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Realization of graded monomial ideal rings modulo torsion

TSELEUNG SO

DONALD STANLEY

Let A be the quotient of a graded polynomial ring ZŒx1; : : : ; xm�˝ƒŒy1; : : : ; yn� by
an ideal generated by monomials with leading coefficients 1. We construct a space
XA such that A is isomorphic to H�.XA/ modulo torsion elements.

55N10; 13F55, 55P99, 55T20

1 Introduction

A classical problem in algebraic topology asks: which commutative graded R–algebras
A are isomorphic to H�.XAIR/ for some space XA? The space XA, if it exists, is
called a realization of A. According to Aguadé [1] the problem goes back to at least
Hopf, and was later explicitly stated by Steenrod [14]. To solve the problem in general
is probably too ambitious, but many special cases have been proven.

One of Quillen’s motivations for his seminal work on rational homotopy theory [13] was
to solve this problem over Q. He showed that all simply connected graded Q–algebras
have a realization. The problem of which polynomial algebras over Z have realizations
has a long history, and a complete solution was given by Anderson and Grodal [2]; see
also Notbohm [12]. More recently Trevisan [15] and later Bahri, Bendersky, Cohen
and Gitler [4] constructed realizations of ZŒx1; : : : ; xm�=I , where jxi j D 2 and I is an
ideal generated by monomials with leading coefficient 1.

We want to consider a related problem that lies between the solved realization problem
over Q and the very difficult realization problem over Z. We do this by modding out
torsion.

Problem 1.1 Which commutative graded R–algebras A are isomorphic to

H�.XAIR/=torsion
for some space XA?
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734 Tseleung So and Donald Stanley

Such an XA is called a realization modulo torsion of A. For example, a polynomial
ring ZŒx� has a realization modulo torsion given by the Eilenberg–Mac Lane space
K.Z; jxj/ if jxj is even, while ZŒx� has a realization (before modding out torsion) if
and only if jxj D 2 or 4 [14]. Here we ask: do all finite type connected commutative
graded Z–algebras have a realization modulo torsion?

Notice that modding out by torsion is different from taking rational coefficients. For
example, both H�.�S2nC1IQ/ and H�.K.Z; 2n/IQ/ are QŒx� generated by x of
degree 2n. But H�.K.Z; 2n//=torsion is ZŒx�, while H�.�S2nC1/Š �Œx� is free as
a Z–module and is the divided polynomial algebra generated by x.

In this paper, we construct realizations modulo torsion of graded monomial ideal ringsA
which are tensors of polynomial algebras and exterior algebras modulo monomial ideals.
More precisely, let P D ZŒx1; : : : ; xm�˝ƒŒy1; : : : ; yn� be a graded polynomial ring
where the xi ’s have arbitrary positive even degrees and the yj ’s have arbitrary positive
odd degrees, and let I D .M1; : : : ;Mr/ be an ideal generated by r minimal monomials

Mj D x
a1j
1 x

a2j
2 � � � x

amj
m ˝y

b1j
1 � � �y

bnj
n ; 1� j � r;

where the indices aij are nonnegative integers and bij are either 0 or 1. Then the
quotient algebra AD P=I is called a graded monomial ideal ring.

Theorem 1.2 (main theorem) Let A be a graded monomial ideal ring. Then there
exists a spaceXA such thatH�.XA/=T is isomorphic toA, where T is the ideal consist-
ing of torsion elements in H�.XA/. Moreover , there is a ring morphism A!H�.XA/

that is right inverse to the quotient map H�.XA/!H�.XA/=T Š A.

If all of the even degree generators are in degree 2, then we do not need to mod out by
torsion and so we get a generalization (Theorem 4.6) of the results of Bahri, Bendersky,
Cohen and Gitler [4, Theorem 2.2] and Trevisan [15, Theorem 3.6].

The structure of the paper is as follows. Section 2 contains preliminaries, algebraic
tools and lemmas that are used in later sections. In Section 3 we recall the definition
of polyhedral products and modify a result of Bahri, Bendersky, Cohen and Gitler [3]
to compute H�..X;�/K/=T . In Sections 4 and 5 we prove Theorem 1.2 in several
steps. First, we prove it in the special case where the ideal I is square-free. Then for
the general case, we construct a fibration sequence inspired by algebraic polarization
method and show that the fiber XA is a realization modulo torsion of A. In Section 6
we illustrate how to construct XA for an easy example of A.

Algebraic & Geometric Topology, Volume 23 (2023)



Realization of graded monomial ideal rings modulo torsion 735

2 Preliminaries

2.1 Quotients of algebras by torsion elements

It is natural to study an algebra A by factoring out the torsion elements since the
quotient algebra is torsion-free and has a simpler structure. Driven by this, we start
investigating the quotients of cohomology rings of spaces by their torsion elements.
Since we cannot find related references in the literature, here we fix the notation and
develop lemmas for our purpose.

A graded module A D fAigi2S is a family of indexed modules Ai . Since we are
interested in cochain complexes and cohomology rings of connected, finite type CW–
complexes, we assume A to be a connected, finite type graded module with nonpositive
degrees. That is, S DN�0, A0 D Z and each component Ai is finitely generated. We
follow the convention and denote Ai by A�i .

Remark 2.1 Equivalently we can define a graded module to be a module with a grading
structure, that is the direct sum AD

L
i2S Ai of a family of indexed modules. This

definition is slightly different from the definition above. We will use both definitions
interchangeably.

An element x 2 A is torsion if cx D 0 for some nonzero integer c, and is torsion-free
otherwise. The torsion submodule At of A is the graded submodule consisting of
torsion elements and the torsion-free quotient module Af D A=At is their quotient. If
B is another graded module and g W A! B is a morphism, then it induces a morphism
gf W Af ! Bf sending aCAt 2 Af to g.a/CBt 2 Bf . This kind of structure is
important in abelian categories and was formalized with Dixon’s notion of a torsion
theory [6], but in this paper we only use the structure in a naive way.

Lemma 2.2 If 0! A
g
�! B h

�!C ! 0 is a short exact sequence of graded modules ,
then Cf Š .Bf =Af /f . Furthermore , if the sequence is split exact , then so is

0! Af
gf
�! Bf

hf
�! Cf ! 0:

Proof Consider a commutative diagram as in Figure 1, where gt is the restriction of g
toAt , p and q are the quotient maps, and u and v are the induced maps. By construction
all rows and columns are exact sequences except for the right column. A diagram chase
implies that u is injective and v is surjective. We claim that the column is exact at C .

Algebraic & Geometric Topology, Volume 23 (2023)



736 Tseleung So and Donald Stanley

0

��

0

��

0

��

0 // At

��

gt
// Bt

��

p
// Bt=At

u
��

// 0

0 // A

��

g
// B

��

h
// C

v
��

// 0

0 // Af

��

gf
// Bf

��

q
// Bf =Af

��

// 0

0 0 0

Figure 1

Obviously vıu is trivial. Take an element c 2ker.v/ and its preimage b 2B . A diagram
chase implies b D g.a/C b0 for some a 2 A and b0 2 Bt . So c D h.b0/D u ıp.b0/ is
in Im.u/ and the right column 0! Bt=At

u
�! C v

�! Bf =Af ! 0 is exact.

For the first part of the lemma, we show that vf W Cf ! .Bf =Af /f is an isomorphism.
Since v is surjective, so is vf . Take c0 2 ker.vf / and its preimage Qc0 2 C . Then
v. Qc0/ is a torsion element in Bf =Af and mv. Qc0/D 0 for some nonzero integer m. So
m Qc0 2 ker.v/. As ker.v/D Im.u/ consists of torsion elements, m Qc0 is torsion and so
is Qc0. Therefore c0 D 0 in Cf and vf is injective.

Notice that an exact sequence being split is equivalent to BŠA˚C . So Bf ŠAf ˚Cf
and 0! Af

gf
�! Bf

hf
�! Cf ! 0 is a split exact sequence.

A graded algebra .A;m/ consists of a graded module A and an associative bilinear
multiplication m D fmi;j W Ai ˝Aj ! AiCj g such that 1 2 A0 is the multiplicative
identity. A pair .M;�/ is a left (resp. right) A–module if M is a graded module and
� is an associative bilinear multiplication �D f�i;j W Ai ˝M j !M iCj g such that
�.1˝ x/ D x (resp. � D f�i;j WM i ˝Aj !M iCj g such that �.1; x/ D x) for all
x 2M . We check that modding out torsion and multiplications are compatible.

Lemma 2.3 If A andM are graded modules (not necessarily of finite type), then there
is a unique isomorphism � W .A˝M/f ! Af ˝Mf of graded modules making the
diagram

A˝M //

��

Af ˝Mf

.A˝M/f
�

55

commute , where the vertical and the horizontal maps are quotient maps.

Algebraic & Geometric Topology, Volume 23 (2023)



Realization of graded monomial ideal rings modulo torsion 737

Proof It suffices to show that .Ai ˝M j /f Š A
i
f
˝M

j

f
for any positive integers i

and j . Consider the commutative diagram

0 // Ait ˝M
j ˚Ai ˝M

j
t

{1
//

a

��

Ai ˝M j �1
// Ai
f
˝M

j

f

b
��

// 0

0 // .Ai ˝M j /t
{2

// Ai ˝M j �2
// .Ai ˝M j /f // 0

where a, {1 and {2 are inclusions, �1 and �2 are quotient maps, and b is the induced
map. We want to show that b is an isomorphism, which is equivalent to showing that a
is an isomorphism. If A and M are of finite type, then a is an isomorphism since Ai

and M j are finitely generated abelian groups. In the general case, a is an isomorphism
by [9, Theorem 61.5].

Corollary 2.4 Let .A;m/ be a graded algebra and let m0
f

be the composition

m0f W Af ˝Af Š .A˝A/f
mf
�! Af :

Then .Af ; m0f / is a graded algebra and there is a commutative diagram

A˝A
m

//

��

A

��

Af ˝Af
m0
f
// Af

where the vertical maps are quotient maps.

Let .M;�/ be a left or right A–module and let �0
f

be the composition

�0f W Af ˝Mf Š .A˝M/f
�f
�!Mf or �0f WMf ˝Af Š .M ˝A/f

�f
�!Mf /;

respectively. Then .Mf ; �0f / is respectively a left or right Af –module and there is a
commutative diagram

A˝M
�
//

��

M

��

Af ˝Mf

�0
f
// Mf

or

M ˝A
�
//

��

M

��

Mf ˝Af
�0
f
// Mf

respectively, where the vertical maps are quotient maps.

Algebraic & Geometric Topology, Volume 23 (2023)



738 Tseleung So and Donald Stanley

A cochain complex .A; d/ consists of a graded module A and a differential

d D fd i W Ai ! AiC1g

such that d ı d D 0. Let df D fd if W A
i
f
! AiC1

f
g be the induced differential on Af .

Then .Af ; df / forms a cochain complex and its cohomology

H�.Af ; df /D fH
i .Af ; df /gi�0

is a graded module.

A differential graded algebra .A;m; d/ is a cochain complex .A; d/ such that .A;m/
is a graded algebra and d and m satisfy the Leibniz rule. Let dt be the restriction of d
to At . Then .At ; dt / is a differential ideal and .Af ; df / is a differential graded algebra,
so H�.Af ; df / is a graded algebra.

A left (resp. right) dg-algebra module .M;�; ı/ over .A;m; d/ if .M;�/ is a left
(resp. right) .A;m/–module, .M; ı/ is a cochain complex and ı and � satisfy the
Leibniz rule. Then H�.Mf ; ıf / is a left (resp. right) H�.Af /–module.

Even if .Af ; df / is torsion-free, H�.Af ; df / is not necessarily torsion-free. De-
note .H�.A; d//f by H�

f
.A; d/. The following lemma compares H�

f
.A; d/ and

H�
f
.Af ; df /.

Lemma 2.5 Let .A; d/ be a cochain complex. Then there is a monomorphism of
modules

 WH�f .A; d/!H�f .Af ; df /:

IfH iC1.At ; dt /D 0, then  WH i
f
.A; d/!H i

f
.Af ; df / is an isomorphism. Moreover ,

suppose .A;m; d/ is a differential graded algebra. Then  is a morphism of algebras.

Proof Assume .A; d/ is a cochain complex. Let { W .At ; dt /! .A; d/ be the inclusion
and let � W .A; d/! .Af ; df / be the quotient map. Then the short exact sequence of
cochain complexes 0! .At ; dt /

{
�! .A; d/ �

�! .Af ; df /! 0 induces a long exact
sequence

� � � !H i�1.Af ; df /!H i .At ; dt /
{�
�!H i .A; d/

��
�!H i .Af ; df /!H iC1.At ; dt /! � � � :

Take  WH�
f
.A; d/!H�

f
.Af ; df / to be the morphism induced by

�� WH�.A; d/!H�.Af ; df /:

We show that it has the asserted properties.

Algebraic & Geometric Topology, Volume 23 (2023)



Realization of graded monomial ideal rings modulo torsion 739

To show the injectivity of  , take an equivalence class Œa� 2 H�
f
.A; d/ such that

 Œa�D 0. Represent it by a cocycle class a 2H i .A; d/. Then ��.a/ is torsion and
��.ca/D 0 for some nonzero number c. By exactness, ca 2 Im.{�/. Since H i .At ; dt /

is torsion, so is Im.{�/ and ca is a torsion. Therefore a 2H i .A; d/ is a torsion. By
definition, Œa� 2H i

f
.A; d/ is zero. So  is injective.

Suppose AiC1 has no torsion elements. Then AiC1t D 0 and H iC1.At ; dt /D 0. So
�� is surjective. By definition we have commutative diagram

H i .A; d/
��
//

��

H i .Af ; df /

��

H i
f
.A; d/

 
// H i

f
.Af ; df /

where vertical arrows are quotient maps and are surjective. So

 WH i
f .A; d/!H i

f .Af ; df /

is surjective and hence isomorphic.

If A is a differential graded algebra, then �� WH�.A; d/!H�.Af ; df / is a morphism
of graded algebras. By Corollary 2.4, the induced morphism  is multiplicative.

Example The surjectivity of  WH i
f
.A; d/!H i

f
.Af ; df / may fail if AiC1 contains

torsion elements. Let .A; d/ be a cochain complex where

Ai D

8<:
Z if i D 0;
Z=2Z if i D 1;
0 otherwise;

and d i are trivial for all i except for d0 W Z! Z=2Z being the quotient map. Then
H 0.A/ and H 0.Af / are Z while  WH 0.A/!H 0

f
.A/ is multiplication 2 W Z! Z.

2.2 Eilenberg–Moore spectral sequence

Given a differential graded algebra .A; d/ and a right A–module .M; dM /, we first
define the bar bicomplex B�;�.M;A/ as follows. For any positive integer i , let
B�i .M;A/DM ˝ .A/˝i where AD fAngn>0. Denote an element in B�i .M;A/ by
xŒa1j � � � jai � for x 2M and ai 2A. Let B�i;j .M;A/ be the submodule of B�i .M;A/

Algebraic & Geometric Topology, Volume 23 (2023)



740 Tseleung So and Donald Stanley

consisting elements xŒa1j � � � jai � such that jxj C
Pi
kD1 jakj D j . The internal and

external differentials

dI W B�i;j .M;A/! B�i;jC1.M;A/ and dE W B�i;j .M;A/! B�iC1;j .M;A/

are given by

dI .xŒa1j � � � jai �/D .dMx/Œa1j � � � jai �C

iX
jD1

.�1/�j�1xŒa1j � � � jaj�1jdAaj jajC1j � � � jai �;

dE .xŒa1j � � � jai �/D .�1/
jxj.xa1/Œa2j � � � jai �C

i�1X
jD1

.�1/�j xŒa1j � � � jaj�1jaj � ajC1j � � � jai �;

where �k D kCjxjC
Pk
jD1 jaj j. Then we define the bar construction .B.M;A/; dB/

to be a graded module where

B.M;A/n D
M
�iCjDn

B�i;j .M;A/ and dB D
M
�iCjDn

.dI C dE /

for n� 0.

Take the filtration F�p D
L
0�i�p B�i .M;A/. The associated spectral sequence

fE
�;�
r g

1
rD0 is the Eilenberg–Moore spectral sequence converging to H�.B.M;A//;

see [7, Remark 2.3] and [11, Corollary 7.9].

Lemma 2.6 Let A be a simply connected differential graded algebra and M be a
right A–module such that A and M are free as Z–modules. Then there is a monomor-
phism of modules

 W .E
�p;q
2 /f !

�
Tor�p;q

Hf .A/
.Hf .M/;Z/

�
f

which is an isomorphism for p D 0. Moreover , if H.A/ and H.M/ are free modules ,
then E�p;q2 Š Tor�p;q

H.A/
.H.M/;Z/.

Proof The E0–page is given by

E
�p;�
0 D F�p=F�pC1 DM ˝ .A˝p/

and d0 D dI . By the Künneth theorem, the E1–page is given by

E
�p;�
1 ŠH.M/˝ . zH.A/˝p/˚T Š B�p.H.M/;H.A//˚T;

where T is a torsion term and d1 is induced by dE . Denote H.M/ by M 0 and H.A/
by A0 for short. By Lemma 2.3, there is an isomorphism of graded modules

� W .E
�p;�
1 /f Š .B

�p.M 0; A0//f ! B�p.M 0f ; A
0
f /

Algebraic & Geometric Topology, Volume 23 (2023)



Realization of graded monomial ideal rings modulo torsion 741

such that
B�p.M 0; A0/

�� ((

.B�p.M 0; A0//f
�
// B�p.M 0

f
; A0

f
/

where the downward maps are quotient maps. Let d 0 be the external differential of
B�.M 0

f
; A0
f
/. Then � W ..B�p.M 0; A0//f ; .d1/f /! .B�.M 0

f
; A0
f
/; d 0/ is an isomor-

phism of cochain complexes. By Lemma 2.5, there is a monomorphism of graded
modules

 W .E
�p;q
2 /f DH

�p

f
.E
�;q
1 ; d1/!H

�p

f
..B�;q.M 0; A0//f ; .d1/f /ŠH

�p

f
.B�;q.M 0f ; A

0
f /; d

0/:

Notice that B�.M 0
f
; A0
f
/ŠM 0

f
˝A0

f
B�.A0

f
; A0
f
/ and d 0 D 1˝A0

f
d 00, where d 00 is the

external differential of B�.A0
f
; A0
f
/. Since, by [11, Proposition 7.8],

� � � ! B�1.A0f ; A
0
f /

d 00
�! B0.A0f ; A

0
f /

�
�! Z! 0

is a projective resolution of Z over A0
f

–modules where � W B0.A0
f
; A0
f
/Š A0

f
! Z is

the augmentation, the monomorphism becomes

 W .E
�p;q
2 /f ! .Tor�p;q

A0
f

.M 0f ;Z//f :

Since B1.M 0; A0/D 0,  is isomorphic for p D 0 by Lemma 2.5.

Suppose H.A/ and H.M/ are free Z–modules. By the Künneth theorem,

E
�;�
1 Š B�;�.H.M/;H.A//

and d1 is the external differential. So E�p;q2 Š Tor�p;q
H.A/

.H.M/;Z/.

Let F ! E �
�! X be a fibration sequence where all spaces are connected, finite

type CW–complexes, and X is simply connected. In [7, Theorem III] there is a
quasi-isomorphism

‚ W�.C�� .E/; C�.X//! CN�.F /

of dg-algebra modules, which is natural in � . Here �.�;�/ is the cobar construction,
C�� .E/ is a nonnegative chain complex, C�.X/ is a simply connected chain complex,
CN�.F / is a chain complex, and C�� .E/, C�.X/ and CN�.F / are quasi-isomorphic
to the singular chain complexes of E, X and F , respectively.

Denote the dual of a (co)chain complex C by C_ D Hom.C;Z/. Since X is simply
connected, H 1.X/D 0 and H 2.X/ is free. By [7, Propositions 4.2 and 4.6] there are

Algebraic & Geometric Topology, Volume 23 (2023)



742 Tseleung So and Donald Stanley

finite type graded free modules V DfV igi�2 andW DfW j gj�0, a quasi-isomorphism
of dg-algebras

� W T .V /! .C�.X//
_

and a quasi-isomorphism of dg-algebra modules

' W T .V /˝W ! .C�� .E//
_;

where T .V / is the tensor algebra on V . Write zX D T .V / and zE D T .V /˝W for
short. Then the compositions

C�.X/
incl
��! .C �.X//_

�_
�! zX_ and C�� .E/

incl
��! .C �.E//_

'_
�! zE_

are quasi-isomorphisms of dg-coalgebras and of dg-coalgebra modules. Since C�.X/
and zX_ are simply connected free chain complexes, and C�� .E/ and zE_ are nonnega-
tive chain complexes, we have a zig-zag of quasi-isomorphisms

�. zE_; zX_/ ' ��.C�� .E/; C�.X//
‚
�! CN�.F /:

Since zE and zX are of finite type, dualize the zig-zag and take cohomology to get an
isomorphism

H�.B. zE; zX// Š�!H�.F /:

The Eilenberg–Moore spectral sequence fE�;�r g1rD0 on F !E �
�!X is the Eilenberg–

Moore spectral sequence given by AD zX andM D zE. Note that this definition depends
on the choice of the pair . zX; zE; �; '/. Any two choices may give spectral sequences
with different E0–pages, but their Er–pages are isomorphic for r � 1.

Lemma 2.7 Let F!E �
�!X be a fibration sequence such that all spaces are finite type

spaces andX is simply connected , and let fE�p;q2 g be theE2–page of Eilenberg–Moore
spectral sequence on this fibration. Then there is a monomorphism

 W .E
�p;q
2 /f !

�
Tor�p;q

H�
f
.X/
.H�f .E/;Z/

�
f

as modules such that  is an isomorphism for p D 0.

Proof Since H. zE/ŠH�.E/ and H. zX/ŠH�.X/, Lemma 2.6 implies that there is
a monomorphism  W .E

�p;q
2 /f !

�
Tor�p;q

H�
f
.X/
.H�
f
.E/;Z/

�
f

such that  is an isomor-
phism at p D 0.
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Recall that the E0–page is given by Ep;�0 DF�p=F�pC1Š zE˝ . zX/˝p . In particular,
if p D 0, then E0;�0 Š zE. On the other hand, fE�;�r g1rD0 is a second quadrant spectral
sequence. So E0;�r is the kernel of the differential map and E0;�rC1 is a quotient group
of E0;�r . For r 2N [f1g, define the edge homomorphism er to be the composition

er WH.E/ŠH. zE/ŠE
0;�
1 !E0;�r

where the unnamed arrow is the quotient map. The following lemma tells how the edge
homomorphisms relate the Er–page to H�.E/ and H�.F /.

Lemma 2.8 Under the hypotheses of Lemma 2.7, the edge homomorphisms make the
diagram

H�.E/

e1
��

H�.E/

e2
��

� � � // H�.E/

e1
��

H�.E/

{�

��

E
0;�
1

|1
// E
0;�
2

|2
// � � � // E

0;�
1

|
// H�.F /

commute , where {� is induced by { W F ! E, | is the inclusion and the |r ’s are the
quotient maps.

Proof We use the notation above. Consider the commutative diagram

F
{
//

{
��

E
�
// X

��

E E
c
// pt

where c is the constant map. We have

�.C�� .E/; C�.X//
‚
//

��

CN�.F /

{�
��

�.C c� .E/; C�.pt// ‚
// CN�.E/

since the quasi-isomorphism ‚ is natural. The supplement Z! .C�.pt//_ is a quasi-
isomorphism of dg-algebras and ' W zE ! .C�� .E//

_ is a quasi-isomorphism of dg-
algebra modules. Using this replacement and taking dual and cohomology of the
diagram, we obtain

(1)

H�. zE/
Š

//

e�
��

H�.E/

{�

��

H�.B. zE; zX// Š
// H�.F /
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where e� is the composition

e� WH�. zE/ŠH�.B. zE;Z// e0
�!H�.B. zE; zX//

and e0 is induced by the inclusion e WB�;�. zE;Z/!B�;�. zE; zX/. Let f yE�;�r g1rD0 be the
Eilenberg–Moore spectral sequence on E D

�!E c
�! pt. Then yE�;�0 Š B�;�. zE;Z/ and

the yE1–page collapses to H�. zE/. The inclusion e W B�;�. zE;Z/! B�;�. zE; zX/ gives
the commutative diagram

H�. zE/

Qe1
��

H�. zE/

Qe2
��

� � � // H�. zE/

Qe1
��

H�. zE/

e�

��

E
0;�
1

|1
// E
0;�
2

|2
// � � � // E

0;�
1

Q|
// H�.B. zE; zX//

where Qer W H�. zE/ Š H�.E/
er
�! E

0;�
r and Q| W E0;�1

|
�! H�.F / Š H�.B. zE; zX//.

Combine this with (1) and obtain the asserted commutative diagram.

2.3 Regular sequences and freeness

Here we use the alternative description of graded objects. A commutative graded
algebra AD

L
i�0Ai is an algebra with a grading such that abD .�1/ij ba for a 2Ai

and b 2 Aj , and a graded A–module M D
L
j�0Mj is the direct sum of a family of

A–modules. A set fr1; : : : ; rng of elements in M is called an M–regular sequence if
the ideal .r1; : : : ; rn/M is not equal to M and the multiplication

ri WM=.r1; : : : ; ri�1/M !M=.r1; : : : ; ri�1/M

is injective for 1 � i � n. In the special case where M is a KŒx1; : : : ; xn�–module
for some field K and the grading of M has a lower bound, M is a free KŒx1; : : : ; xn�–
module if fxigniD1 is a regular sequence in M . We want to extend this fact to the
case where M is a ZŒx1; : : : ; xn�–module. Recall a corollary of the graded Nakayama
lemma.

Lemma 2.9 Let A be a graded ring and letM be an A–module. Suppose A andM are
nonnegatively graded , and I D .r1; : : : ; rn/�A is an ideal generated by homogeneous
elements ri of positive degrees. If fm˛g˛2S is a set of homogeneous elements in M
whose images generate M=IM , then fm˛g˛2S generates M .
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Lemma 2.10 Let M be a ZŒx1; : : : ; xn�–module with nonnegative degrees. If

M=.x1; : : : ; xn/M

is a free Z–module and fx1; : : : ; xng is an M–regular sequence , then M is a free
ZŒx1; : : : ; xn�–module.

Proof Let I D .x1; : : : ; xn/. By assumption there is a set fm˛g˛2S of homogeneous
elements in M such that their quotient images form a basis in M=IM . By Lemma 2.9,
fm˛g˛2S generates M . We need to show that fm˛g˛2S is linear independent over
ZŒx1; : : : ; xn�.

For 0 � i � n, let Mi DM=.x1; : : : ; xn�i /M , Ai D ZŒxnC1�i ; : : : ; xn� and m˛;i be
the quotient image of m˛ in Mi . We prove that Mi is a free Ai–module with a basis
fm˛;ig˛2S by induction on i . For i D 0, M0 DM=IM and A0 DZ. The statement is
true since fm˛;0g˛2S is a basis by construction. Assume the statement holds for i � k.
For i D kC 1, if there is a collection ff˛g˛2S of polynomials satisfying

(2)
X
˛2S

f˛ �m˛;kC1 D 0;

we show that all f˛’s are zero.

If not, then there are finitely many nonzero polynomials fj1 ; : : : ; fjr . Quotient MkC1

and AkC1 by the ideal .xn�k/ and let Nfji be the image of fji in Ak . Then (2) becomes

rX
iD1

Nfji �mji ;k D 0:

By our inductive assumption, fm˛;kg is a basis inMk . So Nfji D0 and fji Dxn�kgji for
some polynomial gji 2 AkC1. Since xn�k is not a zero-divisor, putting fji D xn�kgji
in (2) gives

rX
iD1

gji �mji ;kC1 D 0:

So gj1 ; : : : ; gjr are nonzero polynomials satisfying (2) and jgji j< jfji j for 1� i � r .
Iterating this argument implies that the jfji j’s are arbitrarily large, but this is impossible.
So the fji ’s must be zero and fm˛;kC1g is linearly independent. It follows that MkC1

is a free AkC1–module.
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3 Cohomology rings of polyhedral products

Let Œm�D f1; : : : ; mg, K be a simplicial complex on Œm� and .X;A/D f.Xi ; Ai /gmiD1
be a sequence of pairs of relative CW–complexes. For any simplex � 2K, define

.X;A/� D

�
.x1; : : : ; xm/ 2

mY
iD1

Xi

ˇ̌̌
xi 2 Ai for i … �

�
as a subspace of

Qm
iD1Xi , and define the polyhedral product

.X;A/K D
[
�2K

.X;A/�

to be the union of .X;A/� over � 2K.

If Xi D CP1 and Ai D � for all i , then .CP1;�/K is homotopy equivalent to
Davis–Januszkiewicz space [5, Theorem 4.3.2]. For any principal ideal domain R,
H�..CP1;�/K IR/ is isomorphic to the Stanley–Reisner ring RŒx1; : : : ; xm�=IK .
Here IK is the ideal generated by xj1 � � � xjk for xji 2 zH

�.Xji IR/ and fj1; : : : ; jkg…K,
and is called the Stanley–Reisner ideal of K. In general, a similar formula holds for
H�..X;�/K/ whenever the Xi ’s are any spaces with free cohomology.

Theorem 3.1 [3] Let R be a principal ideal domain , K be a simplicial complex
on Œm� and X D fXigmiD1 be a sequence of CW–complexes. If H�.Xi IR/ is a free
R–module for all i , then

H�..X;�/K IR/Š

mO
iD1

H�.Xi IR/=IK ;

where IK is generated by xj1 ˝ � � �˝ xjk for xji 2 zH
�.Xji IR/ and fj1; : : : ; jkg …K

and is called the generalized Stanley–Reisner ideal of K.

The proof of Theorem 3.1 uses the strong form of the Künneth theorem, which says
that

� W

mO
iD1

H�.Xi IR/!H�
� mY
iD1

Xi IR

�
; x1˝ � � �˝ xm 7! ��1 .x1/[ � � � [�

�
m.xm/;

where ��j is induced by the projection �j W
Qm
iD1Xi ! Xj , is an isomorphism if all

H�.Xi IR/’s are free. In the reduced version of the Künneth theorem,

N� W

mO
iD1

zH�.Xi /! zH�
� m̂

iD1

Xi

�
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is also an isomorphism if all zH�.Xi IR/’s are free. The goal of this section is to modify
Theorem 3.1 by removing the freeness assumption on H�.Xi /. As a trade-off, we need
to mod out the torsion elements of H�.Xi /. First let us refine the Künneth theorem.

Lemma 3.2 Let X D fXigmiD1 be a sequence of spaces Xi . Then the induced mor-
phisms

�f W

mO
iD1

H�f .Xi /!H�f

� mY
iD1

Xi

�
and N�f W

mO
iD1

zH�f .Xi /!
zH�f

� m̂

iD1

Xi

�
:

are isomorphisms as algebras , and there is a commutative diagramNm
iD1
zH�
f
.Xi /

N�f
//

��

zH�
f

�Vm
iD1Xi

�
q�
f

��Nm
iD1H

�
f
.Xi /

�f
// H�

f

�Qm
iD1Xi

�
where q�

f
is induced by the quotient map q W

Qm
iD1Xi !

Vm
iD1Xi .

Proof It suffices to show themD2 case. Let .X;A/ and .Y; B/ be pairs of relative CW–
complexes and let �X W .X � Y;A� Y /! .X;A/ and �Y W .X � Y;X �B/! .Y; B/

be projections. By the generalized version of Künneth theorem [10, Chapter XIII,
Theorem 11.2], the sequence

0!
M
iCjDn

H i .X;A/˝H j .Y; B/
�0
�!Hn.X �Y;X �B [A�Y /! T ! 0;

where T is a torsion term and�0 sends u˝v2H i .X;A/˝H j .Y; B/ to ��X .u/[�
�
Y .v/,

is split exact. By Lemma 2.3 .H�.X;A/˝H�.Y; B//f ŠH�f .X;A/˝H
�
f
.Y; B/ and

by Lemma 2.2

�0f WH
�
f .X;A/˝H

�
f .Y; B/!H�f .X �Y;X �B [A�Y /

is an isomorphism. Since �0 is multiplicative, so is �0
f

. Letting A and B be the
basepoints of X and Y , or be the empty set, gives the isomorphisms

�f WH
�
f .X/˝H

�
f .Y /ŠH

�
f .X �Y / and N�f W zH

�
f .X/˝

zH�f .Y /Š
zH�f .X ^Y /:
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The commutative diagram

Nm
iD1
zH�.Xi /

N�
//

��

zH�
�Vm

iD1Xi
�

q�

��Nm
iD1H

�.Xi /
�
// H�

�Qm
iD1Xi

�
leads to the asserted commutative diagram.

Proposition 3.3 LetXDfXigmiD1 be a sequence of spacesXi , and letK be a simplicial
complex on Œm�. Then the inclusion { W .X;�/K!

Qm
iD1Xi induces a ring isomorphism

H�f ..X;�/
K/Š

� mO
iD1

H�f .Xi /

�
=IK

where IK is generated by xj1 ˝ � � �˝ xjk for xji 2 zH
�
f
.Xji / and fj1; : : : ; jkg …K.

Proof This proof modifies the proofs in [3; 5]. Consider the homotopy cofibration
sequence

.X;�/K {
�!

mY
iD1

Xi
|
�! C;

where C is the mapping cone of { and | is the inclusion. Suspend it and obtain a
diagram of homotopy cofibration sequences

(3)

†.X;�/K
†{

//

a

��

†
�Qm

iD1Xi
� †|

//

b
��

†C

c

��W
J2K †X

^J N{
//
W
J2Œm�†X

^J N|
//
W
J…K †X

^J

where X^J DXj1 ^ � � � ^Xjk for J D fj1; : : : ; jkg, N{ is the inclusion, N| is the pinch
map, a is a homotopy equivalence by [3, Theorem 2.21], b is a homotopy equivalence,
and c is an induced homotopy equivalence. Take cohomology and get the diagram

0 //
L
J…K

zH�.X^J /
N|�
//

c�

��

L
J2Œm�

zH�.X^J /
N{�
//

b�

��

L
J2K

zH�.X^J / //

a�

��

0

0 // zH�.C /
|�

// zH�
�Qm

iD1Xi
� {�

// zH�..X;�/K/ // 0

Algebraic & Geometric Topology, Volume 23 (2023)



Realization of graded monomial ideal rings modulo torsion 749

where the rows are split exact sequences, all vertical maps are isomorphisms, and all
maps are additive while {� is multiplicative. Apply Lemma 2.2 to the diagram and get:

(4)

0 //
L
J…K

zH�
f
.X^J /

N|�
f
//

c�
f

��

L
J2Œm�

zH�
f
.X^J /

N{�
f
//

b�
f

��

L
J2K

zH�
f
.X^J / //

a�
f

��

0

0 // zH�
f
.C /

|�
f

// zH�
f

�Qm
iD1Xi

� {�
f
// zH�

f
..X;�/K/ // 0

By Lemma 3.2, H�
f

�Qm
iD1Xi

�
Š
Nm
iD1H

�
f
.Xi / so there is a ring isomorphism

H�f ..X;�/
K/Š

� mO
iD1

H�f .Xi /

�
=ker.{�f /:

Since the rows are split exact and the vertical maps are isomorphic in (4), ker.{�
f
/

is generated by xj1 ˝ � � � ˝ xjk for xji 2 zH
�
f
.Xji / and fj1; : : : ; jkg … K. Therefore

ker.{�
f
/D IK and H�

f
..X;�/K/Š

�Nm
iD1H

�
f
.Xi /

�
=IK .

Proposition 3.3 can be refined as follows. If the quotient map H�.Xi /!H�
f
.Xi / has

right inverse for all i , then so does H�..X;�/K/!H�
f
..X;�/K/. To formulate this,

we introduce new definition.

Definition 3.3.1 A graded algebra A is free split if the quotient map � WA!Af has
a section as algebras. In other words, there is a ring morphism s WAf !A making the
diagrams

Af
s
// A

�

��

Af

and

Af ˝Af

s˝s
��

mf
// Af

s
��

A˝A m
// A

commute, where m and mf are multiplications in A and Af . We call s a free splitting
of A.

In general, a free splitting of A is not unique. Any two free splittings s1 and s2 differ
by a torsion element.

Remark 3.4 Not all cohomology rings of spaces are free split. Let C be the mapping
cone of the composite

P 3.2/
�
�! S3

Œ{1;{2�
���! S2 _S2;
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where P 3.2/ is the mapping cone of degree map 2 W S2!S2, � is the quotient map
and Œ{1; {2� is the Whitehead product. Then H�.C /Š ZŒa; b�=.a2 D b2 D 2ab D 0/

where jaj D jbj D 2, and it is not free split.

Lemma 3.5 Under the conditions of Proposition 3.3, if H�.Xi / is free split for all i ,
then H�..X;�/K/ is free split.

Proof Use the notations in the proof of Proposition 3.3. Let si WH�f .Xi /!H�.Xi /,
for 1� i �m, be a free splitting and let s be the composite

s W

mO
iD1

H�f .Xi /

Nm
iD1 si
����!

mO
iD1

H�.Xi /
�
�!H�

� mY
iD1

Xi

�
:

Then s is a free splitting of H�
�Qm

iD1Xi
�
. As {�

f
WH�

f

�Qm
iD1Xi

�
!H�

f
..X;�/K/ is

surjective, define s0 WH�
f
..X;�/K/!H�..X;�/K/ by the diagram

Nm
iD1H

�
f
.Xi /

s
//

{�
f

��

H�
�Qm

iD1Xi
�

{�

��

H�
f
..X;�/K/

s0
// H�..X;�/K/

We need to show that s0 is well defined. For x 2H�
f
.X;�/K , let y; y0 2

Nm
iD1H

�
f
.Xi /

be two preimages of x. Then y � y0 2 ker.{�
f
/D IK . For J …K, s sends zH�

f
.X/˝J

to �. zH�.X/˝J / which is contained in ker.{�/. So {� ı s.y � y0/D 0 and s0 is well
defined. Since s, {� and {�

f
are multiplicative, so is s0. Furthermore, s0 is right inverse

to the quotient map H�..X;�/K/!H�
f
..X;�/K/. So s0 is a free splitting.

4 Realization of graded monomial ideal rings

We follow the idea of [3] and prove Theorem 1.2 in several steps. In Section 4.1 we
use Proposition 3.3 to prove the special case where the ideal I of A is square-free. In
Sections 4.2 and 4.3 we construct a fibration sequence inspired by algebraic polarization
method and show that the fiber XA is a realization modulo torsion of A. More precisely,
we apply the Eilenberg–Moore spectral sequence defined in Section 2.2 to calculate
H�
f
.XA/ and give the E1–page by the end of this section. The extension problem is

long and complicated and will be discussed in Section 5.
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4.1 Quotient rings of square-free ideals

Let P D ZŒx1; : : : ; xm�˝ƒŒy1; : : : ; yn� be a graded polynomial ring where the xi ’s
have arbitrary positive even degrees and the yj ’s have arbitrary positive odd degrees,
and let I D .M1; : : : ;Mr/ be an ideal generated by monomials

Mj D x
a1j
1 � � � x

amj
m ˝y

b1j
1 � � �y

bnj
n ;

where the aij ’s are nonnegative integers and the bij ’s are either 0 or 1. Then AD P=I
is a graded monomial ideal ring. We say that I is square-free if theMj ’s are square-free
monomials, that is all aij ’s are either 0 or 1.

In the following let

� fi1; : : : ; ikgCfj1; : : : ; jlgDfi1; : : : ; ik; j1Cm; : : : ; jlCmg for fi1; : : : ; ikg� Œm�
and fj1; : : : ; jlg � Œn�, and

� X C Y D fX1; : : : ; Xm; Y1 : : : ; Yng for sequences of spaces X D fXigmiD1 and
Y D fYj g

n
jD1.

Given a square-free ideal I of A, take K to be a simplicial complex on ŒmC n� by
removing faces fi1; : : : ; ikgCfj1; : : : ; jlg whenever xi1 � � � xik ˝yj1 � � �yjl 2 I . Then
I is the generalized Stanley–Reisner ideal of K.

Lemma 4.1 LetX DfK.Z; jxi j/gmiD1 and Y DfS jyj jgnjD1 and letK be the simplicial
complex defined as above. Then there is a ring isomorphism H�

f
..X CY ;�/K/Š A.

Furthermore , H�..X CY ;�/K/ is free split.

Proof Since H�
f
.Xi / Š ZŒxi � and H�.Yj / Š ƒŒyj �, the first part follows from

Proposition 3.3.

For the second part, it suffices to show that H�.Xi / and H�.Yj / are free split by
Lemma 3.5. For 1 � j � n, H�.Yj / is free and hence free split. For 1 � i � m, let
x0i be a generator of H jxi j.Xi /Š Z. Then inclusion { W Zhx0i i !H�.Xi / extends to a
ring morphism

s W ZŒx0i �ŠH
�
f .Xi /!H�.Xi /:

Let � WH�.Xi /!H�
f
.Xi / be the quotient map. Since � ı { sends x0i to itself, by the

universal property � ı s is the identity map. So s is a free splitting of H�.Xi /.
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4.2 Polarization of graded monomial ideal rings

Now drop the square-free assumption on I D .xa1j1 � � � x
amj
m ˝y

b1j
1 � � �y

bnj
n j 1� j � r/

and suppose some aij ’s are greater than 1. Following ideas from [3] and [15], we
use polarization to reduce the realization problem of A to the special case when I is
square-free.

For 1� i �m, let ai Dmaxfai1; : : : ; airg be the largest index of xi among the Mj ’s,
and let

�D f.i; j / 2N �N j 1� i �m; 1� j � aig

where .i; j / 2 � are ordered in left lexicographical order, that is .i; j / < .i 0; j 0/ if
i < i 0, or if i D i 0 and j < j 0. Let

P 0 D ZŒxij j .i; j / 2��˝ƒŒy1; : : : ; yn�

D ZŒx11; : : : ; x1a1 ; x21; : : : ; x2a2 ; : : : ; xm1; : : : ; xmam �˝ƒŒy1; : : : ; yn�;

be a graded polynomial ring where jxij j D jxi j, let

M 0j D .x11x12 � � � x1a1j /.x21x22 � � � x2a2j / � � � .xm1xm2 � � � xmamj /˝ .y
b1j
1 � � �y

bnj
n /

and let I 0 D .M 01; : : : ;M
0
r/. Then I 0 is square-free and A0 D P 0=I 0 is called the

polarization of A.

Conversely, we can reverse the polarization process and obtain A back from A0. Let

�D f.i; j / 2N �N j 1� i �m; 2� j � aig

where .i; j / 2 � are ordered in left lexicographical order, and let W be a graded
polynomial ring

W D ZŒwij j.i; j / 2��D ZŒw12; : : : ; w1a1 ; w22; : : : ; w2a2 ; : : : ; wm2; : : : ; wmam �;

where jwij j D jxi j. Define a ring morphism ı W W ! P 0 by ı.wij / D xij � xi1 and
make P 0 a W –module via ı. Then A0 is a W –module and A Š A0=W A0, where
W D fW igi>0.

Lemma 4.2 Let A0 be a square-free graded monomial ideal ring and let W and ı be
defined as above. Then A0 is a free W –module.

Proof Since A0=W A0 is a free Z–module, by Lemma 2.10 it suffices to show that
fwij g.i;j /2� is a A0–regular sequence. Set N D j�j D

Pm
iD1 ai �m. For 1� k �N ,

let .ik; jk/ 2� be the kth pair under lexicographical order and let

Ik D .w12; w13; : : : ; wikjk /:
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We need to show that multiplication wikC1jkC1 W A
0=IkA

0! A0=IkA
0 is injective.

Observe that A0=IkA0 D zP= QI , where

zP D ZŒx11; x21; : : : ; xm1; xikC1jkC1 ; xikC2jkC2 ; : : : xiN jN �˝ƒŒy1; : : : ; yn�

and QI D . zM1; : : : ; zMr/ is generated by monomials zMj obtained by identifying xij
with xi1 in M 0j for .i; j /� .ik; jk/. Suppose there is a polynomial p 2 zP such that

.xikC1jkC1 � xikC11/ �p 2
QI :

We can use the combinatorial argument of [8, page 31] to show p 2 QI . Here is an outline
of the argument. Write pD

P
˛ p˛ as a sum of monomials p˛ . For each monomial p˛ ,

it can be shown that xikC1jkC1p˛ and xikC11p˛ are in QI . Counting the indices of vari-
ables implies p˛ 2 QI . So p is in QI and multiplication wikC1jkC1 WA

0=IkA
0!A0=IkA

0

is injective. Therefore fwij g.i;j /2� is a regular sequence and A0 is a freeW –module.

4.3 Constructing a realization modulo torsion XA

Let A0 D P 0=I 0 be the polarization of A and let K be a simplicial complex on�Pm
iD1 ai C n

�
vertices such that I 0 is the generalized Stanley–Reisner ideal of K.

Construct a polyhedral product to realize A0. Take

X D fXij DK.Z; jxi j/ j .i; j / 2�g

D fK.Z; jx1j/; : : : ; K.Z; jx1j/„ ƒ‚ …
a1

; K.Z; jx2j/; : : : ; K.Z; jx2j/„ ƒ‚ …
a2

;

: : : ; K.Z; jxmj/; : : : ; K.Z; jxmj/„ ƒ‚ …
am

g

and
Y D fYk D S

jyk j j 1� k � ng D fS jy1j; S jy2j; : : : ; S jynjg:

By Lemma 4.1, H�
f
..X CY ;�/K/ is isomorphic to A0.

For 1� i �m, define ıi W
Qai
jD1Xij !

Qai
jD2Xij by

ıi .u1; : : : ; uai /D .u2 �u
�1
1 ; : : : ; uai �u

�1
1 /;

and define ı W .X CY ;�/K !
Q
.i;j /2�Xij to be the composite

ı W .X CY ;�/K ,!
Y

.i;j /2�

Xij �

nY
kD1

Yk
proj
��!

Y
.i;j /2�

Xij

Qm
iD1 ıi
����!

Y
.i;j /2�

Xij :

As ı is a fibration, take XA to be its fiber. We claim that H�
f
.XA/Š A.
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Notation 4.3 Let fE�;�r g1rD0 be the Eilenberg–Moore spectral sequence defined in
Section 2.2 on the fibration sequence

(5) XA! .X CY ;�/K ı
�!

Y
.ij /2�

Xij ;

where H�..X CY ;�/K/ is an H�
�Q

.ij /2�Xij
�
–module via ı�.

Lemma 4.4 For the E1–page , .E0;q1 /f Š Aq as modules and .E�p;q1 /f D 0 for
p ¤ 0.

Proof The E2–page is given by E�p;�2 D Tor�p;�
H�.

Q
.ij /2�Xij /

.H�..X CY ;�/K/;Z/.
By Lemma 2.6, there is a monomorphism

� 0 W .E
�p;�
2 /f !

�
Tor�p;�

H�
f
.
Q
.ij /2�Xij /

.H�f ..X CY ;�/
K/;Z/

�
f
;

which is an isomorphism for p D 0. By Lemmas 3.2 and 3.3, H�
f
..X CY ;�/K/ŠA0

and

H�f

� Y
.ij /2�

Xij

�
Š ZŒw12; : : : ; w1a1 ; w22; : : : ; w2a2 ; : : : ; wm2; : : : ; wmam �:

Denote H�
f

�Q
.ij /2�Xij

�
by W . So A0 is a W –module via ı�. By Lemma 4.2, A0 is

a free W –module, so

Tor�p;qW .A0;Z/Š

�
Aq if p D 0;
0 otherwise:

It follows that .E�p;q2 /f is Aq for p D 0 and is zero otherwise.

Suppose .E�p;qr /f is Aq for p D 0 and is zero otherwise. Since .E�p;�r /f is concen-
trated in the column p D 0, any differentials dr in and out of torsion-free elements
are trivial. So we have ker.dr/f D .E

�p;q
r /f and Im.dr/f D 0. By Lemma 2.2,

.E
�p;q
rC1 /f Š .E

�p;q
r /f . Therefore .E�p;q1 /f is isomorphic to Aq for pD 0 and is zero

otherwise.

Lemma 4.5 There is an additive isomorphism H
q

f
.XA/Š A

q .

Proof Since the Eilenberg–Moore spectral sequence strongly converges to H�.XA/,
for any fixed q there is a decreasing filtration fF�pg of H q.XA/ such that

F�1 DH q.XA/; F1 D 0; E�p;pCq1 Š F�p=F�pC1:

By Lemma 2.2, .E�p;pCq1 /f Š
�
.F�p/f =.F

�pC1/f
�
f

. By Lemma 4.4, .E�p;pCq1 /f

is zero unless p D 0, so H q

f
.XA/Š .E

0;q
1 /f Š A

q as modules.
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Before going to the extension problem of the E1–page, we consider the special case
where all of the even degree generators of A are in degree 2. The following theorem
refines Lemma 4.5 and shows that H�.XA/Š A as algebras without modding out the
cohomology by torsion. This generalizes the results of Bahri, Bendersky, Cohen and
Gitler [4, Theorem 2.2] and Trevisan [15, Theorem 3.6].

Theorem 4.6 Let A be a graded monomial ideal ring where its generators have either
degree 2 or arbitrary positive odd degrees. Then H�.XA/Š A as algebras.

Proof The E2–page is given by

E
�p;�
2 D Tor�p;�

H�.
Q
.ij /2�Xij /

.H�..X CY ;�/K/;Z/:

By hypothesis,Xij DCP1 for .i; j /2�, andH�
�Q

.ij /2�Xij
�

andH�..XCY ;�/K

are free. Following the argument in the proof of Lemma 4.4, E�p;q2 is Aq for p D 0
and is zero otherwise. Since the E2–page is concentrated in the column p D 0, the
spectral sequence collapses and H�.XA/Š A as modules.

Let � WXA! .XCY ;�/K be the fiber inclusion. Lemma 2.8 implies the commutative
diagram

A0
Š
//

e

��

H�..X CY ;�/K/

��

��

E
�;�
2

Š
// H�.XA/

where e is surjective. Since �� is surjective and multiplicative and its kernel is W ,
H�.XA/Š A

0=W Š A as algebras.

5 The extension problem

In this section we continue using Notation 4.3. Lemma 4.5 shows that H�
f
.XA/ and A

are free Z–modules of same rank at each degree. We claim that they are isomorphic as
algebras. The idea is to construct a space ZA related to XA such that H�.ZA/ is free
and computable. Then we define a map gA W ZA ! XA and compare H�.XA/ with
H�.ZA/ via g�A.
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Construction of ZA For 1� i �m let jxi j D 2ci , and let

Z D fZij D .CP1/ci j .i; j / 2�g

D
˚
.CP1/c1 ; : : : ; .CP1/c1„ ƒ‚ …

a1

; .CP1/c2 ; : : : ; .CP1/c2„ ƒ‚ …
a2

;

: : : ; .CP1/cm ; : : : ; .CP1/cm„ ƒ‚ …
am

	
and construct the polyhedral product .ZCY ;�/K . Fix a generator z of H 2.CP1/.
For .i; j / 2 � and 1 � k � ci , let �ijk W Zij ! CP1 be the projection onto the kth

copy of CP1 and let zijk D ��ijk.z/. By Theorem 3.1,

H�..ZCY ;�/K/ŠQ0=L0;

whereQ0DZŒzijkj.i; j /2�; 1�k� ci �˝ƒŒy1; : : : ; yn� andL0 is the ideal generated
by monomials

zi1j1k1 � � � zitjtkt ˝yl1 � � �yl�

for
˚
j1C

Pi1�1
sD1 as; : : : ; jt C

Pit�1
sD1 as

	
Cfl1; : : : ; l�g …K. For 1� i �m, define

Qıi W

aiY
jD1

Zij !

aiY
jD2

Zij ; Qıi .u1; : : : ; uai /D .u2 �u
�1
1 ; : : : ; uai �u

�1
1 /;

and define Qı W .ZCY ;�/K !
Q
.i;j /2�Zij to be the composite

Qı W .ZCY ;�/K ,!
Y

.i;j /2�

Zij �

nY
kD1

Yk
proj
��!

Y
.i;j /2�

Zij

Qm
iD1
Qıi

����!

Y
.i;j /2�

Zij :

Lemma 5.1 Let ZA be the fiber of ı0. Then H�.ZA/ŠQ=L, where

QD ZŒzik j 1� i �m; 1� k � ci �˝ƒŒy1; : : : ; yn�

with jzikj D 2 and L is generated by monomials zi1k1 � � � ziNkN ˝y
b1j
1 � � �y

bnj
n satis-

fying

1� j � r; 1� kl � cil and .i1; : : : ; iN /D .1; : : : ; 1„ ƒ‚ …
a1j

; 2; : : : ; 2„ ƒ‚ …
a2j

; : : : ; m; : : : ; m„ ƒ‚ …
amj

/:

Proof Apply the Eilenberg–Moore spectral sequence to the fibration sequence

ZA! .ZCY ;�/K
Qı
�!

Y
.i;j /2�

Zij :
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The E2–page is given by zE�p;�2 D Tor�p;�
H�.

Q
.i;j /2�

Zij /.Z;H�..Z C Y ;�/K//. By
the Künneth theorem,

H�
� Y
.i;j /2�

Zij

�
Š ZŒvijk j .i; j / 2�; 1� k � ci �;

where jvijkjD2. DenoteH�.
Q
.i;j /2�Zij / by V . By definition Qı�.vijk/Dzijk�zi1k .

This gives an action of V on Q0. By Lemma 4.2, Q0=L0 is a free V –module, so

Tor�p;�V .Q0=L0;Z/D

�
.Q0=L0/=.zijk � zilk/ if p D 0;
0 otherwise:

Modding out .zijk � zilk/ identifies zijk with zilk in Q0=L0, so

.Q0=L0/=.zijk � zilk/ŠQ=L:

Since the E2–page is concentrated in the column p D 0, H�.ZA/ŠQ=L.

Lemma 2.8 implies a commutative diagram

Q0
Š
//

e

��

H�..ZCY /K/

��

��

E
�;�
2

Š
// H�.ZA/

where e is surjective and �� is induced by the fiber inclusion � WZA! .ZCY /K . This
implies �� is surjective. Since �� is multiplicative, H�.ZA/ŠQ=L as algebras.

Construction of gA Fix a generator z 2 H 2.CP1/. Let �j W .CP1/ci ! CP1,
for 1 � j � ci , be the projection onto the j th copy of CP1 and let zj D ��j .z/.
For 1 � i � m, take a map gi W .CP1/ci ! K.Z; 2ci / that represents the cocycle
class z1 � � � zci 2H

2ci ..CP1/ci /. For .i; j / 2�, let gij W Zij ! Xij be gi , and for
1� k � n, let hk W Yk! Yk be the identity map. Then fgij ; hk j .i; j / 2�; 1� k � ng
induces a map gK W .ZC Y ;�/K ! .X C Y ;�/K by the functoriality of polyhedral
products.

Lemma 5.2 Let fxij ; yk j .i; j / 2�; 1� k � ng be generators of

H�f ..X CY ;�/
K/Š P 0=I 0

and fzijl ; y0k j .i; j / 2�; 1� l � ci ; 1� k � ng be generators of

H�..ZCY ;�/K/ŠQ0=L0:

Then .g�K/f .xij /D
Qci
lD1

zijl and .g�K/f .yk/D y
0
k

.
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Proof There is a commutative diagram

.ZCY ;�/K
|
//

gK
��

Q
.i;j /2�Zij �

Qn
kD1 Yk

g
��

.X CY ;�/K
{
//
Q
.i;j /2�Xij �

Qn
kD1 Yk

where { and | are inclusions, and g D
Q
.i;j /2� gij �

Qn
kD1 hk . Taking cohomology

and modding out torsion elements, we obtain the commutative diagram

P 0
{�
f
//

g�
f
��

P 0=I 0

.g�K/f
��

Q0
|�
// Q0=L0

where {�
f

and |� are the quotient maps. Let Qxij ; Qyk 2P 0 and Qzijl ; Qy0k 2Q
0 be generators

such that {�
f
. Qxij /Dxij , {�

f
. Qyk/Dyk , |�

f
. Qy0
k
/Dy0

k
and |�

f
. Qzijl/Dzijl . By construction

g�
f
. Qxij / D

Qci
lD1
Qzijl and g�

f
. Qyk/ D Qy

0
k

, so we have .g�K/f .xij / D
Qci
lD1

zijl and
.g�K/f .yk/D y

0
k

.

Lemma 5.3 There is a map gA WZA!XA making the diagram

ZA

gA
��

// .ZCY ;�/K

gK
��

XA // .X CY ;�/K

commute , where the horizontal maps are the inclusion maps.

Proof One may want to construct gA by showing the diagram

.ZCY ;�/K
Qı
//

gK
��

Q
.i;j /2�ZijQ

.i;j /2� gij
��

.X CY ;�/K
ı
//
Q
.i;j /2�Xij

commutes. However, as
�Q

.i;j /2� gij
�
ı Nı and ı ıgK induce different morphisms on

cohomology, the diagram cannot commute. Instead, we show that the composite

ZA! .ZCY ;�/K
gK
�! .X CY ;�/K ı

�!

Y
.i;j /2�

Xij

is trivial. If so, there will exist a map gA WZA!XA as asserted since XA is the fiber
of ı.
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By definition of Nı there is a commutative diagram

.ZCY ;�/K
Qı

//

|

��

Q
.i;j /2�Zij

Q
.i;j /2�Zij �

Qn
kD1 Yk

proj
//
Q
.i;j /2�Zij

Qm
iD1
Qıi

OO

where | is the inclusion. Denote
�Qm

iD1
Qıi
�
ı proj by Qı0 and extend the diagram to

ZA //

e

��

.ZCY ;�/K
Qı

//

|

��

Q
.i;j /2�Zij

Qm
iD1.CP1/ci �

Qn
kD1 Yk

40�h
//
Q
.i;j /2�Zij �

Qn
kD1 Yk

Qı 0
//
Q
.i;j /2�Zij

where40 W
Qm
iD1.CP1/ci!

Qai
jD1Zij is the diagonal map, h W

Qn
kD1 Yk!

Qn
kD1 Yk

is the identity map, and e is an induced map. The top and the bottom row are fibration
sequences. The left square fits into the commutative diagram

ZA //

e

��

.ZCY ;�/K
gK

//

|

��

.XCY ;�/K
ı
//

{

��

Q
�Xij

Qm
iD1.CP1/ci �

Qn
jD1 Yj

40�h
//

Q
gi�h **

Q
�Zij �

Qn
jD1 Yj

Q
gij�h

//
Q
�Xij �

Qn
kD1 Yk

ı0
//
Q
�Xij

Qm
iD1K.Z; jxi j/�

Qn
jD1 Yj

4�h

55

where { is the inclusion, 4W
Qm
iD1K.Z; jxi j/!

Qai
jD1Xij is the diagonal map, and

ı0 is the composite

ı0 W
Y

.i;j /2�

Xij �

nY
kD1

Yk
proj
��!

Y
.i;j /2�

Xij

Qm
iD1 ıi
����!

Y
.i;j /2�

Xij :

The middle square is due to the functoriality of polyhedral products, the right square is
due to the definition of ı and the bottom triangle is due to the naturality of diagonal
maps.

The composite of maps from ZA to
Q
.i;j /2�Xij round the bottom triangle is trivial

since
mY
iD1

K.Z; jxi j/�
nY
kD1

Yk
4�h
��!

Y
.i;j /2�

Xij �

nY
kD1

Yk
ı 0
�!

Y
.i;j /2�

Xij
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is a fibration sequence. So the composite in the top row is trivial and this induces a
map gA WZA!XA as asserted.

Since g�K W H
�..X C Y /K/ ! H�..Z C Y /K/ is multiplicative and H�.ZA/ is a

quotient algebra of H�..ZCY /K/, we use gA to compare H�.XA/ and H�.ZA/ and
show that H�

f
.XA/ is a quotient algebra of H�

f
..X CY /K/.

Lemma 5.4 Let � WXA! ..XCY ;�/K/ be the inclusion. Then the induced morphism

��f WH
�
f ..X CY ;�/

K/!H�f .XA/

is surjective and ker.��
f
/ is generated by xij � xi1 for .i; j / 2�.

Proof Fix a positive integer q and let WZA! .ZCY ;�/K be the inclusion. Consider
the commutative diagram

H q..X CY ;�/K/
g�K
//

��

��

e

ww

H q..ZCY ;�/K/

 �

��

E
0;q
1

h
// H q.XA/

g�A
// H q.ZA/

where e is surjective and h is injective. The left triangle commutes due to Lemma 2.8
and the right square commutes due to Lemma 5.3. Mod out torsion elements and take
a generator

xi1j1 � � � xisjs ˝yl1 � � �ylt 2H
q

f
..X CY ;�/K/:

By Lemma 5.2 and the above diagram,

.g�A ı h ı e/f .xi1j1 � � � xisjs ˝yl1 � � �ylt /D . 
�
ıg�K/f .xi1j1 � � � xisjs ˝yl1 � � �ylt /;

.g�A ı h/f .xi1 � � � xis ˝yl1 � � �ylt /D

� sY
uD1

ciuY
kD1

ziujuk

�
˝yl1 � � �ylt :

Since xi1 � � � xis ˝ yl1 � � �ylt and
�Qs

uD1

Qciu
kD1

ziujuk
�
˝yl1 � � �ylt are generators,

.gA ı h/
�
f

is the inclusion of a direct summand into H q

f
.ZA/. By Lemma 4.4, .E0;q1 /f

and H q

f
.XA/ are free modules of same rank, so hf is an isomorphism. Since ef is a

surjection, so is ��
f

.

For the second part of the lemma, suppose there is a polynomial p 2 ker.��
f
/ not con-

tained in .xij �xi1/.i;j /2�. Since ��
f

is a degree 0 morphism, we assume pD
P
˛ p˛

is a sum of monomials p˛ of some fixed degree q. Then the p˛’s are linearly dependent.
So the rank of H q

f
.XA/ is less than the rank of Aq , contradicting to Lemma 4.4. Thus

ker.��
f
/D .xij � xi1/.i;j /2�.
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Next we restate our main theorem (Theorem 1.2) and prove it.

Theorem 5.5 Let A be a graded monomial ideal ring. Then there exists a space XA
such that H�

f
.XA/ is ring isomorphic to A. Moreover , H�.XA/ is free split.

Proof For the first part of the statement, the ring isomorphism H�
f
.XA/Š A follows

from Lemma 5.4.

In Lemma 4.1 we construct a free splitting sK WH�f .X CY ;�/
K !H�.X CY ;�/K

out of free splittings sij W H�f .Xij / ! H�.Xij / and the identity maps on H�.Yk/.
Define a map s WH�

f
.XA/!H�.XA/ by

H�
f
..X CY ;�/K/

sK
//

��
f

��

H�..X CY ;�/K/

��

��

H�
f
.XA/

s
// H�.XA/

We need to show that s is well defined. By Lemma 5.4, ��
f

is a surjection and
ker.��

f
/ is generated by polynomials xij � xi1 for .i; j / 2�. It suffices to show that

�� ı sK.xij �xi1/D 0. Let Qxij 2H 2ci .Xij / and Qx0ij 2H
2ci
f

.Xij / be generators such
that sij . Qx0ij /D Qxij . There is a string of equations

�� ı sK.xij � xi1/D �
�
ı�.sij . Qx

0
ij /� si1. Qx

0
i1//

D �� ı�. Qxij � Qxi1/

D �� ı ı� ı�.1˝ � � �˝ Qxij ˝ � � �˝ 1/

D 0;

where the first line is due to the definition of sK , the third line is due to the naturality
of �, and the last line is due to the fact that ı and � are two consecutive maps in the
fibration sequence XA

�
�! .X CY ;�/K ı

�!
Q
.i;j /2�Xij . So s is well defined.

Obviously s is right inverse to the quotient map H�.XA/!H�
f
.XA/. Since ��

f
, ��

and sK are multiplicative, so is s. Therefore s is a free splitting.

6 An example

Now we illustrate how to construct XA for A D ZŒx�˝ƒŒy�=.x2y/, where jxj D 4
and jyj D 1. First, polarize A by introducing two new variables x1 and x2 of degree 4
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and let

A0 D ZŒx1; x2�˝ƒŒy�=.x1x2y/:

Let K be the boundary of a 2–simplex. Then .x1x2y/ is the Stanley–Reisner ideal
of K. Take

X D fK.Z; 4/;K.Z; 4/g; Y D fS1g

and construct polyhedral product .X CY ;�/K . By Proposition 3.3,

H�f ..X CY ;�/
K/Š ZŒx1; x2�˝ƒŒy�=.x1x2y/:

Define ı W .X C Y ;�/K ! K.Z; 4/ by ı1.u1; u2; t /D u2 � u�11 , and define XA to be
the fiber of ı. By Theorem 5.5, H�

f
.XA/Š A.

Next, we construct ZA and gA to illustrate the proof of the extension problem. In
this case, take Z D f.CP1/2; .CP1/2g. Denote the first .CP1/2 by Z1 and the
second .CP1/2 by Z2. Then H�.Z1/ D ZŒz11; z12� and H�.Z2/ D ZŒz21; z22�,
where jzij j D 2 for i; j 2 f1; 2g, and

H�..ZCY ;�/K/Š ZŒz11; z12; z21; z22�˝ƒŒy�=L
0;

where L0 D .z11z21y; z11z22y; z12z21y; z12z22y/. Define

Qı W .ZCY ;�/K ! .CP1/2; Qı.v1; v2; t /D v2 � v
�1
1 ;

and define ZA to be the fiber of Qı. Then H�
f
.ZA/ Š ZŒz1; z2� ˝ ƒŒy�=L, where

jz1j D jz2j D 2 and LD .z21y; z
2
2y; z1z2y/.

For i D f1; 2g, let gi WZi !K.Z; 4/ be a map representing zi1zi2 2H 4.Zi /, and let
h W S1! S1 be the identity map. Then g1, g2 and h induce

gK W .ZCY ;�/
K
! .X CY ;�/K

such that g�K.xi / D zi1zi2 and g�K.y/ D y. Lemma 5.3 gives a map gA W ZA! XA

making the diagram

ZA //

gA

��

.ZCY ;�/K

gK
��

XA // .X CY ;�/K

commute.

Algebraic & Geometric Topology, Volume 23 (2023)



Realization of graded monomial ideal rings modulo torsion 763

Acknowledgements

This work was done during So’s PIMS postdoctoral fellowship. Both authors gratefully
acknowledge the support of the Fields Institute and NSERC. So also thanks Hector
Durham for looking for references.

References
[1] J Aguadé, Realizability of cohomology algebras: A survey, Publ. Sec. Mat. Univ.

Autònoma Barcelona 26 (1982) 25–68 MR Zbl

[2] K K S Andersen, J Grodal, The Steenrod problem of realizing polynomial cohomology
rings, J. Topol. 1 (2008) 747–760 MR Zbl

[3] A Bahri, M Bendersky, F R Cohen, S Gitler, The polyhedral product functor: a
method of decomposition for moment-angle complexes, arrangements and related
spaces, Adv. Math. 225 (2010) 1634–1668 MR Zbl

[4] A Bahri, M Bendersky, F R Cohen, S Gitler, The geometric realization of monomial
ideal rings and a theorem of Trevisan, Homology Homotopy Appl. 15 (2013) 1–7 MR
Zbl

[5] V M Buchstaber, T E Panov, Toric topology, Mathematical Surveys and Monographs
204, Amer. Math. Soc., Providence, RI (2015) MR Zbl

[6] S E Dickson, A torsion theory for abelian categories, Trans. Amer. Math. Soc. 121
(1966) 223–235 MR Zbl

[7] Y Félix, S Halperin, J-C Thomas, Adams’ cobar equivalence, Trans. Amer. Math.
Soc. 329 (1992) 531–549 MR Zbl

[8] R Fröberg, A study of graded extremal rings and of monomial rings, Math. Scand. 51
(1982) 22–34 MR Zbl

[9] L Fuchs, Infinite abelian groups, I, Pure and Applied Mathematics 36, Academic, New
York (1970) MR Zbl

[10] W S Massey, A basic course in algebraic topology, Graduate Texts in Math. 127,
Springer (1991) MR Zbl

[11] J McCleary, A user’s guide to spectral sequences, 2nd edition, Cambridge Studies in
Advanced Mathematics 58, Cambridge Univ. Press (2001) MR Zbl

[12] D Notbohm, Spaces with polynomial mod-p cohomology, Math. Proc. Cambridge
Philos. Soc. 126 (1999) 277–292 MR Zbl

[13] D Quillen, Rational homotopy theory, Ann. of Math. 90 (1969) 205–295 MR Zbl

[14] N E Steenrod, The cohomology algebra of a space, Enseign. Math. 7 (1961) 153–178
MR Zbl

Algebraic & Geometric Topology, Volume 23 (2023)

https://www.jstor.org/stable/43741899
http://msp.org/idx/mr/768361
http://msp.org/idx/zbl/0595.55001
http://dx.doi.org/10.1112/jtopol/jtn021
http://dx.doi.org/10.1112/jtopol/jtn021
http://msp.org/idx/mr/2461854
http://msp.org/idx/zbl/1160.55001
http://dx.doi.org/10.1016/j.aim.2010.03.026
http://dx.doi.org/10.1016/j.aim.2010.03.026
http://dx.doi.org/10.1016/j.aim.2010.03.026
http://msp.org/idx/mr/2673742
http://msp.org/idx/zbl/1197.13021
http://dx.doi.org/10.4310/HHA.2013.v15.n2.a1
http://dx.doi.org/10.4310/HHA.2013.v15.n2.a1
http://msp.org/idx/mr/3117384
http://msp.org/idx/zbl/1279.13031
http://dx.doi.org/10.1090/surv/204
http://msp.org/idx/mr/3363157
http://msp.org/idx/zbl/1375.14001
http://dx.doi.org/10.2307/1994341
http://msp.org/idx/mr/191935
http://msp.org/idx/zbl/0138.01801
http://dx.doi.org/10.2307/2153950
http://msp.org/idx/mr/1036001
http://msp.org/idx/zbl/0765.55005
http://dx.doi.org/10.7146/math.scand.a-11961
http://msp.org/idx/mr/681256
http://msp.org/idx/zbl/0498.13012
http://msp.org/idx/mr/0255673
http://msp.org/idx/zbl/0209.05503
http://dx.doi.org/10.1007/978-1-4939-9063-4
http://msp.org/idx/mr/1095046
http://msp.org/idx/zbl/0725.55001
http://dx.doi.org/10.1017/CBO9780511626289
http://msp.org/idx/mr/1793722
http://msp.org/idx/zbl/0959.55001
http://dx.doi.org/10.1017/S0305004198003284
http://msp.org/idx/mr/1670237
http://msp.org/idx/zbl/0926.55014
http://dx.doi.org/10.2307/1970725
http://msp.org/idx/mr/258031
http://msp.org/idx/zbl/0191.53702
https://www.e-periodica.ch/digbib/view?pid=ens-001%3A1961%3A7%3A%3A241
http://msp.org/idx/mr/160208
http://msp.org/idx/zbl/0104.39604


764 Tseleung So and Donald Stanley

[15] A J Trevisan, Generalized Davis–Januszkiewicz spaces, multicomplexes and monomial
rings, Homology Homotopy Appl. 13 (2011) 205–221 MR Zbl

Department of Mathematics, University of Western Ontario
London, ON, Canada

Department of Mathematics and Statistics, University of Regina
Regina, SK, Canada

tso28@uwo.ca, donald.stanley@uregina.ca

Received: 14 October 2020 Revised: 22 September 2021

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.4310/HHA.2011.v13.n1.a8
http://dx.doi.org/10.4310/HHA.2011.v13.n1.a8
http://msp.org/idx/mr/2803872
http://msp.org/idx/zbl/1220.55011
mailto:tso28@uwo.ca
mailto:donald.stanley@uregina.ca
http://msp.org
http://msp.org


ALGEBRAIC & GEOMETRIC TOPOLOGY
msp.org/agt

EDITORS

PRINCIPAL ACADEMIC EDITORS

John Etnyre
etnyre@math.gatech.edu

Georgia Institute of Technology

Kathryn Hess
kathryn.hess@epfl.ch

École Polytechnique Fédérale de Lausanne

BOARD OF EDITORS

Julie Bergner University of Virginia
jeb2md@eservices.virginia.edu

Steven Boyer Université du Québec à Montréal
cohf@math.rochester.edu

Tara E. Brendle University of Glasgow
tara.brendle@glasgow.ac.uk

Indira Chatterji CNRS & Université Côte d’Azur (Nice)
indira.chatterji@math.cnrs.fr

Alexander Dranishnikov University of Florida
dranish@math.ufl.edu
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