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A short proof that the Lp–diameter
of Diff0.S; area/ is infinite

MICHAŁ MARCINKOWSKI

We give a short proof that the Lp–diameter of the group of area preserving diffeo-
morphisms isotopic to the identity of a compact surface is infinite.

37E30, 57K10, 58D05

1 Introduction

Let .M; g/ be a Riemannian manifold and let � be the measure induced by the metric g.
We denote the group of all diffeomorphisms of M that preserve � and are isotopic to
the identity by Diff0.M;�/.

In [12] Shnirelman showed that the L2–diameter of Diff0.M;�/ is finite if M is the
n–dimensional ball for n > 2 see also Shnirelman [13]. Conjecturally, the same is true
for any compact simply connected Riemannian manifold of dimension greater than 2
(it is stated in Eliashberg and Ratiu [8] without proof).

The situation is different for 2–dimensional manifolds. In this case it is customary to
denote the measure induced by g by area. For simplicity, let us restrict the discussion
to orientable compact connected Riemannian surfaces .S; g/. Eliashberg and Ratiu [8]
proved that the Lp–diameter (p � 1) of Diff0.S; area/ is infinite if S is a surface
with boundary. They show that the Calabi homomorphism is Lipschitz with respect
to the Lp–norm. Later Gambaudo and Lagrange [9] obtained a similar result for a
huge class of quasimorphisms on Diff0.S; area/ if S is the closed disc (see as well
Brandenbursky [3], Brandenbursky and Shelukhin [6] and Shelukhin [11] for more
results concerning quasimorphisms and the Lp geometry). Their proof makes use of
the braid group of the disc and inequalities relating the geometric intersection number
of a braid and its word-length.
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If S has negative Euler characteristic it is relatively easy to show that the Lp–diameter
for p � 1 of Diff0.S; area/ is infinite; see Proposition 3.2 or Brandenbursky and Kędra
[4, Theorem 1.2]. In the case of the torus one needs to know in addition that the group
of Hamiltonian diffeomorphisms of the torus is simply connected, which is a nontrivial
result from symplectic topology; see Brandenbursky and Shelukhin [7, Appendix A].

The last unsolved case was the sphere. Recently Brandenbursky and Shelukhin [7]
showed that in this case the diameter is also infinite. Moreover, for each p � 1,
Diff0.S

2; area/ contains quasi-isometrically embedded right-angled Artin groups (see
Kim and Koberda [10]) and Rm for each natural m. Their arguments use some new
tools along with the ideas from [9]. However, using intersection numbers in the case of
the sphere requires considerably more work.

Our aim is to give a short and elementary proof of the following theorem:

Theorem 1 Let .S; g/ be a compact surface (with or without boundary). Then for
every p � 1 the Lp–diameter of Diff0.S; area/ is infinite.

Our method gives a unified proof for every compact surface S . It is partially inspired
by [9]; in particular Lemma 5.2 can be seen as a generalization of an inequality obtained
in [9] for the disk. The main simplification comes from the fact that instead of using
the braid group and intersection numbers, we directly look at the geometry of the
configuration space Cn.S/ with a certain complete metric described in Section 4. In
Section 5 we relate the L1–norm of f 2Diff0.S; area/ to an L1–norm, defined by this
complete metric, of the diffeomorphism on Cn.S/ induced by f . This allows us to
apply the simple technique, described in Section 3, of showing the unboundedness of
the Lp–norm in the case where the fundamental group of the manifold is complicated
enough.

Acknowledgments The author was supported by grant Sonatina 2018/28/C/ST1/00542
funded by the Narodowe Centrum Nauki

2 The Lp–norm

Let .M; g/ be a Riemannian manifold and let � be a finite measure on M . Usually
one assumes that � is induced by g, even though the definition of an Lp–norm works
as well if � is any finite measure (then the Lp–norm could be a pseudonorm). We
introduce here a more general definition as it is useful for stating results in Section 5.
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Suppose f 2 Diff0.M;�/ and let X WM ! TM be a map to a tangent space of M
such that X.x/ 2 Tf .x/M . One can think of X as a tangent vector to Diff0.M;�/ at
the point f . The Lp–norm of X is defined by the formula

kXkp D

�Z
M

jX.x/jp dx

�1
p

:

Let ft 2 Diff0.M;�/ for t 2 Œ0; 1� be a smooth isotopy, ie it defines a smooth map
M � Œ0; 1�!M . We always assume that isotopies are smooth. The Lp–length of fftg

is defined by

lp.fftg/D

Z 1

0

k Pftkp dt;

where Pft .x/D .d=ds/fs.x/jsDt 2 Tft .x/M . Note that if p D 1, then
R 1

0 j
Pft .x/j dt is

the length of the path ft .x/, thus l1.fftg/ can be interpreted as the �–average of the
lengths of all paths ft .x/.

Letting f 2 Diff0.M;�/, we define the Lp–norm of f by

lp.f /D inf lp.fftg/;

where the infimum is taken over all smooth isotopies ft 2 Diff0.M;�/ connecting the
identity on M with f . The assumption that f is �–preserving was not used in the
definition, but it is needed to show that lp satisfies the triangle inequality.

The Lp–diameter of Diff0.M;�/ equals

supflp.f / W f 2 Diff0.M;�/g:

It is worth noting that geodesics in Diff0.M;�/ with the L2–metric are solutions of
the Euler equations of an incompressible fluid. For more on the connection between
the L2–metric and hydrodynamics see [1].

3 The base case

In this section we present the basic method which can be used to show that, for p � 1,
the Lp–diameter of Diff0.M;�/ is infinite if �1.M/ is complicated enough.

Lemma 3.1 Let X be a topological space and let ft 2 Homeo.X/ for t 2 Œ0; 1� be a
loop in Homeo.X/ based at IdX , ie f0 D f1 D IdX . Then for every x 2 X , the loop
ft .x/ for t 2 Œ0; 1� is in the center of �1.X; x/.

Algebraic & Geometric Topology, Volume 23 (2023)
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Proof Let x 2 X and let s for s 2 Œ0; 1� be a loop in X based at x. Consider the
map � W S1�S1!X given by .t; s/ 7! ft .s/, where S1 D Œ0; 1�=0�1. We have that
�.t; 0/ D ft .x/ and �.0; s/ D s . Thus loops ft .x/ and s are in the image of the
torus S1 �S1, therefore they commute.

Let .M; g/ be a Riemannian manifold. Suppose h 2 �1.M/. Let l.h/ denote the
infimum over lengths of based loops in M that represent h. We denote by Z.�1.M//

the center of �1.M/.

Proposition 3.2 Let .M; g/ be a Riemannian manifold and � the measure induced
by g. Assume that for every r the set fh 2 �1.M/ W l.h/ < rg is finite (it holds eg if M
is compact) and �1.M/=Z.�1.M// is infinite. Then for every p � 1 the Lp–diameter
of Diff0.M;�/ is infinite.

Proof By the Hölder inequality we can assume p D 1. Let z 2M be a basepoint and
let h 2 �1.M; z/. We represent h as a loop  based at z.

Let U be a contractible neighborhood of z and let ft 2 Diff0.M;�/ for t 2 Œ0; 1� be a
finger-pushing isotopy that moves U all the way along  . For a detailed construction
see [5, proof of Lemma 3.1].

For every x 2 U we choose a path �x contained in U connecting z with x. We can
assume that l.�x/ < diam.U /, where l.�x/ is the length of �x . We denote by ��x the
reverse of �x .

The isotopy ft is defined so that it satisfies:

(1) For every x 2 U , f1.x/D x.

(2) For every x 2U , the concatenation of �x , ft .x/ and ��x is a loop based at z and
its homotopy class equals h.

Let fh D f1 and define Lh Dminfl.hc/ W c 2Z.�1.M; z//g. We shall show that

�.U /.Lh� 2 diam.U //� l1.fh/:

Let gt for t 2 Œ0; 1� be any isotopy connecting the identity on M with fh. Due to
Lemma 3.1, for every x 2U the paths gt .x/ and ft .x/ represent elements of �1.M; x/

that differ by an element of the center. Thus the concatenation of �x , gt .x/ and ��x
represents an element of the form hc 2 �1.M; z/ where c 2 Z.�1.M; z//. Since
l.�x/ < diam.U /, we have that l.gt .x// � Lh � 2 diam.U /. Indeed, otherwise the

Algebraic & Geometric Topology, Volume 23 (2023)
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concatenation of �x , gt .x/ and ��x would be a loop of length less then Lh � l.hc/,
which is impossible.

Since l.gt .x//D
R 1

0 j Pgt .x/j dt , we have

�.U /.Lh� 2 diam.U //�
Z

U

Z 1

0

j Pgt .x/j dt dx �

Z
M

Z 1

0

j Pgt .x/j dt dx D l1.fgtg/:

The isotopy gt was arbitrary, therefore �.U /.Lh� 2 diam.U //� l1.fh/.

By assumption, for every r the set Sh D fh 2 �1.M/ W l.h/ < rg is finite. Therefore,
since �1.M/=Z.�1.M// is infinite, there exists h such that the coset hZ.�1.M// does
not intersect Sh. For such h we have Lh � r . Since the set U does not depend on
the choice of h, and Lh can be arbitrary large, we conclude that the L1–diameter of
Diff0.M;�/ is infinite.

In particular, Proposition 3.2 can be applied when .S; g/ is a compact surface of negative
Euler characteristic (then �1.S/ is infinite and has trivial center). Unfortunately, it says
nothing about the Lp–diameter of Diff0.S; area/ for the remaining surfaces. Our main
goal is to find an argument which is still based on the proof of Proposition 3.2, but
works for any compact surface S .

To this end, one could pass to the configuration space of n ordered points in S , denoted
by Cn.S/ � S

n, with the product Riemannian metric gn. Its fundamental group is
the pure braid group Pn.S/, and Pn.S/=Z.Pn.S// is infinite for every S if n > 3.
However, the problem with this space is that every braid Pn.S/ can be represented as
a based loop in .Cn.S/; g

n/ of length at most 2n diam.S/C 1, thus one cannot apply
Proposition 3.2.

We solve this problem by changing the metric on Cn.S/. We describe it, in a slightly
more general setting, in the next section.

4 A complete metric on a manifold with removed
submanifolds

Let .M; g/ be a compact Riemannian manifold and let D D
Sk

iD1Di , where the Di

are submanifolds of M . The aim of this paragraph is to construct a metric on M �D
satisfying the following property: for every L the number of elements in �1.M �D/
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that can be represented by a based loop of length less then L is finite. For x 2 M
denote by d.x/ the distance of x to D, that is

d.x/D dg.x;D/Dminfdg.x;Di / W i D 1; : : : ; kg;

where dg is the metric on M induced by g.

Rescaling g by 1=d we define a new quadratic form gb on the tangent space ofM�D by

jvjgb
D
jvjg

d.x/
;

where v 2 Tx.M �D/ is a vector tangent to a point x 2M �D.

Note that d.x/, and consequently gb , are not differentiable. They are only continuous.
In this case gb is called a C 0–Riemannian metric and a smooth manifold with such
a quadratic form is called a C 0–Riemannian manifold. A C 0–Riemannian structure
allows us to define lengths of paths and a metric d on the underlying manifold. The
topology induced by d is equal to the manifold topology.

Lemma 4.1 M �D with the metric gb is a complete C 0–Riemannian manifold.

Proof Let N D .M �D;gb/ and let BN .x; r/ denote the closed ball in N of radius
r and center x 2 N . To show completeness we must show that for every x 2 N the
ball BN

�
x; 1

2

�
is compact.

Let x 2N . We shall show that the distance from BN

�
x; 1

2

�
to D is at least 1

2
d.x/:

BN

�
x; 1

2

�
� L WD

˚
y 2N W d.y/� 1

2
d.x/

	
:

Since L is compact, it follows that BN

�
x; 1

2

�
is compact.

Suppose y 2 BN

�
x; 1

2

�
and d.y/ < d.x/ (otherwise obviously y 2 L). Let � > 0 and

let  W Œ0; l�! N be a path connecting x with y such that j P.t/jgb
D 1 for t 2 Œ0; l�

and l < 1
2
C �.

Let

t0 D supft 2 Œ0; l� W d..t//� d.x/g;

ie t0 is the last time when d..t0//D d.x/. For t � t0, we have

j P.t/jg D j P.t/jgb
d..t//D d..t//� d.x/:
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Let  0 be the restriction of  to the interval Œt0; l �. Let lg. 0/ be the length of  0 in the
metric g. Since j P.t/jg � d.x/, we have

lg.
0/� .l � t0/d.x/�

�
1
2
C �

�
d.x/:

Therefore the distance of y to D in g is at least

d.y/� d..t0//� lg.
0/� d.x/�

�
1
2
C �

�
d.x/D 1

2
d.x/� �d.x/:

Since � is arbitrarily small, y 2 L and therefore BN

�
x; 1

2

�
� L.

Before we proceed we need the following simple lemma. Note that this lemma would
be standard if .M �D;gb/ were a complete Riemannian manifold.

Lemma 4.2 Let N D .M �D;gb/ and let zN be the universal cover of N with the
pulled-back C 0–Riemannian metric. Then every closed ball in zN is compact.

Proof By the Weierstrass approximation theorem there exists C 2R and a smooth
function f W N ! R such that C�1f .x/ < 1=d.x/ < Cf .x/ for every x 2 N . Let
gs be a Riemannian metric defined by jvjgs

D f .x/jvjg , where v 2 TxN . Then
C�1jvjgs

< jvjgb
< C jvjgs

, thus the metrics induced by gb and gs are equivalent. By
Lemma 4.1, .N; gs/ is a complete Riemannian manifold and it is a standard fact that
closed balls in the universal cover of .N; gs/ are compact. Clearly it holds as well for
.N; gb/, since the metrics defined by pullbacks of gs and gb to the universal cover are
equivalent.

Let h 2 �1.M �D/. Denote by l.h/ the infimum of lengths (with respect to gb) of
based loops representing h 2 �1.M �D/.

Lemma 4.3 For every r , the set fh 2 �1.M �D/ W l.h/ < rg is finite.

Proof Let N D .M �D;gb/, let x 2 N be a basepoint and let p W zN ! N be the
universal cover of N . Choose y 2 p�1.x/. The preimage p�1.x/ is discrete and
B zN .y; r/�

zN is compact by Lemma 4.2. Thus p�1.x/\B zN .y; r/ is finite for every
r and therefore fh 2 �1.N / W l.h/ < rg is finite.

5 A Lipschitz embedding

In this section we focus on the particular case where M �D is a configuration space.
Let .S; g/ be a compact Riemannian surface and gn be the product metric on Sn.
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Let Dij D f.x1; : : : ; xn/ 2 S
n W xi D xj g. Denote by Cn.S/ D S

n �
S

i;j Dij the
configuration space of n ordered points in S . On Sn and Cn.S/ we consider the
measure induced by the product metric gn.

We shall now find a formula for dgn.x;Dij / in terms of the metric on S . Let
xD .x1; : : : ; xn/2S

n and letm be the midpoint of a geodesic connecting xi with xj . If
we start moving points xi and xj towardsmwith constant speed, we get a geodesic in Sn

connecting x with the closest point inDij . Since dg.m; xi /Ddg.m; xj /D
1
2
dg.xi ; xj /

and we are in the product metric,

dgn.x;Dij /D
p
dg.m; xi /

2
C dg.m; xj /

2
D

1
p
2
dg.xi ; xj /:

The distance function d has the form

d.x/D
1
p
2

minfdg.xi ; xj / W 1� i < j � ng:

Let gb D .gn/b be the metric on Cn.S/ defined in the previous section, namely
jvjgb

D jvjgn=d.x/, where v 2 Tx.Cn.S//.

Let us fix a point p 2 S and let x D .x1; : : : ; xn�1/ 2 S
n�1. Then .p; x/ 2 Sn and

d..p; x// is the minimum over .1=
p
2/dg.p; xi / for 1� i�n�1 and .1=

p
2/dg.xi ; xj /

for 1� i < j � n� 1.

We need the following technical lemma.

Lemma 5.1 There exists C 2R such that for every p 2 S we haveZ
Sn�1

1

d..p; x//
dx � C:

Proof It can be easily seen using polar coordinates that there exists C 0 such that for
every p 2D2, where D2 is the euclidean disc,Z

D

1

jp�xj
dx < C 0:

Since such C 0 exists for a disc, we have a similar bound for every compact surface S :
for every p 2 S Z

S

1

dg.p; x/
dx < C 0:

After integrating over all possible p 2 S (we assume area.S/D 1),Z
S2

1

dg.p; x/
dp dx < C 0:

Algebraic & Geometric Topology, Volume 23 (2023)



A short proof that the Lp–diameter of Diff0.S; area/ is infinite 891

Let x D .x1; : : : ; xn�1/. Since d..p; x// is the minimum over .1=
p
2/dg.p; xi / for

i D 1; : : : ; n� 1 and .1=
p
2/dg.xi ; xj / for 1� i < j � n� 1,

1

d..p; x//
�

X
i

p
2

dg.p; xi /
C

X
i¤j

p
2

dg.xi ; xj /
:

ThusZ
Sn�1

1

d..p; x//
dx �

X
i

Z
Sn�1

p
2

dg.p; xi /
dxC

X
i¤j

Z
Sn�1

p
2

dg.xi ; xj /
dx

D .n� 1/

Z
S

p
2

dg.p; x/
dxC 1

2
n.n� 1/

Z
S2

p
2

dg.x1; x2/
dx1 dx2

�
p
2.n� 1/C 0C

n.n�1/
p
2

C 0 DW C:

Let � be the measure on Cn.S/ induced by the product metric gn. A diffeomorphism
f 2 Diff0.S; area/ defines a product diffeomorphism f� 2 Diff0.Cn.S/; �/. Namely,
for x D .x1; : : : ; xn/ 2 S

n we have f�.x/ D .f .x1/; : : : ; f .xn//. Thus we have a
product embedding Diff0.S; area/ ,! Diff0.Cn.S/; �/.

On Diff0.Cn.S/; �/ we consider the L1–norm defined by the metric gb and the mea-
sure �. Note that here we are in the case where gb and � are not compatible, that is,
the measure induced by gb and the measure � are different.

The following lemma provides a link between the L1–norm on Diff0.S; area/ and the
L1–norm on Diff0.Cn.S/; �/ defined above. Note that in the proof it is essential that
f preserves the area on S .

Lemma 5.2 The product embedding Diff0.S; area/ ,! Diff0.Cn.S/; �/ is Lipschitz,
ie there exists C such that l1.f�/� Cl1.f /.

Proof Let f 2 Diff0.S; area/ and let X W S ! TS such that X.x/ 2 Tf .x/S . For
x D .x1; : : : ; xn/ 2 Cn.S/ we define X�.x/D .X.x1/; : : : ; X.xn// 2 Tf�.x/Cn.S/.

The set
S

i;j Dij � S
n is of measure zero. This means that we can regard jX�.x/jgb

as a measurable function defined on Sn. Thus in what follows, we integrate jX�.x/jgb

over Sn with the product measure rather then over Cn.S/.

To prove the lemma it is enough to show that there exists C such that for every
f 2Diff0.S; area/ and every map X W S! TS such that X.x/ 2 Tf .x/S the following
inequality holds:

kX�k1 � CkXk1:

Algebraic & Geometric Topology, Volume 23 (2023)
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Recall that by definition kX�k1 D
R

Sn jX�.x/jgb
dx. We haveZ

Sn

jX�.x/jgb
dx D

Z
Sn

jX�.x/jgn

d.f�.x//
dx D

Z
Sn

p
jX.x1/j

2
g C � � �C jX.xn/j

2
g

d.f�.x//
dx

�

Z
Sn

jX.x1/jg C � � �C jX.xn/jg

d.f�.x//
dx D n

Z
Sn

jX.x1/jg

d.f�.x//
dx:

Since f� preserves the measure on Sn,Z
Sn

jX.x1/jg

d.f�.x//
dx D

Z
Sn

jX ıf �1.x1/jg

d.x/
dx

D

Z
S

jX ıf �1.x1/jg

�Z
Sn�1

1

d.x1; x/
dx

�
dx1

� C

Z
S

jX ıf �1.x1/jg dx1 (by Lemma 5.1)

D C

Z
S

jX.x1/jgdx1 D CkXk1:

6 Proof of the theorem

Theorem 1 Let .S; g/ be a compact surface (with or without boundary). Then for
every p � 1 the Lp–diameter of Diff0.S; area/ is infinite.

Proof By the Hölder inequality we can assume p D 1. Fix n > 3.

Let z D .z1; : : : ; zn/ 2 Cn.S/ and let Pn.S/ D �1.Cn.S/; z/ denote the pure braid
group on n strings. Suppose Ui � S are disjoint discs such that zi 2 Ui , then let
U D U1 �U2 � � � � �Un � Cn.S/.

Choose h 2 Pn.S/ and  a loop in Cn.S/ representing h. Let ft 2 Diff0.S; area/ for
t 2 Œ0; 1� be an isotopy such that .ft /� 2 Diff0.Cn.S/; �/ moves U all the way along
 and has properties (1) and (2) from the proof of Proposition 3.2. Let fh D f1.

It is convenient to imagine that ft moves Ui along the trajectory of zi given by  .
In fact, to construct ft satisfying the above properties for a general h 2 Pn.S/, it is
enough to do it for a given finite set of generators of Pn.S/ (or generators of the full
braid group Bn.S/). In [2] one can find a set of generators of Bn.S/ for which the
construction of ft is straightforward.

Recall that on Cn.S/ we consider the complete metric gb . By Lemma 4.3, the set
fh 2 �1.Cn.S// W l.h/ < rg is finite for every r and Pn.S/=Z.Pn.S// is infinite. It
follows from the proof of Proposition 3.2 that l1..fh/�/ can be arbitrarily large.
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Therefore, due to Lemma 5.2, l1.fh/ can be arbitrarily large. Thus the L1–diameter of
Diff0.S; area/ is infinite.
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