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Operadic actions on long knots and 2–string links

ETIENNE BATELIER

JULIEN DUCOULOMBIER

We realize the space of 2–string links L as a free algebra over a colored operad
denoted by SCL (for “Swiss-cheese for links”). This result extends works of Burke
and Koytcheff about the quotient of L by its center, and is compatible with Budney’s
freeness theorem for long knots. From an algebraic point of view, our main result
refines Blaire, Burke and Koytcheff’s theorem on the monoid of isotopy classes of
string links. Topologically, it expresses the homotopy type of the isotopy class of a
2–string link in terms of the homotopy types of the classes of its prime factors.
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Introduction

Motivation and context

The study of knots and links is a vast subject that emerged in the late nineteenth
century and saw several renewals in the past thirty years. It is subject to many different
approaches, being at the crossroads of topology, geometry, algebra, combinatorics
and physics. The central theme in classical knot theory is the study of the isotopy

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution
License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://dx.doi.org/10.2140/agt.2023.23.833
http://www.ams.org/mathscinet/search/mscdoc.html?code=57R40, 55P48, 55U40, 57M99
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


834 Etienne Batelier and Julien Ducoulombier

classes of knots, ie the isotopy classes of embeddings in Emb.S1; S3/. They are the
set of components �0 Emb.S1; S3/. A common method is to try to chop the knots into
simpler pieces. Two ways of performing such a decomposition have proved themselves
particularly fruitful: the prime decomposition and the satellite decomposition. The
former splits a knot as the connected sum of other knots called its prime factors. The
connected sum is a binary operation on �0 Emb.S1; S3/ denoted by #. It endows
the isotopy classes with a unital commutative monoidal structure. Intuitively, the
product k1 # k2 is the knot obtained by cutting open k1 and k2 and closing them up
into a single knot. This decomposition is fairly well understood thanks to a theorem
of Schubert [28] stating that �0 Emb.S1; S3/ is freely generated as a monoid by the
isotopy classes of the prime knots. There are infinitely many prime knots and they
can be very different in nature. This is why it is often useful to further decompose the
prime knots as satellites of simpler knots. The satellite construction also originates in
Schubert’s work. It consists of a wide family of operations one can carry out on several
knots at a time. Its rigorous definition is a bit more involved but clearly dispensed for
example in Cromwell’s book [10]. Jaco, Shalen, Johannson and Thurston played a
major role in the study of satellite knots, with the results in [19; 20; 31]. Although
they are quite complicated, the satellite operations have the advantage of generating
the whole space of knots from a fairly small and classifiable class of knots. Namely,
Budney shows in [4] — refining a result of [31] — that every knot can be obtained via
successive satellite operations on hyperbolic and torus knots.

This depicts a duality between the two methods of decomposition: one is simple but
leads to potentially complicated primes, while the other is more elaborate but has easier
irreducible pieces. A similar story can be told for links, ie for the isotopy classes of
embeddings in Emb.S1q� � �qS1; S3/. Adapting the connected sum # to this setting
takes some work: problems arise once the components of a link are cut open, as there is
no canonical way to close them up. However, a step-by-step adaptation of the satellite
construction works for links, and a decomposition theorem exists as well. Its building
blocks are the hyperbolic and Seifert-fibered links.

Nowadays, it is more common to study not only the set of components

�0 Emb.S1q� � �qS1; S3/;

but the full homotopy type of the spaces of knots and links. To adapt the decomposition
approach described above, one needs to define an analogue of the connected sum and
satellite operations on the space level, ie directly on the embeddings and not between

Algebraic & Geometric Topology, Volume 23 (2023)



Operadic actions on long knots and 2–string links 835

isotopy classes. To rigorously carry out this task, one uses the space of long knots K
and the space of string links L. Coupled with the language of operads, these spaces
enable one to extend the existing operations on �0 to the space level. More precisely,
the different types of operations one can carry out on knots and links can be encoded
in the action of an operad on a space of embeddings. This new framework is due to
Budney in [5; 6] for the case of long knots. Namely, Budney constructs in [5] an action
of the little 2–cubes operad C2 on a space yK homotopy equivalent to K, in such a way
that all the induced operations descend to the connected sum on �0. He builds in [6]
another action on yK of a more intricate operad which he calls the splicing operad. These
operations correspond to the satellite constructions in many ways. In the case of string
links, Burke and Koytcheff build in [8] a complex operad called the infection operad.
It is an adaptation of Budney’s splicing operad and deals with the satellite operations
between string links. The authors mentioned above not only prove the existence of
such actions but also their freeness, refining the unique decomposition results on �0. It
remains to find an operadic encoding of the connected sum of links, if possible, leading
to a free algebra.

Present work

The present paper aims to fill in this gap in the case of 2–stranded string links. Unlike
�0K, the monoid of isotopy classes of 2–string links is neither free nor commutative.
Indeed, as explained by Blair, Burke and Koytcheff in [2], �0L contains invertible
elements in the form of the pure braid group KB2. Together with three copies of �0K,
these invertible elements generate the center of the monoid. Burke and Koytcheff state
a partial result in [8] by building a free action of the little 1–cubes operad C1 on a
subspace of 2–string links that ignores the homotopy center. They mention as an open
problem the extension of such a structure to the whole space of 2–string links. Our main
result provides an answer to this particular question. For this purpose, we introduce
a four-colored operad SCL (standing for “Swiss-cheese for links”) with set of colors
S D fo;";#;lg. An SCL–algebra is in particular a family of spaces .X;A"; A#; Al/,
where X is a C1–algebra and each As , s 2 f";#;lg, is a C2–algebra acting on X . One
can think of the As as independent parts of the homotopy center of X . As in the case
of Budney’s C2–action on long knots, we consider a space yL homotopy equivalent to L
to prove a first result which can be summarized as follows:

Theorem 3.9 The family .yL; yK; yK; yK/ is an SCL–algebra. In particular , the family
.L;K;K;K/ is homotopy equivalent to an explicit SCL–algebra.
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The structure so obtained is compatible with Budney’s action on long knots and Burke
and Koytcheff’s action on their subspace of noncentral string links. It provides a
complete understanding of the connected sum of 2–string links. As expected, we also
prove a freeness result, refining the structure theorem for the monoid of isotopy classes
proved in [2]. In order to do this, we discard the invertible elements by splitting �0 yL
as a product �0 yL0 �KB2 and prove:

Theorem 4.11 The quadruplet of spaces .yL0; yK; yK; yK/ is homotopy equivalent as an
SCL–algebra to the free SCL–algebra generated by prime knots and links.

In addition to these algebraic considerations, this result has a homotopical significance
as it expresses the homotopy type of the isotopy class of a 2–string link as a function of
the homotopy types of the classes of its prime factors. This reduces the computation of
the homotopy type of the whole L to figuring out the homotopy types of the components
of the primes. As mentioned above, the latter can be further decomposed thanks to
Burke and Koytcheff’s infection operad defined in [8].

Organization of the paper

We define in a first section the different spaces of embeddings at stake here: long knots,
string links and their fattened versions yK and yL. The second section sets up the operadic
framework we use. We recall in particular the notion of colored operad and discuss
the resulting algebras. We introduce along the way the operad that will appear in our
main result, the Swiss-cheese operad for links SCL. The third section aims to define
various operadic actions on the spaces of knots and links. We recall the constructions
of Budney, Burke and Koytcheff’s actions and unify them in a single action of SCL
on 2–string links. Finally, the fourth section proves the freeness result sketched above
using low-dimensional and homotopical tools.

Upcoming projects

Our main statements concern the space of string links on two strands. One might natu-
rally wonder what happens in the k–stranded case for some k > 2. The conjecture that
Theorems 3.9 and 4.11 have adaptations to arbitrary string links seems reasonable, since
most of the techniques used in Section 4.1 naturally generalize to the k–stranded case.
However, lots of difficulties arise, even at the level of isotopy classes. Theorem 4.11
generalizes Blair, Burke and Koytcheff’s explicit model for the monoid �0L, but it

Algebraic & Geometric Topology, Volume 23 (2023)



Operadic actions on long knots and 2–string links 837

does not provide an alternative proof for it. Actually, Blair, Burke and Koytcheff’s
result is used in the very first line of the proof of our Theorem 4.11. Thus, if one
wants to adapt Theorem 4.11 to the k–stranded case, some preliminary work on the
monoid of isotopy classes of string links on k strands is necessary. A key point is the
understanding of its center. The commutation between string links on k strands has
already been characterized in [2], but there are other relations among prime links that
remain to be understood. For example, the invertible k–stranded string links are the
pure braids on k strands, which already admit a wide family of fairly complex relations
amongst themselves. Moreover, these units are not central anymore, which makes it
harder to study prime decompositions. A solution to these difficulties could be to accept
a less explicit construction for the replacement of SCL, maybe a definition by induction
on k. The operad for k–stranded string links would rely on a large set of colors, and
would restrict to the operad for .k�1/–stranded string links on some subcollections
of colors. The existence and freeness of an action could then be easier to prove, but
the difficulty is only shifted towards understanding these potentially massive operads.

Another interesting question concerns the Goodwillie–Weiss calculus, introduced to
study embedding spaces in [12; 34]. In the context of knots and links, this theory gives
rise to two towers of fibrations fTk yKg and fTk yLg, converging to the so-called polynomial
approximations T1 yK and T1 yL, respectively. Unfortunately, the natural applications
�yK W
yK! T1 yK and �yL W yL! T1 yL are not weak equivalences, but they preserve a lot

of homotopical information. In particular, we know from Budney, Conant, Koytcheff
and Sinha [7] that the map yK! Tk yK is a finite type-.k�1/ knot invariant and it has
been conjectured that Tk yK is actually the universal finite type-.k�1/ invariant. This
conjecture is already proved rationally in Volić’s thesis [32]. Moreover, the polynomial
approximations can be simplified and identified to homotopy totalizations using the
multiplicative Kontsevich operad K3 obtained as a compactification of configurations
of points in R3. Briefly speaking, one has the identifications

yK �yK
�! T1 yK

�yK
 � hoTot.K3 ıSO.3//; yL �yL

�! T1 yL
�yL
 � hoTot.K23 ıSO.3//;

where K23 .k/DK3.2k/ is a shifted version of the Kontsevich operad. The applications
�yK and �yL have been proved to be weak equivalences by Sinha in [29] and Munson and
Volić in [25], respectively. We know that the spaces yK, T1 yK and hoTot.K3ıSO.3// are
C2–algebras by [5], [3] and [11], respectively. However, it is still unknown if �yK and �yK
are C2–algebra maps. All these questions can be extended to the colored case. From
the present work, the family .yL; yK; yK; yK/ is equipped with an explicit SCL–algebra
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structure. We believe that similar structures exist for the families�
T1 yL; T1 yK; T1 yK; T1 yK

�
;�

hoTot.K23 ıSO.3//; hoTot.K3 ıSO.3//; hoTot.K3 ıSO.3//; hoTot.K3 ıSO.3//
�
;

and that the zigzag of morphisms induced by �yK, �yK, �yL and �yL between the corre-
sponding families are morphisms of SCL–algebras.
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General framework and notation

We set up here the global framework we work in as well as some notation that might
not be completely standard.

Topological spaces

By spaces, we understand compactly generated Hausdorff spaces. They form a full
subcategory of topological spaces that we denote by Top by slight abuse of notation.
Many useful properties of Top have been introduced by Steenrod in [30]. The standard
Quillen model structure has then been adapted for it by Hovey in [18]. It is a convenient
category in the sense that the natural curryfication map

Top.X �Y;Z/Š Top.X;Top.Y;Z//

is a homeomorphism for any three spaces X , Y and Z in Top. The need to restrict
ourselves to such a subcategory arises from the following fact: when defining an action
of an algebraic structure that it also a topological space A on a space X , one can ask for
the continuity of either A�X !X or A! Top.X;X/. The homeomorphism above
gives the equivalence between these two approaches and enables one to go back and
forth between both frameworks. This will be useful when dealing with operadic actions.
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Operations on maps

Let f WA!X and g WB! Y be maps between spaces. We use the following notation:

� f qg is the map between coproducts AqB!X qY .

� f ˚g is the map AqB!X when X D Y .

� f �g is the map between products A�B!X �Y .

� .f; g/ is the map A!X �Y when AD B .

� A�n is the product of n copies of A and f �n is the map A�n! B�n.

� Bqn is the coproduct of n copies of B and f qn is the map Aqn! Bqn.

Smooth manifolds

When discussing manifolds, we think of usual (possibly bordered) C1 manifolds.
We write I D Œ0; 1� for the unit interval, J D Œ�1; 1� for the 1–dimensional unit disk
and J k D J�k for the k–dimensional unit cube. The set of C1 maps between two
manifolds M and N is denoted by C1.M;N / and topologized with the usual C1–
topology described in [17]. The space of embeddings, immersions, submersions or
diffeomorphisms between manifolds are topologized as subspaces of the latter. This
turns diffeomorphism groups into topological groups and makes every composition
map continuous.

1 Embedding spaces

This section aims to review the construction of various spaces of embeddings, namely
spaces of knots and 2–stranded links. We start by recalling the definition of the usual
space of knots and introduce three variations: the long knots K, the framed long knots
EC.1;D2/ and the fat long knots yK. These spaces are meant to ease algebraic and
homotopical manipulations. We also discuss the classical monoid structure on the
space of knots, its interactions with these spaces and finally adapt these constructions
to 2–stranded links.

1.1 Knot spaces

The first instance of a space of knots arises as the space of embeddings Emb.S1; S3/.
Its components �0 Emb.S1; S3/ are the isotopy classes of knots in the 3–sphere and
are the central object of study in knot theory. The class of the standardly embedded
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# D

Figure 1: Illustration of the connected sum of two knots.

circle S1 ,!R3 � S3 is called the trivial knot or unknot. Given two (isotopy classes
of) knots k1 and k2, one can define the connected sum k1 # k2 in various ways, as
done for instance in [10]. Intuitively, k1 # k2 is obtained by cutting open k1 and k2
and closing them back into a single knot. An example is provided in Figure 1. This
operation turns out to be associative, commutative and unital with the unknot as unit.
This turns �0 Emb.S1; S3/ into a commutative monoid. The nontrivial elements k
which admit no nontrivial factorization k D k1 # k2 are called prime. They are in a
sense the most elementary knots. However, there are infinitely many of them and a
further decomposition developed in [4] suggests that they form a fairly wide class of
knots. The monoid structure on �0 Emb.S1; S3/ is completely understood thanks to a
theorem of Schubert:

Theorem 1.1 (Schubert [28]) The monoid �0 Emb.S1; S3/ is the free commutative
monoid generated by prime knots.

We now introduce long knots. They are a mild variation of usual knots for which
the connected sum is easier to deal with. Let { W R! R3, with {.t/D .t; 0; 0/ be the
standard embedding of the real line in R3.

Definition 1.2 A long knot is an embedding R ,!R3 that agrees with the standard
embedding { outside of J D Œ�1; 1� and maps the interior of J in the interior of
J �D2 �R3. The space of long knots is denoted by K. One can alternatively think of
a long knot as a proper embedding J ,! J �D2 whose values and derivatives at @J
match those of {.

With these conditions on the embeddings, it is natural to define a binary stacking
operation between long knots as follows. Let L;R W R3! R3 be the maps sending
.x; y; z/ to

�
1
2
.x�1/; y; z

�
and

�
1
2
.xC1/; y; z

�
, respectively. Given k1 and k2 in K, we
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Figure 2: Illustration of the commutativity in the monoid �0K.

define the concatenation of k1 and k2 as the long knot that restricts to t 7!Lık1.2tC1/

on Œ�1; 0� and to t 7!R ık2.2t �1/ on Œ0; 1�. This operation and its commutativity up
to homotopy are illustrated in Figure 2. We still denote this operation by # as it is the
analogue of the connected sum in the following sense. Each long knot is linear outside
of J and can therefore be extended to an embedding S1 ,! S3 by compactifying the
domain and codomain. This specifies an inclusion K ,! Emb.S1; S3/ which turns out
to be a bijection on �0. It is easy to verify that the concatenation of two knots is sent
to their connected sum. The isotopy classes �0K therefore inherit a monoid structure.
When P denotes the collection of long knots which are prime, Schubert’s theorem
applies and gives:

Theorem 1.3 The monoid �0K is the free commutative monoid on the basis �0P .

We now define framed long knots. The latter are meant to approximate the long knots
defined above while being composable. The idea is to thicken the strand R into a long
tube R�D2. This definition is due to Budney and originates in [5]. We define:

Definition 1.4 (Budney [5]) A framed long knot is an embedding R�D2!R�D2

that restricts to the identity outside of J�D2. The space of framed long knots is denoted
by EC.1;D2/. When supp.f / denotes the support of an embedding f W R�D2 ,!
R�D2, ie the closure of f.t; x/ 2R�D2 j f .t; x/¤ .t; x/g, the condition for f to
lie in EC.1;D2/ can be reformulated as supp.f /� J �D2.

Note that this space is still equipped with a stacking operation # defined just as in the
case of long knots. It also still descends to an associative, commutative unital pairing on
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f jR�.0;1/

f jR�.0;0/

Figure 3: A framed long knot f with framing number 4.

isotopy classes. There is a restriction map EC.1;D2/!K, defined by f 7! f jR�.0;0/,
that preserves the concatenation. But, it does not induce a bijection on �0. To see this,
consider the diffeomorphism r of J �D2 that progressively performs a full turn rotation
on the disk factor. One can parametrize r W .t; x/ 7! .t; ei�.tC1/x/. This diffeomorphism
can be isotoped about @J �D2 to be extended into an element of EC.1;D2/. Now,
for any long knot k and f an extension in EC.1;D2/, each composite f ı rın also
extends k but no two are isotopic. This produces infinitely many components in the
fiber over k, which shows that the restriction map does not induce a bijection on �0. As
of here, this twisting phenomenon is an unwanted byproduct of the thickening process.
We will get rid of it when defining yK as an unframed subspace of EC.1;D2/. To do
so, we need to quantify the framing of a knot, which we do via the framing number.

Definition 1.5 We define the framing number !.f / of a framed long knot f of
EC.1;D2/ as the linking number lk.f jR�.0;0/; f jR�.0;1//. Strictly speaking, the
linking number is only defined between disjoint closed curves. We deal with this
problem by identifying the curves above with their extension by compactification
S1! S3 and isotoping f jR�.0;1/ about the point at infinity to keep the disjointness.

Intuitively, the linking number counts the number of times a closed curve winds around
another. Here, we think of !.f / as the number of times a curve on the surface of the
knot wraps around the core f jR�.0;0/. This provides a way to quantify the framing of
the elements of EC.1;D2/ and we have !.rın/D n. Another example is provided in
Figure 3. Since the linking number can be computed by counting crossings in diagrams,
it is easy to see that ! is additive with respect to the stacking product. It is also isotopy
invariant and therefore descends to a morphism of monoids �0EC.1;D2/! Z.

We are finally able to define yK, our preferred model to approximate K. We simply set:

Definition 1.6 (Budney [5]) The space of fat long knots is the subspace yKD !�1.0/.
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Fat long knots are stable under # thanks to the additivity of !. The primes in yK are
denoted by yP . There still is a restriction map yK! K which preserves this structure.
yK is a good approximation for K in the sense that:

Proposition 1.7 (Budney [5]) The restriction map yK!K is a homotopy equivalence.

In particular, we get an isomorphism on �0 which enables us to transfer Schubert’s
theorem to fat long knots:

Corollary 1.8 The monoid �0 yK is the free commutative monoid on the basis �0 yP .

1.2 Link spaces

We now adapt these constructions for 2–links. Most of this generalization work has
already been carried out by Burke and Koytcheff in [8]. The space of usual 2–links arises
as Emb.S1q S1; S3/. There is no canonical version of a connected sum operation
here, as there is no preferred strand in each link for one to merge. As in the case of
long knots, the space of string links L deals with this problem by setting a framework
where a stacking operation is naturally defined. Let {2 WRqR ,!R3 be the embedding
of two copies of the real line in R3 mapping the first copy as t 7!

�
t; 0; 1

2

�
and the

other one as t 7!
�
t; 0; �1

2

�
. We refer to {2 as the standard embedding for links with

two strands. We then define:

Definition 1.9 A 2–string link is an embedding RqR ,! R3 that agrees with {2
outside of J qJ and maps the interior of J qJ in the interior of J �D2 �R3. The
space of 2–string links is denoted by L. One can alternatively think of a 2–string link
as a proper embedding J q J ,! J �D2 whose values and derivatives at @J q @J
match those of {2.

A binary stacking operation # can now be defined on L as in the case of long knots. It
turns �0L into a monoid with unit {2. A 2–string link is said to be prime if it is not
invertible but cannot be factored without an invertible element. There is an injection
L ,! Emb.S1qS1; S3/ obtained by closing a truncated link f jJqJ with two fixed
smooth curves from

�
�1; ˙1

2

�
to
�
1; ˙1

2

�
as illustrated in Figure 4. But, this inclusion

does not induce a bijection on isotopy classes. Indeed, there are pairs of nonisotopic
2–string links that yield isotopic links once closed as shown in Figure 4. Therefore,
studying string links slightly differs from usual link theory.
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6�

� �

7! 7!

Figure 4: The two top string links are not isotopic (closing the first one up
with two vertical lines results in a trivial knot, doing so with the second one
yields a trefoil knot). The corresponding links are however isotopic.

Let us spend some time to investigate �0L. We first identify the invertible elements.
There is a canonical map from the pure braid group on two strands to �0L sending a
pure braid to its isotopy class as a string link. It is a morphism of monoids that only
maps to units in �0L since braids form a group. This association is easily shown to
be injective: the linking number map lk W L! Emb.S1qS1; S3/! Z descends to a
left inverse when one identifies the pure braids on two strands with the integers in the
natural way. This provides a whole collection of invertible elements and it turns out that
every unit in �0L is of this form. Observe as well that these invertible links commute
with every other link: an isotopy exhibiting this relation is suggested by Figure 5. Let
now L0 be the preimage of 0 through the linking number map lk. The injection of the
braid group provides a section in the short exact sequence

�0L0! �0L! Z:

Thus �0L splits as �0L0 �Z and we can focus on the first factor.

The monoid �0L0 is not commutative but it contains several copies of �0K in its center.
Indeed, consider the injective morphism '" W �0K! �0L0 mapping a long knot k
to the string link whose upper strand is knotted according to k and does not interact

Figure 5: Illustration of the commutation between a braid and an arbitrary
string link.
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'".f / '#.f / 'l.f /

Figure 6: Illustration of the morphisms 's , s 2 f";#;lg.

with the unknotted lower strand. An illustration of '" is given in Figure 6. The image
of '" is a copy of �0K lying in �0L0, and one can build a similar morphism '# by
switching the roles of the strands. A third copy of the knot monoid can be found as
follows. Consider the morphism 'l that sends a knot k to the link whose strands are
parallel and unlinked but knotted according to k. This 'l maps to a third copy of �0K
in �0L0.

The images of any two of these morphisms intersect only in the component of {2 so that
�0K�3 actually lives in �0L0. Every string link in the image of a 's , for s 2 f";#;lg,
commutes with any other link. The structure theorem for 2–string links proved by Blair,
Burke and Koytcheff in [2] actually shows that the center of �0L0 is generated by the
images of the maps 's , alongside the fact that the remaining links are freely generated by
some prime elements. More precisely, when Q denotes the prime 2–string links in L that
do not belong to the image of a 's and when Q0DQ\L0, one has the following result:

Theorem 1.10 (Blair, Burke and Koytcheff [2]) The monoid �0L0 is isomorphic
to the product of �0K�3 and the free (noncommutative) monoid on the basis �0Q0.
Moreover , an isomorphism is induced by the inclusion �0Q0 ,!�0L0 and the maps 's .

The string links generated by the images of '" and '# are called split. Such a string
link can also be characterized by the existence of a properly embedded disk separating
the two strands in the complement. The string links generated by the image of 'l and
invertible elements are called double cables. They can alternatively be defined as the
links whose strands are parallel. Note that Theorem 1.10 above tells us that the center
of �0L precisely consists of the split links, double cables and their products, and that
any other string link only commutes with central elements.

We now introduce framed 2–string links. They are the 2–stranded analogue of framed
long knots as they arise by thickening the two strands. Let � W D2qD2 ,! D2 be
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f "jR�.0;1/
f "jR�.0;0/

f #jR�.0;1/
f #jR�.0;0/

Figure 7: A framed 2–string link f with framing number .3;�5/.

the embedding that rescales the disks to make their radii 1
8

and translates them so
that they are centered at

�
0; ˙1

2

�
. We refer to idR � � as the standard embedding

.R�D2/q .R�D2/ ,!R�D2.

Definition 1.11 A framed 2–string link is an embedding

.R�D2/q .R�D2/ ,!R�D2

that restricts to the standard embedding outside of .J �D2/q .J �D2/ and maps the
interior of .J �D2/q .J �D2/ in the interior of J �D2. The space of framed
2–string links is denoted by EC�.1;D2/. When supp�.f / denotes the closure of
f.t; x/2 .R�D2/q.R�D2/ jf .t; x/¤ .t; �.x//g for any embedding f , the condition
for f to lie in EC�.1;D2/ can be reformulated as supp�.f /� .J �D

2/q .J �D2/

and f
�
int..J �D2/q .J �D2//

�
� J �D2.

Framed 2–string links again dispose of a binary concatenation operation # and a restric-
tion map EC�.1;D2/!L preserving it. This endows the isotopy classes �0EC�.1;D2/
with a monoid structure with the standard embedding as unit. An obstruction for the
restriction map to be a homotopy equivalence is again the framing of each strand. We
define the framing number ! of an element of EC�.1;D2/ as in Definition 1.5, except
that it now consists of a pair of integers, one for each strand.

Definition 1.12 Let f be a framed 2–string link with strands f " and f #. We define
the upper framing number !".f / as the linking number lk.f "jR�.0;0/; f "jR�.0;1//.
The lower framing number !#.f / is defined the same way and the whole framing
number !.f / is the pair of integers .!".f /; !#.f //.

The framing number is isotopy invariant and additive with respect to the concatena-
tion for the same reasons as before. This makes it descend to a monoid morphism
�0EC�.1;D2/! Z�2. We are now able to get rid of this twisting phenomenon by
defining:
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Definition 1.13 The space of fat 2–string links yL is the subspace

!�1.0; 0/� EC�.1;D2/:

Fat 2–string links are stable under concatenation. We denote by yL0, yQ and yQ0 the
elements of yL whose restrictions to .R� .0; 0//q .R� .0; 0// lie in L0, Q and Q0,
respectively. yL is a good approximation for L in the sense that:

Proposition 1.14 (Burke and Koytcheff [8]) The restriction map yL!L is a homotopy
equivalence.

In particular, the monoid �0 yL is completely understood and has the same structure
as �0L, made explicit in Theorem 1.10.

The remainder of this paper is dedicated to the elaboration of an algebraic structure on
the space level of long knots and string links. The stacking products are examples of
binary operations on the space level that relate to the monoids �0K and �0L. We aim to
find a refinement of these operations into a more subtle structure, in order to generalize
Theorems 1.8 and 1.10 to the space level. These structures will be formalized as
operadic actions and the isomorphisms described in the theorems above will generalize
as equivariant homotopy equivalences. Budney’s Theorem 11 in [5] precisely answers
this problem in the case of knots, and Burke and Koytcheff’s Theorem 6.8 in [8] partially
deals with the case of 2–string links. In the following sections, we recall the work
presented in these two papers and treat the case of 2–string links in a wider manner.

2 Operads

The purpose of this section is to recall the definition of (colored) operads, set up some
notation and introduce the two operads of prime interest in this paper: the little cubes
operad Cn and a 4–colored version of the Swiss-cheese operad that we call SCL for
“Swiss-cheese for links”. We also discuss the different types of algebras these objects
encode and review free models for these structures.

2.1 Colored operads and their algebras

We start by reviewing the notion of colored operad. Let S be a set of colors. We
denote by S? the collection of tuples of elements of S . In other words, S? is the union
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`
n�0 S

�n. Each S�n is naturally a right †n–space. The length of a tuple t 2 S? is
denoted by jt j and, for every s 2S , jt js is the number of times s appears in t . Given two
tuples of colors t , u and an integer i � jt j, we denote by t ıi u the .jt jCjuj�1/–tuple

t ıi uD .t1; : : : ; ti�1; u1; : : : ; ujuj; tiC1; : : : ; tjt j/:

Note that jt ıi ujs D jt jsCjujs whenever s¤ ti and jt jsCjujs�1 for sD ti . We write
sn for the tuple .s; : : : ; s/ 2 S�n for every s 2 S and n � 0. We are now in the right
framework to define:

Definition 2.1 A colored operad O over the colors S consists of the following com-
bined data:

(i) for every t 2 S? and s 2 S , a space O.t I s/;

(ii) for every t , u 2 S? and i � jt j, operadic compositions

ıi WO.t I s/�O.uI ti /!O.t ıi uI s/

satisfying the usual associativity, symmetric and unital conditions — the latter
are thoroughly detailed in [35];

(iii) for every permutation � 2†n, t an n–tuple of colors and s a color, a map

�� WO.t I s/!O.t� I s/

such that �� ı �� D .� ı �/� and id� D id;

(iv) for every color s, a unit 1s 2O.sI s/.

The elements of O.t I s/ are called operations with inputs t and output s. The units 1s
are sometimes referred to as identities. We also often write a� for ��.a/ and a ıi b
for ıi .a; b/. A morphism of colored operads f W O ! P is a collection of maps
f.t Is/ WO.t I s/!P.t I s/ preserving operadic compositions, symmetric actions and units.

Example 2.2 The prototypical examples of colored operads are the endomorphism
operads. Let X D .Xs/s2S be an S–tuple of spaces. Given a vector of colors t , we
write X�t for the product

Q
i Xti . Now, for any output color s, we set EX .t I s/ to be

the mapping space Top.X�t ; Xs/. An element � 2†jt j can act on an f 2 EX .t I s/ by
permuting its entries, resulting in an element of EX .t� I s/. Also, when u is another
vector of colors and g lies in EX .uI ti /, one can inject g into the i th entry of f to get
the composite f ıi g 2 EX .t ıi uI s/. This specifies the data of a colored operad EX on
the colors S .

Algebraic & Geometric Topology, Volume 23 (2023)



Operadic actions on long knots and 2–string links 849

Definition 2.3 A colored operad O over a single color s is called an operad. In this
case, we write O.n/ for O.snI s/ and call it the space in arity n. The unit 1s is simply
denoted by 1. The operadic compositions are now maps O.n/�O.m/!O.nCm�1/
and the symmetric structure turns each O.n/ into a right †n–space.

Operads are useful to specify categories of algebraic objects. This is formalized via
operadic actions which we define now.

Definition 2.4 Let O be a colored operad over the set of colors S and X D .Xs/s2S
an S–tuple of spaces. We say that X is an O–algebra if it comes with a morphism of
operads � W O! EX . In other words, an O–algebra structure on X is a collection of
maps

�.t Is/ WO.t I s/! Top.X�t ; Xs/

preserving the operadic compositions, identities and symmetric actions described in [35].
They may also be thought of as maps O.t I s/ �X�t ! Xs , and we shall use each
framework when it is more convenient. A morphism of O–algebras f W X ! Y is a
collection of maps fs WXs! Ys preserving the operadic actions.

Example 2.5 Consider the operad obtained with the one point space in every arity
and trivial symmetric actions and operadic compositions. An action of this operad
on a space X is the data of a single map X�n ! X for every nonnegative n. One
readily checks that the required relations listed in [35] correspond to the associativity
and commutativity of X�2!X , as well as the fact that the element specified by the
zeroth map X�0!X acts as a unit. In other words, an action of this operad on X is a
commutative topological monoid structure on X . This justifies the terminology Com
for this operad.

Example 2.6 Consider the operad whose space in arity n is the discrete symmetric
group †n as an evident right †n–space with the following operadic composition. For
every � 2†n, � 2†m and i � n, � ıi � permutes f1; : : : ; nCm� 1g according to �
while treating fi; : : : ; i Cm� 1g as a single block, then shuffles the latter internally
according to � . An action of this operad on a space X is a data of a map X�n!X for
every ordering of f1; : : : ; ng. One readily checks that the required relations correspond
to the associativity of X�2 ! X and the fact that the element X�0 ! X acts as a
unit. In other words, the algebras over this operad are the not necessarily commutative
topological monoids. This operad is called the associative operad and is denoted by As.
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2.2 Free algebras

Before we introduce the two operads that will act on the spaces of knots and links,
we take some time to discuss free algebras. When O is a colored operad over the
set of colors S , the O–algebras and their morphisms form a category denoted by
O–Alg. There is a forgetful functor U WO–Alg! Top�S mapping an O–algebra to its
underlying S–tuple of spaces. By free O–algebra, we understand the left adjoint OŒ_� to
the forgetful functor U . In other words, the free O–algebra generated by X D .Xs/s2S
should lead to a bijection

O–Alg.OŒX�; Y /Š Top�S .X;U.Y //

for every O–algebra Y . A well-known model for OŒX� is obtained as follows. For
every vector x D .x1; : : : ; xn/ 2 X

�t and permutation � , we will write �x for
.x��1.1/; : : : ; x��1.n// 2X

�t��1 . We set

OŒX�s D
a
t

O.t I s/�X�t
ı
�;

where � identifies each .a;x/ with .a�; ��1x/ for every permutation � . The action of
O is obtained by composing in the O.t I s/ factor. The desired bijection above is then a
formal verification. When O is an uncolored operad, � corresponds to the †n–orbits
and we can simplify

OŒX�D
a
n

O.n/�†n X
�n:

We conclude this subsection with a quick observation about free algebras. When O
is a colored operad with set of colors S , the components �0O naturally inherit an
operad structure. Similarly, if X D .Xs/s2S is an O–algebra, then the components
�0X D .�0Xs/s2S inherit a �0O–algebra structure. Finally, the following result will
come in handy when proving that some actions yield free algebras in Section 4.

Proposition 2.7 Let X be an S–tuple of spaces. Then �0.OŒX�/ is a model for the
free algebra �0OŒ�0X�.

Proof We have the two models

�0.OŒX�s/D�0
�a
t

O.t I s/�X�t
ı
�

�
; �0OŒ�0X�sD

a
t

�0O.t I s/��0X�t
ı
�:

Since �0 commutes with products and coproducts, the right-hand side is equal to the
quotient of �0

�`
t O.t I s/�X�t

�
by the relations Œa;x�� Œa�; ��1x�. The left-hand

Algebraic & Geometric Topology, Volume 23 (2023)



Operadic actions on long knots and 2–string links 851

side also matches this description so both spaces are the same. It is a tautological
verification to see that the action of �0O is the same under these identifications.

2.3 The little cubes operad

We introduce the little cubes operad Cn and quickly discuss the algebras it encodes. It
is an uncolored operad originated in [24] in order to understand iterated loop spaces.
Our treatment is very similar to the one of Budney in [5].

Definition 2.8 The real functions of the form x 7! axC b for some positive a are
said to be affine increasing. A little n–cube is an application L W J n! J n of the form
LD l1 � � � � � ln for some affine increasing functions l i . The space of k overlapping
little n–cubes C1n .k/ is the set of configurations of k little n–cubes J nq� � �qJ n!J n.
We set C1n .0/ to be the one point space. Given an element L 2 C1n .k/, we write its
decomposition in little n–cubes LD

L
i L

i . Each Li decomposes uniquely in affine
increasing functions l i;1 � � � � � l i;n, so writing l i;j W x 7! ai;jxC bi;j gives rise to an
injection C1n .k/ ,!R2nk W L 7! .a1;1; b1;1; � � � ; ak;n; bk;n/. This is used to transfer a
topology on C1n .k/. Considering the C1–topology actually has the same outcome.

An element of C1n .k/ is represented by a drawing of the images of its little n–cubes.
We now equip the family of spaces C1n .k/ with an operadic structure. Thereafter, we
define the little n–cubes operad as a suboperad by adding a disjointness conditions on
the cubes.

Definition 2.9 The overlapping little n–cubes operad C1n is the operad specified as
follows.

(i) The space in arity k is the set of configurations of little n–cubes C1n .k/.

(ii) For every positive integer k, l and i � k, the operadic composition is given by

ıi W C1n .k/�C
1
n .l/! C1n .lCk�1/;

.L; P / 7! L1˚� � �˚Li�1˚LiıP 1˚� � �˚LiıP l˚LiC1˚� � �˚Lk :

Composing L 2 C1n .k/ with the one point in C1n .0/ discards the i th cube of L.

(iii) The action of � 2†l on L 2 C1n .l/ permutes the little n–cubes of L, ie

L� D
M
i

L�.i/:

(iv) The unit is the identity little n–cube idJn 2 C1n .1/.
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Figure 8: Illustration of the operadic composition ı2 W C12 .4/� C12 .2/! C12 .5/.

Definition 2.10 Two little n–cubes are said to be almost disjoint if the interiors of
their images are disjoint. The space of k little n–cubes Cn.k/ is the subspace of C1n .k/
consisting of pairwise almost disjoint little n–cubes. We still set Cn.0/ to be the one
point space. Operadic compositions in the overlapping little cubes operad preserve the
property of being almost disjoint so the subspaces Cn.k/ forms a suboperad Cn called
the little n–cubes operad.

Remark 2.11 Budney defines in [6] an operad C0n which he calls “the operad of
overlapping little n–cubes”. The resemblance with our terminology for C1n is only
coincidental. The two objects are not equivalent (Budney’s C0n is equivalent to CnC1,
while C1n has contractible underlying spaces). The operad C0n does not appear in this
article, so there should be no confusion.

We conclude this subsection by taking a look at the operad �0Cn. Given k little n–
cubes L 2 Cn.k/, restricting L to the center of each cube leads to an injective map
f1; : : : ; kg ,! J n, ie an element of the configuration space confk.J n/. Conversely,
given k points x in confk.J n/, one gets an element of Cn.k/ by considering the identical
cubes centered at x whose size is the maximal size that keeps them almost disjoint.
Intuitive straight line homotopies show that these two maps are homotopy inverses, so
that the homotopy type of Cn.k/ is the one of confk.J n/. In particular, when n > 1,
each Cn.k/ is path connected, so �0Cn D Com from Example 2.5. The free algebras
over this operad are the free commutative monoids. In dimension 1, the isotopy classes
of C1.k/ are indexed by the orderings of f1; : : : ; ng, so �0C1 DAs from Example 2.6.
The free As–algebras are the free monoids.

2.4 The operad SCL

We go through the construction of the Swiss-cheese operad for links SCL. It is a 4–
colored operad that is also defined in terms of little cubes. This terminology is motivated
by the fact that SCL restricts to the 2–colored Swiss-cheese operad on several pairs of
colors. We then conclude by investigating the operad of components �0SCL.
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Figure 9: Illustration of the operadic composition in SCL, more precisely of
ı3WSCL.l;o;";l;#;o;"Io/�SCL.";";"I"/!SCL.l;o;";";";l;#;o;"Io/.

Definition 2.12 A little n–cube L D l1 � � � � � ln is said to meet the lower face of
the unit cube if ln.�1/D�1. Visually, this happens when the image of L intersects
J n�1 ��1� J n. The configurations of k almost disjoint little n–cubes meeting the
lower face of J n is denoted by Cın.k/ and these spaces form an operad Cın just as in the
case of Cn.

Consider the set of four colors S D fo;";#;lg. The notation o is meant to remind one
of the “open” color in the Swiss-cheese operad as it will play a similar role. The other
symbols call up to the upper and lower strands of a string link.

Definition 2.13 The Swiss-cheese operad for links SCL is specified as follows.

(i) For s 2 f";#;lg, the only inputs t that do not lead to an empty SCL.t I s/ are the
monochromatic ones such that t D sn. In that case, we set SCL.snI s/D C2.n/.
When s D o, we set SCL.t I o/ to be those L 2 C12 .jt j/ such that each Li with
ti D o meets the lower face of J 2 while being almost disjoint from any other
cube, the Li with ti D" are almost disjoint from each other and the same holds
for ti D# and l.

(ii) The operadic compositions, symmetric actions and units are inherited from C12 .

An element of SCL.t I s/ is represented by a drawing of the images of its little n–cubes.
We decorate the numbering of each little cube with its associated color to distinguish
the cubes that simply happen to meet the lower face of J n from those that have to. The
output color also appears as an index of the whole drawing. Figure 9 gives an example.
It is immediate from its definition that SCL restricts to the (cubic) Swiss-cheese operad
on the pairs of colors fo;"g, fo;#g and fo;lg. It also clearly restricts to the little
cubes operad C2 on ", # and l. Originally, the 2–dimensional Swiss-cheese operad
is a 2–colored operad on the set of colors fo; cg. In some sense, the color o encodes
a homotopy associative algebra and the color c describes part of its center. In the
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case of 2–string links, the center of �0L0 decomposes as �0K�3. To encode this extra
information, we split the color c into three independent colors f";#;lg.

We now investigate �0SCL and its algebras. Observe that for every k and n > 1, the
projection map Cın.k/! Cn�1.k/ is a homotopy equivalence. A homotopy inverse is
obtained by inflating .n�1/–cubes into n–cubes of some fixed height. This reasoning
can readily be adapted to show that SCL.t I o/ is homotopy equivalent to the product

C1.jt jo/� C2.jt j"/� C2.jt j#/� C2.jt jl/:

In particular, �0SCL.t I s/ is either

� empty if s ¤ o and t ¤ sn,

� a single point if s ¤ o and t D sn,

� the discrete space †jt jo when s D o.

Therefore, an action of �0SCL on X D .Xo; X"; X#; Xl/ is the data of a monoid
structure on each space, such that the Xs are commutative for s¤ o and act on Xo with
compatible actions. With this description, it is easy to see with the universal property
of free objects that the free such quadruplet on the basis .A;B; C;D/ is given by

�0SCLŒA; B; C;D�

D
�
AsŒA�� ComŒB�� ComŒC �� ComŒD�; ComŒB�; ComŒC �; ComŒD�

�
;

where the last three monoids act on the first one on their respective factor.

3 Operadic actions

We gather here the objects introduced in the previous sections and endow the spaces yK
and yL with operadic actions. In the first subsection, the fat long knots yK are equipped
with a C2–algebra structure originally exhibited by Budney in [5]. In the case of fat
2–string links, there is a C1–algebra structure that follows from Burke and Koytcheff’s
work in [8]. We recall its construction in the second subsection and extend it to an
action of SCL in a third one.

3.1 Budney’s action on fat long knots

We start with the little 2–cubes action on yK originated in [5]. Following Budney’s
work, we first define an action of the affine increasing automorphisms of R on the
self-embeddings of R�D2, then proceed to extend it to the 2–dimensional little cubes
operad C2. We denote by CAut1 the group of real affine increasing functions. A
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7�!
1

Figure 10: Illustration of the action of C1.1/ on EC.1;D2/.

little 1–cube is identified with its natural extension to the real line so that C1.1/ lives
in CAut1. We topologize CAut1 as we topologized C1.1/, which coincides with the
C1–topology and turns it into a topological group.

Proposition 3.1 (Budney [5]) The topological group CAut1 acts on the space of
embeddings Emb.R�D2;R�D2/ via

CAut1 �Emb.R�D2;R�D2/! Emb.R�D2;R�D2/;

(L; f / 7! .L� idD2/ ıf ı .L
�1
� idD2/:

Moreover , this restricts to an action of C1.1/ on EC.1;D2/, which we write as
.L; f / 7! Lf .

Proof That this map defines a valid action of a topological group is immediate. To
prove the statement about the restriction, we just need to check that Lf restricts to the
identity outside of J �D2, provided L 2 C1.1/ and f 2 EC.1;D2/. For any t … J ,
L�1.t/ does not lie in J because L.J /� J . So, for every x 2D2, .L�1� idD2/.t; x/
is outside of J �D2, where f restricts to the identity. Thus Lf .t; x/D .t; x/, which
proves the second part of the proposition.

Definition 3.2 (Budney [5]) We define two operations and a partial order on little
2–cubes.

(i) Given a little 2–cube LD l1 � l2, we write L� for the little 1–cube l1. When
L 2 C2.k/, L� denotes

L
i L

i
� . These little 1–cubes may overlap so L� lies in

C11 .k/ but not necessarily in C1.k/.

(ii) For every L D l1 � l2 2 C2.1/, let Lt denote the number l2.�1/. Again, if
L 2 C2.k/, then Lt is the k–tuple of reals .L1t ; : : : ; L

k
t / 2 J

k .

(iii) We define a partial order on the little cubes Li of an element L 2 C2.k/. This
binary relation is the order generated by setting Li <Lj if and only if Lit <L

j
t

and the interiors of Li� and Lj� intersect. Then, a permutation � 2†k is said to
order L if the mapping i 7! L�.i/ is nondecreasing.
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Figure 11: Illustration of the operations ._/� and ._/t . The permutations id,
.12/ and .23/ order L.

We are now ready to define an action of C2 on EC.1;D2/, ie a map of operads � W C2!
EEC.1;D2/. For every element L 2 C2.k/ and permutation � 2†k that orders L, we set

�k.L/ W EC.1;D2/�k! EC.1;D2/;

f D .fi /i 7! .L�.1/� f�.1// ı � � � ı .L
�.k/
� f�.k//:

One can be assured that �k.L/ does not depend on � as follows. Two choices for �
differ by a sequence of transpositions .ab/ such that La and Lb are incomparable,
ie such that La� and Lb� are almost disjoint. Then, supp.La�fa/ and supp.Lb�fb/ are
almost disjoint as well so both orders of composition yield the same outcome. For the
continuity, consider for every � 2†k the map

��k W C2.j /�EC.1;D2/�k! EC.1;D2/;

.L;f / 7! .L�.1/� f�.1// ı � � � ı .L
�.k/
� f�.k//:

�3

1
2

3

7�
!

Figure 12: Illustration of Budney’s action on fat long knots.
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Each ��
k

is continuous and coincides with �k on

F� D fL 2 C2.k/ j � orders Lg �EC.1;D2/�k :

The sets F� are closed and cover C2.k/�EC.1;D2/�k so �k is continuous. In arity 0,
we set �0 to be the map sending the single point in C2.0/�EC.1;D2/�0 to idR�D2 .

Theorem 3.3 (Budney [5]) The operations � turn EC.1;D2/ into a C2–algebra.

Even though a proof of this result is readily available in [5], we provide one here as
the methods and ideas at stake will be reused before the end of this section.

Proof The operation �1 clearly maps the basepoint idJ 2 2 C2.1/ to the identity. We
need to check the compatibility of � with the symmetric group actions and the operadic
compositions. We start with the symmetric structure. Recall that a permutation � acting
on the right of L 2 C2.k/ yields

L
i L

�.i/. It also acts on the left of

f D .fi /i 2 EC.1;D2/�k

to give �f D .f��1.i//i . Thus, if � is a permutation that orders L� , then � ı� orders L.
This proves the needed equality

�k.L�;f /D .L
�ı�.1/
� f�.1// ı � � � ı .L

�ı�.k/
� f�.k//D �k.L; �f /:

We are left to prove that � preserves operadic compositions. Given little 2–cubes
L 2 C2.k/, P 2 C2.l/ and an integer i � k, we need to show that

�kCl�1.L ıi P /D �k.L/ ıi �l.P /:

Let � and � be permutations that respectively order L and P . Unravelling the definition
of � shows that the desired equality boils down to checking that � ıi � orders L ıi P .
Recall the definitions of � ıi � and L ıi P :

� � ıi � shuffles the interval fi; : : : ; i C l � 1g according to � , then permutes
f1; : : : ; kC l � 1g according to � while treating the shuffled interval as a single
block.

� L ıi P is obtained from L by replacing Li with
L
r L

i ıP r .

If Li and Lj are incomparable, Li ıP r and Lj also are, so the result follows.

This recently developed structure on the space of framed long knots generalizes the
stacking operation in the following sense: acting with two side-by-side rectangles of
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width 1 on two knots results in their concatenation. In particular, the Com–algebra struc-
ture on �0EC.1;D2/ induced from C2! EEC.1;D2/ is the monoid structure described
in Section 1.1.

Theorem 3.4 (Budney [5]) The fat long knots yK form a sub-C2–algebra of EC.1;D2/.

Proof As mentioned in Section 1.1, the framing number ! descends to a morphism
of monoids �0EC.1;D2/! Z. Recall also that �0C2 is the commutative operad Com.
The integers Z form an abelian group and thus a commutative monoid. They can
therefore be seen as a C2–algebra via the structure map C2 ! Com ! EZ. In this
framework, the framing number ! is a C2–algebra morphism, hence the result.

We conclude this subsection with a quick discussion about �. Let L be an element
of C2.k/. The heights of the little cubes of L only appear in the formula of �k.L/
to dictate a composition order. This is done via an ordering permutation, which we
defined as an element � 2†k such that the mapping i 7!L�.i/ is nondecreasing. Here,
one can replace the word “decreasing” with “increasing” and define another action with
the same formula. We refer to it as Budney’s reverse action. There is no substantial
difference between these two versions of �, nor is there a reason to prefer one or the
other. We still introduce the two of them now, as they will both play a role in the next
subsections. Informally, the need for a reversed action arises because knots yielding
split links must be tied at the beginning of a composition, while knots yielding cables
must be tied at the end.

3.2 Burke and Koytcheff’s actions on fat 2–string links

This subsection is a first step towards an adaptation of Budney’s work to 2–string links.
Namely, we build an action of C1 on EC�.1;D2/ and yL. This structure has already been
exhibited by Burke and Koytcheff [8, Theorem 6.8], with C1 appearing as a suboperad
of a way bigger object called the infection operad. As before, we start with an action of
CAut1 on the embeddings .R�D2/q .R�D2/ ,!R�D2, then proceed to extend
it to C1.

Proposition 3.5 The topological group CAut1 acts on Emb..R�D2/q2;R�D2/ via

CAut1 �Emb..R�D2/q2;R�D2/! Emb..R�D2/q2;R�D2/;

(L; l/ 7! .L� idD2/ ı l ı .L
�1
� idD2/

q2:

Moreover , this restricts to an action of C1.1/ on EC�.1;D2/, which we write as
.L; l/ 7! Ll .
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�2

1 2

7�
!

Figure 13: Illustration of Burke and Koytcheff’s action on fat 2–string links.

Proof The proof of this is very similar to the proof of Proposition 3.1: the fact that
the formula above specifies a valid action of a topological group is still clear and the
restriction statement is proved just as in the case of framed long knots.

To distinguish Budney’s action from the one we build now, we denote the structure
map by �. The space C1.0/ in arity 0 still consists of a single point that �0 maps to
idR � � from Definition 1.11. For any positive integer k and L 2 C1.k/, we set �k.L/
to the map that concatenates k framed string links according to the configuration of
intervals L. That is, for every f D .fi /i 2 EC�.1;D2/�k ,

�k.L/.f / W .R�D
2/q .R�D2/!R�D2;

.t; x/ 7!

�
Lifi .t; x/ when t 2 Li .J /;
.t; �.x// elsewhere:

The embeddings patch in a differentiable way because the little cubes are almost disjoint.
The outcome lies in EC�.1;D2/ because supp�.L

ifi /D .L
i � idD2/

q2.supp�.fi //.

Theorem 3.6 (Burke and Koytcheff [8]) The operations � turn EC�.1;D2/ into a
C1–algebra.

Proof It is clear that �1.idJ / is the identity on EC�.1;D2/. We check the compatibility
with the symmetric actions. Let � be a permutation, L 2 C1.k/ and f 2 EC�.1;D2/�k .
To prove the desired �k.L�;f /D �k.L; �f /, we show that these maps agree on the
images of every little cube of L. This is enough as they clearly restrict to idR � �
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outside of these intervals. For every i � k, the left-hand side of the equation restricts
to .L�/ifi on .L�/i .J k/. The right-hand side restricts to L�.i/f��1ı�.i/ D .L�/

ifi

so we are done. The associative compatibility is verified the same way.

As in the case of knots, the stacking operation arises as a special case of this recently
developed action. More precisely, acting with two side-by-side intervals of width 1
on two string links results in their concatenation. Therefore, the As–algebra struc-
ture on �0EC�.1;D2/ induced from � W C1 ! EEC�.1;D2/ is the monoid structure on
�0EC�.1;D2/ discussed in Section 1.2. Moreover, as in the case of knots, we can
restrict ourselves to unframed embeddings:

Theorem 3.7 The fat 2–string links yL form a sub-C1–algebra of EC�.1;D2/.

Proof Just as in Theorem 3.4, Z�2 is a group that we can think of as an As–algebra
and therefore a C1–algebra. This turns the framing number ! into a morphism of
C1–algebras, hence the result.

3.3 The action of SCL on fat 2–string links

This section aims to merge the two actions defined above into a single SCL–algebra
structure on the spaces of fat long knots and fat 2–string links. More precisely, we
build an action of SCL on the quadruplet of spaces X D .Xo; X"; X#; Xl/, where
Xo D EC�.1;D2/ and Xs D EC.1;D2/ for every s 2 f";#;lg. We start with a lemma
to ease the construction.

Lemma 3.8 There is a map

EC�.1;D2/�EC.1;D2/�3! EC�.1;D2/; .l; k"; k#; kl/ 7! kl ı l ı Œk"q k#�:

Proof The continuity of this application immediately follows from the continuity of
the composition in the C1–topology. The purpose of this lemma is actually to check
that kl ı l ı Œk"q k#� indeed lives in EC�.1;D2/. This follows from the inclusions
supp.ks/� J �D2 for s 2 f";#;lg, and l

�
int..J �D2/q .J �D2//

�
� J �D2.

This map is in some way a combination of the morphisms 's from Section 1.2. Indeed,
if one restricts this application to the subspace fidR � �g �EC.1;D2/� fidR�D2g

�2,
the formula becomes k" 7! .idR � �/ ı Œk" q idR�D2 �, which is a fattened version
of '". We denote it by O'". The same goes for #. In the case of l, one is left with
kl 7! kl ı .idR � �/. This map sends a long knot kl to the string link whose strands
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are parallel and knotted according to kl. In other words, it is again a fattened version
of 'l, which we denote by O'l.

We are now ready to define the morphism � W SCL! EX for the new action. As the
values of �.t Is/ heavily depend on .t I s/, defining � takes several steps.

We start by specifying the values of � in monochromatic cases. The operad SCL
restricts to the little cubes operad C2 on the colors s 2 f";#g. We set � to Budney’s
action on these colors. In other words, �.sk Is/ D �k from Theorem 3.3. When s Dl,
we similarly set �.lk Il/ to Budney’s reverse action, which we will still denote by �
by slight abuse of notation. On the color o, SCL restricts to the operad Cı2. There is a
morphism ._/� W Cı2! C1 and we set � to the composite � ı ._/� on this suboperad.

For every s 2 f";#;lg, the only input colors t that do not lead to an empty SCL.t I s/
are the monochromatic ones such that t D sk . Thus, we are left to specify �.t Is/ when
s D o and the inputs are mixed. To this end, we introduce color sorting functions. Let
t 2 S?. Consider four injective (not necessarily increasing) maps

˛s W Œjt js�D f1; : : : ; jt jsg ! Œjt j�D f1; : : : ; jt jg; s 2 S;

whose disjoint images cover Œjt j� and such that t˛s.i/ D s for every i 2 Œjt js�. These
maps regroup inputs of the same color and are said to sort the colors of t . Observe that
each ˛s lifts to a map SCL.t I o/! C2.jt js/ that discards the little cubes whose colors
are different from s,

˛s W SCL.t I s/! C2.jt js/; L 7!
M
i

L˛s.i/:

Discarding embeddings also yields a map

˛s WX
�t
!X

�jt js
s ; f 7! ˛sf D .f˛s.1/; : : : ; f˛s.jt js//:

The behavior of these lifts with respect to the symmetric structures on SCL and X�t is
captured by the following relations: for every � 2†jt j, � 2†jt js , L 2 SCL.t I o/ and
f 2X�t ,

.� ı˛s/LD
M
i

L�ı˛s.i/ D
M
i

.L�/˛s.i/ D ˛s.L�/; .� ı˛s/f D ˛s.�
�1f /;

.˛s ı �/LD
M
i

L˛sı�.i/ D
M
i

.˛sL/
�.i/
D .˛sL/�; .˛s ı �/f D �

�1.˛sf /:

We can finally combine the previous actions and define �.t Io/.L/ as the map

�.t Io/.L/ WX
�t
! EC�.1;D2/;

f 7! �.˛lL; ˛lf / ı�.˛oL� ; ˛of / ı
�
�.˛"L; ˛"f /q �.˛#L; ˛#f /

�
;
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4#

5" 6l

o

7�
!

�.o;o;#;#;";lIo/

Figure 14: Illustration of the action of SCL on fat 2–string links and fat long knots.

where the � on the left-hand side refers to Budney’s reverse action and the other two to
Budney’s regular action.

The continuity of � is immediate and its values do not depend on the color sorting
functions: if one chooses to replace ˛o with ˛o0, there is a permutation � such that
˛o
0 D ˛o ı � . Then, the relations above give

�.˛o
0L� ; ˛o

0f /D �..˛o ı �/L� ; .˛o ı �/f /

D �..˛oL�/�; �
�1.˛of //

D �.˛oL� ; ˛of /:

The same argument with � shows that the remaining ˛s can be replaced as well.

Theorem 3.9 The operations � turn the quadruplet X into an SCL–algebra.

Proof First of all, it is clear that every �.sIs/ sends idJ 2 to the identity. The symmetric
compatibility is also quickly verified: when functions .˛s/s sort the colors of t , the
composites .��1 ı˛s/s sort the colors of t� and the needed equality follows.
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We are left to check the compatibility with the operadic composition. Let L2SCL.t I s/
and P 2 SCL.uI ti / for some i . We need to show that �.Lıi P /D�.L/ıi �.P /. The
validity of Budney, Burke and Koytcheff’s actions (Theorems 3.3 and 3.6) implies the
result when t and u are monochromatic of the same color. Since there is no operation
with output color s 2 f";#;lg and input colors t ¤ sk , we may assume that s D o and
t ¤ ok . When evaluated in embeddings f 2X�tıiu, the desired equality reads

�.tıiuIo/.L ıi P;f /

D �.t Io/
�
L; f1; : : : ; fi�1; �.uIti /.P; fi ; : : : ; fiCjuj�1/; fiCjuj; : : : ; fjtıiuj

�
:

We split cases and unravel the definition of � on both sides of this equation.

Assume first that ti D". This forces uD"juj. Let .˛s/s sort the colors of t . We may
ask for ˛".jt j"/D i . We sort the colors s ¤" in t ıi u with functions .
s/s mapping
j to ˛s.j / if ˛s.j / < i or to ˛s.j /C juj if ˛s.j / > i . The reason for this choice is

s.L ıi P /D ˛sL. For the remaining 
", we use the same construction on Œjt j"� 1�
and extend it to Œjt ıi uj"� via the increasing map onto the interval fi C j; j < jujg.
The equality reduces to

Kl ıƒ ı ŒK
L
"
qK#�DKl ıƒ ı ŒK

R
"
qK#�;

where
ƒD �.˛oL� ; 
of /;

KL
"
D �.
".L ıi P /; 
"f /;

Kl D �.˛lL; 
lf /;

KR
"
D �.˛"L; f˛".1/; : : : ; f˛".jt j"�1/; �.P; fi ; : : : ; fjujCi�1//;

K# D �.˛#L; 
#f /:

Furthermore, 
".LıiP /D˛"Lıjt j"P , so the validity of Budney’s action (Theorem 3.3)
completes the proof in this case. The same manipulations treat the cases ti D# and l.

We are left to treat the case s D o and ti D o. Let .˛s/s and .ˇs/s be color sorting
functions for t and u, respectively. We may again ask for ˛o.jt jo/D i . Let .
s/s be
the color sorting functions for t ıi u one naturally builds from .˛s/s and .ˇs/s . More
precisely, 
s agrees with ˛s on ˛s�1.fl j l < ig/, with ˛s C juj on ˛s�1.fl j l > ig/
and maps the remaining interval to the inputs s in fi C l j l < jujg according to ˇs .
These choices are the ones giving 
s.L ıi P / D ˛sL˚ .L

i ı ˇsP / for every s in
f";#;lg and 
o.L ıi P / D ˛oL ıjt jo ˇoP . The left-hand side of the equality reads
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KL
l
ıƒL ı ŒKL

"
qKL

#
�, where

ƒL D �.˛oL ıjt jo ˇoP; 
of /;

KLs D �.˛sL˚ .L
i
ıˇsP /; 
sf / for every s 2 f";#;lg:

On the other hand, the right-hand side of the equality is KR
l
ıƒR ı ŒKR

"
qKR

#
�, where

ƒR D �.˛oL; f
o.1/; : : : ; f
o.jt jo�1/; �.uIo/.P; fi ; : : : ; fiCjuj�1//;

KRs D �.˛sL; f
s.1/; : : : ; f
s.jt js// for every s 2 f";#;lg:

But �.uIo/.P; fi ; : : : ; fiCjuj�1/ is itself of the form Kl
0
ıƒ0 ı ŒK"

0
qK#

0�, where

ƒ0 D �.ˇoP; f
o.jt jo/; : : : ; f
o.jtıiujo//;

Ks
0
D �.ˇoP; f
s.jt jsC1/; : : : ; f
s.jtıiujs// for every s 2 f";#;lg:

It is easy to check from the definition of � and Theorem 3.6 that

ƒR D LiKl
0
ıƒL ı ŒLiK"

0
qLiK#

0�:

We get the following new expression for the whole right-hand side of the equation:

.KR
l
ıLiKl

0/ ıƒL ı ŒLiK"
0
ıKR
"
qLiK#

0
ıKR
#
�:

Thus we are left to identify K factors. We previously computed

KL
"
D �.˛"L˚ .L

i
ıˇ"P /; 
"f /:

Recall that when evaluating �, one chooses a permutation that orders ˛"L˚.Li ıˇ"P /
and composes the embeddings accordingly. Here, Li is a little 2–cube that meets the
lower face of the unit cube. In other words, Lit D�1 and cannot get any lower. Thus,
the factors .Li ıˇ"P /jf
".jt j"Cj / can be placed in first position when computing KL

"
.

This ultimately shows that
KL
"
D LiK"

0
ıKR
"
:

One deals with # the exact same way. For l, the same phenomenon with Budney’s
reverse action shows that the factors .Li ı ˇlP /jf
l.jt jlCj / can be placed in last
position when computing KL

l
, which again shows the desired

KL
l
DKR

l
ıLiKl

0:

Once again, the concatenation comes as a special case with side-by-side cubes of
equal width. Budney’s action on knots can be recovered and one can also turn a knot
into a double cable or a split link using identity cubes in SCL.sI o/ for s 2 f";#;lg.
More precisely, �.sIo/.idJ 2/D O'

s . This shows that the �0SCL–algebra structure on

Algebraic & Geometric Topology, Volume 23 (2023)



Operadic actions on long knots and 2–string links 865

the quadruplet �0X is the data of the usual monoids �0EC.1;D2/ and �0EC�.1;D2/,
together with the three distinct independent actions of �0EC.1;D2/ on �0EC�.1;D2/
given by the O's , s 2 f";#;lg. Finally, the spaces of unframed knots and links are still
stable:

Theorem 3.10 The quadruplet .yL0; yK; yK; yK/ forms a sub-SCL–algebra of X .

Proof Consider the two monoids Z and Z�2. The first one acts on the second one
in three different ways: on the first factor of Z�2, on the second factor or diagonally.
The data of these three actions is precisely that of a �0SCL–algebra structure on the
quadruplet .Z�2;Z;Z;Z/. One can think of this structure as an SCL–algebra structure.
Thanks to the additive properties of the linking number with respect to the concatenation
of curves, one easily checks that the framing number ! turns into a morphism of SCL–
algebras. The result follows.

This action of SCL on .yL0; yK; yK; yK/ combines all the structure we have met on long
knots and 2–string links so far. Moreover, the isotopies exhibiting the commutativity
relations discussed in Section 1.2 can all be obtained with paths in SCL from a config-
uration of cubes to another. The next section aims to show that this correspondence
actually follows from a deeper result: a homotopy equivalence between .yL0; yK; yK; yK/
and a free algebra over SCL.

Remark 3.11 It is possible to extend Theorem 3.9 to manifolds other than the 2–
dimensional disk D2. More precisely, when M is a manifold of dimension n, we can
consider the space EC.k;M/ consisting of the embeddings from Rk �M to itself
that restrict to the identity outside of J k �M . The notation “EC” comes from the
terminology “embedding” and “cubical”. This space has been intensively studied by
Budney and proved to be an algebra over the .kC1/–dimensional little cubes operad
CkC1 in [5].

Similarly, for any fixed embedding � WM qM ,!M , one can define EC�.k;M/, the
space consisting of embeddings from Rk �Mq2 to Rk �M that restrict to idRk � �

outside of J k �Mq2 and map the interior of J k �Mq2 to the interior of J k �M .
Burke and Koytcheff mentioned these spaces in [2], alongside their work on the special
case corresponding to framed string links.

In order to understand the structure on the quadruplet of spaces

XM D .EC�.k;M/;EC.k;M/;EC.k;M/;EC.k;M//;
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we need a higher-dimensional version of the Swiss-cheese operad for links. Roughly
speaking, one can define SCLk the same way we did SCL, except that the operad Ck
is used in the construction, instead of the 2–dimensional little cubes operad C2. We
can then extend Budney’s action on EC.k;M/ in order to get an SCLkC1–algebraic
structure on the quadruplet XM . The precise formula for this action is the same as the
one introduced before Theorem 3.9, and checking that is specifies a valid SCLkC1–
algebra structure boils down to the verifications already carried out in the proof above.

4 Freeness results

We prove here that the operadic actions constructed in Section 3 lead to free algebras
over different operads. More precisely, we first introduce the main result of Budney
in [5], which states that yK is homotopy equivalent as a C2–algebra to C2Œ yP�. A second
theorem proved by Burke and Koytcheff in [8] provides an analogous statement about
the action of C1 on a subspace of yL. We then combine these results to prove the
main theorem of this paper, Theorem 4.11, stating that .yL0; yK; yK; yK/ is homotopy
equivalent to a free SCL–algebra. These three theorems are proved with very similar
methods, most of them coming from 3–manifold topology and homotopy theory. The
first subsection recalls the concepts we need from these fields, and the following three
are each dedicated to a freeness theorem. The proofs of the results of Budney, Burke
and Koytcheff are only quickly outlined, since thorough treatments are available in [5]
and [8]. We still dispense sketches of proofs as the arguments they involve will be
useful for Theorem 4.11.

4.1 Notions of 3–dimensional topology

We introduce some basic concepts of 3–manifold theory. The instances of 3–manifolds
we will encounter mostly lie in R3, so they inherit very nice features. Furthermore, they
are compact, orientable, connected and irreducible. It is very common when studying
3–manifolds to deal with embedded surfaces: we denote by S2 the 2–sphere, D2 the
disk, A the annulus, T 2 the torus and .T 2/#2 the genus 2 oriented surface. We denote
by Pn the n–punctured disk, whose boundary splits as an external component @extPn

and n internal components @intPn. As for common 3–manifolds, we note B D J �D2

the cylinder, homeomorphic to a 3–ball D3, Hn D Pn � I the n–handlebody and
Cf � B the complement of a fat long knot or a fat 2–string link f . The boundary
of Cf is a torus when f is a fat long knot, and a 2–torus when f is a fat 2–string
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link. A recurring procedure in the upcoming proofs is the cutting of Cf along essential
surfaces. We define the latter now.

Definition 4.1 Let S be a (not necessarily connected) orientable surface embedded
in an orientable 3–manifold M properly (ie S \ @M D @S). A disk D � M with
D\S D @D is said to be a compressing disk for S if its boundary does not bound a disk
in S . A surface that admits a compressing disk is said to be compressible, and a surface
different from S2 or D2 admitting no compressing disk is said to be incompressible.

Definition 4.2 Let S be a bordered surface properly embedded in a 3–manifold M .
A @–compressing disk for S is a disk D �M whose boundary consists of two arcs ˛
and ˇ with ˛ � S and ˇ � @M , whose interior is disjoint from S and @M , such that
there is no arc 
 in @S such that 
 [ ˛ bounds a disk in S . A surface that admits a
@–compressing disk is said to be @–compressible. Otherwise, it is @–incompressible.

Definition 4.3 A properly embedded surface S in a 3–manifold M is said to be
@–parallel if it can be isotoped to a piece of @M .

Definition 4.4 A properly embedded orientable surface S in a 3–manifold M is
essential if one of the following holds:

(i) S is a sphere and does not bound a ball.

(ii) S is a disk whose boundary does not bound a disk in @M .

(iii) S is not a sphere nor a disk, it is incompressible, @–incompressible and not
@–parallel.

Spaces of embeddings of incompressible surfaces have been extensively studied by
Hatcher in [14]. He describes in his paper how the homotopy type of such a space
depends on S . This result will be used repeatedly so we formulate a precise version here.

Theorem 4.5 (Hatcher [14]) LetM be an orientable compact connected irreducible 3–
manifold and S ,!M an essential orientable compact surface inM. Let Emb.S;M;@S/
be the space of embeddings of S in M whose values at @S are fixed. Then the
component Emb.S;M; @S/S of S ,! M in Emb.S;M; @S/ is weakly contractible
unless S is closed and the fiber of a bundle structure on M , or if S is a torus. In these
exceptional cases �i Emb.S;M/D 0 for all i > 1. In the bundle case , the inclusion
of the subspace consisting of embeddings with image a fiber induces an isomorphism
on �1. When S is a torus but not the fiber of a bundle structure , the inclusion Diff.S/ ,!
Emb.S;M/ obtained by precomposing S ,!M induces an isomorphism on �1.
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Another tool of 3–manifold theory that will come in handy is the JSJ–decomposition. It
provides a way to cut an irreducible manifold into simpler ones. The cuts are performed
along essential tori, but if one keeps on cutting a manifold until no such torus is available,
the obtained decomposition might not be unique. A manifold that admits no essential
torus is said to be atoroidal. In order to get a unique decomposition, one must agree not
to cut the pieces that are Seifert-fibered. The latter are manifolds consisting of disjoint
parallel circles forming a particular fibering. The precise definition of this fibering is
looser than the notion of fiber bundle with fiber S1. It is specified for example in [15].
The decomposition theorem we use is the following:

Theorem 4.6 (Jaco, Shalen and Johannson [19; 20]) Every orientable , compact ,
irreducible 3–manifold M contains a collection of embedded , incompressible tori
T so that if one removes an open tubular neighborhood of T from M , the outcome
is a disjoint union of Seifert-fibered and atoroidal manifolds. Moreover , a minimal
collection of such tori is unique up to isotopy.

The minimal collection of tori T from Theorem 4.6 (or sometimes its isotopy class)
is called the JSJ–decomposition of M . In the case where @M consists of a single
component, the piece of the cutM containing @M is called the root of the decomposition.
The tori of T bounding the root are referred to as the base-level tori of T .

Our main concern while studying an orientable compact 3–manifold M will actually be
the homotopy type of the group of its boundary-fixing diffeomorphisms Diff.M; @M/.
More precisely, we are interested of the subgroup Diffd.M; @M/ consisting of the
diffeomorphisms whose derivatives at @M agree with those of the identity. This extra
condition is relevant for our work because it enables one to postcompose a fat long
knot by an element of Diffd.B; @B/ and still end up with a fat long knot. The main
ingredient we use to prove the three upcoming freeness theorems is the following
proposition:

Proposition 4.7 Let M be an orientable compact connected irreducible 3–manifold
and S an essential surface which cuts M into pieces Mi , such that the component
Emb.S;M; @S/S is weakly contractible and stable under the postcomposition action of
Diff.M; @M/. Then the inclusionY

i

Diffd.Mi ; @Mi / ,! Diffd.M; @M/

is a weak homotopy equivalence.

Algebraic & Geometric Topology, Volume 23 (2023)



Operadic actions on long knots and 2–string links 869

Proof Thanks to the stability condition, we have a well-defined postcomposition
map Diff.M; @M/! Emb.S;M; @S/S . Restriction maps such as this one have been
shown to be locally trivial, and in particular fibrations. This problem, as well as the
local triviality of the restriction map Emb.M;N /! Emb.M 0; N / for a submanifold
M 0 �M , has been treated in several articles: in [26] for the case of closed manifolds
and in [9] for the case of bordered manifolds. A more recent exposition is provided in
the third section of [21]: the precise result we use here is formulated as Corollary 3.7
in [21]. The fiber over S of this map is the subgroup of diffeomorphisms fixing S , ie

Diff.M; @M [S/ Diff.M; @M/ Emb.S;M; @S/S :

The base space is weakly contractible so the inclusion of the fiber is a weak homotopy
equivalence. We are left to add the derivative condition on the diffeomorphisms.

It is proved in Kupers’ book on diffeomorphism groups [22] that the inclusion of the
subgroup Diffd.N; @N / ,! Diff.N; @N / is a weak homotopy equivalence for every
compact manifold N . This justifies the bottom left equivalence in the diagram of
inclusions

Diffd.M; @M [S/ Diff.M; @M [S/ Homeo.M; @M [S/

Q
i Diffd.Mi ; @Mi /

Q
i Diff.Mi ; @Mi /

Q
i Homeo.Mi ; @Mi /

'

' '

while the right horizontal equivalences come from works of Cerf in [9]. The two-out-
of-three rule assures us that the top left inclusion is a weak equivalence as well. This
same rule in the diagram

Diffd.M; @M [S/ Diffd.M; @M/

Diff.M; @M [S/ Diff.M; @M/

' '

'

concludes the proof.

The need to study these diffeomorphism groups arises from the following classical
result in modern knot theory:

Proposition 4.8 Let f be a fat long knot or a fat 2–string link. Then the component yKf
or yLf of f in yK or yL is a model for the classifying space of Diffd.Cf ; @Cf /. Moreover ,
it is a K.G; 1/.
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Proof We treat the case where f is a fat long knot, the other one is treated identically.
When B is the solid cylinder and Cf the complement of f in B , we have the inclusion
and restriction maps

Diffd.Cf ; @Cf / Diffd.B; @B/ yKf :

The application on the right-hand side precomposes a diffeomorphism by f and is a
fibration thanks to [21, Corollary 3.7]. Now, Diffd.B; @B/ ' Diff.B; @B/ is weakly
contractible, as proved in [13]. Thus, Diffd.Cf ; @Cf / acts properly and freely on a
contractible space, and the quotient of this action can be identified to yKf , so yKf is a
model for BDiffd.Cf ; @Cf /. Moreover, spaces of diffeomorphisms of orientable Haken
bordered 3–manifolds which preserve the boundary pointwise always have vanishing
higher homotopy groups by [14, Theorem 2]. Thus, the long exact sequence in homotopy
coming from the fibration above assures us that yKf is a K.�0Diffd.Cf ; @Cf /; 1/.

4.2 Budney’s freeness theorem

We now recall Budney’s main theorem in [5], which is a freeness statement about the
space of fat long knots as a C2–algebra. Recall from Section 1.1 that the prime fat long
knots are denoted by yP � yK, and that they are the embeddings whose isotopy classes
are prime elements in the monoid �0 yK. The result we present appears as Theorem 11
in Budney’s paper, and we only dispense a sketch of proof here, as the complete proof
is fairly long.

Theorem 4.9 (Budney [5]) The restriction of the structure map

� W C2Œ yP�! yK

from Theorem 3.3 is a homotopy equivalence.

Sketch of Proof Thanks to Corollary 1.8, Proposition 2.7 and the fact that applying
�0 to the structure map � W C2! EyK endows �0 yK with its usual monoid structure, we
are assured that � induces a bijection on components. Thus, we are left to prove that it
is a homotopy equivalence on each of these components.

On the component of the unknot, � restricts to the map C2.0/ � yP
�0
! yKidR�D2

.
The complement of an unknot is a 1–handlebody H1, and the diffeomorphism group
Diffd.H1; @H1/' Diff.H1; @H1/ is contractible. Proposition 4.8 therefore gives the
contractibility of yKidR�D2

DBDiffd.H1; @H1/ , so we have an equivalence in this case.
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On the component of a prime knot f 2 yP , � restricts to the map C2.1/� yPf ! yPf D yKf .
The homotopy retracting C2.1/ onto the identity little cube shows that this map is an
equivalence as well.

Suppose now that f is a composite knot f Df1# � � �#fn. Budney proved in [4] that the
base-level tori T of the JSJ–decomposition of the complement of f split Cf into nC1
pieces: the complements of the prime factors Cfi and a root homeomorphic to S1�Pn.
One would like to apply Proposition 4.7 in order to split Diffd.Cf ; @Cf / as a product
of diffeomorphism groups involving each Diffd.Cfi ; @Cfi /. But, cutting along T is
not possible here as the component Emb.T 2q� � �qT 2; Cf /T is not contractible by
Theorem 4.5. It is also not stable under the postcomposition action of Diff.Cf ; @Cf /.
Indeed, when Ti is the torus bounding Cfi , two tori Ti and Tj can be permuted by some
diffeomorphism of Cf if and only if fi and fj are isotopic. Let †f be the subgroup
of †n preserving the partition of f1; : : : ; ng given by i � j if and only if fi and fj
are isotopic. Then, by considering the components of Emb.T 2q� � �qT 2; Cf / where
the image of the i th torus is isotopic to a Tj with i � j , and by quotienting out these
components by the parametrization of each torus, one gets a space homotopy equivalent
to†f . It is stable under the postcomposition action of Diff.Cf ; @Cf / so one can use an
argument similar to the proof of Proposition 4.7 to split Diffd.Cf ; @Cf / into a product
involving each Cfi . Namely, after some manipulations on the diffeomorphisms, Budney
manages to fit Diffd.Cf ; @Cf / up to homotopy in a fibration

KDiff.Pn; @Pn/�
Y
i

Diffd.Cfi ; @Cfi /! Diffd.Cf ; @Cf /!†f ;

for some subgroup KDiff.Pn; @Pn/ homotopy equivalent to the pure braid group on
n strands KBn. Since BKBn D confn.J 2/ ' C2.n/, applying the classifying space
functor B leads to

yKf ' BDiffd.Cf ; @Cf /

' B KDiff.Pn; @Pn/�†f
Y
i

BDiffd.Cfi ; @Cfi /

' C2.n/�†f
Y
i

yKfi D C2Œ yP�f :

At this stage, this equivalence is merely an abstract map. But the vast majority of
the group morphisms we met are inclusion-based, so Budney manages to show that
this equivalence coincides with � via explicit models. Weak equivalences are finally
promoted to strong ones via an application of Whitehead’s theorem.
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This result can be thought of as a generalization of Schubert’s theorem: the connected
sum operation # is extended to an algebraic structure on the space level of yK, and the
isomorphism �0 yKDComŒ�0 yP� is extended to the C2–equivariant homotopy equivalence
yK' C2Œ yP�. Note however that Budney uses Corollary 1.8 in the very first sentence of
the proof, so that this generalization is in no way an alternative argument for Schubert’s
result.

4.3 Burke and Koytcheff’s freeness theorem

We now get to Burke and Koytcheff’s result about fat 2–string links. Recall from
Section 1.2 that yQ0 � yL0 denotes the fat 2–string links which are prime but not in
the image of one of the maps O's , s 2 f";#;lg. The theorem we present here is [8,
Theorem 6.8]. We again provide a quick sketch of proof, as the ideas involved will
reappear in the proof of our main result, Theorem 4.11.

Theorem 4.10 (Burke and Koytcheff [8]) Let yS0 be the subspace of yL0 consisting
of the fat 2–string links whose prime factors lie in yQ0. Then , the restriction of the
structure map

� W C1Œ yQ0�! yS0

from Theorem 3.6 is a homotopy equivalence.

Sketch of proof Thanks to Theorem 1.10, we are assured that � induces a bijection
on components. We are therefore again left to show that it is an equivalence on each of
these components.

On the component of the trivial link, � restricts to the map C1.0/� . yQ0/�0! yL0idR��
.

The complement of idR � � is a 2–handlebody H2, and the diffeomorphism group
Diffd.H2; @H2/' Diff.H2; @H2/ is contractible so we can conclude as in the case of
knots.

Let now f be a nontrivial element of yS0 and f D f1 # � � � # fn its decomposition in
noncentral prime fat 2–string links. According to [2, Theorem 4.1], there are n� 1
twice-punctured disks separating Cf into the complements of the fi . Moreover, as
shown in the fourth step of the proof of this same theorem, these disks are unique up
to isotopy. This enables us to split Diffd.Cf ; @Cf / as the product

Q
i Diffd.Cfi ; @Cfi /

thanks to Proposition 4.7. Applying the classifying space functor yields the equivalences

yS0f D BDiffd.Cf ; @Cf /'
Y
i

BDiffd.Cfi ; @Cfi /'
Y
i

yLfi :
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When we denote by C1.n/.1;:::;n/ the (contractible) component of C1.n/ where the
intervals appear from left to right in the order .1; : : : ; n/, we can go further and write

yS0f '
Y
i

yLfi ' C1.1/.1;:::;n/ �
Y
i

yLfi D C1Œ yQ0�f :

At this stage, the equivalence is still given by an abstract map but it is easy to keep
track of the identifications and see that it coincides with �. Weak equivalences are
finally promoted to strong ones via an application of Whitehead’s theorem.

Again, this result is a generalization of Theorem 1.10 as its provides a free algebraic
structure on the space level of yS0, which descends to the usual free monoid on the
basis yQ0 on isotopy classes.

4.4 Fat long knots and 2–string links form a free SCL–algebra

We combine in this last subsection the theorems of Budney, Burke and Koytcheff
presented above to prove a freeness result for the whole space of fat 2–string links.
Namely, we prove:

Theorem 4.11 The restriction of the structure map

� W SCLŒ yQ0; yP; yP; yP�! .yL0; yK; yK; yK/

from Theorem 3.9 is a homotopy equivalence.

Just as in the preceding subsections, the proof mainly consists in reducing ourselves to
each connected component and splitting the diffeomorphism group of the complement
of a link along suitable surfaces. We state two technical lemmas to prepare this cutting
process, then proceed to the proof of the theorem.

Lemma 4.12 Let f be a fat 2–string link decomposing as

f o # O'".f "/ # O'#.f #/ # O'l.f l/

for some element f o in yS0 and fat long knots f s , s 2 f";#;lg. Then , the three vertical
twice-punctured disks D cutting Cf into Cf o , C O'".f "/, C O'#.f #/ and C O'l.f l/ are
unique up to isotopy fixing the boundary. Moreover , the component Emb.D;Cf ; @D/D
is weakly contractible and stable under the postcomposition action of Diff.Cf ; @Cf /.
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Cf o

D1 D2 D3

C O'".f "/ C O'#.f #/ C O'l.f l/

Figure 15: Illustration of the three disks D DD1qD2qD3 in Cf .

Proof The uniqueness statement is proved in the steps 1 and 3 of Blair, Burke
and Koytcheff’s proof of their Theorem 4.1 in [2]. Applying a diffeomorphism of
Diff.C; @Cf / to the punctured disks D does not change the fact that they split Cf into
pieces homeomorphic to the complement of f o and O's.f s/ for s 2 f";#;lg. Thus,
the component Emb.D;Cf ; @D/D is stable under the postcomposition action of this
diffeomorphism group. Its contractibility immediately follows from Hatcher’s work on
incompressible surfaces (Theorem 4.5).

Lemma 4.13 Let f be a fat long knot and O's.f / the central link obtained from f for
s 2 f";#;lg. Consider the annulus As in the complement C O's.f / specified by

(i) A" D .idR � �/..J � @D
2/q¿/,

(ii) A# D .idR � �/.¿q .J � @D2//,

(iii) Al D f .J � @D
2/.

Then the isotopy class of As is stable under the postcomposition action of

Diff.C O's.f /; @C O's.f //

and the component Emb.A; C O's.f /; @A/As is weakly contractible.

Proof We first treat the case where s D". Consider a horizontal disk E � C O'".f /
separating the two strands of O'".f /. Cutting along E yields two manifolds: an upper
piece containing A", homeomorphic to Cf , and a lower one that is a 1–handlebody H1.
Any two disks in C O'".f / sharing their boundary are isotopic because C O'".f / is irre-
ducible. Therefore, given a diffeomorphism g in Diff.C O'".f /; @C O'".f //, there is an
isotopy from g.E/ to E. It can be extended to a boundary preserving ambient isotopy
and postcomposing g by the latter shows that we may assume that g.E/DE. In other
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A"

Al

Figure 16: Illustration of the annuli A" and Al.

words, g preserves the cut and in particular g.A"/ lies in the upper piece. But A" is
boundary parallel after the cut, so it is unique up to boundary-fixing isotopy in its piece,
which concludes the proof in this case. The weak contractibility statement immediately
follows from Theorem 4.5. The case where s D# is treated the exact same way.

We now deal with the case where s Dl. The proof of the stability statement uses the
JSJ–decomposition recalled in Theorem 4.6, especially the uniqueness part. The idea
is to show that the JSJ–decomposition of C O'l.f / admits a single base-level torus Tl,
which must be unique up to isotopy, and that Al is a suitable piece of it.

Let Al0 be the annulus J � @D2 � @C O'l.f /. The two annuli Al and Al0 share their
boundary so that their union is a torus in C O'l.f /. Let Tl be the torus obtained by
pushing Al [Al0 in the interior of C O'l.f /. It is essential and cuts C O'l.f / into two
manifolds, one containing @C O'l.f /, Al and Al0 that we denote by V , the other one
homeomorphic to Cf . We now proceed to show that Tl is the base-level torus of the
JSJ–decomposition of C O'l.f /.

Claim 1 Let P2 be a twice-punctured disk and 
l a curve in the interior of P2 parallel
to the external boundary circle. Then V is homeomorphic to a 2–handlebody J �P2
deprived of a solid torus that is a tubular neighborhood of 0� 
l.

Proof This unknotting process is similar to Budney’s “untwisted reembedding” de-
scribed in the beginning of his paper on knot complements [4]. Cutting V along Al
results in two pieces: an external one containing Tl and an internal one that is a
(knotted) 2–handlebody H2. The torus Tl is boundary parallel in the external part, so
this piece is a fattened torus T 2 � I . This shows that V is the manifold obtained by
gluing a 2–handlebody H2 and a fattened torus T 2 � I along specific annuli in their
boundaries. This description also matches our new model for V so we are done.

This new model makes a lot of considerations easier since it forgets all the complexity
of the knotting of f . We call the two unknotted annuli J � @intP2 the strands of @V .
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Al

Figure 17: Illustration of the new model for V and Al.

Through this identification, Al turns into the annulus bounding a neighborhood of the
two strands not containing Tl, as illustrated in Figure 17. The second annulus Al0

remains in the boundary as J � @D2.

Claim 2 V is atoroidal.

Proof In many cases including that of V , the definition of an atoroidal 3–manifold can
be reformulated algebraically using the fundamental group. More precisely, one defines
a peripheral subgroup of a 3–manifoldM to be a subgroup of �1M that lies in the image
of the inclusion of a boundary component, then declares M to be atoroidal if every
subgroup of �1M isomorphic to Z�2 is conjugate to a peripheral subgroup. The equiva-
lence between the two definitions is alluded for example in the beginning of [1], but the
implication we are about to use follows from Corollary 5.5 in Waldhausen’s article [33].

We start by computing �1V . The application of van Kampen’s theorem summarized
in Figure 18 gives

�1V D h˛1; ˛2; ˇ j ˛1ˇ˛
�1
1 D ˛2ˇ˛

�1
2 i:

We can further write

�1V Š ha; b; c j ab D bai D Z�2 �Z

via ˛1 7! c, ˛2 7! ca�1 and ˇ 7! b.

H2 Š

P2 Š

H2 Š

˛1

˛2

ˇ

Figure 18: Applying van Kampen’s theorem to compute �1V .
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The inclusion of the toric boundary component Tl � V has image in �1 the sub-
group generated by a and b. It corresponds to the Z�2 factor under the isomorphism
�1V Š Z�2 � Z. We prove that any subgroup of Z�2 � Z isomorphic to Z�2 is
conjugate to a subgroup of the latter. Consider an arbitrary injection Z�2 ,! Z�2 �Z

and denote by x and y the images of .0; 1/ and .1; 0/. These x and y commute, they
are nontrivial and they are not allowed to be powers of some third element. Now,
applying Theorem 4.5 on page 209 of the book [23] on groups and presentations yields
the following three possibilities for x and y:

(i) x or y may be trivial;

(ii) if neither x nor y is trivial, but x is in the conjugate of a factor, then y is in that
same conjugate of a factor;

(iii) if neither x nor y is in a conjugate of a factor, then they are powers of a third
element of Z�2 �Z.

Thanks to our observations, (i) and (iii) are ruled out and x and y must lie in the same
conjugate of a factor of Z�2�Z. The Z factor does not admit any subgroup isomorphic
to Z�2, so we are done.

At this point, we showed that Tl and the tori of the JSJ–decomposition ofCf cutC O'l.f /
into atoroidal and Seifert-fibered pieces. Finally, Tl cannot be removed to obtain a
smaller decomposition because V can never be part of a Seifert-fibered manifold,
having a boundary component homeomorphic to a 2–torus. This shows that Tl and
the tori of the JSJ–decomposition of Cf form a minimal decomposition of C O'l.f /
into atoroidal and Seifert-fibered manifolds, which proves that this collection is the
JSJ–decomposition of C O'l.f /. The root V is bounded by @C O'l.f / and Tl, so Tl is
the only base-level torus. Its image is therefore unique up to isotopy.

Consider now g 2 Diff.C O'l.f /; @C O'l.f //. Thanks to the work above, there is an
isotopy from g.Tl/ to Tl. It can be extended to a boundary-fixing ambient isotopy,
and postcomposing g by the latter shows that we may assume that g.Tl/ D Tl. In
other words, g preserves the cut along Tl and g.Al/ lies in V . Let us now take a
look at the (boundary-fixing) isotopy classes of annuli in V with boundary @Al. We
prove that there are only two of them: the one of Al and the one of Al0. Let A� V
be an arbitrary annulus with adequate boundary. We may assume that the interiors
of A and Al0 are disjoint because Al0 is @–parallel. Now, A[Al0 is an embedded
torus in V . Its image in �1 is generated by ˛�12 ˛1 D a and some other element y that
commutes with a. Using [23, Theorem 4.5] again, we see that y is either trivial or in
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the Z�2 factor of Z�2 �ZŠ �1V . If y is trivial or a power of a, then A[Al0 bounds
a solid torus and the two annuli are isotopic. If y is not just a power of a, then A[Al0

is incompressible and must parallel to Tl by Claim 2. In this situation, A is isotopic
to Al. The two annuli cannot be permuted by a diffeomorphism of V because Al0 is
@–parallel and Al is not. This shows that gjV .Al/ is isotopic to Al via an isotopy that
fixes the boundary in V . This concludes this second case. The weak contractibility of
the component in the embedding space again follows from Theorem 4.5.

We now implement all the tools at our disposal to complete the proof of Theorem 4.11.

Proof of Theorem 4.11 Thanks to Theorems 1.8 and 1.10 and Proposition 2.7, we
are assured that � induces a bijection on components. Thus, we are left to prove that it
is a homotopy equivalence on each of these components.

On the component of the unlink, � restricts to the map

SCL.¿I o/� . yQ0; yP; yP; yP/�¿
! yLidR��:

The space SCL.¿I o/ consists of a single point. The complement of the unlink is a
2–handlebody H2, and the diffeomorphism group Diffd.H2; @H2/'Diff.H2; @H2/ is
contractible. Proposition 4.8 then gives the contractibility of yLidR��DBDiffd.H2; @H2/,
so we have an equivalence in this case.

On the component of a fat long knot or an element of yS0, Theorems 4.9 and 4.10 imply
the result because the action of SCL restricts to � and � on these components.

Now let f be a nontrivial fat 2–string link. The action map � restricts on the component
of f to the map SCLŒ yQ0; yP; yP; yP�f ! yLf . Suppose f decomposes as the concatenation
f o # O'".f "/ # O'#.f #/ # O'l.f l/ for some element f o of yS0 and some fat long knots
f s for s 2 f";#;lg. We denote by f oD #i�jf jo f oi and f s D #i�jf js f si the prime
decompositions of f o and f s . Then, one readily checks with the usual model presented
in Section 2.2 that the component SCLŒ yQ0; yP; yP; yP�f in the free algebra is given by

SCL.ojf jo;"jf j";#jf j#;ljf jl I o/.1;:::;jf jo/�.†f "�†f #�†f l /
Y
i�jf jo

yLf o
i
�

Y
s

Y
i�jf js

yKf s
i
;

where SCL.ojf jo ;"jf j" ;#jf j# ;ljf jl I o/.1;:::;jf jo/ is the component of

SCL.ojf jo ;"jf j" ;#jf j# ;ljf jl I o/

where the cubes indexed by o appear from left to right in the order .1; : : : ; jf jo/
and where †f s is the subgroup of †jf js preserving the partition specified by i � j
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if and only if f si is isotopic to f sj . This group acts on the cubes indexed by s in
SCL.ojf jo ;"jf j" ;#jf j# ;ljf jl I o/.1;:::;jf jo/ and permutes the entries in

Q
i�jf js

yKf s
i

.
The inclusion

SCL.ojf jo ;"jf j" ;#jf j# ;ljf jl I o/.1;:::;jf jo/ ,! Cı2.jf jo/.1;:::;jf jo/ �
Y
s

C2.jf js/

is a homotopy equivalence, so that we have, by rearranging terms in the product, the
natural equivalences

SCLŒ yQ0; yP; yP; yP�f '
�
Cı2.jf jo/.1;:::;jf jo/�

Y
i

yLf o
i

�
�

Y
s

�
C2.jf js/�†f s

Y
i

yKf s
i

�
' C1Œ yQ0�f o�

Y
s

C2Œ yP�f s :

On the other hand, thanks to Proposition 4.8, we know that yLf is a model for the
classifying space of Diffd.Cf ; @Cf /. The three vertical twice-punctured disks D from
Lemma 4.12 splitting Cf as Cf o , C O'".f "/, C O'#.f #/ and C O'l.f l/ are stable under
the action of Diff.Cf ; @Cf / and have their component in Emb.D;Cf ; @D/ weakly
contractible. Therefore, Proposition 4.7 gives the inclusion-based weak equivalence

Diffd.Cf o ; @Cf o/�
Y
s

Diffd.C O's.f s/; @C O's.f s// ,! Diffd.Cf ; @Cf /:

Now, Lemma 4.13 states that the three annuli As also satisfy the conditions of
Proposition 4.7. They each split C O's.f s/ into a 2–handlebody H2 and a manifold
diffeomorphic to Cf s . Actually, this second piece is precisely the image of Cf s
under idR � � when s 2 f";#g and Cf l itself when s Dl. The diffeomorphism group
Diffd.H2; @H2/ is contractible so we get the further natural equivalences

Diffd.Cf s ; @Cf s / ,!Diffd.Cf s ; @Cf s /�Diffd.H2; @H2/ ,!Diffd.C O's.f s/; @C O's.f s//:

Composing these results with Proposition 4.8 yields the natural equivalences

yLf o �
Y
s

yKf s ' BDiffd.Cf o ; @Cf o/�
Y
s

BDiffd.Cf s ; @Cf s /

' BDiffd.Cf ; @Cf /

' yLf :

We are now able to use Budney, Burke and Koytcheff’s freeness results (Theorems 4.9
and 4.10) and our previous discussion to get the equivalence

SCLŒ yQ0; yP; yP; yP�f ' C1Œ yQ0�f o �
Y
s

C2Œ yP�f s ' yLf o �
Y
s

yKf s ' yLf :
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We merely have an abstract equivalence at this stage. To show that it coincides with �,
we need to check the commutativity up to homotopy of the diagram

BDiffd.Cf o ; @Cf o/�
Y
s

BDiffd.Cf s ; @Cf s / BDiffd.Cf ; @Cf /

yLf o �
Y
s

yKf s yLf

'

'
'

�

but the spaces at stake are K.G; 1/’s by Proposition 4.8, so it is enough to check
the commutativity in �1. This verification is very similar to the end of Budney’s
proof of Theorem 11 in [5]. An element of �1 yLf is (a homotopy class of) a based
path in yLf , ie an isotopy from f to f . The elements of �1BDiffd.Cf ; @Cf / can
canonically be identified with �0Diffd.Cf ; @Cf / in the long exact sequence of the
fibration realizing yLf as BDiffd.Cf ; @Cf / in Proposition 4.8. In this framework,
picking a class � 2 �0Diffd.Cf o ; @Cf o/ and chasing the diagram along the clockwise
route turns it into an element of �0Diffd.Cf ; @Cf / with its support lying between
�1�D2 andD1�Cf , then converts it into an isotopy of f according to the construction
in Proposition 4.8. Chasing � along the counterclockwise route converts it into an
isotopy of f o in �1 yLf o , then applies � to it. The outcome is the same as each
O's.f s/ is fixed all along this last isotopy. The same argument shows that picking a
class in �0Diffd.Cf s ; @Cf s / and chasing the diagram in either direction has the same
effect. When evaluated in �1, the upper-left product is a direct product, on which a
factor-by-factor verification is thus sufficient to get the commutativity.

Finally, Hatcher and McCullough proved in [16] that the classifying spaces of the
diffeomorphism groups at stake here have the homotopy types of (aspherical finite) CW–
complexes (what we use here could also be deduced from Palais’ earlier article [27]).
Thus, Whitehead’s theorem promotes the weak homotopy equivalence � to a strong
one.
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