1 2M.Hk
�;J

k
�/ DM.Hk�1

C
;Jk�1
C

/. In the first case,
the right end of wk�1 and the left end of wk coincide, namely xk;0 D yk , and we
are done. Otherwise, we continue by induction and find vk;` 2M.Hk

�;J
k
�/ connecting

wk�1 to wk . As argued previously, this process is finite since each vk;` decreases the
action, and spec.Hk

�/ is a finite set.

9.3 Barricades and perturbations

Throughout this section, we fix an almost complex structure J on M, a CIB domain U,
and Uı b U. We will consider nondegenerate Hamiltonians, or homotopies with
nondegenerate ends, which have a barricade in U around Uı, when paired with J.

9.3.1 Barricades survive under small enough perturbations In this section we
show that barricades survive under perturbations of H. Here H denotes a homotopy
with nondegenerate ends and we consider Hamiltonians as a special case, by identifying
them with constant homotopies.

Proposition 9.21 Let H be a homotopy with nondegenerate ends , which is such that
@sH jjsj>RD 0 for some R > 0 (in particular , H can be a nondegenerate Hamiltonian),
and such that the pairs .H; J /, .H˙; J / have a barricade in U around Uı. Then , for
every C1–small enough perturbation H 0 of H that satisfies P.H˙/ D P.H 0

˙
/ and

@sH
0jjsj>RD 0, the pair .H 0; J / has a barricade in U around Uı.

In order to prove this proposition, we will use the convergence to broken trajectories,
which was established in Section 9.2.1. Therefore, we start by showing that barricades
also restrict broken trajectories.

Lemma 9.22 Let H be a homotopy with nondegenerate ends (or , in particular , a non-
degenerate Hamiltonian) such that the pairs .H; J / and .H˙; J / have a barricade in U
around Uı. Then , for a broken trajectory xv D .v1; : : : ; vk; w; v01; : : : ; v

0
`
/ connecting

x˙ 2 P.H˙/, we have:

� If x� � Uı, then xv � Uı.

� If xC � U, then xv � U.
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Proof We prove the first statement; the second statement is completely analogous. Let

xv WD .v1; : : : ; vk; w; v
0
1; : : : ; v

0
`/

be a broken trajectory of .H; J / such that the periodic orbit x0 WD lims!�1 v1.s; � /
is contained in Uı. Then, since .H�; J / has a barricade in U around Uı, it holds that
v1�Uı and in particular, the periodic orbit x1 WD lims!C1 v1.s; � / is contained in xUı.
Moreover, by Definition 1.7 of the barricade, the periodic orbits of H� do not inter-
sect @Uı, and therefore x1�Uı. As xv is a broken trajectory (see Proposition 9.14), x1 is
the negative end of v2, namely x1 D lims!�1 v2.s; � /. Applying the same argument
again and again, we conclude that v2; : : : ; vk � Uı. Now, xk WD lims!C1 vk.s; � /D
lims!�1w.s; � / is also contained in Uı and since .H; J / has a barricade in U
around Uı, this means that w � Uı. Arguing the same way and using the fact that
.HC; J / has a barricade in U around Uı, we conclude that v0j � Uı for all 1� j � `,
and so the broken trajectory is completely contained in Uı.

Given the above lemma, the proof of Proposition 9.21 is a simple application of
Proposition 9.14.

Proof of Proposition 9.21 Let fHng be a sequence of regular homotopies converging
to H, such that for each n, P.Hn˙/D P.H˙/ and @sHnjjsj>R D 0. Assume for the
sake of contradiction that, for each n, there exists a solution un 2M.Hn;J / such that
xn� WD lims!�1 un.s; � / is contained in Uı but un is not. For each n, let �n 2R be such
that un.�n; � / is not contained in Uı. Since xn

˙
2P.Hn˙/DP.H˙/ are elements of a

finite sets, by passing to a subsequence, we may assume that xn
˙
D x˙ are independent

of n, which means that un 2M.x�; xC/ for all n. Applying Proposition 9.14 to the
sequence of solutions fung and the sequence of shifts f�ng, after passing again to a
subsequence, fung converges to a broken trajectory xv of .H; J /, and the sequence
un. � C�n; � / converges to one of the solutions in xv (perhaps up to a shift). Lemma 9.22,
together with our assumption that x� D x0 � Uı, guarantees that the entire broken
trajectory xv is contained in Uı, and in particular limn!1 un. � C �n; � /� Uı. Since
the latter limit is uniform on compacts, it follows that

lim
n!1

un.�n; � /D lim
n!1

un.0C �n; � /

is also contained in Uı. Recalling that we chose �n so that, for each n, the loop
un.�n; � / is not contained in the open set Uı, we arrive at a contradiction.

Similarly, one can prove that when n is large enough, every solution un of the Floer
equation with respect to .Hn; J / ending in U is contained in U.
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9.3.2 Perturbing Hamiltonians that are regular on a subset In this section, we
define the notion of regularity on a subset, U �M , for a pair .H; J / of a Hamiltonian
and an almost complex structure that has a barricade in U around some Uı b U. We
prove that for such a pair, the restriction of the Floer differential to the set is well
defined, and is stable under (regular) perturbations. Since Floer-regularity concerns the
differential of the Floer map we start with a reminder. Given a Hamiltonian H and an
almost complex structure J, the Floer map associated to the pair .H; J / is

F D FH W C1.R�S1IM/! C1.R�S1ITM/; u 7!
@u

@s
CJ

@u

@t
C gradu.Ht /;

where graduH WD rJH ıu is the gradient of H with respect to J, composed with u.

Definition 9.23 Let H be a nondegenerate Hamiltonian such that the pair .H; J / has
a barricade in U around Uı.

(i) We say that the pair .H; J / is regular on U if for every solution u of the Floer
equation that is contained in U, the linearization .dF/u of the Floer map F at u
is surjective.
In particular, by [3, Theorem 8.1.2], for every x˙ 2 P.H/ such that xC � U,
the space of solutions M.H;J /.x�; xC/ is a smooth manifold of dimension
�.x�/��.xC/.

(ii) We say that the pair .H; J / is semiregular on U if for every x˙ 2 P.H/ with
�.x�/� �.xC/ and such that xC � U, we have:
(a) If x� ¤ xC, then M.H;J /.x�; xC/D∅.
(b) If x� D xC, then M.H;J /.x�; xC/ contains only the constant solution

u.s; t/D x�.t/.

Remark 9.24 � If .H; J / is regular on U, then it is also semiregular on U.

� If .H; J / has a barricade in U around Uı and agrees, on U, with a Floer-regular
pair, then it is regular on U.

� For a pair .H; J / that is regular on U, the differential of the Floer complex might
not be defined everywhere. However, using Proposition 9.14 (see also the proof of
Lemma 9.26 below), one can show that when �.x�/��.xC/D 1 and xC � U, the
quotient manifold M.H;J /.x�; xC/=R is compact and of dimension 0, and hence finite.
Therefore, the composition �U ı @.H;J / can be defined by counting the elements of
the latter quotients. This is a slight abuse of notation, as the map @.H;J / is not defined
on its own. Similarly, one can define the composition @.H;J / ı�Uı using the fact that
x� � Uı implies that xC � Uı � U, due to the barricade.
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Our main goal for this section is to prove the following statement.

Proposition 9.25 Suppose that H is a nondegenerate Hamiltonian such that .H; J / is
regular on U. Let H 0 be a small perturbation of H such that the pair .H 0; J / is Floer-
regular and H 0 agrees with H on P.H/ up to second order. Then the compositions of
the differentials and projections agree:

(41) �U ı @.H;J / D �U ı @.H 0;J /; @.H;J / ı�Uı D @.H 0;J / ı�Uı :

We remark that the second equation in (41) follows immediately from the first. Indeed,
due to Proposition 9.21, .H 0; J / also has a barricade, and @ ı�Uı D �U ı @ ı�Uı for
both .H; J / and .H 0; J /. In order to prove Proposition 9.25, we connect H and H 0

by a path of Hamiltonians fH�g�2Œ0;1� such that, for each � 2 Œ0; 1�, H� agrees with
H on the 1–periodic orbits up to second order, and the pair .H�; J / is semiregular
on U. Note that the first condition implies that, for each �, P.H�/D P.H/. Given
x˙ 2 P.H/ such that xC � U, the space

(42) Mƒ.x�; xC/ WD f.�; u/ j u 2M.H�;J /.x�; xC/g

is invariant under the R action u. � ; � / 7! u.� C � ; � /. We show that when

�.x�/��.xC/D 1;

the quotient Mƒ.x�; xC/ DMƒ.x�; xC/=R is a smooth, compact 1–dimensional
manifold with boundary, which realizes a cobordism between M.H;J /.x�; xC/=R

and M.H 0;J /.x�; xC/=R. We will then conclude that the number of elements in the
quotients M.H;J /.x�; xC/=R and M.H 0;J /.x�; xC/=R coincides modulo 2.

The existence of a semiregular path between H and H 0 follows from the fact that
semiregularity is an open condition.

Lemma 9.26 Suppose that .H; J / is semiregular on U. Then , for every Hamilton-
ian H 0 that is close enough to H and agrees with H on P.H/ up to second order , the
pair .H 0; J / is also semiregular on U.

Proof Consider a sequence Hn converging to H which is such that for each n,
Hn agrees with H on P.H/. Then, in particular, P.Hn/D P.H/. Suppose that for
each n, there exists a solution un 2M.Hn;J /.x

n
�; x

n
C
/ for some xn

˙
2 P.Hn/ such

that �.xn�/ � �.x
n
C
/ and xn

C
� U. Moreover, we assume that if xn� D x

n
C

, then un
is nonconstant. Since xn

˙
2 P.H/ are elements of a finite set, we may assume, by

passing to a subsequence, that xn
˙
D x˙ are independent of n. By Proposition 9.14,

there exists a subsequence of the solutions un that converges to a broken trajectory xv

Algebraic & Geometric Topology, Volume 23 (2023)



720 Yaniv Ganor and Shira Tanny

of .H; J /. Moreover, the ends of the broken trajectory are x˙. Since xC is contained
in U and .H; J / has a barricade in U around Uı, it follows from Lemma 9.22 that the
broken trajectory xv is contained in U. As the pair .H; J / is semiregular on U, for every
nonconstant solution in the broken trajectory, the index difference between the left end
and the right end is positive. Therefore, in the notation of Proposition 9.14, we have

�.x�/D �.x0/ > �.x1/ > � � �> �.xC/:

Together with our assumption that �.x�/ D �.xn�/ � �.x
n
C
/ D �.xC/, this implies

that the broken trajectory xv contains only one solution: v1.s; t/D x�.t/D xC.t/. In
particular, we conclude that un 2M.Hn;J /.x�; xC/ are Floer solutions with equal
ends. By the energy identity (8), the energy of un vanishes,

E.un/DAHn.x�/�AHn.x�/DAH .x�/�AH .x�/D 0;

guaranteeing that un is a constant solution un.s; t/D x�.t/ for all n, a contradiction.

Our next aim is to show that for a suitable choice of a path of Hamiltonians fH�g, the
set (42) is a smooth manifold. Let us start with preliminary definitions. Let fH�g�2Œ0;1�
be a path of Hamiltonians that is stationary for � … Œı; 1� ı� for some fixed ı > 0, and
such that H� agrees with H0 on P.H0/ up to second order for all � 2 Œ0; 1�. We will
consider the space C1" .fH�g�/ (of perturbations) consisting of maps

h WM �S1 � Œ0; 1�!R

with compact support in M �S1� Œı; 1� ı� that vanish on P.H0/� Œ0; 1� up to second
order and are such that khk" <1. Here k � k" is Floer’s "–norm; see Definition 9.3 and
[3, page 230]. We identify the map h with the path of time-dependent Hamiltonians
fh�. � ; � / WD h. � ; � ; �/g�.

The next claim is an adjustment of [3, Theorem 11.3.2] to our setting and is proved
similarly. For the sake of completeness we include the proof, but we postpone it until
the end of this section.

Claim 9.27 Let fH�g�2Œ0;1� be a path of Hamiltonians as above , and assume that
.H0; J / and .H1; J / are regular on U. Then there exist a neighborhood of 0 in
C1" .fH�g�/ and a residual set Hreg in this neighborhood , such that if h2Hreg, then for
ƒD .fH�Ch�g�; J / and every x˙ 2 P.H0/ with xC �U, the space Mƒ.x�; xC/ is
a manifold-with-boundary of dimension �.x�/��.xC/C 1, and its boundary is

(43) @Mƒ.x�; xC/D f0g �M.H;J /.x�; xC/ [ f1g �M.H 0;J /.x�; xC/:
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Proof of Proposition 9.25 Recall that H is a nondegenerate Hamiltonian such that
.H; J / is regular on U. Let H 0 be a small perturbation of H that agrees with H on
P.H/ up to second order, and such that the pair .H 0; J / is Floer-regular. We wish to
show that the compositions of the differentials with respect to .H; J / and .H 0; J / with
the projections onto CU and CUı agree. Let H� be a linear path (or a linear homotopy)
between H and H 0 that is stationary near �D 0; 1, and such that for each �, H� agrees
with H on P.H/ up to second order (in particular, P.H�/D P.H/). Taking H 0 to
be close enough to H, and using Lemma 9.26, one can guarantee that all of the pairs
.H�; J / are semiregular on U.

By Claim 9.27, there exists a small perturbation of the path fH�g such that for ƒD
.fH�Ch�g�; J / and for every x˙ 2 P.H0/ with xC � U, the space Mƒ.x�; xC/ is
a manifold with boundary of dimension �.x�/��.xC/C 1. Let us show that when
�.x�/��.xC/D 1, the quotient Mƒ.x�; xC/DMƒ.x�; xC/=R of this manifold
by the R action is compact. Let .�n; un/ 2Mƒ.x�; xC/ be any sequence. Since
�n 2 Œ0; 1�, we may assume, by passing to a subsequence, that the sequence �n
converges to a number �? 2 Œ0; 1�. By the definition of the space Mƒ.x�; xC/,
un2M.H�n ;J /

.x�; xC/ are solutions to the Floer equation with respect to Hamiltonians
converging to H�? . By Proposition 9.14, there exists a subsequence of un converging
to a broken Floer trajectory xv D fv1; : : : ; vkg of .H�? ; J /. Since the pair .H�? ; J /
is semiregular on U, and xC � U, every solution in xv that is nonconstant (in the
s–coordinate) decreases the index:

�.x�/D �.x0/ > �.x1/ > � � �> �.xk/D �.xC/:

Recalling that �.x�/ � �.xC/ D 1, we conclude that xv contains exactly one non-
constant solution, xv D v1 2M.H�? ;J /

.x�; xC/. In other words, given the sequence
.�n; un/2Mƒ.x�; xC/, there exists a sequence of shifts sn 2R such that, after passing
to a subsequence,

.�n; �snun/
C1loc
����!
n!1

.�?; v1/:

In particular, after dividing by the (free, proper and smooth) R–action, the subsequence
.�n; Œun�/ 2Mƒ.x�; xC/ converges to an element of the same space,

.�n; Œun�/ ����!
n!1

.�?; Œv1�/ 2Mƒ.x�; xC/;

and therefore Mƒ.x�; xC/ is compact. Overall, Mƒ.x�; xC/ is a smooth, compact
manifold of dimension �.x�/ � �.xC/C 1 � 1 D 1, and its boundary is the zero-
dimensional compact manifold

@Mƒ.x�; xC/D f0g �M.H;J /.x�; xC/[f1g �M.H 0;J /.x�; xC/:
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Hence, the latter are finite sets with an equal number of elements mod 2:

#2M.H;J /.x�; xC/D #2M.H 0;J /.x�; xC/:

The equalities (41) now follow from the definition of the differential map.

We sketch the proof of Claim 9.27, which follows the arguments in [3, Chapter 11.3.b].

Proof of Claim 9.27 Fix x˙ 2 P.H0/ such that xC �U. We first show that the space
Mƒ.x�; xC/ has a structure of a manifold-with-boundary near the boundary (43), and
afterwards we prove that for perturbed paths the interior is a smooth manifold.

Let ı > 0 be such that the path fH�g is stationary for � … Œı; 1� ı� and every h 2
C1" .fH�g�/ satisfies supp.h/�M �S1 � Œı; 1� ı�. In this case,

H�C h� D

�
H0; �� ı;

H1; �� 1� ı;

for all h2C1" .fH�g�/. Fixing such an h and settingƒD .fH�Ch�g�; J /, we have that

Mƒ.x�; xC/\f� < ıg D Œ0; ı/�M.H0;J /.x�; xC/;

Mƒ.x�; xC/\f� > 1� ıg D .1� ı; 1��M.H1;J /.x�; xC/

are smooth manifolds with boundary, since the pairs .H0; J /, .H1; J / are regular on U
and xC � U. We conclude that near f0g�M.H;J /.x�; xC/[f1g�M.H 0;J /.x�; xC/

the space Mƒ.x�; xC/ has a structure of a manifold with boundary.

Let us now show that the interior of Mƒ.x�; xC/ is a smooth manifold. Since the spaces
M.H;J /.x�; xC/ and M.H 0;J /.x�; xC/ composing the boundary are one-dimensional,
it will follow that dimMƒ.x�; xC/D 2: The following statement is taken from [3],
and states that the linearization .dF/u of the Floer map F is a Fredholm operator.

Lemma 9.28 [3, Theorem 8.1.5] For every nondegenerate Hamiltonian H, every
almost complex structure J compatible with !, and every u 2M.H;J /.x�; xC/, the
linearization .dF/u is a Fredholm operator of index �.x�/��.xC/.

As in Notation 9.9, we denote by P.x�; xC/ the space of maps .s; t/ 7!expw.s;t/ Y.s; t/,
where Y 2W 1;p.w�TM/ for p > 2, and w 2 C1.R�S1IM/ converges to x˙ with
exponential decay. Consider the vector bundle E! P.x�; xC/�C1" .fH�g�/ given by

E D f.u; h; Y / j .u; h/ 2 P.x�; xC/� C1" .fH�g�/; Y 2 L
p.u�TM/g:
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We define a family of sections f��g�2.0;1/ by

��.u; h/D
�
u; h;

@u

@s
CJ.u/

@u

@t
C gradu.H�C h�/

�
:

For fixed �0 2 .0; 1/, the map ��0 is transversal to the zero section of the vector
bundle E if and only if, when ��0.u; h/ D .u; h; 0/, the linearized map .d��0/.u;h/
composed with the projection onto the fiber, namely,

z��0 WW
1;p.R�S1IR2n/� C1" .fH�g�/! Lp.R�S1IR2n/;

.Y; �/ 7! .dFH�0Ch�0 /u.Y /C gradu ��0 ;

is surjective. Here, and in what follows, we identify the linear space C1" .fH�g�/ with
its tangent space. If �0 … .ı; 1 � ı/, then h�0 D 0 and H�0 is equal to either H0
or H1, which are both regular on U, when paired with J. In this case, the surjectivity
of z��0 follows from that of dFH�0Ch�0 , which is guaranteed due to the regularity of
H0 and H1. Let us prove the surjectivity of z��0 for �0 2 .ı; 1� ı/. To do this, we
embed C1" .H0/D C1" .H�0/ into C1" .fH�g�/ by mapping h�0 2 C

1
" .H�0/ to a locally

constant path, h. � ; � ; �/D h�0. � ; � / near �D �0. Here we have used our assumption
that fH�g� all have the same periodic orbits as H0. It is now clear that the surjectivity
of the restricted map,

� WW 1;p.R�S1IR2n/� C1" .H�0/! Lp.R�S1IR2n/;

.Y; �/ 7! .dFH�0Ch�0 /u.Y /C gradu ��0 ;

which is guaranteed by [3, Proposition 8.1.4], implies the surjectivity of z��0 . We con-
clude that for every �0 2 .0; 1/, the section ��0 intersects the zero section transversely.
As a consequence, the section

� W .ı; 1�ı/�P.x�; xC/�C1" .fH�g�/! .ı; 1�ı/�E ; .�; u; h/ 7! .�; ��.u; h//;

also intersects the zero section transversely and we conclude that the intersection

Z.x�; xC/D f.�; u; fH�C h�g�/ j � 2 .ı; 1� ı/; u 2M.H�Ch�;J /.x�; xC/g

is a Banach manifold; see [3, Propositions 8.1.3 and 11.3.4] for the analogous state-
ments. The tangent space of Z.x�; xC/ at a point .�; u; fH�C h�g/ consists of all
.a; Y; �/ 2R�W 1;p.R�S1IR2n/� C1" .fH�g/ that satisfy the equation

(44) a � gradu
@.H�C h�/

@�
C .dFH�Ch�/u.Y /C gradu.��/D 0:

Let � W Z.x�; xC/! C1" .fH�g�/ be the projection. In order to conclude the proof of
the claim, it is sufficient to show that the set of regular values of � is a residual subset
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of C1" .fH�g�/. This will follow from the Sard–Smale theorem (see [3, Theorem 8.5.7])
as soon as we show that � is a Fredholm map; the separability of the spaces fol-
lows from Claim 9.5 and Remark 9.8 above. Let us therefore show that for every
.�; u; fH�C h�g�/ 2 Z.x�; xC/, the operator

.d�/.�;u;fH�Ch�g�/ W T.�;u;fH�Ch�g�/Z.x�; xC/! C1" .fH�g�/; .a; Y; �/ 7! �;

is a Fredholm operator. In analogy with the proof of [3, Proposition 11.3.5], denote by

V WD gradu
@.H�C h�/

@�
2 Lp.u�TM/

the vector field multiplying a in (44). Then the kernel of .d�/.�;u;fH�Ch�g�/ is the
space

f.a; Y; 0/ j .a; Y / 2R�W 1;p.u�TM/ and aV C .dFH�Ch�/u.Y /D 0g:

Let us show that this space is finite-dimensional by splitting into two cases:

(i) Suppose V … im..dFH�Ch�/u/. In this case we find

ker.d�/.�;u;fH�Ch�g�/ D f.0; Y; 0/ j Y 2 ker..dFH�Ch�/u/g;

which is finite-dimensional by Lemma 9.28.

(ii) Suppose V 2 im..dFH�Ch�/u/. Choose a Y0 2W 1;p.u�TM/ such that

.dFH�Ch�/u.Y0/D V:
It follows that

ker.d�/.�;u;fH�Ch�g�/

D f.a; Y; 0/ j a.dFH�Ch�/u.Y0/C .dFH�Ch�/u.Y /D 0g:

This space is isomorphic to RY0 C ker..dFH�Ch�/u/, which is also finite-
dimensional.

Next, let us show that the image of .d�/.�;u;fH�Ch�g�/ is closed and has finite codi-
mension. Indeed, it is the inverse image of the subspace

(45) RV C im..dFH�Ch�/u/� Lp.u�TM/

under the linear map � 7! gradu �, viewed as a map C1" .fH�g�/! Lp.u�TM/. By
Lemma 9.28, the subspace (45) is closed and of finite codimension, and hence we
conclude the same for the image of .d�/.�;u;fH�Ch�g�/. Consequently, � is indeed
a Fredholm map, and by the Sard–Smale theorem, the set of its regular values is a
residual subset C1" .fH�g�/.
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Denote by Hreg � C1" .fH�g�/ the set of regular values of � . Then for any h 2Hreg,
setting ƒD .fh�C h�g�; J /, the set

��1.h/DMƒ.x�; xC/\f� 2 .0; 1/g

is a smooth manifold (with respect to the C1loc topology). Together with the discussion
from the beginning of the proof, this implies that Mƒ.x�; xC/ is a manifold with
boundary.

9.3.3 Perturbing homotopies that are regular on a subset In this section we state
and prove results which are analogous to the ones from Section 9.3.2, but for homotopies
instead of Hamiltonians. Fix an almost complex structure J on M, a CIB domain U,
and Uı b U.

Definition 9.29 Let H be a homotopy of Hamiltonians such that the pair .H; J / has
a barricade in U around Uı.

(i) We say that the pair .H; J / is regular on U if .H˙; J / are regular on U (see
Definition 9.23) and for every solution u of the s–dependent Floer equation with
respect to .H; J /, the linearization .dF/u of the Floer map F is surjective. In
particular, by [3, Theorem 8.1.2], for every x˙ 2 P.H˙/ such that xC � U,
the space of solutions M.H;J /.x�; xC/ is a smooth manifold of dimension
�.x�/��.xC/.

(ii) We say that the pair .H; J / is semiregular on U if .H˙; J / are semiregular
on U (as in Definition 9.23) and for every x˙ 2 P.H˙/ with �.x�/ < �.xC/
and such that xC � U, we have M.H;J /.x�; xC/D∅.

As in Section 9.3.2, if a pair is regular on U, then it is also semiregular on U, and every
Floer-regular pair with a barricade is regular on U.

Remark 9.30 For a pair .H; J / that is regular on U, the continuation map might
not be defined everywhere. However, using Proposition 9.14, one can see that when
�.x�/ D �.xC/ and xC � U, the zero-dimensional manifold M.H;J /.x�; xC/ is
compact and hence finite. The composition �U ıˆ.H;J / can be defined by counting
the elements of such manifolds. We remark that this is a slight abuse of notation, as the
continuation map ˆ.H;J / is not necessarily defined on its own. Due to the barricade,
if x� � Uı then xC � Uı � U. It follows that the composition ˆ.H;J / ı�Uı is well
defined as well.
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Our main goal for this section is to prove the following statement.

Proposition 9.31 Suppose that H is a homotopy such that .H; J / is regular on U, and
let R > 0 be such that @sH jjsj>R D 0. Let H 0 be a homotopy such that

(i) @sH
0jjsj>R D 0,

(ii) H 0 is C1–close to H, and the H 0
˙

agree with H˙ on their 1–periodic orbits up
to second order ,

(iii) .H 0; J / is regular on U.

Then the compositions of the continuation maps and projections agree:

(46) �U ıˆ.H;J / D �U ıˆ.H 0;J /; ˆ.H;J / ı�Uı Dˆ.H 0;J / ı�Uı :

As before, the second equation in (46) follows from the first, since both .H; J / and
.H 0; J / have a barricade in U around Uı and thus ˆı�Uı D �U ıˆı�Uı . In analogy
with the previous section, in order to prove Proposition 9.31, we connect H and H 0

by a linear path (or linear homotopy) of homotopies fH�g�2Œ0;1� such that the pairs
.H�; J / are all semiregular on U. Then, given x˙ 2 P.H˙/, with �.x�/ D �.xC/
and xC � U, we show that the space

(47) Mƒ.x�; xC/ WD f.�; u/ j u 2M.H�;J /.x�; xC/g

is a smooth, compact, 1–dimensional manifold-with-boundary that realizes a cobordism
between M.H;J /.x�; xC/ and M.H 0;J /.x�; xC/. We will then conclude that the
number of elements in M.H;J /.x�; xC/ and M.H 0;J /.x�; xC/ coincides modulo 2.

As for the case of Hamiltonians, semiregularity of homotopies is also an open condition,
as the following lemma guarantees.

Lemma 9.32 Suppose that .H; J / is semiregular on U, and fix R > 0. Then for every
homotopyH 0 that is close enough toH, which is such that @sH 0jjsj>R D 0 and theH 0

˙

agree with H˙ on their 1–periodic orbits up to second order , the pair .H 0; J / is also
semiregular on U.

Proof First, notice that by Proposition 9.21, for every homotopy H 0 that satisfies the
conditions of the lemma, the pair .H 0; J / has a barricade in U around Uı. Assume for
the sake of contradiction that there exists a sequence of homotopies Hn, converging
to H, such that for each n, Hn satisfies the conditions of the lemma, and .Hn; J / is
not semiregular on U. Then, for each n, there exist xn

˙
satisfying �.xn�/ < �.x

n
C
/ and

xn
C
� U, and a solution un 2M.Hn;J /.x

n
�; x

n
C
/. Since xn

˙
2 P.Hn˙/D P.H˙/ are

Algebraic & Geometric Topology, Volume 23 (2023)



Floer theory of disjointly supported Hamiltonians 727

elements of finite sets, we may assume, by passing to a subsequence, that xn
˙
D x˙ are

independent of n. By Proposition 9.14, there exists a subsequence of the solutions un
that converges to a broken trajectory

xv D .v1; : : : ; vk; w; v
0
1; : : : ; v

0
`/

of .H; J /. Here vi and v0j are Floer solutions with respect to the Hamiltonians H�
and HC, respectively, and w 2M.H;J / is a solution with respect to the homotopy H.
Moreover, the ends of the broken trajectory are x˙. Since xC is contained in U and
the pairs .H; J / and .H˙; J / all have barricades in U around Uı, it follows from
Lemma 9.22 that the broken trajectory xv is contained in U. As the pair .H; J / is
semiregular on U, for every nonconstant vi or v0j , the index difference between the left
end and the right end is positive. Moreover, the index difference between the ends of w
is nonnegative. Therefore, under the notation of Proposition 9.14, we have

�.x�/D �.x0/ > � � �> �.xk/� �.y0/ > � � �> �.y`/D �.xC/;

which contradicts our assumption that �.xn�/ < �.x
n
C
/.

As in the previous section, we show that for a suitable choice of a path of homo-
topies fH�g, the set (47) is a smooth manifold. Our starting point is a path fH�g�2Œ0;1�
that is stationary for �… Œı; 1�ı� and is such that for all �2 Œ0; 1�,H� satisfies properties
(i)–(ii) from Proposition 9.31. This time the space of perturbations C1" .fH�g�/ will
consist of maps

h WM �S1 �R� Œ0; 1�!R

supported in M � S1 � Œ�R;R�� Œı; 1� ı�, which are such that khk" <1, where
again k � k" is Floer’s norm from Definition 9.3. We identify the map h with the path of
homotopies fh�. � ; � / WD h. � ; � ; �/g�.

The following claim is an adjustment of [3, Theorem 11.3.2] to the case where the
ends of the path, .H0; J / and .H1; J /, are not necessarily Floer-regular, but are
regular on U, and the support of the perturbations is uniformly bounded. The proof is
completely analogous to that of Claim 9.27 above, with the single difference that the
surjectivity of the operator � for homotopies is guaranteed by Lemma 9.13, instead of
by [3, Proposition 8.1.4]. We therefore omit the proof.

Claim 9.33 Let fH�g�2Œ0;1� be a path of homotopies as above , and assume that
.H0; J / and .H1; J / are regular on U. Then there exists a residual subset Hreg �

C1" .fH�g�/ such that if h 2 Hreg, then for ƒ D .fH� C h�g�; J / and for every
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x˙ 2 P.H0˙/ with xC � U, the space Mƒ.x�; xC/ is a manifold-with-boundary
of dimension �.x�/��.xC/C 1, and its boundary is

(48) @Mƒ.x�; xC/D f0g �M.H;J /.x�; xC/[f1g �M.H 0;J /.x�; xC/:

Proof of Proposition 9.31 Recall that H is a homotopy such that .H; J / is regular
on U, and H 0 is a homotopy satisfying properties (i)–(iii) above. Let H� be a linear
path (or linear homotopy) between the homotopies H and H 0 which is stationary
for � … Œı; 1 � ı�. Then, for each �, the homotopy H� is close to H and its ends,
H�˙, agree with the ends of H on P.H˙/. In particular, P.H�˙/D P.H˙/ for all
� 2 Œ0; 1�. Taking H 0 to be close enough to H, Lemma 9.32 guarantees that all of the
homotopies H� are semiregular on U when paired with J. In particular, for each �,
the pairs .H�; J / and .H�˙; J / have a barricade in U around Uı.

By Claim 9.33, there exists a small perturbation h 2 C1" .fH�g�/ such that for ƒD
.fH�C h�g�; J / and for every x˙ 2 P.H0˙/ with xC � U, the space Mƒ.x�; xC/

is a manifold-with-boundary of dimension �.x�/ � �.xC/C 1. Let us show that
when �.x�/ � �.xC/ D 0, the manifold Mƒ.x�; xC/ is compact. Let .�n; un/ 2
Mƒ.x�; xC/ be any sequence. After passing to a subsequence, we have �n! �? 2

Œ0; 1�, and hence un 2M.H�n ;J /
.x�; xC/ are solutions with respect to homotopies that

converge toH�? . By Proposition 9.14, there exists a subsequence of un converging to a
broken trajectory xvDfv1; : : : ; vk; w; v01; : : : ; v

0
`
g of .H�? ; J /. Since the pairs .H�? ; J /

and .H�?˙; J / have a barricade in U around Uı, and since xC � U, Lemma 9.22
guarantees that the broken trajectory is completely contained in U. The fact that
.H�? ; J / is semiregular on U now implies that vi and v0j are index-decreasing, and w
is index-nonincreasing:

�.x�/D �.x0/ > � � �> �.xk/� �.y0/ > � � �> �.y`/D �.xC/:

Recalling that �.x�/��.xC/D 0, we conclude that xv does not contain nonconstant
solutions of the s–independent Floer equations, and hence xvDw 2M.H�? ;J /

.x�; xC/.
This implies that the above subsequence converges to an element of the space,

.�n; un/ ����!
n!1

.�?; w/ 2Mƒ.x�; xC/;

and therefore Mƒ.x�; xC/ is compact.

Overall, Mƒ.x�; xC/ is a smooth, compact manifold of dimension

�.x�/��.xC/C 1D 1;
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and its boundary is

@Mƒ.x�; xC/D f0g �M.H;J /.x�; xC/[f1g �M.H 0;J /.x�; xC/:

Consequently, the latter are finite sets with an equal number of elements mod 2:

#2M.H;J /.x�; xC/D #2M.H 0;J /.x�; xC/:

The equalities (46) follow immediately from the definition of the continuation maps.

Perturbing homotopies that are constant on a subset A particular application of
Proposition 9.31 that will be useful is when H is a homotopy that is constant on
the set U, and whose ends, H˙, are regular on U when paired with J. In this case,
it follows from Definition 9.29 that the pair .H; J / is also regular on U. Moreover,
for periodic orbits x˙ 2 P.H˙/ such that xC � U, the space M.H;J /.x�; xC/ coin-
cides with M.H�;J /.x�; xC/. As a consequence, when �.x�/ D �.xC/, the space
M.H;J /.x�; xC/ is empty if x� ¤ xC, and contains only constant solutions otherwise.
We conclude that the continuation map with respect to .H; J / agrees with the identity
map after composing with the projections:

�U ıˆ.H;J / D �U ı 1 and ˆ.H;J / ı�Uı D 1 ı�Uı :

Applying Proposition 9.31 we conclude that the same holds for perturbations of H.

Corollary 9.34 Suppose that H is a homotopy between two nondegenerate Hamiltoni-
ans H˙ such that .H; J / is constant on U, namely @sH jU D 0, and the .H˙; J / are
regular on U. Fix R > 0 and let H 0 be a C1–small perturbation of H such that

(i) @sH
0jjsj>R D 0,

(ii) the H 0
˙

agree with H˙ on their 1–periodic orbits up to second order , and

(iii) .H 0; J / is regular on U.

Then

(49) ˆ.H 0;J / ı�Uı D 1 ı�Uı and �U ıˆ.H 0;J / D �U ı 1:

Appendix Incompressibility of domains with incompressible
boundaries

Let M n be a smooth n–dimensional orientable manifold, and let N n be a smooth
n–dimensional orientable manifold with boundary such that there exists an embedding
� WN !M. Write U WD Im.�.N n @N//, and note that @U D Im.�.@N //.
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Proposition A.35 If @U is incompressible in M, then U is incompressible in M.

Proof In order to show that �� W �1.U /! �1.M/ is injective, it is sufficient to prove
that if a loop 
 in U is contractible in M then it is contractible in U. Let 
 W S1! U

be a loop that is contractible in M. Then there exists a map u W D ! M such that
uj
@D
� 
 , where D �R2 denotes the unit disk.

Without loss of generality we may assume that 
 and u are smooth, and that u t @U.
Indeed, by Whitney’s smooth approximation theorem, u is homotopic to a smooth
map zu. Since Im 
 is compact and U is open, we can choose the smooth approximation
so that z
 WD zuj

@D
is homotopic to 
 in U. Applying Thom’s transversality theorem, we

may assume that zu t @U. We replace the maps 
 and u by z
 and zu, in order to keep
the notation.

Under the assumptions above, the preimageC Du�1.@U / is a compact one-dimensional
submanifold of D, hence a disjoint union of embedded closed curves, C D

F
j Cj .

Some of the curves Cj may encompass others. We call a curve Cj a maximal curve
if it is not encompassed by any other component of C . More formally, for each
component Cj , denote by Dj �D the embedded topological disk such that @Dj D Cj .
The curve Cj is maximal if Cj ªDk for all k¤ j . We denote the set of maximal curves
by Cmax WD fCj1 ; : : : ; Cj`g, and by Dmax WD fDj1 ; : : : ;Dj`g the set of the corresponding
topological disks.

For every 1� i � `, the restriction ujCji is a loop in @U which is contractible in M
by ujDji . By the incompressibility of @U, the loop ujCji is contractible in @U, namely
there exists a map vi WDji ! @U such that vi jCji � ujCji . Using the maps u and vi
we can define a map that contracts 
 inside xU :

yuD

�
vi .x/ if x 2Dji ;
u.x/ otherwise.

Let us check that yu is a contraction of 
 in xU. Indeed, recalling that u.@D/D 
 � U
and that C WD u�1.@U /, it follows from the maximality of the curves in Cmax that for
all x 2D n

F
Dmax

Dji , one has u.x/ 2 U, and therefore yu.x/ 2 U. Moreover, for every
x 2Dji we have yu.x/ 2 @U , and we conclude that Im.yu/� U [ @U.

Using the fact that @U has a collar neighborhood in xU , one can construct a continuous
map w W xU ! U which restricts to the identity on im.
/. The composition w ı yu is the
desired contraction of 
 in U.
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