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Corneli Druţu University of Oxford
cornelia.drutu@maths.ox.ac.uk

Tobias Ekholm Uppsala University, Sweden
tobias.ekholm@math.uu.se

Mario Eudave-Muñoz Univ. Nacional Autónoma de México
mario@matem.unam.mx

David Futer Temple University
dfuter@temple.edu

John Greenlees University of Warwick
john.greenlees@warwick.ac.uk

Ian Hambleton McMaster University
ian@math.mcmaster.ca

Hans-Werner Henn Université Louis Pasteur
henn@math.u-strasbg.fr

Daniel Isaksen Wayne State University
isaksen@math.wayne.edu

Christine Lescop Université Joseph Fourier
lescop@ujf-grenoble.fr

Robert Lipshitz University of Oregon
lipshitz@uoregon.edu

Norihiko Minami Nagoya Institute of Technology
nori@nitech.ac.jp

Andrés Navas Universidad de Santiago de Chile
andres.navas@usach.cl

Thomas Nikolaus University of Münster
nikolaus@uni-muenster.de

Robert Oliver Université Paris 13
bobol@math.univ-paris13.fr

Birgit Richter Universität Hamburg
birgit.richter@uni-hamburg.de

Jérôme Scherer École Polytech. Féd. de Lausanne
jerome.scherer@epfl.ch

Zoltán Szabó Princeton University
szabo@math.princeton.edu

Ulrike Tillmann Oxford University
tillmann@maths.ox.ac.uk

Maggy Tomova University of Iowa
maggy-tomova@uiowa.edu

Nathalie Wahl University of Copenhagen
wahl@math.ku.dk

Chris Wendl Humboldt-Universität zu Berlin
wendl@math.hu-berlin.de

Daniel T. Wise McGill University, Canada
daniel.wise@mcgill.ca

See inside back cover or msp.org/agt for submission instructions.

The subscription price for 2023 is US $650/year for the electronic version, and $940/year (C$70, if shipping outside the US)
for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Algebraic & Geometric Topology is indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications
and the Science Citation Index.

Algebraic & Geometric Topology (ISSN 1472-2747 printed, 1472-2739 electronic) is published 9 times per year and continu-
ously online, by Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall
#3840, Berkeley, CA 94720-3840. Periodical rate postage paid at Oakland, CA 94615-9651, and additional mailing offices.
POSTMASTER: send address changes to Mathematical Sciences Publishers, c/o Department of Mathematics, University of
California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.

AGT peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2023 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/agt
mailto:etnyre@math.gatech.edu
mailto:kathryn.hess@epfl.ch
mailto:jeb2md@eservices.virginia.edu
mailto:cohf@math.rochester.edu
mailto:tara.brendle@glasgow.ac.uk
mailto:indira.chatterji@math.cnrs.fr
mailto:dranish@math.ufl.edu
mailto:cornelia.drutu@maths.ox.ac.uk
mailto:tobias.ekholm@math.uu.se
mailto:mario@matem.unam.mx
mailto:dfuter@temple.edu
mailto:john.greenlees@warwick.ac.uk
mailto:ian@math.mcmaster.ca
mailto:henn@math.u-strasbg.fr
mailto:isaksen@math.wayne.edu
mailto:lescop@ujf-grenoble.fr
mailto:lipshitz@uoregon.edu
mailto:nori@nitech.ac.jp
mailto:andres.navas@usach.cl
mailto:nikolaus@uni-muenster.de
mailto:bobol@math.univ-paris13.fr
mailto:birgit.richter@uni-hamburg.de
mailto:jerome.scherer@epfl.ch
mailto:szabo@math.princeton.edu
mailto:tillmann@maths.ox.ac.uk
mailto:maggy-tomova@uiowa.edu
mailto:wahl@math.ku.dk
mailto:wendl@math.hu-berlin.de
mailto:daniel.wise@mcgill.ca
http://dx.doi.org/10.2140/agt
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/
http://msp.org/
http://msp.org/


msp
Algebraic & Geometric Topology 23:3 (2023) 963–1054

DOI: 10.2140/agt.2023.23.963
Published: 6 June 2023

Projective naturality in Heegaard Floer homology

MICHAEL GARTNER

Let Man� denote the category of closed, connected, oriented and based 3–manifolds,
with basepoint preserving diffeomorphisms between them. Juhász, Thurston and
Zemke showed that the Heegaard Floer invariants are natural with respect to diffeo-
morphisms, in the sense that there are functors

HFı WMan�! F2ŒU �–Mod

whose values agree with the invariants defined by Ozsváth and Szabó. The invariant
associated to a based 3–manifold comes from a transitive system in F2ŒU �–Mod
associated to a graph of embedded Heegaard diagrams representing the 3–manifold.
We show that the Heegaard Floer invariants yield functors

HFı WMan�! Trans.P .ZŒU �–Mod//

to the category of transitive systems in a projectivized category of ZŒU �–modules. In
doing so, we will see that the transitive system of modules associated to a 3–manifold
actually comes from an underlying transitive system in the projectivized homotopy
category of chain complexes over ZŒU �–Mod. We discuss an application to involutive
Heegaard Floer homology, and potential generalizations of our results.

57M27, 57R58

1 Introduction

The Heegaard Floer invariants associated to closed, oriented 3–manifolds were defined
in the work of Ozsváth and Szabó [11]. There it was shown that to each such 3–manifold,
one can associate an isomorphism class of ZŒU �–module. Furthermore, cobordisms
between 3–manifolds were shown to induce maps between the invariants; see Ozsváth
and Szabó [14]. However, there was a gap in the proof of the naturality of these maps.
Showing that these invariants are natural with respect even to diffeomorphisms is subtle,
and involves detailed consideration of the dependence of the invariants on the choices
of Heegaard data, basepoints and embeddings of Heegaard diagrams involved in their
construction.

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution
License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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964 Michael Gartner

These subtleties were studied extensively by Juhász, Thurston and Zemke in [5]. There
they explicated a particular type of loop of Heegaard moves, simple handleswaps, which
previous work did not preclude from potentially yielding monodromy in the Heegaard
Floer invariants. Moves analogous to these simple handleswap moves were previously
studied in detail and suggested as possible candidates for loops with monodromy in
the work of Sarkar; eg in [18]. Through a careful analysis of a space of embedded
Heegaard diagrams, Juhász, Thurston and Zemke exhausted all possible monodromies
and obstructions to the Heegaard Floer assignments being natural with respect to
diffeomorphisms, and were then able to provide a minimal set of requirements which
could be checked to verify such naturality. They then checked that these requirements are
satisfied for all variants of Heegaard Floer homology with coefficients in F2. By building
on the work in [14] and [5], Zemke described in [20] the dependence of the cobordism
maps defined in [14] on basepoints. Using this dependence, Zemke completed the
verification of the fact that the cobordism maps are in fact natural (over F2) with respect
to composition of cobordisms (when the cobordisms are appropriately decorated with
graphs).

In this paper we explain the necessary modifications that must be made to obtain
naturality with respect to diffeomorphisms of all variants of Heegaard Floer homology,
but with coefficients in Z. The most immediate goal of our work is simply to fill a gap
in the literature. We hope this will be useful both as a resource for nonexperts who aim
to understand Heegaard Floer homology itself, and as groundwork which can be used
to better understand other invariants associated with Heegaard Floer homology. For
example, the contact invariants defined by Ozsváth and Szabó in [13] have proven to
be extremely effective in detecting subtle contact properties, and both their definition
and many of their applications require the ability to nail down particular elements in
the modules HFı, and the ability to effectively compare two such elements in the
same module. We also note that the results in [5] and the analogous integral results
presented here are necessary steps for establishing naturality of the integral Heegaard
Floer invariants with respect to cobordisms.

1.1 Statement of main results

In order to study naturality of many flavors of Heegaard Floer homology and knot
Floer homology simultaneously, Juhász, Thurston and Zemke work with sutured 3–
manifolds. They consider a graph G which encodes the combinatorial structure of a
space of sutured Heegaard diagrams related by certain Heegaard moves. Roughly, the

Algebraic & Geometric Topology, Volume 23 (2023)



Projective naturality in Heegaard Floer homology 965

vertices of G correspond to isotopy diagrams of sutured manifolds, and between any
two such isotopy diagrams there are edges which describe whether they are related
by any of the standard Heegaard moves, or additionally whether they are related by
a diffeomorphism. The graph G contains many sutured isotopy diagrams which are
not relevant to the consideration of closed 3–manifolds, so in considering the closed
3–manifold invariants HFı attention is restricted to a subgraph G.Sman/. This is the
full subgraph of G whose vertices consist only of those isotopy diagrams representing
sutured manifolds which can be constructed from a closed 3–manifold in a prescribed
way. Since we are only concerned with results regarding closed 3–manifolds in this
paper, we will minimize the role of sutured manifolds, and phrase our results in terms
of a graph which is isomorphic to G.Sman/ which we denote by Gman. This graph has
vertices corresponding to isotopy diagrams of closed, pointed 3–manifolds, where
the isotopies are required to be supported away from the basepoint. Edges in Gman

correspond to sequences of handleslides, stabilizations and diffeomorphisms.

To study naturality using these graphs, we consider the two notions of a Heegaard
invariant introduced in [5]. The first, a weak Heegaard invariant valued in a category C,
is simply a morphism of graphs from Gman to C under which all edges in the domain get
mapped to isomorphisms. In this language, we can summarize one of the invariance
results shown in [11] as stating that the morphisms of graphs

HFı WGman! C

for C D ZŒU �–Mod or C D F2ŒU �–Mod determined by Heegaard Floer homology are
weak Heegaard invariants. The second notion, that of a strong Heegaard invariant,
serves as a minimal set of conditions which are needed to ensure that a weak Heegaard
invariant yields a natural invariant of the underlying 3–manifolds; precisely, the authors
show that the image of a strong Heegaard invariant HFı WGman!C, when appropriately
restricted, forms a transitive system in C. This step occupies a majority of the work
in the paper, and none of the results in this step depend on the target category C. The
authors then prove that, in the case when C D F2ŒU �–Mod, such a transitive system
yields a functor

HFı WMan�! F2ŒU �–Mod:

Finally, they establish that HFı W Gman ! F2ŒU �–Mod is in fact a strong Heegaard
invariant, completing their proof that the invariants HFı yield functors from Man� to
F2ŒU �–Mod.

Algebraic & Geometric Topology, Volume 23 (2023)



966 Michael Gartner

Our main goal here is to establish similar results for C D P .ZŒU �–Mod/, the quotient
category obtained from ZŒU �–Mod by the relation f ��f for all f 2 HomZŒU �–Mod.
Said simply, we want to show that naturality holds over Z, up to a sign. We will
consider a category Trans.P .ZŒU �–Mod// of transitive systems in P .ZŒU �–Mod/, and
our main result will be:

Theorem 1.1 There are functors

bHF ;HF�;HFC;HF1 WMan�! Trans.P .ZŒU �–Mod//

whose values on a based 3–manifold .Y; z/ are isomorphic to the modules defined
in [11]. Furthermore , isotopic diffeomorphisms have the same image under HFı.

Remark 1.2 The finite-rank variant HFred of Heegaard Floer homology defined in [11,
Definition 4.7] arises as a suitable quotient (or submodule) of HF˙, and Theorem 1.1
implies that this variant also yields a functor HFred WMan�! Trans.P .ZŒU �–Mod//.

We will import wholesale the logical structure of [5] used to prove the analog of
Theorem 1.1 appearing there. It will therefore suffice to show that

HFı W Gman! P .ZŒU �–Mod/

is a strong Heegaard invariant. We will in fact show something slightly stronger. Let
Kom.ZŒU �–Mod/ denote the homotopy category of chain complexes over ZŒU �–Mod,
and, as described above, let P .Kom.ZŒU �–Mod// denote the projectivization of this
category. Finally, let Trans

�
P .Kom.ZŒU �–Mod//

�
denote the category of transitive sys-

tems in P .Kom.ZŒU �–Mod//. We will unpack the precise meaning of these categories
in Section 4. A majority of the paper will be occupied with showing:

Theorem 1.3 The morphisms

bCF ;CF�;CFC;CF1 W Gman! Trans
�
P .Kom.ZŒU �–Mod//

�
are strong Heegaard invariants.

While proving Theorem 1.3 we will show the analogous result holds on the level of
homology:

Corollary 1.4 The morphisms

bHF ;HF�;HFC;HF1 W Gman! P .ZŒU �–Mod/

are strong Heegaard invariants.

Algebraic & Geometric Topology, Volume 23 (2023)



Projective naturality in Heegaard Floer homology 967

We will establish Theorem 1.3 in Sections 7 and 8. We will also obtain from Theorem 1.3
the following statement about the constituent chain complexes.

Corollary 1.5 Given a closed , connected , oriented and based 3–manifold .Y; z/ and
a Spinc–structure s over Y , the ZŒU �–module chain complexes CFı.H; s/, ranging
over all strongly s–admissible embedded Heegaard diagrams H for .Y; z/, fit into a
transitive system of homotopy equivalences in P .Kom.ZŒU �–Mod// with respect to
the maps induced by sequences of pointed handleslides , stabilizations , isotopies , and
diffeomorphisms of Heegaard surfaces which are isotopic to the identity in Y .

Remark 1.6 The Heegaard Floer invariants arise as direct sums of invariants

HFı.Y; z/D
M

s2Spinc.Y /

HFı.Y; z; s/

associated to triples .Y; z; s/ for s 2 Spinc.Y /. All of the main results have refined
statements regarding these invariants of .Y; z; s/. Theorem 1.3 and Corollaries 1.4
and 1.5 also depend on choices of coherent orientation systems, which we omit from
the statements here. For now, we note that all of the results above hold in particular
for the Heegaard Floer chain complexes defined with respect to the canonical coherent
orientation systems constructed by Ozsváth and Szabó in [10]. The precise conditions
required of the coherent orientation systems implicitly appearing in the results above
will be specified in Definition 6.14.

1.2 Further directions and applications

We now point out some applications and potential generalizations of our results. Given
two based 3–manifolds .Y1; z1/ and .Y2; z2/, a cobordism W between them decorated
with a choice of path in W from z1 to z2, and a choice of t 2 Spinc.W /, Ozsváth and
Szabó constructed in [14] cobordism maps

FıW ;t WHFı.Y1; z1; tjY1
/!HFı.Y2; z2; tjY2

/:

(The choice of path is not made explicit in [14]). In [20], Zemke extended the results
in [5] to show that over F2 these maps are well defined and natural with respect to
composition of decorated cobordisms. We expect that our results can be used in a
similar way to establish such naturality over Z, up to an overall sign. Furthermore,
in [14], Ozsváth and Szabó showed how naturality of the Heegaard Floer invariants with
respect to decorated cobordisms can be used to define the so called mixed invariants of

Algebraic & Geometric Topology, Volume 23 (2023)



968 Michael Gartner

closed 4–manifolds. Given a closed 4–manifold X and a choice of t 2 Spinc.X /, these
take the form of maps

ˆX ;t Wƒ
�.H1.X IF2/=Tors/˝F2

F2ŒU �! F2:

These share many of the features of the Seiberg–Witten invariants, and serve as powerful
tools in detecting subtle smooth information. If one can establish naturality with respect
to cobordisms over Z=˙, we would obtain corresponding mixed invariants

ˆX ;t Wƒ
�.H1.X IZ/=Tors/˝Z ZŒU �! Z=˙

which we expect would provide fruitful extra information. In fact, before the gap in the
literature was noticed, the integral mixed invariants had already been extensively studied
in papers including Jabuka and Mark [4], Ozsváth and Szabó [12] and Roberts [16], so
establishing naturality with respect to cobordisms over Z would immediately prove
useful, and would likely also be useful for computations and applications in the future.

A second application of our work comes from involutive Heegaard Floer homology,
defined by Hendricks and Manolescu in [3]. To describe it, fix a closed 3–manifold Y

and s2 Spinc.Y /. Given a pointed Heegaard diagram HD .†;˛;ˇ; z/ for .Y; z/, there
is a conjugate diagram HD .�†;ˇ;˛; z/ for .Y; z/ given by reversing the orientation
on the surface and switching the role of the ˛ and ˇ curves. Under suitable admissibility
hypotheses, there is a chain isomorphism

�H!H W CFı.H; s/! CFı.H; Ns/

given by mapping intersection points to themselves [10, Theorem 2.4]. Note that the
role of coherent orientations here is not yet relevant, as Hendricks and Manolescu
work over F2. Using the results in [5], Hendricks and Manolescu showed that the F2

analog of Corollary 1.5 holds: the modules CFı.H; s/ fit into a transitive system in
the homotopy category of chain complexes of F2ŒU �–modules with respect to the maps
induced by the Heegaard moves appearing in Corollary 1.5. Thus, since H and H
represent the same 3–manifold, there is a chain homotopy equivalence

ˆ.H;H/ W CFı.H; Ns/! CFı.H; Ns/

of complexes of F2ŒU �–modules which is well defined up to homotopy. Using these
maps, they consider the map � W D ˆ.H;H/ ı �H!H, which is well defined up to
homotopy, and which is shown to be a homotopy involution in [3, Lemma 2.5]. They
then use it to construct an invariant of Y as follows.

Algebraic & Geometric Topology, Volume 23 (2023)



Projective naturality in Heegaard Floer homology 969

There is a Z=2Z action on Spinc.Y / given by conjugation. Let ŒSpinc.Y /� denote the
set of orbits in Spinc.Y / under this action. Given an orbit x! 2 ŒSpinc.Y /�, let

CFı.H; x!/D
M
s2x!

CFı.H; s/:

The authors investigate the map .1C �/, considered as a chain map between complexes
of F2ŒU �–modules, and consider its cone

CFI.H; x!/ WDCone.1C �/D
�

CFı.H; x!/Œ�1�˚CFı.H; x!/; @coneD

�
@ 0

1C � �@

��
:

Here CFı.H; x!/Œ�1� indicates the shifted chain complex, whose degree n piece is
given by .CFı.H; x!/Œ�1�/n D CFı.H; x!/n�1. They then introduce a formal variable
Q of degree �1 satisfying Q2 D 0, and rewrite the map being coned over as

CFı.H; x!/ Q�.1C�/
�����!Q �CFı.H; x!/Œ�1�:

As one can readily check, the cone and its differential can then be rewritten as

(1) Cone.1C �/D
�
CFı.H; x!/Œ�1�˝F2ŒQ�=.Q

2/; @CQ.1C �/
�
:

Considered in this way, it is a complex of modules over the ring RD F2ŒQ;U �=.Q
2/.

The authors then show that the quasi-isomorphism class of the complex CFI.H; x!/ of
R–modules thus defined is an invariant of .Y; x!/.

We now explain how Corollary 1.5 can be used to construct a version of such an
invariant defined over Z. Before doing so, we make a remark on the reliance of the
following discussion on orientation systems.

Remark 1.7 First we note that the proof establishing that � is an isomorphism given in
[10, Theorem 2.4] implicitly proves the statement with respect to an arbitrary coherent
orientation system o over the domain H and, ostensibly, the same coherent orientation
system over the codomain H (the use of the word same makes sense because the
underlying diagrams for the domain and codomain of � are the same aside from
labeling and orientations). However, to avoid this consideration we will simply focus
attention here on the case where both diagrams are equipped with canonical orientation
systems, as defined in [10]. We note that the maps ˆ take canonical orientation systems
to canonical orientation systems, since more generally any sequence of maps induced
by Heegaard moves takes a canonical orientation system to a canonical orientation
system. This follows from the facts that Heegaard moves induce module isomorphisms
on the totally twisted module HF1— see [10, Section 8] — and that the canonical
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970 Michael Gartner

orientation system on a diagram can be characterized by the isomorphism type of
HF1; see [10, Theorem 10.12]. Similarly, the isomorphism � can be defined with
respect to canonical orientation systems on both diagrams. Indeed, since the proof of
[10, Theorem 2.4] also shows that the map � yields an isomorphism between the totally
twisted module HF1 associated to a diagram equipped with the canonical orientation,
and the totally twisted module associated to the reversed diagram equipped with the
induced orientation system, the induced orientation system in this case must be the
canonical one. With these remarks in mind, we will omit all reference to coherent
orientation systems from our notation and description; all remarks in the remainder of
the description of this application apply only to the canonical orientation systems.

Fix again a 3–manifold Y , and diagrams H and H representing Y as above. Since H
and H represent the same 3–manifold, we obtain from Corollary 1.5 (at most) two
homotopy classes of chain homotopy equivalences

˙‰.H;H/ W CFı.H; Ns/! CFı.H; Ns/

associated to sequences of Heegaard moves relating the two diagrams. The set
f˙‰.H;H/g is well defined up to chain homotopy. We thus obtain two homotopy
classes of maps˙� WD˙‰.H;H/ı�H!H. The same argument used in [3, Lemma 2.5]
to show that � is a homotopy involution over F2 now shows that ˙� both have order at
most 4 (up to homotopy) over Z. We define

CFI˙.H; x!/ WD Cone.1˙ �/;

where now both complexes are considered as complexes of ZŒU �–modules. While we
can no longer conclude the maps ˙� are homotopy involutions, we still obtain that the
collection of the two quasi-isomorphism classes of the complexes of ZŒU �–modules
that we obtain is an invariant of the underlying 3–manifold.

Theorem 1.8 With respect to the canonical orientation systems of [10], the unordered
pair of quasi-isomorphism classes determined by the complexes

CFI˙.H; x!/

(considered as complexes of ZŒU �–modules) is an invariant of .Y; x!; z/.

Proof The proof is essentially the same as that in [3], but we include a sketch of it
here for the reader’s convenience.

Algebraic & Geometric Topology, Volume 23 (2023)



Projective naturality in Heegaard Floer homology 971

Fix .Y; z; x!/, and consider a diagram H and its conjugate H as above. As we noted
earlier, for the fixed diagram H the collection of the two chain homotopy equivalences
f˙‰.H;H/g is well defined up to chain homotopy by Corollary 1.5. Thus so too is the
collection f˙�g. We conclude that the set of the two cones fCFI˙.H; x!/g associated
to .H; x!/ is well defined up to chain homotopy equivalence.

Next, we consider the dependence on the choice of diagram. Consider a differ-
ent diagram H0 for .Y; z/ and its conjugate H0. We obtain corresponding collec-
tions f˙‰.H0;H0/g and f˙�0g which are both well defined up to homotopy, and
fCFI˙.H0; x!/g well defined up to homotopy equivalence. Choose some fixed se-
quence of Heegaard moves connecting H to H0, and consider either of the (at most two)
corresponding chain homotopy equivalences ˙‰.H;H0/ furnished by Corollary 1.5.
We denote our choice by ‰.H;H0/. Consider the diagram, involving the four cone
complexes in question,

(2)

CFı.H; x!/Œ�1� CFı.H; x!/

CFı.H0; x!/Œ�1� CFı.H0; x!/

1˙�

‰.H;H0/ ‰.H;H0/

1˙�0

We claim that for a fixed choice in f˙�g, the diagram commutes up to homotopy for
at least one of the two choices in f˙�0g. We denote our choice of the fixed homotopy
class in the top row by �. To establish the claim, we need to show that

‰.H;H0/ ı‰.H;H/ ı �H!H �˙‰.H
0;H0/ ı �H0!H0 ı‰.H;H

0/:

We note that
�H0!H0 ı‰.H;H

0/ ı �H!H �˙‰.H;H
0/:

To see this, observe that ‰.H;H0/ is a map induced by some sequence of Heegaard
moves. The map resulting from precomposing and postcomposing this map with
the isomorphisms � can be realized as the map induced on CFı.H/ by the same
set of Heegaard moves giving rise to ‰.H;H0/ (recall the maps � have no effect
on the attaching curves). Thus the conjugated map is homotopic to ˙‰.H;H0/ by
Corollary 1.5. We thus conclude that

‰.H0;H0/ ı �H0!H0 ı‰.H;H
0/�˙‰.H0;H0/ ı‰.H;H0/ ı �H!H

�˙‰.H;H0/ ı‰.H;H/ ı �H!H

where the last two maps being homotopic up to a sign is also guaranteed by Corollary 1.5.
Having established that the diagram with � in the top row commutes up to chain
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972 Michael Gartner

homotopy for at least one choice of f˙�0g in the bottom row, the argument in [3] now
applies directly to establish that Cone.1C �/ is quasi-isomorphic to at least one of the
cones Cone.1˙ �0/. This concludes the proof.

In the case of rational homology three-spheres, the pair of quasi-isomorphism classes
in Theorem 1.8 can actually be distinguished from one another to furnish two distinct
invariants.

Corollary 1.9 Let Y be a rational homology three sphere. One can specify the maps �
so that , with respect to the canonical orientation systems of [10], the quasi-isomorphism
classes determined by

CFIC.H; x!/ and CFI�.H; x!/

(considered as complexes of ZŒU �–modules) are each invariants of .Y; x!; z/.

Proof Since Y is a rational homology three sphere, for each s 2 Spinc.Y / we have

HF1.Y; s/Š ZŒU;U�1�

as ZŒU �–modules by [10, Theorem 10.1].

Consider first the case of a Z=2Z–invariant spinc structure. For each such spinc

structure s, the maps ˙� are homotopy equivalences, so induce graded module iso-
morphisms on HF1.Y; s/. Since HF1.Y; s/ Š ZŒU;U�1� there are precisely two
such morphisms: ˙Id. For each Z=2Z–invariant s, choose � to be the map which
induces �Id on HF1.Y; s/. This can be accomplished for all invariant spinc structures
even with a fixed choice of sign on each map ‰.H;H/, by altering the signs of the
maps � when necessary. Then the proof of Theorem 1.8 carries over directly to show
the quasi-isomorphism class determined by

CFIC.H; fsg/

is an invariant of .Y; s; z/. One must only note that the diagram (2) commutes with no
sign ambiguity for � and �0 specified by our definition. Indeed, the proof of Theorem 1.8
shows that the diagram commutes with 1C � on top for one of 1˙ �0 on the bottom,
but the diagram could not even commute at the level of homology if � induced �Id and
�0 induced Id. By the same argument,

CFI�.H; fsg/
also yields an invariant.
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Next consider a Z=2Z–orbit x! D fs; Nsg coming from a pair of noninvariant spinc

structures. We have two homotopy equivalences, �s!Ns W CFı.H; s/! CFı.H; Ns/ and
�Ns!s W CFı.H; Ns/! CFı.H; s/. The total map

.1C �/ W CFı.H; s/˚CFı.H; Ns/! CFı.H; s/˚CFı.H; Ns/

takes the form
.x;y/ 7! .xC �Ns!s.y/;yC �s!Ns.x//:

Define the signs on these maps such that �Ns!s ı �s!Ns induces Id on HF1.Y; s/ and
�s!Nsı�Ns!s induces Id on HF1.Y; Ns/. As above, the choice of signs can be incorporated
into the definition of the maps �. The proof of Theorem 1.8 again shows this gives a
well defined invariant

CFIC.H; x!/:

Similarly, the choice where �s!Ns ı �Ns!s and �Ns!s ı �s!Ns both induce �Id gives a well
defined invariant

CFI�.H; x!/:

Remark 1.10 The two rational homology sphere invariants given in Corollary 1.9
give rise to distinct involutive Heegaard Floer homologies HFI1.Y; x!/. Namely, one
can compute that

HFI1C .Y; x!/Š ZŒU;U�1;Q�=.Q2/

while
HFI1� .Y; x!/Š Z=2ZŒU;U�1�:

To see this, consider the short exact sequence of chain complexes that results from the
definition of CFI1.Y; x!/D Cone.1C �/,

0! CF1.H; x!/ i
�! CFI1.Y; x!/

p
�! CF1.H; x!/! 0:

This gives rise a to a long exact sequence in homology

� � �
p�
�!HF1.Y; x!/

ı
�!HF1.Y; x!/

i�
�!HFI1.Y; x!/

p�
�!HF1.Y; x!/

ı
�!HF1.Y; x!/

i�
�! � � �

for which the connecting morphism ı is precisely the induced map .1C �/�.

Consider first the case of invariant spinc structures. When � is chosen such that
.1C �/� D 0, we get a split short exact sequence, so

HFI1C .Y; fsg/ŠHF1.Y; s/˚HF1.Y; s/Š ZŒU;U�1�˚ZŒU;U�1�:
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Tracing through the identification analogous to that in (1), this gives

HFI1C .Y; fsg/Š ZŒU;U�1;Q�=.Q2/

as a module over ZŒQ;U;U�1�=.Q2/. When � is chosen such that ı D .1C �/� D 2,
we instead obtain

HFI1� .Y; fsg/ŠCoker.ı/˚Ker.ı/ŠHF1.Y; s/=2 �HF1.Y; s/ŠZ=2ZŒU;U�1�:

Here HFI1� .Y; s/ is a ZŒQ;U;U�1�=.Q2/–module where Q acts by zero.

In the case of noninvariant spinc structures, we can use �s!Ns to identify

HF1.Y; s/ŠHF1.Y; Ns/

and consider the map

� WHF1.Y; s/˚HF1.Y; s/!HF1.Y; s/˚HF1.Y; s/

defined by the composition � D .1˚ .�s!Ns/�1/ ı .1C �/ ı .1˚ �s!Ns/. More explicitly,

�.x;y/D .xC �Ns!s ı �s!Ns.y/; .�s!Ns/
�1
ı �s!Ns.xCy//:

For CFI1C , we defined the constituent maps such that �Ns!s ı �s!Ns induces Id, so this
becomes

�.x;y/D .xCy;xCy/

and
HFI1C .Y; fs; Nsg/Š Coker.ı/˚Ker.ı/Š ZŒU;U�1�˚ZŒU;U�1�:

For CFI1� , we defined the constituent maps such that �Ns!s ı �s!Ns induces �Id, so this
becomes

�.x;y/D .x�y;xCy/

and
HFI1� .Y; fs; Nsg/Š Coker.ı/˚Ker.ı/Š Z=2ZŒU;U�1�:

The claimed structures as modules over ZŒQ;U;U�1�=.Q2/ follows as above.

Remark 1.11 It is plausible that Corollary 1.9 actually extends to the general case
of closed, connected, oriented 3–manifolds. To specify an individual invariant in this
general case would require a method by which one could naturally make a choice for
signs on �. An approach here would be to make an argument like the one in the proof
of Corollary 1.9, but by taking advantage of the standard form for the totally twisted
module HF1.Y /, rather than the standard form for HF1.Y / for rational homology
spheres. Indeed, by [10, Theorem 10.12] the totally twisted module associated with any
Spinc structure is isomorphic to ZŒU;U�1� (as a ZŒU;U�1�–module). Using this fact,
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one could presumably again pick out particular models for CFIC and CFI�. What
would remain to be shown is that there are analogs to Theorem 1.1 and Corollary 1.5
for the totally twisted complexes, and that these results could be used to carry over the
argument used in the proof of Theorem 1.8. We expect that the main results in this
paper do carry over to the totally twisted complexes, but we leave investigation of this
subtlety to the interested reader.

1.3 Organization of the paper

We begin in Section 2 by recalling the notion of sutured 3–manifolds and sutured
Heegaard diagrams, as all of the results in [5] are phrased in this setting. We discuss a
correspondence between sutured and closed 3–manifolds, and use the correspondence to
translate a graph of sutured diagrams central to the setting of [5] into an equivalent graph
of closed diagrams which we use throughout the remainder of the paper. In Section 3
we introduce and rephrase the notions of weak and strong Heegaard invariants defined
in [5]. Section 4 deals with setting up the algebraic framework in which our main
results are phrased, and in particular includes the definitions of the projectivizations
and categories of transitive systems appearing in Theorems 1.1 and 1.3. In Section 5,
we deduce Theorem 1.1 and Corollary 1.5 from Theorem 1.3 and Corollary 1.4. In
Sections 6 and 7 we recall the constructions involved in defining the integral Heegaard
Floer chain complexes, and establish that these constructions yield suitably defined
weak Heegaard invariants. In Section 7, we check that these weak Heegaard invariants
satisfy all but one of the axioms required of a strong Heegaard invariant. In Section 8
we carry out the main work and establish that these weak Heegaard invariants also
satisfy the last axiom, known as simple handleswap invariance. Finally, in Section 9 we
explain that the construction of the surgery exact triangle works without modification
in our setting.
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2 Background

In order to introduce notation and terminology for the remainder of the paper, we give
a quick summary of some relevant background on sutured manifolds and Heegaard
diagrams. To unify the approach, the results in [5] are most often phrased in terms
of sutured manifolds. Since we are interested here in the closed variants of Heegaard
Floer homology, we will set up some background in order to be able to rephrase the
results we use from [5] in language more typically used for the closed invariants.

To begin, we will describe how moves on sutured Heegaard diagrams relate to the
typical Heegaard moves one considers on Heegaard diagrams for closed 3–manifolds.
Next we will recall the definition of the graph of sutured isotopy diagrams G.Sman/

introduced in Section 1, and describe an isomorphism to a graph Gman of closed isotopy
diagrams which we will consider instead of G.Sman/ throughout the remainder of the
paper. We refer the reader to [5, Section 2.1] for a more detailed treatment of all of the
background in this section.

2.1 Background on sutured manifolds

In this paper we will be concerned primarily with closed 3–manifolds, but we will need
to refer to numerous results about sutured 3–manifolds along the way. In particular,
our results depend on notions of sutured 3–manifolds, sutured diagrams and embedded
sutured diagrams for such manifolds, various notions of equivalence of such diagrams,
and sutured Heegaard moves. While these notions may be standard, some inequivalent
definitions certainly exist, so we explicitly refer the reader to [5] for background on the
definitions we will use throughout this paper. We note that the sutured Heegaard moves
play a role analogous to that of pointed Heegaard moves on Heegaard diagrams for
closed 3–manifolds. There are moves called ˛ and ˇ equivalences (which correspond
to sequences of handleslides), as well as stabilizations and destabilizations, isotopies,
and diffeomorphisms. Finally, we note that by restricting attention to the isotopy class
of attaching curves on a diagram, one obtains a well-defined notion of a sutured isotopy
diagram, and one can make sense of sutured Heegaard moves considered as moves on
the isotopy diagrams (eg there is a well-defined notion of a diffeomorphism of isotopy
diagrams). We again refer the reader to [5] for the relevant definitions of such sutured
Heegaard moves; the main relevance here will be their relation to Heegaard moves on
diagrams for closed 3–manifolds.
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2.2 A correspondence between closed and sutured manifolds

Our goal in this paper is to ultimately establish facts about the Heegaard Floer invariants
for closed 3–manifolds, so we need a way to translate between sutured and closed
manifolds in the cases of interest. Furthermore, certain properties of this correspondence
are needed to ensure that the techniques used to obtain functoriality in [5] which we
import can be applied to the closed setting of interest here. For our purposes, it will be
sufficient to note that there is a correspondence between closed, oriented and based
3–manifolds and sutured manifolds, and that under this correspondence:

(1) Isotopies of attaching curves in the sutured diagram yield pointed isotopies (ie
isotopies which do not cross the basepoint) of attaching curves in the closed
diagram.

(2) Diffeomorphisms of sutured isotopy diagrams yield pointed diffeomorphisms of
pointed closed isotopy diagrams.

(3) Stabilizations of sutured isotopy diagrams correspond to stabilizations of pointed
isotopy diagrams.

(4) Two sutured isotopy diagrams H1 D .†;˛1;ˇ1/ and H2 D .†;˛2;ˇ2/ are
˛–equivalent if and only if the curves ˛1 and ˛2 are related by a sequence of han-
dleslides in the corresponding pointed isotopy diagrams, where the handleslides
never cross the basepoint. The analogous statement holds for ˇ–equivalent
sutured isotopy diagrams.

Since these last sorts of equivalences will play a prominent role throughout the paper,
we use terminology introduced in [14] to describe them:

Definition 2.1 Given two closed, pointed Heegaard diagrams H1 D .†;˛1;ˇ1; z/

and H2 D .†;˛2;ˇ2; z/ we say they are strongly equivalent if they are related by
a sequence of isotopies and handleslides which do not cross the basepoint. If the
diagrams are related by a sequence of isotopies, and handleslides which occur only
among the ˛ curves, we say the diagrams are strongly ˛–equivalent. If the diagrams
are related by a sequence of isotopies, and handleslides which occur only among the ˇ
curves, we say the diagrams are strongly ˇ–equivalent.

2.3 Graphs of Heegaard diagrams

Following [5, Definition 2.22], construct a directed graph G as follows. The class of
vertices, jGj, of G is given by the class of isotopy diagrams of sutured manifolds. Given
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two isotopy diagrams H1;H2 2 jGj, the oriented edges from H1 to H2 come in four
flavors

G.H1;H2/D G˛.H1;H2/[Gˇ.H1;H2/[Gstab.H1;H2/[Gdiff.H1;H2/:

Here

(1) G˛.H1;H2/ consists of a single edge if the diagrams are ˛–equivalent;

(2) Gˇ.H1;H2/ consists of a single edge if the diagrams are ˇ–equivalent;

(3) Gstab.H1;H2/ consists of a single edge if the diagrams are related by a stabiliza-
tion or destabilization;

(4) Gdiff.H1;H2/ consists of a collection of edges, with one edge for each diffeo-
morphism between the isotopy diagrams.

We denote by G˛ , Gˇ , Gstab and Gdiff the subgraphs of G arising from only considering
the corresponding edges on the class of vertices jGj.

There is an analog of the Reidemeister–Singer theorem for sutured manifolds (applied
to sutured diagrams):

Proposition 2.2 [5, Proposition 2.23] Two isotopy diagrams H1, H2 2 jGj can be
connected by an oriented path in G if and only if they define diffeomorphic sutured
manifolds.

Remark 2.3 By the definition of G, if there is an unoriented path from H1 to H2 then
there is also an oriented path from H1 to H2.

Let S.H / denote the sutured manifold associated to the isotopy diagram H . Given any
set S of diffeomorphism types of sutured manifolds, denote by G.S/ the full subgraph
of G spanned by those isotopy diagrams H for which S.H / 2 S. For our purposes, the
case of interest will be S D Sman. This is the set of diffeomorphism types of sutured
manifolds which arise as the images of closed, oriented, based 3–manifolds under the
correspondence discussed above.

Let Gman be the oriented graph with vertices given by pointed isotopy Heegaard diagrams
of closed, connected 3–manifolds, and with the edges from an isotopy diagram H1 to
an isotopy diagram H2 given by

Gman.H1;H2/D G˛man.H1;H2/[Gˇman.H1;H2/[Gstab
man.H1;H2/[Gdiff

man.H1;H2/;

where:
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ˇ d

˛

˛˛

�

d �

d

Figure 1: An illustration of a small subgraph in Gman. The vertices are isotopy
diagrams, which in the picture are depicted by particular Heegaard diagrams
representing the isotopy class. We label each pair of edges with ˛, ˇ , �
or d according to whether the given pair of edges corresponds to a strong
˛–equivalence, a strong ˇ–equivalence, a stabilization/destabilization pair,
or a diffeomorphism pair, respectively. We use the convention that on each
Heegaard diagram the collection of red attaching curves is denoted ˛ while
the collection of blue attaching curves is denoted ˇ .

(1) G˛man.H1;H2/ consists of a single edge if the diagrams are strongly ˛–equivalent.

(2) Gˇman.H1;H2/ consists of a single edge if the diagrams are strongly ˇ–equivalent.

(3) Gstab
man.H1;H2/ consists of a single edge if the diagrams are related by a stabiliza-

tion or destabilization.

(4) Gdiff
man.H1;H2/ consists of a collection of edges, with one edge for each pointed

diffeomorphism between the isotopy diagrams.

We provide a sketch of a piece of the graph Gman in Figure 1. The following analog of
Proposition 2.2 holds in the closed and pointed setting.

Proposition 2.4 [11, Proposition 7.1] Two isotopy diagrams H1, H2 2 jGmanj can be
connected by an oriented path in Gman if and only if they define diffeomorphic pointed
manifolds.
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Finally we note that the preceding arguments specify an isomorphism of graphs

(3) T W G.Sman/! Gman

which we will use implicitly in the remainder of the paper to rephrase certain results
from [5] in terms of Gman.

3 Heegaard invariants

We now make precise two notions of what one might mean by a Heegaard invariant of
closed 3–manifolds. For the interested reader’s convenience, we note that the definitions
originally given in [5] apply to sutured manifolds and the graph G.Sman/. Instead, we
state here the equivalent definitions phrased in terms of closed manifolds and the
graph Gman.

Suppose we produce some assignment of algebraic objects to Heegaard diagrams
(the vertices of the graph Gman), and an assignment of maps between these algebraic
objects to each Heegaard move between two diagrams (the edges of Gman). Given
Proposition 2.4, the minimal requirement we should ask of such an assignment to
obtain an invariant of the underlying 3–manifold is for edges in Gman to be assigned
isomorphisms. Given any category C, we have:

Definition 3.1 (cf [5, Definition 2.24]) A weak Heegaard invariant of closed 3–
manifolds is a morphism of graphs F W Gman! C for which F.e/ is an isomorphism for
all edges e 2 Gman.

Of course, this level of invariance was established for Heegaard Floer homology at the
outset.

Theorem 3.2 [11] The morphisms

bHF ;HF�;HFC;HF1 W Gman! F2ŒU �–Mod

and
bHF ;HF�;HFC;HF1 W Gman! ZŒU �–Mod

are weak Heegaard invariants of closed 3–manifolds.

The above results also immediately yield:
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Corollary 3.3 The morphisms

HFı W Gman! P .ZŒU �–Mod/

are weak Heegaard invariants of closed 3–manifolds.

In Section 6 we will recall the definition of these morphisms of graphs precisely. In
particular, since the vertices of Gman are isotopy diagrams, we will need to explain the
meaning of HFı.H / when H is an isotopy diagram rather than a particular Heegaard
diagram representing the isotopy class.

Remark 3.4 For the reader referencing the corresponding results stated in [5], we
note that Theorem 3.2 is instead phrased as “HFı W G.Sman/! F2ŒU �–Mod are weak
Heegaard invariants” in [5, Theorem 2.26]. Of course, as they were originally defined,
HFı are invariants assigned to closed, pointed Heegaard diagrams; the meaning of
HFı.H / for H a sutured isotopy diagram in this statement is interpreted as follows.
Recall that vertices of G.Sman/ correspond to isotopy diagrams H of sutured manifolds
corresponding to closed, oriented 3–manifolds Y. Given an actual sutured diagram
HD .†;˛;ˇ/ (not up to isotopy) for such a 3–manifold, the boundary of the Heegaard
surface † is S1, so it can be capped off with a disk to obtain a closed surface † and a
pointed Heegaard diagram HD .†;˛;ˇ; z/ for Y , where the basepoint z is chosen to
lie in the disk. Thus, given a sutured diagram H representing the isotopy diagram H , we
define CFı.H/ WD CFı.H/. Finally, we will describe how the collection fCFı.H/g
gives rise to CFı.H / in Section 6.5. Equivalently, using the isomorphism of graphs T

specified in (3), the definitions above will amount to defining HFı.H / WDHFı.T .H //

for H a sutured isotopy diagram.

Let Man� be the category whose class of objects consists of closed, connected, oriented
and based 3–manifolds, and whose morphisms are basepoint preserving diffeomor-
phisms. In [11] and [14], significant progress was made towards showing that the
weak Heegaard invariants in the theorem above can in fact be assembled into functors
from Man� to F2ŒU �–Mod. However, there was a gap in the proof. In [5], the authors
carefully analyzed the dependence of such a result on the nature of embedded (versus
abstract) Heegaard diagrams, and basepoints, and set up a framework which allowed
them to finish this program. To do so, they introduced a stronger notion of a Heegaard
invariant which we now describe.
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To begin, we introduce some terminology for particular subgraphs in Gman (or more
generally in G) which will serve as minimal data on which this new notion of invariance
will rely.

Definition 3.5 [5, Definition 2.29] A distinguished rectangle is a subgraph of Gman

of the form
H1 H2

H3 H4

e

f g

h

which satisfies one of the following conditions.

(1) The arrows e and h are strong ˛–equivalences, and the arrows f and g are strong
ˇ–equivalences.

(2) The arrows e and h are either both strong ˛–equivalences or both strong ˇ–
equivalences, and the arrows f and g are stabilizations.

(3) The arrows e and h are either both strong ˛–equivalences or both strong ˇ–
equivalences, and the arrows f and g are diffeomorphisms. Furthermore, f D g.
(Note in this case †1 D†2, and †3 D†4, so this requirement makes sense.)

(4) All of the arrows e, f , g and h are stabilizations. Furthermore, there are
disjoint disks D1;D2 �†1 and disjoint punctured tori T1;T2 �†4 such that
†1n.D1[D2/D†4n.T1[T2/,†2D .†1nD1/[T1, and†3D .†1nD2/[T2.

(5) The arrows e and h are stabilizations, and the arrows f and g are diffeomor-
phisms. Furthermore, the diffeomorphism g is an extension of the diffeomor-
phism f in the following sense. There are disks D1 � †1, D3 � †3 and
punctured tori T2�†2, T4�†4 such that†1nD1D†2nT2,†3nD3D†4nT4,
f .D1/DD2, g.T3/D T4 and f j†1nD1

D gj†2nT2
.

We illustrate cases (4) and (5) schematically in Figures 2 and 3.

Definition 3.6 [5, Definition 2.31] A simple handleswap is a subgraph of Gman of
the form

H1

H3 H2

e
g

f

such that:
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D1

D2

T1

T2

T1

T2

f g

e

h

Figure 2: A schematic illustrating case (4) in the definition of a distinguished
rectangle. The blue regions indicate the identifications specified in case (4).
For ease of visualization, we suppress the attaching curve data in the initial
diagram and in the stabilizations.

(1) The isotopy diagrams Hi are given by Hi D .† #†0; Œ˛i �; Œˇi �/, where †0 is a
genus two surface.

(2) e is a strong ˛–equivalence, f is a strong ˇ–equivalence, and g is a diffeomor-
phism.

(3) In the punctured genus two surface P D .† # †0/ n †, the above triangle
is equivalent to the triangle in Figure 4 in the following sense. There are

D1

D3

T2

T4

f g

e

h

Figure 3: A schematic illustrating case (5) in the definition of a distinguished
rectangle. The blue regions indicate the identifications of the regions specified
in case (5). For ease of visualization, we suppress the attaching curve data in
each diagram.

Algebraic & Geometric Topology, Volume 23 (2023)



984 Michael Gartner

H1

H2

H3

e

f

g

˛1

˛2

ˇ1

ˇ2

˛01

ˇ0
1

F F

R R

F F

R R

F F

R R

Figure 4: The standard simple handleswap.

diffeomorphisms from P \Hi to the green disks labeled Hi in the figure, such
that the image of the ˛ curves are the red circles in the figures, and the image of
the ˇ curves are the blue circles in the figures.

(4) The diagrams H1, H2 and H3 are identical when restricted to †.

With these notions in hand, the stronger sense of invariance we will ask of our Heegaard
invariants is as follows.

Definition 3.7 [5, Definition 2.32] A strong Heegaard invariant of closed 3–manifolds
is a weak Heegaard invariant F W Gman ! C that additionally satisfies the following
axioms:

(1) Functoriality The restriction of F to G˛man, Gˇman and Gdiff
man are functors to C. If

e WH1!H2 is a stabilization and e0 WH2!H1 is the corresponding destabi-
lization, then F.e0/D F.e/�1.

(2) Commutativity For every distinguished rectangle in Gman,

H1 H2

H3 H4

e

f g

h

we have F.g/ ıF.e/D F.h/ ıF.f /.
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(3) Continuity If H 2 jGmanj and e 2 Gdiff
man.H;H / is a diffeomorphism isotopic

to Id†, then F.e/D IdF.H /.

(4) Handleswap invariance For every simple handleswap in Gman,

H1

H3 H2

e
g

f

we have F.g/ ıF.f / ıF.e/D IdF.H1/.

As we will summarize in Section 5, it was shown in [5] that for any weak Heegaard
invariant the axioms required above are sufficient to ensure the images of the invariant,
when restricted to a particular subgraph of Gman whose vertices represent a fixed 3–
manifold, form a transitive system in the given category. For certain categories C, this
in turn is enough to ensure that the assignments of the invariants can be understood as
a functor from an appropriate category of 3–manifolds.

4 Transitive systems of chain complexes and projectivization

In this section we describe the algebraic framework which will be necessary to phrase
our projective functoriality results. To begin with, we recall the following fundamental
notions.

Definition 4.1 A directed set .I;�/ is a set I together with a reflexive and transitive
binary relation �, such that for every pair of elements a; b 2 I there is an element c 2 I

with a� c and b � c.

Definition 4.2 Let C be a category, and .I;�/ be a directed set. Given a collection of
objects fOig in C indexed by I , and a collection of morphisms ffi;j WOi!Oj g for all
i; j 2 I with i � j , we say the collections are a transitive system in C (indexed by I ) if
they satisfy

(1) fi;i D IdOi
,

(2) fi;k D fj ;k ıfi;j .

We also have the following notion of morphisms between transitive systems.
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Definition 4.3 Given two transitive systems

T1 D fI1;�; fOig; ffi;j gg and T2 D fI2;�; fPig; fgi;j gg

in a category C, a morphism of transitive systems .M; fnig/ from T1 to T2 consists of
a map of directed sets M W I1! I2 and a collection of morphisms fni WOi! PM.i/g

in C such that for all i; j 2 I1 with i � j the squares

Oi PM.i/

Oj PM.j/

ni

fi;j gM.i/;M.j /

nj

commute in C. We denote the resulting category of transitive systems in C by Trans.C/.

Finally, given a transitive system in Trans.C/ indexed by J, we obtain what one might call
a two-dimensional transitive system. Such a two-dimensional transitive system naturally
has the structure of a transitive system in C indexed by I �J , where .i; j /� .i 0; j 0/ if
and only if i � i 0 and j � j 0.

We now explain how these notions will arise in the context of our results. We will
begin by considering the category Kom.ZŒU �–Mod/, the homotopy category of chain
complexes of ZŒU �–modules. To each pointed isotopy diagram H , corresponding to a
vertex of Gman, we will assign a transitive system CF�.H /2Trans.Kom.ZŒU �–Mod//.
To be more explicit about the nature of this construction and bridge the gap to the
language defined above, given an isotopy diagram H we consider the directed set
.I;�/ with I the set of Heegaard diagrams in the given isotopy class, and � the (in
this case trivial, equivalence) relation on the set indicating existence of an isotopy
between two elements. Then CF�.H / will be a transitive system in Kom.ZŒU �–Mod/
indexed by .I;�/, with the objects in the transitive system being the Heegaard Floer
chain complexes associated to individual diagrams in the fixed isotopy class, and the
morphisms in the transitive systems being certain continuation maps between such
complexes. The details of precisely how these assignments are made will be specified
throughout the course of Section 6. To a diffeomorphism, strong ˛–equivalence, strong
ˇ–equivalence, or stabilization between two such isotopy diagrams H1 and H2 we
will then associate a morphism of transitive systems from CF�.H1/ to CF�.H2/.
Together, these assignments will yield a morphism of graphs

CF� W Gman! Trans.Kom.ZŒU �–Mod//:
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This morphism of graphs may not be a strong Heegaard invariant. We will however
be able to establish that this morphism of graphs satisfies the axioms required of a
strong Heegaard invariant up to an overall sign in each of the axioms (2), (3) and (4)
appearing in Definition 3.7.

Equivalently, we will phrase this result in terms of an appropriate projectivization.
Recall that given any category C, with an equivalence relation � on every hom set
which furthermore respects composition, we may form the quotient category C D C=�.
This is the category whose objects are those of C, and whose morphisms are equivalence
classes of morphisms with respect to �. Given an additive category C, we define the
projectivization of C, P .C/, to be the quotient category of C with respect to the relation
f ��f for all morphisms f . The last statement in the preceding paragraph is then
given precisely by the following statement: considering now the category of transitive
systems in the projectivized homotopy category, Trans

�
P .Kom.ZŒU �–Mod//

�
, we will

show that the morphism of graphs above yields a strong Heegaard invariant

CF� W Gman! Trans
�
P .Kom.ZŒU �–Mod//

�
:

Remark 4.4 While the proliferation of transitive systems may seem undesirable, we
were unable to produce another framework in which our naturality results could be
phrased. There appear to be two issues that arise if one tries to use the same framework
developed in [5] to phrase our projective results.

The first issue comes from the fact that the statement in Theorem 1.3 is concerned
with the Floer chain complexes. If one wanted to dispense with the category of
transitive systems appearing in that statement, one would need to assign a single chain
complex CFı.H / of ZŒU �–modules to an isotopy diagram H . As we will recall in
the next section, what the Heegaard Floer construction actually produces for each
isotopy diagram H is a transitive system of chain homotopy equivalences between
chain complexes of ZŒU �–modules. In general, it is not clear how one should define an
object like a colimit of such a transitive system of chain complexes to obtain a single
chain complex. We note that it seems likely that this issue is in fact a nonissue, for the
following reason. We expect our transitive system of chain homotopy equivalences
is homotopy coherent in the sense of [19], which if true would allow one to define
a single chain complex CFı.H / via a homotopy colimit. Indeed, that our transitive
systems are homotopy coherent in this sense seems likely to follow from the results
in [1].
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However, even if one could assign to each isotopy diagram a single chain complex
CFı.H /, there is another key obstruction to phrasing Theorem 1.1 without the use of
transitive systems. In the proof of Theorem 1.1, which will be given in Section 5, we
will associate to each closed, pointed 3–manifold a transitive system in P .ZŒU �–Mod/.
The author is unaware of a notion of a colimit in P .ZŒU �–Mod/ which would allow
Theorem 1.1 to be stated without transitive systems, in such a way that it is also not
merely reduced to a statement about the F2 invariants.

5 Projective naturality from strong Heegaard Floer invariants

In this section we prove Theorem 1.1 assuming Corollary 1.4, which we will prove
in turn in Section 7. Our argument will follow the same logical structure as that used
to prove the analogous result over F2 appearing in [5, Theorem 1.5]. We provide the
argument here for the reader’s convenience, but note that the scheme is essentially the
same.

In [5] Juhász, Thurston and Zemke show that the images of any strong Heegaard
invariant, appropriately restricted, fit into a transitive system. To make this precise, we
introduce a few more definitions.

Definition 5.1 Suppose H1 and H2 are embedded isotopy diagrams for a closed,
oriented, pointed 3–manifold .Y; z/, with Heegaard surfaces

�1; �2 W .†1; z/; .†2; z/ ,! .Y; z/:

We say a diffeomorphism of isotopy diagrams d WH1!H2 is isotopic to the identity
in M if �2 ı d W†1! .Y; z/ is isotopic to �1 W†1! .Y; z/ relative to the basepoint.

Definition 5.2 Given .Y; z/, let .Gman/.Y;z/ be the following subgraph of Gman whose
vertices are embedded isotopy diagrams for .Y; z/. The edges e 2 .Gman/.Y;z/.H1;H2/

between two isotopy diagrams again come in four flavors,

.Gman/.Y;z/.H1;H2/D G˛man.H1;H2/[Gˇman.H1;H2/[Gstab
man.H1;H2/[ .Gdiff

man/
0.H1;H2/:

Here G˛man, Gˇman and Gstab
man are the same collections as in the definition of Gman, while

.Gdiff
man/

0.H1;H2/ consists of one edge for each element in the set of diffeomorphisms
from H1 to H2 which are isotopic to the identity in M .
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With these notions in hand, we have a stronger version of Proposition 2.4 which applies
now to embedded diagrams for some fixed .Y; z/:

Proposition 5.3 [5, Proposition 2.36] Given .Y; z/, any two vertices in the graph
.Gman/.Y;z/ can be connected by an oriented path in .Gman/.Y;z/.

The salient feature of a strong Heegaard invariant, F , is that the isomorphisms F.e/

associated to edges e in .Gman/.Y;z/ fit into a transitive system. This follows from the
fact that the isomorphism associated to a path depends only on the endpoints:

Theorem 5.4 [5, Theorem 2.38] Let F W Gman! C be a strong Heegaard invariant.
Given two isotopy diagrams H;H 0 2 j.Gman/.Y; z/j and any two oriented paths � and �
in .Gman/.Y; z/ from H to H 0, we have

F.�/D F.�/:

Now, for any two isotopy diagrams H and H 0, and an oriented path � from H to H 0,
we can define the map FH ;H 0 D F.�/.

Corollary 5.5 [5, Corollary 2.41] Suppose that H;H 0;H 00 2 j.Gman/.Y;z/j. Then

FH ;H 00 D FH 0;H 00 ıFH ;H 0 :

These results should provide some intuitive justification for the appearance of the notion
of a strong Heegaard invariant. At the very least, the notion is enough to ensure such
invariants fit into a transitive system. In particular, applying Corollary 5.5 to the strong
Heegaard invariants

CFı W Gman! Trans
�
P .Kom.ZŒU �–Mod//

�
of Theorem 1.3 immediately yields Corollary 1.5. We now show that this transitivity is
also enough for the functoriality ends we seek in Theorem 1.1.

Proof of Theorem 1.1 Assuming Corollary 1.4, the Heegaard Floer invariants

HFı W Gman! P .ZŒU �–Mod/

are strong Heegaard invariants. Let Man� be the category of closed, connected, oriented
and based 3–manifolds with based diffeomorphisms. Using the strong Heegaard
invariants above, we can obtain functors

HFı1 WMan�! Trans.P .ZŒU �–Mod//
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as follows. Given a manifold .Y; z/ 2 Ob.Man�/, Corollary 5.5 ensures that the
modules HFı.H / for isotopy diagrams H 2j.Gman/.Y;z/j, along with the isomorphisms
HFı

H ;H 0
, form a transitive system. We denote this transitive system by

HFı1 .Y; z/ 2 Trans.P .ZŒU �–Mod//:

To a pointed diffeomorphism � W .Y; z/ ! .Y 0; z0/, the functor HFı
1

will assign a
morphism of transitive systems

HFı1 .�/ WHFı1 .Y; z/!HFı1 .Y
0; z0/

defined as follows. Given any isotopy diagram H D .†;A;B; z/ for .Y; z/, let
�H D�j† and H 0 be the isotopy diagram �.H / for .Y 0; z0/. By virtue of being a strong
Heegaard invariant, HFı associates a morphism HFı.�H / WHFı.H /!HFı.H 0/

in P .ZŒU �–Mod/ to any such diffeomorphism of isotopy diagrams �H . The collection
of morphisms f�H g for H 2 j.Gman/.Y;z/j will thus yield a collection of morphisms
fHFı.�H /g. We claim that this collection of morphisms is in fact a morphism of
transitive systems

HFı1 .�/ WHFı1 .Y; z/!HFı1 .Y
0; z0/

as desired. According to Definition 4.3, we must check that for any path of edges 
 in
.Gman/.Y;z/ from H1 to H2, we have HFı.�H2

/ ıHFı.
 /DHFı.
 0/ ıHFı.�H1
/

for some path 
 0 in .Gman/.Y 0;z0/ from H 0
1

to H 0
2
. If 
 is given by the path of edges

D0
e1
�!D1

e2
�! � � �

en�1
��!Dn�1

en
�!Dn

in .Gman/.Y;z/ from D0 DH1 to Dn DH2, we pick out a path 
 0 in .Gman/.Y 0;z0/ from
H 0

1
to H 0

2
given by

D00
e0

1
�!D01

e0
2
�! � � �

e0
n�1
��!Dn�1

e0n
�!D0n

as follows. We define the intermediate isotopy diagrams in the path 
 0 by D0i D �.Di/.
If the edge ei is given by a strong ˛–equivalence, a strong ˇ–equivalence, or a
(de)stabilization, we let ei0 denote the corresponding strong ˛–equivalence, strong ˇ–
equivalence, or (de)stabilization. If ei corresponds to a diffeomorphism ei WDi�1!Di

isotopic to the identity, we set e0i D �Di
ı ei ı�

�1
Di�1

. We then have a subgraph in Gman

given by

D0 D1 � � � Dn�1 Dn

D0
0

D0
1

� � � Dn�1 D0n

e1

�H1

e2

�D1

en�1 en

�Dn�1
�H2

e0
1

e0
2

e0
n�1 e0n

Algebraic & Geometric Topology, Volume 23 (2023)



Projective naturality in Heegaard Floer homology 991

The condition that needs to be verified is that the image under HFı of the outer
rectangle in this subgraph commutes. By construction of the path 
 0, each small square
in the diagram is either a distinguished rectangle (recall Definition 3.7) or a commuting
square of diffeomorphisms. Commutativity of the large rectangle now follows by virtue
of HFı being a strong Heegaard invariant. Since the restriction of HFı to Gdiff

man is
a functor, the image under HFı of the commuting square of diffeomorphisms also
commutes. Since the image under HFı of any distinguished rectangle also commutes,
we thus see that the morphism of transitive systems

HFı1 .�/ WHFı1 .Y; z/!HFı1 .Y
0; z0/

associated to a pointed diffeomorphism � is well defined.

The assignments above thus define the functor HFı
1

; we note that composition of
morphisms in Man� are respected under HFı

1
because HFı is a strong Heegaard

invariant, and in particular must be a functor when restricted to Gdiff
man (see axiom (1) in

Definition 3.7).

Finally, we note that isotopic diffeomorphisms in Man� induce identical maps un-
der HFı

1
. To see this, suppose � W .Y; z/! .Y; z/ is isotopic to Id.Y;z/, and fix an

isotopy diagram H D .†;A;B; z/ for .Y; z/. Then �H D �jH is isotopic to IdH and
H 0D�.H /DH , so by virtue of HFı being a strong Heegaard invariant we must have
HFı.�H /D IdHFı.H /. Thus HFı

1
.�/ is the map of transitive systems defined by the

data fHFı.�H /D IdHFı.H /g for H 2 .Gman/.Y;z/, and is thus an identity morphism
in Trans.P .ZŒU �–Mod//.

6 Heegaard Floer homology as a weak Heegaard invariant

In this section we very briefly recall numerous maps defined on the Heegaard Floer
chain complexes, and then use these maps to define the underlying morphisms of graphs
of the strong Heegaard invariants appearing in Theorem 1.3. For the most part we just
seek to establish notation in Sections 6.1–6.4, and refer the reader to [5], [6] and [11]
for detailed descriptions of the constructions involved in the definitions appearing there.

For concreteness and ease of notation, we will phrase the results in this section in terms
of CF�; however we note that the definitions vary in a cosmetic way, and analogous
results hold, for all of the variants CFı. In particular, the proof of Theorem 1.3 for
CFı will follow by the same arguments given here for CF�. In fact, one could also
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obtain the results for the other variants directly from those we prove, as bCF ;CFC and
CF1 can all be obtained by taking suitable tensor products with CF� and quotients
thereof.

Finally, we note at the outset that we will use � to indicate homotopic chain maps.

6.1 Spinc structures and strong admissibility

We must first address the fact that while the graph Gman that we have been considering
thus far contains arbitrary Heegaard diagrams, the Heegaard Floer chain complexes
defined in [11] are defined only with respect to certain admissible diagrams. Since we
will focus on the case of CF� in this section, the admissibility we will need is given
by the notion of strong admissibility, which we now summarize.

We begin by recalling the setting of Heegaard Floer homology, and the role of Spinc

structures in the construction of the Heegaard Floer chain complexes. Given a genus g

based Heegaard diagram

HD .†;˛D .˛1; ˛2; : : : ; ˛g/;ˇ D .ˇ1; ˇ2; : : : ; ˇg/; z/

for a closed, connected, oriented and based 3–manifold .Y; z/, one considers the tori

T˛ D ˛1 �˛2 � � � � �˛g; Tˇ D ˇ1 �ˇ2 � � � � �ˇg

in the symmetric product Symg.†/ WD .†�� � ��†/=Sg. A choice of complex structure
on † induces an almost complex structure on Symg.†/, and with respect to such an
induced structure the tori T˛ and Tˇ are totally real. The Heegaard Floer homology is
then defined as a variation of Lagrangian intersection Floer homology applied to these
tori. To define the chain complexes one must fix a complex structure j on †, and a
choice of generic path Js of almost complex structures on Symg.†/ through Symg.j /;
see [11].

The basepoint z induces a map

sz W T˛\Tˇ ! Spinc.Y /

which associates to each intersection point a Spinc–structure. One first defines a chain
complex

CF�.H; s/

which is freely generated as an abelian group by Œx; i �, for x 2T˛\Tˇ with sz.x/D s

and for i 2 Z with i < 0. Given two intersection points x;y 2 T˛ \ Tˇ , we let
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�2.x;y/ denote the set of homotopy classes of Whitney disks connecting x to y in
Symg.†/, with the usual boundary conditions. Given a homotopy class � 2 �2.x;y/,
we denote by MJs

.�/ the moduli space of Js–holomorphic disks in the class �, and
write bMJs

.�/DMJs
.�/=R for the quotient with respect to the R–action coming from

the translation action on the disks. We let �.�/ denote the Maslov index of the class �,
and let nz.�/ denote the algebraic intersection number of � with z � Symg�1.†/. We
then have a well-defined relative (in general cyclic) grading on the generators defined
above, given by the formula

gr.Œx; i �; Œy ; j �/D �.�/� 2nz.�/C 2i � 2j ;

where � is any class � 2 �2.x;y/. This grading is only integral if c1.s/D 0. Finally,
the differential

@ W CF�.H; s/! CF�.H; s/

is defined by the formula

@.Œx; i �/D
X

fy2T˛\Tˇ jsz .y/Dsg

X
f�2�2.x;y/j�.�/D1g

# bMJs
.�/ � Œy ; i � nz.�/�:

There is an action of the polynomial ring ZŒU � on the complex CF�.H; s/, where

U � Œx; i �D Œx; i � 1�

decreases the relative grading by 2. We will always consider CF�.H; s/ as a complex
of ZŒU �–modules. Finally, the total chain complex associated to H then splits by
definition as

CF�.H/D
M

s2Spinc.Y /

CF�.H; s/:

Given a Spinc structure s, we call a pointed Heegaard diagram s–realized if there is an
intersection point x 2 T˛\Tˇ with sz.x/D s. We note that for any s 2 Spinc.Y; z/

there is an s–realized pointed Heegaard diagram for .Y; z/ by [11, Lemma 5.2].

The chain complex CF�.H; s/ can in fact only be defined for Heegaard diagrams
HD .†;˛;ˇ; z/ which satisfy an admissibility hypothesis. Given s 2 Spinc.Y /, we
say the diagram H is strongly s–admissible if every nontrivial periodic domain D on H
satisfying hc1.s/;H.D/i D 2n � 0 has some coefficient that is greater than n. Here
H.D/2H2.Y IZ/ is the homology class naturally associated to the periodic domain D.
It turns out that this notion of admissibility is enough to ensure that differential @ given
above consists of a finite sum and is well defined on CF�.H; s/, and to ensure that it in
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fact yields a chain complex. It is shown in [11, Lemma 5.4] that given any s2Spinc.Y /,
there is an s–realized, strongly s–admissible pointed diagram for .Y; z/.

To define triangle maps on the Floer chain complexes, we will need an analogous notion
of admissibility for Heegaard triple diagrams. A pointed triple diagram

T D .†;˛;ˇ;
; z/

specifies a 4–manifold with boundary, which we denote by X˛;ˇ;
 . Given now a
Spinc–structure s on X˛;ˇ;
 , denote by s˛;ˇ the restriction of s to the boundary
component Y˛;ˇ . We will say the triple diagram T is strongly s–admissible if any triply
periodic domain D which is the sum of doubly periodic domains

D DD˛;ˇ CDˇ;
 CD˛;


and which furthermore satisfies

hc1.s˛;ˇ/;H.D˛;ˇ/iC hc1.sˇ;
/;H.Dˇ;
/iC hc1.s˛;
/;H.D˛;
/i D 2n� 0

has some coefficient greater than n. It is shown in [11, Lemma 8.11] that given any
pointed triple diagram T and a Spinc structure s on X˛;ˇ;
 , there is a pointed triple
diagram isotopic to T which is strongly s–admissible.

6.2 Orientation systems

6.2.1 Coherent orientation systems of disks We recall that to define the differential
on the Heegaard Floer chain complexes with coefficients in Z, one must perform signed
counts of the points in certain moduli spaces of pseudoholomorphic disks. To do so,
one must ensure that on a pointed Heegaard diagram H D .†;˛;ˇ; z/ the moduli
spaces of holomorphic disks in a homotopy class A 2 �2.x;y/, which we denote by
MA or M.A/, are orientable. By [11, Proposition 3.10] (or [6, Proposition 6.3] for the
reader more comfortable in the cylindrical setting), these moduli spaces are orientable
whenever they are smoothly cut out. There this is shown by trivializing the determinant
line bundle L of the virtual index bundle of the linearized N@–equation defining the
moduli space in question, so when necessary we will specify our orientations by
specifying sections of these determinant line bundles.

In order for these orientations to allow for the structure of a chain complex on the
Heegaard Floer chain modules, we actually need somewhat more: we want the moduli
spaces for different homotopy classes of disks to be oriented coherently. To make
this precise, Ozsváth and Szabó used the notion of a coherent orientation system for
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the moduli spaces of holomorphic disks in a Heegaard diagram H D .†;˛;ˇ; z/.
Such an orientation system consists of a collection oH D o˛;ˇ WD fo

A
˛;ˇ
g of sections

oA
˛;ˇ

of the determinant line bundle L over all possible homotopy classes of disks
A 2 �2.x;y/ (ranging over all x;y 2 T˛ \Tˇ/. Roughly, the coherence condition
amounts to requiring that these sections are compatible with a process of gluing
holomorphic disks together. We refer the reader to [11] for the precise definition of the
coherence condition, or to Section 8.2 where we will formulate a precise version of
the notion in the cylindrical setting. For our purposes in this section, we mainly just
want to recall the fact that every pointed Heegaard diagram equipped with complex
structure data achieving transversality admits a coherent orientation system by the
remarks following [11, Definition 3.12]. We also want to make explicit the following
equivalence relation on orientation systems.

Definition 6.1 Fix two coherent orientation systems o˛;ˇ and o0
˛;ˇ

on a diagram
HD .†;˛;ˇ; z/. We say the orientation systems are equivalent if there is a function

� W T˛\Tˇ ! f˙1g

such that for each x;y 2 T˛\Tˇ ,

oA
˛;ˇ D �.x/ � �.y/ � o

0A
˛;ˇ

for all A 2M.x;y/.

It follows directly from the definition of the differential on CF� that equivalent
orientation systems give rise to isomorphic Heegaard Floer chain complexes. In what
follows, we will often be concerned with specifying orientation systems which are
unique up to equivalence. For these discussions, it will be useful to explicitly recall
one more definition from the literature.

Definition 6.2 [11, Definition 3.12] Given a Spinc structure s, a strongly s–admissible
diagram H D .†;˛;ˇ; z/, and an intersection point x0 2 T˛ \ Tˇ , we will say a
collection of classes fAyg where Ay 2 �2.x0;y/ and y ranges over the intersection
points in .T˛\Tˇ/ n fx0g which represent s, is a complete set of paths (based at x0)
for .H; s/.

6.2.2 Coherent orientation systems of triangles Given a pointed Heegaard triple
diagram T D .†;˛;ˇ;
; z/, we also note that moduli spaces of holomorphic triangles
in a homotopy class  , which we denote by M or M. /, are also orientable when
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they are smoothly cut out, by [11, Section 8.2] (or [6, Proposition 10.3]). Given a
collection oT WD fo˛;ˇ;
 ; o˛;ˇ ; oˇ;
 ; o˛;
g, where o˛;ˇ;
 is a collection of sections
of the determinant line bundle over all homotopy classes of triangles, and o˛;ˇ , oˇ;

and o˛;
 are collections of sections of the determinant line bundle over all homotopy
classes of disks in the respective double diagrams, we will consider a related notion of
coherence; see [11, Definition 8.6]. Roughly, the coherence condition here will amount
to the requirement that each collection of orientations of the moduli spaces of strips on
the respective double diagrams are coherent, and that all possible pregluings of triangles
with strips satisfy the analogous gluing condition (this coherence condition will also
be spelled out precisely in Section 8.2). The existence of such coherent orientation
systems is guaranteed by the following result.

Lemma 6.3 [11, Lemma 8.7] Fix a pointed Heegaard triple diagram .†;˛;ˇ;
; z/,
and let s be a Spinc structure on X˛;ˇ;
 whose restriction to each boundary component
is realized by an intersection point in the corresponding Heegaard diagram. Then for
any coherent orientation systems o˛;ˇ and oˇ;
 for two of the boundary components ,
there exists at least one coherent orientation system o˛;
 for the remaining boundary
component and a coherent orientation system o˛;ˇ;
 such that the entire collection of
orientations is coherent.

Remark 6.4 We note here that this lemma does not guarantee that the orientation
systems o˛;
 and o˛;ˇ;
 are unique, as can be seen from inspection of the proof
provided in [11, Lemma 8.7]. We mainly provide the reference to this lemma as it is
stated for background context on the existence of coherent orientation systems. In what
follows we will actually be interested in using a strengthened version of this lemma that
applies in a particular situation to produce a unique induced coherent orientation system,
which we will specify more precisely when the time comes. We note in particular
that we only cite Lemma 6.3 in two places in this paper (in Sections 6.4 and 6.8), and
in both cases an additional argument is used to explain why the induced orientation
system is unique in the context under consideration.

It will be useful later to have a clear understanding of the indeterminacy in the orientation
systems furnished by this lemma, and to have terminology with which we can refer
to the sources of indeterminacy. To do so, we will now describe a high level outline
of the proof of the above lemma, and point out explicitly where in the proof the
indeterminacies arise. For details of the proof, we just point to the original source,
since we have no new perspectives or value to add in reproducing them.
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Assume we have fixed o˛;ˇ and oˇ;
 as in the statement of the lemma. The way
to produce o˛;
 and the coherent orientation system o˛;ˇ;
 on the triple diagram
guaranteed by the lemma can be summarized as follows.

(1) Choose an arbitrary orientation over a single class of triangle 02�2.x0;y0; z0/

connecting intersection points x0, y0 and z0.

(2) Next, fix orientations over all periodic classes �˛;
 2 …z0
� �2.z0; z0/ as

follows:

(a) Define a subgroup K �…z0
by

K D
˚
�˛;
 2 �2.z0; z0/ j 9�˛;ˇ 2 �2.x0;x0/; �ˇ;
 2 �2.y0;y0/

such that  0C�˛;
 D  0C�˛;ˇ C�ˇ;

	
:

(b) Show that the periodic classes split as

…z0
DK˚Q

for some free abelian group Q.

(c) Using the defining property of K and a small lemma, extend o˛;
 over all
periodic classes in K such that the resulting orientations are consistent with
o˛;ˇ and oˇ;
 .

(d) Choose the orientations o˛;
 arbitrarily over a basis for Q. We will call this
collection of choices the indeterminacy over Q.

(e) Obtain orientations over all classes of triangles  2 �2.x0;y0; z0/ by boot-
strapping from the above.

(3) Next, choose a complete set of paths for Y˛;
 , and choose orientations for o˛;

over the classes defining the complete set of paths. We will call this collection
of choices the indeterminacy over a complete set of paths.

(4) The previously defined orientations together uniquely determine a coherent orien-
tation system for the triple diagram. We see that, up to a sign, the indeterminacy
in the orientation systems o˛;
 and o˛;ˇ;
 furnished by the lemma is due to the
indeterminacy over Q and the indeterminacy over a complete set of paths.

Finally, we note that the indeterminacy over a complete set of paths mentioned above
does in fact vanish in general, so long as we consider orientation systems up to
equivalence. For given a complete set of paths and two orientation systems o˛;

and o0˛;
 which differ on the complete set of paths, it is straightforward to construct
a third orientation system o00˛;
 which is equivalent to o0˛;
 and which agrees with
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o˛;
 on the complete set of paths. Indeed, if the complete set of paths is denoted
by fAyg, construct an equivalence function � by declaring for each y that �.y/D�1

if o˛;
.Ay/¤ o0˛;
.Ay/. Altering o0˛;
 by any such equivalence function will yield
an orientation system o00˛;
 as desired. Thus up to equivalence and sign, we see that
the indeterminacy in the orientation systems o˛;
 and o˛;ˇ;
 furnished by the lemma
is solely due to the indeterminacy over Q (coming from the indeterminacy in the
orientations over the periodic classes).

6.3 Change of almost complex structures

Next, we recall the dependence of the construction of the Heegaard Floer invariants
on the choices of almost complex structures involved. The definition of the Heegaard
Floer chain complex associated to a pointed Heegaard diagram .†;˛;ˇ; z/ in fact
requires a choice of complex structure j on †, and a generic path of almost complex
structures Js � U on Symg.†/ going through the structure Symg.j / induced by j .
Here g is the genus of † and U is a particular contractible set of almost complex
structures specified by Ozsváth and Szabó in [11, Theorem 3.15 and Section 4.1].
Given a strongly s–admissible pointed Heegaard diagram HD .†;˛;ˇ; z/, a coherent
orientation o on H, and two choices of such almost complex structure data .j ;Js/ and
.j 0;J 0s/, there is a chain homotopy equivalence

ˆJs!J 0s
W CF�Js

.†;˛;ˇ; z; s; o/! CF�
J 0s
.†;˛;ˇ; z; s; o0/:

Here o0 is an orientation system uniquely determined by o, as described in the beginning
of [6, Section 9]. These equivalences fit into a transitive system in the homotopy category
of chain complexes of ZŒU �–modules, in the sense that ˆJs!Js

� idCF�.†;˛;ˇ/ and
ˆJ 0s!J 00s

ıˆJs!J 0s
� ˆJs!J 00s

. This is shown in [14, Lemma 2.11]. We denote this
transitive system in the homotopy category of complexes of ZŒU �–modules by

CF�.†;˛;ˇ; z; s; o/:

Of course we also obtain from the maps ˆJs!J 0s
a transitive system of isomorphisms

on homology. We will denote the colimit of the ZŒU �–modules HF�
Js
.†;˛;ˇ; z; s; o/

with respect to this transitive system by

HF�.†;˛;ˇ; z; s; o/:

6.4 Triangle maps and continuation maps

Given a pointed Heegaard triple diagram T D .†;˛;ˇ;
; z/ which is strongly s–
admissible for a Spinc structure s on X˛;ˇ;
 , as well as a coherent orientation system
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o˛;ˇ;
 compatible with coherent orientation systems o˛;ˇ , oˇ;
 and o˛;
 , there are
ZŒU �–module chain maps F˛;ˇ;
. � ; s; o˛;ˇ;
/ of the form

CF�Js
.†;˛;ˇ; s˛;ˇ ; o˛;ˇ/˝ZŒU � CF�Js

.†;ˇ;
; sˇ;
 ; oˇ;
 /! CF�Js
.†;˛;
; s˛;
 ; o˛;
 /

defined in [11, Theorem 8.12]. Here, and throughout this section, we sometimes
suppress the basepoint z from the chain complex notation for brevity, but the dependence
is always implied. Put simply, these chain maps count pseudoholomorphic triangles
on the triple diagram. In fact, the homotopy class of the chain map F˛;ˇ;
 does
not depend on the choice of almost complex structure data. More precisely, for two
choices of almost complex structure data the maps above commute up to homotopy
with the change of almost complex structure maps by [11, Proposition 8.13]. Thus with
respect to the transitive systems CF�.†;˛;ˇ; z; s; o/, the map F˛;ˇ;
 is a morphism
in Trans.Kom.ZŒU �–Mod//, ie a morphism between two transitive systems in the
homotopy category of ZŒU �modules. We denote this morphism by F˛;ˇ;
. � ; s; o˛;ˇ;
/
and it takes the form

CF�.†;˛;ˇ; s˛;ˇ ; o˛;ˇ/˝ZŒU � CF�.†;ˇ;
; sˇ;
 ; oˇ;
 /! CF�.†;˛;
; s˛;
 ; o˛;
 /:

We also obtain induced maps of ZŒU �–modules F˛;ˇ;
. � ; s; o˛;ˇ;
/ of the form

HF�.†;˛;ˇ; s˛;ˇ ; o˛;ˇ/˝ZŒU � HF�.†;ˇ;
; sˇ;
 ; oˇ;
 /!HF�.†;˛;
; s˛;
 ; o˛;
 /:

The triangle maps above allow one to define maps associated to handleslides. To
describe the handleslide maps, we first recall the following fact.

Lemma 6.5 [11, Lemma 9.4, Remark 9.2 and Section 9.1; 5, Lemma 9.2] Let
.†;ˇ;
 0; z/ be a pointed genus g Heegaard diagram such that 
 0 can be obtained from
ˇ by performing a sequence of handleslides among the curves in ˇ . Then the diagram
represents #g

.S1 �S2/. There is a unique Spinc structure s0 2 Spinc
�
#g
.S1 �S2/

�
such that c1.s0/ D 0, and upon performing a particular small Hamiltonian isotopy
of 
 0— specified in [11] — to obtain .†;ˇ;
; z/, one can ensure this new diagram
is strongly s0–admissible. Furthermore , there is a choice of coherent orientation
system oˇ;
 on this diagram such that

bHF .†;ˇ;
; z; s0; oˇ;
/ŠH�.T
g
IZ/;

HF�.†;ˇ;
; z; s0; oˇ;
/Š ZŒU �˝H�.T
g
IZ/:

In this case it follows that in the highest nontrivial relative homological grading
HF�.†;ˇ;
; z; s0; oˇ;
/ is isomorphic to Z DW h�ˇ;
i, for a generator we denote
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by �ˇ;
 . Finally , there is only one equivalence class of orientation system with these
properties.

Remark 6.6 For such a diagram, we can also identify a particular intersection point
�ˇ;
 2 CF�.†;ˇ;
; z; s0; oˇ;
/ representing this element of homology. Indeed, the
strongly admissible diagram referred to in the lemma statement yields a chain complex
whose rank is the same as that of its homology, and which has a unique intersection
point realizing s0 in the maximal relative grading.

Remark 6.7 All of the statements in the lemma other than the last sentence are
explicitly proved in the cited references. The last sentence is also contained implicitly
in the references cited, but since it is particularly relevant to our arguments we provide
a sketch of the proof below.

The last sentence in Lemma 6.5 follows from the next result.

Lemma 6.8 Equivalence classes of coherent orientation systems over the diagram
.†;ˇ;
; z/ for .S1 �S2/#g from Lemma 6.5 are in bijection with morphisms

�1.T
g/! Aut.Z/;

where T g is a torus. Furthermore , for a corresponding orientation system o and
morphism L,

bHF ..S1
�S2/#g; o/ŠH�.T

g
IL/:

Proof sketch Fix a diagram .†;ˇ;
; z/ for .S1 �S2/#g as described in Lemma 6.5,
an intersection point x0 2 Tˇ \ T
 , and a complete set of paths based at x0. As
described in Remark 6.4, all coherent orientation systems on the diagram agree on
the complete set of paths up to equivalence. Thus equivalence classes of coherent
orientation systems are determined by their values on a basis for the periodic domains
based at x0. Note that specifying values in f˙1g for each class in a basis for the
periodic domains based at x0 is the same as specifying a morphism �1.T

g/!Aut.Z/,
since the group of periodic classes is identified with H 1..S1�S2/#g/. This establishes
the first sentence in the lemma.

The second statement in the lemma follows from a direct comparison of the contributions
to homology (Heegaard Floer or singular) in the diagrams in question for a given choice
of values over a basis for the periodic domains based at x0. For example, assigning 1
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to each periodic domain corresponds to the isomorphism class of local system over T g

specified by the trivial homomorphism L W �1.T
g/! Z=2Z, and to some equivalence

class of coherent orientation system on .†;ˇ;
; z/. Using the local picture and
calculations developed in [11, Lemma 9.4], one can establish an identification between
generators of �1 and generators of bHF .

Now to establish the last sentence in Lemma 6.5, just note that there is a single local
system L over the torus T g for which the singular homology is H�.T

gIZ/ (namely
the trivial local system).

Given a strongly s–admissible triple diagram .†;˛;ˇ;
; z/ with 
 related to ˇ as in
the statement of Lemma 6.5, we will write

‰˛ˇ!
. � ; s; o˛;ˇ;
/ WD F˛;ˇ;
. � ˝ �ˇ;
 ; s; o˛;ˇ;
/;

where

F˛;ˇ;
 . � ˝ �ˇ;
 ; s; o˛;ˇ;
 / W CF�.†;˛;ˇ; z; s˛;ˇ ; o˛;ˇ/! CF�.†;˛;
; z; s˛;
 ; o˛;
 /:

Here we have used an arbitrary coherent orientation system o˛;ˇ and the coherent
orientation system oˇ;
 of Lemma 6.5, and enlarged them to a coherent orientation
system o˛;ˇ;
 . That this can be done in some way is ensured by Lemma 6.3; in
fact, though, this enlargement is unique up to equivalence in this particular case, as
we now explain. Recall we have seen in Remark 6.4 that the indeterminacy in the
equivalence classes of the orientation systems furnished by Lemma 6.3 is due solely to
the indeterminacy over the group Q. It is shown in the proof of [11, Lemma 8.7] that
this group Q is the image of the composition q ı i ,

H2.Y˛;
/
i
�!H2.X˛;ˇ;
/

q
�!H2.X˛;ˇ;
 ;Y˛;ˇ [Yˇ;
/

where i is induced by inclusion and q comes from the relative long exact sequence for
the relevant pair. In the case at hand, we have Y˛;ˇ Š Y˛;
 are arbitrary 3–manifolds,
and X˛;ˇ;
 is Y˛;ˇ � I with a neighborhood of a bouquet of g circles removed. Thus
we have i.H2.Y˛;ˇ//D i.H2.Y˛;
//, and QD 0. This establishes that the coherent
orientation systems used in our definition of the map ‰˛

ˇ!

above are well defined.

Similarly, if instead ˇ is related to ˛ as in the statement of Lemma 6.5, we will write

‰
˛!ˇ

 . � ; s; oˇ;˛;
/ WD Fˇ;˛;
.�ˇ;˛˝ � ; s; oˇ;˛;
/;

where

Fˇ;˛;
 .�ˇ;˛˝ � ; s; oˇ;˛;
 / W CF�.†;˛;
; z; s˛;
 ; o˛;
 /! CF�.†;ˇ;
; z; sˇ;
 ; oˇ;
 /:
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These can be thought of as maps on the Floer invariants associated to (small variations of)
sequences of handleslides on diagrams. These maps are in fact homotopy equivalences
according to the following result.

Lemma 6.9 [11, Theorem 9.5 and Section 9.1] (1) If .†;˛;ˇ;
;z/ is a strongly s–
admissible triple diagram and ˇ is related to 
 as in the statement of Lemma 6.5,
then ‰˛

ˇ!

is a chain homotopy equivalence.

(2) Furthermore , such equivalences are transitive: for two triples satisfying the
conditions above we have

‰˛ˇ!
 �‰
˛
ı!
 ı‰

˛
ˇ!ı:

(3) The analogous results hold for the maps induced by changing the ˛ curves.

There are also maps associated to special Hamiltonian isotopies of diagrams [11, Proof
of Theorem 7.3]. Given strongly s–admissible diagrams .†;˛;ˇ; z/ and .†;˛0;ˇ 0; z/
and an exact Hamiltonian isotopy on .†; !/ taking ˛ to ˛0 and ˇ to ˇ 0, which fur-
thermore never crosses the basepoint, we claim that each coherent orientation system
o˛;ˇ for the first diagram determines a unique equivalence class of coherent orientation
system o˛0;ˇ 0 for the second. This is part of the statement of [11, Theorem 7.3],
and can be understood as follows. First note that it will suffice to show that there is
a correspondence �2.x;x/H1

Š �2.y ;y/H2
between homotopy classes of periodic

disks based at some intersection point x on H1 and homotopy classes of periodic
disks based at some intersection point y on H2. With this fact established, a coherent
orientation system on the first diagram uniquely determines an equivalence class on the
second diagram, since as we have already observed equivalence classes of orientation
systems on H2 are determined by their values on the periodic domains based at a single
intersection point. The correspondence �2.x;x/H1

Š �2.y ;y/H2
is realized by a

certain concatenation with a homotopy class with varying boundary conditions, as we
now explain.

Following [11, Proof of Theorem 7.3], let us denote our isotopy by ‰t W † ! †

and set ˛t D ‰t .˛/ and ˇt D ‰t .ˇ/. Define �‰t

2
.x;y/ to be the set of homotopy

classes of Whitney disks which connect x 2 T˛ \ Tˇ to y 2 T˛0 \ Tˇ 0 and have
boundary conditions u.0; t/ 2 ˛t , u.1; t/ 2 ˇt . We now explain how a single class
� 2 �

‰t

2
.x;y/ establishes the desired correspondence �2.x;x/H1

Š� �2.y ;y/H2
via

a certain conjugation. Given u representing A 2 �2.x;x/H1
and a disk v representing

the class � 2 �‰t

2
.x;y/, we can construct a disk Nv \ u \ v by concatenation. Such
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a disk lies in �‰1�t�Id�‰t

2
.y ;y/, which is the set of homotopy classes of Whitney

disks which connect y 2 T˛0 \Tˇ 0 to itself, and have boundary conditions matching
N̨ �˛0 �˛ and Ň �ˇ0 �ˇ on its two sides, where N̨ and Ň are the curves traversed in
the opposite direction. We now claim two things:

(1) This correspondence establishes a bijection

�2.x;x/Š �
‰1�t�Id�‰t

2
.y ;y/:

(2) There is also a bijection

�
‰1�t�Id�‰t

2
.y ;y/Š �2.y ;y/:

We omit the proofs of these facts, but note that both can be understood by thinking of
the space of periodic domains at x as a subspace of the fundamental group of the path
space between the Heegaard curves, based at the constant path x. In this context, one
can show that an isotopy of the Heegaard curves gives rise to an identification between
path spaces, and that the class � yields an identification between the corresponding
loop spaces. This line of reasoning can be used to establish both bijections. For the
interested reader, a precise argument explaining related facts in a more general setting
can be found in [2, Section 3.3]. Finally, one should note that a class � 2 �‰t

2
.x;y/

does in fact exist for y D‰1.x/, because given an intersection point x 2T˛\Tˇ , we
may just follow it with the isotopy to obtain a disk u.s; t/D‰t .x/ which satisfies the
requirements for a disk with varying boundary conditions between x and y D‰1.x/.
This completes the explanation of the identification between equivalence classes of
coherent orientation systems on .†;˛;ˇ; z/ and .†;˛0;ˇ 0; z/.

With respect to the aforementioned orientation systems there is an induced chain
homotopy equivalence

�˛!˛
0

ˇ!ˇ 0 W CF�.†;˛;ˇ; z; s; o˛;ˇ/! CF�.†;˛0;ˇ 0; z; s; o˛0;ˇ 0/;

which we call a continuation map associated to the Hamiltonian isotopy �t . We will
also use the notation

�˛!˛
0

ˇ D �˛!˛
0

ˇ!ˇ and �˛ˇ!ˇ 0 D �
˛!˛
ˇ!ˇ 0 :

By [14, Lemma 2.12], these equivalences compose naturally under concatenation of
isotopies in the sense that

�˛!˛
00

ˇ � �˛
0!˛00

ˇ ı�˛!˛
0

ˇ and �˛!˛
0

ˇ!ˇ 0 � �
˛!˛0

ˇ 0 ı�˛ˇ!ˇ 0 � �
˛0

ˇ!ˇ 0 ı�
˛!˛0

ˇ :
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Furthermore, by their definition in [11, Proof of Theorem 7.3], they satisfy �˛!˛
ˇ!ˇ

D

idCF�.†;˛;ˇ;z;s;o˛;ˇ/.

As suggested by the notation, we note that while the continuation map is a priori
associated to a Hamiltonian isotopy between the isotopic attaching curves, in the cases
of interest for us its chain homotopy class will actually be independent of the choice of
isotopy. To see this, we recall:

Lemma 6.10 [11, Lemma 9.1 and Section 9.1] Let .†;ˇ;ˇ 0; z/ be a pointed diagram
such that each curve ˇ0i in ˇ 0 is obtained from the curve ˇi in ˇ by performing a small
Hamiltonian isotopy which introduces two transverse intersection points between ˇi

and ˇ0i , and no intersection points between ˇ0i and ǰ for j ¤ i . Then the diagram
represents #g

.S1 � S2/. There is a unique Spinc structure s0 2 Spinc
�
#g
.S1 �

S2/
�

such that c1.s0/ D 0, and the diagram .†;ˇ;ˇ 0; z/ is strongly s0–admissible.
Furthermore , there is a choice of coherent orientation system oˇ;ˇ 0 on this diagram such
that in the highest nontrivial relative homological grading HF�.†;ˇ;ˇ 0; z; s0; oˇ;ˇ 0/

is isomorphic to ZDW h�ˇ;ˇ 0i for a generator we denote by �ˇ;ˇ 0 .

Using the generator �ˇ;ˇ 0 we have an analogous triangle map to that defined above,
which is also shown to be an equivalence:

Lemma 6.11 [11, Theorem 9.8 and Section 9.1] If .†;˛;ˇ;ˇ 0; z/ is a strongly
s–admissible triple diagram and ˇ 0 is related to ˇ as in the statement of Lemma 6.10
by a sufficiently small isotopy, then

F˛;ˇ;ˇ 0.� ˝ �ˇ;ˇ 0/ W CF�.†;˛;ˇ; z; s˛;ˇ ; o˛;ˇ/! CF�.†;˛;ˇ 0; z; s˛;ˇ 0 ; o˛;ˇ 0/

is a chain homotopy equivalence.

Furthermore, we have:

Lemma 6.12 [6, Proposition 11.4] If the triple diagram .†;˛;ˇ;ˇ 0; z/ is strongly
s–admissible and ˇ 0 is related to ˇ as in the statement of Lemma 6.10 by a sufficiently
small isotopy, then the continuation map associated to any Hamiltonian isotopy �t

between ˇ and ˇ 0 satisfies

�˛ˇ!ˇ 0 � F˛;ˇ;ˇ 0. � ˝ �ˇ;ˇ 0/:

We thus see that the continuation maps associated to small Hamiltonian isotopies of
the attaching curves are independent of the choice of isotopy.
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Finally, we introduce notation for a composition of triangle maps and continuation
maps associated to strong ˛–equivalences and strong ˇ–equivalences.

Definition 6.13 [14, Section 2 and Lemma 2.13] Given two strongly s–admissible
diagrams .†;˛1;ˇ1; z/ and .†;˛2;ˇ2; z/ which are strongly equivalent, one can
construct another pointed diagram .†;˛0

1
;ˇ 0

1
; z/ such that:

(1) ˛0
1

and ˇ 0
1

are obtained respectively from ˛1 and ˇ1 by special isotopies.

(2) ˛2 and ˇ2 are obtained respectively from ˛0
1

and ˇ 0
1

by (small variations of)
sequences of handleslides as in Lemma 6.5.

(3) The quadruple diagram .†;˛0
1
;ˇ 0

1
;˛2;ˇ2/ is strongly s–admissible for the

unique Spinc–structure on X˛0
1
;ˇ 0

1
;˛2;ˇ2

which restricts to s on Y˛0
1
;ˇ2

and s0

on Y˛0
1
;˛2

and Yˇ 0
1
;ˇ2

.

We define a map,

ˆ
˛1!˛2

ˇ1!ˇ2
. � ; s/ W CF�.†;˛1;ˇ1; z; s/! CF�.†;˛2;ˇ2; z; s/

associated to two such strongly equivalent diagrams by the formula

ˆ
˛1!˛2

ˇ1!ˇ2
. � ; s/D‰˛2

ˇ 0
1
!ˇ2
ı‰

˛0
1
!˛2

ˇ 0
1

ı�
˛1!˛

0
1

ˇ1!ˇ
0
1

:

We will sometimes use the notation

ˆ˛ˇ!ˇ 0 Dˆ
˛!˛
ˇ!ˇ 0 and ˆ˛!˛

0

ˇ Dˆ˛!˛
0

ˇ!ˇ :

6.5 The weak Heegaard Floer invariants

Using the previous two subsections, we are now in position to define the value on
vertices of the morphism of graphs

CF� W Gman! Trans
�
P .Kom.ZŒU �–Mod//

�
which will partially define the weak invariants underlying the maps in Theorem 1.3. In
doing so, we will also define the value on vertices of the morphism of graphs

HF� W Gman! P .ZŒU �–Mod/

appearing in Corollary 1.4.
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Definition 6.14 Fix some pointed isotopy diagram H D .†;A;B; z/ (corresponding
to a vertex in Gman) representing the pointed 3–manifold .Y; z/. For s 2 Spinc.Y /, let

Admiss.†;A;B;z/.s/D fstrongly s–admissible diagrams .†;˛;ˇ; z/ j Œ˛�DA; Œˇ �D Bg

be the set of strongly s–admissible diagrams representing H . By [11, Proofs of
Lemma 5.2 and Lemma 5.4], this is nonempty for all s 2 Spinc.Y /. Choose any
diagram HD .†;˛;ˇ; z/ 2Admiss.†;A;B;z/.s/, and fix a coherent orientation system
o˛;ˇ on it. By [11, Lemma 7.3], the transitive system CF�.†;˛;ˇ; z; s; o˛;ˇ/ can
be used along with the continuation maps � to induce coherent orientation systems
for all strongly s–admissible diagrams representing the isotopy diagram H . Then by
[14, Lemma 2.12], the transitive systems CF�.†;˛;ˇ; z; s; o˛;ˇ/ ranging over all
.†;˛;ˇ; z/ 2 Admiss.†;A;B;z/.s/ fit into a transitive system (of morphisms between
transitive systems) with respect to the continuation maps �˛!˛

0

ˇ!ˇ 0
. We can therefore

define a single transitive system (see Section 4) in Kom.ZŒU �–Mod/, which we denote
by

CF�.H; s/:

Finally, we define the value of the weak Heegaard invariant CF� on the isotopy
diagram H by

CF�.H /D
M

s2Spinc.Y /

CF�.H; s/:

Passing to homology, we obtain instead that the ZŒU �–modules HF�.†;˛;ˇ;z; s;o˛;ˇ/

for .†;ˇ;˛; z/ 2Admiss.†;A;B;z/.s/ fit into a transitive system of isomorphisms with
respect to the continuation maps. We denote the colimit of this transitive system by

HF�.H; s/

and define
HF�.H /D

M
s2Spinc.Y /

HF�.H; s/:

We now proceed to fix the data of the underlying coherent orientation systems we will
use to define CF�.H 0/ for all other isotopy diagrams H 0 in Gman. First consider the
path component of Gman containing the fixed isotopy diagram H chosen above. We note
that by Proposition 2.4, the collection of vertices in this path component corresponds to
the collection of all isotopy diagrams representing the fixed 3–manifold .Y; z/. Given
another isotopy diagram H 0 in this path component, choose a sequence of edges 
 in
.Gman/.Y;z/ from H to H 0. For any diagrams H 2H and H0 in H 0, the constructions
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described in the previous subsections yield a composition of maps associated to 
 on
the underlying chain complexes,

CF�.
 / W CF�.H/! CF�.H0/:

Here the sequence of maps CF�.
 / of course depends on our previously fixed choice
of coherent orientation system for H; we described in the previous subsections how
each of the possible constituent maps in the composition CF�.
 / induces a coherent
orientation system on the target given a coherent orientation system on the domain, and
it is this induced orientation system that we fix on H0. One can check that this induced
orientation on H0 is independent of the choice of path 
 , by verifying the commutativity
of the induced orientations occurring in each of the five types of distinguished rectangle,
and in a simple handleswap. We will verify this commutativity in Section 6.8. We
thus see that our specification of the coherent orientation systems o˛;ˇ on all diagrams
H representing H actually yields a choice of coherent orientation systems for all
diagrams in the same path component as H . Repeating this entire procedure for all
path components in Gman, we have thus defined

CF�.H /D
M

s2Spinc.Y /

CF�.H; s/ and HF�.H /D
M

s2Spinc.Y /

HF�.H; s/

for all isotopy diagrams H in Gman.

Remark 6.15 We interpret the role of coherent orientations in the definition above
loosely as follows. If one fixes any Heegaard diagram for a 3–manifold, there are
numerous inequivalent choices of coherent orientation system — in fact there are 2b1.Y /

such choices; see [11, Lemma 4.16]. The above definition just says one should fix
whichever choice they prefer, and then take care to use the maps induced by the
standard Heegaard moves (or diffeomorphisms isotopic to the identity) to carry this
choice around when considering different Heegaard diagrams for the same 3–manifold.

To finish defining the weak Heegaard invariants, we need to associate isomorphisms
to all edges in Gman. We begin by assigning maps to edges corresponding to strong
˛–equivalences and strong ˇ–equivalences.

Definition 6.16 Given two strongly ˛–equivalent isotopy diagrams

H1 D .†;A;B; z/;H2 D .†;A
0;B; z/ 2 jGmanj

Algebraic & Geometric Topology, Volume 23 (2023)



1008 Michael Gartner

representing .Y; z/, and s 2 Spinc.Y /, fix strongly s–admissible diagrams .†;˛;ˇ; z/
and .†;˛0;ˇ; z/ representing them. As above, this is possible by [11, Section 5].
Then by [14, Theorem 2.3 and Lemma 2.13], the chain homotopy equivalences ˆ˛!˛

0

ˇ

fit into a morphism of transitive systems between the transitive systems CF�.H; s/

appearing in Definition 6.14. Thus for the edge e 2 G˛man.H1;H2/ corresponding to the
strong ˛–equivalence, we can associate this collection of chain homotopy equivalences
(or equivalently, this collection of isomorphisms in Kom.ZŒU �–Mod/) to obtain a
morphism

ˆe WDˆ
A!A0

B W CF�.H1/! CF�.H2/:

We note that such a collection of chain homotopy equivalences is precisely the no-
tion of an isomorphism in Trans.Kom.ZŒU �–Mod//. We define the chain homotopy
equivalences associated to a strong ˇ–equivalence analogously.

To finish defining the weak Heegaard invariants, we assign isomorphisms to stabiliza-
tions and diffeomorphisms in the next two subsections.

6.6 Stabilization maps

We recall maps on the Heegaard Floer chain complexes which can be associated
to stabilizations. Given a strongly s–admissible diagram H D .†;˛;ˇ; z/ and a
stabilization thereof, H0D .†#†0;˛

0;ˇ 0; z/, each coherent orientation system o on H
induces a coherent orientation system o0 on H0. With respect to these orientation
systems, there is a ZŒU �–equivariant chain isomorphism

�H!H0 W CF�Js
.†;˛;ˇ; z; s; o/! CF�

J 0s .T /
.† #†0;˛

0;ˇ 0; z; s; o0/

defined for sufficiently large values of a parameter T . This is established in [11,
Theorems 10.1 and 10.2].

The curves ˛0 [ ˇ 0 are obtained as the disjoint union of ˛[ ˇ along with a pair of
closed curves ˛0 and ˇ0 contained in †0 which intersect transversally in a single point
we will denote by c. We can identify the intersection points in the two diagrams above
by assigning to an intersection point x 2 T˛\Tˇ the intersection point

�H!H0.x/D x� c 2 T˛0 \Tˇ 0 :

Fix complex structures j† on † and j†0
on †0, and let j 0.T / denote the complex

structure on † #†0 defined by inserting a neck of length T between .†; j†/ and
.†0; j†0

/. Then one can associate to a perturbation Js of Symg.j†/ on Symg.†/ and
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a perturbation J 0
s of j†0

, a perturbation J 0s.T / of SymgC1.j 0.T // on SymgC1.†#†0/.
The key argument needed to establish the above chain isomorphism then comes in
the form of a neck stretching argument which yields the following gluing result: for
sufficiently large values of T , a homotopy class of a Whitney disk � 2 �2.x;y/ on
† with Maslov index 1, and the corresponding homotopy class �0 2 �2.x� c;y � c/

on † #†0 with Maslov index 1, there is an identification of moduli spaces MJs
.�/Š

MJ 0s .T /
.�0/. From this it follows readily that the above map is a ZŒU �–equivariant

chain isomorphism.

Definition 6.17 Given isotopy diagrams H and H 0, with H 0 obtained from H via a
stabilization, we can associate a morphism of transitive systems

�H!H 0 W CF�.H /! CF�.H 0/

as follows. Fixing any Spinc–structure s, strongly s–admissible representatives H
and H0 which realize the stabilization, and almost complex structure data on H, there
is some choice of almost complex structure data on H0 for which the stabilization
isomorphism is defined. As described in [14, Lemma 2.15], the stabilization maps
�H!H0 commute with the change of almost complex structure maps, and with the
strong equivalence maps. This implies that the chain isomorphisms f�H!H0g, when
the complex structures are chosen so that they are defined, satisfy the commutativity
requirements required of a morphism of transitive systems as in Definition 4.3. We
can complete this partially defined morphism of transitive systems for other choices
of complex structure data by declaring the stabilization map �H!H0 to be computed
for allowable complex structure data, followed by the appropriate change of almost
complex structure homotopy equivalenceˆJs!J 0s

. We define the morphism of transitive
systems associated to the corresponding destabilization to be the inverse of �H!H 0 .

On the level of homology, we obtain via the colimit construction in Definition 6.14
canonical isomorphisms iH WHF�.H/!HF�.H / and iH0 WHF�.H0/!HF�.H 0/.
We set �H!H 0D iH0ı�H!H0ıi

�1
H for any choice of such H and H0. This is independent

of the choice of diagrams H and H0 by the aforementioned result [14, Lemma 2.15].

6.7 Diffeomorphism maps

Finally, we need to discuss how diffeomorphisms of Heegaard surfaces lead to maps
on the associated chain complexes. We use the following definition.
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Definition 6.18 [5, Definition 9.23] Fix a strongly s–admissible diagram .†;˛;ˇ; z/,
with j˛jD jˇjDk. Let j be an almost complex structure on†, and Js be a perturbation
of the almost complex structure Symk.j / on Symk.†/. Let o be a coherent orientation
system on the diagram. Fix a diffeomorphism d W †! †0, and set d.˛/ D ˛0 and
d.ˇ/Dˇ 0. We define an associated map as follows. First, the almost complex structure
j and perturbation Js can be conjugated via the differential of d to obtain j 0Dd�.j / on
† and J 0s D d�.Js/ a perturbation of d�.j / on Symk.†0/. The diffeomorphism d pro-
vides an identification between periodic classes �2.x;x/Š�2.x

0;x0/ for x 2T˛\Tˇ
and x0 2T˛0 \Tˇ 0 . We use this identification to push forward the coherent orientation
system o to obtain an induced orientation system o0. This yields a chain isomorphism

dJs ;J
0
s
W CF�Js

.†;˛;ˇ; z; s; o/! CF�
J 0s
.†0;˛0;ˇ 0; z0; d.s/; o0/

as can be seen easily by a direct argument pushing forward all intersection points, and
holomorphic disks connecting two such, via d . We note that the change of complex
structure maps commute with the maps dJs ;J

0
s

(by a direct check), so there is also an
induced map of transitive systems

d� W CF�.†;˛;ˇ; z; s/! CF�.†0;˛0;ˇ 0; z0; d.s//:

Finally, by Lemma 6.12 and [5, Lemma 9.24], the maps d� commute with the maps
�˛!˛

0

ˇ!ˇ 0
appearing in Definition 6.14. Thus by using the continuation maps the maps

d� can be extended to a morphism of the transitive systems in Definition 6.14,

d� W CF�.H; s/! CF�.H 0; d.s//;

where H D .†; Œ˛�; Œˇ �; z/ and H 0 D .†0; Œ˛0�; Œˇ 0�; z0/.

On the level of homology, the above definitions give a well defined map of the ZŒU �–
modules in Definition 6.14,

d� WHF�.H; s/!HF�.H 0; d.s//:

6.8 Monodromy of orientation systems

We now establish the claim made in Definition 6.14 that there is no monodromy of
induced orientations systems around loops of diagrams. This will finish the proof that
the Heegaard Floer invariants are weak Heegaard invariants, and will also establish
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in particular that there is no monodromy of induced orientation systems around the
special loops relevant to strong Heegaard invariance. We will show:

Lemma 6.19 There is no monodromy of coherent orientation systems around loops
composed of isomorphisms associated to isotopies , handleslides , stabilizations and
diffeomorphisms of diagrams.

Corollary 6.20 There is no monodromy of coherent orientation systems around the
loops determined by simple handleswaps and distinguished rectangles.

Remark 6.21 Note that we have already described how each type of Heegaard move
induces a map on the Heegaard Floer chain complex which is defined with respect to an
orientation system induced on the codomain from one on the domain. See Section 6.4,
Definition 6.17 and Definition 6.18 for the relevant definitions and references.

To prove Lemma 6.19, it will be useful to think first about the canonical orientation
systems, introduced in [10], in particular. We first note the following fact about those
orientation systems.

Lemma 6.22 The maps associated to isotopies , handleslides , stabilizations and diffeo-
morphisms take canonical orientations to canonical orientations.

Proof By [10, Section 8], each such map induces an isomorphism on the totally
twisted module HF1. By [10, Theorem 10.1], the canonical orientation system is
characterized by the resulting isomorphism type of HF1.

Corollary 6.23 The maps associated to the loops defining simple handleswaps and
distinguished rectangles take canonical orientations to canonical orientations.

Having established the statement of Lemma 6.19 for canonical orientation systems,
we now turn to proving it for general orientation systems. Fix a Heegaard diagram H
for Y , and let

OH D fequivalence classes of coherent orientation systems on Hg

and oc 2OH be the canonical orientation system. There is a map

diffoc
WOH! Hom.…H

x ;Z=2Z/;
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where …H
x is the group of periodic domains based at x in H, defined by measuring the

difference between an orientation system and oc on each periodic domain. In symbols,
for an orientation system o, diffoc

.o/ is a map

diffoc
.o/ W…H

x ! Z=2Z

satisfying

diffoc
.o/ŒD�D

�
0 if ojD D ocjD ;

1 if ojD ¤ ocjD :

We note that the analogous map diffo can be defined for any coherent orientation system
o on H.

Lemma 6.24 diffoc
WOH! Hom.…H

x ;Z=2Z/ is a well-defined bijection.

Proof We’ve already seen in the proof of Lemma 6.8 that equivalence classes of
orientation systems are determined by their values on a basis for the periodic domains
based at x. Thus if diffoc

.o/D diffoc
.o0/, then o and o0 agree with oc on the same set

of domains, and oD o0, so diffoc
is injective.

Given a morphism � W…H
x ! Z=2Z, define o to satisfy

ojD D

�
ocjD if �.D/D 0;

�ocjD if �.D/D 1:

By the comments in Remark 6.4 , o can then be extended over a complete set of paths
to obtain a coherent orientation system satisfying diffoc

.o/D �.

Note that by Remark 6.21, any loop L composed of Heegaard moves induces a map

L WOH!OH:

With this notation, proving Lemma 6.19 amounts to showing that L.o/D o for each
diagram H and each coherent orientation system o 2 OH, while Corollary 6.23 says
L.oc/D oc . To prove Lemma 6.19, we will show that the maps on orientation systems
induced by Heegaard moves commute with the diff maps in the following sense. Given
a Heegaard move from a diagram H1 to a diagram H2, let f W OH1

! OH2
be the

induced map of coherent orientation systems. Similarly, let

Qf W Hom.…H1
x ;Z=2Z/! Hom.…H2

x0 ;Z=2Z/

be the map induced from precomposition with the identifications…H2

x0 ŠH2.Y /Š…
H1
x

described in [11, Proposition 2.15 and Lemma 2.17]. We then have the result:
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Lemma 6.25 For each of the maps f on coherent orientation systems induced by
Heegaard moves ,

Qf ı diffo D difff .o/ ıf

for all coherent orientation systems o.

Proof For each type of Heegaard move, the definition of the map f (which specifies
how a coherent orientation on the starting diagram determines one on the target diagram)
can be described by an identification

� W…
H2

x0 !…H1
x :

If we let z� be the map

z� W Hom.…H1
x ;Z=2Z/! Hom.…H2

x0 ;Z=2Z/

induced by precomposition with �, then for each Heegaard move one can show that

(4) z� ı diffo D difff .o/ ıf:

For example, in the case of a handleslide this follows from an inspection of the proof
of [11, Lemma 8.7] (or see for comparison Remark 6.4), as we now explain. Let
.†;˛;ˇ;
; z/ be a triple diagram determining a handleslide, as in Lemma 6.9, and
H˛;ˇ and H˛;
 be the initial and final diagrams for the handleslide. Fix a homotopy
class of triangle  0 2 �2.x;y ; z/ in the triple diagram. The map f WOH˛;ˇ

!OH˛;


on orientation systems induced by the handleslide is defined by applying Lemma 6.3
with the orientation oˇ;
 on the intermediary diagram Hˇ;
 chosen to be that of
Lemma 6.5. Recall that in this case the indeterminacy of Lemma 6.3 disappears, as the
group Q from Remark 6.4 is zero, so an orientation o˛;
 is uniquely determined by an
orientation o˛;ˇ . The key property we will need to recall from this particular application
of the construction of Lemma 6.3 is that for each periodic class, A˛;
 2…

H˛;

x , there

is a unique pair of classes Aˇ;
 and A˛;ˇ such that

(5)  0CA˛;
 D  0CAˇ;
 CA˛;ˇ ;

and furthermore the induced orientation is constructed such that this relation is respected
by the orientations over these domains; see [11, Proof of Lemma 8.7]. With this in mind,
we proceed to establish (4) as follows. Fix a periodic domain P˛;
 2…

H˛;

x , and two

orientation systems o˛;ˇ and o0
˛;ˇ

on H˛;ˇ . Let o˛;
 D f .o˛;ˇ/ and o0˛;
 D f .o
0
˛;ˇ
/

be the corresponding orientations induced by the handleslide, as described above.
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Finally, let � W…H˛;ˇ
x !…

H˛;

x be the map which sends a domain P˛;ˇ to the unique

class P˛;
 specified by (5). We then compare the two sides of (4), and find

.z� ı diffo˛;ˇ
.o0˛;ˇ//ŒP˛;
 �D .o˛;ˇ � o0˛;ˇ/ŒP˛;ˇ �

while

.difff .o˛;ˇ/ ıf .o
0
˛;ˇ//ŒP˛;
 �D .o˛;
 � o0˛;
/ŒP˛;
 �

D .o˛;ˇ � o0˛;ˇ/ŒP˛;ˇ �C .oˇ;
 � o0ˇ;
/ŒPˇ;
 �

D .o˛;ˇ � o0˛;ˇ/ŒP˛;ˇ �;

where the second equality uses the fact that the induced orientations respect (5) by
construction, and the third equality uses the fact that oˇ;
 D o0

ˇ;

. This completes the

proof of (4) for the case of handleslides.

With (4) understood, we further claim that for each Heegaard move the identification

� W…
H2

x0 !…H1
x

used to define f and z� agrees with the identification

…
H2

x0 ŠH2.Y /Š…
H1
x

used to define Qf . In particular, this implies that Qf D z�, which together with (4) proves
the lemma.

In the case of a handleslide, the aforementioned claim follows from the following
observations:

(1) Each periodic domain is uniquely determined by the part of its boundary that
lies on one set of attaching curves.

(2) In the case at hand, the identification � preserves the part of the boundary of
domains that lies on one set of attaching circles, and can be characterized as the
unique identification of periodic domains with that property.

(3) The identifications

…H1
x ŠH2.Y / and …

H2

x0 ŠH2.Y /

(described in [11, Lemma 2.17 and subsequent remarks]) are determined by the
part of the boundary of each periodic domain that lies on one set of attaching
curves.
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The first two facts imply that for each periodic domain D 2…
H2
x , D and �.D/ share

the part of their boundary that lies on one set of attaching curves, and the third fact then
ensures that D and �.D/ have the same image in H2.Y /, which establishes the claim.

The preceding argument proves that the lemma holds for handleslides. For the other
Heegaard moves, (4) once again follows directly from the definition of the maps f
and � (although in these cases the definitions are themselves simpler), and the second
claim follows from considerations analogous to those listed above. We leave the details
of these cases to the reader.

Corollary 6.26 For any loop L of Heegaard moves , zL ı diffo D diffL.o/ ıL for all
coherent orientation systems o.

Proof of Lemma 6.19 Corollary 6.26 applied to oc yields

zL ı diffo.oc/D diffL.o/ ıL.oc/D diffL.o/.oc/

where the last equality comes from Corollary 6.23. Since we are considering here a
loop of diagrams, the map zL is the identity, and the previous equation yields

diffo.oc/D diffL.o/.oc/

or, equivalently,
oDL.o/;

as desired

7 Heegaard Floer homology as a strong Heegaard invariant

In the previous section we recalled the definition of the weak Heegaard invariants

CF� W Gman! Trans
�
P .Kom.ZŒU �–Mod//

�
and

HF� W Gman! P .ZŒU �–Mod/

underlying the strong Heegaard invariants appearing in Theorem 1.3 and Corollary 1.4,
respectively. To establish Theorem 1.3 we need to check the four axioms required of a
strong Heegaard invariant in Definition 3.7.

The proofs of axioms (1) and (2) given in [5, Section 9.2, page 131] for F2ŒU �–Mod
apply almost directly to establish axioms (1) and (2) for CF� and HF� as Heegaard
invariants valued in Trans

�
P .Kom.ZŒU �–Mod//

�
and P .ZŒU �–Mod/, respectively, as

we now summarize for CF�.
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For axiom (1), the functoriality of CF� restricted to G˛man and Gˇman follows from
Lemma 6.9 and [14, Theorem 2.3]. The functoriality of CF� restricted to Gdiff

man is
immediate from Definition 6.18. Finally, for a stabilization e and the corresponding
destabilization e0, CF�.e0/D CF�.e/�1 by Definition 6.17.

For axiom (2), we need to establish that the images under CF� of distinguished
rectangles in Gman (recall Definition 3.5) form commuting rectangles. For a rectangle
of type (1), commutativity follows from Lemma 6.9 and [14, Theorem 2.3]. For a
rectangle of type (2), commutativity follows from [14, Lemma 2.15]. For a rectangle of
type (3), commutativity follows from [5, Lemma 9.24]. Finally, rectangles of type (4)
and (5) can be seen to commute by directly applying the arguments in [5, page 131].

We now investigate axiom (3). Let H D .†;A;B; z/ 2 jGmanj be an isotopy diagram,
d W H ! H a diffeomorphism of isotopy diagrams which is isotopic to Id†, and
d� WDCF�.e/ where e 2Gdiff

man.H;H / is the edge corresponding to d . We need to show
d�D IdCF�.H / as morphisms of transitive systems in P .Kom.ZŒU �–Mod//. We adapt
and restate the argument given in [5, Proposition 9.27] in order to explain why it can be
applied to the case of (projective) integral coefficients. We show the following result.

Theorem 7.1 Let .†;˛;ˇ; z/ be a strongly s–admissible diagram with j˛j D jˇj D g.
Suppose that d W †! † is a diffeomorphism isotopic to Id†, and let ˛0 D d.˛/ and
ˇ 0D d.ˇ/. Let o˛;ˇ be a coherent orientation system on .†;˛;ˇ; z/ and o˛0;ˇ 0 be the
coherent orientation system on .†;˛0;ˇ 0; z/ induced by d . Then , with respect to these
orientation systems ,

d� D˙�
˛!˛0

ˇ!ˇ 0 WHF�.†;˛;ˇ; z; s; o˛;ˇ/!HF�.†;˛0;ˇ 0; z0; s; o˛0;ˇ 0/:

Furthermore , as maps

d�;˙�
˛!˛0

ˇ!ˇ 0 W CF�.†;˛;ˇ; z; s; o˛;ˇ/! CF�.†;˛0;ˇ 0; z0; s; o˛0;ˇ 0/;

d� is chain homotopic to one of ˙�˛!˛
0

ˇ!ˇ 0
.

In fact, this theorem will establish axiom (3) in Definition 3.7 for the weak Heegaard
invariants CF� and HF� above. Since d is isotopic to Id† by hypothesis, we have ˛0

is isotopic to ˛ and ˇ 0 is isotopic to ˇ , so H WD .†; Œ˛�; Œˇ �; z/D .†; Œ˛0�; Œˇ 0�; z0/. The
induced map of transitive systems d� WCF�.H /!CF�.H / defined in Definition 6.18
is then computed by extending the following map by conjugation with the continuation
maps:

CF�.†;˛;ˇ; z; o˛;ˇ/
d�
�!CF�.†;˛0;ˇ 0; z; o˛0;ˇ 0/

�
ˇ0!ˇ

˛0!˛
����!CF�.†;˛;ˇ; z; o˛;ˇ/:
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Since �ˇ
0!ˇ

˛0!˛ � .�
ˇ!ˇ 0

˛!˛0 /
�1 and d� �˙�

ˇ!ˇ 0

˛!˛0 by Theorem 7.1, we see that

d� W CF�.H /! CF�.H /

is the extension of a map CF�.†;˛;ˇ; z; o˛;ˇ/! CF�.†;˛;ˇ; z; o˛;ˇ/ which is
homotopic to plus or minus the identity. Thus we see that d�D IdCF�.H / as morphisms
in Trans

�
P .Kom.ZŒU �–Mod//

�
.

Proof of Theorem 7.1 Since d is isotopic to id†, we may decompose it into a
composition of diffeomorphisms di on some diagrams Hi D .†;˛i ;ˇi/, such that each
di is Hamiltonian isotopic to id† for some symplectic form !i on †, and the diagrams
satisfy the intersection properties j˛\ di.˛/j D jˇ\ di.ˇ/j D 2 for all ˛ 2 ˛i�1 and
ˇ 2 ˇi�1. As described in [5, Proposition 9.27], it will suffice to prove the result for
such a di . So let dt for t 2 R be a Hamiltonian isotopy which is independent of t

for t 2 .�1; 0� and t 2 Œ1;1/, and which connects id† to a diffeomorphism d of
HD .†;˛;ˇ/. Throughout the proof, we will use the notation dt .˛/D˛t , dt .ˇ/Dˇt ,
and use primes to indicate the values of various quantities at t D 1.

Fix the data of a complex structure j on † and a perturbation Js of Symg.j / on
Symg.†/, and for t 2R let jt D .dt /�.j / and Js;t D .Symg.dt //�.Js/. As described
in the sections above, there are numerous chain maps on the Heegaard Floer chain
complexes we can associate with the isotopy dt and this induced almost complex
structure data. We will be concerned here with the following three.

(1) We can change the almost complex structure on Symg.†/ from Js D Js;0 to
J 0s D Js;1, while leaving the attaching curves unchanged, and consider the induced map

ˆJs!J 0s
W CF�Js

.†;˛;ˇ; z; o˛;ˇ/! CF�
J 0s
.†;˛;ˇ; z; o˛;ˇ/:

We recall here that this map is defined (in [11]) by counting Maslov index 0 disks
u W Œ0; 1��R! Symg.†/ connecting some x 2T˛\Tˇ to some y 2T˛\Tˇ , which
satisfy u.0; t/ 2 ˛, u.1; t/ 2 ˇ and du=dsCJs;t .du=dt/D 0.

(2) We can leave the almost complex structures .j ;Js/ fixed, and consider the effect
on the Floer complex of altering only the attaching curves via the map

�
ˇ!ˇ 0

˛!˛0 W CF�Js
.†;˛;ˇ; z; o˛;ˇ/! CF�Js

.†;˛0;ˇ 0; z; o˛0;ˇ 0/

associated to the Hamiltonian isotopy dt . In this case, the map is defined by counting
Maslov index 0 disks u connecting some x 2T˛\Tˇ to some y 2T˛0\Tˇ 0 as above,
but with dynamic boundary conditions u.0; t/ 2 ˛t , u.1; t/ 2 ˇt , and which satisfy
du=dsCJs.du=dt/D 0.
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(3) We define a new sort of continuation map associated with dt ,

�dt
W CF�Js

.†;˛;ˇ; z; o˛;ˇ/! CF�
J 0s
.†;˛0;ˇ 0; z; o˛0;ˇ 0/

which combines the ideas from the previous two. This map is defined to count Maslov
index 0 disks u which connect some x 2T˛\Tˇ to some x0 2T˛0\Tˇ 0 , have dynamic
boundary conditions u.0; t/ 2 ˛t , u.1; t/ 2 ˇt , and satisfy du=dsCJs;t .du=dt/D 0.
We will denote the set of homotopy classes of Whitney disks (not necessarily Js;t –
holomorphic) satisfying these boundary conditions by�dt

2
.x;x0/, and for �2�dt

2
.x;x0/

we will denote the moduli space of Js;t –holomorphic maps representing � by Mdt .�/.

We claim that the third map in the list above is in fact chain homotopic to the map dJs ;J
0
s

from Definition 6.18. To see this, we first explain that if a diffeomorphism (which we
also indicate by d , as an abuse of notation) d W†!† isotopic to the identity (via an
isotopy dt ) is sufficiently close to Id†, then the map defined in case (3) above satisfies
�dt
D dJs ;J

0
s

as chain maps. Indeed, by taking d to be a sufficiently small perturbation
of Id†, we may ensure the isotopy dt is arbitrarily close to being constant in t . For
an isotopy which is constant in t , the definition of the continuation map in (3) above
counts Maslov index 0 disks with fixed boundary conditions which are Js–holomorphic.
The only such maps are constant maps. Thus, by Gromov compactness, if the isotopy
dt is sufficiently close to being constant, the Maslov index 0 solutions to the equation
appearing in the definition of �dt

will be close enough to constant disks to ensure that
�dt

will be a nearest-point map.

Next we note that the definition of �dt
depends on a choice of coherent orientation

system for the moduli spaces Mdt .�/. As explained in [11, Proof of Proposition 7.3],
when �dt

2
.x;x0/¤ 0 a single homotopy class � 2 �dt

2
.x;x0/ŠZ yields via gluing an

identification between periodic classes �2.x;x/Š� �2.x
0;x0/ on the two diagrams,

and a choice of orientation for Mdt .�/ then yields an identification between coherent
orientation systems on the two diagrams. Thus, given a coherent orientation system
o˛;ˇ on .†;˛;ˇ/, and an orientation on Mdt .�/, we obtain an induced orientation
o˛0;ˇ 0 on .†;˛0;ˇ 0/ with respect to which the map is defined. We claim that we may
arrange for this induced orientation to agree with that induced by dJs ;J

0
s
. Indeed, fix for

each x 2T˛\Tˇ a homotopy class �x 2�
dt

2
.x;x0/. We can choose orientations on all

such Mdt .�x/ freely such that �dt
is the positive nearest-point map (with the generator

corresponding to an intersection point being taken to the positive generator correspond-
ing to the nearest intersection point after the isotopy is performed), and then extend
these choices to a coherent system. The coherent orientation o˛0;ˇ 0 on .†;˛0;ˇ 0; z0/
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induced by �dt
that results will then be the same as that induced by dJs ;J

0
s
, as we now

explain. Fix x;y 2 T˛\Tˇ and let x0 D d.x/ and y 0 D d.y/ be the corresponding
intersection points in T˛0\Tˇ 0 . Given a homotopy class  2�2.x;y/ and a positively
oriented Whitney disk u from x to y in the class  , the orientation system induced
by dJs ;J

0
s

will positively orient the corresponding disk d.u/ representing the class
d. / 2 �2.x

0;y 0/; see Definition 6.18. We need to show that the disk d.u/ is also
positively oriented in the orientation system induced by �dt

. As described above, the
orientation on d.u/ induced by �dt

is specified as follows. We consider representative
disks v1 and v2 for the classes �x 2 �

dt

2
.x;x0/ and �y 2 �

dt

2
.y ;y 0/, which we may

assume are both positively oriented by the choice we made for orientations on Mdt .�x/

and Mdt .�y/. We then consider the glued disk v2 \ u \ Nv1. Since an orientation has
been specified on each constituent disk and our system is coherent, this glued disk also
has a specified orientation, which is positive given our choices. Finally, we note that
this disk is identified with d.u/ under the identification between coherent orientation
systems in the two diagrams, and thus d.u/ must also be oriented positively. We thus
see that both maps induce the same coherent orientation system on the target and both
take the form of the positive nearest-point map, so ��t

D �Js ;J
0
s
.

Finally, we can decompose our original diffeomorphism d W .†;˛0;ˇ0/! .†;˛1;ˇ1/

into a sequence of diffeomorphisms d1; d2; : : : ; dN , where

d i
W .†;˛.i�1/=N ;ˇ.i�1/=N /! .†;˛i=N ;ˇi=N /

and each d i is isotopic to Id† via isotopies d i
t . For sufficiently large N , we can ensure

that the continuation map �d i
t

associated to each constituent isotopy satisfies

�d i
t
D .d i/Js;.i�1/=N ;Js;i=N

by the argument in the preceding paragraphs. Furthermore, by inserting long necks
one can see that the composition of the corresponding continuation maps is homotopic
to the original continuation map

�dt
� .�dN

t
ı � � � ı�d1

t
/:

Since
dJs ;J

0
s
D dN

Js;.N�1/=N ;Js;1
ı � � � ı d1

Js;0;Js;1=N
;

we thus see that dJs ;J
0
s
� �dt

, which establishes the claim.

Using Definition 6.18 we have d� DˆJ 0s!Js
ı dJs ;J

0
s
. Thus to complete the proof it

will in fact suffice to show that ˆJ 0s!Js
ı dJs ;J

0
s
� ˙�˛!˛

0

ˇ!ˇ0
, or, since dJs ;J

0
s
� �dt
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Js;t dt

Js d2t

Js;2t�1 IdKs;t;� �t;�

Figure 5: A schematic of the complex structure and isotopy data defin-
ing the continuation maps �dt

and (a continuation map homotopic to)
ˆJs!J 0s

ı�˛!˛
0

ˇ!ˇ0
, and the homotopies between the two sets of data. The data

defining �dt
is represented by the top edges of the two triangles, while the

data defining ˆJs!J 0s
ı�˛!˛

0

ˇ!ˇ0
is represented by the bottom edges followed

by the vertical edges.

and ˆ�1
J 0s!Js

�ˆJs!J 0s
, to show that

(6) �dt
�˙ˆJs!J 0s

ı�˛!˛
0

ˇ!ˇ0 :

To see that (6) is true, we consider the following generalized notion of a continuation
map, of which each of the three maps involved are a special case. Consider a Hamilton-
ian isotopy �t and a generic two parameter family of almost complex structures Ks;t

on Symg.†/ which are perturbations of Symg.kt / where kt is a one parameter family
of complex structures on †. Here we assume for convenience as above that this data is
independent of t for t 2 .�1; 0� and t 2 Œ1;1/. We set ˛t D �t .˛/ and ˇt D �t .ˇ/.
Given such data we can associate the continuation map with respect to .�t ;Ks;t /,

(7) �.�t ;Ks;t / W CF�Ks;0
.†;˛0;ˇ0/! CF�Ks;1

.†;˛1;ˇ1/;

by counting Maslov index 0 disks u connecting some x 2 T˛0
\ Tˇ0

to some
y 2 T˛1

\ Tˇ1
, with dynamic boundary conditions u.0; t/ 2 ˛t , u.1; t/ 2 ˇt , and

which satisfy
du

ds
CKs;t

�
du

dt

�
D 0:

The maps �dt
; ˆJs!J 0s

and �˛!˛
0

ˇ!ˇ0
above are then the continuation maps with respect

to the data .dt ;Js;t /, .id†;Js;t / and .dt ;Js;0/ respectively. Furthermore, since the
homotopy classes of such continuation maps are natural under concatenation and
rescaling of the �t and Ks;t by [14, Lemma 2.12] (see also the argument below), the
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composite ˆJs!J 0s
ı�˛!˛

0

ˇ!ˇ0
is homotopic to the continuation map defined with respect

to the data
.dt;1;Js;t;1/ WD

�
.d2t ;Js;0/ if t 2

�
0; 1

2

�
;

.id†;Js;2t�1/ if t 2
�

1
2
; 1
�
:

Consider now two Hamiltonian isotopies �t;0 and �t;1 with �0;0 D �0;1 D id†
and �1;0 D �1;1, and two generic two parameter families Ks;t;0 and Ks;t;1 with
Ks;0;0 DKs;0;1 and Ks;1;0 DKs;1;1. We will complete the proof by showing that a
generic homotopy hD .�t;� ;Ks;t;� / between .�t;0;Ks;t;0/ and .�t;1;Ks;t;1/ induces
a chain homotopy between �.�t;0;Ks;t;0/ and ˙�.�t;1;Ks;t;1/. In particular, (6) will
follow, as the data .dt ;Js;t / used to define �dt ;Js;t

DW �dt
is homotopic to the data

.dt;1;Js;t;1/ used to define �dt;1;Js;t;1
�ˆJs!J 0s

ı�˛!˛
0

ˇ!ˇ0
.

Fixing � , let ��
2
.x;y/ denote the homotopy classes of disks u which connect x to

y , and which satisfy the boundary conditions u.0; t/ 2 �t;� .˛/ and u.1; t/ 2 �t;� .ˇ/.
Given a homotopy class � 2 ��

2
.x;y/, we denote by M� .�/ the moduli space of disks

in the class � satisfying
du

ds
CKs;t;�

�
du

dt

�
D 0:

We note that for fixed � , the definition of the continuation map with respect to
.�t;� ;Ks;t;� / given above can be restated succinctly as counting Maslov index 0 disks
in the moduli spaces M� .�/. For any � , the homotopy h induces an identification
between homotopy classes of disks �0

2
.x;y/ Š ��

2
.x;y/. Using this identification,

we may define for each � 2 �0
2
.x;y/ the moduli space

(8) Mh.�/D
[
�2I

M� .�/� f�g:

For a generic choice of homotopy h, this is a manifold of dimension �.�/C1. We use
this moduli space to define a chain homotopy

H h
W CF�Ks;0

.†;˛0;ˇ0/! CF�Ks;1
.†;˛1;ˇ1/

between�.�t;0;Ks;t;0/ and�.�t;1;Ks;t;1/ associated with the homotopy h. For x2T˛\Tˇ
we set

H h.Œx; i �/D
X

y2T˛1
\Tˇ1

X
�2�0

2
.x;y/

�.�/D�1

#.Mh.�//Œy ; i � np.�/�:

To see that this is a chain homotopy, we will consider the ends of the moduli spaces
Mh. / for  with Maslov index �. /D 0. Since such spaces Mh. / are smooth 1–
dimensional manifolds for generic choices of almost complex structure data, and since
they are orientable, the signed count of the ends is zero for any choice of orientation.
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The ends can be partitioned into three types: those corresponding to � D 0, those
corresponding to � D 1, and those corresponding to strips breaking off for values
0 < � < 1. For the ends corresponding to � D 0, the contribution to the count of the
ends is given by the count of the zero-dimensional moduli space #M�D0. /. Modulo
signs, this is precisely the count occurring in the definition of �.�t;0;Ks;t;0/. For � D 1,
the contribution to the count of the ends is similarly given by #M�D1. /, which is
the count occurring in the definition of �.�t;1;Ks;t;1/, modulo signs. We will discuss
the signed contributions below. Finally, the ends corresponding to strip breaking come
from the space� a

���0D 
�.�/D0;�.�0/D1

Mh.�/� bM.�0/

�
q

� a
�0��D 

�.�/D0;�.�0/D1

bM.�0/�Mh.�/

�
:

Supposing the orientations on the moduli spaces Mh are chosen to be coherent with
respect to pregluings of strips, the count of the terms in the first parentheses is precisely
the count occurring in the composition @�

0
ı H h, while the count of the terms in

the second parentheses is precisely the count occurring in H h ı .@1/
�. Here @�

0

indicates the differential on CF�
Ks;0

.†;˛0;ˇ0/ and .@1/
� indicates the differential on

CF�
Ks;1

.†;˛1;ˇ1/.

Finally, we note that we may arrange for the spaces Mh.�/ to be coherently oriented
such that the total signed count of the ends of Mh. / is given by

0D �.�t;0;Ks;t;0/��.�t;1;Ks;t;1/� ..@1/
�
ıH h

CH h
ı @�0 /:

Indeed, we have

(9) Mh. /D
[
�2I

M� . /�f�gD
˚
.u; �/2C1.I�R;Symg.†//�I ju2M� . /

	
;

so for each homotopy class  we may choose orientations on M�D0. / fitting together
coherently, and obtain induced orientations on the spaces Mh. / via the product
structure in (9). Such an induced orientation will enjoy the property that the restrictions
to the ends at � D 0 and � D 1 yield the counts � # M�D0. / and C # M�D1. /

respectively. We omit the technical details of this argument, and refer the interested
reader to the proof of Lemma 8.13, where an analogous argument dealing with holo-
morphic triangles is spelled out in detail. We have thus shown that a generic homotopy
hD .�t;� ;Ks;t;� / between .�t;0;Ks;t;0/ and .�t;1;Ks;t;1/ induces a chain homotopy
between �.�t;0;Ks;t;0/ and ˙�.�t;1;Ks;t;1/.
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Finally, we note that since the homotopy h is constant in � for t D 0 and t D 1, the chain
homotopy H h, defined with respect to the orientations on Mh.�/ specified above, is a
chain homotopy between the continuation maps �.�t;0;Ks;t;0/ and �.�t;1;Ks;t;1/, which
both take the form

CF�Ks;0;0DKs;0;1
.†;˛0;ˇ0; z; o˛0;ˇ0

/! CF�Ks;1;0DKs;1;1
.†;˛1;ˇ1; z; o˛1;ˇ1

/

and are defined with respect to the same coherent orientation systems on their domains,
and the same coherent orientation systems on their targets. In particular, in the case of
interest — ie (6) — we may choose orientations on M�D0 DMdt so that dJs ;J

0
s
� �dt

(which we established is possible earlier), which together with the above remarks
establishes (6). This completes the proof of the theorem.

Finally, we relegate the proof of axiom (4), simple handleswap invariance, to Section 8.
Given a simple handleswap in Gman,

H1

H3 H2

e
g

f

we will show that the composition of the induced maps in the category of transitive
systems in the projectivized homotopy category yields the identity. We recall from
Definition 3.6 that here Hi D .† # †0;˛i ;ˇi/ are isotopy diagrams, e is a strong
˛–equivalence, f is a strong ˇ–equivalence, and g is a diffeomorphism of isotopy
diagrams.

Theorem 7.2 (cf [5, Theorem 9.30]) Let .fHig; e; f;g/ be data defining a simple
handleswap as above. For the weak Heegaard invariants CFı defined in Definition 6.14,
the induced maps g� WD CFı.g/, ˆe WD CFı.e/, and f̂ WD CFı.f / satisfy

g� ı f̂ ıˆe D IdCF�.H1/:

Thus the weak Heegaard invariants CFı W Gman! Trans
�
P .Kom.ZŒU �–Mod//

�
satisfy

simple handleswap invariance.

Corollary 7.3 The weak Heegaard invariants HF� W Gman! P .ZŒU �–Mod/ satisfy
simple handleswap invariance.

Theorem 7.2 and Corollary 7.3 will establish Theorem 1.3 and Corollary 1.4, which by
Section 5 also establishes Theorem 1.1.
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ˇ1

ˇ2

˛01

˛0
2

˛1

˛2

��1 �C
1

�C
2

��
2

p0

F F

R R

Figure 6: The pointed triple diagram T0, with the curves ˛00 D .˛01; ˛
0
2/,

˛0 D .˛1; ˛2/, ˇ0 D .ˇ1; ˇ2/, and the � intersection points, labeled.

8 Simple handleswap invariance

In this section we prove Theorem 7.2. The key result which will need to be established
is the integral analog of a triangle count proved in [5, Proposition 9.31]. We will
consider the pointed genus two Heegaard triple diagram T0 shown in Figure 6 (compare
the diagrams in Figure 4). Given any triple diagram T we will show that triangle
maps on the stabilized diagram T # T0, endowed with a sufficiently stretched neck, are
determined by triangle maps on the unstabilized diagram T .

We now fix some notation regarding the intersection points in the triple diagram
T0 D .†;˛

0
0
;˛0;ˇ0;p0/. We write T˛0

\Tˇ0
D fag, T˛0

0
\Tˇ0

D fbg, and

T˛0
0
\T˛0

D f�C
1
�C

2
; �C

1
��2 ; �

�
1 �
C

2
; ��1 �

�
2 g:

Here the intersection points �˙
1
2 ˛0

1
\ ˛1 and �˙

2
2 ˛0

2
\ ˛2 are those labeled in

Figure 6. We write ‚ WD �C
1
�C

2
. We will show:

Proposition 8.1 (cf [5, Proposition 9.31]) Fix a strongly s–admissible Heegaard triple
T D .†;˛0;˛;ˇ;p/, and consider the diagram T #T0, where T0D .†;˛

0
0
;˛0;ˇ0;p0/
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ˇ1

ˇ2

˛01

˛0
2

ˇ0
1

ˇ0
2

.��1 /
0

.�C
1
/0

.�C
2
/0

.��
2
/0

p0

F F

R R

Figure 7: The pointed triple diagram T 00 , with the curves ˛00 D .˛01; ˛
0
2/,

ˇ0 D .ˇ1; ˇ2/, and ˇ 0
0
D .ˇ0

1
; ˇ0

2
/, and the � 0 intersection points, labeled.

is the diagram in Figure 6 and the connect sum is taken at the basepoints p and p0. Then
for a generic and sufficiently stretched almost complex structure there is a coherent
orientation system oT0

on T0, which together with any coherent orientation system oT
on T induces a coherent orientation system oT #T0

on T #T0. Furthermore , with respect
to these orientations ,

FT #T0
..x�‚/˝ .y � a/; s/D˙FT .x˝y ; s/�b

for any x 2 T˛0 \T˛ and y 2 T˛\Tˇ .

In fact when we prove handleswap invariance the diagram T0 and the triangle count
just stated will be relevant only to the consideration of the strong ˛–equivalence
involved in the statement. We will need an analogous result which pertains to the strong
ˇ–equivalence map occurring in the statement. We now state the precise result we
will need for this. Let T 0

0
D .†0;˛

0
0
;ˇ0;ˇ

0
0
;p0/ denote the pointed genus two triple

diagram shown in Figure 7, where ˛0
0
D f˛0

1
; ˛0

2
g, ˇ 0

0
D fˇ1; ˇ2g and ˇ 0

0
D fˇ0

1
; ˇ0

2
g

(again compare the diagrams in Figure 4).
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We further fix the following notation for intersection points in the diagram: we let
T˛0

0
\Tˇ0

Dfbg, T˛0
0
\Tˇ 0

0
Dfcg, and‚0 denote the generator in Tˇ0

\Tˇ 0
0

with the
highest relative grading. Let T 0 D .†;˛0;ˇ;ˇ 0;p/ be another pointed Heegaard triple,
and consider the diagram T 0 # T 0

0
, where the connect sum is taken at the basepoints p

and p0. Then we will have an analogous triangle count:

Proposition 8.2 (cf [5, Proposition 9.32]) Fix a strongly s–admissible Heegaard triple
T 0 D .†;˛0;ˇ;ˇ 0;p/, and consider the diagram T 0 # T 0

0
as above. Then for a generic

and sufficiently stretched almost complex structure there is a coherent orientation
system oT 0

0
on T 0

0
, which together with any coherent orientation system oT 0 on T 0

induces a coherent orientation system oT 0#T 0
0

on T 0 # T 0
0

. Furthermore , with respect to
these orientations ,

FT 0#T 0
0
..x�b/˝ .y �‚0/; s/D˙FT 0.x˝y ; s/� c

for any x 2 T˛0 \Tˇ and y 2 Tˇ \Tˇ 0 .

We will prove Proposition 8.1 in the following subsection. Since a nearly identical
proof can be used to establish Proposition 8.2, we omit the proof of that result. We
now assume Propositions 8.1 and 8.2 and use them to establish Theorem 7.2.

Proof of Theorem 7.2 We consider a simple handleswap .H1;H2;H3; e; f;g/ as
in Definition 3.6. We first note that to prove the statement about transitive systems
appearing in Theorem 7.2, it will suffice to find representatives H1, H2, and H3 for
the isotopy diagrams, and show that for these representatives,

g� ı f̂ ıˆe D˙IdCF�.H1/

in Kom.ZŒU �–Mod/, or equivalently

g� ı f̂ ıˆe D IdCF�.H1/

in P .Kom.ZŒU �–Mod//. Indeed, since each of the maps ˆe, f̂ , and g� above are
contained in the morphisms ˆe, f̂ and g� of the transitive systems CF�.H /, by
the results in Sections 6 and 7, this monodromy relation will automatically yield
corresponding monodromy relation for all such triangles.

Let H1 D .† #†0;˛1;ˇ2/ be a representative for the first isotopy diagram in the
collection of data specifying the simple handleswap. By definition, H1 decomposes as
H #H0, where HD .†;˛;ˇ/ and H0 D .†0;˛0;ˇ0/ are as in Figure 4 (H0 here is
what we were denoting by P \H1 in Definition 3.6).
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Fix two new curves ˛0
0

on †0 which are related to ˛0 as in the diagram T0 in the
statement of Proposition 8.1. Fix also a collection of curves ˛0 on † which are
obtained by performing a small Hamiltonian isotopy on the curves in ˛. The second
isotopy diagram H2 can then be represented as H2 D .† #†0;˛

0[˛0
0
;ˇ [ˇ0/, and

the morphism associated to the strong ˛–equivalence e is given by the triangle map
ˆe WD ‰

˛[˛0!˛
0[˛0

0

ˇ[ˇ0
. We note that our choices of representatives for the isotopy

diagrams H1 and H2 ensure that the strong equivalence map of Definition 6.13 applied
to these representatives is computed using only a single triangle map, as opposed
to a composition of triangle maps and continuation maps. As in the notation of
Proposition 8.1, we set T˛0

\Tˇ0
D fag and T˛0

0
\Tˇ0

D fbg. We then have for any
y � a 2 T˛[˛0

\Tˇ[ˇ0
,

ˆe.y � a/D‰
˛[˛0!˛

0[˛0
0

ˇ[ˇ0
.y � a/

D F˛0[˛0
0
;˛[˛0;ˇ[ˇ0

.‚˛0[˛0
0
;˛[˛0

˝ .y � a//

D F˛0[˛0
0
;˛[˛0;ˇ[ˇ0

..‚˛0;˛ �‚/˝ .y � a//

D˙F˛0;˛;ˇ.‚˛0;˛ �y/�b

D˙�˛!˛
0

ˇ .y/�b:

Here we have used Proposition 8.1 in the second to last equality, and Lemma 6.12 in
the last equality.

We perform the analogous calculation for the strong ˇ–equivalence. Fix two new curves
ˇ 0

0
on†0 which are related to ˇ0 as in the diagram T 0

0
in the statement of Proposition 8.2.

Fix also a collection of curves ˇ 0 on † which are obtained by performing a small
Hamiltonian isotopy on the curves in ˇ . The third isotopy diagram H3 can then be
represented as H3 D .† #†0;˛

0[˛0
0
;ˇ 0[ˇ 0

0
/, and the morphism associated to the

strong ˇ–equivalence f is given by the triangle map f̂ WD ‰
˛0[˛0

0

ˇ[ˇ0!ˇ 0[ˇ
0
0

. As in
the notation of Proposition 8.2, we set T˛0

0
\Tˇ 0

0
D fcg. By the same sequence of

computations as in the previous case we then have for any x�b 2 T˛0[˛0
0
\Tˇ[ˇ0

,

f̂ .x�b/D‰
˛0[˛0

0

ˇ[ˇ0!ˇ 0[ˇ
0
0

.x�b/

D F˛0[˛0
0
;ˇ[ˇ0;ˇ 0[ˇ

0
0
..x�b/˝‚ˇ[ˇ0;ˇ 0[ˇ

0
0
/

D F˛0[˛0
0
;ˇ[ˇ0;ˇ 0[ˇ

0
0
..x�b/˝ .‚ˇ;ˇ 0 �‚//

D˙F˛0;ˇ;ˇ 0.x�‚ˇ;ˇ 0/� c

D˙�˛
0

ˇ!ˇ 0.x/� c:

Algebraic & Geometric Topology, Volume 23 (2023)



1028 Michael Gartner

This time we have used Proposition 8.2 in the second-to-last equality, and again used
Lemma 6.12 in the last equality.

We note that in the collection of representatives for the isotopy diagrams in a simple
handleswap one could leave the ˛ and ˇ curves unchanged throughout the handleswap,
which would necessitate the diffeomorphism g restricting to the identity on †. Here
we have altered ˛ and ˇ slightly, so that the strong ˛–equivalence and strong ˇ–
equivalence maps could each be computed via a single triangle map ‰. Since our
alteration of the curves ˛ and ˇ on † came from small Hamiltonian isotopies, we can
however still ensure that for our representatives for the handleswap the diffeomorphism
g is isotopic to the identity when restricted to †. Furthermore, since g is part of a
simple handleswap it must satisfy g.˛0/D g.˛/ and g.ˇ 0/D g.ˇ/. Thus, by definition
of the maps induced by diffeomorphisms of diagrams, we have

g�.z� c/D .gj†/�.z/� a

for all .z� c/ 2 T˛0[˛0
0
\Tˇ 0[ˇ 0

0
.

Putting these formulas for each of the induced maps together, we find that

g� ı f̂ ıˆe.y � a/D
�
g� ı‰

˛0[˛0
0

ˇ[ˇ0!ˇ 0[ˇ
0
0

ı‰
˛[˛0!˛

0[˛0
0

ˇ[ˇ0

�
.y � a/

D˙
�
.gj†/� ı�

˛0

ˇ!ˇ 0 ı�
˛!˛0

ˇ

�
.y/� a:

Since the restriction of g to † is isotopic to the identity, Theorem 7.1 ensures

.gj†/� ı�
˛0

ˇ!ˇ 0 ı�
˛!˛0

ˇ �˙IdCF�.H/:

We thus have

g� ı f̂ ıˆe D˙
�
.gj†/� ı�

˛0

ˇ!ˇ 0 ı�
˛!˛0

ˇ

�
˝ IdCF�.H0/

�˙IdCF�.H/˝ IdCF�.H0/

�˙IdCF�.H1/;

which by the remarks at the beginning of the proof completes the argument.

Having established that Propositions 8.1 and 8.2 together imply Theorem 7.2, we now
turn towards proving Proposition 8.1.

We employ the strategy used in [5] for proving the analog of Proposition 8.1 appearing
there. We import many results exactly as they are stated there, while in a few cases we
make small modifications in order to be able to apply their results. For the reader’s
convenience we provide statements of some results from [5], and provide proofs of any
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�˛0ˇ

�˛ˇ �˛0˛

e˛

eˇ e˛0

Figure 8: The region �.

imported results which must be modified slightly for our purposes. We also provide
sketches of proofs of certain statements from [5] which we do not need to modify, but
whose exposition we hope will aid in the readability of this paper.

In the remainder of this section we work in the cylindrical formulation of Heegaard
Floer homology introduced by Lipshitz in [6].

8.1 Moduli spaces of triangles

We begin by recalling some notation and terminology regarding holomorphic triangles in
the cylindrical setting of Heegaard Floer homology; see [6]. We denote by � the subset
of C shown in Figure 8, which has three cylindrical ends modeled on Œ0; 1�� Œ0;1/.
We will think of this region as a triangle with its vertices removed. We also introduce
in the figure notation we will use to indicate the boundary components and ends of this
region.

We will consider almost complex structures J on †�� which satisfy the following
conditions:

(J010) J is tamed by the split symplectic form on †��.

(J020) On each component of † n .˛0 [ ˛[ ˇ/ there is at least one point at which
J D j† � j�.

(J030) On each cylindrical end †� Œ0; 1��R of †��, there is a 2–plane distribution
� on †� Œ0; 1�� f0g such that the restriction of ! to � is nondegenerate, J

preserves �, and the restriction of J to � is compatible with !. Furthermore, �
is tangent to † near .†� f0; 1g � f0g/[ .†� Œ0; 1�� f0g/.

(J040) The planes Td .fpg ��/ are complex lines of J for all .p; d/ 2†��.
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(J050) There is an open set U � � containing @� n f�˛0˛; �˛ˇ; �˛0ˇg such that the
planes Tp.†�fdg/ are complex lines of J for all .p; d/ near .˛0[˛[ˇ/��
and for all .p; d/ 2†�U .

J–holomorphic curves in †�� for almost complex structures J of this sort enjoy the
following property.

Lemma 8.3 [6, Lemma 3.1] Let J be an almost complex structure on †�� that
satisfies the axioms (J010)–(J050). If u W S ! †�� is J–holomorphic and �† ı u is
nonconstant on a component S0 of S , then �† ı ujS0

is an open map. Furthermore ,
there are coordinates near any critical point of �† ıujS0

where �† ıu takes the form
z 7! zk for some k > 0.

In fact, this result follows immediately from [9, Theorem 7.1].

To understand Proposition 8.1, we will need to investigate the nature of triangle maps
on the diagram T # T0. In the cylindrical setting, the notion of a holomorphic triangle
in a Heegaard triple diagram takes the following form.

Definition 8.4 Let T D .†;˛0;˛;ˇ/ be a triple diagram, and set d D j˛0j D j˛j D jˇj.
By a holomorphic triangle in the triple diagram T we will mean a .j ;J /–holomorphic
map u W S !†�� satisfying:

(M1) .S; j / is a (possibly nodal) Riemann surface with boundary and 3d punctures
on @S .

(M2) u is locally nonconstant.

(M3) u.@S/� .˛0 � e˛0/[ .˛� e˛/[ .ˇ � eˇ/.

(M4) u has finite energy.

(M5) For each i 2 f1; : : : ; dg and � 2 f˛0;˛;ˇg, the preimage u�1.�i � e� / consists
of exactly one component of the punctured boundary of S .

(M6) As one approaches the punctures of @S , the map u converges to a collection of
intersection points on the Heegaard triple in the cylindrical ends of †��.

We will often ask holomorphic triangles to satisfy the following additional two require-
ments:

(M7) �� ıu is nonconstant on each component of S .

(M8) S is smooth, and u is an embedding.
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Unless otherwise specified, we will use the term holomorphic triangle to refer to maps
satisfying axioms (M1)–(M6), and explicitly note when we are considering curves
satisfying the additional axioms (M7) and (M8).

For any homology class  of triangles on a Heegaard triple diagram T , we will denote
by M. / the moduli space of holomorphic triangles on T in the homology class  .
Given a Riemann surface S , we will indicate by M. ;S/ the subspace of M. /

consisting of holomorphic triangles with source S .

To obtain the triangle count we are after on a sufficiently stretched copy of T # T0, we
will need to understand compactifications of these moduli spaces of triangles. These
compactifications allow for a weaker notion of triangle which we refer to as broken:

Definition 8.5 Let T D .†;˛0;˛;ˇ/ and d be as above. We say that a collection of
.j ;J /–holomorphic curves BT D .u1; v1; : : : ; vn; w1; : : : ; wm/ is a broken holomor-
phic triangle on T representing the homology class  if

(BT1) u1 is a curve mapping to †�� satisfying (M1) and (M3)–(M6).

(BT2) vi are curves mapping to †� I �R which satisfy the analogs of (M1) and
(M3)–(M6), each representing some homology class of strips in one of the
diagrams .†;˛;˛0/, .†;˛0;ˇ/ or .†;˛;ˇ/.

(BT3) The wi are curves from Riemann surfaces with d boundary components and a
single puncture on each boundary component, and which map to

.†� I �R/q .†��/:

For each i , the boundary components of the curve wi all map to a single set of
attaching curves.

(BT4) The total homology class of the curves in BT is equal to  .

With this notion in hand, we can state the following compactness result which describes
the behavior of triangles on T # T0 as we stretch the neck:

Proposition 8.6 [5, Proposition 9.40] Let  # 0 be a homology class of triangles
on .† #†0/��, and uTi

be a sequence of holomorphic triangle representatives for
 # 0 on .† #†0/ ��, with respect to almost complex structures J.Ti/ for neck
lengths Ti!1. Then there is a subsequence which converges to a triple .U;V;U0/

where U and U0 are broken holomorphic triangles on †�� and †0 �� representing
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 and  0 respectively , and V is a collection of holomorphic curves on the neck regions
S1�R�� or S1�R� Œ0; 1��R which are asymptotic to (possibly multiply covered )
Reeb orbits S1 � fdg for d 2� or d 2 Œ0; 1��R.

Remark 8.7 More precisely, the asymptotic condition on the curves appearing in V

in Proposition 8.6 above has the following meaning. By a “Reeb orbit” in this context,
we mean a periodic orbit 
 of the vector field d=d� on S1�R�� or S1�R�I �R,
where � is the coordinate on S1. The curves v in V have as sources punctured Riemann
surfaces. Let S be a connected component of such a source, q a puncture of S , and
v W S! S1�R��. Write .�; r; z/ for coordinates on the target. Then v is asymptotic
to 
 at q if:

(1) There is a neighborhood U of q in S and a biholomorphic diffeomorphism
� W U Š S1 � .0;1/. Write .x;y/ for coordinates on S1 � .0;1/.

(2) r ı v ı��1!1 as y!1.

(3) .�; z/ ı v ı��1.x;y/! 
 .x/ as y!1 as maps S1! S1 �� in C1loc.

8.2 Matched moduli spaces and orientations

Fix a triple diagram T D .†;˛0;˛;ˇ/ and a point p2†n.˛0[˛[ˇ//. Let u WS!†��

be a J–holomorphic curve satisfying (M1)–(M6), for some almost complex structure
J on †�� satisfying (J010)–(J050). Then u is locally nonconstant by condition (M2),
so, by Lemma 8.3, �† ı u is an open map on each component of S , and takes the
form z 7! zk near any critical point. Thus .�† ı u/�1.p/ is a finite set of points.
Furthermore, using property (J040) of the almost complex structure J , positivity of
complex intersections for J–holomorphic curves — see eg [9] or [8] — ensures that all
intersections between p�� and the image of u are positive.

We will write .�† ıu/�1.p/D fx1; : : : ;xnp.u/g 2 Symnp.u/.S/, and define

�p.u/ WD f�� ıu.x1/; : : : ; �� ıu.xnp.u//g 2 Symnp.u/.�/:

We remark that our notation involving set braces is somewhat misleading, as there may
of course be repetitions among the points xi in the symmetric product, corresponding
to intersection points occurring with positive multiplicity greater than 1.

To understand the triangle count, we will be concerned with holomorphic triangles u for
which �p.u/ takes prescribed values. As a first step towards understanding the moduli
spaces of such triangles, Juhász, Thurston and Zemke show that, for any prescribed
value outside the fat diagonal, such a triangle is somewhere injective.
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Lemma 8.8 [5, Lemma 9.45] Let .†;˛0;˛;ˇ;p/ be a triple diagram , and

d 2 Symk.�/ nDiag.�/:

If u W S ! † � � is a J–holomorphic curve satisfying (M1)–(M6) for an almost
complex structure satisfying (J010)–(J050), which furthermore has �p.u/Dd , then every
component of u is somewhere injective.

Fix a Heegaard triple diagram T D .†;˛0;˛;ˇ;p/ and a homology class of triangle  ,
with np. /D k. Given a subset X � Symk.�/, we let

M. ;S;X /D fu 2M. ;S/ j �p.u/ 2X g

and
M. ;X /D fu 2M. / j �p.u/ 2X g:

Using techniques similar to those used in the standard setting, Juhász, Thurston and
Zemke prove the following result, which shows that generically these matched moduli
spaces are smooth manifolds.

Proposition 8.9 [5, Proposition 9.47] Let .†;˛0;˛;ˇ/ be a triple diagram , and fix
a point p 2† n .˛0[˛[ˇ/. Suppose X � Symk.�/ for some k 2N is a nonempty
submanifold that does not intersect the fat diagonal. Furthermore , suppose that for
every x 2X , the k–tuple x has no coordinate in the open set U �� from (J050). Then ,
for a generic choice of almost complex structure J , the set M. ;S;X / is a smooth
manifold of dimension

ind. ;S/� codim.X /

where ind. ;S/ denotes the Fredholm index of the linearized N@ operator at any repre-
sentative u W S !†�� for  . For X D Symk.�/, the same statement holds near any
curve u that has no component T on which �� ıujT is constant and has image in U ,
and such that all components of u are somewhere injective.

It will be important for our purposes to note that these moduli spaces are also orientable
when they are smoothly cut out, which follows in a straightforward manner from the
framework in which the proof of the previous proposition is carried out. We now
provide a sketch of the argument.

Lemma 8.10 For J and X as in Proposition 8.9, with X � Symk.�/ furthermore
assumed to be an orientable submanifold , M. ;S;X / is orientable.
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Proof Forgetting the matching condition — ie taking X D Symk.�/— we consider
M. ;S;Symk.�//DM. ;S/. By [6, Proposition 6.3 and Section 10.3], whenever
this space is transversely cut out it is an orientable smooth manifold.

For the case when X ¤ Symk.�/, we briefly recall how one can establish the existence
of a smooth manifold structure on M. ;S;X /, as in the proof of [5, Proposition 9.47].
Consider the map �p WM. ;S/! Symk.�/. To obtain the smooth manifold structure
on M. ;S;X /, one considers the universal moduli space M`

univ. ;S/. This consists
of triples .u; j ;J /, where j is a C ` complex structure on S , J is a C ` almost complex
structure on†�� satisfying conditions (J010)–(J050), and u is a .j ;J /–holomorphic map
u W S !†�� in the homology class  , which furthermore satisfies certain regularity
conditions; see [6, page 968]. It is shown in the proof of Proposition 8.9, using the
technique of [6, Proposition 3.7], that the universal moduli space M`

univ. ;S/ is a
Banach manifold and the evaluation map �p WM`

univ. ;S/!Symk.�/ is a submersion
at all triples .u; j ;J / for which �p.u/ is not in the fat diagonal. Thus for X missing
the fat diagonal, the universal matched moduli space M`

univ. ;S;X / WD .�
p/�1.X /

is a Banach manifold. One can then apply the Sard–Smale theorem to the Fredholm
map � WM`

univ. ;S;X /! J ` to obtain a regular value J 2 J ` so that

M`. ;S;X /D ��1.J /

is a smooth manifold. Finally, one uses an approximating bootstrapping argument to
obtain the same result for C1 complex structures. More precisely, one obtains that for
a generic choice of J the space M. ;S/ is a smooth manifold and the map

�p
WM. ;S/! Symk.�/

is transverse to X . Thus, for X missing the fat diagonal, M. ;S;X / WD .�p/�1.X /

is a smooth manifold.

Fixing u 2M. ;S;X /,

TuM. ;S/Š TuM. ;S;X /˚Nu

where N is any choice of orthogonal complement. Since M. ;S/ is orientable, it will
suffice to show N is orientable to establish that M. ;S;X / is orientable. Since �p is
transverse to X ,

d�p.TuM. ;S//CT�p.u/X D T�p.u/Symk.�/:
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Since .d�p/�1.TX / D TM. ;S;X /, the two equations above yield a direct sum
decomposition

d�p.Nu/˚T�p.u/X Š T�p.u/Symk.�/:

Finally, since X and Symk.�/ are orientable, and d�pjN is an isomorphism on each
fiber, the last equation establishes orientability of the complement N . Thus M. ;S;X /

is orientable, as desired.

We now turn to an investigation of the behavior of orientations on these moduli spaces.
We recall again the notion of coherent orientation systems, and now provide the precise
definitions in the cylindrical setting, as we will need them in some of our computa-
tions. We begin with the moduli space of holomorphic strips in a homology class
A 2 �2.x;y/, denoted by MA, on some Heegaard (double) diagram HD .†;˛;ˇ/.
We set bMA

DMA=R. As noted above, these moduli spaces are orientable whenever
they are smoothly cut out by [6, Proposition 6.3]. There this is shown by trivializing
the determinant line bundle of the virtual index bundle of the linearized N@–equation.
In fact, this line bundle is trivialized over a larger auxiliary space of curves which are
not necessarily holomorphic, which we denote by BA, rather than over MA. We ask
for the trivializations of these determinant lines L over BA to satisfy the following
compatibility under gluing.

Definition 8.11 Given a Heegaard diagram H, homology classes of strips A and A0

which are adjacent on the diagram — ie A 2 �2.x;y/ and A0 2 �2.y ; z/— and maps
u W S !†� I �R and u0 W S 0!†� I �R representing A and A0 respectively, one
can preglue the positive corners of u to the negative corners of u0; see [6, Appendix A]
for one such construction. In fact, there is a 1–parameter family of such pregluings
.u \r u0 W S \r S 0 ! † � I � R/ in the class AC A0, defined for sufficiently large
values of the parameter r . One can show that this map preserves the analogs of
(M1), (M3) and (M4) for strips, and the asymptotic conditions one asks of the strips.
Denote the collection of maps of the form S ! † � I � R in a given homology
class A which furthermore satisfy (M1), (M3), (M4) and the asymptotic conditions
by BA.S/. We say a choice of orientations for all bMA

, specified by a collection
of nonvanishing sections oH D o˛;ˇ D fo

Ag of L over all of the bMA
, is a coherent

orientation system on H if the induced map of determinant lines covering the map
\r WBA.S/�BA0.S 0/�.R;1/!BACA0.S \r S 0/ satisfies .\r /�.oA�oA0/DCoACA0 .

That such coherent orientation systems exist is shown in numerous places. One con-
struction sufficient for our purposes can be found in [6, Section 6].
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In the case of holomorphic triangles, the moduli spaces M. / are also orientable. For
a collection of orientations on M. / for all homology classes  of triangles in a triple
diagram, we will consider a related notion of coherence.

Definition 8.12 Given a Heegaard triple diagram T , we will say a choice of orien-
tations for M ˛;ˇ , M ˇ;
 , M ˛;
 and M. / (for  ˛;ˇ ,  ˇ;
 and  ˛;
 ranging
over all classes of strips in the respective double diagrams, and  ranging over
all classes of triangles in the triple diagram) specified by a collection of sections
oT D fo˛;ˇ;
 ; o˛;ˇ ; oˇ;
 ; o˛;
g is a coherent orientation system of triangles if each
collection of orientations of the moduli spaces of strips on the respective double
diagrams are coherent, and all possible pregluings of triangles with strips satisfy the
analogous gluing condition.

Following [6, Section 6], given a homology class of triangles  on the triple diagram T ,
let T . / denote the space of pairs .u; j /, where u W S !†�� is a curve in the class
 satisfying (M1), (M3) and (M4), and j is a complex structure on S . We declare two
such pairs .u W S !†��; j / and .u0 W S 0!†��; j 0/ to be equivalent if there is a
biholomorphism � W .S; j /! .S 0; j 0/ such that the diagram

(10)
S S 0

†��

u

�

u0

commutes. We denote the quotient of T . / by this equivalence relation by B. /.

Let p W I ! Symk.�/ be an embedded path missing the fat diagonal. We consider
the following moduli spaces of holomorphic triangles associated to homology classes
 0 2 �2.‚; a;b/ in the triple diagram T0 from Proposition 8.1,

(11) M 0

I
DM. 0;p.I//

D f.u; t/ j u 2M. 0/ such that �p.u/ 2 p.t/ for some t 2 Ig

and

(12) M 0

t DM. 0;p.t//D fu 2M. 0/ such that �p.u/ 2 p.t/g:

By Proposition 8.9, for a generic choice of almost complex structure on †0 � �

the moduli spaces M 0

I
are smooth manifolds of dimension �. 0/� codim.p.I//.

By Lemma 8.15, we have �. 0/ D 2np0
. 0/, so the expected dimension becomes

2np0
. 0/� .2k � 1/. In particular, when k D np0

. 0/ the moduli space M 0

I
is a
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M0

M1

Mt MI

M� tM� 0 M� 1

Figure 9: A schematic of the space M� I with MI inside it. Vertical slices
of the picture such as the vertical dashed line represent the spaces M � t ,
while the solid curves collectively represent the smooth moduli space MI . The
left and right endpoints on MI represent M0 �M � 0 and M1 �M � 1

respectively, while the endpoints of MI on the top and bottom of the figure
represent degenerations of triangles into broken triangles in the compactification.

smooth 1–manifold when it is transversely cut out. Similarly, the expected dimension
of M 0

t is 0 when k D np0
. 0/. Finally, we define the spaces

MD
a

 02�2.‚;a;b/
np0

. 0/Dk

M 0 ; MI D

a
 02�2.‚;a;b/

np0
. 0/Dk

M 0

I
; Mt D

a
 02�2.‚;a;b/

np0
. 0/Dk

M 0

t :

We provide a schematic of these spaces and their relationships in Figure 9.

We note for the following arguments that by the remarks above MI is a smooth
manifold of dimension 1 for a generic choice of almost complex structure, and for
each t a (potentially different) generic choice of almost complex structure will ensure
Mt is a smooth manifold of dimension 0. We will denote by oMI

and oMt
nowhere

zero sections of the bundles LI and Lt respectively, which are the determinant line
bundles of the virtual index bundles of the linearized equations defining these moduli
spaces. We recall that such sections determine orientations of the moduli spaces.

For arguments appearing later, we want to ensure we can achieve the following intu-
itively achievable constraints on our orientations.
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Lemma 8.13 Let MI and Mt be as above. Then there are coherent orientation
systems oM0

on M0, oM1
on M1, and oMI

on MI such that .oMI
/jM0

Š�oM0
and

.oMI
/jM1

Š oM1
.

Proof The proof is an elaboration on that of Lemma 8.10. Consider again the universal
moduli space of holomorphic maps Muniv consisting of triples .u; j ;J / satisfying the
conditions as in the proof of Lemma 8.10. We consider the map

�p
� id WMuniv � I ! Symk.�/� I

given by .�p � id/.u; j ;J; t/ D .�p.u/; t/. This map is again a submersion when
�p.u/ is not in the fat diagonal, by [5, Proposition 9.47]. Let

P D f.p.t/; t/ j t 2 Ig

and note that .�p � id/�1.P / D .Muniv/I , where here we have used the notation
.Muniv/I to indicate the universal moduli space matched to p.I/ (as the notation is
used in (11)). Since we are working with a path p missing the fat diagonal, �p � id is
a submersion, and we have, as a consequence of the Sard–Smale theorem, parametric
transversality: denoting by MJ the moduli space of holomorphic curves with respect
to the almost complex structure J , �p � id WMJ � I ! Symk.�/� I is transverse to
P for generic J . By [6, Section 6] we may orient such MJ , which in turn specifies
a product orientation on MJ � I . Since P is also oriented (by a fixed orientation
for I ), we then have for such J that .�p� id/�1.P /DMI inherits an orientation oMI

;
furthermore, this orientation satisfies the boundary conditions

(13) .oMI
/jM0

D�oM0
and .oMI

/jM1
D oM1

;

where oM0
and oM1

are the orientations coming from the previously fixed choice of
orientation on MJ , as desired. Finally, we note that by the same argument used to
prove [6, Lemma 10.10], we may arrange for the orientation systems oMI

, oM0
and

oM1
in the preceding paragraph to be enlarged to coherent systems in the sense of

Definition 8.12.

Having discussed the smooth manifold structure and a particular construction of co-
herent orientations on the matched moduli spaces of triangles on a triple diagram, we
now state a gluing result from [5] which will allow us to relate these matched moduli
spaces of triangles on the diagram T0 to the triangles on T # T0 we seek to count.
We consider homology classes of triangles  on an arbitrary pointed triple diagram
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T D .†;˛0;˛;ˇ;p/ and  0 on the pointed diagram T0 D .†0;˛
0
0
;˛0;ˇ0;p0/. We

form the connected sum of the diagrams at the points p and p0, and consider the
resulting homology class  # 0:

Proposition 8.14 [5, Proposition 9.49] Let u and u0 be holomorphic triangles
representing homology classes  and  0 in † � � and †0 � � respectively. Let
k D np. /D np0

. 0/, and suppose �.u/D 0, �.u0/D 2k, and

�p.u/D �p0.u0/ 2 Symk.�/ nDiagk.�/:

Suppose further that M. / and M. 0; �
p.u// are transversely cut out near u and u0.

Then there is a homeomorphism h between Œ0; 1/ and a neighborhood of .u;u0/ in the
compactified 1–dimensional moduli space[

T

MJ .T /. # 0/

such that h.u;u0/D f0g.

Finally, the following three facts will also be useful in the proof of the triangle count
of Proposition 8.1, so we state them here as lemmas for convenience in referencing.

Lemma 8.15 [5, Lemma 9.50] Consider the triple diagram T0 D .†0;˛
0
0
;˛0;ˇ0/.

If x 2 T˛0
0
\T˛0

and  0 2 �2.x; a;b/, then

(14) �. 0/D 2np0
. 0/C�.x;‚/:

Lemma 8.16 The differential on bCF .†0;˛
0
0
;˛0;p0; o˛0

0
;˛0
/, defined with respect to

the coherent orientation system o˛0
0
;˛0

specified in Lemma 6.5, vanishes.

Proof By [11, Lemma 9.4], rankZ.bHF .†0;˛
0
0
;˛0;p0; o˛0

0
;˛0
//D 4. By inspection

rankZ.bCF /D 4, so the differential must vanish.

Lemma 8.17 The map

‰
˛0!˛

0
0

ˇ0
WbCF .†0;˛0;ˇ0;p0/!bCF .†0;˛

0
0;ˇ0;p0/

satisfies ‰
˛0!˛

0
0

ˇ0
.a/D˙b.

Proof By Lemma 6.9, ‰
˛0!˛

0
0

ˇ0
is a quasi-isomorphism. Since the two complexes in

question are trivial of rank one over Z, the quasi-isomorphism must be an isomorphism
between trivial, rank one complexes over Z, of which there are precisely two.
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8.3 Counting triangles

We are now in position to prove the main triangle count, and conclude the proof of
handleswap invariance.

Proof of Proposition 8.1 As we did in Sections 6 and 7, we will consider the case of
the chain complexes CF� in what follows in order to fix definitions; however we note
that the proof carries over equally well for all variants CFı.

For an almost complex structure J which achieves transversality we have, by definition,

FT #T0
..x�‚/˝ .y � a//D

X
z

X
A2�2.x�‚;y�a;z�b/

�.A/D0

.#MJ .A//U
np.A/ � z�b

and

FT .x˝y/�bD

�X
z

X
A2�2.x;y;z/
�.A/D0

.#MJ .A//U
np.A/ � z

�
�b:

To obtain the result we will count Maslov index 0 holomorphic triangles in the homology
class A, for each generator z 2 T˛0 \Tˇ and class A 2 �2.x�‚;y � a; z�b/.

Consider two homology classes of triangles  2 �2.x;y ; z/ on T D .†;˛0;˛;ˇ;p/
and 02�2.‚; a;b/ on T0D .†0;˛

0
0
;˛0;ˇ0;p0/. If np. /Dnp0

. 0/, so the classes
match across the connect sum point, then the homology classes can be combined to
give a class  # 0 2 �2.x �‚;y � a; z� b/. Conversely, it is clear that any class
A 2 �2.x �‚;y � a; z � b/ can be written uniquely as a connect sum of suitable
classes with this matching condition.

So for any such homology class A D  #  0 with �.A/ D 0, we aim to count
Maslov index zero holomorphic representatives as we stretch the neck, ie to count
#MJ .Ti /. #  0/, where J.Ti/ is a sequence of almost complex structures being
stretched along the neck. To do so, suppose uTi

is a sequence of J.Ti/–holomorphic
triangles representing  #  0, where �. #  0/ D 0. We note here that by [17,
Theorem 4.1] and Lemma 8.15 we have

�. # 0/D �. /C�. 0/� 2np. 0/D �. /C�.�;�/D �. /:

Hence �. /D 0 and �. 0/D 2np0
. 0/.

By Proposition 8.6, there is a subsequence of uTi
which converges to a triple .U;V;U0/

where U is a broken holomorphic triangle in †�� representing  , U0 is a broken
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holomorphic triangle in †0�� representing  0, and V is a collection of holomorphic
curves mapping into the neck regions that are asymptotic to (possibly multiply covered)
Reeb orbits of the form S1 � fdg.

The proof will now proceed in steps as follows:

(1) We will show U consists of a single holomorphic triangle u with Maslov index
zero, with u satisfying (M1)–(M8), and potentially some number of constant
holomorphic curves.

(2) We then show that U0 consists of a single Maslov index 2np0
. 0/ triangle u0

0
,

with u0
0

satisfying (M1)–(M8) and �p.u/ D �p0.u0/, and potentially some
number of constant holomorphic curves.

(3) We rule out the possibility of constant curves occurring in steps (1) and (2), and
show that V consists of a collection of trivial holomorphic cylinders.

(4) Using this knowledge of .U;V;U0/ and the gluing result, we reduce the proof
to showing Lemma 8.18 below.

In fact, the proofs of steps (1)–(3) given in [5] carry over exactly as they are stated
there, so we will only carry out step (4).

Step (4) By steps (1)–(3), a sequence uTi
of J.Ti/–holomorphic triangles representing

 # 0 converges to a broken holomorphic triangle .U;V;U0/, where U D u is a single
holomorphic triangle satisfying �.u/ D 0, V is a collection of trivial holomorphic
cylinders, U0 is a single holomorphic triangle u0 satisfying �.u0/ D 2np. /, and
�p.u/D�p0.u0/. By Proposition 8.14, there is therefore a homeomorphic identification
h between a neighborhood of .u;u0/ in the compactified 1–dimensional moduli space[

Ti

MJ .Ti /. # 0/

and the interval Œ0; 1/, such that h.u;u0/D f0g. This yields an identification

MJ .Ti /. # 0/Š f.u;u0/ 2M. /�M. 0/ j �
p.u/D �p.u0/g

for sufficiently large Ti . We now fix JTi
for such a sufficiently large value of Ti , and

drop this choice of almost complex structure from our notation.

Given coherent orientation systems oT over T and oT0
over T0, there is a coherent

orientation system oT #T0
with respect to which the signed count of the 0–dimensional
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moduli space M. # 0/ is given by

#M. # 0/D #f.u;u0/ 2M. /�M. 0/ j �
p.u/D �p.u0/g:

Indeed, given two homology classes of triangles  on T and  0 on T0, the gluing
map \ (see [6, Appendix A, page 1082] for the definition) used to identify the two
moduli spaces is covered by a map of determinant lines .\/# which can be used to
produce an orientation o

 # 0

T #T0
over M. # 0/ from orientations o T over M. / and

o
 0

T0
over M. 0/. Similarly, for two homology classes of strips A on T and A0

on T0, the same procedure can be used to determine an orientation oA#A0

T #T0
from oA

T
and oA0

T0
. The fact that homology classes of strips and triangles on T # T0 are in

bijective correspondence to pairs of homology classes of strips on T and T0 ensures
that the coherent orientation systems oT and oT0

thus determine a single orientation
system oT #T0

over all classes of strips and triangles in the connect summed diagram
(ie the determinations for a particular class of triangle or strip on the summed diagram
are not overspecified). That this induced orientation is coherent follows from the
coherence of the two constituent orientations, along with the fact that gluing map .\/#
above commutes with the map .\/� appearing in Definition 8.12. More precisely, the
coherence follows from these facts as

o
. CA/#. 0CA0/
T #T0

WD .\/#.o
 CA
T � o

 0CA0

T0
/

D .\/#..\/�.o
 
T � o

A
T /� .\/�.o

 0

T0
� oA0

T0
//

D .\/�..\/#.o
 
T � o

 0

T0
/� .\/#.o

A
T � o

A0

T0
//

DW .\/�.o
 # 0

T #T0
� oA#A0

T #T0
/

where the second equality is the definition of coherence for the orientation systems
oT and oT0

, and the third equality is the statement of the commutativity of the two
induced gluing maps referenced above. This commutativity follows from the fact that
the two gluing maps can be viewed as taking place in a small neighborhood of the
curves being glued, and can thus be performed in either order, or simultaneously, via
the construction in [6, Appendix A]. This establishes coherence of the system oT #T0

.

For u 2M. / let

M.‚;a;b/.�
p.u//D

a
 02�2.‚;a;b/
�. 0/D2np. /

M. 0; �
p.u//:

With respect to a coherent orientation system oT #T0
on T # T0 determined from any

coherent systems oT and oT0
as above, the triangle map in question can then be written
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as

F D FT #T0
..x�‚/˝.y�a//

D

X
z

X
 2�2.x;y;z/
 02�2.‚;a;b/
�. # 0/D0

#
˚
.u;u0/ 2M. /�M. 0/ j �

p.u/D �p.u0/
	
U np. # 0/�z�b

D

X
z

X
�. /D0

 2�2.x;y;z/

X
 02�2.‚;a;b/
�. 0/D2np. /

#
˚
.u;u0/ 2M. /�M. 0/ j �

p.u/D �p.u0/
	
U np. # 0/�z�b

D

X
z

X
 2�2.x;y;z/
�. /D0

X
 02�2.‚;a;b/
�. 0/D2np. /

X
u2M. /

#
�
u�M. 0; �

p.u//
�
U np. # 0/�z�b

D

X
z

X
 2�2.x;y;z/
�. /D0

X
u2M. /

#
�
u�M.‚;a;b/.�

p.u//
�
U np. # 0/�z�b:

We will show in Lemma 8.18 below that there is a coherent orientation system oT0

on T0 for which either
#M.‚;a;b/.�

p.u//D 1

for all  with �. /D 0 and all u 2M. /, or

#M.‚;a;b/.�
p.u//D�1

for all  with �. /D 0 and all u 2M. /. Then we will have

F D F�T #T0
..x�‚/˝ .y � a//

D

X
z

X
 2�2.x;y;z/
�. /D0

X
u2M. /

#
�
u�M.‚;a;b/.�

p.u//
�
U np. # 0/ � z�b

D˙

X
z

X
 2�2.x;y;z/
�. /D0

#M. /U np. # 0/ � z�b

D˙

�X
z

X
 2�2.x;y;z/
�. /D0

.#M. //U np. / � z

�
�b

D˙F�T .x˝y/�b:

This completes the proof of the proposition, modulo Lemma 8.18.

Lemma 8.18 For d 2 Symk.�/ nDiag.�/ and a generic choice of almost complex
structure J , the moduli space M.‚;a;b/.d/ is a smoothly cut out 0–manifold. For
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such J , there is a coherent orientation system oT0
on T0 for which the signed count of

points in the moduli space is

#M.‚;a;b/.d/D˙1

where the constant is independent of d .

Proof The proof is again carried out in steps:

(1) We show the moduli space is transversely cut out for generic J .

(2) We show that for generic d2Symk.�/nDiag.�/, the signed count #M.‚;a;b/.d/

is independent of d .

(3) We find one choice of d giving the desired count.

In fact, the proof of step (1) given in [5] carries over exactly as it is stated there, so we
will only prove steps (2) and (3).

Step (2) Let p W I! Symk.�/ be a path from d0 to d1, where the image of p satisfies
the conditions of Proposition 8.9. We consider the moduli space[

t2I

M.‚;a;b/.p.t//

which by Proposition 8.9 and Lemma 8.10 is a smooth, orientable 1–manifold. From
orientability, we know that the signed count of the ends of the moduli space above is
zero. We now describe all contributions to the count of the ends. We begin by making
considerations which will hold for any choice of coherent orientation system satisfying
the property appearing in Lemma 8.13.

The ends of
S

t2I M.‚;a;b/.p.t// fall into three classes. They arise from M.‚;a;b/.d0/,
M.‚;a;b/.d1/, and degenerations of holomorphic triangles to broken holomorphic
triangles in the compactification. Let ui W S0!†0 �� be a sequence of holomorphic
triangles in

S
t2I M.‚;a;b/.p.t//. As shown in [5, Lemma 9.58], the only degenera-

tions that can occur correspond to “strip breaking”. In particular, if ui converges to a
broken holomorphic triangle

U D .u1; v1; : : : ; vn; w1; : : : ; wm/

(in the sense of Definition 8.5), then in fact U D .u1; v1; : : : ; vn/ where the vi are holo-
morphic strips. We note that the argument used to rule out other types of degenerations
has nothing to do with orientations. Furthermore, we will see presently that among
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degenerations corresponding to strip breaking, the only ones which can occur yield
broken triangles U consisting of a triangle u1 of index 2k � 1 which matches a divisor
p.t/ for some t 2 I , as well as a single curve v1 W S !†0 � I �R with index 1.

To see this, note that if U is genuinely broken then U D .u1; v1; : : : ; vn/ with u1 a
holomorphic triangle representing a class in �2.x; a;b/ and vi holomorphic curves in
�2.yi ; zi/ for some yi ; zi 2 T˛0 \T˛ .We now analyze what contributions to the ends
can occur for the four possible intersection points x 2 T˛0 \T˛.

Suppose x D‚. Then by applying Lemma 8.15 to u1 we obtain �.u1/D 2np0
.u1/.

Since u1 satisfies a matching condition with p.t/ for some t 2 I ,

2np0
.u1/D j�

p.p.t//j D k D 2np0
. 0/D �. 0/:

Thus �.u1/D �. 0/. Since the total homology class of U must be  0, we therefore
must have �.vi/D 0 and np0

.vI /D 0 for all i . Since the vi satisfy (M1) and (M3)–
(M6), the only possibility for such curves is that each is a collection of constant
components. Indeed, if any vi were locally nonconstant, it would satisfy (M2); hence,
by [5, Corollary 7.2], the dimension of the relevant moduli space containing it would
be negative. Thus U D .u1/ (plus potentially some constant curves) is in the interior
of
S

t2I M.‚;a;b/.p.t//, and so contributes nothing to the signed count of the ends.

Next we consider the cases x D �C
1
��

2
; ��

1
�C

2
. In these cases Lemma 8.15 yields

that the index of the triangle must be �.u1/D 2np0
.u1/� 1D 2np0

. 0/� 1, so the
remaining curves must have indices which sum to 1. Similarly,

0D np0
. 0/� np0

.u1/D
X

i

np0
.vi/;

so vi must have multiplicity 0 at the basepoint for each i . The only possibility in
this case is that there is a single Maslov index 1 strip v1. Thus in this case, we have
additional contributions to the ends coming from[

t2I
x2f�

C

1
��

2
;��

1
�
C

2
g

[
�2�2.‚;x/
np0

.�/D0

M.x;a;b/.p.t//� bM.�/:

Fix x 2 f�C
1
��

2
; ��

1
�C

2
g. Then by Lemma 8.16 we know thatX

�2�2.‚;x/
np0

.�/D0

# bM.�/D 0:
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Thus

#
� [

t2I
x2f�

C

1
��

2
;��

1
�
C

2
g

[
�2�2.‚;x/
np0

.�/D0

M.x;a;b/.p.t//� bM.�/

�

D

X
t2I

x2f�
C

1
��

2
;��

1
�
C

2
g

X
�2�2.‚;x/
np0

.�/D0

#.M.x;a;b/.p.t//� bM.�//

D

X
t2I

x2f�
C

1
��

2
;��

1
�
C

2
g

X
�2�2.‚;x/
np0

.�/D0

�
#M.x;a;b/.p.t//

�
� .# bM.�//

D 0:

Here we have used in the last equality the fact that we have endowed the orientable
manifold

S
t2I M.‚;a;b/.p.t// with some coherent orientation system. This implies

in particular that the orientation induced on the compactification agrees with the product
orientation at ends such as those above. So we see these cases also contribute nothing
to the count of signed ends of the moduli space.

Lastly, we consider the case x D ��
1
��

2
. For any  0 2 �2.�

�
1
��

2
; a;b/ we have by

Lemma 8.15 �. 0/ D 2np0
. 0/ � 2 D 2k � 2. By Proposition 8.9, for a generic

choice of almost complex structure J , and a fixed source S , the matched moduli space
M. 0;S;p.I// is a smooth manifold of dimension

ind. 0;S/� codim.p.I//D ind. 0;S/� .2k � 1/� �. 0/� .2k � 1/D�1:

Here the fact being used to establish the inequality is that for any holomorphic triangle
u in the homology class A (not necessarily embedded), the index of the linearized N@
operator at u satisfies ind.A;S/D�.A/�2sing.u/, and in particular ind.A;S/��.A/.
This is [5, equation 9.46], which comes from adapting [7, Proposition 5.69]. This
shows that for a generic choice of J , the broken triangle U can not in fact contain a
triangle u1 in such a class  0.

To summarize, we have shown that the ends of
S

t2I M.‚;a;b/.p.t// correspond to
M.‚;a;b/.d0/, M.‚;a;b/.d1/, and to degenerations of triangles into broken triangles
containing one triangle and one strip, and that the last types of ends contribute nothing
to the total signed count of the ends. Since we have chosen a collection of orientation
systems satisfying the conclusion of Lemma 8.13, we see that the signed count of the
ends of

S
t2I M.‚;a;b/.p.t// is given by

#M.‚;a;b/.d1/� #M.‚;a;b/.d0/D 0:

This concludes step (2).
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We note that by Lemma 8.13, a coherent orientation system on M.‚;a;b/.p.0// induces
a coherent orientation system over

S
t2I M.‚;a;b/.p.t// and M.‚;a;b/.p.1// satisfy-

ing the conclusion of the lemma. We thus see that if we can find a single divisor d

and a coherent orientation system o over M.‚;a;b/.d/ giving the desired count, then
the argument of step (2) shows that there are induced coherent orientations over all
divisors d 0 in the same path component as d for which the counts are the same. We
will construct such a divisor in step (3) below.

Step (3) To construct a divisor d 2 Symk.�/ nDiag.�/ giving the desired count,
we consider a path of divisors subject to constraints, and evaluate the asymptotics of
the moduli spaces of triangles matched to divisors in this path. Our argument is an
explication of that in [5], which is in turn based on an analogous argument in [15,
page 653] which deals with holomorphic strips. Our goal in summarizing these proofs
is to make explicit the dependence of all statements on signs and orientations.

We consider any path p W Œ1;1/! Symk.�/ nDiag.�/ for which each point in p.t/

is at least a distance of t away from all other points in p.t/, with respect to a metric
on � for which the corners are infinite strips in C; see Figure 8. We further require
that the points in p.t/ smoothly approach the vertex v˛0ˇ0

of � as t !1. For such a
path of divisors, we have as before a matched moduli space

M.‚;a;b/.p/D
[

t2Œ1;1�

M.‚;a;b/.p.t//:

By the same arguments used in step 2, the ends of this moduli space corresponding to
degenerations of triangles at finite values of t , with t ¤ 1, will contribute nothing to the
signed count of the ends, for any choice of coherent orientation system. Consider any
coherent orientation system o satisfying the properties of that furnished by Lemma 8.13;
then with respect to such an orientation system the signed count #M.‚;a;b/.p.1//must
agree with the signed count of the ends of M.‚;a;b/.p/ coming from degenerations of
triangles as t !1. So we now count these ends.

We claim that as t !1, the only broken triangles which can occur in the limit consist
of a single genuine triangle � of index 0 on .†0;˛

0
0
;˛0;ˇ0/, along with k index 2

curves on .†0;˛0;ˇ0/ which satisfy matching conditions with some collection of
divisors ci 2 Œ0; 1��R. To see this, we note that each point in the path p consists of k

distinct points in �, and the fact that these k points separate and approach the vertex
v˛0ˇ0

in the limit necessitates that the limiting broken triangle must contain k strips
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satisfying matching conditions. To see the index of each of these curves must be 2, we
make some simple observations about the diagram .†0;˛0;ˇ0/ for S3.

First, note that the only homology classes of disks supporting holomorphic representa-
tives are feaCsŒ†0�g for nonnegative integers s, where ea is the constant disk at a. The
Maslov indices for such classes are �.eaCsŒ†0�/D2s. The fact that each strip satisfies
a matching condition implies we must have s � 1 for each homology class. Since the
total index of each holomorphic triangle in the moduli space M.‚;a;b/.p/ is 2k, the
limiting broken holomorphic triangle must have index 2k, so the only possibility is
that each of the k curves has index 2 (ie has s D 1), and the triangle � has index 0. By
counting multiplicities and noting positivity of intersections, we see that the triangle �
must satisfy np0

.�/D 0. Using the same arguments as in the preceding proposition,
we have that all of the curves in the broken triangle must satisfy (M1)–(M8).

Applying the gluing result of Lipshitz [6, Proposition A.1], we see that we can obtain
the signed count of the ends occurring as degenerations as t !1, or equivalently the
count #M.‚;a;b/.p.1//, as

#M.‚;a;b/.p.1//D .#M.a;a/.c//
k
�

X
 2�2.‚;a;b/

np0
. /D0

#M. /;

where c is a divisor in Œ0; 1��R and M.a;a/.c/ is the moduli space of index 2 strips
on .†0;˛0;ˇ0/ with �p.u/ D c. Here the counts are occurring with respect to any
coherent orientation system oT0

D fo˛0
0
;˛0;ˇ0

; o˛0;ˇ0
; o˛0

0
;˛0
; o˛0

0
;ˇ0
g on T0 and the

compatible orientation system o˛0;ˇ0
included in the data oT0

. The sum on the right
hand side is precisely the count occurring in the triangle map in Lemma 8.17, and is
thus ˙1. Thus to finish this step it suffices to show that there is a coherent orientation
system oT0

for which
#M.a;a/.c/D˙1:

Consider the standard diagram HS1�S2 for S1 �S2, twice stabilized via the diagram
.†0;˛0;ˇ0/ as shown in Figure 10. The figure depicts this genus 3 diagram for S1�S2,
along with a choice of basepoint z. Both bigons in HS1�S2 for S1�S2 admit a single
holomorphic representative. We consider a choice of coherent orientation system on
HS1�S2 for which the bigons cancel, and the resulting Floer homology is bHF Š Z2.
By invariance of bHF , the twice stabilized bigon in the twice stabilized diagram must
also have a single holomorphic representative. As in the proof of stabilization invariance
in [6], this implies via a neck stretching argument that there is a coherent orientation
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Figure 10: The diagram HS1�S2 on the bottom of the figure is twice stabi-
lized via a connect sum with .†0;˛0;ˇ0/. Shaded in gray is a domain on the
genus 3 diagram, the “twice stabilized bigon”, which arises from one of the
bigons in HS1�S2 .

system o˛0;ˇ0
on .†0;˛0;ˇ0/ for which

#M.a;a/.c/D˙1:

By [11, Lemma 8.7], this coherent orientation system can be extended to a coherent
orientation system oT0

for which the same condition holds. This completes step (3),
and the proof of the lemma.

9 The surgery exact triangle

In this section, we provide a brief explanation of how our results fit into the construction
of the surgery exact sequence defined by Ozsváth and Szabó in [10, Section 9]. The
fact that these constructions are compatible with ours turns out to be a matter of
bookkeeping. We provide a sketch of the argument here with the hope that it will be
useful in extending our naturality results to results about general cobordisms.

First, we recall one version of the construction of the surgery exact triangle and its
relation to our naturality results. The relation between other versions of the statement
of the exact triangle and our naturality results follows analogously. Let Y be a closed
oriented 3–manifold, and K ,! Y be a knot with a longitude � and meridian �. We
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denote by Y0 the 3–manifold obtained by performing �–surgery on Y , and by Y1

the 3–manifold obtained by performing .�C�/–surgery on Y . Call any such triple
.Y;Y0;Y1/ of 3–manifolds a triad. Ozsváth and Szabó showed:

Theorem 9.1 [10, Theorem 9.12] For any triad .Y;Y0;Y1/ there are long exact
sequences of ZŒU �–modules

HFC.Y / HFC.Y0/

HFC.Y1/

F

F0F1

bHF .Y / bHF .Y0/

bHF .Y1/

yF

yF0
yF1

The statement above is established via a corresponding statement made at the level
of diagrams. To describe it, we recall a particular class of diagrams representing
the manifolds in such a triad .Y;Y0;Y1/. Let .H;H0;H1/ be a tuple of diagrams
for the 3–manifolds .Y;Y0;Y1/ respectively. We will say the tuple of diagrams is
subordinate to the surgery triad if there is a pointed genus g Heegaard quadruple
diagram .†;˛;ˇ;
; ı; z/ satisfying the following properties:

� The diagrams .†;˛;ˇ/, .†;˛;
/ and .†;˛; ı/ represent Y , Y0 and Y1 respec-
tively.

� For i ¤ g, ˇi , 
i and ıi are isotopic translates of one another, each intersecting
transversally in two points.

� 
g is isotopic to the juxtaposition of ıg and ˇg (see [10, Figure 9] for a depiction
of juxtaposition).

� Every multiperiodic domain on the quadruple diagram has positive and negative
coefficients.

Existence of such subordinate diagrams was established by Ozsváth and Szabó:

Lemma 9.2 [10, Lemma 9.2] Given a triad .Y;Y0;Y1/, there is a tuple of Heegaard
diagrams .H;H0;H1/ subordinate to the triad.

Theorem 9.1 is then to be interpreted as a compact way of phrasing the following
statement at the level of diagrams.

Theorem 9.3 Let .H;H0;H1/ be a tuple subordinate to the triad .Y;Y0;Y1/, and fix
a coherent orientation system oH0

on H0. Then there are coherent orientation systems
on H and H1, and maps F , F0 and F1 induced by triangle counts as above , such that ,
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with respect to the chosen coherent orientation systems , there are exact triangles

HFC.H/ HFC.H0/

HFC.H1/

F

F0F1

bHF .H/ bHF .H0/

bHF .H1/

yF

yF0
yF1

We now use this restatement of the theorem at the level of diagrams to show that the
surgery exact triangle is also well defined with respect to the transitive systems specified
by Definition 6.14 and Theorem 1.1.

Recall that Definition 6.14 and Theorem 1.1 describe the four variants of Heegaard
Floer homology as functors

HFı WMan�! Trans.P .ZŒU ��Mod//:

The precise restatement of the surgery exact sequence that we wish to establish in this
context is just that the exact sequence defined by Ozsváth and Szabó extends to an exact
sequence at the level of the transitive systems associated to a triad .Y;Y0;Y1/. Given
transitive systems T , T0 and T1 and morphisms of transitive systems F W T ! T0,
F0 W T0! T1 and F1 W T1! T , we will say the morphisms form an exact sequence
of transitive systems if the morphisms restricted to constituent objects form exact
sequences. We then have:

Corollary 9.4 For any triad .Y;Y0;Y1/, there are exact sequences of transitive systems

HFC.Y / HFC.Y0/

HFC.Y1/

F

F0F1

bHF .Y / bHF .Y0/

bHF .Y1/

yF

yF0
yF1

Proof Fix a triad .Y;Y0;Y1/, and a tuple .H;H0;H1/ of diagrams subordinate to the
triad; such a subordinate tuple exists by Lemma 9.2. By Theorem 9.3, applying HFC

and bHF to the diagrams in this tuple yields long exact triangles relating the ZŒU �–
modules associated to the diagrams. Note that Theorem 9.3 ensures this statement
is true with respect to any choice of coherent orientation system over H0, and the
coherent orientations it induces on H and H1 via the triangle maps F0 and F1. For the
remainder of the proof, we fix coherent orientations .oH; oH0

; oH1
/ on .H;H0;H1/

which are related in this way.
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HFC.H0/

HFC.H/ HFC.H00/

HFC.H0
0
/

HFC.H0/ HFC.H000/

HFC.H01/

HFC.H1/ HFC.H00
1
/

‰0

F 0

F 0
1

‰

‰00

F F 00

‰0
0

F 0
0

‰0

‰00
0

F0 F 00
0

‰0
1‰1

‰00
1

F1 F 00
1

Figure 11: A depiction of the diagrams involved in the proof of Corollary 9.4.

Notice that by their definition, the transitive systems HFı.Y /, HFı.Y0/ and HFı.Y1/

contain as constituent objects the modules HFı.H/, HFı.H0/ and HFı.H1/. Thus
the exact triangle associated to this tuple of diagrams in Theorem 9.3 begins to partially
define an exact sequence between the transitive systems. The situation is depicted in
the leftmost column of Figure 11.

It is easy to extend this partially defined triangle of maps between transitive systems to a
(more) partially defined triangle, defined now on all objects which correspond to triples
of diagrams subordinate to .Y;Y0;Y1/. Given two tuples of diagrams .H;H0;H1/ and
.H00;H00

0
;H00

1
/ subordinate to .Y;Y0;Y1/, and equivalences .‰00; ‰00

0
; ‰00

1
/ induced by

Heegaard moves relating the two tuples of diagrams, the maps Fi and F 00i appearing
in the respective exact triangles commute (up to sign) with the equivalence maps by
[14, Theorem 4.4]. See Figure 11 for a depiction of the situation. In other words, the
surgery triangle immediately extends by this result to a partially defined triangle of
transitive systems, which is now defined on all diagrams occurring in a subordinate
tuple. This can be described in the diagram of Figure 11 by saying that the front square
faces in the diagram commute (up to sign).

The final thing that remains to be shown is that these partially defined morphisms of
transitive systems can be extended to maps defined on the Heegaard Floer modules
associated to any admissible diagram, while preserving the consistency required of a
morphism of transitive systems. With respect to the notation in Figure 11, this can be
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phrased as asking for maps

F 0 WHFC.H0/!HFC.H00/;

F 00 WHFC.H00/!HFC.H01/;

F 01 WHFC.H01/!HFC.H0/

defined with respect to a tuple .H0;H0
0
;H0

1
/ which is not subordinate to .Y;Y0;Y1/,

such that all of the faces in Figure 11 commute.

This is again straightforward: let .‰;‰0; ‰1/ be a tuple of equivalences induced by
Heegaard moves relating .H;H0;H1/ and .H0;H0

0
;H0

1
/, and .‰0; ‰0

0
; ‰0

1
/ be a tuple

of equivalences induced by Heegaard moves relating .H0;H0
0
;H0

1
/ and .H00;H00

0
;H00

1
/.

Again, we refer to Figure 11 to help recall the meaning of the notation. Define the map
F 0 WHFC.H0/!HFC.H0

0
/ by F 0 WD‰0ıF ı‰

�1 where ‰�1 is a homotopy inverse
for the equivalence ‰. Similarly, define F 0

0
WD‰1 ıF0 ı‰

�1
0

and F 0
1
WD‰ ıF1 ı‰

�1
1

.
Note that

F 0 D‰0 ıF ı‰�1

D‰0 ı .‰
00
0/
�1
ıF 00 ı‰00 ı‰�1 (by [14, Theorem 4.4])

D˙.‰00/
�1
ıF 00 ı‰0 (by Theorem 1.1).

This shows that we can provide maps on all of the objects of our transitive systems,
and furthermore by the computation above that this gives a well defined morphism of
transitive systems. Exactness of all “columns” follows by construction as well. This
completes the proof.
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Geometrically bounding 3–manifolds,
volume and Betti numbers

JIMING MA

FANGTING ZHENG

A hyperbolic 3–manifold is geometrically bounding if it is the only boundary of a
totally geodesic hyperbolic 4–manifold. According to previous results of Long and
Reid (2000) and Meyerhoff and Neumann (1992), geometrically bounding closed
hyperbolic 3–manifolds are very rare. Assume the value v � 4:3062 : : : for the
volume of the regular right-angled hyperbolic dodecahedron P in H3. For each
positive integer n and each odd integer k in Œ1; 5n C 3�, we construct a closed
hyperbolic 3–manifold M with ˇ1.M / D k and vol.M / D 16nv which bounds a
totally geodesic hyperbolic 4–manifold. In particular, for every positive odd integer k,
there are infinitely many geometrically bounding 3–manifolds whose first Betti
numbers are k. The proof exploits the real toric manifold theory over a sequence of
stacking dodecahedra, together with some results obtained by Kolpakov, Martelli and
Tschantz (2015).

57R90, 57M50, 57S25

1 Introduction

1.1 Geometrically bounding 3–manifolds

There is a well-known result given by Rohlin in 1951, saying that any closed orientable
3–manifold is null-cobordant (see, for example, Corollary 2.5 of [18]), whereas for
higher dimensions, it remains an open problem to say which closed n–manifolds can
bound .nC1/–manifolds. Farrell and Zdravkovska [7] conjectured that every almost flat
n–manifold bounds an .nC1/–manifold; see also Davis and Fang [5]. This conjecture
is far from being solved. Farrell and Zdravkovska also conjectured in the same paper
that every flat n–manifold M is the cusp section of a one-cusped hyperbolic .nC1/–
manifold. However, Long and Reid [11] refuted this stronger conjecture by showing that
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if M is the cusp section of a one-cusped hyperbolic 4n–manifold, its �–invariant �.M /

must be an integer.

If a hyperbolic n–manifold M is the unique totally geodesic boundary of a hyperbolic
.nC1/–manifold N, we say that M bounds geometrically or M is a geometrically
bounding n–manifold. In this context, Long and Reid [11] studied what kinds of
3–manifolds bound geometrically; Ratcliffe and Tschantz [16] provided some cosmo-
logical motivations for studying geometrically bounding 3–manifolds. In general, it is
not a trivial task to look for geometrically bounding 3–manifolds, since only few explicit
hyperbolic 4–manifolds are known. Moreover, Long and Reid showed in [11] that if
a closed hyperbolic 3–manifold M is geometrically bounding, its �–invariant �.M /

must be an integer. This, together with the result of Meyerhoff and Neumann [13]
that the set of �–invariants of all hyperbolic 3–manifolds is dense in R, shows that
geometrically bounding 3–manifolds are very rare in the set of hyperbolic 3–manifolds.
To the best of our knowledge, the following question remains open:

Question 1.1 Given a closed hyperbolic 3–manifold M with �–invariant �.M / 2 Z,
is there a totally geodesic hyperbolic 4–manifold N with @N DM ?

By Jorgensen–Thurston’s Dehn surgery theory [23], we know that there are only finitely
many (possibly zero) hyperbolic 3–manifolds with a given volume x. More precisely,
if we consider the function

f .x/D supfn j there are n different hyperbolic 3–manifolds with volume v � xg;

then Jorgensen–Thurston theory implies that f .x/ is finite. Furthermore, Millichap [14]
showed that f .x/ grows at least factorially.

In this paper, we consider instead the number of geometrically bounding 3–manifolds
with a given volume. That is, we focus on the function

fb.x/D

supfn j there are n different geometrically bounding 3–manifolds with volume v�xg:

Building on Kolpakov, Martelli and Tschantz [9] and real toric manifold theory, we
prove the following:

Theorem 1.2 Assume that v � 4:3062 : : : is the volume of the regular right-angled
hyperbolic dodecahedron in H3. Then , for each positive integer n and each odd
integer k in Œ1; 5nC 3�, there is a closed hyperbolic 3–manifold M with ˇ1.M /D k

and vol.M /D 16nv that bounds a totally geodesic hyperbolic 4–manifold.

Algebraic & Geometric Topology, Volume 23 (2023)
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Therefore, we construct some families Fn, n � 1, of closed hyperbolic 3–manifolds
having the following special features:

� They all bound geometrically, ie for any n, each manifold in Fn is the connected
geodesic boundary of a compact hyperbolic 4–manifold.

� Each manifold in Fn can be decomposed into 16n right-angled dodecahedra.
The set Fn contains manifolds with first Betti numbers 1; 3; 5; : : : ; 5nC 3. In
particular, Fn contains at least n elements.

This implies that the above-defined function fb.x/ grows at least linearly. Moreover,
we have a corollary of Theorem 1.2 as follows.

Corollary 1.3 For every positive odd number k, there are infinitely many geometrically
bounding 3–manifolds whose first Betti numbers are k.

We refer to the paper of Ratcliffe and Tschantz [17] for counting the number of totally
geodesic hyperbolic 4–manifolds with the same 3–manifold M as boundary, and to
Chu and Kolpakov [4] and Slavich [19; 20] for other topics regarding geometrically
bounding hyperbolic manifolds. Also see the recent paper by Kolpakov, Reid and
Slavich [10] for problems related to geodesically embedding hyperbolic manifolds.
However, we emphasize that being geometrically bounding is a more subtle property
than being geodesically embedding.

1.2 Real toric manifolds

Small covers, also known as Coxeter orbifold coverings, have been studied by Davis
and Januszkiewicz [6], see also Vesnin [24]. They are a class of n–manifolds which
admit locally standard Zn

2
–actions, such that the orbit spaces are n–dimensional simple

polytopes. The algebraic and topological properties of a small cover are closely related
to the combinatorics of the orbit polytope and to the coloring on the codimension-one
faces of that polytope. For example, the mod 2 Betti numbers ˇ.2/i of a small cover M

over the polytope L is equal to hi , where hD .h0; h1; : : : ; hn/ is the h–vector of the
polytope L; see [6].

Those manifolds admitting locally standard Zk
2

–actions are usually referred to as real
toric manifolds and form a wider class. Given an n–dimensional simple polytope L,
we can define a map � W F ! Zk

2
that satisfies certain conditions, where F is the set of

codimension-one faces of L. Furthermore, by the equivalence relation determined by
the map �, we can construct a smooth closed manifold M.L; �/. See Section 2.1 for
more details.
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For instance, we may color the four codimension-one faces of a tetrahedron by e1,
e2, e3 and e1C e2C e3, where e1, e2 and e3 are the standard basis of Z3

2
. From the

construction mentioned in the previous paragraph, we construct the closed orientable 3–
manifold RP3. Note that a tetrahedron admits a unique right-angled spherical structure.
We thus naturally obtain a unique spherical structure on RP3 by inheriting spherical
structures from the four tetrahedral copies.

In the rest of this section, we assume that P is the regular right-angled hyperbolic
dodecahedron in H3 with twelve 2–dimensional facets, and nP is the polytope obtained
by stacking n copies of P . It is obvious that nP has 12 pentagonal facets and 5n� 5

hexagonal facets. See Section 2.3 for more details.

Given a Z3
2
–coloring � over the polytope nP , we generate the natural Z4

2
–coloring ı

on nP in the following manner. Suppose fe1; e2; e3; e4g is the standard basis of Z4
2
.

For each facet F of nP , if �.F / D
P3

iD1 xiei with xi D 1 or 0, we take ı.F / DP4
iD1 xiei , where x4D 1C

P3
iD1 xi mod 2. A Z3

2
–coloring � is called nonorientable

if the corresponding 3–manifold M.nP; �/ is nonorientable. Furthermore, if the
3–manifold M.nP; �/ is nonorientable, then its natural Z4

2
–coloring ı is called the

natural Z4
2
–extension of �. It can be shown that M.nP; ı/ is the orientable double

cover of M.nP; �/ when M.nP; �/ is nonorientable. Our main technical theorem is
the following.

Theorem 1.4 For each positive integer n and each odd integer k in Œ1; 5nC 3�, there
is a nonorientable Z3

2
–coloring � on the polytope nP such that the first Betti number of

the orientable 3–manifold M.nP; ı/ is k, where ı is the natural Z4
2
–extension of �.

From Theorem 1.4, given a positive integer n and an odd integer k in Œ1; 5nC 3�,
there exists an orientable 3–manifold M.nP; ı/ whose first Betti number is exactly k.
Moreover, we conjecture that there is no coloring on nP leading to an orientable
manifold M.nP; ı/ with first Betti number not an odd integer k � 5n C 3. The
converse has been checked numerically, but has not been proved rigorously yet.

Proof of Theorem 1.2 For a nonorientable Z3
2
–coloring � on the polytope nP , there

is a natural Z4
2
–extension ı on nP . Both M.nP; ı/ and M.nP; �/ are 3–manifolds

and M.nP; ı/ is the orientable double cover of M.nP; �/. See Proposition 2.11 in
Section 2.4 for more details.

Next, we want to show that M.nP; ı/ is geometrically bounding. First, we use Propo-
sition 2.9 in [9] to extend the Z4

2
–coloring ı on the 3–dimensional polytope nP to
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a Z5
2
–coloring " on the 4–dimensional polytope nE. Here, nE is a 4–dimensional

polytope obtained by stacking n copies of the hyperbolic right-angled 120–cell E. Then
M.nE; "/ is an orientable hyperbolic 4–manifold in which M.nP; �/ can be embedded.
Second, since M.nP; ı/ is the orientable double cover of M.nP; �/, it admits a fixed-
point-free orientation-reversing involution. We may thus apply Corollary 9 of [12].
By cutting M.nE; "/ along the hypersurface M.nP; �/ and applying completion, we
can obtain a totally geodesic hyperbolic 4–manifold with boundary M.nP; ı/. Now,
Theorem 1.2 follows from Theorem 1.4.

Outline of the paper

In Section 2, we provide some preliminaries on the algebraic theory of real toric
manifolds. In Section 3, we prove Lemma 3.1, which is the key element of the main
theorem. In Sections 4 and 5, we prove Theorem 1.4 for the cases of even and odd n,
respectively.
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2 Preliminaries

In this section, we list some facts concerning real toric manifolds and introduce the
3–dimensional right-angled hyperbolic polytope nP . Proofs, details, and definitions can
be found in [1]. For the sake of brevity, we write n–polytope instead of n–dimensional
polytope, and by facet we mean a face of codimension one. An n–polytope is called
simple if every r–face belongs to exactly n� r facets.

2.1 Real toric manifolds

Given a simple n–polytope L, let F.L/D fF1;F2; : : : ;Fmg be its set of facets. Let
us define the Zk

2
–coloring characteristic function, n� k �m, as a function

� W F.L/D fF1;F2; : : : ;Fmg ! Zk
2
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that satisfies the nonsingularity condition. That is, �.Fi1
/; �.Fi2

/; : : : ; �.Fin
/ generate

a subgroup of Zk
2

which is isomorphic to Zn
2

when the n facets Fi1
;Fi2

; : : : ;Fin
share

a common vertex. The binary matrix ƒ.n�m/ D .�.F1/; �.F2/; : : : ; �.Fm// is called
the characteristic matrix of �.

Then, we can construct a smooth manifold M.L; �/ WDL�Zk
2
=�, called a real toric

manifold over the polytope P, by the equivalence relation

.x;g1/� .y;g2/ ()

�
x D y and g1 D g2 if x 2 Int L;

x D y and g�1
1

g2 2Gf if x 2 @L;

where f DFi1
\� � �\Fin�r

is the unique face of codimension n� r that contains x as
an interior point, and Gf is the subgroup generated by �.Fi1

/; �.Fi2
/; : : : ; �.Fin�r

/.
The notation M.L; �/ also highlights that each real toric manifold corresponds to a pair
f.L; �/g that is made of a polytope and a characteristic function. For brevity, we refer
to the colorings when the polytope is given instead of talking about both colorings and
manifolds. When k Dm, M.L; �/ is known as the real moment-angle manifold over
the polytope L, which admits a natural Zm

2
–action. If k D n, then the corresponding

manifold is called a small cover. By the four color theorem, we know that small covers
can always be realized over any 3–dimensional simple polytope.

Example 2.1 Define a Z3
2
–coloring characteristic function � on the right-angled

spherical triangle 42 as shown in Figure 1. Namely, the characteristic function is

� W ffa; bg; fb; cg; fa; cgg ! f.1; 0; 0/; .0; 1; 0/; .0; 0; 1/g;

.a; b/ 7! .1; 0; 0/;

.b; c/ 7! .0; 1; 0/;

.a; c/ 7! .0; 0; 1/;

where .1; 0; 0/ D e1, .0; 1; 0/ D e2 and .0; 0; 1/ D e3 are the standard basis vectors
of Z3

2
.

b
.1; 0; 0/

a

.0; 0; 1/

c

.0; 1; 0/

Figure 1: The coloring in Example 2.1.

Algebraic & Geometric Topology, Volume 23 (2023)



Geometrically bounding 3–manifolds, volume and Betti numbers 1061

b

a c
L1.0; 0; 0/ L2.1; 0; 0/ L3.0; 1; 0/ L4.0; 0; 1/

b b b

a a ac c c

b b b b

L5.1; 1; 0/ L6.1; 0; 1/ L7.0; 1; 1/ L8.1; 1; 1/
a a c a ac c c

Figure 2: The eight polytopes42 �Z2
3 of Example 2.1.

Now, we have eight copies of the polytope, namely 42 �Z3
2
, as shown in Figure 2.

By the equivalence relation

.p;g1/� .q;g2/ ()

�
p D q;

g1�g2 2 f.1; 0; 0/; .0; 1; 0/; .0; 0; 1/g;

we can finally obtain the manifold M.�2; �/�S2 as shown in Figure 3, which inherits
a spherical structure from the eight copies of right-angled triangles.

In order to keep notation concise, we regard every Z�
2
–color as a binary number and

encode it with an integer. For example in the Z3
2
–coloring case, we can use 1, 2, 3, 4,

5, 6 and 7 to represent the seven colors .1; 0; 0/, .0; 1; 0/, .1; 1; 0/, .0; 0; 1/, .1; 0; 1/,
.0; 1; 1/ and .1; 1; 1/, respectively. Then, a characteristic matrix can also be viewed

z

b

cc

x b

a

a

L1L2

L6 L4

L3L5

L8 L7

y

Figure 3: The real toric manifold M.�2; �/.
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as a characteristic vector. For example, the characteristic matrix of the Z3
2
–coloring

characteristic function in Example 2.1 is

ƒ.3�3/ D .�.F1/; �.F2/; �.F3//D .�.a; b/; �.b; c/; �.a; c//D

 
1 0 0
0 1 0
0 0 1

!
:

Then the corresponding characteristic vector C is .1; 2; 4/. The characteristic function �,
characteristic matrix ƒ, and the characteristic vector C can be constructed from each
other easily; the characteristic vector C represents the most concise form.

2.2 Cohomology of real toric manifolds

Davis and Januszkiewicz [6] formulated how to calculate the Z2–coefficient cohomol-
ogy groups of a small cover from the polytope and characteristic function. In 2013,
Cai [2] suggested a method to calculate the Z–coefficient cohomology groups of a real
moment-angle manifold. Based on the results of Cai, Suciu and Trevisanon [21; 22]
on rational homology groups of real toric manifolds, Choi and Park [3] obtained a
formula for the cohomology groups of real toric manifolds. This can also be viewed as
a combinatorial version of the Hochster theorem [8].

Since the dual of the boundary of a simple polytope L is a simplicial complex K

(see eg [1]), the definition of real toric manifolds introduced above has a dual version.
By substituting the facet set F.L/ with the vertex set V of the simplicial complex K,
we can define the characteristic function � on K, namely

� W V.K/D fv1; v2; : : : ; vmg ! Zk
2 :

The nonsingularity condition changes as follows: if for n vertices vi1
; vi2

; : : : ; vin
the

convex hull convfvi1
; vi2

; : : : ; vin
g is a facet of K, the images �.vi1

/; �.vi2
/; : : : ; �.vin

/

shall generate a subgroup isomorphic to Zn
2
. For the sake of brevity, we denote the

linear space ZjVj
2

by ZV
2

. In addition, we can identify ZV
2

with the power set 2V in
the canonical way, where ∅ corresponds to the identity element and multiplication
to the symmetric difference. Namely, we have a map ' W ZV

2
! 2V. Denote by K!

the full subcomplex of K D .@L/� obtained by restricting to ! � V . Then every full
subcomplex K! of K, where ! � V , is identified with an element of ZV

2
.

Let � be a Zk
2

–coloring characteristic function. Denote by rowƒ the row space of the
characteristic matrix ƒ. The following Choi–Park theorem shows that the cohomology
group of a real toric manifold M.L; �/ is the direct sum of the cohomology groups of
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some full subcomplexes of the dual polytope K D .@L/�. The full subcomplexes are
determined by the characteristic function.

Theorem 2.2 (Choi–Park [3]) Assume G is the coefficient ring Q or Zq for a positive
odd integer q. There is an additive isomorphism

H p.M.L; �/IG/Š
M

'�1.!/2rowƒ

zH p�1.K! IG/;

where ƒ is the characteristic matrix of �.

We use ˇi to denote the rank of H i.M.L; �/IQ/, called the i th Betti number of
M.L; �/; and use ž0 to denote the rank of zH 0.K! IQ/, called the reduced zeroth Betti
number of K! . For the purpose of this paper, we only need the following result.

Corollary 2.3 For a simple polytope L,

ˇ1.M.L; �/IQ/D
X

'�1.!/2rowƒ

ž0.K! IQ/;

where ƒ is the characteristic matrix of �.

By means of Corollary 2.3, we can calculate the first Betti number of a real toric
manifold using the combinatorial information of the orbit polytope and the row space
of its characteristic matrix. In the following, we show a simple example.

Example 2.4 Calculate the first Betti number of the Klein bottle S DM.L; �/.

Figure 4, left, is a colored 2–dimensional square L, whereas Figure 4, right, is its dual
K D .@L/�, with its vertices colored accordingly.

.0; 1/

.1; 1/

.0; 1/

.1; 0/ a .1; 0/

b .0; 1/

.1; 1/ c

d .0; 1/

Figure 4: The colored square for Example 2.4.
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a

b

c

d d d

c

b

Figure 5: Left to right, the subcomplexes K!i
, 2� i � 4.

Thus, the row space is

rowƒD h.1; 0; 1; 0/; .0; 1; 1; 1/i D f.0; 0; 0; 0/; .1; 0; 1; 1/; .0; 1; 0; 1/; .1; 1; 1; 0/g:

For !1 D .0; 0; 0; 0/, K!1
D∅.

For !2 D .1; 0; 1; 1/, then K!2
is as shown in Figure 5, left. So ž0.K!2

/D 0.

For !3 D .0; 1; 0; 1/, then K!3
is as shown in Figure 5, center. So ž0.K!3

/D 1.

For !4 D .1; 1; 1; 0/, then K!4
is as shown in Figure 5, right. So ž0.K!4

/D 0.

By Corollary 2.3, we have

ˇ1.S/D ž0.K!1
/C ž0.K!2

/C ž0.K!3
/C ž0.K!4

/D 0C 0C 1C 0D 1;

which coincides with the well-known result of rational homology groups of the Klein
bottle.

2.3 The 3–polytopes nP

In the following, we assume that P is the regular right-angled dodecahedron in H3

with twelve 2–dimensional facets. We use nP to denote the stacking of n copies of P,
ie the polytope made of n dodecahedra in a row; see Figures 6, 7 and 12. The simplicial
complex nK is the dual of the boundary of nP. For each polytope nP with n > 2, there
are nC 3 layers of facets of nP : the first and the last layers are pentagons, the second
and the .nC2/nd layers consist of five pentagons, and each layer from the third to the
.nC1/st is made of five hexagons. There is no hexagonal layer in 1P , and the polytope
nP has 5nC 7 facets in total. All the polytopes nP , with n 2 ZC, are right-angled
hyperbolic polytopes. In addition, we call the i–layer of a colored 3–polytope nP a
brick, where 2� i � nC 1 and n� 2. The symbols nP and nK are used throughout
the paper with this meaning, unless stated otherwise.
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P

stacking
2P

Figure 6: Build up the polytope 2P by stacking.

Definition 2.5 Given a polytope L with m facets, we define X.L/D .aij /m�m to be
the adjacency matrix of L, where

aij D

�
1 if Fi \Fj for Fi ;Fj 2 F.L/ is an .n�2/–face of L or i D j ,
0 otherwise.

Definition 2.6 A simple polytope L is called a flag polytope if every collection of
pairwise intersecting facets has a nonempty intersection.

For a flag polytope, all of the information about the intersection of its facets is included
in the adjacency matrix. As can be easily checked, the polytope nP is a flag polytope
for every n. In order to obtain more unified adjacency matrices X.nP /, n 2 ZC, we
order the facets of the polytope nP in the following manner. The first and the last layer
are labeled as 1 and 5nC7, respectively, while the facets in between are labeled layer by
layer. For even layers, we start from the middle and order the rest by left-right double
siding, whereas for odd layers, we adopt a right-left double siding. We illustrate the
labeling manner on the polytope 5P in Figure 7, where the double sidings of even and
odd layers are displayed by the arrow-lines on the second and third layers, respectively.

1

23 45 6

7 89 1011

1213 1415 16

17 1819 2021

2223 2425 26

27

2nd layer

4th layer
even layer

6th layer

5th layer

odd layer

3rd layer

Figure 7: Facet ordering of the polytope 5P .
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Figure 8: The adjacency matrices of the polytopes P , 2P and 3P are given
at top left, top right and bottom, respectively.

Using this ordering, we obtain more unified increasing patterns of the adjacency
matrices. We display some of them in Figure 8 (the omitted entries are zeros).

2.4 Orientability of real toric manifolds

H Nakayama and Y Nishimura discussed the orientability of small covers in [15].
Below we quote their main theorem.
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Theorem 2.7 (Nakayama–Nishimura [15]) For a simple n–dimensional polytope L,
and for a basis fe1; : : : ; eng of Zn

2
, a homomorphism � W Zn

2
! Z2 D f0; 1g is defined

by �.ei/D 1 for each i D 1; : : : ; n. A small cover M.L; ı/ is orientable if and only if
there exists a basis fe1; : : : ; eng of Zn

2
such that the image of �ı is f1g.

The techniques used in proving Theorem 2.7 are actually suitable for all real toric
manifolds, not just for small covers. Corollary 2.3 with rational coefficients implies
this conclusion as well. The nth Betti number of a real toric manifold M.L; ı/ over the
n–polytope L is 1 if and only if there is an element in the row space of the characteristic
matrix of ı with all entries equal to 1.

Corollary 2.8 (Nakayama–Nishimura [15] and Choi–Park [3]) For a simple n–
dimensional polytope L, the real toric manifold M.L; ı/ is orientable if and only
if there is a basis such that the sum of every column of the characteristic matrix ƒ of ı
is 1 mod 2.

In particular, the four vectors .1; 0; 0/, .0; 1; 0/, .0; 0; 1/ and .1; 1; 1/, which are the
binary forms of 1, 2, 4 and 7, are the only four elements in Z3

2
whose entry sums are

1 mod 2. These four vectors are called orientable colors. The three colors left are
.1; 1; 0/, .1; 0; 1/ and .0; 1; 1/, which are the binary forms of 3, 5 and 6. An orientable
basis in Z3

2
is defined to be a basis in Z3

2
that consists of three linearly independent

orientable colors. In particular, the standard basis in Z3
2
, ie .1; 0; 0/, .0; 1; 0/, .0; 0; 1/,

is an orientable basis. If the small cover M.L; �/ is orientable, then there exists an
orientable basis such that all the colors of � are orientable. Note that, for an orientable
color, the number of entries with value 1 is always odd. In other words, when changing
from one orientable basis to another orientable one, we actually add or remove an even
number of 1s from the previous characteristic matrix to form the new one. Hence the
parity of the number of 1s in each column is preserved under different orientable bases.
Therefore, we have the following corollary.

Corollary 2.9 Given a 3–polytope nP with facets ordered as required in Section 2.3,
we fix the colors on first three facets to be .1; 0; 0/, .0; 1; 0/ and .0; 0; 1/. Suppose
.1; 2; 4; a1; : : : ; am/ is a characteristic vector of nP . Then the corresponding small
cover is nonorientable if there is some ai 2 f3; 5; 6g.

Starting from a Z3
2
–coloring � on the polytope nP , we can obtain 2m�1 Z4

2
–colorings

on nP by adding a nonzero fourth row to the 3 �m characteristic matrix ƒ of �
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as shown: 0BB@
1 0 0 � � � � � �

0 1 0 � � � � � �

0 0 1 � � � � � �

� � � � � � �

1CCA ;
where mD5nC7 and �2f0; 1g. Those characteristic functions are called the extensions
of �, and they naturally satisfy the nonsingularity condition.

Definition 2.10 A Z3
2
–coloring � on the polytope nP is admissible if there is a

Z4
2
–coloring extension of �, denoted by ı, such that M.nP; �/ is nonorientable and

M.nP; ı/ is the orientable double cover of M.nP; �/.

Along with some basic facts about the fundamental group of a double cover we have
the following proposition. It is valid for any polytope and we are now interested in the
case of polytope nP .

Proposition 2.11 A Z3
2
–coloring � over a simple 3–dimensional polytope nP is

admissible if M.nP; �/ is nonorientable.

Proof Because M.nP; �/ is nonorientable, at least one column of its characteristic
matrix ƒ has an even sum. Therefore, we can add a nonzero fourth row to the
characteristic matrix ƒ to obtain a Z4

2
–coloring extension of �, denoted by ı, satisfying

that the sum of all its columns are odd. By Corollary 2.8, M.nP; ı/ is orientable.

Let W .nP / be the Coxeter group of nP and � W F.L/D fF1;F2; : : : ;Fmg ! Zm
2

be
the map that sends each Fi to ei . Now we have the diagram

W .nP / Zm
2

Z4
2

Z3
2

l

y�

yı

p

where l is the abelianization, p is the natural projection of Z4
2

to Z3
2

that keeps only the
first three coordinates, and y� and yı are the maps induced by the characteristic functions
� and ı, ie � D y� ı � and ı D yı ı � . It is easy to check that the triangular circuit
commutes, namely, p ı yı D y�.

By [6, Corollary 4.5], �1.M.nP; �//D ker.y�ı l/D ker.pıyıı l/ and �1.M.nP; ı//D

ker.yı ı l/. Thus M.nP; ı/ is an orientable double cover of M.nP; �/.
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The Z4
2
–coloring ı on the polytope nP in Proposition 2.11 is called an admissible

extension of � or a natural Z4
2
–coloring associated to � (also referred to as the natural

Z4
2
–extension of � for short). We use the symbols � and ı with this meaning in the rest

of the paper, unless stated otherwise. Moreover, by Corollary 2.3, the Betti numbers of
the orientable manifold recovered by the natural Z4

2
–extension ı can be easily computed,

as we are going to show in Example 2.12.

Example 2.12 Let us calculate the Betti numbers of some orientable real toric manifold
M.P; ı/.

We show in Figure 9, left, a plane figure of the dodecahedron P whose facets are
ordered in the “double siding” manner introduced in Section 2.3. In Figure 9, right, is
the dual simplicial complex K D .@P /� with its 12 vertices labeled correspondingly.

Color the polytope P with the characteristic vector v D .1; 2; 4; 5; 3; 7; 7; 3; 5; 4; 2; 1/
and denote the corresponding characteristic function by �. Then we have a Z3

2
–coloring

characteristic matrix

ƒD

0@0 0 1 1 0 1 1 0 1 1 0 0

0 1 0 0 1 1 1 1 0 0 1 0

1 0 0 1 1 1 1 1 1 0 0 1

1A
3�12

:

By Corollary 2.9, � is nonorientable. The characteristic matrix � of its admissible
extension ı is

�D

�
ƒ

0 0 0 1 1 0 0 1 1 0 0 0

�
4�12

:

1

23 45 6

7 89 1011

12

1 2

3

4

5

6

7

8

9

10

11 12

Figure 9: The facet-ordered polytope P , left, and its dual simplicial complex
K D .@P /�, right.
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The row space of � is given by

row�D
˝
.0; 0; 1; 1; 0; 1; 1; 0; 1; 1; 0; 0/; .0; 1; 0; 0; 1; 1; 1; 1; 0; 0; 1; 0/;

.1; 0; 0; 1; 1; 1; 1; 1; 1; 0; 0; 1/; .0; 0; 0; 1; 1; 0; 0; 1; 1; 0; 0; 0/
˛
:

For each !i 2 rowƒ, we calculate its reduced 0th Betti number in Tables 1–2.

From Tables 1–2 and Corollary 2.3, we have

ˇ1.M.P; ı/IQ/D

16X
iD1

ž0.K!i
IQ/D ˇ2.M.P; ı/IQ/

D

16X
iD1

ž1.K!i
IQ/D 7:

For an orientable 3–manifold M.nP; ı/, by Poincaré duality we have ˇ0.M.nP; ı//D

ˇ3.M.nP; ı// D 1 and ˇ1.M.nP; ı// D ˇ2.M.nP; ı//. So ˇ1 is the only thing
we need in order to determine the free part of H�.M.nP; ı//. By Corollary 2.3,
ˇ1.M.nP; ı// is equal to the sum of the reduced zeroth Betti numbers of the 16 full
subcomplexes k!i

of the simplicial complex nK D .@.nP //�. Each subcomplex k!i

corresponds to a nonzero vector in the row space row�.

3 The key lemma

The purpose of this section is to prove Lemma 3.1, which is the key element in proving
Theorem 1.4. We want to find a special family of admissible Z3

2
–colorings over the

polytope nP . According to the correspondence discussed in Section 2, we construct a
family of orientable 3–manifolds M.nP; ı/.

Lemma 3.1 For every positive even integer n, there is a nonorientable Z3
2
–coloring �

over the polytope nP such that ˇ1.M.nP; ı//DnC1, where ı is the natural associated
Z4

2
–coloring extension of �.

Proof We first prove the special case in which nD 2. We use the notation a1 D 1,
S1 D .24247/ and S2S1 D .35716 24247/. By [a1S1S2S1a1], we mean the colored
polytope 2P shown in Figure 10. The corresponding characteristic vector C is

.1; 2; 4; 4; 2; 7; 7; 1; 5; 6; 3; 2; 4; 4; 2; 7; 1/:

It can be checked with little effort that the nonsingularity condition holds at every
vertex. We call Si ; 1 � i � 2, a brick and ai , which represents the first or the last
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i !i K!i
ž0.K!i

/ ˇ1.K!i
/ ˇ2.K!i

/

1 .0; 0; 1; 1; 0; 1; 1; 0; 1; 1; 0; 0/
3

4
6

7

9

10

1

2 .0; 1; 0; 0; 1; 1; 1; 1; 0; 0; 1; 0/

2

5

6

7

8

11

1

3 .1; 0; 0; 1; 1; 1; 1; 1; 1; 0; 0; 1/
1

4

5

6

7

8

9
12

0 1

4 .0; 0; 0; 1; 1; 0; 0; 1; 1; 0; 0; 0/

4
8

5
9

1

5 .0; 1; 1; 1; 1; 0; 0; 1; 1; 1; 1; 0/
23

4

5
8

9

10

11

0 1

6 .1; 0; 1; 0; 1; 0; 0; 1; 0; 1; 0; 1/ 1

35
8

10

12

1

7 .0; 0; 1; 0; 1; 1; 1; 1; 0; 1; 0; 0/

10

6 8

5 3 7

0 1

8 .1; 1; 0; 1; 0; 0; 0; 0; 1; 0; 1; 1/ 1 2

4

9

10

11 12

1

Table 1: The values of ž0.K!i
/ for i D 1; : : : ; 8.

colored facet, an affix. They are used for building the coloring. The symbols Si and ai

are used with this meaning in the rest of the paper unless stated otherwise.
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i !i K!i
ž0.K!i

/ ˇ1.K!i
/ ˇ2.K!i

/

9 .0; 1; 0; 1; 0; 1; 1; 0; 1; 0; 1; 0/

2
4

6

7

9
11

0 1

10 .1; 0; 0; 0; 0; 1; 1; 0; 0; 0; 0; 1/
6 1

2

7 1

11 .1; 1; 1; 0; 0; 1; 1; 0; 0; 1; 1; 1/ 1 2

3
6 7

10

11 12

0 1

12 .1; 1; 0; 0; 1; 0; 0; 1; 0; 0; 1; 1/

1 2
5

8

11 12

0 1

13 .1; 0; 1; 1; 0; 0; 0; 0; 1; 1; 0; 1/ 1
3

4

9

10

12

0 1

14 .0; 1; 1; 0; 0; 0; 0; 0; 0; 1; 1; 0/ 2

3

10

11

1

15 .0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0/ ∅ no contribution to ˇ1.M.P; ı//

16 .1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1/ Š S2 0 0 1

Table 2: The values of ž0.K!i
/ for i D 9; : : : ; 16.

Let us denote by � the characteristic function of C . Corollary 2.9 and Proposition 2.11
imply that � is admissible, and we denote by ı its natural Z4

2
–extension. It follows that

M.2P; �/ is nonorientable, and M.2P; ı/ is the orientable double cover of M.2P; �/.
The characteristic matrix � of the coloring ı is

(3-1)

0BBB@
0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0

1 0 0 0 0 1 1 1 1 0 1 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

1CCCA :
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1

2 4 2 4 7

3 5 7 1 6

2 4 2 4 7

1

a1

S1

.35716 24247/DS2S1

a1

Figure 10: Colored polytope 2P .

Then, the row space row� is given by

(3-2)

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0

1 0 0 0 0 1 1 1 1 0 1 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

0 1 1 1 1 0 0 0 1 0 1 1 1 1 1 0 0

1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 0 1

0 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 0

1 1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 1

0 1 0 0 1 1 1 0 1 0 0 1 0 0 1 1 0

1 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 1

1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1

1 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 1

1 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1

0 1 1 1 1 0 0 0 0 1 0 1 1 1 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

By Corollary 2.3, we can calculate ˇ1.M.2P; ı// through its 15 nonempty full sub-
complexes K! . Since ž0= ž0, the reduced zeroth Betti number of each K! is equal to
the number of connected components of K! minus one.

For every i th row !i.�/ D .wi1; : : : ; wij ; : : : ; wim/ of the row space row�, where
mD 5nC 7 is the number of facets of nP and 1� i � 24� 1, we define

!�i .�/ WD fj j 1 6 j 6 m and !ij D 1; where !ij 2 row�g:

Then define X.nP; !i.�// to be the submatrix of X.nP / obtained by selecting the qth

rows and qth columns as q varies in !�i .�/.

For example, pick the first row !1.�/D .0; 0; 1; 1; 0; 1; 1; 0; 1; 1; 0; 0; 1; 1; 0; 1; 0/ of
the row space row� shown in matrix (3-2); then !�

1
.�/D .3; 4; 6; 7; 9; 10; 13; 14; 16/.
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!1.�/
0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 2 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0
0 3 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 4 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0
1 5 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0
1 6 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0
1 7 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0
0 8 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0
0 9 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0
1 10 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0
1 11 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0
1 12 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1
0 13 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1
0 14 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1
1 15 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1
1 16 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1
0 17 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

!1.�/
1 1 1 1 1 1 1 1 1
3 4 6 7 9 10 13 14 16

1 3 1 0 0 1 1 0 0 0 0
1 4 0 1 1 0 0 1 0 0 0
1 6 0 1 1 0 0 1 0 0 0
1 7 1 0 0 1 1 0 1 0 0
1 9 1 0 0 1 1 0 1 0 0
1 10 0 1 1 0 0 1 0 1 1
1 13 0 0 0 1 1 0 1 0 0
1 14 0 0 0 0 0 1 0 1 1
1 16 0 0 0 0 0 1 0 1 1

!
.1/
1
.�/D .3; 7; 9; 13/

!
.2/
1
.�/D .4; 6; 10; 14; 16/

ž0.K!1.�/
/D 1

Figure 11: The computation of ž0.K!1.�/
/. Left: X.2P /. Right: X.2P; !1.�//.

Let us consider the submatrix X.2P; !1.�// which is obtained from the adjacency
matrix X.2P / by selecting the rows and columns set by !�

1
.�/. By examining this

matrix, it is obvious that there are two connected components. Use the notation !.i/j .�/

to denote the vertex set of the i th connected component of the full subcomplex K!j .�/.
Then, we have !.1/

1
.�/ D .3; 7; 9; 13/ and !.2/

1
.�/ D .4; 6; 10; 14; 16/; therefore,

ž0.K!1.�//D 1. The procedure is illustrated in Figure 11.

Likewise, we can calculate all of the ž0.K!i .�//, 1� i � 15, and the computation for
i D 2; 3; : : : ; 7 is illustrated in (A) and (B) of Figures 16–21 in the online supplement.
Finally, we obtain ˇ1.M.2P; ı//=3, as shown in the second line in Table 3. This
completes the proof of Lemma 3.1 for the case nD 2.

From the results above, it follows that the first Betti numbers increase by a constant
factor if the reduced 0th Betti numbers ž0 of the full subcomplexes corresponding
to !i.�/ increase by a constant factor for 1 � i � 15. Since the reduced Betti
number ž0.K!i .�// is obtained through the matrix X.2P; !i.�//, we only need to
guarantee that matrices X.nP; !i/ for nD 2; 4; 6; : : : change with a certain pattern for
all 1� i � 15. Notice that such a submatrix is completely determined by the adjacency
matrix and the coloring of the polytope.

Algebraic & Geometric Topology, Volume 23 (2023)
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Betti number

ž0.K!i
.�// 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 ˇ1.M.2P; ı//D 3

ž0.K!i
.�1// 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 ˇ1.M.4P; ı1//D 5

ž0.K!i
.�2// 1 1 0 2 0 2 1 0 0 0 0 0 0 0 0 ˇ1.M.6P; ı2//D 7

ž0.K!i
.�3// 1 1 0 3 0 3 1 0 0 0 0 0 0 0 0 ˇ1.M.8P; ı3//D 9

ž0.K!i
.�4// 1 1 0 4 0 4 1 0 0 0 0 0 0 0 0 ˇ1.M.10P; ı4//D 11

ž0.K!i
.�5// 1 1 0 5 0 5 1 0 0 0 0 0 0 0 0 ˇ1.M.12P; ı5//D 13

Table 3: The computation of the first Betti number.

As for the adjacency matrices, they do change in a uniform manner when using the
facet ordering described in Section 2.3; see also Figure 22 in the online supplement for
the facet ordering and adjacency matrix of the polytopes 2P , 4P and 6P .

As for the coloring, we duplicate the last two bricks of the colored 2P a total of 1
2
n�1

times to construct the desired coloring on nP , where n is a positive even integer equal
to or greater than 2. It can be easily proved that the nonsingularity condition holds at
every vertex. The colorings constructed this way on polytopes 4P and 6P are shown
in Figure 12, lower left and lower right, respectively. The colorings are denoted by

Œa1S1S2S1S2S1a1� and Œa1S1S2S1S2S1S2S1a1�:

Their characteristic functions are written �1 and �2, respectively, where the superscripts
denote how many times the last two bricks .S2S2/ of the coloring [a1S1S2S1a1]
of � are repeated. The repeated parts are highlighted in blue and underlined. The
nonorientability of these Z3

2
–colorings is guaranteed by Corollary 2.9. Moreover, we

can obtain their natural Z4
2
–extensions ı1 and ı2. By Proposition 2.11, the colorings ı1

and ı2 are admissible. That is, M.4P; ı1/ and M.6P; ı2/ are the orientable double
covers of the nonorientable manifolds M.4P; �1/ and M.6P; �2/, respectively. We
denote the characteristic matrices of ı1 and ı2 by�1 and�2. The three matrices row�,
row�1 and row�2 are shown in Figure 23 of the online supplement. Since the coloring
on nP is obtained by duplicating the last two bricks of the coloring [a1S1S2S1a1]
on 2P a total of 1

2
n� 1 times, the row space row�i can be obtained from row space

row � by duplicating its columns, from the 11th to the second columns (counting from
right to left), 1

2
n� 1 times.

By the method outlined before, we also calculate ˇ1.M..2 C 2i/P; ıi// for i D

1; 2; : : : ; 5, as shown in Table 3. We illustrate the calculation of ž0.K!1
.�1// and

ž0.K!1
.�2// in Figures 13 and 14, respectively. See also panels (C)–(D) and (E)–(F)

Algebraic & Geometric Topology, Volume 23 (2023)
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1

2 4 2 4 7

3 5 7 1 6

2 4 2 4 7

1

a1

S1

S2S1

a1

1

2 4 2 4 7

3 5 7 1 6

2 4 2 4 7

3 5 7 1 6

2 4 2 4 7

a1

S1

S2S1

S2S1

a11

1

2 4 2 4 7

3 5 7 1 6

2 4 2 4 7

3 5 7 1 6

2 4 2 4 7

3 5 7 1 6

2 4 2 4 7

1

a1

S1

S2S1

S2S1

S2S1

a1

Figure 12: Top: The cololored polytope 2P . Bottom left: The colored
polytope 4P . Bottom right: The colored polytope 6P . Duplicate the last
two bricks of the coloring [a1S1S2S1a1] on 2P a total of 1

2
n� 1 times to

construct the desired coloring on nP .

in Figures 16–21 of the online supplement for the computation of ž0.K!i
.�1// and

ž0.K!i
.�2// for i D 2; 3; : : : ; 7. The corresponding results are highlighted in blue in

Table 3.

From Figure 11 and Table 3 we can see that the matrices X.nP; !i/ for nD 2; 4; 6; : : :

follow certain patterns for all 1 � i � 15. In order to guarantee that the sequence
f ž0.K!i

.�t //g with t 2 ZC is an arithmetic progression, we just need to guarantee
that the first three items satisfy the relation of an arithmetic progression. For example,
since ž0.K!4

.�//D 0, ž0.K!4
.�1//D 1, ž0.K!4

.�2//D 2 and the full subcomplex
K!4

.�t / changes regularly as the colorings are obtained by duplicating t times the last
two bricks of the colored 2P of [a1S1S2S1a1], it follows that f ž0.K!i

.�t //g with

Algebraic & Geometric Topology, Volume 23 (2023)
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!1.�
1/

0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 3 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 4 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 5 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 6 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 7 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 8 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 9 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 10 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
1 11 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
1 12 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0
0 13 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 14 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0
1 15 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0
1 16 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0
1 17 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0
0 18 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0
0 19 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0
1 20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0
1 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0
1 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1
0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1
0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1
1 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1
1 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1
0 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

!1.�
1/

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 4 6 7 9 10 13 14 16 17 19 20 23 24 26

1 3 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 4 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0
1 6 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0
1 7 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0
1 9 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0
1 10 0 1 1 0 0 1 0 1 1 0 0 0 0 0 0
1 13 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0
1 14 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0
1 16 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0
1 17 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0
1 19 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0
1 20 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1
1 23 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0
1 24 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
1 26 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

!
.1/
1
.�1/D .3; 7; 9; 13; 17; 19; 23/

!
.2/
1
.�1/D .4; 6; 10; 14; 16; 20; 24; 26/

ž0.K!1.�
1//D 1

Figure 13: The computation of ž0.K!1.�
1//. Top: X.4P /. Bottom: X.4P; !1.�

1//.
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!1.�
2/

0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 3 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 4 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 5 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 6 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 7 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 8 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 9 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 10 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 11 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 12 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 13 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 14 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 15 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 16 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 17 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 18 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 19 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0
1 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
1 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0
0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0
1 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0
1 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0
0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0
1 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0
1 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0
0 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0
0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1
1 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1
1 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1
0 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1
1 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1
0 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

!1.�
2/

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 4 6 7 9 10 13 14 16 17 19 20 23 24 26 27 29 30 33 34 36

1 3 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 4 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 6 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 7 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 9 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 10 0 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 13 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 14 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0
1 16 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0
1 17 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0
1 19 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0
1 20 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0 0 0
1 23 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0
1 24 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0
1 26 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0
1 27 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0
1 29 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0
1 30 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1
1 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0
1 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
1 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

!
.1/
1
.�2/D

.3; 7; 9; 13; 17; 19; 23; 27; 29; 33/

!
.2/
1
.�2/D

.4; 6; 10; 14; 16; 20; 24; 26; 30; 34; 36/

ž0.K!1.�
2//D 1

Figure 14: The computation of ž0.K!1.�
2//. Top: X.6P /. Bottom: X.6P; !1.�

2//.
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t 2 ZC is an arithmetic progression. Namely, ž0.K!4
.�3//D 3, ž0.K!4

.�4//D 4,
ž0.K!4

.�5//D 5; : : : . As a consequence, if we want to prove that the whole Betti
number sequence ˇ1.M.nP; ı

1
2

n//, where n is an even positive integer, is an arith-
metic progression, we only need to verify that ˇ1.M.4P; ı1// � ˇ1.M.2P; ı// D

ˇ1.M.6P; ı2//� ˇ1.M.4P; ı1//. Summarizing all these findings, we have the fol-
lowing proposition:

Proposition 3.2 Let ı be a Z4
2
–coloring over the polytope nP . For an arbitrary even

number s > n, if

ˇ1.M..nC 2/P; ı.1///�ˇ1.M.nP; ı//

D ˇ1.M..nC 4/P; ı.2///�ˇ1.M..nC 2/P; ı.1///;

we have

ˇ1.M.sP; ı
1
2
.s�n///

D ˇ1.M.nP; ı//C 1
2
.s� n/

�
ˇ1.M.nC 1/P; ı1/�ˇ1.M.nP; ı//

�
;

where ı.t/ represents a Z4
2
–coloring over the polytope .nC 2t/P. The coloring vector

of ı.t/ is obtained by duplicating the last two bricks of ı exactly t times.

By Proposition 3.2 and using the facts that ˇ1.M.2P; ı//D 3, ˇ1.M.4P; ı1//D 5

and ˇ1.M.6P; ı2//D 7, we can produce Table 4.

This concludes the proof of Lemma 3.1.

4 Proof of Theorem 1.2 for n even

In this section, we prove Theorem 1.2 when n is even. It is similar to the proof of
Lemma 3.1.

Lemma 4.1 For any even positive number n, there is a nonorientable Z3
2
–coloring

� over the polytope nP , such that , for its natural associated Z4
2
–coloring ı, we have

ˇ1.M.nP; ı//D 5n� 3.

Proof Let S1 D .65372/, S2S3 D .72424 65372/ and a1 D 1. By the same idea of
Lemma 3.1, we first construct a suitable nonorientable Z3

2
–coloring � over the polytope

2P as follows:
.1; 3; 5; 7; 6; 2; 4; 2; 2; 4; 7; 3; 5; 7; 6; 2; 1/:
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nD 2 nD 4 nD 6 � � � nD 2C 2t , t 2N

1 1 1 1 � � � 1
2 1 1 1 � � � 1
3 0 0 0 � � � 0
4 0 1 2 � � � t

5 0 0 0 � � � 0
6 0 1 2 � � � t

7 1 1 1 � � � 1
8 0 0 0 � � � 0
9 0 0 0 � � � 0
10 0 0 0 � � � 0
11 0 0 0 � � � 0
12 0 0 0 � � � 0
13 0 0 0 � � � 0
14 0 0 0 � � � 0
15 0 0 0 � � � 0

total ˇ1 3 5 7 � � � 3C 2t D nC 1

Table 4: The values of ˇ1 in Lemma 3.1.

This colored polytope 2P is denoted by Œa1S1S2S1a1�. It follows from Corollary 2.9
and Proposition 2.11 that � is nonorientable and admissible. Denote by ı the natural
Z4

2
–extension of �. The 3–manifold M.2P; ı/ is the orientable double cover of the

nonorientable 3–manifold M.2P; �/. By Corollary 2.3, we have ˇ1.M.2P; ı//D 7.

We repeat the last two bricks t times to construct a coloring over the polytope .2C2t/P ,
and denote its characteristic function by �t . In turn, the colored polytope .2C 2t/P is
denoted by

Œa1S1 S2S1 � � �S2S1„ ƒ‚ …
t pairs

a1�:

It can be easily checked that the nonsingularity condition holds at every vertex. Likewise,
by Corollary 2.9 and Proposition 2.11, we can obtain an admissible extension ıt of
the nonorientable coloring �t . Moreover, M..2C 2t/P; ıt / is the orientable dou-
ble cover of the nonorientable manifold M..2C 2t/P; �t /. The Betti numbers of
.M.2P; ı/, .M.4P; ı1/ and .M.6P; ı2/ are shown in the second, third and fourth
columns of Table 5. By Proposition 3.2 and using the facts that ˇ1.M.2P; ı//D 7,
ˇ1.M.4P; ı1// D 17 and ˇ1.M.6P; ı2// D 27, we can deduce the last column of
Table 5.
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nD 2 nD 4 nD 6 � � � nD 2C 2t , t 2N

1 0 0 0 � � � 0
2 0 0 0 � � � 0
3 2 4 6 � � � 2t C 2

4 1 2 3 � � � t C 1

5 0 0 0 � � � 0
6 1 3 5 � � � 2t C 1

7 0 0 0 � � � 0
8 1 2 3 � � � t C 1

9 0 0 0 � � � 0
10 0 1 2 � � � t

11 0 0 0 � � � 0
12 1 3 5 � � � 2t C 1

13 1 2 3 � � � t C 1

14 0 0 0 � � � 0
15 0 0 0 � � � 0

total ˇ1 7 17 27 � � � 10t C 7D 5n� 3

Table 5: The values of ˇ1 for Lemma 4.1.

In other words, we may always find a nonorientable Z3
2
–coloring � such that its natural

Z4
2
–extension ı has ˇ1.M.nP; ı//D 5n� 3.

Lemma 4.2 For any even positive integer n and any odd integer k 2 Œ5n� 1; 5nC 3�,
there is a nonorientable Z3

2
–coloring � over the polytope nP such that , for its natural

associated Z4
2
–coloring ı, we have ˇ1.M.nP; ı//D k.

Proof We start at nD 2 and construct suitable characteristic functions of the desired
manifolds, whose first Betti numbers increase by 10t when the last pair of their coloring
bricks are repeated t times. First, in Table 6 we prepare an affix and some bricks for
constructing the coloring vectors needed.

Let �0
1
, �1

1
and �2

1
be the three nonorientable Z3

2
–coloring characteristic functions of

the coloring vectors

Œa1S1S2S1a1�; Œa1S1S2S1S2S1a1�; Œa1S1S2S1S2S1S2S1a1�

over the polytopes 2P , 4P and 6P , respectively. Their characteristic vectors are

.1; 2; 4; 4; 3; 6; 5; 1; 6; 3; 2; 2; 4; 4; 3; 6; 1/;

.1; 2; 4; 4; 3; 6; 5; 1; 6; 3; 2; 2; 4; 4; 3; 6; 5; 1; 6; 3; 2; 2; 4; 4; 3; 6; 1/;

.1; 2; 4; 4; 3; 6; 5; 1; 6; 3; 2; 2; 4; 4; 3; 6; 5; 1; 6; 3; 2; 2; 4; 4; 3; 6; 5; 1; 6; 3; 2; 2; 4; 4; 3; 6; 1/:
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to construct affixes brick pair of bricks being repeated

�t
1

a1 D 1 S1 D 34246 S2S1 D .26513 34246/

�t
2
, �t

3

a1 D 1

a2 D 3

a3 D 7

S1 D .24246/ S2S3 D .73153 14245/

Table 6: The affixes and bricks for constructing �t
1
, �t

2
and �t

3
of Lemma 4.2.

It can be easily checked that the nonsingularity condition holds at every vertex. The
natural associated Z4

2
–extensions are denoted by ı0

1
, ı1

1
and ı2

1
. By Corollary 2.3, we

can calculate the first Betti numbers of those manifolds, namely ˇ1.M.2P; ı0
1
//D 13,

ˇ1.M.4P; ı1
1
//D 23 and ˇ1.M.6P; ı2

1
//D 33. Thus, according to Proposition 3.2,

(4-1) ˇ1.M..2C 2t/P; ıt
1//D 13C 10t; where t 2 ZC:

Similarly, we describe the affixes and bricks for constructing �t
2

and �t
3

of Lemma 4.2
in Table 6.

Let us denote by �0
2
, �1

2
and �2

2
the three nonorientable Z3

2
–coloring characteristic

functions of the following colored polytopes 2P , 4P and 6P :

Œa1S1S2S3a2�; Œa1S1S2S3S2S3a2�; Œa1S1S2S3S2S3S2S3a2�;

and let �0
3
, �1

3
and �2

3
be the Z3

2
–coloring characteristic functions of the following

colored polytopes 2P , 4P and 6P :

Œa1S1S2S3a3�; Œa1S1S2S3S2S3a3�; Œa1S1S2S3S2S3S2S3a3�:

Their natural associated Z4
2
–extensions are denoted as ı0

2
, ı1

2
, ı2

2
and ı0

3
, ı1

3
, ı2

3
.

The first Betti numbers of these manifolds, namely ˇ1.M.2P; ı0
2
//, ˇ1.M.4P; ı1

2
//,

ˇ1.M.6P; ı2
2
// and ˇ1.M.2P; ı0

3
//, ˇ1.M.4P; ı1

3
//, ˇ1.M.6P; ı2

3
//, are explicitly

calculated to be 15, 25, 35 and 17, 27, 37, respectively.

Thus we have, for each t 2 ZC,

ˇ1.M..2C 2t/P; ıt
2//D 15C 10t;(4-2)

ˇ1.M..2C 2t/P; ıt
3//D 17C 10t:(4-3)

Putting together the results in (4-1), (4-2) and (4-3), we have the proof of Lemma 4.2.

Lemma 4.3 For any even positive integer n and any odd integer k 2 Œ1; n� 1�, there is
a nonorientable Z3

2
–coloring � over the polytope nP such that , for its natural associated

Z4
2
–coloring ı, we have ˇ1.M.nP; ı//D k.
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affixes bricks compatible pairs of bricks being repeated

a1 D 1

a2 D 3

S1 D .24247/

S2 D .54241/

S3 D .67172/

A1 D .6717254241/

A2 D .7317254241/

Table 7: The affixes, bricks and compatible pairs for �.t1;t2/ of Lemma 4.3.

Figure 15: Compatible pair.

Proof We consider some affixes and bricks as described in Table 7. For the sake of
brevity, we use the symbol Ai to denote a compatible pair of bricks, where “compatible”
means the nonsingular condition is satisfied at all ten intersecting vertices of the two
bricks as shown in Figure 15.

At first, we construct a nonorientable Z3
2
–coloring � over the polytope 2P , where the

colored polytope is Œa1S1S3S2a2�. The nonorientability is guaranteed by Corollary 2.9.
The natural Z4

2
–extension of � is denoted by ı. Let �.t1;t2/ be the Z3

2
–coloring charac-

teristic function of the colored polytope 2.t1C t2C 1/P ,

ŒaS1S3S2 A1; : : : ;A1„ ƒ‚ …
t1

A2; : : : ;A2„ ƒ‚ …
t2

a2�:

It can be easily checked that the nonsingularity condition holds at every vertex. More-
over, ı.t1;t2/ is the natural Z4

2
–extension of �.t1;t2/, which is also defined on the polytope

2.t1C t2C 1/P . In particular, �.0;0/ D �. The colored 2P s corresponding to �.1;0/

and �.0;1/ are Œa1S1S3S2A1a2� and Œa1S1S3S2A2a2�, respectively. In this case, the
nonsingularity condition holds at every vertex. The calculated Betti numbers are given
in Table 8.

By Proposition 3.2 and

ˇ1.M.2P; ı.0;0///D 1; ˇ1.M.4P; ı.1;0///D 1; ˇ1.M.6P; ı.2;0///D 1;

ˇ1.M.2P; ı.0;0///D 1 ˇ1.M.4P; ı.1;0///D 1 ˇ1.M.6P; ı.2;0///D 1 � � �

ˇ1.M.4P; ı.0;1///D 3 ˇ1.M.6P; ı.1;1///D 3 � � �

ˇ1.M.6P; ı.0;2///D 5 � � �

Table 8: The values of ˇ1.M..2.t1C t2C 2//P; ı.t1;t2/// in Lemma 4.3.
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we have

(4-4) ˇ1.M.2.t1C t2C 1/P; ı.t1;t2///D ˇ1.M.2.t1C t2C 2/P; ı.t1C1;t2///:

Likewise, from

ˇ1.M.2P; ı.0;0///D 1; ˇ1.M.4P; ı.0;1///D 3; ˇ1.M.6P; ı.0;2///D 5;

we have

(4-5) ˇ1.M.2.t1C t2C 1/P; ı.t1;t2///C 2D ˇ1.M.2.t1C t2C 2/P; ı.t1;t2C1///:

By (4-4) and (4-5), we obtain

(4-6) ˇ1.M.nP; ı.t;
1
2

n�1�t///D n� 2t � 1;

where n is even and 0 6 t 6 1
2
n� 1, which completes the proof of Lemma 4.3.

Lemma 4.4 For any even positive integer n and any odd integer k 2 ŒnC 3; 5n� 5�,
there is a nonorientable Z3

2
–coloring � over the polytope nP such that , for its natural

associated Z4
2
–coloring ı, we have ˇ1.M.nP; ı//D k.

Proof The considered affixes and bricks are described in Table 9.

First, we construct three nonorientable Z3
2
–coloring characteristic functions z�0, z�1 and

z�2 of polytopes 2P , 4P and 6P , respectively as below:

Œa1S1A3a1�;

Œa1S1A3A3a1�;

Œa1S1A3A3A3a1�:

Their characteristic vectors are

.1; 2; 4; 4; 2; 7; 3; 7; 5; 2; 6; 2; 4; 4; 2; 7; 1/;

.1; 2; 4; 4; 2; 7; 3; 7; 5; 2; 6; 2; 4; 4; 2; 7; 3; 7; 5; 2; 6; 2; 4; 4; 2; 7; 1/;

.1; 2; 4; 4; 2; 7; 3; 7; 5; 2; 6; 2; 4; 4; 2; 7; 3; 7; 5; 2; 6; 2; 4; 4; 2; 7; 3; 7; 5; 2; 6; 2; 4; 4; 2; 7; 1/:

affixes brick compatible pairs of bricks being repeated

a1 D 1, a2 D 4 S1 D .24247/ A1 D .42472 71635/

A2 D .42472 37265/

A3 D .65372 24247/

A4 D .65372 71635/

Table 9: The affixes, brick and compatible pairs for constructing �.t1;t2/i of Lemma 4.4.
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Also in this case, the nonsingularity condition holds at every vertex. Their natural
associated Z4

2
–colorings are denoted by zı0, zı1 and zı2. By Corollary 2.3, we obtain that

the first Betti numbers of the corresponding manifolds are 5, 15 and 25, respectively.
Thus, we have

(4-7) ˇ1.M..2C 2t/P; zıt //D 5C 10t

for each t 2Z�0, where t is the number of times the last two bricks of zı0 are repeated.

Next, we use �.t1;t2/
i to represent the Z3

2
–coloring characteristic function of coloring

vector
ŒaS1A3; : : : ;A3„ ƒ‚ …

t1

A4A1; : : : ;A1„ ƒ‚ …
t2

Aiaj �

over the polytope 2.t1C t2C2/P . Here aj is the affix element and j D 2; 1; 1; 2 when
i D 1; 2; 3; 4, respectively. In particular, the coloring vector of �.0;0/i is ŒaS1A4Aiaj �.
The nonsingularity condition holds at every vertex. Moreover, ı.t1;t2/

i is the natural
associated Z4

2
–extension of �.t1;t2/

i .

From
ˇ1.M.4P; ı

.0;0/
i //D 5C 2i;

ˇ1.M.6P; ı
.0;1/
i //D 7C 2i;

ˇ1.M.8P; ı
.0;2/
i //D 9C 2i

for i D 1; 2; 3; 4, we have

(4-8) ˇ1.M.2.t1C t2C 2/P; ı
.t1;t2/
i //C 2D ˇ1.M.2.t1C t2C 3/P; ı

.t1;t2C1/
i /

for i D 1; 2; 3; 4. From

ˇ1.M.4P; ı
.0;0/
i //D 5C 2i;

ˇ1.M.6P; ı
.1;0/
i //D 15C 2i;

ˇ1.M.8P; ı
.2;0/
i //D 25C 2i

for i D 1; 2; 3; 4, we have

(4-9) ˇ1.M.2.t1C t2C 2/P; ı
.t1;t2/
i //C 10D ˇ1.M.2.t1C t2C 3/P; ı

.t1C1;t2/
i //:

By (4-8) and (4-9) it follows that

(4-10) ˇ1.M.nP; ı
.t; 1

2
n�2�t/

i //D nC 8t C 2i C 3

for n even and 0 6 t 6 1
2
n� 2.
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2P 4P 6P 8P 10P � � �

ı ˇ1 ı ˇ1 ı ˇ1 ı ˇ1 ı ˇ1 � � �

ı
.0;0/
1

7 ı
.0;1/
1

9 ı
.0;2/
1

11 ı
.0;3/
1

13 � � �

zı0 5 ı
.0;0/
2

9 ı
.0;1/
2

11 ı
.0;2/
2

13 ı
.0;3/
2

15 � � �

ı
.0;0/
3

11 ı
.0;1/
3

13 ı
.0;2/
3

15 ı
.0;3/
3

17 � � �

ı
.0;0/
4

13 ı
.0;1/
4

15 ı
.0;2/
4

17 ı
.0;3/
4

19 � � �

ı
.1;0/
1 17 ı

.1;1/
1 19 ı

.1;2/
1 21 � � �

zı1 15 ı
.1;0/
2 19 ı

.1;1/
2 21 ı

.1;2/
2 23 � � �

ı
.1;0/
3 21 ı

.1;1/
3 23 ı

.1;2/
3 25 � � �

ı
.1;0/
4 23 ı

.1;1/
4 25 ı

.1;2/
4 27 � � �

ı
.2;0/
1 27 ı

.2;1/
1 29 � � �

zı2 25 ı
.2;0/
2 29 ı

.2;1/
2 31 � � �

ı
.2;0/
3

31 ı
.2;1/
3

33 � � �

ı
.2;0/
4

33 ı
.2;1/
4

35 � � �

ı
.3;0/
1

37 � � �

zı3 35 ı
.3;0/
2

39 � � �

ı
.3;0/
3

41 � � �

ı
.3;0/
4

43 � � �

zı4 45 � � �

Table 10: The values of ˇ1 D ˇ1.M.nP; ı/ for Lemma 4.4.

By (4-7) and (4-10), we finish the proof of Lemma 4.4. All of the Betti numbers of
Lemma 4.4 are listed in Table 10.

Now, using Lemmas 3.1 and 4.1–4.4, we complete the proof of Theorem 1.2 for n even.

5 Proof of Theorem 1.2 for n odd

In this section, we analogously prove Theorem 1.2 for odd n.

Lemma 5.1 For any odd positive integer n, there is a nonorientable Z3
2
–coloring �

over the polytope nP such that , for its natural associated Z4
2
–coloring ı, we have

ˇ1.M.nP; ı//D n.
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nD 3 nD 5 nD 7 � � � nD 3C 2t , t 2N

1 1 1 1 � � � 1
2 1 1 1 � � � 1
3 0 0 0 � � � 0
4 0 1 2 � � � t

5 0 0 0 � � � 0
6 0 1 2 � � � t

7 1 1 1 � � � 1
8 0 0 0 � � � 0
9 0 0 0 � � � 0
10 0 0 0 � � � 0
11 0 0 0 � � � 0
12 0 0 0 � � � 0
13 0 0 0 � � � 0
14 0 0 0 � � � 0
15 0 0 0 � � � 0

total ˇ1 3 5 7 � � � 3C 2t D n

Table 11: The values of ˇ1.M.nP; ıt // for nD 3C 2t in Lemma 5.1.

Proof We first prove the special case in which nD 3. Consider bricks S1 D .24247/

and S2 D .35716/, and affixes a1 D 1 and a2 D 4. We construct a nonorientable
Z3

2
–coloring � over the polytope 3P whose coloring and characteristic vector are

Œa1S1S2S1S2a2� and .1; 2; 4; 4; 2; 7; 7; 1; 5; 6; 3; 2; 4; 4; 2; 7; 7; 1; 5; 6; 3; 4/;

respectively.

By Corollary 2.3, ˇ1.M.3P; ı//D 3, where ı is the natural Z4
2
–extension of �. We

repeat the last two bricks t times to construct a coloring over the polytope .3C2t/P , and
denote its characteristic function by �t . It can be easily checked that the nonsingularity
condition holds at every vertex. By Corollary 2.9 and Proposition 2.11, we obtain
the admissible extension ıt of the nonorientable �t . That is, M..3C 2t/P; ıt / is
the orientable double cover of the nonorientable manifold M..3C 2t/P; �t /. The
progressions of corresponding Betti numbers are shown in Table 11.

This concludes the proof of Lemma 5.1.

Lemma 5.2 For any odd positive integer n and any odd integer k 2 Œ5n� 9; 5nC 3�,
there is a nonorientable Z3

2
–coloring � over the polytope nP such that , for its natural

associated Z4
2
–coloring ı, we have ˇ1.M.nP; ı//D k.
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affix compatible pairs of bricks being repeated

a1 D 1 A1 D .53726 71635/

A2 D .24724 37265/

A3 D .53726 74242/

Table 12: An affix and compatible pairs of bricks for Lemma 5.2, I.

Proof We start at n D 3 and construct six suitable characteristic vectors whose
corresponding manifolds’ Betti numbers would increase by 10t when repeating the last
pair of coloring bricks t times. An affix and some useful compatible pairs are described
in Table 12.

For every i D 0; 1; 2, let �0
i , �1

i and �2
i be the three Z3

2
–coloring characteristic functions

of the three colorings over the polytopes 3P , 5P and 7P as shown in Table 13. Here t

represents how many times the last compatible pair of �0
i is repeated. It can be checked

with little effort that the nonsingularity condition holds at every vertex.

Let ıt
i be the natural Z4

2
–extensions of �t

i for i D 0; 1; 2. By Corollary 2.3, we may
calculate the first Betti numbers of the manifolds corresponding to the coloring vectors
in Table 13, namely

ˇ1.M.3P; ı0
0//D 7; ˇ1.M.5P; ı1

0//D 17; ˇ1.M.7P; ı2
0//D 27;

ˇ1.M.3P; ı0
1//D 9; ˇ1.M.5P; ı1

1//D 19; ˇ1.M.7P; ı2
1//D 29

and

ˇ1.M.3P; ı0
2//D 11; ˇ1.M.5P; ı1

2//D 21; ˇ1.M.7P; ı2
2//D 31:

Therefore, according to Proposition 3.2, for each t 2N,

ˇ1.M..3C 2t/P; ıt
1//D 7C 10t;(5-1)

ˇ1.M..3C 2t/P; ıt
2//D 9C 10t;(5-2)

ˇ1.M..3C 2t/P; ıt
3//D 11C 10t:(5-3)

i t D 0 1 2

0 Œa1A1A2a1� Œa1A1A2A2a1� Œa1A1A2A2A2a1�

1 Œa1A1A3a1� Œa1A1A3A3a1� Œa1A1A3A3A3a1�

2 Œa1A1A1a1� Œa1A1A1A1a1� Œa1A1A1A1A1a1�

Table 13: The coloring vectors of �t
i in Lemma 5.2.
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affixes compatible pairs of bricks being repeated

a1 D 1, a2 D 3 A0 D .34246 26513/

A1 D .31245 26416/

A2 D .31245 16416/

A3 D .31245 46452/

Table 14: The affixes and compatible pairs for Lemma 5.2, II.

Similarly, we prepare the affixes and compatible pairs for constructing the desired
characteristic function z�t

i in Table 14.

For every i D 0; 1; 2, let z�0
i , z�1

i and z�2
i be the three Z3

2
–coloring characteristic functions

of the three colorings over the polytopes 3P , 5P and 7P as shown in Table 15. Here t

represents how many times the last compatible pair of z�0
i is repeated. It can be easily

checked that the nonsingularity condition holds at every vertex.

Let zıt
i be the natural Z4

2
–extensions of z�t

i , for i D 1; 2; 3. By Corollary 2.3, we
calculate the first Betti numbers of the manifolds corresponding to the coloring vectors
in Table 15, namely

ˇ1.M.3P; zı0
0//D 13; ˇ1.M.5P; zı1

0//D 23; ˇ1.M.7P; zı2
0//D 33;

ˇ1.M.3P; zı0
1//D 15; ˇ1.M.5P; zı1

1//D 25; ˇ1.M.7P; zı2
1//D 35;

and

ˇ1.M.3P; zı0
2//D 17; ˇ1.M.5P; zı1

2//D 27; ˇ1.M.7P; zı2
2//D 37:

Thus, according to Proposition 3.2, for each t 2N,

ˇ1.M..3C 2t/P; zıt
1//D 13C 10t;(5-4)

ˇ1.M..3C 2t/P; zıt
2//D 15C 10t;(5-5)

ˇ1.M..3C 2t/P; zıt
3//D 17C 10t:(5-6)

Putting together the results in (5-1)–(5-6), we have the proof of Lemma 5.2.

i t D 0 1 2

0 Œa1A0A1a2� Œa1A0A1A1a2� Œa1A0A1A1A1a2�

1 Œa1A0A2a2� Œa1A0A2A2a2� Œa1A0A2A2A2a2�

2 Œa1A0A3a2� Œa1A0A3A3a2� Œa1A0A3A3A3a2�

Table 15: The coloring vectors of z�t
i in Lemma 5.2.
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affixes compatible pairs of bricks being repeated

a1 D 1, a2 D 4 A1 D .24247 17532/

A2 D .53176 17532/

A3 D .53147 17532/

Table 16: The affixes and compatible pairs for �.t1;t2/ of Lemma 5.3.

Lemma 5.3 For any odd positive integer n and any odd integer k 2 Œ1; n�1�, there is a
nonorientable Z3

2
–coloring � over the polytope nP such that , for its natural associated

Z4
2
–coloring ı, we have ˇ1.M.nP; ı//D k.

Proof We prepare some affixes and compatible pairs as described in Table 16.

At first, we construct a nonorientable Z3
2
–coloring characteristic function �, whose

coloring vector is Œa1A1A2a2�, on the polytope 3P , and denote its natural Z4
2
–extension

by ı. Let �.t1;t2/ be the Z3
2
–coloring characteristic function of

Œa1A1A2A2; : : : ;A2„ ƒ‚ …
t1

A3; : : : ;A3„ ƒ‚ …
t2

a2�

over the polytope .2.t1C t2/C 3//P . We use ı.t1;t2/ to denote the natural associated
Z4

2
–extension of �.t1;t2/. In particular, �.0;0/ D �. It can be easily checked that the

nonsingularity condition holds at every vertex. The results of the calculations of the
Betti numbers are reported in Table 17.

According to Proposition 3.2, the Betti number sequence would be an arithmetic
progression if the first three numbers satisfy the relation of arithmetic progression.

From

ˇ1.M.3P; ı.0;0///D 1; ˇ1.M.5P; ı.1;0///D 1; ˇ1.M.7P; ı.2;0///D 1;

we have

(5-7) ˇ1
�
M
�
.2.t1C t2/C 3/P; ı.t1;t2/

��
D ˇ1

�
M
�
.2.t1C t2/C 5/P; ı.t1C1;t2/

��
:

ˇ1.M.3P; ı.0;0///D 1 ˇ1.M.5P; ı.1;0///D 1 ˇ1.M.7P; ı.2;0///D 1 � � �

ˇ1.M.5P; ı.0;1///D 3 ˇ1.M.7P; ı.1;1///D 3 � � �

ˇ1.M.7P; ı.0;2///D 5 � � �

Table 17: The values of ˇ1
�
M
�
.2.t1C t2/C 3/P; ı.t1;t2/

��
in Lemma 5.3.
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From

ˇ1.M.3P; ı.0;0///D 1; ˇ1.M.5P; ı.0;1///D 3; ˇ1.M.7P; ı.0;2///D 5;

we have

(5-8) ˇ1
�
M
�
.2.t1Ct2/C3/P; ı.t1;t2/

��
C2Dˇ1

�
M
�
.2.t1Ct2/C5/P; ı.t1;t2C1/

��
:

By (5-7) and (5-8), we obtain

(5-9) ˇ1.M.nP; ı.t;
1
2
.n�3/�t///D n� 2� 2t;

for each n odd with n 2 Z�3 and 0 6 t 6 1
2
.n� 3/.

This concludes the proof of Lemma 5.3.

Lemma 5.4 For any odd positive integer n and any odd integer k 2 ŒnC 1; 5n� 9�,
there is a nonorientable Z3

2
–coloring � over the polytope nP such that , for the natural

associated Z4
2
–coloring ı, we have ˇ1.M.nP; ı//D k.

Proof The affixes and compatible pairs of bricks considered are described in Table 18.

At first, we construct a nonorientable Z3
2
–coloring � over the polytope 3P whose

coloring vector is Œa1A4A1a2�. We denote by ı the natural associated Z4
2
–extension.

By calculation, we have

(5-10) ˇ1.M.3P; ı//D 5:

We denote by �t�1
i , where t 2 Z�1 and i D 1; 2; 3; 4, the nonorientable Z3

2
–coloring

characteristic function � on the polytope .2t C 3/P corresponding to coloring vector

Œa1A4A1; : : : ;A1„ ƒ‚ …
t

Aiaj �;

where aj is an affix element and j is given by 2; 1; 1; 2 for i D 1; 2; 3; 4, respectively.

affixes compatible pairs of bricks being repeated

a1 D 1, a2 D 4 A1 D .42472 57163/

A2 D .42472 53726/

A3 D .65372 72424/

A4 D .65372 57163/

Table 18: The affixes and compatible pairs for Lemma 5.4.
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3P 5P 7P 9P 11P � � �

ı ˇ1 ı ˇ1 ı ˇ1 ı ˇ1 ı ˇ1 � � �

zı 5 ı0
1

7 ı1
1

9 ı2
1

11 ı3
1

13 � � �

zı0 5 ı0
2

9 ı1
2

11 ı2
2

13 ı3
2

15 � � �

ı0
3

11 ı1
3

13 ı2
3

15 ı3
3

17 � � �

ı0
4

13 ı1
4

15 ı2
4

17 ı3
4

19 � � �

ı
.0;0/
1

17 ı
.0;1/
1

19 ı
.0;2/
1

21 � � �

zı1 15 ı
.0;0/
2

19 ı
.0;1/
2

21 ı
.0;2/
2

23 � � �

ı
.0;0/
3

21 ı
.0;1/
3

23 ı
.0;2/
3

25 � � �

ı
.0;0/
4 23 ı

.0;1/
4 25 ı

.0;2/
4 27 � � �

ı
.1;0/
1 27 ı

.1;1/
1 29 � � �

zı2 25 ı
.1;0/
2 29 ı

.1;1/
2 31 � � �

ı
.1;0/
3 31 ı

.1;1/
3 33 � � �

ı
.1;0/
4 33 ı

.1;1/
4 35 � � �

ı
.2;0/
1 37 � � �

zı3 35 ı
.2;0/
2 39 � � �

ı
.2;0/
3 41 � � �

ı
.2;0/
4

43 � � �

zı4 45 � � �

Table 19: The values of ˇ1.M.nP; ı//, nD 3; 5; 7; 9; 11; : : : , for Lemma 5.4.

In particular, �t
1

is obtained by inserting .t C 1/ copies of A1 into the coloring vector
of �. We denote by ıt�1

i the natural Z4
2
–extension of �t�1

i . From

ˇ1.M.5P; ı0
i //D 5C 2i; ˇ1.M.7P; ı1

i //D 7C 2i; ˇ1.M.9P; ı2//D 9C 2i;

we have

(5-11) ˇ1
�
M
�
.2t C 3/P; ıt�1

i

��
C 2D ˇ1

�
M
�
.2t C 5/P; ıt

i

��
for i D 1; 2; 3; 4.

Next, we construct three nonorientable Z3
2
–colorings z�0, z�1 and z�2 on the polytopes

3P , 5P , 7P , whose coloring vectors are, respectively,

Œa1A1A3a1�; Œa1A1A3A3a1�; Œa1A1A3A3A3a1�:
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The natural Z4
2
–extensions are denoted by zı0, zı1 and zı2. By calculation, we have

ˇ1.M.3P; zı0//D 5; ˇ1.M.5P; zı1//D 15; ˇ1.M.7P; zı2//D 25:

For t 2 Z�1, we denote by z�t�1 the Z3
2
–coloring characteristic function of

Œa1A1A3; : : : ;A3„ ƒ‚ …
t

a1�

over the polytope .2tC1/P and write its natural Z4
2
–extension as zıt�1. Then we have,

for each t 2 Z�1,

(5-12) ˇ1.M..2t C 1/P; zıt�1//D 10t � 5:

Let �.t1�1;t2/
i denote the Z3

2
–coloring characteristic function of the coloring vector

Œa1A1A3; : : : ;A3„ ƒ‚ …
t1

A4 A1; : : : ;A1„ ƒ‚ …
t2

Aiaj �

over the polytope .2.t1C t2/C 5/P , where aj is an affix element and j is given by
2; 1; 1; 2 for i D 1; 2; 3; 4, respectively. In particular, the coloring vector of �.0;0/i

is ŒaA1A3A4Aiaj �. Also ı.t1�1;t2/
i is the natural Z4

2
–extension of �.t1�1;t2/

i over the
polytope .2.t1C t2/C 5/P .

From
ˇ1.M.7P; ı

.0;0/
i //D 5C 2i;

ˇ1.M.9P; ı
.0;1/
i //D 7C 2i;

ˇ1.M.11P; ı
.0;2/
i //D 9C 2i

for i D 1; 2; 3; 4, we have

(5-13) ˇ1
�
M
�
.2.t1C t2/C 5/P; ı.t1�1;t2/

��
C 2

D ˇ1
�
M
�
.2.t1C t2/C 7/P; ı.t1�1;t2C1/

��
for each t 2 Z�1.

From
ˇ1.M.7P; ı

.0;0/
i //D 5C 2i;

ˇ1.M.9P; ı
.1;0/
i //D 15C 2i;

ˇ1.M.11P; ı
.2;0/
i //D 25C 2i

for i D 1; 2; 3; 4, we have

(5-14) ˇ1
�
M
�
.2.t1Ct2/C5/P; ı

.t1�1;t2/
i

��
C10Dˇ1

�
M
�
.2.t1Ct2/C7/P; ı

.t1;t2/
i

��
for each t 2 Z�1.
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� ˇ1.M.P; ı//

1 (1, 2, 4, 4, 2, 7, 1, 7, 7, 5, 6, 4) 1
2 (1, 2, 4, 4, 2, 7, 7, 3, 1, 5, 4, 2) 3
3 (1, 2, 4, 4, 2, 7, 3, 5, 5, 6, 3, 1) 5
4 (1, 2, 4, 5, 2, 6, 3, 6, 5, 4, 3, 1) 7

Table 20: The Z3
2
–colorings and ˇ1 of their natural Z4

2
–extensions of Lemma 5.5.

By (5-13) and (5-14), we have

(5-15) ˇ1.M.nP; ı
.t; 1

2
.n�1/�3�t/

i //D nC 2i C 8t

for n 2 Zodd
�7

and 0 6 t 6 1
2
.n� 7/.

Putting together the results in (5-10)–(5-12) and (5-15), we complete the proof of
Lemma 5.4. All the Betti numbers of Lemma 5.4 are listed in Table 19.

Lemma 5.5 For any odd integer k 2 Œ1; 7�, there is a nonorientable Z3
2
–coloring

over the dodecahedron P such that , for its natural associated Z4
2
–coloring ı, we have

ˇ1.M.P; ı//D k.

Proof We report the required characteristic functions in Table 20 to conclude this
lemma.

Now, using Lemmas 5.1–5.5, we complete the proof of Theorem 1.2 for an odd n.
Thus, together with Section 4, we finish the proof of Theorem 1.2.
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Constrained knots in lens spaces

FAN YE

We study a special family of .1; 1/ knots called constrained knots, which includes
2–bridge knots in the 3–sphere S3 and simple knots in lens spaces. Constrained
knots are parametrized by five integers and characterized by the distribution of spinc

structures in the corresponding .1; 1/ diagrams. The knot Floer homology 1HFK of
a constrained knot is thin. We obtain a complete classification of constrained knots
based on the calculation of 1HFK and presentations of knot groups. We provide
many examples of constrained knots constructed from surgeries on links in S3, which
are related to 2–bridge knots and 1–bridge braids. We also show many examples
of constrained knots whose knot complements are orientable hyperbolic 1–cusped
manifolds with simple ideal triangulations.
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1 Introduction

The main object studied in this paper is a special family of knots in lens spaces called
constrained knots. Every knot in a closed 3–manifold can be represented by a doubly
pointed Heegaard diagram .†; ˛; ˇ; z; w/ (see Ozsváth and Szabó [29, Section 2]),
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Figure 1: Left: a constrained knot in L.5; 2/. Right: a .1; 1/ diagram.

where† is a closed surface, ˛Df˛1; : : : ; ˛gg and ˇDfˇ1; : : : ; ˇgg are two collections
of gDg.†/ simple closed curves on†, and z and w are two basepoints on†�.˛[ˇ/.
Conversely, any doubly pointed Heegaard diagram defines a knot. Explicitly, the knot is
the union of an arc a connecting z tow on†�˛, pushed slightly into the ˛–handlebody,
and an arc b connecting w to z on †�ˇ, pushed slightly into the ˇ–handlebody.

Let T 2 be the torus obtained by the quotient map R2! T 2 that identifies .x; y/ with
.x Cm; y C n/ for m; n 2 Z. Suppose p and q are integers satisfying p > 0 and
gcd.p; q/D 1. Let ˛0 and ˇ0 be two simple closed curves on T 2 obtained from two
straight lines in R2 of slopes 0 and p=q. Then .T 2; ˛0; ˇ0/ is called the standard
diagram of a lens spaceL.p; q/. Let ˛1D˛0 and let ˇ1 be a simple closed curve on T 2

that is disjoint from ˇ0 and where Œˇ1�D Œˇ0� 2H1.T 2IZ/. Then .T 2; ˛1; ˇ1/ is also
a Heegaard diagram of L.p; q/. Let z and w be two basepoints in T 2�˛0[ˇ0[ˇ1.

The knot defined by the doubly pointed diagram .T 2; ˛1; ˇ1; z; w/ is called a con-
strained knot and the diagram is called the standard diagram of the constrained knot. We
will show that constrained knots are parametrized by five integers, which will be denoted
by C.p; q; l; u; v/. For technical reasons, the knot C.p; q; l; u; v/ is in L.p; q0/, where
qq0 � 1 .mod p/. An example is shown in Figure 1, left, where .T 2; ˛0; ˇ0/ is the
standard diagram of L.5; 2/ and .T 2; ˛1; ˇ1; z; w/ defines C.5; 3; 2; 3; 1/.

Roughly speaking, knots defined by doubly pointed Heegaard diagrams with g.†/D 1
are called .1; 1/ knots and the corresponding diagrams are called .1; 1/ diagrams; for
precise definitions see Section 2.1. These .1; 1/ knots are parametrized by four integers
(see Goda, Matsuda and Morifuji [14] and Rasmussen [37]), which will be denoted by

Algebraic & Geometric Topology, Volume 23 (2023)



Constrained knots in lens spaces 1099

W.p; q; r; s/; see Figure 1, right. After rotation, standard diagrams of constrained knots
are special cases of .1; 1/ diagrams. Moreover, the following proposition characterizes
constrained knots by the distribution of spinc structures on the ambient 3–manifold in
the corresponding .1; 1/ diagrams; for the definition of spinc structures see Ozsváth
and Szabó [29] and Rasmussen [38].

Proposition 1.1 Let K DW.p; q; r; s/ be a .1; 1/ knot in Y D L.a; b/ with a > 1,
and suppose .T 2; ˛; ˇ; z; w/ is the corresponding .1; 1/ diagram of K. Let fxig be
intersection points in ˛\ˇ, ordered by an orientation of ˛. Let si D sz.xi /2Spinc.Y /
be the spinc structures on Y corresponding to xi . The knot K is a constrained knot if
and only if :

(i) For k D jSpinc.Y /j.D a/, there are integers p1; : : : ; pk such that

0 < p1 < p2 < � � �< pk � p:

(ii) si D sj if and only if either i; j 2 .0; p1�[.pk; p�, or i; j 2 .pl ; plC1� for some
l 2 f1; : : : ; p� 1g.

A single knot can be represented by .1; 1/ knotsW.p1; q1; r1; s1/ andW.p2; q2; r2; s2/
with different parameters. For example, both W.5; 2; 1; 3/ and W.5; 2; 1; 0/ represent
the figure-8 knot in S3. There is no explicit classification of .1; 1/ knots byW.p; q; r; s/
to the author’s knowledge. However, it is possible to classify constrained knots by the
parametrization C.p; q; l; u; v/. In particular, the case C.1; 0; 1; u; v/ consists of 2–
bridge knots in S3 (see Proposition 3.5) and the case C.p; q; l; 1; 0/ consists of simple
knots in lens spaces (see Proposition 3.7). Schubert [41] and Rasmussen [38] classify
2–bridge knots and simple knots, respectively. The case C.p; q; 1; u; v/ consists of
connected sums of a core knot in a lens space and a 2–bridge knot (see Theorem 7.14).
For other constrained knots, the classification is given by:

Theorem 1.2 Suppose that .p1; q1; l1; u1; v1/ and .p2; q2; l2; u2; v2/ are two differ-
ent collections of integers satisfying , for i D 1; 2,

pi > 1; qi 2 Œ1; pi � 1�; li 2 Œ2; pi �; ui > 2vi > 0; ui is odd;

gcd.pi ; qi /D gcd.ui ; vi /D 1:

Then constrained knots C.pi ; qi ; li ; ui ; vi / represent the same knot if and only if

p1Dp2Dp; q1q2�1 .mod p/; l1; l22f2; pg and .l1; u1; v1/D .l2; u2; v2/:

Algebraic & Geometric Topology, Volume 23 (2023)
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The hat version of knot Floer homology 1HFK.Y;K/ (see Ozsváth and Szabó [29] and
Rasmussen [36]) is a powerful invariant for a knot K in a closed 3–manifold Y . It
decomposes as the direct sum

(1) 1HFK.Y;K/D
M

s2Spinc.Y /

1HFK.Y;K; s/

with respect to spinc structures on Y . Moreover, the homology 1HFK.Y;K; s/ inherits
two Z–gradings, the Alexander grading and the Maslov grading, from the underlying
chain complex 1CFK.Y;K; s/.

Definition 1.3 A knot K � Y is called an s–thin knot if the difference of the Maslov
grading and the Alexander grading on 1HFK.Y;K; s/ is constant for homogeneous
elements. It is called a thin knot if it is an s0–thin knot for any s0 2 Spinc.Y /.

Thin knots defined as above generalize ı–thin knots in S3 (see Rasmussen [37]) and
Floer homological thin knots; see Manolescu and Ozsváth [23]. Examples of thin knots
include all quasialternating knots [23], in particular all 2–bridge knots.

Suppose K is a thin knot in S3 and s0 is the unique spinc structure on S3. Then the
minus version of the knot Floer chain complex CFK�.S3; K/D CFK�.S3; K; s0/
is determined by the Alexander polynomial �K.t/ and the signature �.K/ up to chain
homotopy; see Petkova [34]. For a compact 3–manifold M with torus boundary, there
exists a set of immersed curves bHF .M/ on @M � pt, called the curve invariant (see
Hanselman, Rasmussen and Watson [16; 17]) of M , which encodes the information of
Heegaard Floer theory in a diagrammatic way. Based on [17, Section 4; 34, Section 3],
it is easy to draw bHF .E.K// of the knot complement E.K/D S3 � intN.K/ for a
thin knot K � S3. Roughly speaking, it consists of figure-8 curves and a distinguished
curve.

For a .1; 1/ knot K � Y there is a combinatorial method to calculate the chain complex
CFK�.Y;K/; see Goda, Matsuda and Morifuji [14]. It applies well to 2–bridge knots
and also constrained knots. From the standard diagram of a constrained knot K � Y , if
we focus on intersection points corresponding to the same spinc structure s2 Spinc.Y /,
we can obtain an explicit relation between CFK�.Y;K; s/ and CFK�.S3; K 0; s0/,
where K 0 is some 2–bridge knot. In particular, for K D C.p; q; l; u; v/ � Y and
s 2 Spinc.Y /, the group 1HFK.Y;K; s/ is determined by Alexander polynomials of
2–bridge knots K1 D b.u; v/ and K2 D b.u� 2v; v/. Hence:

Algebraic & Geometric Topology, Volume 23 (2023)
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Proposition 1.4 Constrained knots are thin.

Results about thin complexes in [34, Section 3] apply directly to CFK�.Y;K; s/ for a
constrained knotK�Y . Then we can draw the part of the curve invariant corresponding
to each spinc structure following the approach in [17, Section 4]. Similar to the case of
a 2–bridge knot, the curve invariant part consists of figure-8 curves and a distinguished
curve; see Figure 7.

To connect the distinguished curves of different parts, we should study the following
grading, which relates elements in 1HFK.Y;K; s/ for different spinc structures. The
total homology 1HFK.Y;K/ inherits a relative H1.E.K/IZ/–grading (see Rasmussen
[38, Section 3.3]):

(2) 1HFK.Y;K/D
M

h2H1.E.K/IZ/

1HFK.Y;K; h/:

This grading generalizes the Alexander grading on 1HFK.S3; K; s0/ and corresponds
to spinc structures on E.K/ with some boundary conditions; see Juhász [20, Section 4].
Under the map H1.E.K/IZ/!H1.Y IZ/, this grading reduces to the grading in (1).

Similar to the Alexander grading on 1HFK.S3; K; s0/, summands of 1HFK.Y;K/ in
the opposite H1.E.K/IZ/–gradings are isomorphic (see Section 3 of Ozsváth and
Szabó [29]), up to a global grading shift in H1.E.K/IZ/. This symmetry is called the
global symmetry. If it is not mentioned, this H1.E.K/IZ/–grading is also called the
Alexander grading, and denoted by gr.x/ 2H1.E.K/IZ/ for a homogeneous element
x 2 1HFK.Y;K/. To fix the ambiguity of the global grading shift, a specific grading
shift will be used so that under the global symmetry, the absolute value of the Alexander
grading is left invariant. The Alexander grading in this specific grading shift is called
the absolute Alexander grading. To be clear, when considering the Alexander grading
on 1HFK.Y;K; s/ mentioned before, the spinc structure s will be specified.

Following [38, Section 3.3], for a constrained knot, the Alexander grading can be
calculated from the standard diagram. The Alexander grading on 1HFK.Y;K/ indicates
an explicit way to connect different parts of the curve invariant. Then it is not hard
to draw the whole curve invariant of a constrained knot. As an application, much
information about the Heegaard Floer theory of a constrained knot can be obtained
from the curve invariant of the knot complement.

For a constrained knot K � Y and the corresponding 2–bridge knots K1 and K2
mentioned before, the symmetry on 1HFK.S3; Ki ; s0/ for i D 1; 2 induces a symmetry

Algebraic & Geometric Topology, Volume 23 (2023)
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on 1HFK.Y;K; s/, which is called the local symmetry. For s 2 Spinc.Y /, the average
A.K; s/ of any two homogeneous elements x; y 2 1HFK.Y;K; s/ that are symmetric
under the local symmetry is called the middle grading of s:

A.K; s/D 1
2
.gr.x/C gr.y// 2H1.E.K/IZ/:

Theorem 1.5 For i D 1; 2 let Ki D C.pi ; qi ; li ; ui ; vi / be constrained knots in the
same lens space Y with ŒK1�D ŒK2� 2H1.Y IZ/. Consider the absolute Alexander
grading on 1HFK.Y;Ki /. Then there are isomorphisms

H1.E.K1/IZ/ŠH1.E.K2/IZ/ŠH1;

so that A.K1; s/D A.K2; s/ 2H1 for any s 2 Spinc.Y /.

Theorem 1.6 Suppose K is a knot in Y DL.p; q/. Let K 0 be a simple knot in the same
manifold Y with ŒK 0�D ŒK�2H1.Y IZ/. Consider the absolute Alexander gradings on
1HFK.Y;K/ and 1HFK.Y;K 0/. We know 1HFK.Y;K 0/ŠZp . If 1HFK.Y;K/ŠZp,
then there are isomorphisms H1.E.K/IZ/ŠH1.E.K 0/IZ/ŠH1, so that there is a
one-to-one correspondence between generators of 1HFK.Y;K/ and 1HFK.Y;K 0/ with
the same absolute Alexander grading in H1.

Theorem 1.6 provides a clue for the following conjecture, which is related to Berge’s
conjecture [2] claiming that any knot in S3 admitting lens space surgeries falls into
Berge’s list.

Conjecture 1.7 (Baker, Grigsby and Hedden [1] and Hedden [19]) Suppose K is a
knot in Y D L.p; q/. If 1HFK.Y;K/Š Zp, then K is a simple knot, ie a .1; 1/ knot
W.p0; q0; r 0; s0/ with q0 D 0.

Though constrained knots are defined by doubly pointed Heegaard diagrams, there are
many other ways to construct constrained knots, at least for some special families of
parameters. In the following, we introduce two approaches based on Dehn surgeries on
links in S3.

The first approach is inspired by the relation between knot Floer homologies of con-
strained knots and 2–bridge knots. A magic link is a 3–component link as shown in
Figure 2, left, whereK0 is a 2–bridge knot, andK1 andK2 are unknots. Dehn surgeries
on K1 and K2 induce a lens space, in which K0 becomes a knot K 00.

Algebraic & Geometric Topology, Volume 23 (2023)
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a1

a2

a3

K0

K1K2

:::
:::

:::

Figure 2: Left: magic link. Right: 1–bridge braid.

Theorem 1.8 Suppose that integers p and q satisfy p > q > 0 and gcd.p; q/ D 1.
Suppose integers n1, n2 and l satisfy

n1 2

�
0;
p

q

�
; n2 2

�
0;

p

p� q

�
;

l 2 fn1qC 1; p�n1qC 1; n2.p� q/C 1; p�n2.p� q/C 1g:

Let LDK0[K1[K2 be a magic link with K0Db.u; v/. Then the knot C.p; q; l; u; v/
is equivalent to the knot K 00 obtained by performing some Dehn surgeries on K1

and K2.

The second approach arises from 1–bridge braids. Suppose the solid torusH DS1�D2

is embedded in R3 � S3 in a standard way, and suppose K1 is the core of S3�H . Let
K0�H be a 1–bridge braid; see Gabai [12; 13]. Then LDK0[K1 is a 2–component
link in S3; an example is given in Figure 2, right. Dehn filling along a simple closed
curve on @H is equivalent to Dehn surgery on K1. The resulting manifold is a lens
space and K0 becomes a knot K 00 in the lens space. A knot K 00 constructed from this
approach is called a 1–bridge braid knot.

Theorem 1.9 The knots C.p; q; l; u;˙1/ are equivalent to 1–bridge braid knots ,
where C.p; q; l; u;�1/ means C.p; q; l; u; u� 1/.

Other than Dehn surgeries, constrained knots can also be constructed by Dehn filling
the boundary of (orientable hyperbolic) 1–cusped manifolds. Many 1–cusped manifolds
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are knot complements of constrained knots. SnapPy by Culler, Dunfield and Weeks [7]
provides a list of 59 068 1–cusped manifolds admitting ideal triangulations with at most
nine tetrahedra. Using the code in Ye [45], we show 21 922 of them are complements of
constrained knots. Table 1 shows examples of 1–cusped manifolds that are complements
of constrained knots. The names of manifolds in the table are from SnapPy. The slopes
in the table are considered in the basis from SnapPy and the integers indicate the
parametrization of the constrained knot that is equivalent to the core of the filling solid
torus. For example, Dehn filling along the curve of slope 1=0 on the boundary of m003
gives C.10; 3; 3; 1; 0/. If different parametrizations correspond to the same knot (see
Theorem 1.2), we only show one collection of parameters. The complete list can be
found in [45].

Proposition 1.10 Curve invariants bHF .M/ of knot complements M of all 1–cusped
manifolds that have ideal triangulations with at most 5 tetrahedra can be drawn explic-
itly, except the manifolds in Table 2.

Proof There are 286 orientable 1–cusped manifolds that have ideal triangulations with
at most five ideal tetrahedra. Of these, 232 manifolds are complements of constrained
knots, whose curve invariants can be calculated by the method in Section 4. Other
than examples from constrained knots, 37 manifolds are Floer simple (by the list in
Dunfield [10]), whose curve invariants can be calculated by the approach in Hanselman,
Rasmussen and Watson [17, Section 1]. Other manifolds are listed in Table 2 (.1; 1/
parameters are from Dunfield’s code [45]). The chain complex CFK�.Y;K/ of a
.1; 1/ knot can be calculated by the method in Goda, Matsuda and Morifuji [14]. Then
the curve invariant can be calculated by [17, Section 4]. Note that chain complexes of
820, 942 and 946 in the table were calculated in Ozsváth and Szabó [32].

It is known that a 2–bridge knot b.u; v/ is a torus knot if vD 1 or vD u�1. The latter
case is written as v D�1. If v ¤˙1, the 2–bridge knot b.u; v/ is hyperbolic, that is,
the interior of the knot complement admits a hyperbolic metric of finite volume. We
may generalize the results about 2–bridge knots to constrained knots. Note that the
knot complement of a torus knot is a Seifert fibered space.

Theorem 1.11 If C.p; q; l; u; v/ has Seifert fibered complement , then v D˙1.

Since C.p; q; 1; u; v/ is a connected sum of two knots, there is an essential torus in the
knot complement, and hence C.p; q; 1; u; v/ is not hyperbolic. Using the code in [45]
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name slopeC .p; q; l; u; v/

m003 .1; 0/C .10; 3; 3; 1; 0/; .�1; 1/C .5; 4; 5; 3; 1/; .0; 1/C .5; 4; 5; 3; 1/

m004 .1; 0/C .1; 0; 1; 5; 2/

m006 .0; 1/C .15; 4; 2; 1; 0/; .1; 0/C .5; 3; 4; 3; 1/

m007 .1; 0/C .3; 1; 2; 3; 1/

m009 .1; 0/C .2; 1; 2; 5; 2/

m010 .1; 0/C .6; 5; 6; 3; 1/

m011 .1; 0/C .13; 3; 3; 1; 0/; .0; 1/C .9; 4; 9; 3; 1/

m015 .1; 0/C .1; 0; 1; 7; 2/

m016 .0; 1/C .18; 5; 3; 1; 0/; .�1; 1/C .19; 7; 2; 1; 0/

m017 .0; 1/C .14; 3; 5; 1; 0/; .�1; 1/C .21; 8; 21; 1; 0/; .1; 0/C .7; 5; 6; 3; 1/

m019 .0; 1/C .17; 5; 4; 1; 0/; .1; 1/C .11; 7; 11; 3; 1/; .1; 0/C .6; 5; 5; 3; 1/

m022 .1; 0/C .7; 6; 7; 3; 1/

m023 .1; 0/C .3; 1; 3; 5; 2/

m026 .0; 1/C .19; 4; 2; 1; 0/; .1; 0/C .8; 3; 7; 3; 1/

m027 .1; 0/C .16; 3; 3; 1; 0/; .0; 1/C .13; 4; 13; 3; 1/

m029 .1; 0/C .5; 2; 3; 3; 1/

m030 .1; 0/C .7; 4; 5; 3; 1/

m032 .1; 0/C .1; 0; 1; 9; 2/

m033 .0; 1/C .18; 5; 5; 1; 0/; .1; 0/C .9; 7; 8; 3; 1/

m034 .1; 0/C .4; 1; 3; 3; 1/

m035 .1; 0/C .4; 1; 2; 3; 1/

m036 .�1; 1/C .21; 8; 2; 1; 0/; .1; 0/C .3; 2; 3; 5; 1/

m037 .1; 1/C .24; 7; 2; 1; 0/; .1; 0/C .8; 5; 6; 3; 1/

m038 .1; 0/C .3; 2; 3; 5; 2/

m039 .1; 0/C .4; 1; 4; 5; 2/

m040 .1; 0/C .8; 7; 8; 3; 1/

m043 .0; 1/C .25; 7; 24; 1; 0/; .�1; 1/C .25; 9; 2; 1; 0/

m044 .0; 1/C .24; 7; 23; 1; 0/; .�1; 1/C .17; 10; 17; 3; 1/; .1; 0/C .7; 6; 5; 3; 1/

m045 .1; 0/C .2; 1; 2; 7; 2/

m046 .�1; 1/C .30; 11; 30; 1; 0/; .1; 0/C .10; 7; 8; 3; 1/

m047 .0; 1/C .23; 4; 2; 1; 0/; .1; 0/C .11; 3; 10; 3; 1/

m049 .1; 0/C .19; 3; 3; 1; 0/; .0; 1/C .17; 13; 17; 3; 1/

m052 .0; 1/C .26; 7; 3; 1; 0/; .1; 0/C .7; 5; 4; 3; 1/

m053 .1; 0/C .1; 0; 1; 11; 2/

m054 .0; 1/C .22; 5; 7; 1; 0/; .1; 0/C .11; 8; 9; 3; 1/

m055 .1; 0/C .23; 7; 5; 1; 0/; .0; 1/C .14; 11; 13; 3; 1/

Table 1: 1–cusped manifolds and constrained knots.
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name comments name comments

m136 no lens space filling m305 no lens space filling
m137 W.8; 2; 3; 1/� S1 �S2 m306 no lens space filling
m199 942 DW.9; 2; 2; 3/� S

3 m345 W.10; 3; 1; 5/� L.2; 1/

m201 10132 DW.11; 2; 1; 3/� S
3 m370 .1; 0/ filling gives L.8; 3/

m206 .1; 0/ filling gives L.5; 2/ m372 946 DPretzel.�3; 3; 3/� S3

m222 820 DW.9; 3; 0; 2/� S
3 m389 10139 DW.11; 3; 1; 4/� S

3

m224 11190 DW.13; 2; 1; 8/� S
3 m390 .1; 0/ filling gives L.7; 2/

m235 no lens space filling m410 no lens space filling
m304 W.12; 3; 0; 5/� L.2; 1/

Table 2: Exceptions of 1–cusped manifolds.

and the verify_hyperbolicity() function in SnapPy, we verified that C.p; q; l; u; v/ is
hyperbolic for p � 10, l > 1, u < 20 and v ¤˙1.

Conjecture 1.12 C.p; q; l; u; v/ with l > 1 and v ¤˙1 is hyperbolic.

Organization The remainder of this paper is organized as follows. In Section 2,
we collect some conventions and definitions in 3–dimensional topology, and facts
about .1; 1/ knots, simple knots and 2–bridge knots. In Section 3, we describe the
parametrization of constrained knots and prove Proposition 1.1. Many propositions
about constrained knots are also given in Section 3. In Section 4, an algorithm for the
knot Floer homology of a constrained knot is obtained, which induces Proposition 1.4
and the necessary part of Theorem 1.2. In Section 5, we study knots in the same
homology class and prove Theorems 1.5 and 1.6 by Turaev torsions of 3–manifolds. In
Section 6, we finish the proof of Theorem 1.2 by constructing isomorphisms between
fundamental groups of knot complements and applying the fact that knots are determined
by their fundamental groups. The last three sections discuss magic links, 1–bridge
braid knots and SnapPy manifolds, respectively.
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2 Preliminaries

We begin with basic conventions. For r 2 R, let dre and brc denote the minimum
integer and the maximum integer satisfying dre � r and brc � r , respectively. For a
group H , let TorsH denote the set of torsion elements in H .

If it is not mentioned, all manifolds are smooth, connected and oriented, and orientations
of knots are omitted. The fundamental group of a manifold M is denoted by �1.M/,
where the basepoint is omitted. For a submanifold A in a manifold Y , let N.A/ denote
the regular neighborhood of A in Y and let intN.A/ denote its interior. Suppose Y is
a closed 3–manifold and K is a knot in Y . Let E.K/D Y � intN.K/ denote the knot
complement of K.

For a simple closed curve ˛ on a surface †, let Œ˛� denote its homology class in
H1.†IZ/. If it is clear, we do not distinguish ˛ and Œ˛�. The algebraic intersection
number of two curves ˛ and ˇ on a surface † is denoted by Œ˛� � Œˇ� or ˛ �ˇ, while the
number of intersection points of ˛ and ˇ is denoted by j˛\ˇj.

A basis .m; l/ ofH1.T 2IZ/ always satisfiesm�lD�1. SupposeK is a knot in a closed
3–manifold Y . A basis of @E.K/ means a basis of H1.@E.K/IZ/ŠH1.T 2IZ/. In
practice, there are two standard choices of the basis of @E.K/:

(i) Let m and l be simple closed curves on @E.K/ such that Dehn filling along m
gives Y , m � l D�1, and the orientation of m is determined from the orientation
of K by the “right-hand rule”. The curves m and l are called the meridian and
the longitude of the knot K, respectively. The basis .m; l/ is called the regular
basis of @E.K/.

(ii) Let m� and l� be simple closed curves on @E.K/ such that l� represents the
generator of Ker.H1.E.K/IQ/ ! H1.Y IQ// and m� � l� D �1. They are
called the homological meridian and the homological longitude of the knot K,
respectively. The basis .m�; l�/ is called the homological basis of @E.K/.

The choices of l andm� are not unique. The longitude l is isotopic toK, whilem� does
not have any geometric meaning. Sometimes (eg for knots in S3) these two choices of
the basis are equivalent. If it is not mentioned, we choose the regular basis .m; l/ as
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the basis of @E.K/. The slope p=q of a Dehn surgery indicates that the meridian of
the filling solid torus is glued to the curve corresponding to pmC ql .

Suppose M is an oriented manifold. Let �M denote the same manifold with the
reverse orientation, called the mirror manifold of M . Suppose K is an (oriented)
knot in a 3–manifold M . Then it is specified by the knot complement E.K/ and the
(oriented) meridian m of the knot. The mirror image of K is the knot in �M specified
by .�M;�m/.

When mentioning that Y D L.p; q/ is a lens space, we always suppose that p and q
are integers satisfying gcd.p; q/D 1 and .p; q/¤ .0; 1/. In particular, the manifold
S1 �S2 is not considered as a lens space. The lens space is oriented as follows. Let
.T 2; ˛0; ˇ0/ be the standard diagram of a lens space. Then the orientation on the
˛0–handlebody is induced from the standard embedding of a solid torus in R3. With
this convention, the lens space L.p; q/ is obtained from the p=q Dehn surgery on the
unknot in S3.

We recall some definitions about knots in closed 3–manifolds. Suppose K is a knot in
a lens space Y .

The knot K is called a trivial knot or an unknot if it bounds a disk embedded in Y .
It is called a core knot if E.K/ is homeomorphic to a solid torus. It is called a split
knot if Y contains a sphere which decomposes Y into a punctured lens space and a
ball containing K in its interior. It is called a composite knot if Y contains a 2–sphere
S which intersects K transversely in two points and S \E.K/ is @–incompressible in
E.K/. It is called a prime knot if it is not a composite knot.

The torus T 2 � Y in the standard diagram .T 2; ˛0; ˇ0/ is called the Heegaard torus
of Y . The knot K is called a .p; q/ torus knot in Y if K can be isotoped to lie on the
Heegaard torus as an essential curve with slope p=q in the standard diagram of Y . The
unknot is considered as a torus knot. Complements of torus knots in lens spaces are
Seifert fibered spaces.

The knot K is called a satellite knot if E.K/ has an essential torus. For q > 1, the
space Cp;q is obtained by removing a regular fiber from a solid torus with a .p; q/
fibering, which is called a cable space of type .p; q/. The knot K is called a .p; q/
cable knot on K0 if K0 is knot in Y such that E.K/ D E.K0/[Cp;q . In this case,
the knot K lies as an essential curve on @N.K0/, and K is neither a longitude nor a
meridian of K0. It is well-known that composite knots are satellite knots. A cable knot
on K0 with E.K0/ having an incompressible boundary is also a satellite knot.
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2.1 .1; 1/ knots

In this subsection, we review some facts about .1; 1/ knots. Proofs are omitted.

A knot K in a closed 3–manifold Y has tunnel number one if there is a properly embed-
ded arc 
 in E.K/ such that E.K/�N.
/ is a genus two handlebody. Equivalently,
the knot complement E.K/ admits a genus two Heegaard splitting. The arc 
 is called
an unknotting tunnel for K. A properly embedded arc 
 in a handlebody H is called a
trivial arc if there is an embedded disk D �H such that @D D 
 [ .D \ @H/. The
disk D is called the canceling disk of 
 . A knot K in a 3–manifold Y admits a .1; 1/
decomposition if there is a genus one Heegaard splitting Y DH1 [T 2 H2 such that
K\Hi is a properly embedded trivial arc ki in Hi for i D 1; 2. In this case, Y is either
a lens space (including S3), or S1 �S2. A knot K that admits a .1; 1/ decomposition
is called a .1; 1/ knot. We do not consider .1; 1/ knots in S1�S2. Note that any .1; 1/
knot has tunnel number one.

Proposition 2.1 [44, Proposition 3.2] If a nontrivial knot in a lens space has tunnel
number one , then the complement is irreducible. Consequently , the complement is a
Haken manifold.

Doubly pointed Heegaard diagrams parametrize their corresponding .1; 1/ knots. The
orientation of the knot is unimportant in this paper so we may swap the two basepoints.

Proposition 2.2 [14; 37] For p; q; r; s 2N satisfying 2qCr � p and s < p, a .1; 1/
decomposition of a knot determines and is determined by a doubly pointed Heegaard
diagram. After isotopy , such a diagram looks like .T 2; ˛; ˇ; z; w/ in Figure 1, right ,
where p is the total number of intersection points , q is the number of strands around
each basepoint , r is the number of strands in the middle band , and the i th point on the
right-hand side is identified with the .iCs/th point on the left-hand side.

LetW.p; q; r; s/DW.p; q; r; s/C denote the .1; 1/ knot defined by Figure 1, right, and
let W.p; q; r; s/� denote the knot defined by the diagram that is vertically symmetric
to Figure 1, right. These doubly pointed Heegaard diagrams are called .1; 1/ diagrams.
In the diagrams, strands around basepoints are called rainbows and strands in the bands
are called stripes. The roles of the curves ˛ and ˇ here are different from in [37]. For
the same parameters, the knot W.p; q; r; s/ is the mirror image of K.p; q; r; s/ in [37].

Proposition 2.3 There are relations among .1; 1/ knots:

(i) W.p; q; r; s/C is the mirror image of W.p; q; r; p� s/�.
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(ii) W.p; q; r; s/C is equivalent to W.p; q; p� 2q� r; s� 2q/�.

Thus , we know thatW.p; q; r; s/C is the mirror image ofW.p;q;p�2q�r;p�sC2q/C.

Proof The first relation is from the vertical symmetry. The second relation is from
redrawing the diagram so that the lower band becomes the middle band and the middle
band becomes the lower band.

Definition 2.4 For a closed 3–manifold Y , consider the hat version of Heegaard Floer
homology bHF .Y / defined in [31]. A closed 3–manifold Y is called an L-space if
bHF .Y; s/Š Z for any s 2 Spinc.Y /. A knot K in an L-space Y is called an L-space
knot if a nontrivial Dehn surgery on K gives an L-space.

Theorem 2.5 [15, Theorem 1.2] A .1; 1/ knot is an L-space knot if and only if , in
the corresponding .1; 1/ diagram with any orientation of ˇ, all of rainbows around a
fixed basepoint are oriented in the same way.

Definition 2.6 [38, Section 2.1] Let .T 2; ˛0; ˇ0/ be the standard Heegaard diagram
of L.p; q/ and let Pi for i 2Z=pZ be components of T 2�˛0[ˇ0, ordered from left to
right. Let z 2 P1 and w 2 PkC1 be two points. The knot defined by .T 2; ˛0; ˇ0; z; w/
is called a simple knot, and is denoted by S.p; q; k/ (or by K.p; q; k/ in [38]). The
orientation of the knot is induced by the orientation of the arc connecting z to w.

Proposition 2.7 [38, Lemma 2.5] There are relations among simple knots S.p; q; k/:

(i) S.p; q;�k/ is the orientation-reverse of S.p; q; k/.

(ii) S.p;�q;�k/ is the mirror image of S.p; q; k/.

(iii) S.p; q; k/Š S.p; q0; kq0/, where qq0 � 1 .mod p/.

Note that a simple knot is homotopic to an immersed curve on T 2. The homology class
ŒS.p; q; k/� in H1.L.p; q/IZ/ is kŒb�, where b is the core curve of the ˇ0–handlebody.
The simple knots S.p; q; k1/ and S.p; q; k2/ represent the same homology class if and
only if k1 � k2 .mod p/. Thus, there is no relation other than those in Proposition 2.7.

2.2 2–Bridge knots

In this subsection, we review some facts about 2–bridge links from [6; 25; 35].
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a1

a2

a3

:::
:::

:::

w x yz
˛1˛2

ˇ1

Figure 3: Left: 2–bridge. Center: b.3; 1/. Right: diagram of E.b.3; 1//.

Definition 2.8 Suppose h is the height function given by the z–coordinate in R3� S3.
A knot or a link in S3 is called a 2–bridge knot or a 2–bridge link if it can be isotoped
in a presentation so that h has two maxima and two minima on it. Such a presentation
is called the standard presentation of the knot.

A 2–bridge link has two components. Each component is equivalent to the unknot.
Suppose integers a and b satisfy gcd.a; b/D 1 and a > 1. For every oriented lens space
L.a; b/, there is a unique 2–bridge knot or link whose branched double cover space is
diffeomorphic to L.a; b/. Let b.a; b/ denote the knot or link related to L.a; b/. It is a
knot if a is odd, and a link if a is even. Thus, the classification of 2–bridge knots or
links depends on the classification of lens spaces [5]. For i D 1; 2, two 2–bridge knots
or links b.ai ; bi / are equivalent if and only if a1 D a2 D a and b1 � b˙12 .mod a/.

Suppose a=b is represented as the continued fraction

Œ0I a1;�a2; : : : ; .�1/
mC1am�D 0C

1

a1�
1

a2�
1

a3����

:

Moreover, suppose m is odd. The standard presentation of a 2–bridge knot or link
b.a; b/ looks like Figure 3, left, where the jai j for i 2 Œ1;m� represent numbers of
half-twists in the boxes, and signs of the ai represent signs of half-twists. Different
choices of continued fractions give the same knot or link. For any 2–bridge knot or
link, the numbers .�1/iC1ai can be all positive, which implies any 2–bridge knot or
link is alternating.

The knot or link b.a; b/ admits another canonical presentation known as the Schubert
normal form. It induces a Heegaard diagram of E.b.a; b// and a doubly pointed
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Heegaard diagram of b.a; b/. Figure 3, center, gives an example of the Schubert
normal form of b.3; 1/ and Figure 3, right, is the corresponding Heegaard diagram
of the knot complement. The corresponding doubly pointed Heegaard diagram is
obtained by replacing ˛2 by two basepoints, z and w. Two horizontal strands in the
Schubert normal form are arcs near two maxima in the standard presentation. Thus, two
1–handles attached to points w and z, and x and y in Figure 3, right, are neighborhoods
of these arcs.

Proposition 2.9 [35] Suppose KDb.a; b/with b odd and jbj<a. The symmetrized
Alexander polynomial �K.t/ and the signature �.K/ satisfy

�K.t/D t
� 1

2
�.K/

a�1X
iD0

.�1/i t
Pi

jD0.�1/
bib=ac

and �.K/D

a�1X
iD1

.�1/bib=ac:

Proposition 2.10 [8; 18] Let K be a .1; 1/ knot in a lens space. Then K is a split
knot if and only if K is the unknot. The knot K is a composite knot if and only if it is
a connected sum of a 2–bridge knot and a core knot of a lens space.

3 Parametrization and characterization

For a constrained knot K, there is a standard diagram .T 2; ˛1; ˇ1; z; w/ of K, defined
in the introduction. Based on standard diagrams, we describe the parametrization of
constrained knots. For integers p, q and q0 satisfying

gcd.p; q/D gcd.p; q0/D 1 and qq0 � 1 .mod p/

we know that L.p; q/ is diffeomorphic to L.p; q0/ [5]. Suppose .T 2; ˛0; ˇ0/ is the
standard diagram of L.p; q0/, ie the curve ˇ0 is obtained from a straight line of slope
p=q0 in R2, and suppose that the diagram .T 2; ˛1; ˇ1; z; w/ is induced by .T 2; ˛0; ˇ0/
as in the introduction. The curves ˛0 and ˇ0 divide T 2 into p regions, which are
parallelograms in Figure 1, left; see also Figure 4, left. A new diagram C is obtained
by gluing top edges and bottom edges of parallelograms. We can shape C into a square.
An example is shown in Figure 4, where p D 5, q D 3 and q0 D 2.

For i 2 Z=pZ, let Di denote rectangles in C , ordered from the bottom edge to the top
edge. Since qq0 � 1 .mod 1/ and we start with the standard diagram of L.p; q0/, we
know that the right edge of Dj is glued to the left edge of DjCq . The bottom edge eb
of D1 is glued to the top edge et of Dp . By definition of a constrained knot, the curve
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D1 D2D3 D4 D5

w

z

ˇ0

ˇ1

D1

D2

D3

D4

D5

et

eb

w

xt1 xt2 xt3

xb1 xb2 xb3
z

˛0 D ˛1

ˇ1
ˇ0

stripe rainbow

˛0 D ˛1

Figure 4: Heegaard diagrams of C.5; 3; 2; 3; 1/.

˛1 is the same as ˛0 and the curve ˇ1 is disjoint from ˇ0. Thus, in this new diagram C ,
the curve ˛1 is the union of p horizontal lines and ˇ1 is the union of strands which are
disjoint from vertical edges of Di for i 2 Z=pZ.

Similar to the definitions for .1; 1/ knots, strands in the standard diagram of a constrained
knot are called rainbows and stripes. Boundary points of a rainbow and a stripe are
called rainbow points and stripe points, respectively. A rainbow must bound a basepoint,
otherwise it can be removed by isotopy. Numbers of rainbows on eb and et are the
same since the numbers of rainbow points are the same. Without loss of generality,
suppose z is in all rainbows on eb and w is in all rainbows on et . Let xbi and xti for
i 2 Œ1; u� be boundary points on the bottom edge and the top edge, respectively, ordered
from left to right in Figure 4, right.

Lemma 3.1 The number u of boundary points on eb or et is odd. When uD 1, there
is no rainbow and only one stripe. When u> 1, there exists an integer v 2

�
0; 1
2
u
�

such
that one of the following cases happens:

(i) The set fxbi j i � 2vg[ fx
t
i j i > u� 2vg contains all rainbow points.

(ii) The set fxti j i � 2vg[ fx
b
i j i > u� 2vg contains all rainbow points.

Proof The algebraic intersection number of ˇ1 and eb is odd. Hence u is also odd. If
uD 1, then the argument is clear.

Suppose u > 1; we show the last argument in three steps. Firstly, if both xbi and xbj
are boundary points of the same rainbow R, then xb

k
for i < k < j are all rainbow
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points, otherwise the stripe corresponding to the stripe point xb
k

would intersect R.
Thus, rainbow points on eb are consecutive. The same assertion holds for xti .

Secondly, one of xb1 and xt1 must be a rainbow point. Indeed, if this were not true
then both xb1 and xt1 would be stripe points. They cannot be boundary points of the
same stripe, otherwise ˇ1 would not be connected. They cannot be boundary points of
different stripes, otherwise two corresponding stripes would intersect each other. Thus,
the assumption is false. Similarly, one of xbu and xtu must be a rainbow point.

Finally, if xb1 is a rainbow point then xbu cannot be a rainbow point, otherwise all points
would be rainbow points. As discussed above, the point xtu is a rainbow point. Since
the number of rainbow points on et is even, there exists an integer v satisfying case (i).
If xt1 is a rainbow point, similar argument implies there exists v satisfying case (ii).

When uD 1, after isotoping ˇ1, suppose the unique stripe is a vertical line in C�fz; wg.
By moving z through the left edge or the right edge if necessary, suppose basepoints z
and w are in different sides of the stripe. If z is on the left of the stripe, set v D 0. If z
is on the right of the stripe, set v D 1.

Then suppose u > 1. When in case (i) of Lemma 3.1, rainbows on eb connect xbi to
xb2vC1�i for i 2 Œ1; v�, rainbows on et connect xtuC1�i to xtu�2vCi for i 2 Œ1; v�, and
stripes connect xbj to xtuC1�j for j 2 Œ2vC 1; u�. When in case (ii) of Lemma 3.1,
the setting is obtained by replacing i and j by uC 1� i and uC 1� j , respectively.
Without loss of generality, suppose z is inD1, andw is inDl . Note that now basepoints
cannot be moved through vertical edges of C . Otherwise the rainbows would intersect
the vertical edges, which contradicts the definition of the constrained knot. Then
we parametrize constrained knots in L.p; q0/ by the tuple .l; u; v/ for case (i) and
.l; u; u� v/ for case (ii). Since ˇ1 is connected, we have gcd.u; v/D 1. In summary,
the following theorem holds:

Theorem 3.2 Constrained knots are parametrized by five integers .p; q; l; u; v/, where
p > 0, q 2 Œ1; p� 1�, l 2 Œ1; p�, u > 0, v 2 Œ0; u� 1�, gcd.p; q/D gcd.u; v/D 1 and
u is odd. Moreover , v 2 Œ1; u� 1� when u > 1 and v 2 f0; 1g when uD 1.

Note that the parameter v in Theorem 3.2 is different from the integer v in case (ii)
of Lemma 3.1. Intuitively, for v 2 Œ1; u� 1� in the parametrization .p; q; l; u; v/ with
u > 1, the number minfv; u� vg is the number of rainbows around a basepoint.

For parameters .p; q; l; u; v/, let C.p; q; l; u; v/ denote the corresponding constrained
knot. When considering the orientation, let C.p; q; l; u; v/C denote the knot induced by
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.T; ˛1; ˇ1; z; w/ and let C.p; q; l; u; v/� denote the knot induced by .T; ˛1; ˇ1; w; z/.
For q … Œ1; p� 1� and l … Œ1; p�, consider the integers q and l modulo p. If u > 1 and
v … Œ1; u� 1�, consider the integer v modulo u. For p < 0, let C.p; q; l; u; v/ denote
C.�p;�q; l; u; v/.

Remark 3.3 The knot C.p; q; l; u; v/ is in L.p; q0/, where qq0 � 1 .mod p/. Even
though L.p; q/ is diffeomorphic to L.p; q0/, constrained knots C.p; q; l; u; v/ and
C.p; q0; l; u; v/ are not necessarily equivalent. For example, Theorem 1.2 implies that
constrained knots C.5; 2; 3; 3; 1/ and C.5; 3; 3; 3; 1/ are not equivalent.

We now provide some basic propositions of constrained knots. Also, we indicate the
relationship of constrained knots with other families of knots mentioned in Section 2.

Proposition 3.4 C.p;�q; l; u;�v/ is the mirror image of C.p; q; l; u; v/ for u > 1.
C.p;�q; l; 1; 1/ is the mirror image of C.p; q; l; 1; 0/.

Proof This follows from the vertical reflection of the standard diagram.

Hence we only consider C.p; q; l; u; v/ with 0� 2v < u in the rest of the paper.

Proposition 3.5 C.1; 0; 1; u; v/Š b.u; v/:

Proof By cutting along ˛1 and a small circle around x in Figure 3, right, the doubly
pointed diagram of a 2–bridge knot can be shaped into a square. This proposition is
clear by comparing this diagram with the new diagram C related to C.1; 0; 1; u; v/.

Proposition 3.6 For any fixed orientations of ˛1 and ˇ1 in the standard diagram of
a constrained knot , intersection points xbi have alternating signs and adjacent strands
of ˇ1 in the new diagram C have opposite orientations.

Proof From a similar observation in the proof of Proposition 3.5, for C.p; q; l; u; v/,
the curve ˇ1 in the new diagram C is same as the curve ˇ in the doubly pointed
Heegaard diagram of b.u; v/. Thus, it suffices to consider the 2–bridge knot b.u; v/.
The Schubert normal form of b.u; v/ is the union of two dotted horizontal arcs behind
the plane and two winding arcs on the plane. Suppose 
 is one of the winding arcs.
Then ˇ1 D @N.
/ cuts the plane into two regions, the inside region intN.
/ and the
outside region R2�N.
/. Points x and y in Figure 3, right, are in different regions

Algebraic & Geometric Topology, Volume 23 (2023)



1116 Fan Ye

c1 c3

P1 P 01 P4

w

y1

y3

y3

y5

z

˛0 D ˛1

ˇ0

ˇ1

a
m

m

w

z

˛0 D ˛1

ˇ0ˇ1

Figure 5: S.5; 2; 3/ Š C.5; 3; 2; 1; 0/C, where regions P1; P4 and P 01 are
indicated by shadow.

and points xbi are on the arc connecting x to y. Since regions on different sides of
ˇ1 must be different, the arc connecting x to y is cut by xbi into pieces that lie in the
inside region and the outside region alternately. For each piece of the arc, the endpoints
are boundary points of a connected arc in ˇ1. Thus, signs of xbi are alternating. The
orientations on strands of ˇ1 are induced by signs of xbi . Hence adjacent strands of ˇ1
have opposite orientations.

Proposition 3.7 For p; q; q0 2 Z satisfying qq0 � 1 .mod p/, there are relations

(i) S.p; q0; k/Š C.p; q; l; 1; 0/C, where k� 1� .l � 1/q0 .mod p/,

(ii) S.p; q0; k/Š C.p; q; l; 1; 1/C, where kC 1� .l � 1/q0 .mod p/.

Proof Consider curves ˛ D ˛0 D ˛1, ˇ0 and ˇ1 in the definition of a constrained
knot. When uD 1, the curve ˇ1 is parallel to ˇ0. Consider the new diagram C and
regions Di for i 2 Z=pZ as in Figure 4, right. Suppose components of T 2�˛[ˇ1
are Pi and components of T 2�˛[ˇ0 are P 0i , ordered from left to right as in Figure 5
so that z 2 P1 \P 01. Suppose yi are intersection points of ˛ and ˇ1 on the bottom
edge of P 0i . The strand ci D ˇ1 \P 0i connects yi to yiCq0 , so the strand ˇ1 \Dl in
the new diagram C is c1C.l�1/q0 . When vD 0, the other basepoint w is in P.l�1/q0C2,
so k � .l � 1/q0C 1 .mod p/. When v D 1, the other basepoint w is in P.l�1/q0 , so
k � .l � 1/q0� 1 .mod p/.
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Corollary 3.8 For p; q; q0 2 Z satisfying qq0 � 1 .mod p/, there are relations

(i) C.p; q; l; 1; 0/Š C.p; q; l C 2q; 1; 1/,

(ii) C.p; q; l; 1; 0/C Š C.p; q;�2qC 2� l; 1; 0/�,

(iii) C.p; q; l; 1; 0/ is the mirror image of C.p;�q; lC2q; 1; 0/Š C.p;�q; l; 1; 1/,

(iv) C.p; q; l; 1; 0/Š C.p; q0; q0l � 2q0C 2; 1; 0/,

(v) S.p; q; k/Š S.p; q0; kq0/Š C.p; q; k� qC 1; 1; 0/C.

Proof These relations follow from Propositions 2.7 and 3.7.

Corollary 3.9 The knot C.p; q;�qC 1; 1; 0/ is an unknot in a lens space. The knot
C.p; q; l; 1; 0/ for l D 1, �2qC 1, �qC 2 or �q is a core knot of a lens space.

Proof The unknot case is obtained by substituting k D 0 in case (v) of Corollary 3.8.
Note that S.p; q; 0/ is the unknot: the knot is isotopic to a circle bounding a disk
on T 2. The core knot cases are obtained by substituting k D ˙1;˙q in case (v) of
Corollary 3.8. Note that S.p; q; q/ is isotopic to a simple closed curve on T 2 that
intersects ˛ once, which also is isotopic to the core curve of the ˛–handlebody. By
Proposition 3.7, simple knots S.p; q;˙q/ and S.p; q;˙1/ are also core knots.

Proposition 3.10 For K D C.p; q; l; 1; 0/, we have a presentation of the homology

H1.E.K/IZ/Š hŒa�; Œm�i=.pŒa�C kŒm�/Š Z˚Z=gcd.p; k/Z;

where m is the circle in Figure 5, a is the core curve of ˛0–handle and k 2 .0; p�

satisfies k� 1� .l � 1/q�1 .mod p/.

Proof This follows from Proposition 3.7 and results in [38, Section 3.3].

Proposition 3.11 Suppose C.p; q; l; u; v/ is a constrained knot in L.p; q0/ with
0� 2v < u. Let qi 2 Œ0; p/ be integers satisfying qi � iq0 .mod p/ and let k 2 Œ1; p�
be the integer satisfying k� 1� .l � 1/q0 .mod p/. Moreover , let

n1 D #fi 2 Œ0; l � 1� j qi 2 Œ0; k� 1�g and n2 D #fi 2 Œ0; l � 1� j qi 2 Œ1; q0� 1�g:

Then C.p; q; l; u; v/ŠW.pu� 2v.l � 1/; v; uk� 2vn1; uq0� 2vn2/.

Proof The parameters .p � l C 1/u C .l � 1/.u � 2v/ D pu � 2v.l � 1/ and v
are from counting the numbers of intersection points and rainbows in the standard
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diagram of a constrained knot, respectively. Suppose that P 0i are components of
T 2 � ˛0 [ ˇ0 in the standard diagram of L.p; q0/, ordered from left to right so that
z 2 P 01. Similar to the proof of Proposition 3.7, we know w 2 P 0

k
. Then the parameter

.k�n1/uCn1.u� 2v/D uk� 2vn1 counts the number of stripes between rainbows
and the parameter .q0�n2/uCn2.u�2v/Duq0�2vn2 counts the twisting number.

Proof of Theorem 1.11 For a knot K in a lens space with Seifert fibered complement,
any Dehn surgery other than the one along homological longitude gives a Seifert fibered
space. By discussion in [39, Section 5], all oriented Seifert fibered spaces over RP2

are L-spaces and the classification of L-spaces over S2 is given by [39, Theorem 5.1].
Moreover, no higher genus Seifert fibered spaces are L-spaces. The classification in
[39, Theorem 5.1] indicates there are at least two Dehn fillings on the knot complement
that are L-spaces, ieK is always an L-space knot. By Proposition 3.11, we can transform
standard diagrams of constrained knots into .1; 1/ diagrams. By Proposition 3.6 and
Theorem 2.5, a constrained knot is an L-space knot if and only if .u; v/ D .1; 0/ or
.1; 1/, or u > 1 and v D˙1.

Proof of Proposition 1.1 The necessary part of the proposition follows directly from
the definition of constrained knots: the intersection points of ˛1 and ˇ1 between two
consecutive intersection points of ˛0 and ˇ0 correspond the same spinc structure on
the lens space, where ˛1, ˇ1, ˛0 and ˇ0 are curves in the standard diagrams of the
constrained knot and the lens space.

We prove the sufficient part of this proposition. For simplicity, intervals are considered
in Z=pZ. In particular, let .pk; p1� denote .0; p1�[ .pk; p�. Consider intersection
points xi for i 2 Œ1; p� as shown in Figure 1, right.

Firstly, spinc structures si are equal for all i 2 Œr C 1; r C 2q�. Indeed, for i 2 Œ1; q�,
the points xrCi and xrC2qC1�i are boundary points of a rainbow, that is there is
a holomorphic disk connecting xrCi to xrC2qC1�i . Thus srCi D srC2qC1�i . If
q D 1, this assertion is trivial. If q > 1 and the assertion did not hold, then there
must be an integer q0 and two spinc structures sA and sB such that si D sA for all
i 2 ŒrC q0; rC 2qC 1� q0� and sj D sB for all j … ŒrC q0; rC 2qC 1� q0�, which
implies aD 2. Since spinc structures of two boundary points of a stripe are different,
for all i 2 Œ2qC 1� s; p� s�, spinc structures si are different from sB . Thus si D sA
for all i 2 Œ2qC 1� s; p� s�. For i 2 Œ1; q�, points xi�s and x2qC1�i�s are boundary
points of a rainbow, so si�s D s2qC1�i�s . Since there are 2q0 points corresponding
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to sA, integers q0 should satisfy the inequality 2q0 >p�2q. For i 2
�
qCq0�

1
2
p; q

�
,

points xi�s and x2qC1�i�s correspond to sB . In particular, points xrC1 and xrC2q
are identified with x2qC1�i0�s and xi0�s for i0 D qC q0� 1

2
p, respectively. Let R1

be the rainbow with boundary points xrC1 and xrC2q , and let R2 be the rainbow with
boundary points x2qC1�i0�s and xi0�s . The union ofR1 andR2 becomes a component
of ˇ, which contradicts the assumption that ˇ only has one component.

We can similarly show that the spinc structures si are equal for all i 2 Œ1� s; 2q� s�.
From this discussion, for any i 2 Œ1; k�, we have

pi ¤ r C 1; r C 2; : : : ; r C 2q� 1; 1� s; 2� s; : : : ; 2q� 1� s:

Suppose yi for i 2 Œ1; k� are points on ˛ between xpi
and xpiC1. If pi ¤ r , r C 2q

or p, then pi and pi C 1 must be boundary points of two successive stripes. Suppose
xj and xjC1 are the other boundary points of these stripes, respectively. There must
be a point yj between xj and xjC1 because sj � sjC1 D spi

� spiC1 ¤ 0. Let bi be a
strand connecting yi to yj which is disjoint from ˇ.

Suppose pi D p. If r ¤ 0 and p� 2q� r ¤ 0 there are stripes connecting sp to sp�s
and connecting s1 to s2qC1�s , respectively. Thus sp�s�s2qC1�sD sp�s1¤ 0. There
is a point yj either between xp�s and x1�s or between x2q�s and x2qC1�s for some j .
Only one case will happen because the number of intersection points corresponding
to any fixed spinc structure is odd. Let bi be a strand connecting yi to yj which is
disjoint from ˇ. If either r D 0 or p � 2q � r D 0, by choosing different stripes,
sp�s � s2qC1�s ¤ 0 still holds. The point yj and the strand bi can also be found. By
a similar argument, this is also true for pi D r and r C 2q.

Let ˇ0 be the union of bi . Without considering basepoints, ˇ0 is isotopic to ˇ. Thus, it
has only one component. Finally, the curves ˇ0, ˛ and ˇ can be identified with ˇ0, ˛1
and ˇ1 in the definition of a constrained knot. Thus, we conclude that the (1,1) knot is
a constrained knot.

4 Knot Floer homology

Heegaard Floer homology is an invariant for closed 3–manifolds discovered by Ozsváth
and Szabó [30; 31]. It has been generalized to knot Flor homology [29; 36], sutured
Floer homology [20], bordered Floer homology [22] and immersed curves for manifolds
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with torus boundary [16; 17]. See [38, Section 3] for a brief review of knot Floer
homology for rationally null-homologous knots. See also [33].

In this section supposeKDC.p; q; l; u; v/ is a constrained knot in Y DL.p; q0/, where
qq0 � 1 .mod p/. Write H1 DH1.E.K/IZ/ and 1HFK.K/D 1HFK.Y;K/ for short.
For any homogeneous element x 21HFK.K/, let gr.x/2H1 be the Alexander grading
of x mentioned in the introduction. Note that the Alexander grading is well-defined up
to a global grading shift [11], ie up to multiplication by an element inH1. However, the
difference gr.x/�gr.y/ for two homogeneous elements x and y is always well-defined.
This difference can be calculated explicitly by the doubly pointed Heegaard diagram of
the knot by the approach in [38, Section 3.3].

Consider the group ring ZŒH1�. Two elements f1 and f2 in ZŒH1� are equivalent,
denoted by f1 � f2, if there exists an element g 2 ˙H1 such that f1 D gf2. For any
element h2H1, there is a grading summand 1HFK.K; h/ of 1HFK.K/ as in (2). There
is also a relative Z=2 grading on 1HFK.K/ induced by signs of the intersection numbers
in the Heegaard diagram (see [11, Section 2.4]) and related to the modulo 2 Maslov
grading on 1HFK.K; s/. This grading respects the Alexander grading and induces a Z=2

grading on 1HFK.K; h/. Then the Euler characteristic �.1HFK.K; h// is well-defined
up to sign. We can consider the (graded) Euler characteristic of 1HFK.K/:

�.1HFK.K//D
X
h2H1

�.1HFK.K; h// � h

D

X
h2H1

.rk 1HFKeven.K; h/� rk 1HFKodd.K; h// � h:

From the above discussion, we know �.1HFK.K// is an element in ZŒH1� up to
equivalence. For s 2 Spinc.Y /, we consider 1HFK.K; s/ as a subgroup of 1HFK.K/
so that it also has an H1–grading and �.1HFK.K; s// is also an element in ZŒH1� up
to equivalence.

For a constrained knot K, we will show 1HFK.K/ totally depends on �.1HFK.K//.
Explicitly this means that, for any h 2H1, the dimension of 1HFK.K; h/ is the same
as the absolute value j�.1HFK.K; h/j.
As shown in Figures 4 and 6, suppose ej is the top edge ofDj and xji is the intersection
point of ej and ˇ1 for j 2Z=pZ and i 2 Œ1; u.j /�. Let xjmiddleDx

j

.u.j /C1/=2
be middle

points. It is clear that sz.x
j1

i1
/Dsz.x

j2

i2
/ if and only if j1Dj2. For any integer j 2 Œ1; p�,

define sj D sz.x
j
middle/ 2 Spinc.Y /.
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ae1

e2

e3

e4

e5

m

m

x11

x2middle

x51 x52 x53

w

˛0 D ˛1

˛2 ˇ0

ˇ1

z

Figure 6: Heegaard diagram of E.C.5; 3; 2; 3; 1//.

Lemma 4.1 For K D C.p; q; l; u; v/ with u > 2v > 0, suppose k 2 .0; p� is the
integer satisfying k� 1� .l � 1/q�1 .mod p/. Define

k0 D

�
k� 2 if v is odd;
k if v is even:

Suppose d D gcd.p; k0/. Then there is a presentation of the homology H1:

H1 DH1.E.K/IZ/Š hŒa�; Œm�i=.pŒa�C k
0Œm�/Š Z˚Z=dZ;

where m is the circle in Figure 6 and a is the core curve of ˛0–handle.

Proof Suppose ˇ1 is oriented so that the orientation of the middle stripe is from
bottom to top. Let Œˇ1.p; q; l; u; v/� denote the homology class of ˇ1 corresponding
to C.p; q; l; u; v/. By Proposition 3.6, orientations of rainbows around a basepoint are
alternating. Note that moving all rainbows of ˇ1 across basepoints gives the diagram
of the simple knot C.p; q; l; 1; 0/. Then

Œˇ1.p; q; l; u; v/�C 2Œm�D Œˇ1.p; q; l; 1; 0/� if v is odd,

Œˇ1.p; q; l; u; v/�D Œˇ1.p; q; l; 1; 0/� if v is even.

Then this proposition follows from Proposition 3.10. Note that Œa� and Œm� correspond
to core curves of ˛1 and ˛2, and the relation in the presentation of H1 corresponds to
algebraic intersection numbers ˛1 �ˇ and ˛2 �ˇ; see Section 6 for the approach to obtain
a presentation of �1.E.K// and note that H1 is the abelianization of �1.E.K//.
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Lemma 4.2 (Proposition 1.4) For K D C.p; q; l; u; v/ with u > 2v � 0, suppose
H1 is presented as in Lemma 4.1. For any integer j 2 Œ1; p�, let sj D sz.x

j
middle/

for intersection points xjmiddle in Figure 6. Then for any j , the group 1HFK.K; sj / is
determined by its Euler characteristic.

Moreover , suppose integers u0 and v0 satisfy u0 D u� 2v and v0 � v .mod u0/. Let
�1.t/ and �2.t/ be Alexander polynomials of b.u; v/ and b.u0; v0/, respectively. Then

�.1HFK.K; sj //�
�
�1.Œm�/ if j 2 Œl; p�;
�2.Œm�/ if j 2 Œ1; l � 1�:

Proof For j 2 Œ1; p�, consider the edge ej and the intersection numbers xji of ej

and ˇ1 in the diagram C . Suppose .ej /0 is the curve obtained by identifying two
endpoints of ej . For j 2 Œl; p�, the diagram .T 2; .ej /0; ˇ1; z; w/ is the same as the
diagram of K1 D b.u; v/. For j 2 Œ1; l � 1�, by case (iii) of Lemma 7.8, the diagram
.T 2; .ej /0; ˇ1; z; w/ is isotopic to the diagram of K2 D b.u0; v0/. For the readers’
convenience, we sketch the proof.

The fact that u0 D u � 2v follows directly from the number of intersection points
of .ej /0 and ˇ1, which is the same as the number of stripes. Then we consider v0.
Let D D N.xpmiddle/ be a neighborhood of xpmiddle such that D contains all rainbows.
Consider the isotopy obtained by rotating D counterclockwise. If v > u0, after rotation
the resulting diagram has v�u0 rainbows. The formula for v0 follows by induction.

Since 2–bridge knots are alternating they are thin [28] in the sense of Definition 1.3. By
comparing the number of generators of 1CFK.Ki / for iD1; 2 from .T 2; .ej /0; ˇ1; z; w/

and the dimension of 1HFK.Ki / from the Alexander polynomial (see Proposition 2.9),
we know there is no differential on 1CFK.Ki /. This fact can also be shown by a direct
calculation following the method in [14]. Thus, the constrained knot K is also thin
and there is no differential on 1CFK.K; sj /. In particular, the group 1CFK.K; sj / is
determined by its Euler characteristic.

As discussed at the start of this section, the characteristic �.1HFK.K; sj // is an element
in H1 up to equivalence. Similar to the proof of [35, Lemma 3.4], for j 2 Œl; p�,

gr.xjiC1/� gr.xji /D Œm�
.�1/biv=uc

:

For j 2 Œ1; l � 1�, just replace u and v by u0 and v0 in the above formula, respectively.
Comparing the formula for the Alexander polynomial in Proposition 2.9, we conclude
the formula for �.1HFK.K; sj //.
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Lemma 4.3 Consider integers k and k0, and the presentation of H1 as in Lemma 4.1.
For j ¤ 0; l � 1,

gr.xjC1middle/� gr.xjmiddle/D

�
Œa�C Œm� if jq�1 � 1; : : : ; k� 2 .mod p/;
Œa� otherwise:

For l ¤ 1 and j D 0; l � 1,

gr.xjC1middle/� gr.xjmiddle/D

�
Œa�C Œm� if v is even;
Œa� if v is odd:

For l D 1,

gr.xjC1middle/� gr.xjmiddle/D

(
Œa�C Œm� if v is even;

Œa�� Œm� if v is odd:

Proof For simple knots, the proof is based on Fox calculus; see [38, Proposition 6.1].
For a general constrained knot and j ¤ 0; l � 1, the proof in [38] still works because
orientations of strands are alternating. The differences of gradings for j D0 and j D l�1
are the same because z and w are symmetric by rotation. The proof follows from

p�1X
jD0

gr.xjC1middle/� gr.xjmiddle/D 0 2H1 and pŒa�C k0Œm�D 0 2H1:

Corollary 4.4 Suppose K D C.p; q; l; u; v/ is a constrained knot in Y D L.p; q0/,
where qq0 � 1 .mod p/. For any integer j 2 Œ1; p�, let sj D sz.x

j
middle/ 2 Spinc.Y /

for intersection points xjmiddle in Figure 6. Then sjC1� sj only depends on p and q.

Proof By the map
H1.E.K/IZ/=.Œm�/!H1.Y IZ/;

the grading difference gr.xjC1middle/� gr.xjmiddle/ is mapped to sjC1 � sj , which only
depends on the image of Œa�.

Lemma 4.5 Consider b.u; v/ and b.u0; v0/ as in Lemma 4.2. Then

�.b.u0; v0//D

�
�.b.u; v// if v is even;
�.b.u; v//C 2 if v is odd:

Proof Consider standard presentations of 2–bridge knots in Section 2.2. It is easy to
see b.u; v/ and b.u0; v0/ form two knots in the skein relation. By the skein relation
formula of signatures of knots, we can conclude this lemma. Moreover, we provide
another proof based on the Alexander grading.
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By the algorithm of the Alexander grading, we have

gr.x1u0/� gr.x0u/D Œa�C Œm�:

From the rotation symmetry and the formula of the signature in Proposition 2.9,

gr.x0u/� gr.x0middle/D gr.x0middle/� gr.x01/D
1
2
�.b.u; v//Œm�;

gr.x1u0/� gr.x1middle/D gr.x1middle/� gr.x11/D
1
2
�.b.u0; v0//Œm�:

Then this lemma follows from these equations and Lemma 4.3.

Theorem 4.6 For a constrained knot K D C.p; q; l; u; v/, consider the Alexander
polynomials �1.t/ and �2.t/ in Lemma 4.2. Then 1HFK.K/ is determined by its
Euler characteristic , which is calculated by

(3) �.1HFK.K//D�1.Œm�/
pX
jDl

gr.xjmiddle/C�2.Œm�/

l�1X
jD1

gr.xjmiddle/:

Proof By the result of Lemma 4.2, we only need to consider the (relative) signs of
intersection points corresponding to different spinc structures. By Proposition 3.6, signs
of intersection points xji for fixed j are alternating. Since u and u0 D u� 2v are odd,
signs of xj1 and xj

u.j /
are the same, where u.j / is either u or u0 by Lemma 4.2. From

the diagram, signs of xj
u.j /

for j 2 Œ0; l� are the same and signs of xk1 for k 2 Œl; p� are
the same. Thus, we obtain (3).

All terms in (3) can be calculated by Lemmas 4.3 and 4.5. Thus, we obtain an algorithm
for 1HFK.K/ for a constrained knot K.

Let signs of xj1 be positive. The Alexander grading can be fixed by the global sym-
metry, ie we consider the absolute Alexander grading. Note that the global symmetry
corresponds to switching the roles of z and w, which is equivalent to a rotation of the
standard diagram of a constrained knot. Then we have

gr.xjmiddle/D� gr.x2l�jmiddle/ for any j:

In this assumption we may use square roots of elements in H1 to achieve the symmetry,
and the Euler characteristic �.1HFK.K// is a well-defined element in

�
1
2
Z
�
ŒH1� for

this case. The group 1HFK.K/ with the Alexander grading fixed as above is called the
canonical representative.
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Proof of the necessary part of Theorem 1.2 For i D 1; 2, ifKi DC.pi ; qi ; li ; ui ; vi /
are equivalent, then p1 D p2 D p and q1 � q˙12 .mod p/ by the classification of lens
spaces [5]. Suppose Y is the lens space containing K1 and K2. For i D 1; 2, consider
.u0i ; v

0
i / as in Lemma 4.2. By comparing knot Floer homologies, we know l1 D l2 and

u1 D j�b.u1; v1/.�1/j D j�b.u2; v2/.�1/j D u2;

u1� 2v1 D j�b.u01;v
0
1/
.�1/j D j�b.u02;v

0
2/
.�1/j D u2� 2v2:

Thus, we have .l1; u1; v1/ D .l2; u2; v2/ D .l; u; v/. Moreover, the sets of spinc

structures corresponding to b.u; v/ for two constrained knots should be the same. By
Corollary 4.4, it suffices to consider simple knots. Let sij be spinc structures related to
diagrams of Ki for i D 1; 2. Traveling along ˛1 of K1, middle points are in the order

x0middle; x
q1

middle; : : : ; x
.p�1/q1

middle :

Thus, we have
s1q1Cj

� s1j D s2jC1� s2j 2H
2.Y IZ/:

Then the following sets are the same:

fs1j � s10C s1j � s11 j j 2 Œl; p�g; fs
2
j � s20C s2j � s21 j j 2 Œl; p�g:

Equivalently, numbers in f0; q1; : : : ; .p � l/q1g should be consecutive congruence
classes modulop. By the following proposition, this can only happen when l 2f2; pg.

Proposition 4.7 Suppose that integers p, q and k satisfy 1<q <p�1, gcd.p; q/D 1
and 0�k <p�1. Then there exists an integer x such that the sets fx; xC1; : : : ; xCkg
and f0; q; : : : ; kqg can be identified modulo p if and only if k D 0; p� 2.

Proof If k D 0; p � 2, this proposition is trivial. Suppose k ¤ 0; p � 2. Assume
elements in sets are in Z=pZ in this proof. Define

T D f0; 1; : : : ; p� 1g; Sq D f0; q; : : : ; kqg and Sx D fx; xC 1; : : : ; xC kg:

Suppose Sq D Sx for some x and nD bp=qc � 2. If k � n, then the set Sq cannot
be identified with Sx . Thus k � n C 1 and f0; q; : : : ; nqg � Sq D Sx . Suppose
T�SxDfy; yC1; : : : ; yCp�k�2g, where yDxCkC1. Since .T�Sx/\Sq is empty
by assumption, the set T �Sx must be either a subset of fiqC1; iqC2; : : : ; .iC1/q�1g
for some integer i 2 Œ0; n� 1� or a subset of fnqC 1; nqC 2; : : : ; p � 1g. If q D 2,
then k D 0, which contradicts the assumption. Suppose q > 2. Since k ¤ 0; p� 2, we
know y; yC 1 2 T �Sx .
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If the first case happens with i D 0, then we know fqC1; qC2; : : : ; 2q�1g�Sx DSq
because n� 2. Since yCq; yC1Cq 2 fqC1; qC2; : : : ; 2q�1g, there exist different
integers k0; k1 2 Œ1; k� such that

yC q � k0q and yC 1C q � k1q .mod p/:

If k0 > k1, then k0 � 1 2 Œ1; k � 1� and y D .k0 � 1/q 2 S
q . If k0 < k1, then

k1� 1 2 Œ1; k� 1� and yC 1D .k1� 1/q 2 Sq . Both contradict the assumption.

If the first case happens with i > 0 or the second case happens, then there exist different
integers k0; k1 2 Œ1; k� such that

y � q � k0q and yC 1� q � k1q .mod p/:

If k0 > k1, then k1 C 1 2 Œ2; k� and y C 1 D .k1 C 1/q 2 S
q . If k0 < k1, then

k0C 1 2 Œ2; k� and y D .k0C 1/q 2 Sq . Both contradict the assumption.

In summary, for p >2q, there is a contradiction if k¤ 0; p�2. If p <2q and SqDSx ,
then we consider

Sp�q D f�x;�x� 1; : : : ;�x� kg D S�x�k :

Note that p > 2.p� q/. From a similar discussion, there is also a contradiction.

In the rest of this section, we indicate how to draw the curve invariant [16; 17] of the
knot complement of a constrained knot. Readers who are not familiar with the curve
invariant can safely skip the following discussion since there is no further result in this
paper relying on it.

Suppose that K D C.p; q; l; u; v/ is a constrained knot in Y D L.p; q0/, where
qq0� 1 .mod p/. Let M DE.K/. From the standard diagram of the constrained knot,
we know ŒK�D k0Œb� 2H1.Y IZ/, where b is the core curve of ˇ0–handle and k0 is
the integer in Lemma 4.1. Since K is thin, the curve invariant bHF .M/ can be drawn
as follows.

The curve invariant can be decomposed with respect to Spinc.M/, which is affine over
H 2.M IZ/. By Poincaré duality and the long exact sequence for .M; @M/, we know

jH 2.M IZ/jD jH1.M; @M IZ/jD jH1.M IZ/=Im.H1.@M IZ//jD jTorsH1.M IZ/j:

For simplicity, suppose H1.M IZ/Š Z. Then jSpinc.M/j D 1 and gcd.p; k0/D 1.

The curve invariant can be lifted to the universal cover R2 of @M . Suppose the basis is
.Œl��;�Œm��/, where the homological meridian m� (see Section 2) is chosen so that
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Figure 7: Part of the curve invariant of C.p; q; l; 11; 3/.

Œm�D pŒm��� k0Œl
�� for some k0 2 Œ0; p/. Consider parallel lines with slope p=k0

away from the basepoint on M . They cut R2 into bands. Suppose that lifts of the
basepoint are integer points and lie on a line with slope p=k0 in each band. Since
bHF .Y; s/Š Z for any s 2 Spinc.Y /, the curve invariant intersects each line once.

Based on the proof of Lemma 4.2, the chain complex 1CFK.K; s/ for any s2 Spinc.Y /
is similar to the chain complex related to a 2–bridge knot. Moreover, from the relation
of the standard diagram of K and the Heegaard diagram of a 2–bridge knot, the minus
version of the knot Floer chain complex CFK�.K; s/ is also related to CFK� of a
2–bridge knot. From the results in [34, Section 3] about thin complexes and the results
in [17, Section 4] about how to draw the curve invariant from CFK�, the part of
the curve invariant of K in a band is the union of some purple figure-8 curves and a
distinguished red arc as shown in Figure 7, which totally depends on the Alexander
polynomial and the signature of the related 2–bridge knot.

Lemma 4.8 Suppose H1.M IZ/Š Z and consider k0 and k0 as above. Suppose a
and b are core curves of ˛0 and ˇ0 handles corresponding to the standard diagram of
Y D L.p; q0/. Then k0q.k0/2 ��1 .mod p/. Hence k0 is determined by k0.

Proof The homology H1.M IZ/ is generated by Œm��. Let Qm� denote the image of
Œm�� in H1.Y IZ/. By Lemma 4.1, Œa� D �k0 Qm�. The relation Œb� D qŒa� implies
ŒK� D �q.k0/2 Qm�. Then a lift of ŒK� in H1.T 2IZ/ equals �q.k0/2Œm��C k1Œl��
for some k1. Since l is isotopic to K, we have ŒK� D Œl � 2 H1.T 2IZ/. Then since
Œm�D pŒm��� k0Œl

�� and Œm� � Œl �D Œm�� � Œl��D�1, we have

Œm� � Œl �D .pŒm��� k0Œl
��/ � .�q.k0/2Œm��C k1Œl

��/D .pk1� k0q.k
0/2/Œm�� � Œl��:

Hence we conclude the congruence result for k0.

Algebraic & Geometric Topology, Volume 23 (2023)



1128 Fan Ye

For i 2 Z=pZ, suppose Bi are bands in R2 mentioned above, ordered from left to
right. Suppose si 2 Spinc.Y / are spinc structures corresponding to Bi . Since the
slope of parallel lines is p=k0, the difference siC1 � si is k00 Qm

� for the integer k00
satisfying k0k00 ��1 .mod p/. By the above lemma, we have k00 � q.k

0/2 .mod p/.
By definition of k0 in Lemma 4.1, we have

�qk0 �

�
�q� l C 1 if v is even modulo p;
q� l C 1 if v is odd modulo p:

Since Œa�D�k0 Qm�, bands B�iqk0 for i 2 Œ1; l � 1� correspond to b.u0; v0/ and B�iqk0
for i 2 Œl; p� correspond to b.u; v/ in bHF .M/. Finally, the Alexander grading indicates
the relative height of the curves in bands and there is a unique way to connect curves
in different bands.

5 Knots in the same homology class

For fixed .p; q; u; v/ and each h 2H1.L.p; q0/IZ/ŠZ=pZ, where qq0� 1 .mod p/,
there is a parameter l 2 Œ1; p� such that C.p; q; l; u; v/ is a representative of h, ie
ŒC.p; q; l; u; v/�D h. In other words, for any knot K in L.p; q0/ there are infinitely
many constrained knots K 0 satisfying ŒK 0�D ŒK� 2H1.L.p; q0/IZ/.

In this section we focus on knots representing the same homology class in a lens space.
The main results are Theorems 1.5 and 1.6. Since we will not use the parameters
of a constrained knot, we denote a lens space by L.p; q/ rather than L.p; q0/ as in
other sections. Many results in this section are related to the Turaev torsion �.M/ of a
3–manifold M with torus boundary [42], which can be calculated by any presentation
of �1.M/. For simplicity, write �.K/D �.E.K//. The following proposition enables
us to compare elements in homology groups of different knot complements:

Proposition 5.1 [5] Let K be a knot in a 3–manifold Y . The isomorphism class of
the homology H1.E.K/IZ/ only depends on the homology class ŒK� 2H1.Y IZ/.

Suppose Y D L.p; q/ and K is a knot in Y . By Proposition 3.10, Lemma 4.1 and
Proposition 5.1, there exists a positive integer d satisfying H1.E.K/IZ/ŠZ˚Z=dZ.
Let m be the meridian of K in the sense of Section 2. Suppose t and r are generators
of Z˚Z=dZ such that

H1.E.K/IZ/Š ht; ri=.dr/:

Then there exist p0; a 2 Z such that the above isomorphism sends Œm� to p0t C ar .
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Lemma 5.2 The integer p is divisible by d , and p0 D˙p=d . Moreover , the greatest
common divisor of p0, d and a is 1.

Proof By the isomorphismH1.E.K/IZ/=.Œm�/ŠH1.Y IZ/, the orderp ofH1.Y IZ/
is the same as ˇ̌̌̌

det
��
p0 a

0 d

��ˇ̌̌̌
D jdp0j:

If the greatest common divisor of p0, d and a is not 1, then the Smith normal form of
this matrix cannot be �

1 0

0 p

�
because elementary transformations in the algorithm of the Smith normal form do not
decrease the common divisor of all entries.

Lemma 5.3 Let K1 and K2 be knots in Y DL.p; q/ representing the same homology
class h 2 H1.Y IZ/. Let m1 and m2 be meridians of K1 and K2 in the sense of
Section 2. For i D 1; 2, there are isomorphisms ji WH1.E.Ki /IZ/!Z˚Z=dZ such
that j1.Œm1�/D j2.Œm2�/.

Proof For i D 1; 2, by the discussion after Proposition 5.1, there exists an isomorphism
j 0i WH1.E.Ki /IZ/! Z˚Z=dZ such that

j 01.Œm1�/D p0t C ar and j 02.Œm2�/D p
0
0t C br:

Then it suffices to find an automorphism f of Z˚Z=dZ such that

f .p0t C ar/D p
0
0t C br:

By Lemma 5.2, the integers p0 and p00 are in fp=d;�p=dg. Let f0 be the automor-
phism of Z˚ Z=dZ sending .t; r/ to .�t; r/. If p0 D �p=d , the map j 01 can be
replaced by f0 ı j 01. The same assertion holds for p00. Without loss of generality,
suppose p0 D p00 D p=d . Let g D gcd.p0; d /, p0 D gp1 and d D gd0. Then
gcd.p1; d0/D 1, and there exist integers x0 and k0 satisfying x0p1C k0d0 D 1. By
Lemma 5.2, gcd.g; a/ D gcd.g; b/ D 1. There exist integers a0 and k1 satisfying
a0aCk1gD b and gcd.a0; g/D 1. Suppose x D .k1�k2a/x0 and y D k2gCa0 for
some integer k2. Then

xp0Cya� .k1� k2a/x0gp1C .k2gC a0/a

� .k1� k2a/.1� k0d0/gC .k2gC a0/a� k1gC a0a� b .mod gd0/:
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The map

f W Z˚Z=dZ! Z˚Z=dZ given by t 7! t C xr and r 7! yr

is an isomorphism if and only if gcd.y; d/D 1. Since f .t C ar/D t C .xp0Cya/r ,
this lemma follows from the next proposition.

Proposition 5.4 Suppose integers a0 and g satisfying gcd.a0; g/D 1. For any integer
d there exists an integer k2 satisfying gcd.y; d/D 1, where y D k2gC a0.

Proof If q is a prime number satisfying p j gcd.g; d/, then a0 is not divisible by q
and neither is y because gcd.a0; g/D 1. Then gcd.y; d/D gcd.y; d=q). Without loss
of generality, suppose gcd.g; d/D 1. By the Chinese remainder theorem, the following
congruence equations have a solution y:

y � a0 .mod g/; y � 1 .mod d/:

Then gcd.y; d/D 1. We know that k2 D .y � a0/=g satisfies the proposition.

From now on, let us fix isomorphisms j1 and j2 as in Lemma 5.3. Then the homology
classes of meridians and their images under ji for i D 1; 2 can be identified, ie Œm1�
and Œm2� are regarded as the same element Œm� in Z˚Z=dZ. The following is the key
lemma in this section, and is based on results in [42].

Lemma 5.5 Let K1 and K2 be two knots in Y D L.p; q/ representing the same
homology class. Let ji be the isomorphisms H1.E.Ki /IZ/Š Z˚Z=dZDH1 as
in Lemma 5.3. Then �.K1/� �.K2/ can be regarded as an element in ZŒH1�=˙H1.
Moreover , we have

�.K1/� �.K2/D .1� Œm�/g for some g 2 ZŒH1�=˙H1:

Proof Note that �.Ki / is not a priori an element in ZŒH1.E.Ki /IZ/�=̇ H1.E.Ki /IZ/

(see [42, Corollary II.4.3]). However, the difference �.K1/� �.K2/ is a well-defined
element in ZŒH1�=˙H1 under the isomorphisms of group rings induced by j1 and j2.
To resolve the ambiguity of ˙H1, we can choose an Euler structure and a homology
orientation on E.Ki / (see [42, Section I.1]). For any compact 3–manifold with torus
boundary, Euler structures are in one-to-one correspondence with spinc structures
related to the Alexander grading. For any closed 3–manifold, Euler structures are in
one-to-one correspondence with spinc structures on the manifold. We omit the choice
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of the homology orientation that determines the sign of �.Ki /, and only consider the
choice of the Euler structure for simplicity. For an Euler structure e on M , the Turaev
torsion �.M/ has a representative �.M; e/.

For i D 1; 2, let ei be Euler structures on E.Ki / inducing the same Euler structure eY

on Y . Adapting notation from [42, Section II.4.5], suppose the integer K.ei / satisfies

c.ei /D
ei

e�1i
2 tK.ei / TorsH1:

We can also consider c.ei / as the Chern class of the spinc structure on E.Ki / corre-
sponding to ei . Note that t is the generator of the free part of H1.

From the correspondence between Euler structures and spinc structures, it is possible
to choose ei so that K.e1/DK.e2/. In the proof of [42, Lemma II.4.5.1(i)], we have

�.E.Ki /; ei / 2
�†H1

t � 1
CZŒH1�;

where†H D†h2TorsH1
h, so �.K1; e1/��.K2; e2/2ZŒH1�. Also, in [42, Section II.4],

for a 3–manifold M with b1.M/D 1, the polynomial part Œ� �.M; e/ 2
�
1
2
Z
�
ŒH1� of

�.M; e/ is defined by

(4) Œ� �.M; e/D

�
�.M; e/C

†H1.M/

t � 1

�
�

�
t

1
2
.K.e/C1/ if K.e/ is odd;

t
1
2
K.e/

�
1
2
.t C 1/

�
if K.e/ is even:

By [42, Remark II.4.5.2], for any Euler structure e onM , the polynomial part Œ� �.M; e/
is in the kernel of the map aug WZŒH1�!Z that sends elements in H1 to 1 2Z. Thus,

aug.�.K1; e1/� �.K2; e2//D aug.Œ� �.K1; e1/� Œ� �.K2; e2//D 0:

By the m D 1 case in [42, Theorem X.4.1], since the map � W QŒH1�! QŒH1� that
sends x to x� aug.x/†H1

=jH1j is trivial, we have

pr.�.K1; e1/� �.K2; e2//D�.ŒK1�� 1/�.Y; eY /C .ŒK2�� 1/�.Y; eY /D 0;

where pr is the map in the following proposition. Also from the following proposition,
there is an element g 2 ZŒH1� such that

�.K1; e1/� �.K2; e2/D .1� Œm�/g:

Since �.K1; e1/� �.K2; e2/ reduces to �.K1/� �.K2/ in ZŒH1�=˙H1, we obtain the
equation for elements in ZŒH1�=˙H1.
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Proposition 5.6 Let pr W ZŒZ˚Z=dZ�! ZŒZ=pZ� be the map between group rings
induced by the composition of maps

Z˚Z=dZ Š�!H1.E.Ki /IZ/!H1.E.Ki /IZ/=.Œmi �/ Š�!H1.Y IZ/ Š�! Z=pZ:

Then the kernel of pr is the ideal generated by 1� Œm�.

Proof Suppose Z=pZ D fs1; : : : ; spg and suppose H D
Pk
iD1 aihi is an element

in the kernel of pr, where ai 2 Z and hi 2 Z ˚ Z=dZ. Let ‚H .sj / be the set
consisting of all elements hi satisfying pr.hi /D sj in the summation defining H . ThenP
hi2‚H .sj /

aihi is also in the kernel of pr for any j . Without loss of generality,
suppose pr.hi /D s1 for any hi in the summation of H . By definition of the map pr,
for any i , we have hi D Œm�˛.i/h1 for some integer ˛.i/. Then

H D

k0X
jD0

bj Œm�
jh1

for some integer k0. Since H is in the kernel of pr, we have

k0X
jD0

bj D 0:

Thus, the polynomial
k0X
jD0

bjx
j

has a root x D 1. In other words,
Pk0

jD0 bjx
j D .1� x/g.x/ for some polynomial

g.x/. Then we have H D .1� Œm�/g.Œm�/h1 and conclude the proposition.

There is another quick proof from the referee. The functor that takes a group to its
group ring is left-adjoint to the functor that takes a commutative ring to its group of
units. The quotient Z=pZ is the colimit of the diagram Z � Z˚Z=dZ, where one
map is 1 7! Œm� and the other is the zero map. Then the proposition follows from the
fact that left-adjoints preserve colimits.

Lemma 5.7 [39, Proposition 2.1] Suppose K is a knot in Y D L.p; q/ and let
H1 DH1.E.K/IZ/. Then

�.1HFK.Y;K//D .1� Œm�/�.K/ 2 ZŒH1�=˙H1:
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Theorem 5.8 Let K1 and K2 be two knots representing the same homology class in
Y D L.p; q/. Suppose H1.E.Ki /IZ/ Š Z˚Z=dZ D H1 as in Lemma 5.3. After
shifting Alexander gradings on 1HFK.Y;Ki / for i D 1; 2, the difference of their Euler
characteristics satisfies the following condition: for any s 2 Spinc.Y /, there exists a
Laurent polynomial f .x/ 2 ZŒx; x�1� and an element Qs 2H1 such that

�.1HFK.Y;K1; s//��.1HFK.Y;K2; s//D .Œm�� 1/2f .Œm�/Qs:

Proof Note that �.1HFK.Y;Ki // is an element in ZŒH1� up to equivalence. Fixing
the Alexander grading on 1HFK.Y;Ki / is equivalent to choosing a representative of
�.1HFK.Y;Ki // in ZŒH1�. By Lemma 5.5 and Lemma 5.7, after shifting Alexander
gradings, there exists some g 2 ZŒH1�=˙H1 such that

�.1HFK.Y;K1//��.1HFK.Y;K2//D .1� Œm�/.�.K1/� �.K2//D .Œm�� 1/2g:
Choose a lift Qg of g in ZŒH1�. It can be written as the sum Qg D

Pp
jD1 gj , where gj

contains terms that are in the preimage of sj 2H1.Y IZ/ under the map

H1!H1.Y IZ/D fs1; : : : ; spg:

For any j , there exists a Laurent polynomial fj .x/ and an element Qsj 2H1 such that
gj D fj .Œm�/Qsj . Thus, the above equation can be decomposed into spinc structures,
which induces the theorem.

Remark 5.9 For constrained knotsK1 andK2, the group 1HFK.Y;Ki / can be chosen
as the canonical representative in Section 4, meaning we consider the absolute Alexander
grading mentioned in the introduction.

Proof of Theorem 1.5 We choose the isomorphisms H1.E.Ki /IZ/ŠH1 considered
in Lemma 5.3. By Lemma 4.2, for a constrained knot Ki � Y and a spinc structure s

on Y , there is a symmetrized Alexander polynomial �i .t/ of a 2–bridge knot, so that

�.1HFK.Y;Ki ; s//��i .Œm�/:
Since the Alexander grading reduces to the grading induced by spinc structures under
the map H1.E.Ki /IZ/ ! H1.Y IZ/, we know Alexander gradings of nontrivial
summands of 1HFK.Y;Ki ; s/ correspond to the spinc structure s. By definition of the
equivalence on ZŒH1�, there exists an element Qs 2H1 in the preimage of s such that

(5) �.1HFK.Y;Ki ; s//D˙�i .Œm�/Œm�
i Qs;
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where 
i is an integer. Write fi .x/ D ˙�i .x/x
i for simplicity. Since �i .t/ is
symmetrized, the middle grading is the grading of Œm�
i Qs. Note that the multiplication
in ZŒH1� corresponds to the addition in H1. Then we have

A.K1; s/�A.K2; s/D .
1Œm�C Qs/� .
2Œm�C Qs/D .
1� 
2/Œm� 2H1:

By Theorem 5.8, there is a Laurent polynomial f .x/ 2 ZŒx; x�1� such that

f1.x/�f2.x/D .x� 1/
2f .x/:

Hence for a large integer N , there is a polynomial f0.x/ such that

xN .f1.x/�f2.x//D .x� 1/
2f0.x/:

Substituting x D 1 gives f1.1/D f2.1/, that is signs in (5) are the same for i D 1; 2.
Consider derivatives at x D 1:

0D
d.xN .f1.x/�f2.x///

dx
DN.f1.1/�f2.1//C

df1

dx
.1/�

df2

dx
.1/

D˙

�
d�1.x/

dx
.1/�

d�2.x/

dx
.1/C 
1�1.1/� 
2�2.1/

�
D 
1� 
2;

where the last equation follows from �i .t/D�i .t
�1/ and �i .1/D 1. Thus, we have

A.K1; s/D A.K2; s/.

Proof of Theorem 1.6 This follows from the proof of Theorem 1.5 with �i .t/D 1.

6 Classification

The main result in this section is the proof of the sufficient part of Theorem 1.2. The
following lemma enables us to prove it by considering knot groups, ie fundamental
groups of knot complements.

Lemma 6.1 [43] Let M1 and M2 be Haken manifolds with torus boundaries. If
there is an isomorphism  W �1.M1/! �1.M2/ that induces an isomorphism

 j�1.@M1/ W �1.@M1/! �1.@M2/;

then there exists a diffeomorphism  0 W .M1; @M1/! .M2; @M2/ inducing  .

In addition , if M1 and M2 are two knot complements and  sends the meridian of one
knot to the meridian of the other knot , then two knots are equivalent.
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A constrained knot is defined by a doubly pointed Heegaard diagram, from which it
is easy to obtain a Heegaard diagram of the knot complement similar to the case in
Figure 3, right. The Heegaard diagram is related to the handlebody decomposition of the
corresponding 3–manifold, and then also related to the cell complex of the corresponding
3–manifold. Thus, it is possible to obtain a presentation of the fundamental group from
the Heegaard diagram. We show this presentation explicitly:

Suppose K D C.p; q; l; u; v/ is a constrained knot with u > 2v � 0. Suppose
.T 2; ˛1; ˇ1; z; w/ is the standard diagram of K. Let † be the surface of genus two
obtained by attaching a 1–handle at basepoints z and w. Suppose ˛2 is the curve on
† that is a union of an arc connecting z to w in T 2 � ˛1 and an arc on the attached
handle; see Figure 6. Suppose ˇ D ˇ1. Then .†; f˛1; ˛2g; ˇ/ is a Heegaard diagram
of E.K/.

Let the innermost rainbow R0 around w be oriented from the right boundary point
xr to the left boundary point xl . This induces an orientation of ˇ. Let ˛1 and ˛2 be
oriented from the left vertical edge to the right vertical edge in the new diagram C of
the constrained knot.

Suppose s and t correspond to cores of ˛1–handle and ˛2–handle, respectively. In the
above orientation, we can obtain a presentation �1.E.K//Š hs; t j ! D 1i, where the
word ! is given in the following way:

(i) Starting at xl and traveling along ˇ, suppose intersection points of ˇ\ .˛1[˛2/
are ordered as x1; x2; : : : ; xm.

(ii) If xi is an intersection point of ˛1 and ˇ it corresponds to a word s˙1, where
the sign depends on the contribution of xi in the algebraic intersection number
˛1\ˇ.

(iii) If xi is an intersection point of ˛2 and ˇ it corresponds to a word t˙1, where
the sign depends on the contribution of xi in the algebraic intersection number
˛2\ˇ.

(iv) The word ! is obtained from x1x2 � � � xm by replacing xi by corresponding
words in fs; s�1; t; t�1g.

The word!.p; q; l; u; v/D!.C.p; q; l; u; v// in the above setting is called the standard
relation of a constrained knot C.p; q; l; u; v/. We begin by understanding the standard
relation of a 2–bridge knot. For fixed integers .u; v/, let �i D .�1/biv=uc.
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Lemma 6.2 For the constrained knot C.1; 0; 1; u; v/Š b.u; v/, the standard relation
! is s�1 t�2s�3 � � � s�2u�1 t�2u .

Proof This is from the relation between the Schubert normal form and the Heegaard
diagram of the 2–bridge knot. Note that the formula of the Alexander polynomial in
Proposition 2.9 follows from this presentation and Fox calculus [42, Chapter II].

For fixed integers .p; q; l/ with q 2 Œ1; p� 1�, l 2 Œ1; p� and gcd.p; q/D 1, suppose
the integer k 2 .0; p� satisfies k � 1 � .l � 1/q .mod p/ and the integer qi 2 Œ0; p/
satisfies qi � iq .mod p/. Define

�i D �i .p; q; l/D

�
1 if qi 2 Œ0; k/;
0 if qi 2 Œk; p/;

s�.p; q; l/D st
�l st�lC1s � � � st�p�1s;

t�.p; q; l/D t
�0st�1s � � � st�l�1 :

In particular, we have �0 D 1 and �l�1 D 1. Note that the integer q in s�.p; q; l/
or t�.p; q; l/ does not correspond to the parameter q in C.p; q; l; u; v/. Indeed, the
constrained knot C.p; q; l; u; v/ corresponds to s�.p; q0; l/ and t�.p; q0; l/, where
qq0 � 1 .mod p/. We can see this fact from the following proposition.

Proposition 6.3 For K DC.p; q; l; u; v/, suppose that the integer q0 2 Œ0; p/ satisfies
qq0 � 1 .mod p/. Suppose s� D s�.p; q0; l/ and t� D t�.p; q0; l/. Define

t
�i

# D

�
t�i if �i�1 D��iC1;
t
�i
� if �i�1 D �iC1:

Then the standard relation of K is !.p; q; l; u; v/D s�1
� t

�2

# s
�3
� � � � s

�2u�1
� t

�2u

# .

Proof The standard diagram of C.p; q; l; u; v/ generalizes the standard diagram of
C.1; 0; 1; u; v/. Then !.p; q; l; u; v/ can be obtained from !.1; 0; 1; u; v/ by replacing
s and t by some words. We figure out the replacement as follows.

Suppose that the integer k 2 .0; p� satisfies .k�1/q� l �1 .mod p/, which coincides
with the definition of k for .p; q0; l/ before this proposition. Note that we define q0i by
qq0i � i .mod p/ since we consider .p; q0; l/ rather than .p; q; l/.

Consider the new diagram C of K mentioned in Section 3; see Figure 4. There are
regions Dj for j 2 Z=pZ, where the right edge of Dj is glued to the left edge of
DjCq . Consider the part of ˛2 on T 2 that connects z to w. It goes across regions in
the order

D1;DqC1;D2qC1; : : : ;Dl :
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By definition of k, there are k regions in the above sequence. By definition of q0i ,
any region Dj in the above sequence lies at the .q0j�1C 1/

th position, so q0j < k. For
example, q00 D 0 implies that D1 lies at the first position and q0

l�1
D k�1 implies that

Dl lies at the kth position. Then �j D 1 if and only if ˛2\DjC1 is nonempty.

Then the word s�.p; q0; l/ corresponds to intersection points of ˇ\ .˛1 [ ˛2/ on an
arc component of ˇ\

�Sp�1

jDlC1
Dj
�
. The word t�.p; q0; l/ corresponds to intersection

points of ˇ\ .˛1[˛2/ on an arc component of ˇ\
�Sl

jD1Dj
�

that is also a subarc
of a stripe.

Thus, we can replace s by s� D s�.p; q0; l/. When �i�1 D��iC1, the corresponding
intersection point related to t�i is on the rainbow, so we just replace t�i by t�i itself.
When �i�1 D �iC1, the corresponding intersection point related to t�i is on the stripe,
so we replace t�i by t�i

� D t
�i
� .p; q

0; l/. This is how t
�i

# is defined.

Suppose K1DC.p; q; l; u; v/ and K2DC.p; q0; l; u; v/, where qq0� 1 .mod p/ and
l 2 f2; pg. Proposition 6.3 provides presentations of �1.E.K1// and �1.E.K2//. We
will construct an explicit isomorphism �1.E.K1//Š�1.E.K2// based on the standard
relations. First of all, let us introduce some notation:

Given words w1 and w2 made by s and t , let hw1;w2
D h.w1; w2/ be a map on words

such that for any word ! made by s and t , the word hw1;w2
.!/ is obtained from ! by

replacing s and t by w1 and w2, respectively. For any integer n, define maps

f n1 D h.s; s
nt /; f n2 D h.t

ns; t/; gn1 D h.s; ts
n/; gn2 D h.s

nt; t /

and
h0 D h.t; s/; h1 D h.t; s

�1/; h2 D h1 ı h1 D h.s
�1; t�1/:

The map f n1 induces an isomorphism hs; t j !i Š hs; t j f n1 .!/i by mapping t to snt
and s to s, which is still denoted by f n1 . A similar argument applies to f n2 . For m odd,
let f nm D f

n
1 . For m even, let f nm D f

n
2 . Given integers p; q > 0, suppose

q

p
D Œa0I a1; a2; : : : ; am�D a0C

1

a1C
1

a2C
1

a3C���

is the unique continued fraction of q=p with ai > 0 and am > 1. Define

f q=p D f �amC1
m ıf

�am�1

m�1 ı � � � ıf
�a1

1 ıf
�a0

0 and F q=p D f 11 ıf
�1
2 ıf q=p:

The maps gnm, gq=p and Gq=p are defined similarly based on gn1 and gn2 .
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s

t

t ! s�1t

˛1

˛01 D ˛1�˛2

˛2

ˇ

s

t�1

t�1! s�1t�1

˛1

˛01 D ˛1C˛2

˛2

ˇ

Figure 8: Examples of handle slides.

Remark 6.4 The isomorphisms f nm and gnm can be achieved by handle slides of ˛
curves in the Heegaard diagram of the knot complement. Indeed, if there are two
consecutive intersection points xi and xiC1 in the definition of the standard relation
that correspond to s and t , respectively, then the arc of ˇ between xi and xiC1 can be
used for the handle slide. If ˛1 is slid over ˛2, then the relation ! becomes f �11 .!/.
If ˛2 is slid over ˛1, then the relation ! becomes g�12 .!/. Moreover, when

.xi ; xiC1/! .s; t/; .s; t�1/; .s�1; t /; .s�1; t�1/; .t; s/; .t; s�1/; .t�1; s/; .t�1; s�1/;

where! implies the replacement considered in the definition of the standard relation,
then the corresponding maps are

.f �11 ; g�12 /; .g11; g
1
2/; .f 11 ; f

1
2 /; .g�11 ; f �12 /;

.f �12 ; g�11 /; .g12; g
1
1/; .f 12 ; f

1
1 /; .g�12 ; f �11 /;

respectively. Two examples are shown in Figure 8.

The proof of the following lemma follows directly from definitions of maps.

Lemma 6.5 There are relations between maps

(i) h0 ı h0 D h2 ı h2 D id,

(ii) f n1 ı h1 D h1 ıf
�n
2 and f n2 ı h1 D h1 ıg

�n
1 ,

(iii) gn1 ı h1 D h1 ıg
�n
2 and gn2 ı h1 D h1 ıf

�n
1 .

In the following lemmas, integers p, q and q0 satisfy

p > 0; q; q0 2 Œ1; p� 1�; gcd.p; q/D 1 and qq0 � 1 .mod p/:

Algebraic & Geometric Topology, Volume 23 (2023)



Constrained knots in lens spaces 1139

Lemma 6.6 The following equations hold :

f q=p.s�.p; q; 2/ts/D ts and f q=p.s�.p; q; 2/st/D st;(6)

gq=p.tss�.p; q; 2//D ts and gq=p.sts�.p; q; 2//D st:(7)

Proof If lD2, by definition s�.p; q; 2/D st�2st�3s � � � st�p�1s, where �iD�i .p; q; 2/.
Suppose that the integer k satisfies k�1� .l�1/q .mod p/. We know that kD qC1.
Suppose

q

p
D Œ0I a1; a2; : : : ; am�

with ai > 0 and am > 1. We prove (6) by induction on m.

If mD 1, then q D 1 and p D a1. Thus s�.p; q; 2/D sa1�1 and f q=p D f �.a1�1/
1 by

definition. It can be checked directly that (6) holds.

Suppose (6) holds for mDm0� 1. Consider integers qi satisfying qi � iq .mod p/.
Since gcd.p; q/D 1, if qi � iq � q .mod p/, then i D 1. So qi ¤ q for i 2 Œ2; p� 1�.
Since k D qC 1, the condition qi 2 Œ0; k/ is the same as qi 2 Œ0; q/ for i 2 Œ2; p� 1�.
Thus �i .p; q; 2/D 1 if and only if�

iq

p

�
�

�
.i�1/q

p

�
D 1:

In other words, we have

�i .p; q; 2/D

�
iq

p

�
�

�
.i�1/q

p

�
for i 2 Œ2; p� 1�:

If �i .p; q; 2/D 1, there is some integer j 2 Œ1; q� 1� such that

i D

�
jp

q

�
C 1D ja1C

�
jr

q

�
C 1;

where
r

q
D Œ0I a2; a3; : : : ; am0

�:

Let j1 D j and j2 D j � 1 for j 2 Œ2; q� 1�. Then we have�
j1a1C

�
j1r

q

�
C1

�
�

�
j2a1C

�
j2r

q

�
C1

�
Da1C

�
j1r

q

�
�

�
j2r

q

�
Da1C�j .q; r; 2/:

Thus

s�.p; q; 2/tsDs
a1 tsa1s�2.q;r;2/tsa1s�3.q;r;2/t � � � sa1s�q�2.q;r;2/tsa1s�q�1.q;r;2/tsa1 ts

D .sa1 t /s�2.q;r;2/.sa1 t /s�3.q;r;2/.sa1 t / � � � s�q�2.q;r;2/.sa1 t /s�q�1.q;r;2/

� .sa1 t /.sa1 t /s

D hsa1 t;s.s�.q; r; 2/st/D f
a1

1 ı h0.s�.q; r; 2/st/;
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where the second equality follows from the fact that �i .p; q; 2/D 0 if i < a1. Similarly,

s�.p;q;2/stDs
a1 tsa1s�2.q;r;2/tsa1s�3.q;r;2/t � � � sa1s�q�2.q;r;2/tsa1s�q�1.q;r;2/tsa1st

D .sa1 t /s�2.q;r;2/.sa1 t /s�3.q;r;2/.sa1 t / � � � s�q�2.q;r;2/.sa1 t /s�q�1.q;r;2/

� .sa1 t /s.sa1 t /

D hsa1 t;s.s�.q; r; 2/ts/D f
a1

1 ı h0.s�.q; r; 2/ts/:

By the inductive assumption, we have

f r=q..s�.p; q; 2/ts/D ts and f r=q..s�.p; q; 2/st/D st:

Since f q=p D h0 ıf r=q ı h0 ıf
�a1

1 and h0 ı h0 D id, we have

f q=p..s�.p; q; 2/ts/D h0 ıf
r=q.s�.q; r; 2/st/D h0.st/D ts;

f q=p..s�.p; q; 2/st/D h0 ıf
r=q.s�.q; r; 2/ts/D h0.ts/D st:

By a similar method, it can be proven that

tss�.p; q; 2/D g
a1

1 ı h0.sts�.q; r; 2// and sts�.p; q; 2/D g
a1

1 ı h0.tss�.q; r; 2//:

Then by induction, (7) holds.

Lemma 6.7 The following equations hold :

F q=p.t/D f 11 ıf
�1
2 ıf q=p.t/D h0.s�.p; q

0; 2/ts/;

Gq=p.t/D g11 ıg
�1
2 ıg

q=p.t/D h0.sts�.p; q
0; 2//:

Proof The proofs of the two equations are similar. We only show the proof of the first
equation. By the proof of Lemma 6.6, we know

�i .p; q; 2/D

�
iq

p

�
�

�
.i�1/q

p

�
for i 2 Œ2; p� 1�:

Thus �i .p; q; 2/D 0 if and only if�
i.q�p/

p

�
�

�
.i�1/.q�p/

p

�
D

�
iq

p

�
�

�
.i�1/q

p

�
� 1D�1:

This is equivalent to �
i.p�q/

p

�
�

�
.i�1/.p�q/

p

�
D 1;

ie �i .p; p� q; 2/D 1. Then

f �11 ı h0.s�.p; q; 2/ts/D s
�1ts��2.p;p�q;2/t � � � ts��p�1.p;p�q;2/t t

D s�1h1.s�.p; p� q/st/s D t
�1h1.sts�.p; p� q//t:
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Suppose q=p D Œ0I a1; a2; : : : ; am� with ai > 0 and am > 1. We have

f �12 ıf q=p D

�
f �12 ıf

�amC1
1 ıf

�am�1

2 ı � � � ıf
�a2

2 ıf
�a1

1 if m is odd,
f
�am

2 ıf
�am�1

1 ı � � � ıf
�a2

2 ıf
�a1

1 if m is even.

By the extended Euclidean algorithm,

p� q0

p
D

�
Œ0I 1; am� 1; am�1; : : : ; a2; a1� if m is odd,
Œ0I am; am�1; : : : ; a2; a1� if m is even.

It can be proven by induction on n that for b=aD Œ0I b1; b2; : : : ; b2n�1; b2n�,

(8) f
�b1

2 ıf
�b2

1 ı � � � ıf
�b2n�1

2 ıf
�b2n

1 .t/D h1.ts�.a; b/s/:

Indeed, if nD 1, then f �b2

2 ıf
�b1

1 .t/D .t�b2s/�b1 t D .s�1tb2/b1 t . Equation (8) is
clear.

Suppose (8) holds for nD n0� 1. Let

b0

a0
D Œ0I b2; : : : ; b2n0�1; b2n0

� and
b00

a00
D Œ0I b3; : : : ; b2n0�1; b2n0

�:

By the proof of Lemma 6.6,

tf
b1

1 .s�.a
00; b00; 2/st/t�1 D th0.s�.a

0; b0; 2/ts/t�1

D s�1h0.tss�.a
0; b0; 2//s D s�1g

b1

1 .sts�.a
00; b00; 2//s:

Thus

f
�b1

2 ıf
�b2

1 ı h1.ts�.a; b; 2/st t
�1/

D f
�b1

2 ı h1 ıf
b2

2 .tf
�b2

2 ıf
�b1

1 .s�.a
00; b00; 2/st/t�1/

D f
�b1

2 ı h1.tf
�b1

1 .s�.a
00; b00; 2/st/t�1/

D h1 ıg
b1

1 ı .s
�1g

b1

1 .sts�.a
00; b00; 2//s/

D h1.s
�1.sts�.a

00; b00; 2//s/D h1.ts�.a
00; b00; 2/s/:

Remark 6.8 By Remark 6.4, the map f q=p can be regarded as a sequence of handle
slides. Consider the matrix of algebraic intersection points�

Œ˛1� �pŒa� Œ˛2� �pŒa�

Œ˛1� � Œm� Œ˛2� � Œm�

�
;

where a and m are curves in Figure 6. The maps f n1 and f n2 induce column transfor-
mations of this matrix, which are still denoted by f n1 and f n2 . Then

f q=p
��
p q

0 1

��
D

�
1 1

q0�p q0

�
and F q=p

��
p q

0 1

��
D

�
1 0

q0 p

�
:
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Indeed, the definitions of f q=p and F q=p come from the extend Euclidean algorithm
for calculating gcd.p; q/ (see the proof of Lemma 6.7).

Proposition 6.9 Up to circular permutation ,

h0 ıF
q=p.!.p; q0; 2; u; v//D

�
h2.!.p; q; 2; u; v// if v is odd ,
!.p; q; 2; u; v/ if v is even.

Proof Suppose aD s�.p; q; 2/ and b D s�.p; q0; 2/. Then

t� D t�.p; q; 2/D t�.p; q
0; 2/D tst

and

!.p; q0; 2; u; v/D a�1 t
�2

# a
�3 � � � t

�2u

# ; !.p; q; 2; u; v/D b�1 t
�2

# b
�3 � � � t

�2u

# :

The word a�i�1 t
�i

# a
�iC1 is one of

(i) atstaD .ats/ta and a�1.tst/�1a�1 D a�1t�1.ats/�1,

(ii) ata�1 D .ats/t.ast/�1 and at�1a�1 D .ast/t�1.ats/�1,

(iii) a�1ta and a�1t�1a.

Thus !.p; q0; 2; u; v/D a�1

# t
�2a

�3

# � � � t
�2u , where

a
�i

# D

�
.ats/�i if �i D ��iCi ;

.ast/�i if �i D���iCi :

By Lemma 6.6 and Lemma 6.7,

F q=p.ats/D sDh0.t/; F q=p.ast/D t�1stDh0.s
�1ts/ and F q=p.t/Dh0.bts/:

Thus h0 ıF q=p.!.p; q0; 2; u; v//D c
�1

# .bts/
�2c

�3

# � � � .bts/
�2u , where

c
�i

# D

�
t�i if �i D ��iCi ;

.s�1ts/�i if �i D���iCi :

The word .bts/�i�1c
�i

# .bts/
�iC1 is one of

(i) .bts/t.bts/D b.tst/bts and .bts/�1.t/�1.bts/�1 D .bts/�1.tst/�1b�1,

(ii) .bts/.s�1ts/.bts/�1 D btb�1 and .bts/.s�1ts/�1.bts/�1 D bt�1b�1,

(iii) .bts/�1t .bts/ and .bts/�1t�1.bts/.

Thus

h0 ıF
q=p.!.p; q0; 2; u; v//D t

�1

# b
�2 t

�3

# � � � b
�2u D b

�uC1

# t�uC2b
�uC3

# � � � b�3u ;

where the last equality holds up to circular permutation. The proposition follows from
the fact that �uCi D .�1/v�i .
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Proposition 6.10 Up to circular permutation ,

h0 ıG
.p�q/=p.!.p; q0; p; u; v//D

�
h2.!.p; q; p; u; v// if v is odd ,
!.p; q; p; u; v/ if v is even.

Proof The essential idea of the proof is the same as that of Proposition 6.9. Now

s�.p; q; p/D s and t�.p; q; p/D ts�.p; p� q; 2/t:

Suppose aD s�.p; p�q; 2/ and bD s�.p; p�q0; 2/. By analyzing cases of s�i�1 t
�i

# s
�i

we get !.p; q0; p; u; v/D a�1

# t
�2a

�3

# � � � t
�2u , where

a
�i

# D

�
.sta/�i if �i D ��iCi ;

.sat/�i if �i D���iCi :

Note that �i 2 f˙1g and ��iCi D �˙Ci in the definition of a�i

# . By Lemma 6.6 and
Lemma 6.7, we have G.p�q/=p.t/D stb. Thus

h0 ıG
.p�q/=p.!.p; q0; p; u; v//D c

�1

# .stb/
�2c

�3

# � � � .stb/
�2u ;

where
c
�i

# D

�
t�i if �i D ��iCi ;

..stb/�1.sts�1/.stb//�i if �i D���iCi :

By analyzing cases of .stb/�i�1c
�i

# .stb/
�i�1.stb/�iC1 we get

h0 ıG
.p�q/=p.!.p; q0; p; u; v//D t

�1

# b
�2 t

�3

# � � � b
�2u :

Then this proposition follows from a similar argument as in Proposition 6.9.

Proof of the sufficient part of Theorem 1.2 For iD1; 2, letKi DC.pi ; qi ; li ; ui ; vi /,
Mi DE.Ki / and suppose .�i ; �i / is the regular basis of @Mi . Suppose

.p1; u1; v1/D .p2; u2; v2/D .p; u; v/; q1q2 � 1 .mod p/ and l1 D l2 2 f2; pg:

By knot Floer homology, constrained knots Ki are not unknots in lens spaces. By
Proposition 2.1, we know that the Mi are Haken manifolds.

Let q0 D q1 and q D q2 in Propositions 6.9 and 6.10. Let  be the map from �1.M1/

to �1.M2/ induced by
h0 ıF

q=p if l1 D l2 D 2;

h0 ıG
.p�q/=p if l1 D l2 D p:

By Propositions 6.9 and 6.10, the map  is an isomorphism. The meridians �i and
longitudes �i can be isotoped to lie on Heegaard diagrams of Mi so that �1 D m

and �2 D pa, where a and m are curves in Figure 6. Moreover, suppose that
meridians and longitudes are disjoint from ˇ1. By Remarks 6.4 and 6.8, the map
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 can be achieved by handle slides of ˛ curves. After handle slides, the meridian
and the longitude are still disjoint from ˇ1, which implies  induces an isomorphism
 j�1.@M1/ W �1.@M1/! �1.@M2/.

Moreover, for the case l1 D l2 D 2, note that t corresponds to �1 \ .˛1 [ ˛2/ and
s�.p; q

0; 2/ts corresponds to �2\ .˛1[˛2/ in the presentations of the fundamental
groups. By Lemma 6.7,

 j�1.@M1/.�1/D  .t/D s�.p; q
0; 2/ts D �2:

Thus, by Lemma 6.1, we know K1 is equivalent to K2.

For the case l1 D l2 D p, based on Lemma 6.7, the proof is similar.

7 Magic links

A constrained knot is defined by a doubly pointed Heegaard diagram .T 2; ˛1; ˇ1; z; w/,
where ˇ1 looks similar to the ˇ curve in the diagram of a 2–bridge knot (see Lemma 4.2
and Proposition 3.5). In this section we provide Dehn surgery descriptions for some
families of constrained knots, which is inspired by the relation between constrained
knots and 2–bridge knots. The main objects in this section are magic links.

Definition 7.1 Suppose integers u and v satisfy 0� v < u and gcd.u; v/D 1, and u
is odd. Especially, .u; v/D .1; 0/ is allowed. A magic link L.u; v/DK0[K1[K2
is a 3–component link linked as shown in Figure 2, left, where K0 is the 2–bridge knot
b.u; v/ in the standard presentation, and K1 and K2 are unknots. For �u < v < 0, let
L.u; v/ be the mirror link of L.u;�v/. Let L.1; 1/ be the mirror link of L.1; 0/.

Remark 7.2 The name of magic links is from the fact that the link complement
S3�L.3; 1/ is diffeomorphic to the magic manifold studied in [24].

For i D 1; 2, suppose integers pi and qi satisfy pi > 0 and gcd.pi ; qi / D 1. Let
M.u; v; p1=q1; p2=q2/ and K0.u; v; p1=q1; p2=q2/ denote the manifold and the re-
sulting knot K 00 obtained by pi=qi Dehn surgery on Ki .

Proposition 7.3 The manifolds M.u; v; p1=q1; p2=q2/ and M.u; v; p2=q2; p1=q1/
are diffeomorphic. Moreover , the knots K 00 in these manifolds are equivalent.

Proof The components K1 and K2 in the magic link switch their positions under the
rotation around a vertical line, while K0 remains unchanged.
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l1

l2

m1m2
w x yz

˛�

l1m1

m2
w

x yz
ˇ1

l2

Figure 9: Heegaard diagrams of E.L.3; 1//, where ˇ1 is omitted in the left
figure and ˛� is omitted in the right figure.

Remark 7.4 Manifolds M.u; v; p1=q1; p2=q2/ and M.u; v; p2=q2; p1=q1/ will not
be distinguished in the rest of the paper. Neither will the corresponding knots K0 of
these manifolds.

Proposition 7.5 For integers u and v satisfying 0 < v < u and gcd.u; v/ D 1, and
where u is odd , the link L.u; u� v/ is the mirror link of L.u; v/. Thus

L.u; u� v/Š L.u;�v/

and K0.u; v; p1=q1; p2=q2/ is the mirror image of K0.u; u�v; p1=.�q1/; p2=.�q2//.

Proof Suppose b.u; v/ is in the standard presentation for

v

u
D Œ0I a1; a2; : : : ; am�:

Since .u� v/=uD 1� v=u, by adding one positive half-twist on the two left strands,
the standard presentation for Œ0I �a1;�a2; : : : ;�am� becomes a standard presentation
of b.u; u�v/. After isotoping the link outside twists related to ai , the link L.u; u�v/

becomes the mirror link of L.u; v/.

Lemma 7.6 In Figure 9, .†2; ˛�; ˇ1/ are Heegaard diagrams of E.L.3; 1//. For
i D 1; 2, the meridian mi and the longitude li of Ki can be isotoped to lie on †2 as
in the diagrams. For general integers u and v satisfying 0 < v < u and gcd.u; v/D 1,
and where u and v are odd , the similar assertion holds when ˇ1 is replaced by ˇ in
the doubly pointed Heegaard diagram of b.u; v/.
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Figure 10: Meridians and longitudes on the Heegaard surface.

Proof Consider .u; v/D .3; 1/. The curve ˛� is separating and ˇ1 is nonseparating.
Therefore, the manifold obtained from †2 � Œ�1; 1� by attaching 2–handles along
˛� � f�1g and ˇ1 � f1g has three boundary components, each of which is a torus.
Moreover, if two more 2–handles are attached along m1 � f�1g and m2 � f�1g, the
resulting manifold is E.b.3; 1//. The longitude l0 of b.3; 1/ can be isotoped to lie
on †2 as shown in the Schubert normal form (see Figure 3, center). Note that the
geometric intersection number of mi and li is one.

On the other hand, components of the link corresponding to the Heegaard diagrams
in Figure 9 can be obtained by pushing li slightly into the handlebody corresponding
to ˛ D f˛�; m1; m2g and pushing l0 slightly into the handlebody corresponding to
ˇ D fˇ1; m0g, where m0 is the meridian of b.3; 1/ on †2. This can be seen explicitly
if we redraw the Heegaard surface as in Figure 10. After isotoping unknot components,
it is easy to see the link from these diagrams is equivalent to L.3; 1/. For general .u; v/,
the proof applies without change.

For integers u and v satisfying �u < v < 0, and where u and v odd, the corresponding
diagram is obtained by reflecting the diagram of L.u;�v/ along a vertical line. Since
L.u; u� v/ Š L.u;�v/, Heegaard diagrams for all v 2 .�u; u/ with gcd.u; v/ D 1
and .u; v/D .1; 0/; .1; 1/ are obtained from this approach. Such a diagram is called a
standard diagram of E.L.u; v//.

A resolution of an intersection point of a meridian and a longitude on the Heegaard
surface is called a positive resolution or a negative resolution when the meridian turns
left or right, respectively, to the longitude in any direction; see Figure 11.
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l l

mm

positive negative

Figure 11: Positive and negative resolutions.

Corollary 7.7 For i D 1; 2 suppose integers pi and qi satisfy gcd.pi ; qi / D 1 and
pi > 0. The Heegaard diagram .†2; f˛1; ˛2g; ˇ1/ of E.K0.u; v; p1=q1; p2=q2// is
obtained in the following way: ˛i is obtained by resolving intersection points of jpi j
copies of mi and jqi j copies of li positively or negatively if qi is positive or negative ,
respectively. Especially when .pi ; qi /D .1; 0/, the corresponding ˛i is mi .

Proof This follows from the definition of Dehn surgery. Note that ˛i is the meridian
of the filling solid torus for i D 1; 2.

Consider cyclic covers of the diagram of a 2–bridge knot b.u; v/ as shown in Figure 12.
For i 2Z, let ai D ai .u; v/ be a red strand connecting the left edge to the right edge and
passing through ji j copies of the fundamental domains, where the sign of i determines
the direction of the strand; see Figure 12 for examples of strands. Let Ai D Ai .u; v/
be the set consisting of strands that can be isotoped into the neighborhood of ai .u; v/
in the complement of basepoints. Some intersection points of ai .u; v/ and ˇ1 can be
removed by isotopy. Intersection points that cannot be removed are shown in Figure 12.
Identifying endpoints of ai , a diagram of a 2–bridge knot b.U.u; v; i/; V .u; v; i// can
be obtained for some integers U.u; v; i/ and V.u; v; i/.

Let a� D a�.u; v/ and a# D a#.u; v/ be the strands in Figure 12. For i D �; #, the
set Ai .u; v/ and the functions U.u; v; i/ and V.u; v; i/ are defined similarly. For
i 2 Z or i D �; #, consider V.u; v; i/ 2 Z=UZ� f0g for U D U.u; v; i/ > 1. When
U.u; v; i/ D 1, consider V.u; v; i/ 2 f0; 1g. In the latter case, we use the following
conventions:

n�

�
1 if n is odd modulo 1;
0 if n is even modulo 1;

and ˙n��m .mod 1/ for n odd and m even.
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Figure 12: Cyclic covers of Heegaard diagrams corresponding to .u; v/D .3; 1/; .7; 1/; .7; 2/.

Lemma 7.8 Suppose u and v, for u odd , are integers satisfying .u; v/ D .1; 0/ or
0 < 2v < u, and gcd.u; v/D 1. For i 2 f1; 0;�1;�2;�; #g, the functions U.u; v; i/
and V.u; v; i/ can be expressed explicitly:

(i) U.u; v; 1/D uC 2v and V.u; v; 1/D v.

(ii) U.u; v; 0/D u and V.u; v; 0/D v.

(iii) U.u; v;�1/D u� 2v and V.u; v;�1/� v .mod u� 2v/.

(iv) U.u; v;�2/ D ju� 4vj and V.u; v;�2/ � v sign.u� 4v/ .mod ju� 4vj/ for
u > 3, and U.3; 1;�2/D 1 and V.3; 1;�2/D 1.

(v) U.u; v;�/D 3u� 4v and V.u; v;�/D u� v.

(vi) U.u; v; #/D 3u� 2v and V.u; v; #/D 2u� v.

Proof For fixed .u; v/, let Ri and Si be numbers of rainbows and stripes in the
diagram of b.U.u; v; i/; V .u; v; i//. Case (ii) is trivial, where R0D v and S0D u�2v.
Suppose V 0 satisfies

0 < V 0 < U.u; v; i/ and V 0 � V.u; v; i/ .mod U.u; v; i//:
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Define

�i D

�
�1 if 2V 0 < U.u; v; i/;
1 if 2V 0 > U.u; v; i/:

Then .U.u; v; i/; V .u; v; i// can be recovered from .Ri ; Si ; �i / by

(9) U.u; v; i/D 2Ri CSi and V.u; v; i/D �iRi :

Suppose that all isotopies on the surface move basepoints in the following discussion.

For cases (i) and (vi), let x1 be the center of the fundamental domain and letD1DN.x1/
be the neighborhood containing two basepoints z and w. Straightening strands isotopes
the diagram by rotating D1 clockwise and counterclockwise by � for cases (i) and
(vi), respectively. Equivalently, the new ˇ is obtained by pushing rainbows on the top
edge to the bottom right and bottom left, respectively. Rainbows and stripes satisfy the
following equations and we obtain the results by formulae in (9):

R1 DR0; S1 D 2R0CS0; �1 D 1;

R# DR0CS0; S# D 2R0CS0; �# D�1:

For case (v), let x2 be the middle intersection point on the top edge and letD2DN.x2/
be the neighborhood containing all rainbows. Straightening the strand isotopes the
diagram by rotating D2 clockwise by � . Then we have

R� DR0CS0; S� D S0; �� D 1:

For case (iii), the number U.u; v;�1/ is the same as S0. Straightening the strand
isotopes the diagram by rotating D2 counterclockwise, which induces the formula of
V.u; v;�1/. This isotopy can also be regarded as pulling back rainbows once.

For case (iv), if .u; v/D .3; 1/, then the formula is obtained directly from Figure 12. If
u > 3, then there are three subcases where S0 > 2R0, 2R0 > S0 > R0 and R0 > S0,
equivalently u > 4v, 4v > u > 3v and 3v > u > 2v, respectively. Note that u is odd,
so u¤ 4v.

Suppose S0 > 2R0 (eg .u; v/ D .7; 1/; .13; 3/). In this subcase V.u; v;�1/ D v.
Straightening the strand isotopes the diagram by pulling back rainbows twice. Then
.U.u; v;�2/; V .u; v;�2// is obtained by applying case (iii) twice, ie

U.u; v;�2/D u� 4v; V .u; v;�2/� v .mod u� 4v/:

Suppose 2R0 > S0 >R0 (eg .u; v/D .7; 2/; .15; 4/). Straightening the strand isotopes
the diagram by rotating D2 counterclockwise by � . After isotopy, the number of
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intersection points of a�2 and ˇ is U.u; v;�2/D 2R0�S0 D 4v�u. The number of
rainbows is R�2 D S0�R0 and ��2 D�1. Hence

V.u; v;�2/D U.u; v;�2/� .S0�R0/D 7v� 2u:

Suppose R0 > S0 (eg .u; v/D .7; 3/). Straightening the strand isotopes the diagram
by rotating D2 counterclockwise by � . In this subcase, this isotopy is obtained by
reversing the isotopy in case (v). Then

R�2DR0�S0; S�2DS0; ��2D1; U.u; v;�2/D4v�u; V .u; v;�2/D3v�u:

The formula for case (iv) then follows from summarizing the above subcases.

Remark 7.9 Indeed, for any i 2 Z, functions U.u; v; i/ and V.u; v; i/ might be
expressed explicitly. For example, we have U.u; v; i/D uC2iv and V.u; v; i/D v for
i > 0. However, for i < 0, functions are more complicated so we omit the discussion.

The following lemma is a basic result from the Dehn surgery on the Hopf link.

Lemma 7.10 The manifold M.u; v; p1=q1; p2=q2/ is diffeomorphic to the lens space

L.p1p2� q1q2; p1p
0
2� q1q

0
2/ where p2q02� q2p

0
2 D�1:

Theorem 7.11 Suppose integers u0 and v0 satisfy .u0; v0/D .1; 0/ or 0 < 2v0 < u0,
and gcd.u0; v0/D1, where u is odd. Suppose Ui DU.u0; v0; i/ and Vi DV.u0; v0; i/.
The knot K0 DK0.u0; v0; p1=q1; p2=q2/ is equivalent to C.p; q; l; u; v/ for .l; u; v/
in Table 3 and some .p; q/. In cases (i)–(iv), .p; q/ D .p1p2 � q1q2; q1/. In cases
(v)–(viii), .p; q/D .p1p2� q1q2; q1p2/. In cases (ix) and (x), p D p1p2� q1q2 and
q 2 f˙q˙10 g, where q0 D p1p02� q1q

0
2 is calculated in Lemma 7.10.

Proof First, we make some comments on the parameters .p; q/. Lemma 7.10 provides
a way to specify the ambient lens space of K0. Explicitly, the lens space is L.p; q/,
where p D p1p2� q1q2 and q 2 f˙q˙10 g.

In cases (i)–(iv), p2 D 1. Hence we can choose q02 D�1 and p02 D 0 in Lemma 7.10.
Then we can set q0Dp1p02�q1q

0
2Dq1. In cases (v)–(viii), jq1jD1. By Proposition 7.3,

we can switch the roles of .p1; q1/ and .p2; q2/ in Lemma 7.10. So we can pick p01Dq1
and q01 D 0 so that p1q01� q1p

0
1 D�1. Then we can set q0 D p2p01� q2q

0
1 D q1p2.

From Remark 3.3 we know thatC.p; q; l; u; v/may be different fromC.p; q�1; l; u; v/.
Hence to define a constrained knot, we need to fix the choice of q in the set f˙q˙10 g.
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case conditions .l � 1; u; v/

(i) p2 D 1, q1q2 < 0 .�q1q2; U0; V0/

(ii) p2 D 1, q2 > 1, q1 > p1 > 0, U�1 � U�2 .p1; U�1; V�1/

(ii0) p2 D 1, q2 > 1, q1 > p1 > 0, U�1 < U�2 .q1q2� 2p1; U�2; V�2/

(iii) p2 D 1, q2 < �1, �q1 > p1 > 0 .q1q2� 2p1; U�; V�/

(iv) .p2; q2/D .1; 0/ .0; U0; V0/

(v) p1 > 1, jq1j D 1, q1q2 < 0 .�q1q2; U0; V0/

(vi) p1 > 1, q1 D 1, p2 > q2 > 0 .p1p2� 2q2; U1; V1/

(vii) p1 > 1, q1 D�1, p2 > �q2 > 0 .�p2; p1p2C 2q2; U#; V#/

(viii) .p1; q1/D .0; 1/ .0; U�1; V�1/

(ix) .p2; q2/D .1; 1/, q1 > 0, .p1; q1/¤ .1; 1/ .˙q1; Un; Vn/ for n 2 Z

(x) .p2; q2/D .1;�1/, q1 < 0, .p1; q1/¤ .1;�1/ l � 1D˙q1

Table 3: Cases where Dehn surgeries on magic links induce constrained knots.

For cases (i)–(viii), the later proof shows q D q0. However, for cases (ix)–(x) it is hard
to provide a general formula for the choice of q since the proof is not constructive.

We prove the theorem case by case:

For case (i), we consider two subcases:

(a) p2 D 1 and q2 > 0; q1 < 0,

(b) p2 D 1 and q2 < 0; q1 > 0.

The proofs of these two subcases are similar so we only prove case (a).

In case (a), jq2j D q2 and jq1j D �q1. Consider curves m1, l1, m2 and l2 in Figure 10
and the Heegaard diagram .†2; f˛1; ˛2g; ˇ1/ of E.K0/ in Corollary 7.7. For example,
if q2 D 3, then ˛2 is obtained by resolving intersection points of m2 and three copies
of l2 positively. Let l 01 be the curve obtained by sliding l1 over ˛2 along an arc a
around z; see Figure 13, top left. Let ˛01 be obtained by taking jp1j copies of m1 and
jq1j copies of l 01 and resolving negatively. Then .†2; f˛01; ˛2g; ˇ1/ is also a Heegaard
diagram of E.K0/ since l 01 is isotopic to l1 in the link complement. Consider the
genus 1 surface †1 obtained from †2 by removing the 1–handle attaching to z and w.
Then .†1; ˛01; ˇ1; z; w/ is a doubly pointed Heegaard diagram of K0. We can compare
this diagram with the standard diagram of a constrained knot.

By construction, there are q2 strands in l 01 connecting the left edge to the right edge,
where .q2�1/ strands do not intersect the top edge and one strand intersects the top edge.
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Figure 13: Examples of K0.

Since m1 is a strand connecting the left edge to the right edge, there are .p1�q1q2/
strands in ˛01 connecting the left edge to the right edge. These strands can be divided
into two parts, in which the strands are isotopic to the strands a0 and a�1 defined
before Lemma 7.8, respectively. By counting the number of strands, we have

jA0.u0; v0/j D p1 and jA�1.u0; v0/j D �q1q2:

Hence .†1; ˛01; ˇ1; z; w/ is the same as the standard diagram (see Figure 6) of

C.p1� q1q2; q1;�q1q2C 1; u0; v0/:

Thus, the two knots are equivalent. For example, Figure 13, top middle, corresponds to
C.9;�2; 7; 3; 1/D C.9; 7; 7; 3; 1/, where

.p1; q1; p2; q2; u; v/D .3;�2; 1; 3; 3; 1/:

Cases (ii)–(iv) are proven by a similar strategy. Indeed, we can compare ˛01 in the
doubly pointed diagram ofK0 with the standard diagram of a constrained knot to obtain
the parameters. In particular, the type and the number of strands in ˛01 are important,
so we only state the main difference about the curve ˛01.
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For cases (ii) and (ii0), let ˛01 be the curve as defined in case (i). It is the union of
strands with endpoints on the left edge and the right edge. By the assumption q1 > p1,
we may have rainbows in ˛01, ie strands whose endpoints are on the same edge. Since
the rainbows on the right edge do not bound a basepoint, we can isotopy ˛01 to remove
them. After removing p1 rainbows on the right edge, there are .q1q2�2p1/ strands
and p1 strands isotopic to a�1 and a�2, respectively:

jA�1j D q1q2� 2p1 and jA�2j D p1:

The choice of case (ii) and case (ii0) depends on if U�1 � U�2 or U�1 < U�2, respec-
tively. This is because the parameter u is the greater number in fU�1; U�2g.

For case (iii), the pair of sets .A�1; A�2/ in the above proof is replaced by .A�1; A�/.
Counting the number of strands, we have

jA�1j D q1q2� 2p1 and jA�j D pi :

By Lemma 7.8, the number U� is always greater than U�1.

For case (iv), all strands are isotopic to a0.

Examples can be found in Figure 13. In all examples, .u; v/ D .3; 1/. In the top
right subfigure, the diagram of K0 is in case (ii) with .p1; q1; p2; q2/ D .1; 2; 1; 3/,
which corresponds to C.�5; 2; 2; 1; 0/D C.5; 3; 2; 1; 0/. In the bottom left subfigure,
the diagram of K0 is in case (iii) with .p1; q1; p2; q2/D .1;�2; 1;�3/, which corre-
sponds to C.�5;�2; 5; 5; 2/ D C.5; 2; 5; 5; 2/. In the bottom middle subfigure, the
diagram of K0 is in case (iii) with .p1; q1; p2; q2/D .3;�2; 1; 0/, which corresponds
to C.3;�2; 1; 3; 1/D C.3; 1; 1; 3; 1/.

For proofs of cases (v)–(viii), we consider the curve m02 obtained by sliding m2 over
˛1 along an arc a0 around z; see Figure 13, bottom right, for p1D 2. Now the resulting
diagram of E.K0/ is .†2; f˛1; ˛02g; ˇ1/, where ˛0 is obtained from m02 and l2 by
resolution. The proofs are similar to cases (i)–(iv).

For cases (ix) and (x), the diagrams are more complicated. By Proposition 1.1, we
can check by the distribution of the spinc structures of intersection points that the knot
K0 is a constrained knot. The parameter l can be obtained by counting the number
of strands.

The following corollary is obtained by changing parameters in Table 3.
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case l�1

(i) and (v) with q2 > 0 and (iv), (viii) and (ix) ˙nq where nq 2 Œ0; p/
(i) and (v) with q2 < 0 and (iv), (viii) and (x) ˙n.p�q/ where n.p�q/ 2 Œ0; p/

(ii) dp=qeq�p

(ii0) and (vi) 2p�dp=qeq

(iii) and (vii) 2p�dp=.p�q/e.p�q/

Table 4: Choices of the parameter l .

Corollary 7.12 Suppose integers p and q satisfy p > q > 0 and gcd.p; q/D 1. The
choices of l from Theorem 7.11 are in Table 4. Note that Theorem 1.8 follows from
the first two rows in Table 4.

Remark 7.13 For integers u0 and v0 satisfying .u0; v0/D .1; 1/ or 0 < �2v0 < u0,
and gcd.u0; v0/D 1, where u0 is odd, the surgery description can be induced similarly
to Table 3. We omit the explicit description.

We describe some special examples of Table 3 as follows.

Consider integers u0 and v0 satisfying .u0; v0/D .1; 0/ in Theorem 7.11. We know that
the manifold E.L.1; 0// is diffeomorphic to S1�F , where F is a disk with two holes.
For integersp1, p2, q1 and q2 satisfyingp1p2¤q1q2, the knotK0.1; 0; p1=q1; p2=q2/
is a torus knot in a lens space.

Cases (iii) and (vii) in Table 3 cover the cases .u; v/D .3;˙1/. By Corollary 7.12, for
p; q 2 Z with p > q > 0, the knot C.p;˙q; 2p�dp=qeqC 1; 3;˙1/ is a torus knot.

Theorem 7.14 The knot C.p; q; 1; u; v/ is the connected sum of the 2–bridge knot
b.u; v/ and the core knot C.p; q; 1; 1; 0/ of L.p; q0/, where qq0 � 1 .mod p/.

Proof By case (iv) in Theorem 7.11, the knot C.p; q; 1; u; v/ is identified with
K0.u; v; p=q; 1=0/, which is obtained by the p=q surgery on the meridian of b.u; v/.
By Corollary 3.9, the knot C.p; q; 1; 1; 0/ is the core knot, which is obtained by the
p=q surgery on one component of the Hopf link.

8 1–Bridge braid knots

In this section we describe another approach to construct constrained knots by Dehn
surgeries. Many results are based on [15, Section 3]. The main objects in this section
are 1–bridge braids, defined below.
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Definition 8.1 A knot in the solid torus S1 �D2 is called a 1–bridge braid if it is
isotopic to a union of two arcs 
 [ ı such that 
 � @.S1 �D2/ is braided, meaning
it is transverse to each meridian fptg � @D2, and ı is a bridge, meaning it is properly
embedded in some meridional disk fptg �D2.

We denote 1–bridge braids by B.w; b; t/ [13], where w > 0 is the winding number,
b 2 Œ0; w� 2� is the bridge width, and t 2 Œ1; w� 1� is the twist number. When b D 0,
the 1–bridge braid can be isotoped to lie on @.S1 �D2/. Let B.w;w � 1; t/ denote
B.w; 0; t C 1/.

As mentioned in [15, Section 3], after isotopy, the arc 
 can be lifted to a straight line (a
geodesic) in the universal cover R2 of @.S1�D2/, which is still denoted by 
 . Suppose
that 
 connects .0; 0/ to .t 0; w/, where t 0 2Q\ Œt; t C 1/. Let B.w; s.
// denote this
1–bridge braid, where s.
/D t 0=w is called the inverse slope of 
 . Suppose s D n=d
with gcd.n; d/ D 1. Suppose that the integer ni 2 Œ0; d/ satisfies ni � ni .mod d/.
Then b is given by the formula

b D #fi 2 Œ1; w� 1� j ni < nwg:

Definition 8.2 Suppose integers p and q satisfy 0 < q <p and gcd.p; q/D 1. Denote
the knot in L.p; q/ obtained by Dehn filling .S1�D2; B.w; s.
/// along the curve on
@.S1 �D2/ with slope p=q by B.w; s.
/; p; q/. This is called a 1–bridge braid knot.

Proposition 8.3 For a 1–bridge braid B.w; s.
//, suppose s represents the core of
the solid torus , and suppose t represents the meridian of the braid. For j 2 Œ1; w� 1�,
define

�j D

�
1 if nj < nw ;
0 if nj > nw :

Then the 2–variable Alexander polynomial of B.w; s.
// is

�.s; t/D

w�1X
iD0

si t
Pi

jD1 �j :

Proof Suppose H2 D S1 � D2 � N.ı/, which is diffeomorphic to a genus two
handlebody. Let D be the canceling disk of ı. There are two meridian disks fptg�@D2

and D of H2. Suppose their boundaries are ˛1 and ˛2, respectively, then suppose
that ˇ D @N.
/ and † D @H2. Then .†; f˛1; ˛2g; ˇ/ is a Heegaard diagram of
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Figure 14: Left: 1–bridge braid in R2. Right: simple intervals.

S1 �D2�N.B.w; s.
///. It induces a presentation of the fundamental group by the
method in Section 6:

�1.S
1
�D2�N.B.w; s.
////D hs; t j !t!�1t�1 D 1i;

where ! D st�1st�2s � � � st�w�1s. Then we can calculate the Alexander polynomial by
Fox calculus [42, Chapter II].

Let Fn be the nth Farey sequence, ie the sequence containing all rational numbers x=y
with 0� x � y � n and gcd.x; y/D 1, listed in the increasing order. For example:

(10) F1 D
�
0
1
; 1
1

�
; F2 D

�
0
1
; 1
2
; 1
1

�
; F3 D

�
0
1
; 1
3
; 1
2
; 2
3
; 1
1

�
; F4 D

�
0
1
; 1
4
; 1
3
; 1
2
; 2
3
; 3
4
; 1
1

�
:

For a fixed integer w, suppose f� and fC are successive terms in Fw�1. For any two
1–bridge braids with inverse slopes s2; s2 2 .f�; fC/ there is an isotopy between them
[15, Section 3]. If s.
/ 2 .f�; fC/, the interval S.
/D Œf�; fC� is called the simple
interval of 
 . Two examples are shown in Figure 14, left.

For integers w and t satisfying gcd.w; t/D 1, the 1–bridge braid knot B.w; t=w; p; q/
is the .w; t/ torus knot in L.p; q/ defined in Section 2. Suppose f˙ D n˙=d˙, where
n˙ and d˙ are integers satisfying gcd.n˙; d˙/ D 1. If d˙ jw, then the 1–bridge
braid knot B.w; s.
/; p; q/ with s.
/ 2 .f�; fC/ is the .1;�w=d˙/ cable knot of the
.d˙; nw=d˙/ torus knot in L.p; q/, respectively; see [15, Section 3.1]. The braids
B.!; s.
// in the above two cases are called torus braids and cable braids, respectively.
In other cases, the braid B.w; s.
// is called a strict braid.
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Theorem 8.4 The 1–bridge braid knot B.w; s.
/; p; q/ is a simple knot if and only if
q=p 2 S.
/. In this case , it is the simple knot S.p; q; wq/.

Proof The sufficient part follows from the discussion before [15, Theorem 3.2]. Indeed,
the arc 
 can be isotoped to have the inverse slope q=p (if q=pD f˙, then let the slope
of 
 be f˙� � for small � > 0). Then the knot is the union of two arcs of slopes 0 and
q=p, respectively. Then it is straightforward to check that the knot is a simple knot.
Note that the knot is homologous to wq of the core of the filling solid torus. Thus, the
knot is S.p; q; wq/.

The necessary part for a strict braid is shown by [15, Theorem 3.2]. When B.w; s.
//
is not strict, the proof of [15, Theorem 3.2] still applies because d˙ <w.

Let us consider special cases of simple knots obtained from Theorem 8.4. Consider
examples of Farey sequences in (10). For w � 3, all simple knots are from torus braids.
For w � 4, all simple knots are from either torus braids or cable braids. For w � 4, the
union of the simple intervals for torus braids and cable braids are shown in Figure 14,
right, where red arcs represent torus braids (they are Berge–Gabai knots of type I;
see [12; 3; 2]), blue arcs represent .1;˙2/ cable braids (they are Berge–Gabai knots
of type II), and green arcs represent other cable braids.

Proof of Theorem 1.9 By Theorem 8.4, simple knots are 1–bridge braid knots. For
constrained knots that are not simple knots, we show C.p; q; l; u; 1/ is equivalent to a 1–
bridge braid knot. The case C.p; q; l; u;�1/D C.p; q; l; u; u�1/ is the mirror image
of C.p;�q; l; u; 1/ by Proposition 3.4 so is also equivalent to a 1–bridge braid knot.

The proof is inspired by Figure 15, left. Suppose .T 2; ˛1; ˇ1; z; w/ is the standard
diagram of C.p; q; l; u; 1/. By definition, the constrained knot is the union of two
arcs a and b connecting z to w in T 2 � ˛1 and T 2 � ˇ1, pushed slightly into the
˛1–handlebody and the ˇ1–handlebody, respectively. The arc a can be chosen as a
horizontal one, and there are infinitely many choices of isotopy classes of b on T 2. Let

i denote different choices of b for i 2Z. All choices induce equivalent knots because
they are isotopic in the ˇ1–handlebody.

Since there is only one rainbow for ˇ1, the arc 
i does not have any rainbows. For a
large integer i , the arc 
i can be isotoped to a straight line. Then 
i is transverse to
each meridian disk of the ˛1–handlebody and the union of a and 
i is a 1–bridge braid
in the ˛1–handlebody. Hence C.p; q; l; u; 1/ is equivalent to a 1–bridge braid knot.
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Figure 15: Arcs 
i for C.5; 3; 2; 3; 1/ (left) and 
0 for C.5; 3; 2; 3; 1/ in R2 (right).

It is possible to find the explicit formula of B.w.
i /; s/ in Theorem 1.9 as follows:

Suppose lifts of w in the universal cover R2 of T 2 are lattice points of Z2 as in
Figure 15, right. Then domains in Figure 15, left, lie in the narrow bands with dotted
boundaries in Figure 15, right. From the parametrization of the constrained knot, we
know C.p; q; l; u; 1/ is in L.p; q0/, where qq0 � 1 .mod p/. Then the slope of the
dotted boundaries is p=q0. Indeed, these boundaries are ˇ0 in the standard diagram
.T 2; ˛0; ˇ0/ of L.p; q0/.

Suppose

�D
qq0� 1

p
and � D

�
0 if l C q � p;
1 if l C q > p:

Suppose 
0 is the first arc that can be straightened in the lift of T 2�ˇ1. Suppose Dj
for j 2 Z=pZ are regions in the new diagram C mentioned in Section 3. The part of

i that lies in

Sp

iDlC1
Di and the disk bounded by the unique rainbow of ˇ1 around a

basepoint is called the part in the generalized rainbow. There are two parts of 
i in
generalized rainbows related to z and w.
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The parameter w.
i / is the same as j
i \˛1j. Thus

w.
i /Dp.u�3/C2.p� lC1/C.qC l�1�p�/Cpi Dp.u�1��C i/Cq� lC1;

where p.u� 3/C 2.p� lC 1/ is from parts of 
i in the two generalized rainbows and
.qC l � 1� p�/C pi is from the remaining part. Any lift of w in the left band in
Figure 15 has the coordinates

.�Cnq0; qCnp/ for some n 2 Z:

The closest lift of w near 
i other than .0; 0/ has the coordinates

.�Cn0q
0; qCn0p/ where n0 D .u� 1/=2� �C i:

It lies at a lift of the region Dl that intersects the endpoint of the part of 
i in the
generalized rainbow related to z. Thus, the inverse slope of 
i is

�Cn0q
0

qCn0p
� r

for a small rational number r .

In practice, for given parameters .p; q; l; u; 1/, it is possible to determine if a constrained
knot C.p; q; l; u; 1/ is from a torus braid or a cable braid. For example, consider
.l; u; v/D .2p�dp=qeqC 1; 3; 1/ and i D 0. Then

� D 1; n0 D 0 and ! D

�
1C

�
p

q

��
q�p:

The inverse slope is �=q� r . Suppose x D .1Cdp=qe/�� q0. Since

�

q
D
xC q0

wCp
;

the rational number x=w is in the simple interval S.
0/, ie 
0 is isotopic to the arc
with inverse slope x=w. Thus C.p; q; 2p�dp=qeqC 1; 3; 1/ is a torus knot. This is
consistent with the example from the magic link L.1; 0/ mentioned in Section 7.

9 SnapPy manifolds

A compact orientable manifold M with torus boundary is called a (hyperbolic) 1–
cusped manifold if the interior of M admits a hyperbolic metric of finite volume. All
1–cusped manifolds that have ideal triangulations with at most nine ideal tetrahedra are
included in SnapPy [7]. They are called SnapPy manifolds. In this section we explain
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the strategy used to study the relation between 1–cusped manifolds and constrained
knots by computer program. Code and results can be found in [45].

SupposeM is a 1–cusped manifold and suppose 
 is a simple closed curve on @M . The
pair .M; 
/ is called an exceptional filling if Dehn filling along 
 gives a nonhyperbolic
manifold M.
/. For such .M; 
/, the core of the filling solid torus induces a knot
inM.
/. The induced knotK.M; 
/ is called a SnapPy knot ifM is a SnapPy manifold.
Dunfield provided a census of exceptional fillings for SnapPy manifolds [9]. In this
census, there are 44 487 exceptional fillings .M; 
/, covering 38 056 different SnapPy
manifolds, for which M.
/ is a lens space.

Suppose M.
/D L.p; q/ and m is the meridian of K DK.M; 
/. If H1.M IZ/Š Z

and it is generated by t , then �.K/ D �K.t/=.1 � t / [42]. The Alexander poly-
nomial only depends on M and can be found in SnapPy. The Euler characteristic
�.1HFK.M.
/;K// can be calculated by Lemma 5.7. Suppose it is

P
ai t

i . Since

H1.M IZ/=.Œm�/ŠH1.M.
/IZ/Š Z=pZ;

we know Œm�D tp . Then �.1HFK.M.
/;K// can be decomposed into p polynomialsX
i�i0 .mod p/

ai t
i for i0 2 Œ0; p/:

Suppose
Fi0.t/D

X
i�i0 .mod p/

ai t
.i�i0/=p

and let fi .t/ be images of Fi .t/ in ZŒt �=˙ .t/. The exceptional filling .M; 
/ has n
form(s) if the set ffi .t/ j i 2 Œ0; p/g has n elements.

If Fi .t/ is a monomial for any i , then .M; 
/ has 1 form. By Theorem 1.6, the Euler
characteristic must be the same as the simple knot in the same homology class. Such
an .M; 
/ is called a simple filling. It does not necessarily induce a simple knot since
Conjecture 1.7 has not been proven yet.

For l D 1, the constrained knot C.p; q; l; u; v/ is not hyperbolic since it is satellite by
Theorem 7.14. If Fi .t/ is symmetric, coefficients of Fi .t/ are alternating for any i , and
.M; 
/ has 2 forms, then K might be a constrained knot C.p; q0; l; u; v/, where l > 1,
u > 1 and q0 �˙q˙1 .mod p/. As in the proof of the necessary part of Theorem 1.2,
a tuple of virtual parameters .l; u; v/ can be calculated by Fi .�1/. Conversely, given
.p; q0; l; u; v/, the characteristic of the corresponding constrained knot is given by
Theorem 4.6. If �.1HFK.K// is equivalent to �.1HFK.C.p; q0; l; u; v/// as elements
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in ZŒH1.M IZ/� for virtual parameters .l; u; v/, then .M; 
/ is called a constrained
filling. If symmetrized Alexander polynomials of K and C.p; q0; l; u; v/ are the same,
then .M; 
/ is called a general constrained filling. If H1.M IZ/ŠZ, then .M; 
/ is a
constrained filling if and only it is a general constrained filling.

If TorsH1.M IZ/ is nontrivial, then the Turaev torsion �.M/ can be calculated by
a presentation of �1.M/. SnapPy provides a presentation of �1.M/ and the related
words of the preferred meridian and the preferred longitude (they are not necessarily
the same as the meridian and the longitude mentioned in Section 2). By the filling
slope from Dunfield’s census, the homology class Œm� 2H1.M IZ/ is obtained. The
algorithm described above also works and definitions also apply to this case.

The code in [45] constructs complements of constrained knots in SnapPy by functions in
the Twister package. Then the function M.identify() in SnapPy tells us if the manifold
with a constrained filling is indeed the complement of a constrained knot. Mirror
manifolds are not distinguished here.

In Dunfield’s census, there are 16 355 simple fillings and 8537 constrained fillings,
covering 15 262 and 8508 SnapPy manifolds, respectively. All 15 262 and 8421 of
8508 SnapPy manifolds are complements of simple knots and constrained knots,
respectively. There are 1838 manifolds that are both complements of simple knots
and constrained knots with u > 1. Thus, there are 21 845 SnapPy manifolds that are
complements of constrained knots in lens spaces. Other than these manifolds, there are
77 SnapPy manifolds that are complements of 2–bridge knots, which are special cases
of constrained knots.

The choice of the slope in a constrained filling is subtle. For example, suppose
M D m003, and 
1 D .�1; 1/ and 
2 D .0; 1/ in the basis from SnapPy. Then
both M.
1/ and M.
2/ are diffeomorphic to L.5; 4/ and M is the complement of
C.5; 4; 5; 3; 1/. Indeed, there is an isometry of M sending 
1 to 
2. Both M.
1/ and
M.
2/ induce the same knot, C.5; 4; 5; 3; 1/. All nine pairs of slopes in Dunfield’s
census with this subtlety are from isometries, except the case where M D m172,

1 D .0; 1/ and 
2 D .1; 1/. Manifolds M.
1/ and M.
2/ are oppositely oriented
copies of the same lens space. The first slope induces S.49; 18; 7/ and the second
induces S.49; 18; 21/ (up to mirror image), which are not equivalent. This example
is interesting in the study of cosmetic surgery [4]. To summarize: the SnapPy knots
induced by 15 262C 8421D 23 683 constrained fillings in the above discussion are all
constrained knots.
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There are 87 SnapPy manifolds with constrained fillings that are not complements of
constrained knots. For such a manifold either the constrained knot with corresponding
virtual parameters is not hyperbolic, or there is another SnapPy manifold which is
the complement of the constrained knot with the same parameters. For example, the
manifold m390 has a constrained filling .1; 0/ with virtual parameters .7; 4; 7; 5; 2/,
while E.C.7; 4; 7; 5; 2// is diffeomorphic to s090.

If TorsH1.M IZ/ is nontrivial, then there are 54 general constrained fillings that are
not constrained fillings. For example, manifolds M1 Dm400 and M2 Dm141 satisfy

jTorsH1.Mi IZ/j D 2 and �Mi
.t/D t5� t4C t2C t�2� t�4C t�5 for i D 1; 2;

and M1(1,1)Š M2.�1; 1/ Š L.18; 13/. Both manifolds have general constrained
fillings, and M2 Š E.C.18; 3; 18; 3; 1//. Calculation shows .M1; .1; 1// is not a
constrained filling, ie the Euler characteristic of the induced knot is different from that
of C.18; 3; 18; 3; 1/.

For the exceptional manifolds in Proposition 1.10, manifolds m206 and m370 have
exceptional fillings with 2 forms and have virtual parameters .l; u; v/D .5; 5; 2/ and
.8; 5; 2/, respectively. Unfortunately, both exceptional fillings are not even general
constrained fillings. The manifold m390 is discussed above. For other 5–manifolds
there is no lens space filling (or even S1�S2 filling). It is harder to obtain information
in Heegaard Floer theory.

In the rest of this section we discuss the ways to obtain the genus and the fiberness of a
knot. The genera and fiberness of Snappy knots can also be found in [45].

Definition 9.1 Suppose K is a knot in Y D L.p; q/ and suppose

H1.E.K/IZ/Š Z˚Z=dZŠ ht; ri.dr/:

By the excision theorem, Poincaré duality and the universal coefficient theorem,

H2.Y;KIZ/ŠH2.E.K/;@E.K/IZ/ŠH
1.E.K/IZ/ŠHom.H1.E.K/IZ/;Z/ŠZ:

Suppose S is a connected, oriented and properly embedded surface representing the
generator of H2.E.K/; @E.K/IZ/. It is called a Seifert surface of K. Let the genus
g.K/ and the Thurston norm x.ŒS�/ be the minimum values of g.S/ and ��.S/ among
all Seifert surfaces, respectively.
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Definition 9.2 For a homogeneous element x of 1HFK.Y;K/, suppose

gr.x/D at C br 2H1.E.K/IZ/:

Let gr0.x/ be the number a. The width of 1HFK.Y;K/ is the maximum value
of jgr0.x/ � gr0.y/j among all pairs of homogeneous elements .x; y/. Suppose
homogeneous elements x0 and y0 satisfy

width 1HFK.Y;K/D jgr0.x0/� gr0.y0/j:

Suppose H.x0/ is the subgroup of 1HFK.Y;K/ generated by homogeneous elements
x satisfying gr0.x/D gr0.x0/. The top rank of 1HFK.Y;K/ is dimQH.x0/˝Q.

Theorem 9.3 [21; 27] Consider Y , K and S as in Definition 9.1 such that E.K/ is
irreducible. Suppose m is the meridian of K. Then the width of 1HFK.Y;K/ equals
x.ŒS�/CjŒm� � Œ@S�j, where Œm� � Œ@S� is the algebraic intersection number on @E.K/.

Proposition 9.4 Let Y , K and S be as in Definition 9.1. Suppose E.K/ is irreducible.
Suppose .m; l/ is the regular basis of K. Let n be the minimum number of boundary
components of a Seifert surface. Then jŒm� � Œ@S�j D p=d and nD gcd.d; p=d/. Thus ,

x.ŒS�/D width.1HFK.Y;K//� p
d

and g.K/D 1C
1

2

�
x.ŒS�/�

p

d

�
:

Proof Suppose ŒK�DkŒb�, where Œb� is a generator ofH1.Y IZ/. Since d Dgcd.p; k/,
the order of ŒK� in H1.Y IZ/ is p=d . By Poincaré duality and the universal coefficient
theorem, we have

H2.E.K/IZ/ŠH
1.E.K/; @E.K/IZ/Š Hom.H1.E.K/; @E.K//;Z/D 0:

By the long exact sequence from .E.K/; @E.K//, the boundary map

@� WH2.E.K/; @E.K/IZ/!H1.@E.K/IZ/

is injective and the image of @� is the same as the kernel of the map

i� WH1.@E.K/IZ/!H1.E.K/IZ/:

Since H1.E.K/IZ/=.Œm�/ŠH1.Y IZ/, we have Œ@S�D˙.xŒm�Cp=dŒl�/ for some
x 2 Z. Then jŒm� � Œ@S�j D p=d and nD gcd.x; p=d/.

Let Œm� and Œl � also denote their images in H1.E.K/IZ/. By Lemma 5.2, we have

Œm�D˙
�
p

d

�
t C ar and gcd

�
p

d
; d; a

�
D 1:
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Suppose Œl �DytCzr for some y; z2Z. Since Œ@S�2Ker.i�/, we know xaC.p=d/z is
divisible by d . Suppose n0D gcd.d; p=d/. Then gcd.n0; a/D 1 and n0 j xaC.p=d/z.
Thus n0 j x and n0 jn. Suppose l� is the homological longitude. Then nŒl��D Œ@S�
and the image of Œl�� in H1.E.K/IZ/ is wr for some w 2 Z. Thus n j d and n jn0.
This induces nD n0.

Theorem 9.5 [21; 26] Consider Y , K and S as in Definition 9.1 such that E.K/ is
irreducible. If the top rank of 1HFK.Y;K/ is 1, then K is fibered with the fiber S .

Proof Suppose Y.S/ is the balanced sutured manifold .N;�/, whereN DY�Int.S�I /
and � D @S � I . Lemma 3.9 and the proof of Theorem 1.5 in [21] imply that the rank
of SFH.Y.S// is the same as the top rank of 1HFK.Y;K/. Then Y.S/ is a product
sutured manifold by [21, Theorem 9.7], which implies K is fibered with fiber S .
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Hierarchically hyperbolic spaces (HHSs) are a large class of spaces that provide
a unified framework for studying the mapping class group, right-angled Artin and
Coxeter groups, and many 3–manifold groups. We investigate strongly quasiconvex
subsets in this class and characterize them in terms of their contracting properties,
relative divergence, the coarse median structure, and the hierarchical structure itself.
Along the way, we obtain new tools to study HHSs, including two new equivalent
definitions of hierarchical quasiconvexity and a version of the bounded geodesic
image property for strongly quasiconvex subsets. Utilizing our characterization, we
prove that the hyperbolically embedded subgroups of hierarchically hyperbolic groups
are precisely those that are almost malnormal and strongly quasiconvex, producing a
new result in the case of the mapping class group. We also apply our characterization
to study strongly quasiconvex subsets in several specific examples of HHSs. We
show that while many commonly studied HHSs have the property that every strongly
quasiconvex subset is either hyperbolic or coarsely covers the entire space, right-
angled Coxeter groups exhibit a wide variety of strongly quasiconvex subsets.

20F65, 20F67

1. Introduction 1168
2. Coarse geometry 1177
3. Divergence of contracting subsets 1181
4. Hierarchically hyperbolic spaces 1186
5. Constructing hulls with hierarchy paths 1199
6. Characterization of strongly quasiconvex subsets in HHSs 1207
7. Strongly quasiconvex subsets in familiar examples 1227
8. Hyperbolically embedded subgroups of HHGs 1238
Appendix. Subsets with arbitrary reasonable lower relative divergence 1243
References 1245

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution
License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://dx.doi.org/10.2140/agt.2023.23.1167
http://www.ams.org/mathscinet/search/mscdoc.html?code=20F65, 20F67
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


1168 Jacob Russell, Davide Spriano and Hung Cong Tran

1 Introduction

From Gromov’s original work on hyperbolic groups to the resolution of the virtual Haken
conjecture, quasiconvex subsets have played a central role in the study of hyperbolic
metric spaces and groups; see Agol [2], Gromov [31; 32] and Wise [55]. A subset
Y is quasiconvex if every geodesic based on Y in contained in a fixed neighborhood
of Y . A central feature of quasiconvex subsets of hyperbolic spaces is their quasi-
isometry invariance, ie the image of a quasiconvex subset of a hyperbolic space under
a quasi-isometry is quasiconvex.

Outside of hyperbolic spaces, quasiconvexity fails to be a quasi-isometry invariant.
However, a strengthening of this definition to require “quasiconvexity with respect to
quasigeodesics” and not just geodesics is sufficient to ensure quasi-isometry invariance.
A subset Y of a quasigeodesic metric space X is strongly quasiconvex if every quasi-
geodesic based in Y is contained in a bounded neighborhood of Y , where the radius of
the neighborhood is determined by the quasigeodesic constants. Strong quasiconvexity
provides a “coarsification” of the classical definition of a convex subset that ensures
that the image of a strongly quasiconvex subset under a quasi-isometry will be strongly
quasiconvex, regardless of the geometry of the ambient space. Strongly quasiconvex
subsets are therefore an avenue to study the geometry of any space up to quasi-isometry.

The study of strongly quasiconvex geodesics in nonhyperbolic spaces (often called
Morse geodesics) has been a vibrant and fruitful area of research over the last decade;
for example, Arzhantseva, Cashen, Gruber and Hume [6], Charney and Sultan [19],
Drut,u, Mozes and Sapir [22] and Ol’shanskii, Osin and Sapir [44]. Recently, consid-
erable interest has arisen in understanding general strongly quasiconvex subsets in
nonhyperbolic spaces.

The third author studied strongly quasiconvex subsets and subgroups in [54] and showed
that many important properties of quasiconvex subsets in hyperbolic spaces persist
for strongly quasiconvex subsets of any geodesic metric space. These result have
found applications in understanding the cell stabilizers of groups acting on CAT(0)
cube complexes — see Groves and Manning [33] — and the splittings of groups over
codimension 1 subgroups — see Petrosyan [46]. Using the name Morse instead of
strongly quasiconvex, Genevois studied strongly quasiconvex subsets of CAT(0) cube
complexes in [28] and Kim studied strongly quasiconvex subgroups of the mapping
class groups in [38]. Strongly quasiconvex subgroup that are also hyperbolic were intro-
duced by Durham and Taylor as stable subgroups [25] and have received considerable
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study; for a sampling see Abbott, Behrstock and Durham [1], Antolín, Mj, Sisto and
Taylor [3], Aougab, Durham and Taylor [4], Behrstock [7], and Koberda, Mangahas
and Taylor [39].

In this paper, we are primarily interested in understanding the strongly quasiconvex
subsets of hierarchically hyperbolic spaces (HHSs). Introduced by Behrstock, Hagen
and Sisto in [9] and refined in [10], examples of hierarchically hyperbolic spaces include
hyperbolic spaces, the mapping class group of a surface, Teichmüller space with either
the Weil–Petersson or Teichmüller metrics, many cocompactly cubulated groups, and
the fundamental groups of 3–manifolds without Nil or Sol components. Important
consequences of hierarchical hyperbolicity include a Masur–Minsky style distance
formula [10], a quadratic isoperimetric inequality [10], restrictions on morphisms from
higher rank lattices (Haettel [34]), a largest acylindrical action on a hyperbolic space [1],
rank-rigidity and Tits alternative theorems (Durham, Hagen and Sisto [24]), control
over the top-dimensional quasiflats (Behrstock, Hagen and Sisto [11]), and bounds on
the asymptotic dimension (Durham, Hagen and Sisto [8]). The definition and much
of the theory of hierarchically hyperbolic spaces is inspired by the Masur–Minsky
subsurface projection machinery for the mapping class group. Our investigation is
therefore a natural extension of the problem purposed by Farb in [27, Problem 2.3.8]
to study convexity in the mapping class group.

Heuristically, a hierarchically hyperbolic space consists of a metric space X with an
associated collection of hyperbolic spaces S, such that for each space Z in S, there
is a projection map X ! Z. The philosophy of hierarchically hyperbolic spaces is
that one can study the coarse geometry of X by studying the projection of X to each
of the spaces in S. In this paper, we shall consider hierarchically hyperbolic spaces
satisfying the bounded domain dichotomy; a minor regularity condition requiring every
space in S to have either infinite or uniformly bounded diameter. The bounded domain
dichotomy simplifies the statements and proofs of our results while being satisfied by
all of the examples of hierarchically hyperbolic spaces given above and more broadly
by all hierarchically hyperbolic groups.

Equivalent conditions to being strongly quasiconvex The main goal of this paper is
to provide several equivalent conditions for a subset of a hierarchically hyperbolic space
to be strongly quasiconvex. A major theme is that several different notions of convexity
that coincide with being quasiconvex in a hyperbolic space, coincide with being strongly
quasiconvex in a hierarchically hyperbolic spaces. One such notion of convexity is

Algebraic & Geometric Topology, Volume 23 (2023)
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that of contracting subsets. A subset Y �X of a quasigeodesic space is contracting
if there exists a coarsely Lipschitz retraction r W X ! Y under which large balls far
from Y have images with uniformly bounded diameter. Being contracting generalizes
the strong contracting behavior of the closest point projection onto a convex subset of
the hyperbolic plane. In general, strongly quasiconvex subsets are not contracting (see
Example 3.8); however these two notions of convexity tend to agree in the presence of
nonpositive curvature. Indeed, it is a classical fact that a subset of a hyperbolic space
is strongly quasiconvex if and only if it is contracting; the same is true for subsets of a
CAT(0) cube complex [19; 28]. The first of our equivalent condition is to extend these
results to hierarchically hyperbolic spaces.

Theorem 1.1 (strongly quasiconvex and contracting are equivalent) Let X be a
hierarchically hyperbolic space with the bounded domain dichotomy. A subset Y �X
is strongly quasiconvex if and only if Y is contracting.

In [6], a different notion of contracting subset is considered, and it is shown that a
subset of a geodesic metric space is strongly quasiconvex if and only if the subset is
sublinearly contracting. Example 3.8 demonstrates that our definition of contracting
(Definition 2.10) is strictly stronger than sublinear contracting, but the two notions
agree in the setting of hierarchically hyperbolic spaces. Another key difference between
our definition of contracting and that in [6] is that we do not require the contracting
map r WX ! Y to be the closest point projection, but allow for any coarsely Lipschitz
retraction that has the contracting property. This has the advantage of turning contracting
into a quasi-isometry invariant directly from the definition and is crucial in allowing us
to utilize a naturally occurring retraction map in hierarchically hyperbolic spaces that
is far more tractable than the closest point projection.

The third notion of convexity considered is hierarchical quasiconvexity, which is
specific to hierarchically hyperbolic spaces. Introduced in [10] by Behrstock, Hagen
and Sisto, hierarchically quasiconvex subsets have played a central role in the study of
hierarchically hyperbolic space [8; 10; 11]. Notably, a hierarchical quasiconvex subset
of an HHS is itself an HHS. While hierarchically quasiconvex subsets are not always
strongly quasiconvex, we classify precisely when the two concepts agree. Strongly
quasiconvex subsets are exactly the hierarchically quasiconvex subsets that satisfy the
orthogonal projection dichotomy (Definition 6.2), which describes how the projections
of a strongly quasiconvex subset to each of the associated hyperbolic spaces must look.

Algebraic & Geometric Topology, Volume 23 (2023)
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Theorem 1.2 (strongly quasiconvex subsets are hierarchically hyperbolic) Let X
be a hierarchically hyperbolic space with the bounded domain dichotomy. A subset
Y �X is strongly quasiconvex if and only if Y is hierarchically quasiconvex and has
the orthogonal projection dichotomy. In particular , if Y �X is strongly quasiconvex ,
then Y is hierarchically hyperbolic.

Theorem 1.2 is truly the central result of this paper as it explains how the strongly
quasiconvex subsets interact with the projections defining the hierarchically hyperbolic
structure of the ambient space. Further, this characterization is complete as the theorem
fails whenever any of the hypotheses are weakened; see Remark 6.14.

In [1], Abbott, Behrstock and Durham give several equivalent conditions for quasi-
geodesics in a hierarchically hyperbolic space to be strongly quasiconvex and for a
map from a quasigeodesic space Y into a hierarchically hyperbolic space to be a stable
embedding; see Proposition 2.8. Theorems 1.1 and 1.2 generalize these results to
general strongly quasiconvex subsets and do not require the hypothesis of unbounded
products utilized by Abbott, Behrstock and Durham. This generalization to all strongly
quasiconvex subsets is essential to our applications in Sections 7 and 8.

Part of the proof of Theorem 1.2 involves studying hierarchically quasiconvex hulls in
hierarchically hyperbolic spaces. The hierarchically quasiconvex hull of a subset Y is
(coarsely) the smallest hierarchically quasiconvex set containing Y . We show that the
hull of any subset of a hierarchically hyperbolic space can be constructed using special
quasigeodesics called hierarchy paths (see Theorem 5.2 for the precise statement).

Theorem 1.3 (constructing hulls with hierarchy paths) If Y is a subset of a hier-
archically hyperbolic space X , then the hierarchically quasiconvex hull of Y can be
constructed in a uniformly finite number of steps by iteratively connecting points by
hierarchy paths.

This construction is reminiscent of the construction of quasiconvex hulls in hyperbolic
spaces by connecting pairs of points by geodesics and is similar to the join construction
of hulls in coarse median spaces presented by Bowditch in [16]. The main purpose of
Theorem 1.3 in this article is to establish that hierarchically quasiconvex subsets are
exactly the subsets that are “quasiconvex with respect to hierarchy paths”. However,
we expect this construction to have further applications in the study of hierarchically
hyperbolic spaces. Indeed, Hagen and Petyt have used this construction to build quasi-
isometries from some hierarchically hyperbolic groups to cube complexes [35], and
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in Section 5.1 we apply Theorem 1.3 to provide a characterization of hierarchical
quasiconvexity in terms of the coarse median structure on a hierarchically hyperbolic
space. This later result allows us to conclude that, in the setting of hierarchically
hyperbolic spaces, the coarse median hull constructed in [16] is coarsely equal to the
hierarchically quasiconvex hull; extending [16, Lemma 7.3] from finite to arbitrary
subsets.

Charney and Sultan proved that strongly quasiconvex geodesics in a CAT(0) space
are characterized by having at least quadratic lower divergence [19]. The third author
introduced a generalization of lower divergence to all subsets [53] and studied its
relationship with strong quasiconvexity [54]. If Y is a subset of the quasigeodesic
space X , the lower relative divergence of X with respect to Y (or the divergence of Y
in X ) is a family of functions that measures how efficiently one can travel in X while
avoiding Y . Building on the work in [54], we establish the following.

Theorem 1.4 (contracting subsets have at least quadratic divergence) Let X be a
quasigeodesic metric space. If Y �X is contracting , then the lower relative divergence
of X with respect to Y is at least quadratic. Further , if X is a hierarchically hyperbolic
space with the bounded domain dichotomy, then the lower relative divergence ofX with
respect to Y is at least quadratic if and only if Y is strongly quasiconvex (equivalently
if and only if Y is contracting).

Since the lower relative divergence of X with respect to Y agrees with Charney and
Sultan’s lower divergence when Y is a geodesic in X , Theorem 1.4 proves that strongly
quasiconvex geodesics (aka Morse geodesics) in hierarchically hyperbolic spaces with
the bounded domain dichotomy are also characterized by having at least quadratic
lower divergence.

After proving Theorems 1.1 through 1.4, we establish several HHS analogues of the
“bounded geodesic image property” of quasiconvex subsets of hyperbolic spaces. One
of these analogues is the following.

Theorem 1.5 Let Y be a strongly quasiconvex subset of a hierarchically hyperbolic
space X with the bounded domain dichotomy. There is a contracting map gY WX ! Y

such that for each � � 1 there exists a constant r� > 0 such that , for all x; y 2 X ,
if d.gY .x/; gY .y// > r�, then any �–hierarchy path from x to y must intersect the
r�–neighborhood of Y .
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Strongly quasiconvex subsets in specific examples After characterizing the strongly
quasiconvex subsets of hierarchically hyperbolic spaces, we apply our results to study
the strongly quasiconvex subsets of some of the most common examples of hierar-
chically hyperbolic spaces: the mapping class group, Teichmüller space, right-angled
Artin and Coxeter groups, and the fundamental groups of graph manifolds.

It has been shown that strongly quasiconvex subgroups of the mapping class group [38],
right-angled Artin groups with connected defining graph [28; 54], and certain CFS
right-angled Coxeter groups (Nguyen and Tran [43]) are either hyperbolic or finite-
index. We give sufficient conditions for a hierarchically hyperbolic space to have the
property that all its strongly quasiconvex subsets are either hyperbolic or coarsely
cover the entire space; see Proposition 7.2. Applying this criteria to specific examples
yields a new, unified proof of the work of Kim, Genevois, Nguyen and Tran as well
as the following new results for Teichmüller space, graph manifolds, and a class of
right-angled Coxeter groups that we call strongly CFS.

Corollary 1.6 The following HHSs have the property that every strongly quasiconvex
subset is either hyperbolic or coarsely covers the entire space:

(a) The Teichmüller space of a finite-type surface with the Teichmüller metric.

(b) The Teichmüller space of a finite-type surface of complexity at least 6 with the
Weil–Petersson metric.

(c) The mapping class group of an oriented , connected , finite type surface.

(d) A right-angled Artin group with connected defining graph

(e) A right-angled Coxeter group with strongly CFS defining graph.

(f) The fundamental group of a nongeometric graph manifold.

In particular , if H is a strongly quasiconvex subgroup in any of the groups (c)–(f), then
H is either stable or finite-index.

Stable subgroups of the mapping class group and right-angled Artin groups have been
studied extensively and have several interesting equivalent characterizations including
convex cocompactness in the mapping class group and purely loxodromic in right-
angled Artin groups [25; 39].

We also use HHS theory and Theorem 1.2 to give a new proof of [54, Theorem 1.11]
and [28, Proposition 4.9] characterizing when a special subgroup of a right-angled
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Coxeter group is strongly quasiconvex. We then utilize this characterization, along
with a construction of Behrstock, to demonstrate the large variety of different strongly
quasiconvex subsets that can be found in the class of CFS right-angled Coxeter groups.

Theorem 1.7 Every right-angled Coxeter group is an infinite-index strongly quasicon-
vex subgroup of some CFS right-angled Coxeter group.

Hyperbolically embedded subgroups As a final application of our characterization
of strongly quasiconvex subsets, we study the hyperbolically embedded subgroups of
hierarchically hyperbolic groups. Hyperbolically embedded subgroups are generaliza-
tions of peripheral subgroups in relatively hyperbolic groups (see Dahmani, Guirardel
and Osin [20]) and are a key component of studying acylindrically hyperbolic groups,
a large class of groups exhibiting hyperbolic-like behavior (see Osin [45]). Work of
Dahmani, Guirardel and Osin [20] and Sisto [50] showed that if a finite collection
of subgroups fHig is hyperbolically embedded in a finitely generated group G, then
fHig is an almost malnormal collection and each Hi is strongly quasiconvex. While
the converse of this statement is false in general (see the beginning of Section 8
for a counterexample), the converse does hold in the case of hyperbolic groups — see
Bowditch [13, Theorem 7.11] — and cocompactly cubulated groups [28, Theorem 6.31].
We prove the converse in the setting of hierarchically hyperbolic groups.

Theorem 1.8 (characterization of hyperbolically embedded subgroups) Let G be a
hierarchically hyperbolic group. A finite collection of subgroups fHig is hyperbolically
embedded in G if and only if fHig is an almost malnormal collection and each Hi is
strongly quasiconvex.

By [38, Theorem A], an infinite-index subgroup of the mapping class group of a surface
is strongly quasiconvex if and only if it is convex cocompact (this fact can also be
deduced from Corollary 1.6). Thus, as a specific case of Theorem 1.8, we have the
following new result for the mapping class group.

Corollary 1.9 If S is an oriented , connected , finite-type surface of complexity at
least 2 and fHig is a finite collection of subgroups of the mapping class group of S
then the following are equivalent :

� fHig is hyperbolically embedded.

� fHig is an almost malnormal collection and each Hi is strongly quasiconvex.

� fHig is an almost malnormal collection and each Hi is convex cocompact.
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1.1 Open questions

We believe that strongly quasiconvex subgroups are a rich area of study with many
interesting open questions both in the setting of hierarchically hyperbolic groups and
beyond. In light of Theorem 1.1, it is natural to wonder which results for strongly
quasiconvex subgroups of hyperbolic groups can be extended to strongly quasiconvex
subgroups of hierarchically hyperbolic groups (or even finitely generated groups). As
a starting point, one may aim to extend work of Gromov [31], Arzhantseva [5], and
Gitik [30] on combination theorems for strongly quasiconvex subgroups of hyperbolic
groups.

Question 1 Prove combination theorems for strongly quasiconvex subgroups of hierar-
chically hyperbolic groups (or even finitely generated groups). In particular , investigate
conditions guaranteeing that the subgroup generated by two strongly quasiconvex
subgroups , Q1 and Q2, is strongly quasiconvex and isomorphic to Q1 �Q1\Q2

Q2.

As strongly quasiconvex subsets are invariant under quasi-isometry, they have the
potential to play an important role in the quasi-isometric classification of hierarchically
hyperbolic spaces. The following would be an interesting first step in this direction.

Question 2 Provide necessary conditions for an HHS to have the property that all its
strongly quasiconvex subsets are either hyperbolic or coarsely cover the entire space.
Using defining graphs , characterize all right-angled Coxeter groups whose strongly
quasiconvex subsets are hyperbolic or coarsely cover the entire group.1

Looking beyond hierarchically hyperbolic spaces, we wonder about the possibilities of
understanding strongly quasiconvex subsets in other spaces with a notion of nonpositive
curvature. Specifically we ask the following.

Question 3 For what other spaces are strongly quasiconvex subsets contracting (in the
sense of Definition 2.10)?

Some of the first spaces one could consider are CAT(0) spaces, coarse median spaces,
and the outer automorphism groups of free groups. Sultan [52] shows that strongly
quasiconvex geodesics in CAT(0) spaces are always contracting. We conjecture the

1The case of right-angled Coxeter groups has been resolved by Genevois [29].
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same holds for all strongly quasiconvex subsets of a CAT(0) space.2 A possible starting
point for coarse median spaces could be the recently posted paper [16], in which
Bowditch constructs hulls for subsets of coarse median spaces and produces a number
of results similar to our work in Section 5.

Our proof of Theorem 1.8 rests strongly upon the equivalence between strongly qua-
siconvex and contracting subsets. One may then presume that any group that is an
answer to Question 3 is also an answer for the following question.

Question 4 For what other finitely generated groups are almost malnormal , strongly
quasiconvex subgroups hyperbolically embedded?

A long-standing open question in the study of quasiconvex subgroups of hyperbolic
group is whether or not finitely generated, almost malnormal subgroups of hyperbolic
groups must be quasiconvex. Accordingly, we ask the analogous question for the larger
class of hierarchically hyperbolic groups.

Question 5 Are finitely generated , almost malnormal subgroups of hierarchically
hyperbolic groups strongly quasiconvex?

Outline

In Section 2, we begin with the basic definitions and properties of strongly quasi-
convex subsets and the related notions of stability and contracting subsets of general
quasigeodesic spaces. In Section 3, we define lower relative divergence and study
the relationship between contracting subsets, strongly quasiconvex subsets, and lower
relative divergence in any quasigeodesic space. We move on to hierarchically hyperbolic
spaces in Section 4, where we give the definition of an HHS and detail the relevant
tools and constructions we will need from the theory. In Section 5, we explain how
to construct hierarchically quasiconvex hulls using hierarchy paths. As applications
of this construction, we give a characterization of hierarchically quasiconvex sets in
terms of the coarse median structure on the HHS and prove that strongly quasiconvex
subsets are also hierarchically quasiconvex. In Section 6, we state and prove our
equivalent characterizations of strongly quasiconvex subsets, finishing the proofs of
Theorems 1.1, 1.2, and 1.4. The remaining sections are devoted to applications of this
characterization. We give a generalization of the bounded geodesic image property

2This conjecture has been confirmed by Cashen [18].
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for strongly quasiconvex subsets in Section 6.3, study strongly quasiconvex subsets in
specific examples in Section 7, and characterize hyperbolically embedded subgroups
of HHGs in Section 8.
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2 Coarse geometry

2.1 Quasigeodesic spaces, conventions, and notation

This paper focuses on understanding the geometry of metric spaces up to quasi-isometry.
While many of the metric spaces we are interested in applying our results to are geodesic
metric spaces, many of the subspaces we will be studying will be quasigeodesic, but
not geodesic metric spaces. Thus, we will almost always assume our metric spaces are
quasigeodesic metric spaces.

Definition 2.1 A metric space X is a .K;L/–quasigeodesic metric space if for all
x; y 2X there exists a .K;L/–quasigeodesic 
 W Œa; b�!X with 
.a/Dx and 
.b/Dy.

Given a .K;L/–quasigeodesic metric space X , we can construct a geodesic metric
space quasi-isometric to X as follows: fix an �–separated net N � X and connect a
pair of points x; y 2 N by an edge of length d.x; y/ if d.x; y/ < 2�. The resulting
metric graph will be quasi-isometric to X . Since � can be chosen to depend only on K
and L, this graph can be constructed such that the quasi-isometry constants will also
depend only on K and L. When convenient, we will exploit this fact to reduce proofs
to the geodesic case.
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A particularly important collection of metric spaces in geometric group theory is
the class of ı–hyperbolic metric spaces, introduced by Gromov in [31; 32]. While
ı–hyperbolic spaces are usually required to be geodesic, the following is a direct
extension of the definition to the setting of quasigeodesic metric spaces.

Definition 2.2 A .K;L/–quasigeodesic metric space is ı–hyperbolic if for every
.K;L/–quasigeodesic triangle the ı–neighborhood of the union of any two of the edges
contains the third.

Gromov’s four-point condition can also be used to define a hyperbolic quasigeodesic
metric space; however as shown in [21, Example 11.36], this definition fails to be a
quasi-isometry invariant if the spaces are not geodesic. In contrast, Definition 2.2 is a
quasi-isometry invariant among quasigeodesic spaces. In particular, using the “guessing
geodesic” criterion, from [42, Theorem 3.15] or [15, Theorem 3.1], one can show that
a quasigeodesic space is hyperbolic in the sense of Definition 2.2 if and only if it is
quasi-isometric to a geodesic metric space that is hyperbolic in the usual sense.

When referring to a property defined by a parameter (eg ı–hyperbolic), we will often
suppress that parameter when its specific value is not needed. To reduce the prolifera-
tion of additive and multiplicative constants throughout this paper, we will adopt the
following notation.

Notation 2.3 Let A;B;K;L be real numbers. We write

A�K;L B if A�KBCL:

If A�K;L B and B �K;L A, we write A�K;L B .

We say two subsets of a metric space K–coarsely coincide if their Hausdorff distance
is at most K.

2.2 Strong quasiconvexity, contracting, and stability

The primary notion of convexity we will consider is the following notion of strong
quasiconvexity.

Definition 2.4 (strongly quasiconvex subset) A subset Y of a quasigeodesic metric
spaceX is strongly quasiconvex if there is a functionQ W Œ1;1/�Œ0;1/! Œ0;1/ such
that for every .K;L/–quasigeodesic 
 with endpoints in Y , we have 
 �NQ.K;L/.Y /.
We call the function Q the convexity gauge for Y .
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It follows directly from the definition that strong quasiconvexity is a quasi-isometry
invariant in the following sense.

Lemma 2.5 Let X and Z be a quasigeodesic metric spaces and f W X ! Z be a
.K;L/–quasi-isometry. If Y is a Q–strongly quasiconvex subset of X , then f .Y / is a
Q0–strongly quasiconvex subset of Z, with Q0 depending only on Q, K and L.

In the setting of hyperbolic spaces, strong quasiconvexity is equivalent to the weaker
condition of quasiconvexity.

Definition 2.6 A subset Y of a geodesic metric space X is quasiconvex if there exists
D � 0 such that for any geodesic 
 with endpoints on Y , we have 
 � ND.Y /. We
call the constant D the convexity constant for Y .

If Y is a Q–strongly quasiconvex subset of the .K;L/–quasigeodesic space X , then
any two points in Y can be joined by a .K;L/–quasigeodesic in X that lies uniformly
close to Y . Thus Y equipped with the metric inherited from X will be a .K 0; L0/–
quasigeodesic metric space where K 0 and L0 depend only on K, L, and Q. For the
rest of the paper, when discussing geometric properties (such as hyperbolicity) of
a strongly quasiconvex subset, we shall implicitly do so with respect to the metric
inherited from the ambient space. In particular, if f W X ! Z is a quasi-isometry
between quasigeodesic spaces and Y is a strongly quasiconvex subset of X , then Y is
quasi-isometric to f .Y /.

In [25], Durham and Taylor introduced the following related notion of convexity.

Definition 2.7 A quasi-isometric embedding ˆ from a quasigeodesic metric space Y
into a quasigeodesic metric space X is a stable embedding if there is a function
R W Œ1;1/� Œ0;1/! Œ0;1/ such that if ˛ and ˇ are two .K;L/–quasigeodesics of X
with the same endpoints in ˆ.Y /, then dHaus.˛; ˇ/�R.K;L/.

While the images of stable embeddings maintain many of the features of quasiconvex
subsets of hyperbolic spaces, the definition is highly restrictive. In particular, as the
next proposition records, stable embeddings must always be onto hyperbolic subsets.

Proposition 2.8 Let ˆ W Y !X be a quasi-isometric embedding from a quasigeodesic
metric space Y to a quasigeodesic metric space X . Then ˆ is a stable embedding if
and only if Y is hyperbolic and ˆ.Y / is strongly quasiconvex. In particular , if Y is a
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strongly quasiconvex subset of X , then the inclusion i W Y ,!X is a stable embedding
if and only if Y is hyperbolic with respect to the metric inherited from X .

In [54, Proposition 4.3], the third author proves the above proposition for the case of
geodesic spaces. The more general statement above follows immediately from the fact
that a quasigeodesic space is always quasi-isometric to a geodesic space plus the fact
that strong quasiconvexity, stability, and hyperbolicity are all quasi-isometry invariants.

One class of metric spaces we are particularly interested in are finitely generated
groups equipped with a word metric. In this setting we are particularly interested in
understanding the strongly quasiconvex and stable subgroups.

Definition 2.9 Let G be a finitely generated group equipped with a word metric from
some finite generating set. A subgroup H < G is a strongly quasiconvex subgroup
of G if H is a strongly quasiconvex subset of G with respect to the word metric on G.
A subgroup H <G is a stable subgroup if H is a strongly quasiconvex subgroup and
H is a hyperbolic group.

The above definition of stable subgroup is different than the one originally given in [25],
but it is equivalent by Proposition 2.8.

If H is a strongly quasiconvex subgroup of G, then H is also finitely generated and
undistorted in G. Further, since strongly quasiconvex is a quasi-isometry invariant,
being a strongly quasiconvex or a stable subgroup is independent of the choice of finite
generating set for G.

It is common in the literature to study various “contracting” properties of strongly
quasiconvex subsets. We compare strongly quasiconvex subsets with the following
notion of a contracting subset.

Definition 2.10 Let X be a quasigeodesic metric space and Y �X . A map g WX! Y

is said to be .A;D/–contracting for some A 2 .0; 1� and D � 1 if

(1) g is .D;D/–coarsely Lipschitz;

(2) for any y 2 Y , d.y; g.y//�D;

(3) for all x 2X , if we set RD Ad.x; Y /, then diam.g.BR.x///�D.

A subset Y is said to be .A;D/–contracting if there is an .A;D/–contracting map
from X to Y .
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The above definition is motivated by [40, Definition 2.2] and generalizes the usual
definition of contracting in hyperbolic and CAT(0) spaces to include maps that are not
the closest point projection. This is critical to our study of hierarchically hyperbolic
spaces in Section 6 and allows quasi-isometry invariance to be established directly
from the definition.

Lemma 2.11 Let X and Z be quasigeodesic metric spaces and f W X ! Z be a
.K;L/–quasi-isometry. If Y is an .A;D/–contracting subset of X , then f .Y / is an
.A0;D0/–contracting subset of Z, where A0 and D0 depend only on A, D, K and L.

In the setting of hyperbolic spaces, strongly quasiconvex subsets are contracting. The
contracting map will be the following coarse closest point projection: if X is a ı–
hyperbolic metric space and Y � X is Q–strongly quasiconvex, then there exist K
depending on ı and Q and a .1;K/–coarsely Lipschitz map pY WX ! Y such that for
all x 2X , d.x; pY .x//� d.x; Y /C 1. By an abuse of language, we will refer to pY
as the closest point projection of X onto Y . For any Q–strongly quasiconvex subset Y
of a ı–hyperbolic space, the map pY is .1;D/–contracting where D depends only on
Q and ı.

3 Divergence of contracting subsets

In this section we show that contracting subsets are always strongly quasiconvex.
Without some negative curvature hypotheses, such as being hierarchically hyperbolic,
the converse is not always true as we show in Example 3.8. Both of these statements
are proved using lower relative divergence which was originally introduced by the third
author in [53]. The lower relative divergence is a family of functions that measures
how efficiently one can travel in X while avoiding a subset Y ; see Figure 1.

Definition 3.1 (lower relative divergence) Let X be a geodesic space and Y � X .
For r > 0 we adopt the notation

(1) @Nr.Y /D fx 2X j d.x; Y /D rg,

(2) dr is the induced path metric on X �Nr.Y /.

The lower relative divergence of X with respect to Y (or the divergence of Y in X),
denoted by div.X; Y /, is the set of functions f�n� g defined as follows: For each
� 2 .0; 1�, integer n � 2 and r 2 .0;1/, if there is no pair of x1; x2 2 @Nr.Y /
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x1 x2

Y

r

�r

� nr

Figure 1: A sketch of a step in the construction of the function �n� . The points
x1; x2 2 @Nr .Y / are at least nr far apart, so we measure the distance between
x1 and x2 in the complement of the �r–neighborhood of Y . We then take the
infimum of these distances over all such pairs of points to obtain �n� .r/.

such that dr.x1; x2/ <1 and d.x1; x2/� nr , we define �n� .r/D1. Otherwise, we
define �n� .r/D inf d�r.x1; x2/ where the infimum is taken over all x1; x2 2 @Nr.Y /
such that dr.x1; x2/ <1 and d.x1; x2/� nr .

The lower relative divergence is often characterized by how the asymptotics of the
functions f�n� g compare to linear, polynomial and exponential functions. Such descrip-
tions are described in detail in [53]. We will restrict our attention to the following two
properties of div.X; Y /.

Definition 3.2 Let X be a geodesic metric space and Y �X .

The lower relative divergence of X with respect to Y is completely superlinear if there
exists n0� 3 such that for every �2 .0; 1� and C >0 the set fr 2 Œ0;1/ j �n0

� .r/�Crg

is bounded.

The lower relative divergence of X with respect to Y is at least quadratic if there exists
a positive integer M such that for every � 2 .0; 1� and n � 2 there exist C > 0 and
r0 > 0 such that �Mn

� .r/ > Cr2 for all r > r0.

The properties of being completely superlinear and at least quadratic are preserved
under quasi-isometry in the following sense.

Lemma 3.3 (consequence of [53, Proposition 4.9]) Let f W X ! Z be a quasi-
isometry between geodesic spaces. If Y �X and W �Z with dHaus.f .Y /;W / <1,
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then div.X; Y / is completely superlinear (resp. at least quadratic) if and only if
div.Z;W / is completely superlinear (resp. at least quadratic).

In [53], the lower relative divergence was defined only for geodesic ambient spaces;
however the definition can be extended to include quasigeodesic metric spaces as
follows.

Definition 3.4 (lower relative divergence in quasigeodesic spaces) Let X be a quasi-
geodesic space and Y � X . Let Z be a geodesic space and f W X ! Z be a quasi-
isometry. Then the lower relative divergence of X with respect to Y (or the divergence
of Y in X), denoted by div.X; Y /, is the lower relative divergence of Z with respect
to f .Y /.

We say div.X; Y / is completely superlinear (resp. at least quadratic) if div.Z; f .Y //
is completely superlinear (resp. at least quadratic).

While the definition of div.X; Y / in a quasigeodesic space depends on a choice of Z
and f , div.X; Y / being completely superlinear (resp. at least quadratic) is independent
of this choice by Lemma 3.3. In fact, while it will not be relevant for the content of this
paper, div.X; Y / is independent of the choice of Z and f in a much stronger sense.
In [53] the third author defined an equivalence relation � between the collections of
functions used to define the lower relative divergence. If f1 WX!Z1 and f2 WX!Z2

are two quasi-isometries withZ1 andZ2 geodesic spaces, then by [53, Proposition 4.9],
div.Z1; f1.Y //� div.Z2; f2.Y //. Thus div.X; Y / is well defined up to this notion of
equivalence.

The following proposition shows that contracting subsets always have at least quadratic
divergence.

Proposition 3.5 If X is a quasigeodesic space and Y is a contracting subset of X , then
the lower relative divergence of X with respect to Y is at least quadratic.

Proof Since every quasigeodesic space is quasi-isometric to a geodesic metric space,
Lemma 2.11 allows us to assume X is geodesic. Assume that Y is .A;D/–contracting
and let g WX ! Y be an .A;D/–contracting map. We first show that for all x 2X ,

d.x; g.x//� 2Dd.x; Y /C 4D:
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Let y 2 Y be such that d.x; y/ � d.x; Y /C 1. Then from the definition of .A;D/–
contracting,

d.x; g.x//� d.x; y/C d.y; g.y//C d.g.y/; g.x//

� d.x; Y /C 1CDCDd.x; y/CD

� .DC 1/d.x; Y /C 3DC 1

� 2Dd.x; Y /C 4D:

Now, let f�n� g be the lower relative divergence of X with respect to Y . We claim that
for each n� 4DC 2 and � 2 .0; 1�,

�n� .r/�

�
A�

4D

�
r2 for each r > 8D:

Let r > 8D, n be an integer greater than 4DC2, and � 2 .0; 1�. If �n� .r/D1, then the
above inequality is true. Otherwise, let x1; x2 2 @Nr.Y / be such that d.x1; x2/� nr
and dr.x1; x2/�1. The distances d.x1; g.x1// and d.x2; g.x2// are bounded above
by 2Dr C 4D. Therefore,

d.g.x1/; g.x2//� d.x1; x2/� d.x1; g.x1//� d.x2; g.x2//� nr � 4Dr � 8D � r:

Let 
 be a rectifiable path in N�r.Y / connecting x1 and x2 and R D A�r=2. There
exist t0 < t1 < t2 < � � �< tm�1 < tm such that 
.t0/D x1, 
.tm/D x2 and

1
2
R � `.
 jŒti�1;ti � /�R;

where `. � / denotes the length of a path. This implies

(1) `.
/D

mX
iD1

`.
 jŒti�1;ti � /�
1
2
mR:

Since g is an .A;D/–contracting map and d.
.ti�1/; 
.ti // < Ad.
.ti�1/; Y /, we
have d.g.
.ti�1//; g.
.ti ///�D for each 1� i �m. Thus

(2) d.g.x1/; g.x2//�

mX
iD1

d
�
g.
.ti�1//; g.
.ti //

�
�mD:

Since d.g.x1/; g.x2// � r , inequality (2) implies m � r=D. Combining this with
inequality (1), we have

`.
/� 1
2
mR �

�
A�

4D

�
r2:

Therefore,

�n� .r/�

�
A�

4D

�
r2
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for n� 4DC2, � 2 .0; 1�, and r > 8D. This implies that the lower relative divergence
of X with respect to Y is at least quadratic.

In [53], the third author classified strongly quasiconvex subsets in terms of their lower
relative divergence. This result continues to hold in the slightly more general setting of
quasigeodesic spaces.

Theorem 3.6 [54, Theorem 3.1] Let X be a quasigeodesic space and Y �X . Then
Y is strongly quasiconvex if and only if the lower relative divergence of X with respect
to Y is completely superlinear.

Proof Since every quasigeodesic metric space is quasi-isometric to a geodesic metric
space, the result follows immediately from [54, Theorem 1.5] when Y is infinite
diameter. If diam.A/D r0<1, then for all r > r0, @Nr0

.Y /D∅ and thus �n� .r/D1.
Hence div.X; Y / is completely superlinear and Y is strongly quasiconvex.

Proposition 3.5 and Theorem 3.6 combine to say that if a subset Y � X is .A;D/–
contracting, then Y is strongly quasiconvex. A direct proof of this result was shown
by Sultan for the case of quasigeodesics, but the proof extends to any subset without
modification [52, Lemma 3.3]. For completeness, we include a proof using the bound
on the lower relative divergence of Y from Proposition 3.5.

Corollary 3.7 Let X be a .K;L/–quasigeodesic space and Y � X . If Y is .A;D/–
contracting , then Y is Q–strongly quasiconvex where Q is determined by A, D, K
and L.

Proof Let Y be a .A;D/–contracting subset ofX . We first assume thatX is a geodesic
metric space. Let f�n� g be the lower relative divergence of X with respect to Y . The
proof of Proposition 3.5 shows that for each n� 4DC 2 and � 2 .0; 1�,

�n� .r/�

�
A�

4D

�
r2 for all r > 8D:

Therefore, by fixing nD n0 D 4DC 3 and �D 1,

�
n0

1 .r/�

�
A

4D

�
r2 for all r > 8D:

If 
 is a .�; �/–quasigeodesic with endpoints on Y , let mD inffB 2R j 
 �NB.Y /g.
The proof of [54, Proposition 3.1] establishes that if m is larger than a fixed constant
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J1

J2

J3
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Y

Figure 2: The space X of Example 3.8.

depending on � and �, then there exist constants C0 and C1 depending only on �, �
and n0, such that �n0

1 .C0m/� C1m. Thus,�
A

4D

�
.C0m/

2
� �

n0

1 .C0m/� C1m;

and hence m is bounded by some constant depending only on �, �, A and D. Thus,
there exists a function Q depending only on A and D such that Y is Q–strongly
quasiconvex.

When X is a .K;L/–quasigeodesic space, there exist a geodesic metric space Z and a
quasi-isometry f WX !Z with constants determined by K and L. The result follows
from the geodesic case by Lemmas 2.5 and 2.11.

We finish this section by adapting [6, Example 3.4] to give a counterexample to the
converse of Corollary 3.7.

Example 3.8 (strongly quasiconvex subsets need not be contracting) Let Y be a
ray with initial point x0 and let .xn/ be the sequence of points along Y such that for
each n � 1 the distance between xn�1 and xn is equal to n. We connect each pair
.xn�1; xn/ by an additional segment Jn of length n3=2 as shown in Figure 2. Let X be
the resulting geodesic space.

By Proposition A.2 the lower relative divergence of X with respect to Y is completely
superlinear, but not at least quadratic — heuristically, div.X; Y / behaves like r3=2. So
Y is strongly quasiconvex, but not contracting by Proposition 3.5 and Theorem 3.6.

4 Hierarchically hyperbolic spaces

We now recall the main definitions of hierarchically hyperbolic groups and spaces. The
main references, where not specified, are [9; 10]. While we give the entire definition
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of an HHS for completeness, we advise the reader that we shall only directly utilize
axioms (1), (2), (3), (5), (8), and (10) of Definition 4.1 in the remainder of the paper.

Definition 4.1 (hierarchically hyperbolic space) Let X be a quasigeodesic space. A
hierarchically hyperbolic space (HHS) structure on X consists of constants E � �0>0,
an index set S, and a set fCW jW 2Sg of geodesic ı–hyperbolic spaces .CW; dW /,
such that the following conditions are satisfied.

(1) Projections For each W 2S, there exists a projection �W W X ! 2CW such that
for all x 2 X , �W .x/¤∅, and diam.�W .x// < E. Moreover, there exists a K such
that each �W is .K;K/–coarsely Lipschitz and �W .X / is K–quasiconvex in CW .

(2) Nesting S is equipped with a partial order v, and either SD∅ or S contains a
unique v–maximal element; when V vW , we say V is nested in W . For each W 2S,
we denote by SW the set of V 2 S such that V v W . Moreover, for all V;W 2 S

with V ĹW there is a specified nonempty subset �VW � CW with diamCW .�VW /�E.
There is also a projection �WV W CW ! 2CV .

(3) Orthogonality S has a symmetric and antireflexive relation called orthogonality;
we write V ?W when V and W are orthogonal. Whenever V vW and W ? U , we
require that V ? U . Additionally, if V ?W , then V and W are not v–comparable.

(4) Containers For each T 2S and each U 2ST for which fV 2ST jV ?U g¤∅,
there exists a W 2ST �fT g, such that whenever V ?U and V v T , we have V vW .
We say W is a container for U in ST .

(5) Transversality and consistency If V;W 2 S are not orthogonal and neither
is nested in the other, then we say V and W are transverse, denoted by V t W . If
V tW , then there are nonempty sets �VW � CW and �WV � CV , each of diameter at
most E, satisfying

min
˚
dW .�W .x/; �

V
W /; dV .�V .x/; �

W
V /
	
� �0

for all x 2 X .

For V;W 2S satisfying V vW and for all x 2 X ,

min
˚
dW .�W .x/; �

V
W /; diamCV

�
�V .x/[ �

W
V .�W .x//

�	
� �0:

Finally, if U v V , then dW .�UW ; �
V
W / � �0 whenever W 2S satisfies either V ĹW

or V tW and W 6? U .
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(6) Finite complexity There exists n� 0 such that any set of pairwisev–comparable
elements has cardinality at most n.

(7) Large links There exists � � 1 such that the following holds. Let W 2S and
x; x0 2 X . There exist fUigiD1;:::;m �SW �fW g such that

m� �d
W
.�W .x/; �W .x

0//C �

and for all V 2SW � fW g, either V 2SUi
for some i , or dV .�V .x/; �V .x0// < E.

Also, dW .�W .x/; �
Ui

W /� �dW .�W .x/; �W .x
0//C � for each i .

(8) Bounded geodesic image For all W 2S, all V 2SW �fW g, and all geodesics

 of CW , either diam.�WV .
//�E or 
 \NE .�VW /¤∅.

(9) Partial realization There exists a constant ˛ with the following property. Let
fVj g be a family of pairwise orthogonal elements of S, and let pj 2 �Vj

.X /� CVj .
Then there exists x 2 X such that

� dVj
.x; pj /� ˛ for all j ;

� for each j and each V 2S with Vj v V , we have dV .x; �
Vj

V /� ˛;

� if W t Vj for some j , then dW .x; �
Vj

W /� ˛.

(10) Uniqueness For each � � 0, there exists �u D �u.�/ such that if x; y 2 X and
d.x; y/� �u, then there exists V 2S such that dV .x; y/� �.

We will refer to the elements of the index set S as domains and use S to denote the
entire HHS structure, including all the spaces, constants, projections and relations
defined above. A quasigeodesic space X is a hierarchically hyperbolic space (HHS) if
it admits a hierarchically hyperbolic structure. We will use the pair .X ;S/ to denote
X equipped with the hierarchically hyperbolic structure S.

If .X ;S/ is a hierarchically hyperbolic space and f W Y! X is a quasi-isometry, then
S is also an HHS structure for Y where the projections maps are defined by �W ıf
for each W 2S.

Many of the key examples of hierarchically hyperbolic spaces are finitely generated
groups where the Cayley graph admits an HHS structure. In the case where this structure
is preserved by the group action, we will call those groups hierarchically hyperbolic
groups.
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Definition 4.2 (hierarchically hyperbolic groups) Let G be a finitely generated group.
We say G is a hierarchically hyperbolic group (HHG) if:

(1) G with the word metric from a finite generating set admits an HHS structure S.

(2) There is a v, ? and t preserving action of G on S by bijections such that S
contains finitely many G orbits.

(3) For each W 2 S and g 2 G, there exists an isometry gW W CW ! C.gW /

satisfying the following for all V;W 2S and g; h 2G:
� The map .gh/W WCW !C.ghW / is equal to ghW ıhW WCW !C.ghW /.
� For each h 2G, gW .�W .h// and �gW .gh/ E–coarsely coincide.
� If V tW or V vW , then gW .�VW / and �gVgW E–coarsely coincide.
� If V v W and p 2 CW �NE .�VW /, then gW .�VW .p// and �gVgW .gW .p//
E–coarsely coincide.

The HHS structure S satisfying (1)–(3) is called a hierarchically hyperbolic group
(HHG) structure on G and we use .G;S/ to denote a group G equipped with a specific
HHG structure S.

Being a hierarchically hyperbolic group is independent of choice of generating set by
virtue of being able to pass the HHG structure through a G–equivariant quasi-isometry.
The reader may find it helpful to note that the conditions in (3) above can be summarized
by saying the diagrams

G G

CW C.gW /

g

�W �gW

gW

and
CV C.gV /

CW C.gW /

gV

�V
W �

gV
gW

gW

coarsely commute whenever V;U 2S are not orthogonal.

Notation 4.3 When writing distances in CW for some W 2S, we often simplify the
notation by suppressing the projection map �W , that is, given x; y 2X and p 2CW we
write dW .x; y/ for dW .�W .x/; �W .y// and dW .x; p/ for dW .�W .x/; p/. Note that
when we measure distance between a pair of sets (typically both of bounded diameter)
we are taking the minimum distance between the two sets. Given A� X and W 2S
we let �W .A/ denote

S
a2A �W .a/.

The guiding philosophy of hierarchically hyperbolic spaces is that one can “pull back”
the hyperbolic geometry of the various CW ’s to obtain features of negative curvature
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in the original space. The most prominent example of this philosophy is the following
distance formula which allows distances in the main space X to be approximated by
distances in the hyperbolic spaces.

Theorem 4.4 (the distance formula; [10, Theorem 4.4]) Let .X ;S/ be a hierarchi-
cally hyperbolic space. Then there exists �0 such that , for all � � �0, there exist K � 1
and L� 0 such that , for all x; y 2 X ,

dX .x; y/�K;L
X
U2S

ffdU .x; y/gg� ;

where ffN gg� DN if N � � and 0 otherwise.

The distance formula can be “distributed” over a sum of distances in the hyperbolic
spaces as described in the next lemma.

Lemma 4.5 [48, Lemma 2.26] Let .X ;S/ be an HHS and x0; x1; : : : ; xn be points
in X . If there exists C � 1 such that

Pn�1
iD0 dW .xi ; xiC1/ �C;C dW .x0; xn/ for all

W 2S, then there exist K depending only on C , n, and .X ;S/ such that
n�1X
iD0

dX .xi ; xiC1/�K;K dX .x0; xn/:

Part of the content of Theorem 4.4 is that for any pair of points in an HHS, there is only
a finite number of domains where that pair of points can have a large projection. More
precisely, if .X ;S/ is a hierarchically hyperbolic space, then a domain W 2S is said
to be �–relevant for x; y 2 X if dW .x; y/ > � . We denote the set of all �–relevant
domains for x; y 2 X by Rel� .x; y/. By Theorem 4.4, for all � � �0, Rel� .x; y/ has
finite cardinality. The relevant facts about Rel� .x; y/ that we will need are summarized
in the following proposition.

Proposition 4.6 [10, Lemma 2.2, Proposition 2.8, Lemma 2.14] Let .X ;S/ be a
hierarchically hyperbolic space and E � 0 be the maximum of all the constants in the
HHS structure for .X ;S/.

(1) There exists � > 0 such that if U � S does not contain a pair of transverse
domains , then jUj � �.

(2) If � � 100E and x; y 2 X , then the set Rel� .x; y/ can be partially ordered by

U � V () U D V or U t V and dV .�UV ; y/� �0:
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(3) If � � 100E and x; y 2 X , then there exists n � � such that Rel� .x; y/ can
be partitioned into n disjoint subsets U1; : : : ;Un where , for each i , Ui is totally
ordered with respect to the above ordering on Rel� .x; y/.

Hierarchically hyperbolic spaces contain a particularly nice class of quasigeodesics,
called hierarchy paths. Even when considering a geodesic HHS, it is often preferable
to work with hierarchy paths over geodesics.

Definition 4.7 (hierarchy path) For � � 1, a (not necessarily continuous) path

 W Œa; b�! X is a �–hierarchy path if

(1) 
 is a .�; �/–quasigeodesic,

(2) for each W 2S, the path �W ı 
 is an unparametrized .�; �/–quasigeodesic.

Recall that a map f W Œa; b�! X is an unparametrized .�; �/–quasigeodesic if there
exists an increasing function g W Œ0; `�! Œa; b� such that g.0/D a, g.`/D b, and f ıg
is a .�; �/–quasigeodesic of X .

While not every quasigeodesic in an HHS is a hierarchy path, every pair of points can
be connected by a hierarchy path as the next theorem describes.

Theorem 4.8 (existence of hierarchy paths; [10, Theorem 5.4]) Let .X ;S/ be a
hierarchically hyperbolic space. Then there exists a �0 such that any x; y 2 X are
joined by a �0–hierarchy path.

4.1 Hierarchical quasiconvexity and gate maps

In [10], Behrstock, Hagen and Sisto introduced hierarchical quasiconvexity, a notion
of convexity unique to hierarchically hyperbolic spaces.

Definition 4.9 (hierarchical quasiconvexity; [10, Definition 5.1]) Let .X ;S/ be
a hierarchically hyperbolic space and k W Œ0;1/ ! Œ0;1/. A subset Y � X is k–
hierarchically quasiconvex if:

(1) For all U 2 S, the projection �U .Y / is a k.0/–quasiconvex subspace of the
ı–hyperbolic space CU .

(2) For every � > 0 and every point x 2 X satisfying dU .x; Y /� � for all U 2S,
we have that dX .x; Y /� k.�/.
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While hierarchically quasiconvex subsets need not be strongly quasiconvex, they are
“quasiconvex with respect to hierarchy paths”. That is, if Y � X is k–hierarchically
quasiconvex then any �–hierarchy path with endpoints in Y must stay uniformly close
to Y . The existence of hierarchy paths (Theorem 4.8) therefore ensures that if Y
is equipped with the induced metric from X , then Y is also a quasigeodesic metric
space with constants depending only on .X ;S/ and k. In Section 5 we will prove that
hierarchically quasiconvex subsets are actually characterized by this “quasiconvexity
with respect to hierarchy paths”.

One of the key features of hierarchically quasiconvex subsets is that they are hierar-
chically hyperbolic spaces with the restriction of the HHS structure from the ambient
space.

Theorem 4.10 [10, Proposition 5.6] Let .X ;S/ be a hierarchically hyperbolic space
and Y �X be k–hierarchically quasiconvex. Then .Y;S/ is a hierarchically hyperbolic
space , where Y is equipped with the induced metric from X .

The following lemma is a special case of the powerful realization theorem for hierar-
chically hyperbolic spaces; see [10, Theorem 3.1]. It is often useful when verifying
that a subset is hierarchically quasiconvex.

Lemma 4.11 [10, Theorem 3.1, Lemma 5.3] For eachR�0 there is a ��0 such that
the following holds. Let Y �X be such that �W .Y / is R–quasiconvex for eachW 2S.
Let x 2 X and for each W 2S, let pW 2 �W .Y / satisfy dV .x; pW /� dW .x; Y /C 1.
Then there exists p 2 X such that dW .p; pW /� � for all W 2S.

Given a subset Y �X , there exists a hierarchically quasiconvex hull of Y which can be
thought of as the coarsely smallest hierarchically quasiconvex subset of X containing Y .

Definition 4.12 (hierarchically quasiconvex hull) For each set Y � X and W 2S,
let hullCW .Y / denote the convex hull of �W .Y / in CW , ie the union of all CW –
geodesics connecting pairs of points in �W .Y /. Given � � 0, let H� .Y / be the set of
all p 2 X such that, for each W 2S, the set �W .p/ lies at distance at most � from
hullCW .Y /. Note that Y �H� .Y /.

Lemma 4.13 [10, Lemma 6.2] Let .X ;S/ be an HHS. There exists �0 such that for
each � � �0 there exists k W Œ0;1/! Œ0;1/ such that for each Y � X , the hull H� .Y /
is k–hierarchically quasiconvex.
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In Section 5 we strengthen the analogy between hierarchically quasiconvex hulls and
convex hulls in hyperbolic spaces, by showing that H� .Y / can be constructed by
iteratively connecting points in Y by hierarchy paths.

One of the important properties of hierarchically quasiconvex subsets is the existence
of a gate map which retracts the entire space onto the hierarchically quasiconvex subset.
The gate map is a generalization to hierarchically hyperbolic spaces of the closest point
projection, p, defined at the end of Section 2.

Lemma 4.14 (existence of coarse gates; [10, Lemma 5.5]) If .X ;S/ is a hierarchi-
cally hyperbolic space and Y � X is k–hierarchically quasiconvex and nonempty , then
there exists a gate map gY W X ! Y such that

(1) gY is .K;K/–coarsely Lipschitz;

(2) for all y 2 Y , dX .y; gY .y//�K;

(3) for all x 2 X and U 2S, dU .gY .x/; p�U .Y /.�U .x///�K;

where K depends only on k and S.

While the gate map need not be the closest point projection, it approximates the closest
point projection with a multiplicative and additive error.

Lemma 4.15 [11, Lemma 1.27] Let Y be a k–hierarchically quasiconvex subset of
the HHS .X ;S/ and x 2 X . If y 2 Y is a point such that dX .x; y/ � dX .x; Y /C 1,
then dX .x; y/� dX .x; gY .x// where the constants depend only on k and S.

In the case of hierarchically hyperbolic groups, the gate is also coarsely equivariant.

Lemma 4.16 (coarse equivariance of gate maps) Let .G;S/ be a hierarchically
hyperbolic group and let Y be a k–hierarchically quasiconvex subspace of G. There
exists K depending on .G;S/ and k such that , for every g; x 2G,

dG.ggY .x/; ggY .gx//�K:

Proof Since G acts on the disjoint union of the CW ’s by isometries, Lemma 4.14 and
the definition of HHG provide a uniform bound on dW

�
�W .ggY .x//; �W .ggY .gx//

�
for all W 2 S, which depends only on S, k, and the choice of finite generating set
for G. The result now follows from the distance formula (Theorem 4.4).
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The following lemma explains the nice behavior of the gates of hierarchically quasicon-
vex sets onto each other. The lemma is stated in slightly more generality than presented
in [11], but the more general statement is implicit in the proof of [11, Lemma 1.20].
The following notation will simplify the exposition.

Notation 4.17 If S is an HHS structure on a metric space X and H�S we use H?

to denote the set fW 2S j 8H 2H;H ?W g. In particular, S?U D fW 2S jU ?W g
for any U 2S. Note, if HD∅, then H? DS as every domain in S would vacuously
satisfy the condition of the set.

Theorem 4.18 (the bridge theorem; [11, Lemma 1.20]) Let .X ;S/ be a hierarchi-
cally hyperbolic space and �0 be as in Lemma 4.13. For every k and � � �0, there exist
k0 W Œ0;1/! Œ0;1/ and K0 � 0 such that , for any k–hierarchically quasiconvex sets
A and B:

(1) gA.B/ is k0–hierarchically quasiconvex.

(2) The composition gA ı gB jgA.B/ is bounded distance from the identity map
gA.B/! gA.B/.

(3) For any a 2 gA.B/ and b D gB.a/, we have a .K0; K0/–quasi-isometric em-
bedding f W gA.B/�H� .a; b/! X with image H� .gA.B/[ gB.A// such that
f .gA.B/� fbg/ K0–coarsely coincides with gB.A/.

Let K �K0 and HD fU 2S W diam
�
�U .gA.B//

�
>Kg.

(4) For each p; q 2 gA.B/ and t 2H� .a; b/,

RelK.f .p; t/; f .q; t//�H:

(5) For each p 2 gA.B/ and t1; t2 2H� .a; b/,

RelK.f .p; t1/; f .p; t2//�H?:

(6) For each p 2 A; q 2 B ,

d.p; q/

�K0;K0
d.p; gA.B//C d.q; gB.A//C d.A;B/C d.ggB.A/.p/; ggB.A/.q//:

We name Theorem 4.18 the bridge theorem as one should think of the set

H� .gA.B/[ gB.A//

as a “bridge” between A and B: in order to efficiently travel between A and B one
needs to always traverse this bridge. The bridge theorem, along with the construction of
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the gate map and hulls produces the following fact about the set H� .gA.B/[ gB.A//

which we will need in Section 8.

Lemma 4.19 For every k and � � �0, there existsK such that for any k–hierarchically
quasiconvex sets A and B , the sets gB

�
H� .gA.B/[ gB.A//

�
and gB.A/ K–coarsely

coincide.

We finish this section by recalling the construction of standard product regions intro-
duced in [9, Section 13] and studied further in [10]. For what follows, fix a hierarchically
hyperbolic space .X ;S/.

Definition 4.20 (nested partial tuple FU ) Recall SU D fV 2S j V v U g. Define
FU to be the set of tuples in

Q
V 2SU

2CV satisfying the conditions of Definition 4.1(5)
for all V;W 2SU with V 6?W .

Definition 4.21 (orthogonal partial tuple EU ) Recall S?U DfV 2S jV ?U g. Define
EU to be the set of tuples in

Q
V 2S?U

2CV satisfying the conditions of Definition 4.1(5)
for all V;W 2S?U with V 6?W .

Definition 4.22 (product regions in X ) Let U 2S. There exists � depending only
on S such that for each .aV /V 2SU

2 FU and .bV /V 2S?U 2 EU , there exists x 2 X
such that for each V 2S:

� If V v U , then dV .x; aV /� �.

� If V ? U , then dV .x; bV /� �.

� If V t U or U v V , then dV .x; �UV /� �.

Thus there is a map �U WFU �EU !X , whose image is k–hierarchically quasiconvex
where k only depends on S. We call �U .FU �EU / the product region for U and
denote it by PU .

For any e 2EU and f 2 FU , the sets �U .FU � feg/ and �U .ff g �EU / will also be
hierarchically quasiconvex; thus EU and FU are quasigeodesic metric spaces when
equipped with the subspace metric from �U .FU � feg/ and �U .ff g �FU /. While
these metrics depend on the choice of e and f , the distance formula (Theorem 4.4)
ensures that the different choices are all uniformly quasi-isometric.

The definition of the product regions ensure that they are not only uniformly hierarchi-
cally quasiconvex, but have easily described gate maps.
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Lemma 4.23 [11, Section 5] Let .X ;S/ be an HHS. The exists k W Œ0;1/! Œ0;1/

such that for all U 2 S, the product region PU is k–hierarchically quasiconvex.
Moreover , there exists K � 0 depending only on .X ;S/ such that for all x 2 X ,

� dV .gPU
.x/; x/�K if V v U or V ? U ,

� dV .gPU
.x/; �UV /�K if V t U or U Ĺ V .

A version of our last result appeared as [10, Proposition 5.17]. However, that result
contains an error in both its statement and its proof.3 We provide a corrected statement
and proof.

Proposition 4.24 (active subpaths; corrected version of [10, Proposition 5.17]) Let
.X ;S/ be an HHS. There exist constants D; �; � � 1 such that for all x; y 2 X , if
dU .x; y/ > D for some U 2 S, then there exists a �–hierarchy path 
 W Œa; b�! X
joining x and y that has a subpath ˛ D 
 jŒa1;b1� such that

(1) ˛ �N�.PU /;

(2) the diameters of �W .
.Œa; a1�// and �W .
.Œb1; b�// are both bounded by �, for
all W 2SU [S?U ;

(3) for any point p 2 
.Œa; a1�/ or q 2 
.Œb1; b�/,

dX .gPU
.x/; gPU

.p//� � and dX .gPU
.y/; gPU

.q//� �:

We call ˛ the active subpath of 
 for U .

Proof Let ı, E, and �0 be the constants appearing in the HHS structure S for X . Let
x0DgPU

.x/ and y0DgPU
.y/. Let �0�1 be the constant such that every pair of points

in X can be joined by a �0–hierarchy path and � be the constant from Definition 4.22.
Both � and �0 depend only on .X ;S/.

Let 
0, 
1, and 
2 be �0–hierarchy paths connecting the pairs .x; x0/, .x0; y0/, and
.y0; y/ respectively. Let 
 W Œa; b�!X be the concatenation 
0�
1�
2. We first verify
that the path 
 satisfies the requirements of the proposition with ˛D 
1 and then verify
that 
 is in fact a hierarchy path with constant depending only on the HHS .X ;S/.

3The error in the proof of [10, Proposition 5.17] is the incorrect claim that V v U D)PV �PU . The
error in the statement is that all hierarchy paths have the stated properties instead of there existing at least
one hierarchy path with the stated properties.
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For the first item, let z 2 ˛ D 
1. By Lemma 4.23, �W .gPU
.z// and �W .z/ are

uniformly close for all W 2SU [S?U . If W …SU [S?U , then �W .x0/, �W .y0/, and
�W .gPU

.z// are all �–close to �UW because x0, y0, and gPU
.z/ are all in PU . Since

�W ı 
1 is an unparametrized �0–quasigeodesic, �W .z/ must also be uniformly close
to �UW . Therefore, dW .gPU

.z/; z/ is uniformly bounded for all W …SU [S?U . Since
dW .gPU

.z/; z/ is uniformly bounded for allW 2S, the distance formula (Theorem 4.4)
provides �1 � 0 such that 
1 �N�.PU /.

For the second item, if W 2 SU [ S?U , then dW .x; x0/ and dW .y0; y/ are both
uniformly bounded by Lemma 4.23. Since �W ı 
0 and �W ı 
2 are unparametrized
.�0; �0/–quasigeodesics, there is a constant �2 � 0 satisfying the second item.

We prove the third item for p 2 
0 as the case q 2 
2 is identical. By the second item,
dW .x; p/ � �2 for all W 2 SU [S?U . Since dW .x; gPU

.x// and dW .p; gPU
.p//

are uniformly bounded for all W 2 SU [S?U as well (Lemma 4.23), we have that
dW .gPU

.x/; gPU
.p// has a bound depending only on .X ;S/ for all W 2SU [S?U .

If instead U ĹW or W tU , then �W .gPU
.x// and �W .gPU

.p// are both uniformly
close of �UW as they are points in the product region PU . Hence dW .gPU

.x/; gPU
.p//

is uniformly bounded for all W 2 S. Thus, the distance formula provides �3 � 0
depending only on S such that dX .gPU

.x/; gPU
.p//� �3.

Set � D maxf�1; �2; �3g. This depends only on .X ;S/ since each of the �i depend
only on .X ;S/. It remains to show that 
 is a hierarchy path with constant depending
only on .X ;S/. For this we need to assume that dU .x; y/ > 10.EC �0/.

We first show that �W ı 
 is a uniform unparametrized quasigeodesic for each W 2S.

� If W 2 SU [ S?U , then diam.�W .
0// � �, diam.�W .
2// � �, and �W ı 
1
is an unparametrized .�0; �0/–quasigeodesic. Hence �W ı 
 is an unparametrized
.�0; �0C2�/–quasigeodesic.

� If U ĹW , then by the bounded geodesic image axiom (8) any CW –geodesic from
�W .x/ to �W .y/ must intersect the E–neighborhood of �UW . Since all of �W ı 
1
is contained in N�0.EC�/C�0

.�UW /, the hyperbolicity of CW implies that both of
the unparametrized quasigeodesics �W ı 
0 and �W ı 
2 are contained in a regular
neighborhood of a CW –geodesic from �W .x/ to �W .y/. Thus �W ı 
 will be a
unparametrized quasigeodesic with constants depending on �0, �, E, and ı.

� If W t U , then since dU .x; y/ > 10.EC �0/, the consistency axiom (5) ensures
that at most one of dW .x; �UW / and dW .y; �UW / are larger than �0. Without loss of
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generality, assume dW .x; �UW / � �0. Since �W .x0/ and �W .y0/ are �–close to �UW
and 
0 and 
1 are both �0–hierarchy paths, the diameter of �W .
0/[ �W .
1/ is at
most

2�0.3EC�C �0/C 2�0:

This makes �W ı 
 an unparametrized .�0; 2�0.3EC�C�0/C3�0/–quasigeodesic.

The above shows that there exists �0 � 1 depending only on .X ;S/ such that �W ı 

is an unparametrized .�0; �0/–quasigeodesic for all W 2S.

Finally we show that 
 W Œa; b�! X is a quasigeodesic with constants depending only
on .X ;S/. Let t; s 2 Œa; b� and let uD 
.t/ and v D 
.s/. Since 
0, 
1 and 
2 are all
.�0; �0/–quasigeodesics, we can assume u and v do not lie in the same 
i . Without
loss of generality we have two cases.

In the first case, u 2 
0 and v 2 
1. Since �W ı 
 is a uniform unparametrized
quasigeodesic, there exists C � 1 such that

dW .u; x
0/C dW .x

0; v/�C;C dW .u; v/

for all W 2S. By Lemma 4.5, there is a K � 1 depending only on .X ;S/ such that

dX .u; x
0/C dX .x

0; v/�K;K dX .u; v/;

which implies

1

�0K
jt � sj �

2�0
K
�K � dX .
.t/; 
.s//� �0jt � sjC 2�0

because 
0 and 
1 are .�0; �0/–quasigeodesics.

The second case is when u 2 
0 and v 2 
2. The proof is the same as the first case
using the fact that

dW .u; x
0/C dW .x

0; y0/C dW .y
0; v/� dW .u; v/

for all W 2S instead. Hence 
 is a quasigeodesic with constants depending only on
.X ;S/, as desired.

4.2 Summary of constants

Before continuing we summarize the constants associated to the hierarchically hyper-
bolic space .X ;S/ that we will utilize frequently.

� ı is the hyperbolicity constant of CW for each W 2S.
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� �0 is the consistency constant from axiom (5).

� E is the bound on projections in axioms (1), (5) and (8).

� �0 is the minimal threshold constant from the distance formula (Theorem 4.4).

� �0 is the constant such that any two points in X can be joined by a �0–hierarchy
path (Theorem 4.8).

� � is the constant from Proposition 4.6 which bounds the cardinality of any subset
of S that does not contain a pair of transverse domains.

� �0 is the constant such that for all � � �0 and Y � X , H� .Y / is hierarchically
quasiconvex (Lemma 4.13).

We can and shall assume that E � �0 and E � ı. When we say that a quantity depends
on S, we mean that it depends on any of the above constants.

5 Constructing hulls with hierarchy paths

In this section, we study hierarchically quasiconvex hulls in hierarchically hyperbolic
spaces. The main result is Theorem 5.2 which says that the hierarchically quasiconvex
hull can be constructed by iteratively connecting points with hierarchy paths. While
our motivation for such a construction is to establish that strongly quasiconvex subsets
are hierarchically quasiconvex (Proposition 5.7) we believe it will have many other
applications. At the end of the section, we give an example of such an application by
characterizing hierarchical quasiconvexity in terms of the coarse median structure on a
hierarchically hyperbolic space.

Definition 5.1 (hierarchy path hull) Let Y be a subset of the hierarchically hyperbolic
space .X ;S/. Define P1

�
.Y / to be the union of all �–hierarchy paths between points

in Y . Inductively define Pn
�
.Y /D P1

�
.Pn�1
�

.Y // for all integers n� 2. For all �� �0
and n� 1, Pn

�
.Y /¤∅.

Theorem 5.2 (constructing hulls using hierarchy paths) Let .X ;S/ be a hierarchi-
cally hyperbolic space andN D 2�, where � is as in Proposition 4.6. There exist N� � �0
and N�� �0 depending only on S such that for all � � N� , �� N� and Y � X ,

dHaus.PN� .Y /;H� .Y // < D

where D depends only on � , �, and S.
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In a recent paper, Bowditch [16] independently constructs hulls in coarse medians spaces
in a similar manner to the construction in Definition 5.1. Hierarchically hyperbolic
spaces are one of the primary examples of coarse median spaces and [16, Lemma 7.3]
establishes a version of Theorem 5.2 for finite subsets of hierarchically hyperbolic
spaces. At the end of this section we show that Bowditch’s coarse median hull is
coarsely equal to the hierarchical quasiconvex hull for any subset of an HHS. This
is achieved by using Theorem 5.2 to give a new characterization of the hierarchical
quasiconvexity in terms of the coarse median structure on a hierarchically hyperbolic
space.

The number of iterations of connecting pairs of points by hierarchy paths required
by Theorem 5.2 is unlikely to be optimal. However, a simple example illustrates that
the number of iteration required must increase with the maximal number of pairwise
orthogonal domains. Consider the group Zn with the standard HHG structure. Let Y
be the union of the positive halves of each of the coordinate axes. The hull H� .Y / then
coarsely coincides with the positive orthant of Zn, but Pm

�
.Y / coarsely coincides with

the set of points in the positive orthant where at most 2m coordinates are nonzero. Thus,
the number of iterations of P1

�
. � / required to achieve H� .Y / will be approximately

log.n/.

For the remainder of this section, let .X ;S/ be a hierarchically hyperbolic space and
Y � X . Recall, there exist �0 and �0 such that for all � � �0, H� .Y / is hierarchically
quasiconvex (Lemma 4.13) and any two points in X can be joined by a �0–hierarchy
path (Theorem 4.8).

The following lemma can be found in [10, Proposition 6.4.4] and says for sufficiently
large � , all hierarchically quasiconvex hulls coarsely coincide. We record the proof for
completeness.

Lemma 5.3 [10, Proposition 6.4.4] There exists N� � �0 depending only on S, such
that for all �1; �2 � N� ,

dHaus.H�1
.Y /;H�2

.Y //�D;

where D depends on �1 and �2.

Proof Without loss of generality, assume �0 < N� � �1 < �2 with N� to be deter-
mined below. By definition, H�1

.Y / �H�2
.Y /. Let x 2H�2

.Y /. For each U 2 S,
�U .H�0

.Y // is K–quasiconvex, where K depends on �0 and ı. Let yU be the closest
point projection of �U .x/ onto �U .H�0

.Y //. By Lemma 4.11, there exist y 2 X
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and � 0 depending on �0 and S such that dU .�U .y/; yU / � � 0. In particular, setting
N� D �0C �

0, we have y 2H N� .Y /�H�1
.Y /. To bound dX .x; y/, we will uniformly

bound dU .x; yU / in terms of �2 for every U 2 S; the bound on dX .x; y/ will then
follow from the distance formula (Theorem 4.4). By the definition of yU we have
dU .x; yU /�dU .x; �U .H�0

.Y ///C1. Since �U .H�0
.Y // is quasiconvex, contains Y ,

and is contained in the �0–neighborhood of hullCU .Y /, there exists a D0 depending
only on S such that hullCU .Y /�ND0.�U .H�0

.Y ///. Since dU .x; hullCU .Y //� �2,

dU .x; yU /� dU .x; �U .H�0
.Y ///C 1� �2CD

0
C 1;

providing the result.

For the remainder of this section, N� will denote the constant from Lemma 5.3.

To prove Theorem 5.2 we will show for sufficiently large � and �, we can find � 0 > �
and �0 > � such that

PN� .Y /�H� 0.Y / and H� .Y /� PN�0 .Y /:

Theorem 5.2 will then follow by applying Lemma 5.3. The inclusion PN
�
.Y /�H� 0.Y /

is the following direct consequence of hierarchical quasiconvexity.

Lemma 5.4 For each �; n� 1, there exists � � N� such that for any Y � X ,

Pn�.Y /�H� .Y /:

Proof The nD 1 case follows directly from the definition of H� .Y / and hierarchy
paths. We can proceed by induction on n and assume there exists � 0 � N� such that
Pn�1
�

.Y / � H� 0.Y /. Let x 2 Pn
�
.Y /. There exist y1; y2 2 Pn�1

�
.Y / such that x

is on a �–hierarchy path from y1 to y2. For each U 2 S, �U .yi / is within � 0 of
hullCU .Y /. Therefore, quasiconvexity of hullCU .Y / in CU guarantees there exists a
� depending only on � and � 0 (which in turn depends on n) such that �U .x/ is within
� of hullCU .Y / and thus x 2H� .Y /.

The other inclusion, H� .Y / � PN
�0
.Y /, requires two main steps. First we prove that

if x 2 H� .Y /, then there exists at most 2�C 1 points, x1; : : : ; xn, in Y such that
x 2H� 0.x1; : : : ; xn/ where � 0 depends only on � (Lemma 5.5). We then show that for
any finite collection of points x1; : : : ; xn 2 X , H� 0.x1; : : : ; xn/ � Pn�1

�
.x1; : : : ; xn/

where � ultimately depends only on n and � (Proposition 5.6). Together, these imply
H� .Y /� P2�C1

�
.Y /.
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We start with the first step, which can be thought of a version of Carathéodory’s theorem
for HHSs.

Lemma 5.5 Let Y � X , � � N� , and � be as in Proposition 4.6. For each x 2H� .Y /,
there exist x1; : : : ; x`C1 2 Y , where 1� `� 2�, and � 0 depending only on � such that
x 2H� 0.x1; : : : ; x`C1/.

Proof Let K D 100.EC2�0C �/ and x 2H� .Y /. If for all y 2 Y , RelK.x; y/D∅,
then x 2 HK.y/ for each y 2 Y . Thus we can assume there is y 2 Y such that
RelK.x; y/¤∅.

As in Proposition 4.6, we can partition RelK.x; y/ in subsets U1; : : : ;Un where n� �.
Further, for each i , all the elements of Ui are pairwise transverse and are totally ordered
with respect to the order U �V if dU .�VU ; y/� �0. Let Ui;1< � � �<Ui;ki

be the distinct
domains in Ui . For each i , there exist ai ; bi 2 Y such that �Ui;1

.x/ is within � of the
CUi;1 geodesic between ai and bi . If ai and bi project 2�0CE close to y inCUi;1, then
dUi;1

.x; y/� �C4�0C3E which contradicts Ui;1 2RelK.x; y/. Thus without loss of
generality, dUi;1

.ai ; y/ > 2�0CE and in particular dUi;1
.ai ; �

Ui;j
Ui;1

/ > �0 for all j > 1.
The total order on Ui and the consistency axiom (5) ensure that dUi;j

.x; ai /� 2�0CE

for all 1 < j � ki . Thus for each Ui;j , x projects � C 2�0CE close to the CUi;j
geodesic between ai and bi and x 2HK.y; a1; : : : ; an; b1; : : : ; bn/.

Armed with Lemma 5.5, the next step is to prove that for a finite set of points, the
hierarchical hull is contained in the path hull.

Proposition 5.6 For each � � N� and n� 2, there exists �� 1 such that

H� .x1; : : : ; xn/� Pn�1� .x1; : : : xn/

for any n distinct points x1; : : : ; xn 2 X .

Proof We shall proceed by induction on n. First we will show the base case of nD 2.

Claim 1 (base case) For each � � N� there exists �� 1 such that

H� .x; y/� P1�.x; y/
for each x; y 2 X .

Proof of Claim 1 Let z 2 H� .x; y/, 
0 W Œa; b�! X be a �0–hierarchy path from
x to z and 
1 W Œb; c�! X is a �0–hierarchy path from z to y. We will show that
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 D 
0 �
1 W Œa; c�!X is a �–hierarchy path from x to y, where � depends only on � .
By the definition of H� .x; y/ and hyperbolicity of the CU ’s we have that �U .
/ is an
unparametrized .�1; �1/–quasigeodesic for each U 2S, where �1 depends only on � .
Therefore, it suffices to show that 
 is a .�; �/–quasigeodesic in X , where � depends
only on � . That is, we need to prove for each t; s 2 Œa; c�,

jt � sj ��;� dX .
.t/; 
.s//:

Since 
0 and 
1 are both .�0; �0/–quasigeodesics, we can restrict ourselves to the case
where t 2 Œa; b/ and s 2 .b; c�. Let uD 
.t/ and v D 
.s/. Since �U .
/ is a uniform
unparametrized quasigeodesic for each U 2S,

dU .u; z/C dU .z; v/�C;C dU .u; v/

where C � 1 depends only on � . Hence, Lemma 4.5 provides a constant K � 1
depending only on � such that

dX .u; z/C dX .z; v/�K;K dX .u; v/:

Since 
0 and 
1 are both .�0; �0/–quasigeodesics,

1

�0K
jt � sj �

2�0
K
� k � dX .
.t/; 
.s//� �0jt � sjC 2�0;

as desired.

We now show the key fact for the inductive step, that the hull of n points can be obtained
by taking the hull on n�1 points, and then considering all the hierarchy paths between
this smaller hull and the remaining point.

Claim 2 Let x1; : : : ; xn 2 X , for n � 2. If x 2 H� .x1; : : : ; xn/ where � � N� , then
there exist � 0 and � depending only on � and y 2H� 0.x1; : : : ; xn�1/ such that x is on
a �–hierarchy path from xn to y.

Proof of Claim 2 For 1� i�n, letAiDfx1; : : : ; xig. For eachU 2S, �U .H� .An�1//
is R–quasiconvex where R depends only on � . Let yU be the closest point projection
of �U .x/ to �U .H� .An�1//, zU be a point in hullCU .An/ within � of �U .x/, and
z0U be the closest point projection of zU to �U .H� .An�1//. By Lemma 4.11, there
exist y 2 X and a constant � 0 depending on � and ı such that dU .�U .y/; yU / � � 0.
Further, we can assume � 0 is large enough that

(1) � 0 > � C ıCRC 1;

(2) y 2H� 0.An�1/;
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(3) for all v;w 2 CU , if dU .v; w/ < dU .v;H� .An�1//, then the closest point
projection of v and w to �U .H� .An�1// are no more than � 0 apart.

For each U 2 S, let 
U be a CU geodesic from �U .xn/ to �U .y/. We will show
that dU .xn; 
U / is uniformly bounded for each U 2 S. If dU .yU ; zU / � 5� 0, then
dU .x; yU /�6�

0 which implies dU .x; 
U /�7� 0. Otherwise dU .yU ; zU />5� 0 implies
that dU .x;H� .An�1//>dU .x; zU / and thus dU .yU ; z0U /��

0 by (3). This implies that
dU .zU ;H� .An�1// > 3�

0. Since zU 2 hullCU .An/ and zU …H� .An�1/, there exist
D � 0 depending only on � and xU 2 �U .An�1/ such that zU is within D of any CU
geodesic from �U .xn/ to xU . Further, by increasing � 0, we can assume D<� 0. Take a
geodesic triangle with endpoints �U .xn/, yU and xU . Since dU .zU ;H� .An�1//>3� 0,
it must be the case that zU is within 2� 0 of any CU geodesic from �U .xn/ to yU .

Thus there exists � 00 depending ultimately only on � , such that dU .x; 
U / � � 00 for
all U 2 S. Therefore x 2 H� 00.xn; y/ and the statement in Claim 2 follows from
Claim 1.

We now finish the proof of Proposition 5.6. Let x 2H� .x1; : : : ; xn/. Claim 2 shows
that there exist a �0 � 1 and � 0 � N� such that x is on a �0–hierarchy path from
xn to a point in H� 0.x1; : : : ; xn�1/. By induction, there exists � � �0 such that
H� 0.x1; : : : ; xn�1/� Pn�2

�
.x1; : : : ; xn�1/ and therefore x 2 Pn�1

�
.x1; : : : ; xn/.

We can now finish the proof of Theorem 5.2.

Proof of Theorem 5.2 Recall, we need to show that for all sufficiently large � and �,
H� .Y / coarsely coincides with PN

�
.Y / where N D 2�. First we will show that for all

� � N� , there exists �� 1 such that H� .Y /� PN
�
.Y /.

Let x 2H� .Y / and let x1; : : : ; x`C1 be the finite number of points in Y provided by
Lemma 5.5. By Proposition 5.6, there exists � depending on � such that

x 2 P`�.x1; : : : ; x`C1/� P`�.Y /� PN� .Y /:

Thus H� .Y /� PN
�
.Y /.

Now, fix N�� �0 such that H N� .Y /� PN
N�
.Y /. If � � N� and �� N�, then by Lemma 5.4

there exists � 0 > N� such that

H N� .Y /� PN� .Y /�H� 0.Y /:

The conclusion now follows by Lemma 5.3.
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The primary use of Theorem 5.2 in this paper is the following proof that hierarchically
quasiconvex subsets are exactly the subsets that are “quasiconvex with respect to
hierarchy paths”. From this it immediately follows that all strongly quasiconvex subsets
are hierarchically quasiconvex.

Proposition 5.7 Let .X ;S/ be a hierarchically hyperbolic space. A subset Y � X is
k–hierarchically quasiconvex if and only if there exists a function R W Œ1;1/! Œ0;1/

such that if 
 is a �–hierarchy path with endpoints on Y , then 
 �NR.�/.Y / where k
and R each determines the other. In particular , if Y is Q–strongly quasiconvex , then Y
is k–hierarchically quasiconvex where k is determined by Q.

Proof The proof of the forward implication follows directly from the definition
of hierarchical quasiconvexity and hierarchy path. Assume there exists a function
R W Œ1;1/! Œ0;1/ such that if 
 is a �–hierarchy path with endpoints in Y , then

 �NR.�/.Y /. The first condition of hierarchical quasiconvexity now follows from the
existence of hierarchy paths (Theorem 4.8), the coarse Lipschitzness of the projection
maps (axiom (1)), and the hyperbolicity of the CU ’s. For the second condition, observe
that the hypothesis implies there exists a bound on the Hausdorff distance between
Y and Pn

�
.Y / depending only on R, n, and �. Thus by Theorem 5.2, for each � � N� ,

there exists D� such that dHaus.H� .Y /; Y / � D� . Let � > 0 and x 2 X such that
dU .x; Y /� � for all U 2S. Thus x 2H� .Y / for each � � �C N� . Let k.�/DD N�C� .
Then dX .x; Y /� k.�/ and Y is hierarchically quasiconvex.

Remark 5.8 If X is a hyperbolic space, there exist many HHS structures on X ;
see [51]. In this case, Proposition 5.7 recovers [51, Proposition 3.5], which states that
a subset Y � X is quasiconvex if and only if Y is hierarchically quasiconvex in any of
the HHS structures on X .

5.1 Hulls and coarse medians

We now take a small detour from the main thrust of the paper to highlight an application
of Theorem 5.2 and discuss the relation of our work in this section to the hulls in coarse
median spaces constructed in [16].

In [14], Bowditch axiomatized the notion of a coarse center of three points in a metric
space and defined coarse median spaces as metric spaces where every triple of points
has such a coarse center. Bowditch observed that all hierarchically hyperbolic spaces
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are coarse median spaces; see also [10, Theorem 7.3]. The salient property of the
coarse median structure of an HHS is the following fact.

Lemma 5.9 (see proof of [10, Theorem 7.3]) Let .X ;S/ be a hierarchically hyper-
bolic space. There exist � > 0 and a map m W X �X �X ! X with the property that
for every .x; y; z/ 2 X 3 and U 2S, the projection �U .m.x; y; z// is within � of all
three sides of any CU triangle with vertices �U .x/, �U .y/ and �U .z/.

We call the point m.x; y; z/ the coarse center of x, y and z. There is a natural notion of
convexity for coarse median spaces, which we formulate in the hierarchically hyperbolic
setting as follows.

Definition 5.10 (coarse median quasiconvexity) Let .X ;S/ be an HHS. A subset Y
of X is said to be Q–median quasiconvex if for every y; y0 2 Y and x 2 X we have
m.y; y0; x/ 2NQ.Y /.

Behrstock, Hagen and Sisto showed that a hierarchically quasiconvex subset is median
quasiconvex in [10, Proposition 7.12]. Using Theorem 5.2, we establish the converse.

Proposition 5.11 Let .X ;S/ be an HHS and Y � X . Y is k–hierarchically quasicon-
vex if and only if Y is Q–median quasiconvex where k and Q each determines the
other.

Proof Let Y be a Q–median quasiconvex subset of the HHS .X ;S/ and 
 be a
�–hierarchy path with endpoints y1; y2 2 Y . If x 2 
 , then dU .x;m.y1; y2; x// is
uniformly bounded in terms of � and S for each U 2 S. By the distance formula
(Theorem 4.4), dX .x;m.y1; y2; x// is also uniformly bounded. Since Y is median
quasiconvex, this implies that there existR.�/ such that dX .x; Y /�R.�/. In particular,

 � NR.�/.Y / and Y is k–hierarchically quasiconvex, with k determined by Q, by
Proposition 5.7.

If Y � X , let M.Y / denote the coarse median hull defined in [16, Proposition 6.2].
Proposition 5.11 implies the following corollary that extends [16, Lemma 7.3] in the
special case of hierarchically hyperbolic spaces.

Corollary 5.12 Let .X ;S/ be an HHS and Y � X . For each � � �0, there exists D
depending only on � and S such that

dHaus.H� .Y /;M.Y //�D:
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Proof Let Y �X and � � �0. By Proposition 5.11,H� .Y / isQ1–median quasiconvex
for some Q1 depending on � and S. By [16, Proposition 6.2] M.Y / is Q2–median
quasiconvex, where Q2 depends only on S, and there exists D1 depending on �
such that M.Y / � ND1

.H� .Y //. By Proposition 5.11, M.Y / is k–hierarchically
quasiconvex where k depends only on S. By the second condition in Definition 4.9,
there exists D2 depending on � and S such that H� .Y /�ND2

.M.Y //.

6 Characterization of strongly quasiconvex subsets in HHSs

We now turn our attention to the main objective of this paper, characterizing the strongly
quasiconvex subsets of hierarchically hyperbolic spaces. From now on we shall restrict
our attention to HHSs with the bounded domain dichotomy; a minor regularity condition
satisfied by all HHGs as well as Teichmüller space with either the Weil–Petersson or
Teichmüller metric and the fundamental groups of 3–manifolds without Nil or Sol
components.

Definition 6.1 (bounded domain dichotomy) A hierarchically hyperbolic space
.X ;S/ has the B–bounded domain dichotomy if there exists B > 0 such that for
all U 2S, if diam.CU / > B , then diam.CU /D1.

The key to characterizing the strongly quasiconvex subsets of hierarchically hyperbolic
spaces is to determine what the projection of a strongly quasiconvex subset to each of the
associated hyperbolic spaces looks like. The property that characterizes the projection
of strongly quasiconvex subsets is the following orthogonal projection dichotomy.

Definition 6.2 (orthogonal projection dichotomy) For B � 0, a subset Y of an HHS
.X ;S/ has the B–orthogonal projection dichotomy if for all U; V 2S with U ? V , if
diam.�U .Y // > B then CV �NB.�V .Y //.

From now on, when we consider an HHS with the B0–bounded domain dichotomy and
a subspace with the B–orthogonal projection dichotomy, we will assume that B � B0.

We can now state our characterization of strongly quasiconvex subsets of hierarchically
hyperbolic spaces with the bounded domain dichotomy.

Theorem 6.3 (characterization of strong quasiconvexity) Let .X ;S/ be a hierarchi-
cally hyperbolic space with the bounded domain dichotomy and Y � X . Then the
following are equivalent :
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(1) Y is an .A;D/–contracting subset.

(2) The lower relative divergence of X with respect to Y is at least quadratic.

(3) The lower relative divergence of X with respect to Y is completely superlinear.

(4) Y is Q–strongly quasiconvex.

(5) Y is k–hierarchically quasiconvex and has the B–orthogonal projection di-
chotomy.

Moreover , the pair .A;D/ in part (1), the convexity gauge Q in part (4), and the pair
.k; B/ in part (5) each determine the other two.

The work in Section 3 showed that the implications

.1/ D) .2/ D) .3/ D) .4/

hold in any quasigeodesic space and that the pair .A;D/ determines Q. Further,
Proposition 5.7 showed that every Q–strongly quasiconvex subset of a hierarchically
hyperbolic space is k–hierarchically quasiconvex with Q determining k. Thus in the
next two subsections, we only need to prove:

� If Y is Q–strongly quasiconvex, then there exists B > 0 determined by Q such
that Y has the B–orthogonal projection dichotomy (Section 6.1).

� If Y is k–hierarchically quasiconvex and has the B–orthogonal projection di-
chotomy, then Y is .A;D/–contracting where .A;D/ is determined by .k; B/
(Section 6.2).

Before beginning the proof, we record of the following corollary to Theorem 6.3 that
allows us to characterize stable embeddings.

Corollary 6.4 Let .X ;S/ be an HHS with the bounded domain dichotomy and let
i W Y ! X be a quasi-isometric embedding from a uniform quasigeodesic space Y to X .
The following are equivalent :

(1) i is a stable embedding.

(2) Z D i.Y / is hierarchically quasiconvex and there exists a B > 0 such that for all
U; V 2S with U ? V , if diam.�U .Z// > B , then diam.CV / < B .

Proof By [11, Corollary 2.16], an HHS .Z;T/ is hyperbolic if and only if there exists
B such that for allU; V 2T withU ?V , either diam.�U .Z//<B or diam.�V .Z//<B .
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By Proposition 2.8, i is a stable embedding if and only if the imageZD i.Y / is strongly
quasiconvex in X and hyperbolic. The equivalence follows from these observations
and the fact that hierarchically quasiconvex subsets inherit the hierarchy structure from
the ambient space as described in [10, Proposition 5.6].

Corollary 6.4 should be compared with [1, Corollary 6.2]. If .X ;S/ has the extra
assumption of unbounded products required in [1, Corollary 6.2], then Corollary 6.4
can be immediately improved to [1, Corollary 6.2]. However, Corollary 6.4 is a strict
expansion of [1, Corollary 6.2] as many HHS structures do not have unbounded products.
Naturally occurring HHS structures without unbounded products can be found in right
angled Coxeter groups and the Weil–Petersson metric on Teichmüller space. We briefly
describe these structures in Section 7.

6.1 Strongly quasiconvex subsets have orthogonal projection dichotomy

In this subsection, we provide the implication (4) to (5) in Theorem 6.3. Our focus will
be on studying the following set of domains.

Definition 6.5 Define S� to be the set of domains U 2S such that diam.CU /D1
and there exists V 2S?U such that diam.CV /D1.

For each U 2 S� we have that both factors of the product region PU have infinite
diameter. In particular, if S� D ∅ and S has the bounded domain dichotomy, then
.X ;S/ is hyperbolic by [11, Corollary 2.16]. Thus the intuition for restricting our
attention to these domains is that the domains in S� are the source of nonhyperbolic
behavior in .X ;S/.

The crucial step to proving strongly quasiconvex subsets have the orthogonal projection
dichotomy is the following proposition that establishes a sort of orthogonal projection
dichotomy for the product regions of domains in S�.

Proposition 6.6 Let .X ;S/ be an HHS with the bounded domain dichotomy and
Y � X be a Q–strongly quasiconvex subset. There is a constant B0 > 0 depending on
S and Q such that for all B � B0 and U 2S�,

diam.�U .Y // > B D) PU �NB.gPU
.Y //:
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Y




Figure 3: In R2 (equipped with the `1–metric) consider Y to be the x–axis.
Let 
 be the .3; 0/–quasigeodesic consisting of three sides of a square with the
fourth side on Y . While the quasigeodesic constants do no change, increasing
the distance between the endpoints of 
 produces points of 
 arbitrarily far
away from Y .

Since U is in S�, the product region PU coarsely coincides with the product of two
infinite diameter metric spaces. The proof of Proposition 6.6 is therefore motivated
by the situation described in Figure 3. Namely, if Y is a subset of the product of
two infinite-diameter metric spaces, then either Y coarsely coincides with the whole
product or there exists a quasigeodesic 
 with endpoints on Y and fixed constants such
that there are points of 
 whose distance to Y is comparable to diam.Y /. Thus if Y is
Q–strongly quasiconvex, then either Y has bounded diameter or it coarsely covers the
entire product.

In Proposition 6.10, we prove that a similar situation holds for PU . We show if
diam.�U .Y // is sufficiently large and Y does not coarsely coincide with PU , then we
can find a uniform constant quasigeodesic with endpoints on gPU

.Y / that contains
points relatively far from gPU

.Y /. To utilize this to prove Proposition 6.6, we must
promote this statement on gPU

.Y / to a statement on Y . Specifically, we show that
we can realize every quasigeodesic of PU with endpoints on gPU

.Y / as a segment
of a quasigeodesic with endpoints on Y , while maintaining uniform quasigeodesic
constants (Lemma 6.11). This yields a quasigeodesic with endpoints on Y that contains
a point x of PU such that dX .x; gPU

.Y // is comparable with diam.gPU
.Y //. If Y is

strongly quasiconvex, the bridge theorem (Theorem 4.18) implies that dX .x; gPU
.Y //

also provides a lower bound on the distance between x and Y . However, since Y is
strongly quasiconvex, the distance between x and Y is uniformly bounded. Hence, if
Y does not coarsely cover PU , we obtain that gPU

.Y / must have bounded diameter
which contradicts the assumption on diam.�U .Y //.

We begin by describing a particularly nice class of paths in product spaces and show
that they are quasigeodesics (Lemma 6.8).
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Definition 6.7 (spiral path) Let X and Y be .K;L/–quasigeodesic metric spaces,
and let Z D X � Y be equipped with the `1–metric. A spiral path 
 in Z is the
concatenation 
 D 
1 � � � � � 
n of .K;L/–quasigeodesic of Z satisfying the following:

� Every 
i is of the form ��cy or cx�ı where � (resp. ı) is a .K;L/–quasigeodesic
of X (resp. Y ) and cx0

(resp. cy0
) is the constant function with value x0 2 X

(resp. y0 2 Y ).

� For every i , if 
i is constant on the X (resp. Y ) factor of Z DX �Y , then 
iC1
is constant on the Y (resp. X ) component of Z DX �Y .

A spiral path 
 D 
1 � � � � � 
n has slope N if for every i 2 f1; : : : ; n� 2g,

d.
CiC1; 

�
iC1/�Nd.


C
i ; 


�
i /;

where 
˙j are the endpoints of 
j . Note that the distance between the endpoints of 
n
can be arbitrary.

Lemma 6.8 (spiral paths are quasigeodesics) For each K � 1 and L � 0 there
are constants K 0 and L0 such that the following holds. Let X and Y be .K;L/–
quasigeodesic metric spaces. If 
 D 
1 � � � � � 
n is a spiral path of slope N > 4K2 in
Z DX �Y such that the endpoints of 
1 are at least 3K2LC 1 far apart , then 
 is a
.K 0; L0/–quasigeodesic of X �Y .

The following proof is essentially the same as showing the logarithmic spiral in R2

is a quasigeodesic. However, as we were not able to find a sufficient reference in the
literature, we have included it in the interest of completeness.

Proof Let 
 D 
1 � � � � � 
n W Œa0; an�! Z be spiral path of slope N > 4K2 and let
a1 < � � �< an be points in Œa0; an� such that 
i D 
 jŒai�1;ai �.

Let t1; t2 2 Œa0; an�. We claim that

(3) d.
.t1/; 
.t2//� .KC 1/jt2� t1jC 2L:

Since each 
i is a .K;L/–quasigeodesic of Z for each i , we only need to consider the
case where t1 2 Œak; akC1� and t2 2 Œaj ; ajC1� with j � k � 1. By the choice on the
distance between endpoints of 
1 and the slope N ,

d.
.ai�1/; 
.ai // > 3K
2LC 1;

Algebraic & Geometric Topology, Volume 23 (2023)



1212 Jacob Russell, Davide Spriano and Hung Cong Tran


.aj�3/
.aj�2/


.aj�1/ 
.aj /


.t1/


.t2/


.ajC1/


j�1


j�2


j


jC1

Figure 4

which implies jai � ai�1j>L. Therefore,

jt2� t1j � jaj � akC1j � .j � k� 1/L:

Since each 
i is .K;L/–quasigeodesic,

d.
.t1/; 
.t2//�Kjt2� t1jC .j � kC 1/L� .KC 1/jt2� t1jC 2L:

The remainder of the proof will show jt2� t1j � d.
.t1/; 
.t2//.

For every i , 
i � 
iC1 is a .K; 2L/–quasigeodesic of Z, so we only need to consider
the case where t1 2 Œak; akC1� and t2 2 Œaj ; ajC1� with j � k � 2 as in Figure 4.

We encourage the reader to refer to Figure 4 as they follow the remainder of the proof.

By the triangle inequality,

(4) d.
.t2/; 
.t1//� d.
.t2/; 
.aj�1//� d.
.aj�1/; 
.t1//:

The remainder of the proof has two parts. First we show that, d.
.t2/; 
.aj�1// is
much larger than d.
.aj�1/; 
.t1//, so

d.
.t2/; 
.t1//� d.
.t2/; 
.aj�1//� jt2� aj�1j:

We then finish by showing that jt2� aj�1j � jt2� t1j.

To simplify notation let `.
i / D d.
.ai�1/; 
.ai //. The slope condition then says
1
N
`.
i / > `.
i�1/ for each 1 � i � n� 1. Since N > 4K2, we can iteratively apply

the slope condition to get

(5)
j�1X
iD1

`.
i /�

�
1

N j�2
C � � �C

1

N
C 1

�
`.
j�1/� 2`.
j�1/�

2

N
`.
j /:
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From the triangle inequality and the fact jakC1� t1j � jakC1� akj,

d.
.t1/; 
.aj�1//� d.
.t1/; 
.akC1//C

j�1X
iDkC2

`.
i /

�KjakC1� akjCLC

j�1X
iDkC2

`.
i /

�K
�
K`.
kC1/CKL

�
CLC

j�1X
iDkC2

`.
i /

�K2
� j�1X
iDkC1

`.
i /

�
C 2K2L:

Then by applying inequality (5),

d.
.t1/; 
.aj�1//�
�
2K2

N

�
`.
j /C 2K

2L�
1

2
d.
.t2/; 
.aj�1//C 2K

2L:

Substituting this into inequality (4) produces

d.
.t2/; 
.t1//�
1
2
d.
.t2/; 
.aj�1//� 2K

2L:

We can then use the fact that 
j � 
jC1 is a .K; 2L/–quasigeodesic to obtain

(6) d.
.t2/; 
.t1//�
1

2
d.
.t2/; 
.aj�1//� 2K

2L

�
1

2

�
1

K
jt2� aj�1j � 2L

�
� 2K2L

�
1

2K
jt2� aj�1j � 3K

2L:

We now show that jt2� aj�1j � jt2� t1j, which completes the proof by inequality (6).
Since we required that `.
1/ > 3K2LC 1 and N > 4K2, we have 1

K
jai �ai�1j> 2L

for each i . This implies

`.
i /�
1

K
jai � ai�1j �L>

1

2K
jai � ai�1j:

In particular, using inequality (5) we obtain

2

N
.Kjaj �aj�1jCL/�

2

N
`.
j /�

j�1X
iD1

`.
i /�

j�1X
iD1

1

2K
jai �ai�1j �

1

2K
jaj�1� t1j:

Hence,

jaj�1� t1j �
4K2

N
jaj � aj�1jC

4KL

N
� jaj � aj�1jCL
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and we can conclude

jt2� t1j D jt2� aj jC jaj � aj�1jC jaj�1� t1j

� jt2� aj jC 2jaj � aj�1jCL

� 3jt2� aj�1jCL:

Combining this with inequalities (3) and (6), we obtain that there are constants K 0 and
L0 depending on K and L such that

1

K 0
.t2� t1/�L

0
� d.
.t2/; 
.t1//�K

0.t2� t1/CL
0:

For the remainder of this section .X ;S/ will be an HHS with the bounded domain
dichotomy and S� is as in Definition 6.5. Recall, for each U 2S, the space FU �EU

consists of tuples a D .aV /, where V 2 SU [S?U , and that PU is defined as the
image of �U W FU �EU ! X . By restricting to a choice of factor, we can endow FU

and EU with the subspace metric of their images under �U . While this relies on the
choice of factor, the distance formula (Theorem 4.4) says any two choices result in
uniformly quasi-isometric metric spaces. Given a; b 2 FU �EU we use dV .a; b/ to
denote dV .aV ; bV /, where V 2 SU [S?U . If U 2 S�, then both FU and EU are
infinite diameter and so we can apply Proposition 6.9 to build the desired quasigeodesic
in PU based on gPU

.Y /.

Proposition 6.9 Let Y � X . There exist constants L0 and r0, and functions

f; g; h W Œr0;1/! Œ0;1/;

all depending only on S, such that f .r/; g.r/; h.r/!1 as r!1 and the following
holds: for each U 2 S� and each r � r0, if the r–neighborhood of ��1U .gPU

.Y //

does not cover FU � EU and diam.�U .Y // > f .r/, then there exists a .L0; L0/–
quasigeodesic � with endpoints a; b 2 ��1U .gPU

.Y // such that � is not contained in the
g.r/–neighborhood of ��1U .gPU

.Y // and dU .a; b/ > h.r/.

Proof Our approach is to construct a spiral path of sufficient slope in FU � EU

and then apply Lemma 6.8 to conclude it is a quasigeodesic. Let d. � ; � / denote the
`1–distance in FU �EU and fix the following constants, which depend only on S:

� L such that FU and EU are .L;L/–quasigeodesic spaces.

� K such that �U is .K;K/–coarsely Lipschitz.

� N D 4L2C 1 will be the slope of the spiral path we construct.
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A

aD .x2; y2/

z D .x1; y1/

z0 D .x2; y1/ .x3; y1/

a0 D .x3; y3/

Figure 5: Spiral path constructed when dFU
.x1; x2/�

1
2
.r C 2LC 1/.

Let r > 10L3 C 6 and A D ��1U .gPU
.Y //. Suppose that the r–neighborhood of A

does not cover FU �EU . Thus there exists a point z D .x1; y1/ 2 FU �EU such that
r � d.z; A/� rC2L. Let aD .x2; y2/ be a point of A such that d.z; a/�1� d.z; A/.
We have minfdFU

.x1; x2/; dEU
.y1; y2/g �

1
2
.r C 2L C 1/. There are two cases

depending on which of the two factors realizes the minimum.

Case 1 If dFU
.x1; x2/ realizes the minimum, let z0D .x2; y1/ andDrD 1

2
.r�2L�1/.

Then d.z0; A/� d.z; A/� d.z; z0/�Dr , which implies d.z0; a/ > 3L3C 1 because
r > 10L3C 6.

There exists Br > r such that for any pair of points u and v of FU , if dU .u; v/� Br
then

dFU
.u; v/� 2.r C 2LC 1/N:

We shall assume diam.�U .Y // > 2Br , so there is a point a0 D .x3; y3/ of A such that
dU .x2; x3/�Br and dFU

.x2; x3/ > dEU
.y2; y1/N . We can now form a spiral path �

of slope N D 4L2C 1 by connecting each sequential pair of points in the sequence

aD .x2; y2/� .x2; y1/� .x3; y1/� .x3; y3/D a
0

by .L;L/–quasigeodesics. Since dEU
.y2; y1/ > 3L

3C1, � satisfies the hypothesis of
Lemma 6.8 and is therefore an .L0; L0/–quasigeodesic for some L0 determined by L.

Since z0D .x2; y1/ is at least Dr far from A, � has endpoints in A and is not contained
in the Dr–neighborhood of A. Moreover, dU .a; a0/� Br and we get the claim with
f .r/D 2Br , g.r/DDr , and h.r/D Br
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A

aD .x2; y2/

z D .x1; y1/

z0 D .x1; y2/

.x4; y3/

a0 D .x4; y4/

.x1; y3/

Figure 6: Spiral path constructed when dEU
.y1; y2/�

1
2
.r C 2LC 1/.

Case 2 If dEU
.y1; y2/ realizes the minimum, let z0 D .x1; y2/. As before we have

that d.z0; A/ �Dr D 1
2
.r � 2L� 1/, which implies d.z0; a/ > 3L3C 1. Let y3 be a

point of EU such that

.r C 2LC 1/N � dEU
.y2; y3/� 2.r C 2LC 1/N:

There exists Cr > r such that for any pair of points u and v of FU , if dU .u; v/� Cr
then

dFU
.u; v/� 2.r C 2LC 1/N 2:

We shall assume diam.�U .Y // > 2Cr , so there exists a0 D .x4; y4/ 2 A such that
dU .x1; x4/ >Cr . This implies dFU

.x1; x4/ > 2.rC2LC1/N
2 and we can now form

a spiral path � of slope N D 4L2C 1 by connecting each sequential pair of points in
the sequence

aD .x2; y2/� .x1; y2/� .x1; y3/� .x4; y3/� .x4; y4/D a
0

by an .L;L/–quasigeodesics.

As before, � satisfies the hypothesis of Lemma 6.8 and is therefore an .L0; L0/–quasi-
geodesic for someL0 determined byL. The remaining claims follow as in the preceding
case.

The distance formula makes the map �U W FU �EU ! X a uniform quasi-isometric
embedding. Thus gPU

.Y / coarsely covers PU if and only if ��1U .gPU
.Y // coarsely

covers FU � EU , Proposition 6.9 therefore allows us to immediately deduce the
following result for PU � X .
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Proposition 6.10 Let Y � X . There exist constants L0 and r0, and functions

f; g; h W Œr0;1/! Œ0;1/;

all depending only on S, such that f .r/; g.r/; h.r/!1 as r!1 and the following
holds: for each U 2S�and each r � r0, if the r–neighborhood of gPU

.Y / does not
cover PU and diam.�U .Y // > f .r/, then there exists an .L0; L0/–quasigeodesic �
with endpoints a; b 2 gPU

.Y / such that

(1) ��PU ,

(2) � is not contained in the g.r/–neighborhood of gPU
.Y /,

(3) dU .a; b/ > h.r/.

Proposition 6.10 furnishes a quasigeodesic � with endpoints in gPU
.Y / that can be

made as far from gPU
.Y / as desired by increasing diam.�U .Y //. However, to exploit

the fact that Y is a strongly quasiconvex subset, we need the next lemma, which
“promotes” � to a quasigeodesic with endpoints in Y .

Lemma 6.11 There existsD>0 such that if x; y 2X and U 2S, with dU .x; y/>D
and � is a .k; c/–quasigeodesic contained in PU with endpoints gPU

.x/ and gPU
.y/,

then there exists a .k0; c0/–quasigeodesic containing � and with endpoints x and y,
where k0 and c0 depend only on � and �.

Proof Let D and � be as in Proposition 4.24. We further assume � is large enough
that every pair of points in X can be joined by a �–hierarchy path (Theorem 4.8).

Assume dU .x; y/ >D and let Q
 be the �–hierarchy path connecting x and y provided
by Proposition 4.24. Let ˛ be the active subpath of Q
 corresponding to U . Define x0

(resp. y0) to be the endpoint of ˛ closest to x (resp. y) and x00 D gPU
.x/ (resp. y00 D

gPU
.y/). If � W Œb; c�!PU is any .k; c/–quasigeodesic in PU connecting x00 and y00,

let 
 be the concatenation of Q
 �˛, any �–hierarchy path from x0 to x00, �, and any �–
hierarchy path from y0 to y00. We will show that this path 
 is a .k0; c0/–quasigeodesic
where the constants depend only on k and c.

The distances dX .x0;PU / and dX .y0;PU / are uniformly bounded by Proposition 4.24.
By Lemma 4.15, the distances dX .x0; gPU

.x0// and dX .y0; gPU
.y0// are uniformly

bounded as well. Again by Proposition 4.24, gPU
.x/ coarsely coincides with gPU

.x0/

and gPU
.y/ coarsely coincides with gPU

.y0/. Thus there exists � depending only on
S such that dX .x0; x00/; dX .y0; y00/� �.

Algebraic & Geometric Topology, Volume 23 (2023)



1218 Jacob Russell, Davide Spriano and Hung Cong Tran

Now, let 
x (resp. 
y) be the subset of 
 from x to x00 (resp. y to y00). Since dX .x0; x00/
and dX .y0; y00/ are uniformly bounded by�, 
x and 
y are both uniform quasigeodesics.
By Lemma 4.15 and Proposition 4.24, there exists K � 1 depending on k, c, and S

such that

� dX .x
0; x00/, dX .y0; y00/�K;

� diam.gPU
.
x//; diam.gPU

.
y//�K;

� 
x , 
y and � are all .K;K/–quasigeodesics;

� for all p 2PU and q 2 X , dX .q; gPU
.q//�KdX .p; q/CK.

Let 
D
x���
y W Œa; d �!X and a<b<c <d such that 
 jŒa;b�D
x , 
 jŒb;c�D� and

 jŒc;d�D
y . For t; s2 Œa; d �, let uD
.t/, vD
.s/. We want to show jt�sj�dX .u; v/
for some constants depending only on K. The only interesting cases are when u and v
are in different components of 
 D 
x � �� 
y , so without loss of generality, we have
the following two cases.

Case 1 Assume t 2 Œa; b� and s 2 Œb; c�. Thus u 2 
x and v 2 �, and

dX .u; v/� dX .u; x
00/C dX .x

00; v/�Kjt � bjCKjb� sjC 2K �Kjt � sjC 2K:

For the inequality jt � sj � dX .u; v/, our choice of K provides

dX .u; x
00/� dX .u; gPU

.u//CK �KdX .u; v/C 2K:

By the triangle inequality dX .v; x00/� dX .v; u/CdX .u; x00/ and we derive the desired
inequality as

jt � sj D jt � bjC jb� sj

�KdX .u; x
00/CKdX .v; x

00/C 2K

�K2dX .u; v/CK.dX .u; v/C dX .u; x
00//C 2K2C 2K

�K2dX .u; v/CKdX .u; v/CK
2dX .u; v/C 4K

2
C 2K

� 3K2dX .u; v/C 6K
2:

Case 2 Assume t 2 Œa; b� and s 2 Œc; d � so that u 2 
x and v 2 
y . Further we can
assume u; v 2 Q
 , since otherwise the above proof holds by increasing the constants
by 4K. The inequality dX .u; v/ � jt � sj can be established by a nearly identical
argument to the previous case. For the inequality jt � sj � dX .u; v/ we need to utilize
the fact that Q
 is a .�0; �0/–quasigeodesic. Thus, by increasing K, we can ensure that

� dX .u; v/�K;K dX .u; x
0/C dX .x

0; y0/C dX .y
0; v/,
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� dX .x
0; y0/�1;2K dX .x

00; y00/�K;K jb� cj,

� dX .u; x
0/�1;K dX .u; x

00/�K;K jt � bj,

� dX .v; y
0/�1;K dX .v; y

00/�K;K jc � sj.

We then have the calculation

jt � sj D jt � bjC jb� cjC jc � sj

�KdX .u; x
00/CKdX .x

00; y00/CKdX .y
00; v/C 3K

�KdX .u; x
0/CKdX .x

0; y0/CKdX .y
0; v/C 7K2

�K2dX .u; v/C 8K
2:

We can now provide the proof of Proposition 6.6.

Proof of Proposition 6.6 Let Y � X be Q–strongly quasiconvex and U 2S such
that diam.CU /D1 and there exists V 2S?U with diam.CV /D1. Recall our goal
is to show that there exists B depending on S and Q such that if diam.�U .Y // > B ,
then PU �NB.gPU

.Y //. Begin by fixing the following constants that all depend only
on S and Q:

� � such that for all x 2 X , dU .x; gPU
.x// < �.

� D, the constant from Lemma 6.11.

� L0, the quasigeodesic constant from Proposition 6.10.

� k0, the quasigeodesic constant obtained by applying Lemma 6.11 to a .L0; L0/–
quasigeodesic.

� K, the constant from the bridge theorem (Theorem 4.18) for Y and PU (recall
Y is hierarchically quasiconvex by Proposition 5.7).

Let f, g and h be as in Proposition 6.10 and fix r be large enough that

g.r/ > 2KQ.k0; k0/CK2CK and h.r/ > DC 2�:

If PU � Nr.gPU
.Y //, then we are done. So for the purposes of contradiction, sup-

pose that PU 6� Nr.gPU
.Y // and that diam.�U .Y // > f .r/. Let � be the .L0; L0/–

quasigeodesic provided by Proposition 6.10 and let a1; b1 2 gPU
.Y / be the endpoints

of �. Let a0; b0 2 Y such that gPU
.a0/D a1 and gPU

.b0/D b1. Since

dU .a0; b0/ > dU .a1; b1/� 2� > h.r/� 2� >D;
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Lemma 6.11 produces a .k0; k0/–quasigeodesic 
 with endpoints a0 and b0 and
containing � where k0 depending ultimately only on S. Since Y is Q–strongly
quasiconvex, 
 � NQ.k0;k0/.Y /. By Proposition 6.10, there exists x 2 � such that
dX .x; gPU

.Y // > g.r/. Let y 2 Y be such that dX .x; y/� 1 � dX .x; Y /. Then by
the bridge theorem (Theorem 4.18) we have a contradiction,

Q.k0; k0/� dX .x; y/� 1�
1

K
dX .x; gPU

.Y //�K � 1 > 2Q.k0; k0/:

The following proposition uses Proposition 6.6 to finish the proof of the implication
from (4) to (5) in Theorem 6.3.

Proposition 6.12 If .X ;S/ is an HHS with the bounded domain dichotomy and Y is
a Q–strongly quasiconvex subset of X , then there exists B > 0 depending only on Q
and S such that Y has the B–orthogonal projection dichotomy.

Proof Let Y � X be Q–strongly quasiconvex and B 0 > 0 be larger than the bounded
domain dichotomy constant for S and the constant B0 from Proposition 6.6. Let U 2S.
If U …S�, then by the bounded domain dichotomy, either diam.CU / < B 0 or for all
V 2S?U , diam.CV / < B 0. In either case, the B 0–orthogonal projection dichotomy is
satisfied for U . Thus we can assume that U 2S�, so diam.CU /D1 and there exists
V 2 S?U with diam.CV / D 1. Suppose diam.�U .Y // > B 0. By Proposition 6.6,
PU �NB 0.gPU

.Y //. For all V 2S?U , �V .PU / uniformly coarsely covers CV , thus
there exists B � B 0 depending only on Q and S such that CV �NB.�V .Y //.

6.2 Contracting subsets in HHSs

We now finish the proof of Theorem 6.3 by showing that for hierarchically quasiconvex
subsets, the orthogonal projection dichotomy implies that the gate map gY is contracting.

Proposition 6.13 Let .X ;S/ be a hierarchically hyperbolic space with the bounded
domain dichotomy and Y � X be k–hierarchically quasiconvex. If Y has the B–
orthogonal projection dichotomy, then the gate map gY WX ! Y is .A;D/–contracting ,
where A and D depend only on k, B , and S.

Proof The gate map satisfies the first two condition in the definition of a contracting
map by Lemma 4.14. It only remains to prove: there exist 0 < A < 1 and D � 1
depending only on k, B , and S, such that for all x 2 X , diam.gY .BR.x//�D where
RD Ad.x; Y /.
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Fix a point x0 2 X with dX .x0; Y /� C0 and let x 2 X be any point with

dX .x0; x/ < C1dX .x0; Y /

for constants C0 and C1 to be determined below. We will prove that for each domain
U 2 S the distance dU .gY .x0/; gY .x// is uniformly bounded, then the above will
follow from the distance formula (Theorem 4.4).

We choose a “large” number L (we will clarify how large L is later). Let K � 1 be the
coarse equality constant from the distance formula with thresholds L and 2L. Take
C0 > .2KC1/K sufficiently large so there is W 2S such that dW .x0; gY .x0// > 2L.
Choose C1 < 1=.2K2C 1/, ensuring that dX .x0; gY .x0// > .2K2C 1/dX .x0; x/. If
dX .x0; x/�C0, then by the coarse Lipschitzness of the projections dU .gY .x0/; gY .x//
is uniformly bounded by a number depending on C0 for each U 2 S. Therefore,
we can assume that dX .x0; x/ > C0. We claim that there is a V 2 S such that
dV .x0; gY .x0// > dV .x0; x/CL.

Assume for the purpose of contradiction that dW .x0; gY .x0//� dW .x0; x/CL for all
W 2S. Therefore, dW .x0; gY .x0//� 2LD) dW .x0; x/� L and this implies

ffdW .x0; gY .x0//gg2L � 2ffdW .x0; x/ggL

for all W 2S. Thus,

dX .x0; gY .x0//�K
X
W 2S

ffdW .x0; gY .x0//gg2LCK

� 2K
X
W 2S

ffdW .x0; x/ggLCK

� 2K.KdX .x0; x/CK/CK

� 2K2dX .x0; x/C .2KC 1/K

� 2K2dX .x0; x/CC0

� .2K2C 1/dX .x0; x/

which contradicts C1 < 1=.2K2C 1/. Therefore, we can fix V 2S such that

dV .x0; gY .x0// > dV .x0; x/CL:

The construction of the gate map and the hyperbolicity of CV ensure that, after
enlarging L and shrinking C1 if necessary, dV .gY .x0/; gY .x// < r where r depends
only on k and S. The triangle inequality then gives us

dV .x; gY .x0// > L and dV .x; gY .x// > L� r:
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Now let U 2 S. If diam.�U .Y // � B , then dU .gY .x0/; gY .x// � B and we are
done. Thus we can assume that diam.�U .Y // > B . If U D V , then the distance
dU .gY .x0/; gY .x// is uniformly bounded above by the number r and we are done. We
now consider the other possible cases depending on the relation between U and V .

Case 1 Suppose V v U . If we choose L greater than EC r , then

dV .x0; gY .x0// > E and dV .x; gY .x// > E:

Thus by the bounded geodesic image axiom (8), the CU geodesics from �U .x0/ to
�U .gY .x0// and from �U .x/ to �U .gY .x// must intersect NE .�VU /. Therefore, the
distance dU .gY .x0/; gY .x// is uniformly bounded due to the hyperbolicity of CU and
the properties of the gate map (Lemma 4.14).

Case 2 Suppose U v V . If some CV geodesic from �V .gY .x0// to �V .gY .x// stays
E–far from �UV , then by the bounded geodesic image axiom (8), dU .gY .x0/; gY .x//�E
and we are done. Therefore, we assume that all CV geodesics from �V .gY .x0// to
�V .gY .x// intersect NE .�UV /. Since dV .x0; gY .x0// > dV .x0; x/CL, if there was
also a CV geodesic from �V .x0/ to �V .x/ that intersected NE .�UV / we would have

dV .gY .x0/; �
U
V /� dV .gY .x0/; x0/� dV .x0; �

U
V /

> dV .gY .x0/; x0/� dV .x0; x/� 2E

� L� 2E:

However, dV .gY .x0/; gY .x// � r which implies �V .gY .x0// lies in NECr.�UV /.
Therefore, by assuming L> 4EC r we can ensure that no CV geodesic from �V .x0/

to �V .x/ intersects NE .�UV /. Thus dU .x0; x/ < E by the bounded geodesic image
axiom and it immediately follows that dU .gY .x0/; gY .x// is bounded by a constant
depending on k and S.

Case 3 Suppose U 6v V and V 6v U . Recall that we can assume diam.�U .Y // > B .
Thus if U ? V , we have CV �NB.�V .Y // by the orthogonal projection dichotomy.
However dV .x0; gY .x0// > L, so by Lemma 4.15 we can choose L large enough such
that �V .x0/ does not lie in the B–neighborhood of �V .Y /. Thus U and V cannot be
orthogonal and hence U t V .

Now assume L> 2�0C 3r C 2EC 1. Then if dV .gY .x0/; �UV /� �0C r CE,

dV .x0; �
U
V /� dV .x0; gY .x0//� dV .gY .x0/; �

U
V /�E � L� .�0C r CE/�E > �0

and

dV .x; �
U
V /� dV .x; gY .x0//� dV .gY .x0/; �

U
V /�E > L� .�0C r CE/�E > �0:
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Therefore, dU .x0; �VU / < �0 and dU .x; �VU / < �0 by consistency (axiom (5)). This
implies that dU .x0; x/�2�0CE and thus dU .gY .x0/; gY .x// is bounded by a constant
depending on k and S.

If instead dV .gY .x0/; �UV / > �0C r CE, then dV .gY .x/; �UV / > �0 since

dV .gY .x0/; gY .x// < r:

By consistency, dU .gY .x0/; �VU / < �0 and dU .g.x/; �VU / < �0, which implies that

dU .gY .x0/; gY .x//� 2�0CE:

Remark 6.14 Both hypotheses on the subspace in Proposition 6.13 are in fact required.
In the standard HHG structure of Z2, the subgroup h.1; 0/i is hierarchically quasiconvex,
but does not satisfy the orthogonal projection dichotomy. On the other hand, the
subgroup h.1; 1/i has the orthogonal projection dichotomy, but is not hierarchically
quasiconvex. Neither of these subsets are strongly quasiconvex and thus neither are con-
tracting. Both of the above examples can even be made to be (nonstrongly) quasiconvex
by choosing {(1,0), (1,1), (0,1)} to be the generating set for Z2.

6.3 A generalization of the bounded geodesic image property

As a first application of Theorem 6.3 — our characterization of strongly quasiconvex
subsets — we show that strongly quasiconvex subspaces of HHSs satisfy a version of
the bounded geodesic image property. First recall the bounded geodesic image property
for quasiconvex subsets of hyperbolic spaces (not to be confused with the bounded
geodesic image axiom of an HHS).

Proposition 6.15 (bounded geodesic image property for hyperbolic spaces) Let Y
be a K–quasiconvex subset of a geodesic ı–hyperbolic space X . Then there exists
r > 0 (depending on ı and K) such that if d.pY .x/; pY .y// > r , then every geodesic
connecting x and y must intersect the r–neighborhood of Y .

In the case of strongly quasiconvex subsets of hierarchically hyperbolic space, we
replace the closest point projection with the gate map and geodesics with hierarchy
paths. Theorem 1.5 from the introduction will follow as a result of the following
proposition, which is a version of the active subpath theorem (Proposition 4.24) for
strongly quasiconvex subsets.
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Proposition 6.16 Let .X ;S/ be an HHS with the bounded domain dichotomy and
Y � X be a Q–strongly quasiconvex. For all � � 1, there exist constants � and D,
depending on � and Q, such that for all x; y 2 X , if dX .gY .x/; gY .y// > D and

 W Œa; b�!X is a �–hierarchy path joining x and y, then there is a subpath ˛D
 jŒa1;b1�

of 
 with

(1) ˛ �N�.Y /,

(2) the diameters of gY .
.Œa; a1�// and gY .
.Œb1; b�// both bounded by �.

Proof By Theorem 6.3, Y is hierarchically quasiconvex and has the orthogonal
domain dichotomy. In particular, �U .Y / is uniformly quasiconvex in CU for all
U 2S. Let x; y 2 X and 
 be a �–hierarchy path connecting x and y. Since 
 is a
.�; �/–quasigeodesic, we can choose

x D x0; x1; x2; : : : ; xn D y

on 
 such that the distances between xi and xiC1 are all bounded by 2�. We will show
that there exist 0� i0 � j0 � n such that:

� For i D i0 or i D j0, dX .xi ; gY .xi // is bounded by a constant depending only
on Q, �, and S.

� If s < t < i0 or j0 < s < t , then dX .gY .xs/; gY .xt // is bounded by a constant
depending only on Q, �, and S.

Since Y is strongly quasiconvex, once we have shown the above, the proposition will
follow with ˛ as the subsegment of 
 between xi0 and xj0

.

For each U 2 S, the projection �U is uniformly coarsely Lipschitz, thus there is a
�0 depending on .X ;S/ and � such that the distances dU .xi ; xiC1/ are all bounded
above by �0.

By the hyperbolicity of each CU and the properties of gate map (Lemma 4.14), there
are constants B and � depending only on S, Q, and � such that for each V 2 S

satisfying dV .gY .x/; gY .y// > B there are 0 � IV < JV � n with the following
properties:

(1) dV .xi ; gY .xi //� � for IV � i � JV .

(2) If s < t < IV or JV < s < t , then dV .gY .xs/; gY .xt // < �.

(3) dV .xIV
; xJV

/� 10D, where D D 3.EC�C �0C�0/.

Algebraic & Geometric Topology, Volume 23 (2023)



Convexity in hierarchically hyperbolic spaces 1225

For future convenience, we can and shall assume B is large enough that B > E,
.X ;S/ has the B–bounded domain dichotomy, and Y has the B–orthogonal projection
dichotomy. By the uniqueness axiom (10), there is a constant K depending on B and
.X ;S/ such that if dX .gY .x/; gY .y// > K, then the set RD RelB.gY .x/; gY .y// is
nonempty. Since for each V 2 R we have dV .xIV

; xJV
/ � 10D and each distance

dV .xi ; xiC1/ is bounded above by �0 <D, there are IV < iV < jV < JV such that

(�) D � dV .xiV ; xIV
/� 2D and D � dV .xjV

; xJV
/� 2D:

Let i0 DminV 2R iV and j0 DmaxV 2R jV .

We first prove that for each s and t that are both less than i0 or both greater than j0
the distance dX .gY .xs/; gY .xt // is uniformly bounded by some constant depending
only on S, Q and �. We will provide the proof for the case s and t are both less than
i0 and the proof for the other case is essentially identical. Let V 2S. If V …R, then
dV .gY .x/; gY .y//�B which implies diam.�V .gY .
/// is bounded by a constant that
depends only on B , �, Q and S. In particular, dV .gY .xs/; gY .xt // is also uniformly
bounded by this constant. When V 2R, then s and t are both less than iV . Therefore
by item (2) above and (�) we have that dV .gY .xs/; gY .xt // is bounded by a constant
depending only on S, Q, and �. By the distance formula (Theorem 4.4) the distance
dX .gY .xs/; gY .xt // is therefore bounded by a constant that ultimately depends only
on S, Q and �.

We now prove that there exists �0 depending on S, Q and � such that for i D i0 or
i D j0,

(��) dX .xi ; gY .xi //� �
0:

Again we only give the proof for the case of i D i0 and the argument for the case
i D j0 is almost identical. By the distance formula, it is sufficient to check that we can
uniformly bound dU .xi ; gY .xi // for each U 2S.

Fix a domain V 2 R such that i D i0 D iV . We shall show dU .xi ; gY .xi // for all
U 2S by examining the four cases for how U can be related to V .

Case 1 Suppose V?U . Since Y has the B–orthogonal domain dichotomy,

V 2R D) CU �NB.�U .Y //:

Therefore by the properties of the gate map (Lemma 4.14), we have that dX .xi ; gY .xi //
is uniformly bounded.
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Case 2 Suppose V t U . If dV .xi ; �UV / > �0C�CE, then

dV .gY .xi /; �
U
V / > �0

and by the consistency axiom (5) and triangle inequality,

dU .xi ; gY .xi //� 2�0CE:

Now assume that dV .xi ; �UV /< �0C�CE. SinceD>�CEC�0, dV .xi ; xIV
/�D,

and dV .xi ; xJV
/�D, we have that xIV

, gY .xIV
/, xJV

and gY .xJV
/ all project at least

�0 far from �UV in CV . Therefore, by the consistency axiom and triangle inequality,

dU .xIV
; gY .xIV

//� 2�0CE and dU .xJV
; gZ.xJV

//� 2�0CE:

Thus, by the quasiconvexity of �U .Y / in CU and the properties of the gate map, the
distance dU .xi ; gY .xi // is bounded by a uniform constant determined by S, Q and �.

Case 3 Suppose U v V . Consider geodesics in CV connecting the projections of the
pairs of points .xIV

; gY .xIV
//, .xi ; gY .xi // and .xJV

; gY .xJV
//. By the assumptions

on IV , i and JV , at most one of these geodesics intersects NE .�UV /. If such a geodesic
is not the one connecting �V .xi / and �V .gY .xi //, then we are done by the bounded
geodesic image axiom (8). Otherwise, the bounded geodesic image axioms requires
that �V .xIV

/ and �V .xJV
/ are contained in the 3E–neighborhood of �U .Y / in CU .

By the quasiconvexity of �U .Y / in CU and the properties of the gate map, the distance
dU .xi ; gY .xi // is thus bounded by a uniform constant determined by S, Q and �.

Case 4 Suppose V v U . Recall that �U .
/ is a unparametrized quasigeodesic in
CU , and let 
0 be the subsegment of �U .
/ from xIV

to xi and 
1 be the subsegment
from xi to xJV

. By the bounded geodesic image axiom and (�), there exists E 0 �E
determined by S, such that both 
0 and 
1 intersect the E 0–neighborhood of �VU . Since
�U .
/ is an unparametrized .�; �/–quasigeodesic, there exists R depending on E 0 and
� such that dU .xi ; �VU /�R. If ˛ is some CU geodesic connecting gY .x/ and gY .y/,
then ˛ also intersects the E–neighborhood of �VU by the bounded geodesic image
axiom. Therefore, by the quasiconvexity of �U .Y / in CU and the properties of the
gate map, the distance dU .xi ; gY .xi // is bounded by a uniform constant determined
by S, Q and �.

Remark 6.17 The hypotheses of Proposition 6.16 cannot be relaxed by taking Y to
be hierarchically quasiconvex instead of strongly quasiconvex. As a counterexample,
one can consider Z2 with the standard HHG structure and let Y be the x–axis. As any
horizontal line in Z2 is a hierarchy path, for any D > 0, there exists a hierarchy path 

where both dX .
; Y / > D and diam.gY .
// > D.
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7 Strongly quasiconvex subsets in familiar examples

In this section, we utilize Theorem 6.3 to give descriptions of the strongly quasiconvex
subsets in well studied examples of hierarchically hyperbolic spaces. We will begin by
briefly discussing the HHS structure for the mapping class group, Teichmüller space,
right-angled Artin and Coxeter groups, and graph manifolds. The descriptions are not
complete as we only describe the parts of the HHS structure that we shall need to be
able to apply the results from the general case. We direct the reader to the references
provided alongside each example for complete details.

The mapping class group and Teichmüller space For the mapping class group, see
[10; 41]; for the Teichmüller metric, see [23; 26; 47]; and for the Weil–Petersson
metric, see [17].

Let S be an oriented, connected, finite-type surface with genus g and p punctures. The
complexity of S is �.S/ D 3g � 3C p. Assume �.S/ � 1 and let X be the marking
complex of S .

� Index set S will be the collection of isotopy classes of (not necessarily con-
nected) essential subsurfaces of S excluding 3–punctured sphere, but including
annuli.

� Hyperbolic spaces For each U 2S, CU will be the curve graph of U . The
space CU will be infinite diameter if and only if U is connected. The projection
maps, �U , are the well studied subsurface projections of Masur and Minsky.

� Relations U ? V if U and V are disjoint and U v V if U is nested into V . If
U v V , then �UV will be the subset of curves in CV corresponding to @U .

The HHS structure for Teichmüller space with either metric is identical except for the
annular domains of S. For the Teichmüller metric, modify the curve graphs of the
annular domains by attaching a horoball. For the Weil–Petersson metric, the index
set S simply excludes annuli. This difference in the treatment of annular domains
accounts for all of the differences in the coarse geometry of the these three spaces.

RAAGs and RACGs [9] Let � be a finite simplicial graph and G� be the associated
right-angled Artin or right-angled Coxeter group equipped with a word metric from
a finite generating set. For an induced subgraph ƒ � � , link.ƒ/ is the subgraph of
��ƒ induced by the vertices adjacent to every vertex in ƒ and star.ƒ/ be the induced
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subgraph of link.ƒ/[ƒ. If ƒ is an induced subgraph of � , then Gƒ is a subgroup
of G� . We call subgroups of this form the special subgroups of G� . The following is
an HHG structure on G� .

� Index set For g; h 2 G� and ƒ a nonempty, induced subgraph of � , define
the equivalence relation gGƒ � hGƒ if g�1h 2 Gstar.ƒ/. Let S be defined as
fgGƒg=�.

� Hyperbolic spaces C ŒgGƒ� can be obtained by starting with the coset gGƒ and
coning off each left coset of the special subgroups contained in gGƒ. C ŒgGƒ�
is infinite diameter if and only if Gƒ is infinite and ƒ does not split as a join.

� Relations ŒgGƒ0 � v ŒgGƒ� if ƒ0 � ƒ and ŒgGƒ0 � ? ŒgGƒ� if ƒ � link.ƒ0/
(and hence ƒ0 � link.ƒ/). If ŒgGƒ0 �v ŒgGƒ�, then �ŒgGƒ0 �

ŒgGƒ�
will be the subset

gGƒ0 in C ŒgGƒ�.

Graph manifolds [10] Let M be a nongeometric graph manifold and X be the
universal cover of M . Since the fundamental group of every graph manifold is quasi-
isometric to the fundamental group of a flip graph manifold, we will assume M is
flip. Let T be Bass–Serre tree for M and Xv be the subspace of X corresponding
to a vertex v 2 T . Each Xv is bi-Lipschitz to the product Rv �Hv where Rv is a
copy of the real line and Hv is the universal cover of a hyperbolic surface with totally
geodesic boundary. If v;w are adjacent vertices in T , then let @wHv and @vHw denote
the boundary components of Hv and Hw such that Rv � @wHv is identified with
Rw � @vHw in X . Since M is flip, Rv is identified with @vHw . For each v 2 T , let
yHv denote the spaced obtained from Hv after coning off each copy of @wHv for each

vertex w adjacent to v. The following is an HHS structure on X .

� Index set For adjacent vertices v;w 2 T , define Rv � @vHw and then let
SD fT;Rv; @vHw ; yHwg=�.

� Hyperbolic spaces Every element of S is a hyperbolic space, so we have
CU D U for all U 2S. The diameter of CU is infinite for all U 2S.

� Relations T is the v–maximal domain and Œ@wHv� v yHv for all w and v
adjacent in T . For adjacent vertices v;w 2 T , �ŒRv�

T D �
Œ@wHv�
T D fv;wg � T

and �Œ@wHv�
yHv

is the cone point for @wHv in yHw . For v and w adjacent in T , we
have ŒRv�? yHv and ŒRv�? ŒRw � (recall Œ@wHv�D ŒRw �).

Remark 7.1 When the manifold M is flip, the above describes an HHG structure
on �1.M/. However, if M is not flip, then the quasi-isometry from �1.M/ to the
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fundamental group of the flip graph manifold need not be equivariant and the above
will be an HHS, but not an HHG structure on �1.M/. See [10, Remark 10.2] for a
discussion of the existence of HHG structures on 3–manifold groups.

In the case of right-angled Artin groups with connected defining graphs, Tran and
Genevois independently showed that strongly quasiconvex subgroups are either finite-
index or hyperbolic (and are actually free when they are hyperbolic) [28; 54]. The
same result is shown for the mapping class group in [38] and for certain CFS right-
angled Coxeter groups in [43]. Based on these examples, one may conjecture that the
strongly quasiconvex subsets of any not relatively hyperbolic, hierarchically hyperbolic
space are either hyperbolic or coarsely cover the entire space. While [54] provides
a counterexample to this conjecture in right-angled Coxeter groups, it nevertheless
holds in many of the examples described above. In Proposition 7.2, we give sufficient
conditions for every strongly quasiconvex subset of an HHS to be either hyperbolic
or coarsely covering. We then unite and expand the work of Genevois, Kim, Nguyen
and Tran by applying Proposition 7.2 to the mapping class group, Teichmüller space,
right-angled Artin and Coxeter groups, and graph manifolds in Corollary 7.4.

Proposition 7.2 Let .X ;S/ be an HHS with the bounded domain dichotomy and let
S� be as defined in Definition 6.5. Assume the following two conditions hold :

(1) For all W 2S�S� either CW has bounded diameter or the set

f�VW j V 2S
� with V tW or V vW g

uniformly coarsely covers CW .

(2) For every U; V 2S� there exists a sequence U D U1; : : : ; Un D V of domains
in S� with Ui ? UiC1 for all 1� i � n� 1.

Then , if Y � X is strongly quasiconvex, either Y is hyperbolic or some finite neighbor-
hood of Y covers all of X .

Proof Let Y � X be Q–strongly quasiconvex. By Theorem 6.3 there exists B ,
depending only on Q and S, such that Y has the B–orthogonal projection dichotomy.
Further, we can assume B is large enough such that .X ;S/ satisfies the B–bounded
domain dichotomy. We will show that if Y is not hyperbolic, then for all W 2S we
have that CW is uniformly coarsely covered by �W .Y /. Thus for all x 2 X we will
have that dW .x; gY .x// is uniformly bounded and therefore Y will coarsely cover X
by the distance formula (Theorem 4.4).
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Suppose that Y is not hyperbolic. By Proposition 2.8, the inclusion map i W Y ,! X

cannot be a stable embedding. Therefore by Corollary 6.4, there exists a domain
U 2S� such that diam.�U .Y // >B . First we will show that for any domain W 2S�,
CW �NB.�W .Y //.

Let W 2S�. By hypothesis, there exists a sequence U DU1; : : : ; UnDW of domains
in S� with Ui ? UiC1 for all 1� i � n� 1. Since Y has the B–orthogonal projection
dichotomy and diam.CUi /D1 for each 1� i � n, we have CUi �NB.�Ui

.Y // for
all 1� i � n. In particular, CW �NB.�W .Y //.

Now let W 2S�S� such that diam.CW /D1. We will show that �W .Y / uniformly
coarsely covers CW by showing that for all V 2 S� such that �VW is defined there
exists y 2 Y such that �W .y/ is uniformly close to �VW . First suppose V 2S� with
V vW . By the preceding paragraph, there exist x; x0 2 Y such that dV .x; x0/ > 100E.
If 
 is a hierarchy path connecting x and x0, then �W .
/ is uniformly close to �VW by
the bounded geodesic image axiom (8). Further, since Y is strongly quasiconvex there
exists y 2 Y such that dW .�VW ; �W .y// < B

0 where B 0 depends only on Q and S. If
instead V 2S� and V tW , then there exists y 2 Y such that dV .y; �WV / > �0. Thus
dW .y; �

V
W /� �0 by the consistency axiom (5). Since the set

f�VW j V 2S
� with V tW or V vW g

uniformly coarsely covers CW by hypothesis, we have that �W .Y / uniformly coarsely
covers all of CW as well.

Hence we have that for all W 2S, CW is uniformly coarsely covered by �W .Y / and
so Y coarsely covers X by the distance formula.

Before continuing, we will take a brief detour to define a property of graphs that will
be relevant to our study of right-angled Coxeter groups. Given a graph � , define �4 as
the graph whose vertices are induced 4–cycles of � . Two vertices in �4 are adjacent if
and only if the corresponding induced 4–cycles in � have two nonadjacent vertices in
common. Given graphs ƒ1 and ƒ2, recall that the join ƒ1 �ƒ2 is the graph obtained
from ƒ1 tƒ2 by adding an edge between each vertex of ƒ1 and each vertex of ƒ2.

Definition 7.3 (constructed from squares) A graph � is CFS if � D��K, where
K is a (possibly empty) clique and � is a nonempty subgraph such that �4 has a
connected component T where every vertex of � is contained in a 4–cycle that is a
vertex of T . If � is CFS and �4 is connected, then we say � is strongly CFS. If � is
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�1 �2

Figure 7: Two graphs �1 and �2 are both CFS. However, graph �1 is
graph strongly CFS but �2 is not since the red induced 4–cycle in �2 is not
“connected” to any other induced 4–cycle in the graph.

(strongly) CFS, then by abuse of language we will say that the right-angled Coxeter
group G� is (strongly) CFS. See Figure 7 for examples of CFS and strongly CFS
graphs.

Corollary 7.4 The following HHSs have the property that every strongly quasiconvex
subset is either hyperbolic or coarsely covers the entire space:

(a) The Teichmüller space of a finite-type , oriented surface with the Teichmüller
metric.

(b) The Teichmüller space of a finite-type , oriented surface of complexity at least 6
with the Weil–Petersson metric.

(c) The mapping class group of a finite-type , oriented surface.

(d) A right-angled Artin group with connected defining graph.

(e) A right-angled Coxeter group with strongly CFS defining graph.

(f) The fundamental group of a nongeometric graph manifold.

In particular , if H is a strongly quasiconvex subgroup in any of the groups (c)–(f), then
H is either stable or finite-index.

Proof All of the above examples have the bounded domain dichotomy. We shall show
they satisfy the two hypotheses of Proposition 7.2.
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Mapping class group and Teichmüller metric If �.S/� 1, then the mapping class
group and Teichmüller space will both be hyperbolic; thus we can assume �.S/� 2.
In this case, S� is the set of all connected proper subsurfaces. Thus hypothesis (1)
follows from the fact that every curve on the surface corresponds to the boundary curve
of some connected subsurface. Given two subsurfaces U and V , a sequence satisfying
hypothesis (2) is found by taking a path in CS connecting @U and @V .

Weil–Petersson S� is the collection of all connected proper subsurfaces whose
complement contains a subsurface of complexity at least 1. In particular, since the
complexity is at least 6, S� contains every subsurface of complexity 1. For every
connected subsurfaceW …S�, every curve onW corresponds to the boundary curve of
some complexity 1 subsurface providing hypothesis (1). Hypothesis (2) follows from
the observations that if U � S is a subsurface of complexity 1 and ˛ is a curve disjoint
from U , then there exists V � S , a subsurface of complexity 1, such that ˛ � @V
and U is disjoint from V . Thus any path in CS can be promoted to a sequence of
sequentially disjoint subsurfaces in S�.

RAAGs S� is the collection of ŒgGƒ� such that there exists � � link.ƒ/ where
ƒ and � are both nonempty and not joins. In particular, since � is connected, S�

contains all of the ŒgGƒ� where ƒ is a single vertex. Hypothesis (1) follows from the
fact that Gƒ acts cocompactly on its Cayley graph and the construction of C ŒgGƒ�.
For hypothesis (2), let Œg1Gƒ1

�; Œg2Gƒ2
� 2S� and mD jg�11 g2j. We shall proceed

by induction on m. If mD 0, then g1 D g2 D g and since � is connected, there is a
sequence of vertices v1; v2; : : : ; vn such that vi and viC1 are adjacent for all 1� i�n�1
and v1 2 link.ƒ1/, vn 2 link.ƒ2/. Thus ŒgGƒ1

�; ŒgGv1
�; : : : ; ŒgGvn

�; ŒgGƒ2
� is the

required sequence.

If m> 0, then there exists g3 2G� such that jg�11 g3j Dm� 1 and jg�13 g2j D 1. Let
v be the vertex of � such that g�13 g2 is either v or v�1. By induction, there exist two
sequences of elements of S�,

Œg1Gƒ1
�D U1; U2; : : : ; Un D Œg3Gv� and Œg2Gv�D V1; V2; : : : ; Vk D Œg2Gƒ2

�;

such that Ui ? UiC1 for 1 � i � n� 1 and Vi ? ViC1 for all 1 � i � k � 1. Since
Œg3Gv�D Œg2Gv�,

Œg1Gƒ1
�D U1; U2; : : : ; Un; V2; : : : ; Vn D Œg2Gƒ2

�

is the required sequence.
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RACGs Since � is strongly CFS, we can write � D � �K where K is a clique
(possibly empty) and� is a nonempty graph such that�4 is connected and every vertex
of � is contained a 4–cycle that is a vertex of �4. Since G� is a finite-index subgroup
of G� , it suffices to prove that every strongly quasiconvex subset of G� is either
hyperbolic or coarsely covers G�. We now prove that the standard HHG structure, S,
on G� satisfies satisfy the two hypotheses of Proposition 7.2. The argument will be
similar to the case of right-angled Artin groups above.

We first observe that S� is the collection of ŒgGƒ� such that there exists �� link.ƒ/
where ƒ and � both have at least two points and they are not joins. In particular,
S� contains all domains ŒgGfa;bg� where a and b are two nonadjacent vertices of an
induced 4–cycle. Hypothesis (1) follows from the fact that Gƒ acts cocompactly on its
Cayley graph and the construction of C ŒgGƒ�.

For hypothesis (2), let Œg1Gƒ1
�; Œg2Gƒ2

� 2S� and mD jg�11 g2j. We shall proceed by
induction on m. We first assume that mD 0. Therefore, g1D g2D g. We note that for
i D 0 or 1 there exists�i � link.ƒi / whereƒi and�i both contain at least two vertices
and are not joins. Therefore, link.ƒi / contains a pair .ui ; vi / of two nonadjacent
vertices of some induced 4–cycle. Since �4 is connected, there is a sequence of
pairs of nonadjacent vertices .u1; v1/ D .a1; b1/; .a2; b2/; : : : ; .an; bn/ D .u2; v2/

such that ai and bi are both adjacent to aiC1 and biC1 for all 1 � i � n� 1. Thus
ŒgGƒ1

�; ŒgGfa1;b1g
�; : : : ; ŒgGfan;bng�; ŒgGƒ2

� is the required sequence.

If m> 0, then there exists g3 2G� such that jg�11 g3j Dm�1 and jg�13 g2j D 1. Let v
be the vertex of � such that g�13 g2 D v. Since every vertex of � is contained in a four
cycle that is a vertex of �4, there is a vertex w such that v and w are two nonadjacent
vertices of an induced 4–cycle. By induction, there exist two sequences of elements
of S�,

Œg1Gƒ1
�D U1; U2; : : : ; Un D Œg3Gfv;wg�

and

Œg2Gfv;wg�D V1; V2; : : : ; Vk D Œg2Gƒ2
�;

such that Ui ? UiC1 for 1 � i � n� 1 and Vi ? ViC1 for all 1 � i � k � 1. Since
Œg3Gfv;wg�D Œg2Gfv;wg�,

Œg1Gƒ1
�D U1; U2; : : : ; Un; V2; : : : ; Vn D Œg2Gƒ2

�

is the required sequence.
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Graph manifolds In this case, S� D S � fT g and hypothesis (1) is immediate
from the facts that for every vertex v 2 T is an element of �ŒRv�

T and every point
in Hv is uniformly close to some boundary component @wHv. For hypothesis (2),
consider U;W 2 S�. If U D ŒRu� and W D ŒRw �, let v1; : : : ; vn be a sequence of
adjacent vertices in T such that v1 is adjacent to u and vn is adjacent to w. In this
case the sequence ŒRu�; ŒRv1

�; : : : ; ŒRvn
�; ŒRw � satisfies the hypothesis. If U D Œ yHu�

or W D Œ yHw �, the hypothesis is satisfied by adding Œ yHu� before ŒRu� or Œ yHw � after
ŒRw � to ŒRu�; ŒRv1

�; : : : ; ŒRvn
�; ŒRw � as needed.

In the setting of 2–dimensional right-angled Coxeter groups, Tran provided a character-
ization of the special strongly quasiconvex subgroups [54]. This characterization was
expanded by Genevois to include all right-angled Coxeter groups in [28]. We provide a
new proof of this characterization using Theorem 6.3.

Theorem 7.5 [28; 54] Let � be a simplicial graph and � an induced subgraph of � .
If G� is the right-angled Coxeter group corresponding to � and G� is the subgroup
generated by the vertices of �, then the following conditions are equivalent.

(1) The subgroup G� is strongly quasiconvex in G� .

(2) If � contains two nonadjacent vertices of an induced 4–cycle � , then � contains
all vertices of � .

Proof Before we begin, we document a few additional facts we will need about the
HHG structure on a right-angled Coxeter group. For any induced subgraph ƒ, PŒGƒ� is
coarsely equal to the subgroup Gƒ �Glink.ƒ/ and Gƒ can be coarsely identified with
FŒGƒ�. In particular, Gƒ is hierarchically quasiconvex, �U .Gƒ/ uniformly coarsely
covers CU for U v ŒGƒ�, and �V .Gƒ/ is uniformly bounded for all V 6v ŒGƒ�. See
[9] for full details on the HHG structure on right-angled Coxeter groups.

.1/ D) .2/ Assume for a contradiction that G� is strongly quasiconvex, but there
is a 4–cycle � with two pairs of nonadjacent vertices fa1; a2g and fb1; b2g such that
fa1; a2g is a subset of � and fb1; b2g is not. We know that U D ŒGfa1;a2g

� and
ŒGfb1;b2g

�D V are orthogonal domains. However, �U .G�/ coarsely covers CU , but
�V .G�/ has uniformly bounded diameter which contradicts Theorem 6.3.

.2/D) .1/ As G� is hierarchically quasiconvex, we only need to demonstrate that
G� satisfies the orthogonal projection dichotomy. Let B be a positive number such
that .G� ;S/ has the B–bounded domain dichotomy, CW � NB.�W .G�// for all
W v ŒG��, and diam.�W .G�// <B for allW 6v ŒG��. If diam.�U .G�// >B , then it
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must be the case that U D ŒGƒ� where ƒ�� and ƒ contains two nonadjacent vertices
s and t . If V 2S?U , then V D ŒGƒ0 � where ƒ0 � link.ƒ/ and ƒ� link.ƒ0/. If ƒ0 is a
join or ƒ0 D fvg, then diam.CV / � B and CV � N2B.�V .G�//. In the other case,
we will show ƒ0 ��.

If ƒ0 is not a join and contains at least two vertices, then for each vertex v 2ƒ0 there
exists a vertex w 2ƒ0 that is not adjacent to v. Since ƒ� link.ƒ0/, the vertices v, s,
w and t form a 4–cycle. However, (2) then requires v;w 2 �. Hence, ƒ0 � � and
V D ŒGƒ0 �v ŒG�� implying CV �NB.�V .G�//. Thus G� has the 2B–orthogonal
projection dichotomy and we are finished by Theorem 6.3.

7.1 CFS right-angled Coxeter groups

Recently, Behrstock proposed the program of classifying all CFS right-angled Coxeter
groups up to quasi-isometry and commensurability. This was motivated by the genericity
of CFS right-angled Coxeter groups among random right-angled Coxeter groups as
well as the fact that being CFS is a necessary (but not sufficient) condition for a
right-angled Coxeter group to be quasi-isometric to a right-angled Artin group; see [7].

In [7], Behrstock presented the first example of a CFS right-angled Coxeter group that
contains a one-ended stable subgroup answering outstanding questions about stable
subgroups and quasi-isometries between right-angled Artin groups and right-angled
Coxeter groups. Using Theorem 7.5, we can expand Behrstock’s construction to
produce CFS right-angled Coxeter groups that contain any other right-angled Coxeter
group as a strongly quasiconvex subgroup. This shows that there is incredible diversity
among the quasi-isometry types of CFS right-angled Coxeter groups.

Proposition 7.6 Any right-angled Coxeter group (resp. hyperbolic right-angled Cox-
eter group) is an infinite-index strongly quasiconvex subgroup (resp. stable subgroup)
of a CFS right-angled Coxeter group.

Proof To prove the proposition we shall utilize a construction of certain CFS graphs
described in [7]. Let �n be a graph with 2n vertices built in the following inductive
way. Let �1 be a pair of vertices a1, b1 with no edge between them. Given the graph
�n�1, we obtain the graph �n by adding a new pair of vertices an and bn to the graph
�n�1 and adding four new edges, one connecting each of fan�1; bn�1g to each of
fan; bng. In Figure 8, graph �1 is exactly �13. For each integer m � 2 there is a
sufficiently large n such that the graph�n containsm vertices whose pairwise distances
are at least 3.
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�1

�2 �3

Figure 8: Three graphs �1, �2, and �3 are all CFS, but no pair of them are
quasi-isometric.

Let G� be an arbitrary right-angled Coxeter group. We will construct a CFS right-
angled Coxeter group G� that contains G� as a strongly quasiconvex subgroup. Let m
be a number of vertices of � . Choose a positive integer n sufficient large so the graph
�n contains a set S of m vertices whose pairwise distance is at least 3. We glue the
graphs � and �n by identifying the vertex set of � to S . Let � be the resulting graph.
In Figure 8, graph �2 is an example of graph � when � is the 5–cycle graph and graph
�3 is another example of graph � when � is the 4–cycle graph.
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G�1
G�2

G�3

strongly CFS yes yes no

noncoarsely covering all hyperbolic; contains a strongly
strongly quasiconvex all quasitrees contains a one-ended quasiconvex

subsets stable subgroup virtually Z2 subgroup

Morse boundary totally disconnected contains a circle connectivity unknown

quasi-isometric yes no no
to an RAAG

Table 1: Note that Karrer has since shown that the Morse boundary of G�3
is

totally disconnected [37].

The graphs � and �n have the same vertex set and �4n � �
4. Thus � is a CFS

graph as �n is a CFS graph. Since the distance in �n between any distinct vertices
of S is at least 3, � is an induced subgraph of � with the property that if � contains
two nonadjacent vertices of an induced 4–cycle � , then � contains all vertices of � .
Therefore, G� is a strongly quasiconvex subgroup of G� by Theorem 7.5. If G� is a
hyperbolic group, then it is a stable subgroup of G�.

In light of Proposition 7.6, we believe that strongly quasiconvex subgroups will play an
important role in understanding the quasi-isometry classification of CFS right-angled
Coxeter groups. In particular, it suggests that the quasi-isometry classification of CFS
right-angled Coxeter groups may be no simpler than the quasi-isometry classification
of all right-angled Coxeter groups.

We finish this section by illustrating the results of this section with three CFS right-
angled Coxeter groups whose quasi-isometry types can be distinguished utilizing their
strongly quasiconvex subsets.

Example 7.7 Let �1, �2, and �3 be the graphs in Figure 8. All of the right-angled
Coxeter groups G�1

, G�2
, and G�3

are CFS, but no pair of them are quasi-isometric.
By [43], G�1

is quasi-isometric to a right-angled Artin group with connected defining
graph. Thus, all of G�1

’s noncoarsely covering strongly quasiconvex subsets are
quasitrees. However, G�2

contains a one-ended hyperbolic strongly quasiconvex
subgroup (induced by the blue 5–cycle) and G�3

contain a virtually Z2 strongly
quasiconvex subgroup (induced by the red 4–cycle). Table 1 summarizes some of the
differences between G�1

, G�2
, and G�3

.
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8 Hyperbolically embedded subgroups of HHGs

In this section, we utilize Theorem 6.3 to prove the following classification of hyperbol-
ically embedded subgroups of hierarchically hyperbolic groups. As our proof does not
directly utilize the definition of hyperbolically embedded, we shall omit the definition
here and direct the curious reader to [20].

Theorem 8.1 Let G be a hierarchically hyperbolic group and let fHig be a finite
collection of subgroups. Then the following are equivalent :

(1) The collection fHig is hyperbolically embedded in G.

(2) The collection fHig is almost malnormal and each Hi is strongly quasiconvex.

Combining work of Dahmani, Guirardel and Osin [20] and Sisto [50], the implication
.1/D) .2/ holds for all finitely generated groups. To see that the converse does not
hold in general, consider a nonvirtually cyclic lacunary hyperbolic group G where
every proper subgroup is infinite cyclic and strongly quasiconvex — the existence of
such a group is shown in [44, Theorem 1.12]. If I is a proper subgroup of G, then by
[54, Theorem 1.2], I has finite index in its commensurator H . Thus H is a proper,
infinite, almost malnormal, strongly quasiconvex subgroup of G. However, H cannot
be hyperbolically embedded as G does not contain any nonabelian free subgroups and
thus fails to be acylindrically hyperbolic; see [20; 45].

Despite this failure in general, Genevois showed that in the setting of CAT(0) cubical
groups, .2/ does imply .1/ [28, Theorem 6.31]. Genevois employees a combination
of the Bestvina–Bromberg–Fujiwara construction [12, Theorems A and B] with some
work of Sisto [49, Theorems 6.3 and 6.4] that is summarized in the following sufficient
conditions for a collection of subgroups to be hyperbolically embedded.

Theorem 8.2 [12; 49] Let G be a finitely generated group and Z be the collection
of all (left) cosets of a finite collection of finitely generated subgroups fHig in G. Fix
a finite generating set S for G such that Hi D hHi \ Si for all i . Suppose for every
Z1 ¤ Z2 2 Z we are given a subset �Z1

.Z2/ � Z1 and for Z1; Z2; Z3 2 Z define
d �Z3

.Z1; Z2/D diamZ3
.�Z3

.Z1/[ �Z3
.Z2//. The collection fHig is hyperbolically

embedded in G if there exists C > 0 such that :

(P0) For all Z1 ¤Z2, diam.�Z1
.Z2//� C .

(P1) For any triple Z1; Z2; Z3 2 Z of distinct elements , at most one of the three
numbers d �Z1

.Z2; Z3/, d �Z2
.Z1; Z3/ and d �Z3

.Z1; Z2/ is greater than C .
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(P2) For any Z1; Z2 2 Z , the set

fZ 2 Z j d �Z.Z1; Z2/ > C g
is finite.

(P3) For all g 2G, d �gZ1
.gZ2; gZ3/D d

�
Z1
.Z2; Z3/ for any Z1; Z2; Z3 2 Z .

As Genevois does in the cubical case, we shall show that an almost malnormal collection
of strongly quasiconvex subgroups of an HHG satisfies (P0)–(P3) of Theorem 8.2. The
bulk of that work is in Proposition 8.6, which we will state and prove after collecting a
few preliminary lemmas.

Lemma 8.3 Let fH1; : : : ;Hng be an almost malnormal collection of subgroups of
a finitely generated group G and B � 0. For all g1; g2 2 G, if g1Hi ¤ g2Hj , then
diam.NB.g1Hi /\NB.g2Hj // is finite.

Proof The conclusion follows directly from [36, Proposition 9.4] and the definition of
almost malnormal.

The next two lemmas tell us that a hierarchically quasiconvex subset coarsely intersects
a strongly quasiconvex subset whenever the image under the gate map is large. Further,
the diameter of this coarse intersection is proportional to the diameter of the gate. In
addition to being key components in our proof of Theorem 8.1, these lemmas can also
be interpreted as additional generalizations of the bounded geodesic image property of
strongly quasiconvex subsets of hyperbolic spaces.

Lemma 8.4 Let .X ;S/ be an HHS with the bounded domain dichotomy, A�X be k–
hierarchically quasiconvex subset , and Y �X beQ–strongly quasiconvex. There exists
r > 1 depending on Q and k such that if diamX .gY .A// > r , then dX .a; gY .a// < r
for each a 2 gA.Y /.

Proof By Proposition 5.7, there exists k0 such that both A and Y are k0–hierarchically
quasiconvex. Recall that for each point x 2X and U 2S, the distance in CU between
gY .x/ and the closest point projection of �U .x/ onto �U .Y / is uniformly bounded by
some � > 1. Let K � � be such that Y has the K–orthogonal projection dichotomy and
that K is larger than the constant from the bridge theorem (Theorem 4.18) determined
by k0. Define HD fU 2S W diam.�U .gY .A/// > 2Kg. By the uniqueness axiom (10),
there exists C such that if diam.gY .A// > C , then H¤∅. Assume diam.gY .A// > C
and let a 2 gA.Y /. By (5) of the bridge theorem, Rel2K.a; gY .a//�H?. Suppose for
the purposes of contradiction that V 2Rel2K.a; gY .a//. Thus, there must exist H 2H
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with V ?H . By Theorem 6.3, CH �NK.�H .Y // and CV �NK.�V .Y // which im-
plies that dV .a; gY .a//<KC� <2K. However, this contradicts V 2Rel2K.a; gY .a//.
Hence, Rel2K.a; gY .a//D∅, and by the distance formula (Theorem 4.4), there exists
K 0 depending only on K (and thus only on Q and �1) such that dX .a; gY .a// < K 0.
The conclusion follows by choosing r DmaxfK 0; C g.

Lemma 8.5 Let .X ;S/ be an HHS with the bounded domain dichotomy, A� X be
a k–hierarchically quasiconvex subset and Y � X be Q–strongly quasiconvex. There
exists r > 1 depending on k and Q such that for all D � r if diam.gY .A// > r , then
there exists K � 1 depending on k, D and Q such that

diam.ND.A/\ND.Y //�1;K diam.gY .A//:

Proof Let r be the constant given by Lemma 8.4 and suppose diam.gY .A//> r . Thus,
for D � r , diam.ND.A/\ND.Y //¤∅. First consider x; y 2ND.A/\ND.Y /. Let
x0; y0 2A be points such that dX .x; x0/�D and dX .y; y0/�D. By Lemma 4.15 and
the fact that x; y 2ND.Y /, there exists K 0 depending on Q such that

dX .x; gY .x
0//� 4DK 0 and dX .y; gY .y

0//� 4DK 0:

Hence,
dX .x; y/� dX .gY .x

0/; gY .y
0//C 8DK 0;

which shows

diam.ND.A/\ND.Y //� diam.gY .A//C 8DK 0:

For the inequality diam.gY .A// � diam.ND.A/ \ ND.Y //, Lemma 8.4 provides
gY .gA.Y // � ND.A/ \ND.Y / and the bridge theorem (Theorem 4.18) says there
exists K 00 depending on k and Q such that gY .A/�NK00.gY .gA.Y ///. Thus,

diam.gY .A//� diam.gY .gA.Y ///C 2K 00 � diam.ND.A/\ND.Y //C 2K 00

and we are finished by choosing K Dmaxf2K 00; 6DK 0C 3K 0g.

We now prove that the cosets of a collection of almost malnormal, strongly quasiconvex
subgroups of an HHG satisfy (P0)–(P2) of Theorem 8.2 when �Z1

.Z2/ is defined by
the gate map. This is the main tool for the proof of Theorem 8.1.

Proposition 8.6 Let .G;S/ be an HHG and d. � ; � / denote the distance in the word
metric on G with respect to some fixed finite generating set. If fH1; : : : ;Hng is a
collection of Q–strongly quasiconvex, almost malnormal subgroups of G and Z is the
collection of all left cosets of the Hi , then there exists C > 0 such that , for all distinct
Z1; Z2; Z3 2 Z:
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(1) diam.gZ1
.Z2//� C .

(2) If d.gZ3
.Z1/; gZ3

.Z2// > C , then

d.gZ2
.Z1/; gZ2

.Z3// < C and d.gZ1
.Z2/; gZ1

.Z3// < C:

(3) fZ 2 Z j d.gZ.Z1/; gZ.Z2// > C g has only a finite number of elements.

Proof We will prove each of the three assertions individually. Before beginning, we
remind the reader that all hierarchically hyperbolic groups satisfy the bounded domain
dichotomy and that every element of Z is k–hierarchically quasiconvex for some k
depending only on Q.

Assertion (1) There exists C1 > 0 such that diam.gZ1
.Z2//� C1 for all Z1; Z2 2 Z .

Proof Let r > 1 be the constant from Lemma 8.5 for Q and define

F D fgHi 2 Z j gHi \Br.e/¤∅g

where Br.e/ is the ball of radius r around the identity in G. Since F is a finite set,
Lemma 8.3 provides a uniform number D1 such that diam.Nr.gHi /\Nr.Hj //�D1
for any distinct gHi ;Hj 2 F . By Lemma 8.5, there exists D2 depending on Q such
that diam.gHj

.gHi //�D2 where gHi ¤Hj are elements in F .

We now prove that there is a uniform constant C1 such that for each pair of distinct
cosets g1Hi and g2Hj we have

diam.gg1Hi
.g2Hj //� C1:

If diam.gg1Hi
.g2Hj // � r , then we are done. Otherwise, by Lemma 8.4, there are

elements hi 2 Hi and hj 2 Hj such that dG.g1hi ; g2hj / < r . This implies that
h�1i g�11 g2Hj is an element in F and h�1i g�11 g2Hj ¤Hi . Therefore,

diam.gHi
.h�1i g�11 g2Hj //�D2:

Thus, by the coarse equivariance of the gate maps (Lemma 4.16), the diameter of
gg1Hi

.g2Hj / is bounded above by a uniform number C1.

Assertion (2) There exists C2 > 0 such that for all Z1; Z2; Z3 2 Z , if

d.gZ3
.Z1/; gZ3

.Z2// > C2;

then
d.gZ2

.Z1/; gZ2
.Z3// < C2 and d.gZ1

.Z2/; gZ1
.Z3// < C2:
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Proof Fix � � �0. LetZ1; Z2; Z3 2Z and BDH� .gZ2
.Z1/[gZ1

.Z2//. We remind
the reader that they should view B as a bridge between Z1 and Z2. Our goal is to
show that there exists b 2 B such that d.b; gZ3

.b// is uniformly bounded. From this
our conclusion will follow from the coarse Lipschitzness of the gate map.

By assertion (1), gZ3
.Z1/ and gZ3

.Z2/ are uniformly coarsely contained in gZ3
.B/.

Since the gate map is coarsely Lipschitz,

diam.gZ3
.B//� d.gZ3

.Z1/; gZ3
.Z2//

with constants depending only onQ. Let r be the constant from Lemma 8.4 withADB
and Y DZ3 and suppose d.gZ3

.Z1/; gZ3
.Z2// is large enough that diam.gZ3

.B//>r .
By Lemma 8.4, there exists b 2 B such that d.b;Z3/ < r .

By Lemma 4.19, we have that gZ2
.Z1/ is uniformly coarsely equal to gZ2

.B/ in partic-
ular gZ2

.b/ is uniformly coarsely contained in gZ2
.Z1/. Since the gate maps are uni-

formly coarsely Lipschitz and d.b;Z3/ < r , we have that d.gZ2
.Z3/; gZ2

.Z1// < C2.
By switching the roles of Z1 and Z2, we get d.gZ1

.Z3/; gZ1
.Z2// < C2.

Assertion (3) There exists C3 > 0 such that for all Z1; Z2 2 Z , the set

fZ 2 Z j dX .gZ.Z1/; gZ.Z2// > C3g

has only a finite number of elements.

Proof Let Z1; Z2 2 Z. Fix � � �0 and let B D H� .gZ2
.Z1/[ gZ1

.Z2//. By the
bridge theorem, we have that B is coarsely equals to the product of gZ1

.Z2/�H� .a; b/,
where a 2 gZ1

.Z2/ and bD gZ2
.a/. By assertion (1), the gate gZ1

.Z2/ has uniformly
bounded diameter. By Proposition 5.6, there exists � � �0 such that H� .a; b/ is
contained in P1

�
.a; b/, the set of �–hierarchy paths between a and b. Since the distance

between a and b is finite, so is the diameter of P1
�
.a; b/. Therefore H� .a; b/ has

bounded diameter and so does the set B D H� .gZ2
.Z1/ [ gZ1

.Z2//. Since G is
locally finite, B can contain only a finite number of elements of G.

Let r be as in Lemma 8.4. Since gZ2
.Z1/; gZ1

.Z2/ � B , for any Z 2 Z with
d.gZ.Z1/; gZ.Z2// larger than r we have diam.gZ.B// > r . Thus every such Z
intersects the r–neighborhood of B . By locally finiteness of G, we obtain that Nr.B/
contains a finite number of element of G. Since the elements of Z are cosets of finitely
many subgroups, every point of Nr.B/ can belong to uniformly finitely many elements
of Z , which concludes the proof of assertion (3).

Proposition 8.6 now holds by taking C DmaxfC1; C2; C3g.
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We now have all the ingredients needed to give the proof of Theorem 8.1.

Proof of Theorem 8.1 Recall, we need to show that if G is a hierarchically hyperbolic
group and fHig a finite almost malnormal collection of strongly quasiconvex subgroups,
then fHig is hyperbolically embedded in G. In particular, we shall show that the
left cosets of the Hi ’s satisfy the requirements of Theorem 8.2. Since each Hi is a
strongly quasiconvex subgroup of G, by [54, Theorem 1.2] we have that they are all
finitely generated. Let S be a finite generating set for G such that for each i , Hi \S
generates Hi . As before, let Z be the set of all left cosets of fHig. For every pair
of distinct Z1; Z2 2 Z we want to define a set �Z1

.Z2/ that satisfies (P0)–(P3) of
Theorem 8.2. If we define �Z1

.Z2/ as gZ1
.Z2/, Proposition 8.6 provides that (P0)–(P2)

will be satisfied. However, since the gate maps are only coarsely equivariant, condition
(P3) may not hold.

Thus, for Z1 ¤Z2 define

�Z1
.Z2/D

[
g2G

g�1ggZ1
.gZ2/:

By construction we have that �gZ1
.gZ2/D g.�Z1

.Z2// and thus (P3) holds. Since
�Z1

.Z2/ and gZ1
.Z2/ uniformly coarsely coincide by the coarse equivariance of the

gates maps (Lemma 4.16), (P0)–(P2) are satisfied as a corollary of Proposition 8.6.
Hence, the collection fHig is hyperbolically embedded in G by Theorem 8.2.

Our method of proof for Theorem 8.1 relies in a fundamental way upon the coarse
equivariance of the gate map. If the group G has an HHS structure, but not an HHG
structure, then the gate map need not be coarsely equivariant. In particular, Theorem 8.1
does not (currently) apply to the fundamental groups of nonflip graph manifolds and
thus we have the following interesting case of Question 4.

Question 6 If M is a nonflip graph manifold and fHig is a finite , almost malnor-
mal collection of strongly quasiconvex subgroups of �1.M/, is fHig hyperbolically
embedded in �1.M/?

Appendix Subsets with arbitrary reasonable lower relative
divergence

The proposition in this appendix utilizes the notion of asymptotic equivalence between
families of functions. We will present the definition in the specific case we need and
direct the reader to [53, Section 2] for the more general case.
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x0 x1 x2 x3 xi�1 xi

J1

J2

J3

Ji

Y

X

Figure 9: By controlling the length of each arc Ji we can get the desired
lower relative divergence of the geodesic space X with respect to the sub-
space Y .

Definition A.1 Let f and g be two functions from Œ0;1/ to Œ0;1/. The function f
is dominated by the function g if there are positive constants A, B , C and D such that
f .r/ � Ag.Br/CCr for all r > D. Two functions f and g are equivalent if f is
dominated by g and vice versa.

LetX be a geodesic metric space and f�n� gDdiv.X; Y / be the lower relative divergence
of X with respect to some subset Y �X . We say div.X; Y / is equivalent to a function
f W Œ0;1/! Œ0;1/ if there exists L 2 .0; 1� and a positive integer M such that �Mn

L�

is equivalent to f for all � 2 .0; 1� and n� 2.

Proposition A.2 Let f W Œ0;1/! Œ0;1/ be a nondecreasing function , and assume
that there is a positive integer r0 such that f .r/ � r for each r > r0. There is a
geodesic space X with a subspace Y such that the lower relative divergence div.X; Y /
is equivalent to f .

Proof Let Y be a ray with initial point x0. Let .xi / be the sequence of points
along Y such that for each i � 1 the distance dY .xi�1; xi /D i and we connect each
pair .xi�1; xi / by a segment Ji of length f .i/; see Figure 9. Let X be the resulting
geodesic space and div.X; Y /Df�n� g. We shall show that div.X; Y / is equivalent to f .

We first prove that for all n � 3 and � 2 .0; 1�, f dominates �n� by showing that
�n� .r/ � f ..nC 3/r/ for each r > r0. Let i0 be a smallest integer that is greater or
equal to .nC 2/r . Let x and y be two points in the segment Ji0 such that

d.xi0�1; x/D d.xi0 ; y/D r:

Both x and y belong to @Nr.Y /. Moreover, the subpath ˛ of Ji0 connecting x and
y lies outside the r–neighborhood of Y , and the length of ˛ is exactly is f .i/� 2r .
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Therefore, d.x; y/Dminfi0C 2r; f .i0/� 2rg. Hence d.x; y/� nr as

f .i0/� 2r � f ..nC 2/r/� 2r � .nC 2/r � 2r D nr

and
i0C 2r � .nC 4/r � nr:

Since ˛ is the unique path outside the �r–neighborhood of Y connecting x and y,

�n� .r/� d�r.x; y/D f .i0/� 2r � f .i0/:

Since i0 � .nC 2/r C 1 � .nC 3/r and f is nondecreasing, f .i0/ � f ..nC 3/r/.
Thus, �n� .r/� f ..nC 3/r/, which implies that �n� is dominated by f .

Now we prove that for all n � 3 and � 2 .0; 1�, �n� dominates f by showing that
�n� .r/ � f .r/� 2r for each r > r0. Let u and v be an arbitrary points in @Nr.Y /
such that d.u; v/� nr and there is a path outside the r–neighborhood of Y connecting
u and v. Therefore, u and v must lies in some segment Ji1 . We can assume that
d.u; xi1�1/D d.v; xi1/D r . Therefore,

i1 � d.xi1�1; xi1/� d.u; v/� 2r � nr � 2r � r:

This implies that f .i1/� f .r/ since f is nondecreasing. Since the subpath ˇ of Ji1
connecting u and v is the unique path outside the �r–neighborhood of Y connecting
these points,

d�r.u; v/D f .i1/� 2r � f .r/� 2r:

Therefore, �n� .r/ � f .r/� 2r which implies that �n� dominates f . Thus, the lower
relative divergence div.X; Y / is equivalent to f .
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and lattice gauge field theory

JULIEN KORINMAN

We provide finite presentations for stated skein algebras and deduce that those algebras
are Koszul and that they are isomorphic to the quantum moduli algebras appearing
in lattice gauge field theory, generalizing previous results of Bullock, Frohman,
Kania-Bartoszynska and Faitg.
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1 Introduction

Stated skein algebras and lattice gauge field theory A punctured surface is a pair
† D .†;P/, where † is a compact oriented surface and P is a (possibly empty)
finite subset of † which nontrivially intersects each boundary component. We write
†P WD† nP . The set @† nP consists of a disjoint union of open arcs, which we call
boundary arcs.

Warning In this paper, the punctured surface † will be called open if the surface
† has nonempty boundary and closed otherwise. This convention differs from the
traditional one, where some authors refer to an open surface as a punctured surface
† D .†;P/ with † closed and P ¤∅ (in which case †P is not closed).
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The Kauffman-bracket skein algebras were introduced by Bullock and Turaev as a tool to
study the SU.2/Witten–Reshetikhin–Turaev topological quantum field theories [45; 51].
They are associative unitary algebras S!.†/ indexed by a closed punctured surface †

and an invertible element ! 2 k� in some commutative unital ring k. Bonahon and
Wong [12] and Lê [40] generalized the notion of Kauffman-bracket skein algebras to
open punctured surfaces, where in addition to closed curves the algebras are generated
by arcs whose endpoints are endowed with a sign, ˙ (a state). The motivation for
the introduction of these so-called stated skein algebras is their good behavior for the
operation of gluing two boundary arcs together. This property permitted the authors
of [12] to define an embedding of the skein algebra into a quantum torus, named the
quantum trace, and offers new tools to study the representation theory of skein algebras.

Except for genus 0 and 1 surfaces (see Bullock and Przytycki [21]), no finite presentation
for the Kauffman-bracket skein algebras is known, though a conjecture in that direction
was formulated in Santharoubane [46, Conjecture 1:2]. However, it is well known
that they are finitely generated; see Abdiel and Frohman [1], Bullock [18], Frohman
and Kania-Bartoszynska [30] and Santharoubane [46]. The corresponding problem for
stated skein algebras of open punctured surfaces is easier. Finite presentations of stated
skein algebras were given for a disc with two punctures on its boundary (for the bigon)
and for the disc with three punctures on its boundary (for the triangle) in [40], for the
disc with two punctures on its boundary and one inner puncture in Korinman [35] and
for any connected punctured surface having exactly one boundary component, one
puncture on the boundary and possibly inner punctures in Faitg [27].

Our first purpose is to provide explicit finite presentations for stated skein algebras of an
arbitrary connected open punctured surface †. Let us briefly sketch their construction;
we refer to Section 2.2 for details.

The finite presentations we will define depend on the choice of a finite presentation
P of some groupoid …1.†P ;V /. In brief, for each boundary arc a of †, choose a
point va 2 a and let V be the set of such points. The groupoid …1.†P ;V / is the full
subcategory of the fundamental groupoid of †P whose set of objects is V . A finite
presentation P D .G;RL/ for …1.†P ;V / will consist in a finite set G of generating
paths relating points of V and a finite set RL of relations among those paths which
satisfy some axioms (see Section 2.2 for details). For instance for the triangle T (the disc
with three punctures on its boundary), the groupoid …1.T ;V / admits the presentation
with generators G D f˛; ˇ; 
 g, drawn in Figure 1, and the unique relation ˛ˇ
 D 1.

Algebraic & Geometric Topology, Volume 23 (2023)
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va

vb

vc
˛

ˇ


Figure 1: The triangle and some paths.

A path ˛ 2G can be seen as an arc in †P and, after choosing some states "; "0 2 f�;Cg
for its endpoints, we get an element ˛""0 2S!.†/ in the stated skein algebra. We denote
by AG � S!.†/ the (finite) set of such elements. It was proved in Korinman [38] that
AG generates S!.†/ and its elements will be the generators of our presentations.

Concerning the relations, first for each ˛ 2G, one has a q–determinant relation between
the elements ˛""0 . For each pair .˛; ˇ/2G2 we will associate a finite set of arc exchange
relations permitting us to express an element of the form ˛""0ˇ��0 2 S!.†/ as a linear
combination of elements of the form ˇab˛cd . Finally, to each relation R 2RL in the
finite presentation P , we will associate a finite set of so-called trivial loop relations.

Theorem 1.1 Let † be a connected open punctured surface and P a finite presenta-
tion of …1.†P ;V /. Then the stated skein algebra S!.†/ is presented by the set of
generators AG and by the q–determinant , arc exchange and trivial loop relations.

For every open punctured surface, we can choose a finite presentation P of …1.†P ;V /

such that the set of relations is empty (for instance for the triangle of Figure 1, one
might choose the presentation with generators G D f˛; ˇg and no relations). In this
case, the presentation of S!.†/ is quadratic inhomogeneous and, by using the diamond
lemma, we prove:

Theorem 1.2 For † a connected open punctured surface , the quadratic inhomogeneous
algebra S!.†/ is Koszul and admits a Poincaré–Birkhoff–Witt (PBW ) basis.

Theorem 1.2 implies that S!.†/ has an explicit minimal projective resolution (the
so-called Koszul resolution), which permits us to effectively compute its cohomology
(see Loday and Vallette [42] for details).

Let .�; c/ be a ciliated graph, that is a finite graph with the data for each vertex of
a linear ordering of its adjacent half-edges. Inspired by Fock and Rosly’s original
work in [29] on the Poisson structure of character varieties, Alekseev, Grosse and

Algebraic & Geometric Topology, Volume 23 (2023)
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Schomerus [2; 3; 5] and Buffenoir and Roche [15; 16] independently defined the so-
called quantum moduli algebras L!.�; c/, which are combinatorial quantizations of
relative character varieties (see Section 4.2 for details). Those algebras arise with some
right comodule map�G WL!.�; c/!L!.�; c/˝Oq ŒG�, where Oq ŒG�DOq ŒSL2�

˝ VV .�/

is the so-called quantum gauge group Hopf algebra and q WD !�4. The subalgebra
Linv
! .�/ � L!.�; c/ of coinvariant vectors plays an important role in combinatorial

quantization. More precisely, as reviewed in Section 4.1, we associate to each ciliated
graph .�; c/ two punctured surfaces: an open one †0.�; c/ and a closed one †.�/,
such that the algebras L!.�; c/ and Linv

! .�/ are quantizations of the SL2.C/ (relative)
character varieties of †0.�; c/ and †.�/, respectively, with their Fock–Rosly Poisson
structures. We deduce from Theorem 1.1:

Theorem 1.3 There exist isomorphisms of algebras S!.†0.�; c// Š L!.�; c/ and
S!.†.�//Š Linv

! .�/.

Theorem 1.3 is not surprising and was already proved in some cases. First it is
well known that (stated) skein algebras also induce deformation quantizations of
(relative) character varieties: it follows from the work in Bullock [17], Przytycki and
Sikora [44] and Turaev [50] for closed punctured surfaces and is proved in Korinman
and Quesney [39, Theorem 1:3] and Costantino and Lê [26, Theorem 8:12] for open
punctured surfaces. So Theorem 1.3 was expected; for instance its statement was
conjectured in [26]. Next the skein origin of the defining relations of quantum moduli
algebra was discovered by Bullock, Frohman and Kania-Bartoszynska in [19] where
the authors already proved that S!.†.�// and Linv

! .�/ are isomorphic in the particular
case where kDCŒŒ„�� and q WD !�4 D exp „. However, their proof does not extend to
arbitrary ring (see item (vi) of Section 5). Finally, in the special case where .�; c/ is
the so-called daisy graph (it has only one vertex, so †0.�; c/ has exactly one boundary
component with one puncture on it), Theorem 1.3 was proved by Faitg in [27] in the
case where ! is not a root of unity. A detailed comparison between Faitg’s isomorphism
and ours is made in Section 4.4. Faitg’s result can also be derived indirectly from the
works in Ben-Zvi, Brochier and Jordan [9] and Gunningham, Jordan and Safronov [31],
as detailed in Section 4.4. As pointed out to us by the anonymous referee, there is an
important difference between our definition of quantum moduli algebras and the original
one. In the original approaches, the algebra L!.�; c/ is seen as a Uqsl˝n

2
–module,

where n is the number of external vertices of � , and Linv
! .�/ is then defined as the

subalgebra of invariant vectors for this action. Here, L!.�; c/ is rather seen as an
Oq ŒSL2�

˝n–comodule and Linv
! .�/ is defined as the subalgebra of coinvariant vectors

Algebraic & Geometric Topology, Volume 23 (2023)
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instead. When q is generic both definitions coincide, however when q is a root of
unity they differ in general (see Section 5 for details). In particular, the isomorphism in
Theorem 1.3 holds with our definition of quantum moduli algebra and might fail with
the original one, at roots of unity.

Acknowledgments The author thanks S Baseilhac, F Costantino, M Faitg, L Funar, D
Jordan, A Quesney, P Roche and P Safronov for useful discussions and the anonymous
referees for interesting suggestions and corrections and for pointing out to us the
difference between Uqsl2–invariant and Oq ŒSL2�–coinvariants at roots of unity. He
acknowledges support from the Japanese Society for Promotion of Science (JSPS) and
the Centre National de la Recherche Scientifique (CNRS).

2 Finite presentations for stated skein algebras

2.1 Definitions and first properties of stated skein algebras

Definition 2.1 A punctured surface is a pair † D .†;P/ where † is a compact
oriented surface and P is a finite subset of†which nontrivially intersects each boundary
component. A boundary arc is a connected component of @†nP . We write†P WD†nP .

Definition of stated skein algebras Before precisely stating the definition of stated
skein algebras, let us sketch it informally. Given a punctured surface † and an invertible
element ! 2 k� in some commutative unital ring k, the stated skein algebra S!.†/
is the quotient of the k–module freely spanned by isotopy classes of stated tangles
in †P � .0; 1/ by some local skein relations. Figure 2, left, illustrates such a stated
tangle: each point of @T � @†P is equipped with a sign C or � (the state). Here the
stated tangle is the union of three stated arcs and one closed curve. In order to work
with two-dimensional pictures, we will consider the projection of tangles in †P as in
Figure 2, right; such a projection will be referred to as a diagram.

A tangle in †P � .0; 1/ is a compact framed, properly embedded one-dimensional
manifold T �†P�.0; 1/ such that for every point of @T � @†P�.0; 1/ the framing is
parallel to the .0; 1/ factor and points in the direction of 1. Here, by framing, we refer to
a thickening of T to an oriented surface. The height of .v; h/ 2†P � .0; 1/ is h. If b is
a boundary arc and T a tangle, we impose that no two points in @bT WD @T \b� .0; 1/

have the same heights, hence the set @bT is totally ordered by the heights. Two tangles
are isotopic if they are isotopic through the class of tangles that preserve the boundary
height orders. By convention, the empty set is a tangle only isotopic to itself.

Algebraic & Geometric Topology, Volume 23 (2023)
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C
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C

C

C
C
��

�
�

Figure 2: A stated tangle (left) and its associated diagram (right). The arrows
represent the height orders.

Let � W†P � .0; 1/!†P be the projection with �.v; h/D v. A tangle T is in generic
position if, for each of its points, the framing is parallel to the .0; 1/ factor, points
in the direction of 1 and is such that �jT W T ! †P is an immersion with at most
transversal double points in the interior of †P . Every tangle is isotopic to a tangle in
generic position. A diagram is the image D D �.T / of a tangle in generic position,
together with the over/undercrossing information at each double point. An isotopy
class of diagram D together with a total order of @bD WD @D \ b for each boundary
arc b uniquely define an isotopy class of a tangle. When choosing an orientation o.b/

of a boundary arc b and a diagram D, the set @bD receives a natural order by setting
that the points are increasing when going in the direction of o.b/. We will represent
tangles by drawing a diagram and an orientation (an arrow) for each boundary arc,
as in Figure 2. When a boundary arc b is oriented we assume that the order of the
heights of the points of @bD coincides with the order induced by the orientation of the
boundary arc. A state of a tangle is a map s W @T ! f�;Cg. A pair .T; s/ is called a
stated tangle. We define a stated diagram .D; s/ in a similar manner.

Let ! 2 k� be an invertible element and write A WD !�2.

Definition 2.2 [40] The stated skein algebra S!.†/ is the free k–module generated
by isotopy classes of stated tangles in †P � .0; 1/ modulo the relations (1) and (2):

DA CA�1 and D�.A2
CA�2/ ;(1)

C

C
D

�

�
D 0; C

�
D ! and !�1 �

C
�!�5 C

�
D :(2)

The product of two classes of stated tangles ŒT1; s1� and ŒT2; s2� is defined by isotoping
T1 and T2 in†P�

�
1
2
; 1
�

and†P�
�
0; 1

2

�
, respectively, and then setting ŒT1; s1��ŒT2; s2�

equal to ŒT1[T2; s1[ s2�. Figure 3 illustrates this product.
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� D D A

Figure 3: An illustration of the product in stated skein algebras.

For a closed punctured surface, S!.†/ coincides with the classical (Turaev’s) Kauffman-
bracket skein algebra.

Reflexion anti-involution Suppose kDZŒ!˙1� and consider the Z–linear involution
x 7! x� on k sending ! to !�1. Let r W †P � .0; 1/

Š
�! †P be the homeomorphism

defined by r.x; t/D .x; 1� t/. Define an antilinear map � W S!.†/ Š�! S!.†/ by

�

�X
i

xi ŒTi ; si �

�
WD

X
i

x�i Œr.Ti/; si ı r �:

Proposition 2.3 [40, Proposition 2.7] The map � is an antimorphism of algebras , ie
�.xy/D �.y/�.x/.

Bases for stated skein algebras A closed component of a diagram D is trivial if it
bounds an embedded disc in†P . An open component of D is trivial if it can be isotoped,
relatively to its boundary, inside some boundary arc. A diagram is simple if it has neither
double point nor trivial component. By convention, the empty set is a simple diagram.
Let o denote an arbitrary orientation of the boundary arcs of †. For each boundary
arc b we denote by <o the induced total order on @bD. A state s W @D ! f�;Cg is
o�increasing if, for any boundary arc b and any two points x;y 2 @bD, then x <o y

implies s.x/ < s.y/, with the convention �<C.

Definition 2.4 We denote by Bo � S!.†/ the set of classes of stated diagrams .D; s/
such that D is simple and s is o–increasing.

Theorem 2.5 [40, Theorem 2.11] The set Bo is a basis of S!.†/.

Remark 2.6 The basis Bo is independent of the choice of the ground ring k and of
! 2k�. This fact has the following useful consequence: Let k WDZŒ!˙1� and k0 be any
other commutative unital ring with an invertible element !0 2 k

0�. There is a unique
morphism of rings � Wk!k0 sending ! to !0 and the two k0 algebras S!.†/˝kk0 and
S!0.†/ are canonically isomorphic through the isomorphism preserving the basis Bo.
This fact permits us to prove formulas in k using the reflexion anti-involution � and
then apply them to any ring k0 by changing the coefficients.
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Figure 4: An illustration of the gluing map ija#b .

Gluing maps Let a and b be two distinct boundary arcs of † and let †ja#b be the
punctured surface obtained from † by gluing a and b. Denote by � W†P! .†ja#b/Pja#b

the projection and c WD �.a/ D �.b/. Let .T0; s0/ be a stated framed tangle of
†ja#bPja#b

� .0; 1/ transverse to c � .0; 1/ and such that the heights of the points of
T0 \ c � .0; 1/ are pairwise distinct and the framing of the points of T0 \ c � .0; 1/

is vertical. Let T �†P � .0; 1/ be the framed tangle obtained by cutting T0 along c.
Any two states sa W @aT !f�;Cg and sb W @bT !f�;Cg give rise to a state .sa; s; sb/

on T . Both the sets @aT and @bT are in canonical bijection with the set T0\ c by the
map � . Hence the two sets of states sa and sb are both in canonical bijection with the
set St.c/ WD fs W c \T0! f�;Cgg.

Definition 2.7 Let ija#b WS!.†ja#b/!S!.†/ be the linear map given, for any .T0; s0/

as above, by
ija#b.ŒT0; s0�/ WD

X
s2St.c/

ŒT; .s; s0; s/�:

Theorem 2.8 [40, Theorem 3:1] The linear map ija#b W S!.†ja#b/! S!.†/ is an
injective morphism of algebras. Moreover the gluing operation is coassociative in the
sense that if a, b, c and d are four distinct boundary arcs , then ija#bıijc#d D ijc#d ıija#b .

Relation with Uqsl2 and OqŒSL2� Recall that A D !�2 and write q WD A2. The
stated skein algebra has deep relations with the quantum enveloping algebra Uqsl2 and
the quantum group Oq.SL2/, explored in [26; 27; 32; 39; 40], that we briefly reproduce
here for later use by using the notation of [22; 33; 47]. Suppose that q is generic (not
a root of unity) and let � W Uqsl2! End.V / be the standard representation of Uqsl2,
where V is two-dimensional with basis .vC; v�/ and

�.E/D

�
0 1

0 0

�
; �.F /D

�
0 0

1 0

�
and �.K/D

�
q 0

0 q�1

�
:

When q is a generic parameter, Uqsl2 has the structure of topological half-ribbon Hopf
algebra in the sense of [47], that is, it admits an R–matrix

RD q
1
2
.H˝H / expq..q� q�1/E˝F / 2

B
Uqsl˝2

2
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(see [22] for details) and a half-ribbon element � 2AUqsl2 (defined by Kirillov and
Reshetikhin in [34], where� is denoted byw�1) such that�.�/D .�˝�/R and such
that .Uqsl2;R; ��2/ is a topological ribbon Hopf algebra. Note that the ribbon element
v WD��2 is not the usual one (see [47; 49] for details) but the Kauffman-bracket one
(the one for which qdim.V /D�q� q�1 instead of qC q�1).

In the standard basis .vC; v�/ of V , the matrix C DMat.vC;v�/.�
�1/ is written

C D

�
CCC CC�
C�C C��

�
WD

�
0 !

�!5 0

�
:

Therefore

C�1
D�A3C D

�
0 �!�5

!�1 0

�
:

Define the operators �; q
1
2
.H˝H /

2 End.V ˝2/ by

�.vi ˝ vj / WD vj ˝ vi and q
1
2
.H˝H /.vi ˝ vj /DAijvi ˝ vj

for i; j 2 fC;�g (we identified � with �1 and C with C1). The braiding associated
to the R–matrix is

RD cV;V WD � ı q
1
2
.H˝H /

ı expq..q� q�1/�.E/˝ �.F //

D � ı q
1
2
.H˝H /

ı .12C .q� q�1/�.E/˝ �.F //:

In the basis .vC˝ vC; vC˝ v�; v�˝ vC; v�˝ v�/, it is written

RD

0BB@
RCCCC RCCC� RCC�C RCC��
RC�CC RC�C� RC��C RC���
R�CCC R�CC� R�C�C R�C��
R��CC R��C� R���C R����

1CCA WD
0BB@

A 0 0 0

0 0 A�1 0

0 A�1 A�A�3 0

0 0 0 A

1CCA ;
so

R�1
D

0BB@
A�1 0 0 0

0 A�1�A3 A 0

0 A 0 0

0 0 0 A�1

1CCA :
We now list three families of skein relations, which are straightforward consequences
of the definition, work regardless whether q is generic or a root of unity, and will be
used later. Let i; j 2 f�;Cg.

� The trivial arc relations, which are given by

(3) i
j
D C i

j and i
j

D .C�1/ij :
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� The cutting arc relations, which are given by

(4) D

X
i;jD˙

C i
j

i
j

and D

X
i;jD˙

.C�1/ij
i
j
:

� The height exchange relations, which are given by

(5) i
j
D

j
i
D

X
k;lD˙

Rkl
ij

l
k

and j
i
D

i
j
D

X
k;lD˙

.R�1/kl
ij

k
l
:

We refer to [40] for proofs.

The algebra Oq ŒSL2� is the algebra presented by generators x""0 ; "; "
0 2 f�;Cg and

relations

xCCxC� D q�1xC�xCC; xCCx�C D q�1x�CxCC;

x��xC� D qxC�x��; x��x�C D qx�Cx��;

xCCx�� D 1C q�1xC�x�C; x��xCC D 1C qxC�x�C;

x�CxC� D xC�x�C;

It has a Hopf algebra structure characterized by�
�.xCC/ �.xC�/

�.x�C/ �.x��/

�
D

�
xCC xC�
x�C x��

�
˝

�
xCC xC�
x�C x��

�
;�

�.xCC/ �.xC�/

�.x�C/ �.x��/

�
D

�
1 0

0 1

�
;�

S.xCC/ S.xC�/

S.x�C/ S.x��/

�
D

�
x�� �qxC�

�q�1x�C xCC

�
:

When q 2C� is generic (not a root of unity), Oq ŒSL2� is the subalgebra of the restricted
dual of Uqsl2 generated by the matrix elements of the integrable modules; see [14; 22].
The bigon B is the punctured surface made of a disc with two punctures on its boundary.
It has two boundary arcs a and b and is generated by the stated arcs ˛""; "; "0D˙ made
of an arc ˛ linking a to b with state " on ˛\a and "0 on ˛\b. Consider a disjoint union
BtB of two bigons; by gluing together the boundary arc b1 of the first bigon with the
boundary arc a2 of the second, one obtains a morphism� WD ijb1#a2

WS!.B/!S!.B/˝2

which endows S!.B/ with the structure of Hopf algebra where � is the coproduct.

Theorem 2.9 [26; 39; 40] There is an isomorphism ' W Oq ŒSL2�Š S!.B/ of Hopf
algebras sending the generator x""0 2Oq ŒSL2� to the element ˛""0 2 S!.B/.
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i
j
k
l

a

b

a

b

c

d

i
j
k
l

a

b

D

X
a;b

�

0B@
1CA D X

a;b;c;d

C c
d
Rac

ij R
db
kl

Figure 5: An example of the boundary skein relation.

More precisely, the fact that ' is an isomorphism of algebras is proved in [40] and the
fact that it preserves the coproduct was noticed independently in [26; 39]. Throughout,
we will (abusively) identify the Hopf algebras Oq ŒSL2� and S!.B/ using '. Note that
the definition of ' depends on an indexing by a and b of the boundary arcs of B.

Now consider a punctured surface † and a boundary arc c. By gluing a bigon B along †

while gluing b with c, one obtains a punctured surface isomorphic to †, hence a map
�L

c WD ijb#c W S!.†/!Oq ŒSL2�˝S!.†/ which endows S!.†/ with the structure of
left Oq ŒSL2� comodule. Similarly, gluing c with a induces a right comodule morphism
�R

c WD ijc#a W S!.†/! S!.†/˝Oq ŒSL2�. The following theorem characterizes the
image of the gluing map and was proved independently in [26; 39].

Theorem 2.10 [26, Theorem 4.7; 39, Theorem 1.1] Let † be a punctured surface ,
and a and b two boundary arcs. The sequence

0! S!.†ja#b/
ija#b
���! S!.†/

�L
a ��ı�

R
b

��������!Oq ŒSL2�˝S!.†/

is exact , where �.x˝y/ WD y˝x.

An easy but very important consequence of the fact that �L
a and �R

a are comodule
maps are the boundary skein relations

(6) .�˝ id/ ı�L
a D id and .id˝�/ ı�R

a D id :

The image through the counit � of a stated diagram in B can be computed using

�
�

i
j

�
D C i

j ; �
�

i
j

�
D .C�1/ij ;(7)

�
�

i
j

k

l

�
DR

ij

kl
; �

�
i
j

k

l

�
D .R�1/

ij

kl
:

Figure 5 illustrates an instance of boundary skein relation (6). Here we draw a dotted
arrow to illustrate where we cut the bigon. Note that all the trivial arc (3), cutting
arc (4) and height exchange (5) relations are particular cases of (6).
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ˇ1

ˇ2

ˇ3 ˇ4

ˇ5

Figure 6: A punctured surface and a set of generators for its small fundamental groupoid.

2.2 The small fundamental groupoid and its finite presentations

In this section we fix a punctured surface † D .†;P/ such that † is connected and
has nonempty boundary. For each boundary arc a of †, fix a point va 2 a and denote
by V the set fvaga.

Definition 2.11 The small fundamental groupoid …1.†P ;V / is the full subcategory
of the fundamental groupoid …1.†P/ generated by V .

Said differently, …1.†P ;V / is the small groupoid whose set of objects is V and such
that a morphism (called a path) ˛ W v1! v2 is a homotopy class of continuous maps
'˛ W Œ0; 1�!†P with '˛.0/D v1 and '˛.1/D v2. The map '˛ will be referred to as a
geometric representative of ˛. The composition is the concatenation of paths. For a
path ˛ W v1! v2 we write s.˛/D v1 (the source point) and t.˛/D v2 (the target point),
and ˛�1 W v2! v1 is the path with opposite orientation ('˛�1.t/D '˛.1� t/).

We will define the notion of finite presentation P of the groupoid…1.†P ;V / and attach
to each such P a finite presentation of S!.†/. In order to get some intuition, consider
the punctured surface in Figure 6: it is an annulus with two punctures per boundary
component, so it has four boundary arcs. The figure shows some paths ˇ1; : : : ; ˇ5 and
we will say that …1.†P ;V / is finitely presented by the set of generators fˇ1; : : : ; ˇ5g

together with the relation ˇ�1
2
ˇ4ˇ5ˇ3 D 1. We will deduce that S!.†/ is generated

by the stated arcs .ˇi/""0 and that the relation ˇ�1
2
ˇ4ˇ5ˇ3 D 1 induces a relation

among them. Alternatively, the fundamental groupoid of the same punctured surface
has a presentation with the smaller set of generators fˇ1; : : : ; ˇ4g and no relation. The
induced finite presentation of S!.†/ will be simpler.

Definition 2.12 (i) A set of generators for …1.†P ;V / is a set G consisting of paths
in …1.†P ;V / such that any path ˛ 2…1.†P ;V / decomposes as ˛D ˛"1

1
� � �˛

"n
n with

"i D˙1 and ˛i 2G. We also require that each path ˛ 2G is the homotopy class of
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: : :

: : :

: : :

: : :

Figure 7: The geometric representatives of a set of generators for …1.†P ;V /.

some embedding '˛ W Œ0; 1�!†P such that the images of the '˛ do not intersect outside
V and possibly intersect transversally at V . The generating graph is the oriented ribbon
graph � �†P whose set of vertices is V and edges are the images of the '˛ . We will
always assume implicitly that the geometric representatives '˛ are part of the data
defining a set of generators. Moreover, when ˛ 2G is a path such that s.˛/D t.˛/ (ie
˛ is a loop) we add the additional datum of a “height order” for its endpoints, that is
we specify whether h.s.˛// < h.t.˛// or h.t.˛// < h.s.˛//.

(ii) For a path ˛ W v1! v2 and "; "0 2 f�;Cg, we denote by ˛""0 2 S!.†/ the class of
the stated arc .˛; �/, where the state � is given by �.v1/D " and �.v2/D "

0. When
both endpoints lie in the same boundary arc (when s.˛/ D t.˛/) we use the chosen
height order to specify which endpoint lies on the top. Set

AG
WD f˛""0 j ˛ 2G and "; "0 2 f�;Cgg � S!.†/:

Example 2.13 For any connected open punctured surface †, the groupoid…1.†P ;V /

admits a finite set of generators depicted in Figure 7 and defined as follows. Denote
by a0; : : : ; an the boundary arcs, by @0; : : : ; @r the boundary components of † with
a0 � @0, and write vi WD ai \V . Let † be the surface obtained from † by gluing a
disc along each boundary component @i for 1� i � r , and choose ˛1; ˇ1; : : : ; ˛g; ˇg

some paths in �1.†P ; v0/ (which equals End…1.†P ;V /.v0/) such that their images in
† generate the free group �1.†; v0/ (said differently, the ˛i and ˇi are longitudes and
meridians of †). For each inner puncture p choose a peripheral curve 
p 2 �1.†P ; v0/

encircling p once and for each boundary puncture p@ between two boundary arcs ai

and aj , consider the path p̨@
W vi ! vj represented by the corner arc in p@. Finally,

for each boundary component @j , with 1� j � r , containing a boundary arc akj
� @j ,

choose a path ı@j
W v0! vkj

. The set

G0 WD f˛i ; ˇi ; p̨; ı@j
j 1� i � g; p 2 P and 1� j � rg
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Figure 8: How an application of the cutting arc relations permits us to
express any simple stated diagram in terms of the elements of AG . Here
G D fˇ1; ˇ2; ˇ3; ˇ4g is the set of generators of Figure 6. We draw dotted
arrows to exhibit where we perform the cutting arc relations.

is a generating set for …1.†P ;V / and Figure 7 represents a set of geometric repre-
sentatives for G0. Moreover each of its generators which is not one of the ı@j

can be
expressed as a composition of the other ones (we will soon say that there is a relation
among those generators), therefore a set G obtained from G0 by removing one of the
element of the form ˛i ; ˇi or 
p is still a generating set for …1.†P ;V /. The height
orders can be chosen arbitrarily. Note that G has cardinality 2g� 2C sC n@, where
g is the genus of †, s WD jPj is the number of punctures and n@ WD j�0.@†/j is the
number of boundary components.

In the particular case where † has exactly one boundary component with one puncture
on it (and possibly inner punctures), the generating graph of G is called the daisy graph
(see Figure 9). The daisy graph was first considered in [4] in the context of classical
lattice gauge field theory and in [5; 8; 27; 28] in the quantum case.

Proposition 2.14 [38, Proposition 3.4] If G is a set of generators of …1.†P ;V /,
then the set AG generates S!.†/ as an algebra.

The proof of Proposition 2.14 is an easy consequence of the cutting arc relations
illustrated in Figure 8.

We now define the notion of relations for a generating set G. Let F.G/ denote the free
semigroup generated by the elements of G and let RelG denote the subset of F.G/ of
elements of the form RDˇ1? � � �?ˇn such that s.ˇi/D t.ˇiC1/ and such that the path
ˇ1 : : : ˇn is trivial. We write R�1 WDˇ�1

n ?� � �?ˇ�1
1

. A relation RDˇ1?� � �?ˇn2RelG
is called simple if the ˇi admit as representatives embedded curves whose concatenation
forms a contractible simple closed curve 
 in †P whose orientation coincides with the
orientation of the disc bounded by 
 . Note that “being simple” depends on the choice
of geometric representatives of the generators.

Algebraic & Geometric Topology, Volume 23 (2023)



Finite presentations for stated skein algebras and lattice gauge field theory 1263

g times 8̂̂̂<̂ˆ̂:
8̂̂̂ <̂ ˆ̂ :

n times

Figure 9: A daisy graph.

Definition 2.15 A finite subset RL � RelG is called a finite set of relations if its
elements are simple and every word R 2 RelG can be decomposed as

RD ˇ ?R
"1

1
? � � �?R"m

m ?ˇ�1;

where Ri 2RL, "i 2 f˙1g and ˇD ˇ1? � � �?ˇn 2F.G/ is such that s.ˇi/D t.ˇiC1/.
The pair P WD .G;RL/ is called a finite presentation of …1.†P ;V /.

As illustrated in the introduction, the small fundamental groupoid of the triangle T

admits the finite presentation with generating set G D f˛; ˇ; 
 g and unique relation
RLD f˛ ?ˇ ? 
 g.

For a general connected open punctured surface †, the set G of Example 2.13 is the
generating set of a presentation of …1.†P ;V / with no relations.

2.3 Relations among the generators of the stated skein algebras

We fix a connected open punctured surface †, a finite presentation P D .G;RL/ of
…1.†P ;V /, and look for relations in S!.†/ among the elements of AG.

Definition 2.16 An oriented arc ˇ is a nonclosed connected simple diagram of †P

together with an orientation plus a possible height order of its endpoints in the case
where they both lie in the same boundary arc. We will denote by s.ˇ/ and t.ˇ/ its
endpoints so that ˇ is oriented from s.ˇ/ towards t.ˇ/. For "; "0 2 f�;Cg, we denote by
ˇ""0 2S!.†/ the class of the stated diagram .ˇ; �/where �.s.ˇ//D " and �.t.ˇ//D "0.

Note that to each oriented arc one can associate a path in …1.†P ;V / by first isotoping
its endpoints to V and then taking its homotopy class. However a path in …1.†P ;V /

can be associated to several distinct oriented arcs, so an oriented arc contains more
information than a path in the small fundamental groupoid.
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Figure 10: Left: an illustration of the local isotopy we perform to turn the set
of edges of a (ribbon) presenting graph into a set of pairwise nonintersecting
oriented arcs. Right: an example in the case of the triangle.

We want to see the elements of G as pairwise nonintersecting oriented arcs as illustrated
in Figure 10. Recall that by Definition 2.12, any path ˛2G is endowed with a geometric
representative '˛ whose image is an oriented arc ˛ �†P such that the ˛ pairwise do
not intersect outside of V and they intersect transversally in V . So each point va 2V is
endowed with a total order <va

on the set of its adjacent arcs (so the presenting graph
has a ciliated ribbon graph structure).

The orientation of †P induces an orientation of its boundary arcs, which, in turn,
induces a total order<a on each boundary arc a, where v1<a v2 if a is oriented from v1

towards v2. After isotoping the ˛ in a small neighborhood of each va in such a way that
the vertex order <va

matches with the boundary arc order <a as illustrated in Figure 10,
we get a family of pairwise nonintersecting oriented arcs representing the elements of G.

Convention 2.17 From now on we consider the elements of G as pairwise noninter-
secting oriented arcs.

Definition 2.18 Let ˛ be an oriented arc, set v1 WD s.˛/ and v2 WD t.˛/ and denote
by u and v the boundary arcs containing v1 and v2, respectively. The arc ˛ is

� of type a if u¤ v,

� of type b if uD v, h.v1/ < h.v2/ and v2 <u v1,

� of type c if uD v, h.v2/ < h.v1/ and v1 <u v2,

� of type d if uD v, h.v1/ < h.v2/ and v1 <u v2,

� of type e if uD v, h.v2/ < h.v1/ and v2 <u v1.

˛ ˛ ˛ ˛ ˛

type a type b type c type d type e

Figure 11: An illustration of the five types of oriented arcs.
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Here h.v/ represents the height of v (h is the second projection †P � .0; 1/! .0; 1/).
Figure 11 illustrates the five types of oriented arcs.

Notation 2.19 (i) For ˛ an oriented arc, write M.˛/ WD
�
˛CC
˛�C

˛C�
˛��

�
, the 2�2 matrix

with coefficients in S!.†/. The relations among the generators of S!.†/ that we will
soon define are much more elegant when written using the matrix

N.˛/ WD

8̂̂̂̂
<̂̂
ˆ̂̂̂:

M.˛/ if ˛ is of type a;

M.˛/C if ˛ is of type b;

M.˛/tC if ˛ is of type c;

C�1M.˛/ if ˛ is of type d;
tC�1M.˛/ if ˛ is of type e;

where tM denotes the transpose of M .

(ii) Let Ma;b.R/ be the ring of a� b matrices with coefficients in some ring R (here
R will be S!.†/). The Kronecker product ˇWMa;b.R/˝Mc;d .R/!Mac;bd .R/ is
defined by .AˇB/

i;k
j ;l
DAi

j Bk
l

. For instance,

M.˛/ˇM.ˇ/D

0BB@
˛CCˇCC ˛CCˇC� ˛C�ˇCC ˛C�ˇC�
˛CCˇ�C ˛CCˇ�� ˛C�ˇ�C ˛C�ˇ��
˛�CˇCC ˛�CˇC� ˛��ˇCC ˛��ˇC�
˛�Cˇ�C ˛�Cˇ�� ˛��ˇ�C ˛��ˇ��

1CCA :
(iii) By abuse of notation � also denotes the matrix of the flip map � W V ˝2! V ˝2

given by vi ˝ vj 7! vj ˝ vi :

� D

0BB@
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1CCA :
(iv) For a 4� 4 matrix X D .X

ij

kl
/i;j ;k;lD˙, we define the 2� 2 matrices trL.X / and

trR.X / by
trL.X /ba WD

X
iD˙

X ib
ia and trR.X /

b
a WD

X
iD˙

X bi
ai :

(v) For M D
�

a
c

b
d

�
, we set detq.M / WD ad � q�1bc and detq2.M / WD ad � q�2bc.

Lemma 2.20 (orientation-reversing formulas) Let ˛ be an oriented arc and ˛�1 be
the same arc with opposite orientation. Then one has

M.˛�1/D tM.˛/:

Algebraic & Geometric Topology, Volume 23 (2023)



1266 Julien Korinman

a

b

c

d

a

b

˛0

i

j

j

i

˛M.˛0/
j
i D D D

X
a;b;c;d

C
j
c .C

�1/d
b
Rca

id

D .trR.C ˇC�1M.˛//R/ji

Figure 12: An illustration of the proof of (9) in the case where ˛ is of type e.

Therefore ,

(8) N.˛�1/D

8<:
tN.˛/ if ˛ is of type a;
tC�1tN.˛/tC if ˛ is of type b or d;

C�1tN.˛/C if ˛ is of type c or e:

Proof This is a straightforward consequence of the definitions.

Lemma 2.21 (height-reversing formulas) Let ˛ be an oriented arc with both end-
points in the same boundary arc and let ˛0 be the same arc with reversed height order
for its endpoints. Then one has

(9) M.˛0/D

8̂̂̂<̂
ˆ̂:

trR.R
�1.tC�1ˇM.˛/tC // if ˛ is of type b;

trL.R�1.M.˛/C ˇC�1// if ˛ is of type c;

trL..tC�1M.˛/ˇ tC /R/ if ˛ is of type d;

trR..C ˇC�1M.˛//R/ if ˛ is of type e:

Proof Equation (9) is obtained by using the boundary skein relations (6). Figure 12
illustrates the proof in the case where ˛ is of type e. The other cases are similar and
left to the reader.

In Figure 12, we represent the curve ˛ in blue to emphasize that, despite what the picture
suggests, the curve can be arbitrarily complicated. Since the boundary arc relation only
involves the intersection of ˛ with a small neighborhood (a bigon) of the boundary arc
(colored in gray), the exact structure of the blue part of the figure does not matter.

Remark 2.22 Reversing the orientation of an arc exchanges type b with type c and
type d with type e, whereas reversing the height order exchanges type b with type e

and type c with type d . Therefore (8) and (9) permit us to switch between the types b, c,
d and e; this will permit us to write the arc exchange and trivial loop relations in a
simpler form by specifying the type of arc.
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j

i
i
j

a b

c
d˛

ˇ
.C�1/
j
i

trivial curve rel
D

cutting rel
D

X
a;b;c;dD˙

.C�1/ba.C
�1/dc

D

X
a;b;c;dD˙

M.˛/
j

d
.C�1/dc M.ˇ/cb.C

�1/baM.
 /ai

Figure 13: An illustration of the proof of (10) in the case of the triangle.

Lemma 2.23 (trivial loop relations) Let R D ˇk ? � � � ? ˇ1 be a simple relation.
Suppose that all arcs ˇi are either of type a or d . Then

(10) 12 D CM.ˇk/C
�1M.ˇk�1/C

�1
� � �C�1M.ˇ1/:

Proof Equation (10) is a consequence of the trivial arc and cutting arc relations illus-
trated in Figure 13 in the case of the triangle with presentation whose generators are the
arcs f˛; ˇ; 
 g drawn in Figure 1 and where the relation is ˛?ˇ?
 D 1. Figure 13 shows
the equality between the matrix coefficients of C�1 and M.˛/C�1M.ˇ/C�1M.
 /.

Let us detail the proof in the general case. Since ˇi is either of type a or d , it can
be represented by a tangle T .ˇi/ such that the height of the source endpoint of ˇi

(say vi) is smaller than the height of its target endpoint (say wi); said differently
h.vi/ < h.wi/. One can further choose the T .ˇi/ so that T .ˇiC1/ lies on the top
of T .ˇi/ (so h.v1/ < h.w1/ < h.v2/ < � � � < h.wk/). Let T be the tangle made of
the disjoint union of the T .ˇi/. By the assumption that R is a simple relation, we
can suppose that T is in generic position (in the sense of Section 2.1) and that its
projection diagram is simple. Fix i; j 2 f�;Cg and let ˛0 be a trivial arc with endpoints
s.˛0/ D v1 and t.˛0/ D wk such that ˛0 can be isotoped (relative to its boundary)
to an arc inside @†P . One the one hand, the trivial arc relation (3) gives the equality
˛0

ij D .C
�1/

j
i . On the other hand, the cutting arc relation (4) gives the equality

.C�1/
j
i D ˛

0
ij D

X
s2St.T /
s.v1/Di

s.wk/Dj

ŒT; s�.C�1/
s.v2/

s.w1/
.C�1/

s.v3/

s.w2/
� � � .C�1/

vk

s.wk�1/

D

X
�1;:::;�2k�2D˙

M.ˇk/
j
�1
.C�1/�1

�2
M.ˇk�1/

�3
�2
� � �M.ˇ1/

�2k�2

i

D .M.ˇk/C
�1M.ˇk�1/C

�1
� � �M.ˇ1//

j
i :
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˛ ˛ ˛ ˛

˛

˛ ˛
˛ ˛

˛

ˇ ˇ ˇ ˇ

ˇ

ˇ

ˇ

ˇ ˇ
ˇ

(i) (ii) (iii) (iv) (v)

(vi) (vii) (viii) (ix) (x)

Figure 14: Ten configurations for two nonintersecting oriented arcs.

Let ˛ and ˇ be two nonintersecting oriented arcs. Denote by a, b, c and d the boundary
arcs containing s.˛/, t.˛/, s.ˇ/ and t.ˇ/, respectively. Reversing the orientation and
the height order of ˛ or ˇ if necessary, we have ten different possibilities illustrated in
Figure 14. The proof of the following lemma is very similar to the computations made
by Faitg in [27].

Lemma 2.24 (i) If the elements of fa; b; c; dg are pairwise distinct , one has

(11) N.˛/ˇN.ˇ/D �.N.ˇ/ˇN.˛//�:

(ii) When aD c, fa; b; dg has cardinality 3 and s.ˇ/ <a s.˛/, one has

(12) N.˛/ˇN.ˇ/D �.N.ˇ/ˇN.˛//R:

(iii) When aD c ¤ b D d , s.ˇ/ <a s.˛/ and t.˛/ <b t.ˇ/, one has

(13) N.˛/ˇN.ˇ/DR�1.N.ˇ/ˇN.˛//R:

(iv) When aD c ¤ b D d , s.ˇ/ <a s.˛/ and t.ˇ/ <b t.˛/, one has

(14) N.˛/ˇN.ˇ/DR.N.ˇ/ˇN.˛//R:

(v) When b D c D d ¤ a, s.ˇ/ <a t.ˇ/ <a t.˛/ and h.s.ˇ// < h.t.ˇ//, one has

(15) N.˛/ˇN.ˇ/DR�1.N.ˇ/ˇ 12/R.N.˛/ˇ 12/:

(vi) When b D c D d ¤ a, t.˛/ <a t.ˇ/ <a s.ˇ/ and h.s.ˇ// < h.t.ˇ// < h.t.˛//,
one has

(16) N.˛/ˇN.ˇ/DR�1.N.ˇ/ˇ 12/R.N.˛/ˇ 12/:

(vii) When b D c D d ¤ a, t.ˇ/ <a t.˛/ <a s.ˇ/ and h.s.ˇ// < h.t.˛// < h.t.ˇ//,
one has

(17) N.˛/ˇN.ˇ/DR.N.ˇ/ˇ 12/R.N.˛/ˇ 12/:
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(viii) When aD b D c D d , s.ˇ/ <a s.˛/ <a t.ˇ/ <a t.˛/ and

h.s.ˇ// < h.s.˛// < h.t.ˇ// < h.t.˛//;

one has

(18) .12ˇN.˛//R�1.12ˇN.ˇ//R�1
DR.12ˇN.ˇ//R�1.12ˇN.˛//:

(ix) When aD b D c D d , s.ˇ/ <a t.ˇ/ <a s.˛/ <a t.˛/ and

h.s.ˇ// < h.t.ˇ// < h.s.˛// < h.t.˛//;

one has

(19) R�1.12ˇN.˛//R.12ˇN.ˇ//D .12ˇN.ˇ//R�1.12ˇN.˛//R:

(x) When aD b D c D d , s.˛/ <a s.ˇ/ <a t.ˇ/ <a t.˛/ and

h.s.˛// < h.s.ˇ// < h.t.ˇ// < h.t.˛//;

one has

(20) .12ˇN.˛//R�1.12ˇN.ˇ//RDR.12ˇN.ˇ//R�1.12ˇN.˛//:

Proof Equation (11) says that in case (i) any ˛ij commutes with any ˇkl , which is
obvious. Equations (12), (13) and (14) in cases (ii), (iii) and (iv) are straightforward
consequences of the height exchange relation (5). All other cases will be derived using
the boundary skein relations (6). As in the proof of Lemma 2.21, we will color the arcs
˛ and ˇ in red and blue to remind the reader that they might be much more complicated
than they look in the picture: in the computations we perform while using the boundary
skein relation we only care about the restriction of the diagrams (depicted in gray) in a
small bigon in the neighborhood of the boundary arc a and not the actual shape of the
blue and red parts.

Equations (15) and (16) in cases (v) and (vi) are proved in a very similar way; we detail
the proof of (16) and leave (17) to the reader. In case (vi), one has

.M.˛/ˇM.ˇ//
ij

kl
D ˛kiˇlj D

i
j

k

l

˛

ˇ
D a

b
c

d

e
fi

j

k

l

˛

ˇ

D

X
a;b;c;d;e;fD˙

.R�1/
ij

fd
M.ˇ/fe C e

c Rcd
abM.˛/ak.C

�1/bl

D
�
R�1.M.ˇ/C ˇ 12/R.M.˛/ˇC�1/

�ij
kl
:
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To handle cases (vii)–(x), we introduce the 4�4 matrix V D .V
ij

kl
/i;j ;k;l2f�;Cg, where

V
ij

kl
D Œ˛[ˇ; �ijkl � 2 S!.†/ is the class of the simple diagram ˛[ˇ with state �ijkl

sending t.˛/, t.ˇ/, s.˛/ and s.ˇ/ to i , j , k and l , respectively. Here the height order of
the points of @.˛[ˇ/ is given by the boundary arc orientation drawn in Figure 14. The
trick is to compute V in two different ways and then equate the two obtained formulas.

In case (vii), on the one hand, we first prove V D �.M.ˇ/C ˇ 12/R.M.˛/ˇC�1/:

V
ij

kl
D i

j
k

l

˛
ˇ

D i
j

k
l

˛ˇ

D ..M.ˇ/C ˇ 12/R.M.˛/ˇC�1//
ji

kl
:

On the other hand, we prove V D �R�1.M.˛/ˇM.ˇ//:

V
ij

kl
D i

j
k

l

˛
ˇ

D i
j

k
l

˛

ˇ
D .R�1.M.˛/ˇM.ˇ///

ji

kl
:

So we get the equality R�1.M.˛/ˇM.ˇ//D .M.ˇ/Cˇ12/R.M.˛/ˇC�1/ (which
equals �V / and (17) follows.

In case (viii), on the one hand, we first prove V D �.CˇM.˛//R�1.12ˇC�1M.ˇ//:

V
ij

kl
D

i
j
k
l

˛

ˇ
D

i
j
k
l

˛

ˇ
D ..C ˇM.˛//R�1.12ˇC�1M.ˇ///

ji

kl
:

On the other hand, we prove V D �.CˇC /R.12ˇC�1M.ˇ//R�1.12ˇC�1M.˛//R:

V
ij

kl
D

i
j
k
l

˛

ˇ
D

i
j

k

l

˛

ˇ

D ..C ˇC /R.12ˇC�1M.ˇ//R�1.12ˇC�1M.˛//R/
ji

kl
:

Equation (18) follows by equating the two obtained expressions for V .

In case (x), on the one hand, we first prove V D .C ˇM.˛//R�1.12ˇC�1M.ˇ//R:

V
ij

kl
D

i
j

k
l

˛ ˇ D

i
j

k

l

˛ ˇ
D ..CˇM.˛//R�1.12ˇC�1M.ˇ//R/

ij

kl
:
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On the other hand, we prove V D .C ˇC /R.12ˇC�1M.ˇ//R�1.12ˇC�1M.˛//:

V
ij

kl
D

i
j

k
l

˛ ˇ D

i
j

k

l

˛ ˇ

D ..C ˇC /R.12ˇC�1M.ˇ//R�1.12ˇC�1M.˛///
ij

kl
:

Therefore, we obtain the following equality that will be used in the proof of Lemma 2.25:

V D .C ˇM.˛//R�1.12ˇC�1M.ˇ//R(21)

D .C ˇC /R.12ˇC�1M.ˇ//R�1.12ˇC�1M.˛//:

Equation (20) follows.

In (ix) we slightly change strategy. Define the 4�4 matrix W D .W
ij

kl
/i;j ;k;l2f�;Cg by

W
ij

kl
WD

i
j
k
l

˛

ˇ

We first prove W D .C ˇM.ˇ//R�1.12ˇC�1M.˛//:

W
ij

kl
D

i
j
k
l

˛

ˇ

D
i
j

k
l

˛

ˇ

D ..C ˇM.ˇ//R�1.12ˇC�1M.˛///
ij

kl
:

Next, we prove W D .C ˇC /R�1.12ˇC�1M.˛//R.12ˇC�1M.ˇ//R�1:

W
ij

kl
D

i
j
k
l

˛

ˇ

D

i

j

k

l

˛

ˇ

D ..C ˇC /R�1.12ˇC�1M.˛//R.12ˇC�1M.ˇ//R�1/
ij

kl
:

Equation (19) follows by equating the two obtained expressions for W .

Lemma 2.25 (q–determinant relations) Let ˛ be an oriented arc. Then

(22) detq.N.˛//D 1 if ˛ is of type a, and detq2.N.˛//D 1 otherwise:
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Proof First suppose that ˛ is of type a. Applying the trivial arc and cutting arc relation,
we obtain

.C�1/�C D
�

C
D .C�1/C�

C C

� �

˛

˛
C .C�1/�C

C C

� �

˛

˛
;

which is equivalent to the equation ˛CC˛��� q�1˛C�˛�C D 1 as claimed. Next we
suppose that ˛ is of type d . Let ˇ be an arc isotopic to and disjoint from ˛, placed
as in Figure 14(x) (so ˇij D ˛ij ). Consider the matrix V D .V

ij

kl
/i;j ;k;l2f�;Cg, where

V
ij

kl
D Œ˛[ˇ; �ijkl � 2 S!.†/ is the class of the simple diagram ˛[ˇ with state �ijkl

sending t.˛/, t.ˇ/, s.˛/ and s.ˇ/ to i , j , k and l respectively, like in the proof of
Lemma 2.24, ie

V
ij

kl
D

i
j

k
l

˛ ˇ

Again, using the trivial arc and cutting arc relation, we obtain

(23) C�C D
C

�

D .C�1/C�
C

C

�

�

˛
ˇ C .C�1/�C

C

C

�

�

˛
ˇ

() A5V �CC� �A3V �C�C D 1:

To develop the elements V
ij

kl
as linear combinations of the ˛ab˛cd we can either consider

the matrix coefficients of the equality V D .CˇM.˛//R�1.12ˇC�1M.ˇ//R proved
in the proof of Lemma 2.24, or we can perform the skein computation

˛ij˛kl D i

j

k
l

˛ ˇ
D q i

j

k
l

C q�1
i

j

k
l

C i

j

k
l

C i

j

k
l

D qC
j

k
C i

l CC
j
i C l

k C q�1V
ji

lk
CC i

l .C
�1/�CV

j�

Ck
CC i

l .C
�1/C�V

jC

�k
;

from which we deduce the equalities

V �CC� D q˛C�˛�CCA�1; V C��C D q˛�C˛C�CA�1; V �C�C D ˛��˛CC�A�3:

Now, using the skein relation (2), we find

V �CC� D qV C�C� CA�1
D V C��C ;

so V �CC� D V C��C , which implies that ˛C�˛�C D ˛�C˛C�.

Next, replacing the elements V �CC and V �C�C in (23) by their expressions in terms of
the ˛ij˛kl , we find

(24) ˛��˛CC� q2˛C�˛�C DA:
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Using ˛C�˛�C D ˛�C˛C� we obtain the desired equality:

detq2.N.˛//D detq2

�
�!�5˛�C �!

�5˛��
!�1˛CC !�1˛C�

�
D�A3˛�C˛C�CA�1˛��˛CCD 1:

Now, if ˛ is of type e, then ˛�1 is of type d . A simple computation shows that if
M D

�
a
c

b
d

�
is such that ad D da then detq2.M /D detq2.C�1tMC /, so we deduce

the q–determinant formula for ˛ of type e from the fact that it holds for ˛�1, from the
orientation-reversing formula in Lemma 2.20 and from ˛C�˛�C D ˛�C˛C�.

Suppose that ˛ is of type c and choose k D ZŒ!˙1�. Recall from Section 2.1 the
reflexion anti-involution � . The image �.˛/ is of type d , so applying � to (24),

(25) ˛CC˛��� q�2˛�C˛C� DA�1:

By Remark 2.6, since (25) holds for kDZŒ!˙1�, it also holds for any other ring. Also
using � , we find that ˛C�˛�C D ˛�C˛C� and the equation detq2.N.˛//D 1 follows.
Finally, when ˛ is of type b, we deduce the q–determinant relation from the fact that it
holds for ˛�1 (of type c), from the orientation-reversing formulas of Lemma 2.20 and
from the identity ˛C�˛�C D ˛�C˛C�.

Definition 2.26 Let P D .G;RL/ be a finite presentation of …1.†P ;V /. The set AG

generates S!.†/ by Proposition 2.14, and we have found three families of relations:

(i) For each ˛ 2G we have either the relation detq.N.˛//D 1 or detq2.N.˛//D 1

by (22) in Lemma 2.25; we call these the q–determinant relations.

(ii) For each R 2 RL, we have four relations obtained by considering the matrix
coefficients in (10) in Lemma 2.23; we call these trivial loop relations.

(iii) For each pair .˛; ˇ/ of elements in G, we have 16 relations obtained by consid-
ering the matrix coefficients in one of (11)–(20) of Lemma 2.24 after having
possibly replaced ˛ or ˇ by ˛�1 or ˇ�1, if necessary, and using the inversion
formula (8); we call these arc exchange relations.

3 Proof of Theorems 1.1 and 1.2

Definition 3.1 Let L!.P / be the algebra generated by the elements of G modulo the
q–determinant, trivial loops and arc exchange relations, and write ‰ WL!.P /! S!.†/
the obvious algebra morphism.

By Proposition 2.14, ‰ is surjective and we need to show that ‰ is injective to prove
Theorem 1.1. We cut the proof of Theorem 1.1 in three steps: In step 1, we show that
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it is sufficient to consider the case where P has no relations (as in Example 2.13); in
this particular case, the finite presentation defining L!.P / is inhomogeneous quadratic
and we will use the diamond lemma to extract PBW bases of L!.P / and to prove it
is Koszul. In step 2 we extract the rewritten rules and their leading terms from the
q–determinant and arc exchange relations, and exhibit the associated spanning family
BG � L!.P /. Finally in step 3, we show that the image by ‰ of BG is a basis; this
will prove both the injectivity of ‰ and the fact that BG is a Poincaré–Birkhoff–Witt
basis, and conclude the proofs of Theorems 1.1 and 1.2.

3.1 Step 1: reduction to the case where P has no relations

Let � be the presenting graph of P and consider its fundamental groupoid …1.�/:
the objects of …1.�/ are the vertices of � (ie the set V ) and the morphisms are
compositions ˛"k

k
� � �˛

"1

1
where ˛i 2 G. The inclusion � � †P induces a functor

F W …1.�/! …1.†P ;V /, which is the identity on the objects. The fact that G is
a set of generators implies that F is full and P has no relations if and only if F is
faithful. Fix v0 2 V . For a relation R 2 RL of the form R D ˇk ? � � � ? ˇ1, the
basepoint of R is s.ˇ1/D t.ˇk/. By inspecting the trivial loop relation (10), we see
that changing a relation R by a relation ˇ ?R ? ˇ�1 does not change the algebra
L!.P /. Since †P is assumed to be connected, we can suppose that all relations in RL

have the same basepoint v0, so each relation R D ˇk ? � � � ? ˇ1 induces an element
ŒR� D ˇk � � �ˇ1 2 �1.�; v0/. The functor F induces a surjective group morphism
Fv0
W �1.�; v0/! �1.†P ; v0/ and the fact that RL is a set of relations implies that

fŒR� j R 2 RLg generates ker.Fv0
/. Since �1.�; v0/ is a free group, so is ker.Fv0

/.
Let R1; : : : ;Rm 2RL be such that fŒR1�; : : : ; ŒRm�g is a minimal set of generators for
the free group ker.Fv0

/. For each Ri , choose an element ˇi 2G such that either ˇi

or ˇ�1
i appears in the expression of Ri and such that the set G0 obtained from G by

removing the ˇi is a generating set. So if � 0 is the presenting graph of G0, the morphism
F 0v0
W�1.�

0; v0/!�1.†P ; v0/ is injective, thus the functor F 0 W…1.�
0/!…1.†P ;V /

is faithful and P 0 WD .G0;∅/ is a finite presentation of …1.†P ;V / with no relations.

The inclusion G0 � G induces an algebra morphism Q' W T ŒG0� ,! T ŒG� on the free
tensor algebras generated by G0 and G, respectively, and Q' sends q–determinant and
arc exchange relations to q–determinant and arc exchange relations, so it induces an
algebra morphism

' W L!.P 0/! L!.P /:

Lemma 3.2 The morphism ' is an isomorphism.
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Proof To prove the surjectivity we need to show that, for each removed path ˇi 2GnG0,
the stated arcs .ˇi/""0 can be expressed as a polynomial in the stated arcs .˛˙1/��0 for
˛2G0. This follows from the trivial loop relation (10) associated to the relation Ri 2RL

containing ˇ˙1
i . Injectivity of ' is a straightforward consequence of the definition.

3.2 Step 2: Poincaré–Birkhoff–Witt bases and Koszulness

Convention 3.3 In the rest of the section, we suppose that P D .G;∅/ is a presentation
with no relations and that every arc in G is either of type a, c or d .

Note that the convention on the type of the generators is not restrictive but purely
conventional since we can always replace a generator ˛ by ˛�1 without changing the
set AG of generators of S!.†/.

Since P has no relations, the defining presentation of L!.P / contains only q–deter-
minant and arc exchange relations. All these relations are quadratic (inhomogeneous)
in the generators AG and we want to apply the diamond lemma to prove that L!.P / is
Koszul.

Reminder of the diamond lemma for PBW bases Following the exposition in
Section 4 of [42], we briefly recall the statement of the diamond lemma for PBW bases:

Let V be a free finite rank k–module, denote by T .V / WD˚n�0V ˝n the tensor algebra
and fix R � V ˝2 a finite subset. The quotient algebra A WD T .V /=.R/ is called a
quadratic algebra. Let fvigi2I be a totally ordered basis of V and write I Df1; : : : ; kg

so that vi <viC1. Then the set J WD
F

n�0 In (where I0Df0g) is totally ordered by the
lexicographic order and the set of elements vi D vi1

� � � vin
, for i D .i1; : : : ; ik/, forms

a basis of T .V /. We suppose that the elements r 2R (named relators) have the form

r D vivj �
X

.k;l/<.i;j/

�
ij

kl
vkvl :

The term vivj is called the leading term of r . We assume that two distinct relators have
distinct leading terms. Define the family

(26) B WD fvi1
� � � vin

j vik
vikC1

is not a leading term for all 1� k � n� 1g;

and denote by B.3/ � B the subset of elements of length 3 (of the form vi1
vi2
vi3

).
Obviously the set B spans A.

Theorem 3.4 (diamond lemma for PBW bases, Bergman [10]; see also Loday and
Vallette [42, Theorem 4.3.10]) If B.3/ is free , then B is a (Poincaré–Birkhoff–Witt)
basis and A is Koszul.
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The arc exchange relations defining L!.P / are quadratic, however the q–determinant
relations are not (because of the 1 in detq.N.˛//D 1), so L!.P / is not quadratic but
rather inhomogeneous quadratic. An inhomogeneous quadratic algebra is an algebra
of the form A WD T .V /=.R/, where R� V ˝2˚V ˚k� T .V /. We further assume

(ql1) R\V D f0g

and

(ql2) .R˝V CV ˝R/\V ˝2
�R\V ˝2:

The hypothesis .ql2/ says that one cannot create new relations by adding an element
to R, so it is not restrictive. Like before, we fix an ordered basis fvigi2I of V and
suppose that the relators of R have the form

(27) r D vivj �
X

.k;l/<.i;j/

�
ij

kl
vkvl � ci;j ;

where ci;j are some scalars and we suppose that two distinct relators have distinct
leading terms. The associated quadratic algebra qA is the algebra with same generators
vi but where the relators have been changed by replacing the scalars ci;j by 0. Let
qB � qA and B �A be the two generating families defined by (26).

Theorem 3.5 [42, Theorem 4.3.18] Suppose that qB.3/ � qA is free. Then both qB
and B are (PBW ) bases of qA and A, respectively, and both qA and A are Koszul.

There exists a linear surjective morphism ' W qA!A sending the generating family
qB to B; see [42, Section 4:2:9]. So, if B is a basis of A, then qB is free, therefore
Theorem 3.5 implies that A is Koszul. Therefore:

Theorem 3.6 If B is a basis of A, then A is Koszul.

The relators of the stated skein presentations and PBW bases For ˛ 2G, define
B.˛/ as

f.˛CC/
a.˛C�/

b.˛��/
c
j a; b; c� 0g[f.˛CC/

a.˛�C/
b.˛��/

c
j a; b; c� 0g�L!.P /:

Fix a total order< on the set G of generators and index its elements as GDf˛1; : : : ; ˛ng,
where ˛i < ˛iC1. Let

BG
WD fm1m2 � � �mn jmi 2 B.˛i/g � L!.P /:

We want to apply Theorem 3.6 to prove that L!.P / is Koszul. By definition, L!.P / is
an inhomogeneous quadratic algebra with generators AG D f˛ij j ˛ 2G and i; j D˙g

and whose relations are the arc exchange and q–determinant relations.
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We first define a total order � on AG by imposing that ˛ab � ˇcd if ˛ < ˇ and that
˛CC � ˛C� � ˛�C � ˛��.

The goal of this subsection is to rewrite the q–determinant and arc exchange relations
so that they define a set of relators of the form (27) whose leading terms are pairwise
distinct, satisfying .ql1/ and .ql2/ and such that the set of leading terms is

(28) LT WD f˛abˇcd j either ˛ > ˇ; or ˛ D ˇ and either a< c or b < dg:

The set BG is the generating set defined by (26) with this set of leading terms (ie BG

is the set of elements v1 � � � vn where vi 2AG and viviC1 is not in LT). At this stage,
it will become clear that BG spans L!.P /. Once we perform this task, we will prove
in step 3 that BG is free by showing that its image through ‰ W L!.P /! S!.†/ is a
basis of S!.†/. This will imply that ‰ is an isomorphism (proving Theorem 1.1) and
Theorem 3.6 will imply that L!.P / is Koszul (proving Theorem 1.2).

Consider two distinct generators ˛; ˇ 2G such that ˛ > ˇ. For each a; b; c; d 2 f˙g,
we have an arc exchange relation of the form

˛abˇcd D

X
ijklD˙

c
i;j ;k;l

a;b;c;d
ˇij˛kl ;

where c
i;j ;k;l

a;b;c;d
are some scalars. We associate the relator

r D ˛abˇcd �

X
ijklD˙

c
i;j ;k;l

a;b;c;d
ˇij˛kl ;

whose leading term is ˛abˇcd (because ˛ > ˇ implies that ˛abˇcd � ˇij˛kl ) and
denote by R˛;ˇ the set (of cardinality 16) of such relators.

Now suppose that ˛ 2G is of type a. The set of relations between the generators ˛ij

is given by

M.˛/ˇM.˛/DR�1.M.˛/ˇM.˛//R and detq.M.˛//D 1:

Note that in this case, the subalgebra of L!.P / generated by the ˛ij is isomorphic to
Oq ŒSL2�Š S!.B/. We rewrite those relations:

˛C�˛CC D q˛CC˛C�; ˛�C˛CC D q˛CC˛�C;(Ra)

˛��˛C� D q˛C�˛��; ˛��˛�C D q˛�C˛��;

˛C�˛�C D q˛CC˛��� q; ˛�C˛C� D q˛CC˛��� q;

˛��˛CC D q2˛CC˛��C 1� q2:
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The associated set of relators R˛ is defined by assigning, to each of the seven equalities
of the form x D y in the system (Ra), the relator r WD x�y with leading term x. Note
that the set of leading terms of the elements of R˛ is the set of elements ˛ab˛cd such
that either a< c or b < d .

Now suppose that ˛ 2G is of type d . The set of relations between the generators ˛ij

are given by

.12ˇN.˛//R�1.12ˇN.˛//RDR.12ˇN.˛//R�1.12ˇN.˛//; detq2.N.˛//D1;

where N.˛/DC�1M.˛/. These relations generate the same ideal as the set of relations

˛�C˛CC D ˛CC˛�CC .q� q�1/q2˛C�˛��; ˛C�˛CC D q2˛CC˛C�;(Rd)

˛��˛�C D ˛�C˛��C .q� q�1/q2˛C�˛��; ˛��˛C� D q2˛C�˛��;

˛C�˛�C D ˛CC˛��� .q� q�1/2˛2
C��A;

˛�C˛C� D ˛CC˛��� .q� q�1/2˛2
C��A;

˛��˛CC D q2˛CC˛��� q2.q� q�1/2˛2
C�CA.1� q2/:

As before, we denote by R˛ the set of relators obtained from system (Rd) by assigning,
to each of the seven equalities of the form x D y in the system (Rd), the relator
r WD x�y with leading term x. Again, the set of leading terms of the elements of R˛

is the set of elements ˛ab˛cd such that either a< c or b < d .

For ˛ 2G of type c, the set of relations between the elements ˛ij can be obtained from
the system (Rd) using the reflection anti-involution. Rearranging the terms, we get the
system of relations

˛�C˛CC D ˛CC˛�CC .q� q�1/˛C�˛��; ˛C�˛CC D q2˛CC˛C�;(Rc)

˛��˛�C D ˛�C˛��C .q� q�1/˛C�˛��; ˛��˛C� D q2˛C�˛��;

˛C�˛�C D q2˛CC˛���A3; ˛�C˛C� D q2˛CC˛���A3;

˛��˛CC D q2˛CC˛��C .q� q�1/2˛2
C�CA�1.1� q2/:

Like previously, we denote by R˛ the associated set of relators and note that the set of
leading terms is the set of elements ˛ab˛cd such that either a< c or b < d .

Let V be the free k–module with basis AG and R� k˚V ˝2 � T .V / be the union of
the sets of relators R˛;ˇ and R˛ , where ˛; ˇ2G and ˛>ˇ. Then L!.P /DT .V /=.R/,
the leading terms of R are pairwise distinct and they form the set LT of (28), and the
hypotheses .ql1/ and .ql2/ are obviously satisfied. Therefore, if we prove that BG is a
basis of L!.P / then Theorem 3.6 would imply that L!.P / is Koszul.
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3.3 Step 3: injectivity of ‰

Denote by BG � S!.P / the image of BG under ‰ W L!.P /! S!.†/.

Theorem 3.7 The set BG is a basis of S!.†/.

Corollary 3.8 (i) The morphism ‰ W L!.P /! S!.†/ is an isomorphism.

(ii) The family BG is a PBW basis and S!.†/ is Koszul.

The fact that BG linearly spans S!.†/ follows from the surjectivity of ‰ (so follows
from Proposition 2.14), however we will reprove this fact. The proof of Theorem 3.7 is
divided into two steps. First we introduce another family BG

C � S!.†/ and prove that
BG
C is free by relating it to the basis B. Next we use a filtration of S!.†/ to deduce

that BG is free from the fact that BG
C is free.

For ˛ 2 G and n � 0, we denote by ˛hni the simple diagram made of n pairwise
nonintersecting copies of ˛. For n 2 NG, we denote by D.n/ the simple diagramF
˛2G ˛

hn.˛/i. Denote by v and w the two endpoints of ˛, and by a and b the (not
necessarily distinct) boundary arcs containing v and w, respectively. Write v1; : : : ; vn

and w1; : : : ; wn the endpoints of ˛hni so that vi <a viC1 and wi <b wiC1 (so vi and
wi are not necessarily the boundary points of the same component of ˛hni). A state
s 2 St.D.n// is positive if for all ˛ 2 G and for all i � j one has s.vi/ � s.vj / and
s.wi/� s.wj /; we let StC.D.n// denote the set of positive states.

Definition 3.9 We denote by BG
C � S!.†/ the set of classes ŒD.n/; s� for n 2 NG

and s 2 StC.D.n//.

Proposition 3.10 The family BG
C is a basis of S!.†/.

The fact that BG
C is free will follow from this elementary lemma, which basically says

that an upper triangular matrix with invertible diagonal elements is invertible:

Lemma 3.11 Let V be a free k–module , B a basis of V equipped with a partial
order�, and B0�V a family such that there exist two maps m WB0!B and c WB0!k�

such that

(i) m is injective , and

(ii) every element b0 2 B0 decomposes as

b0 D c.b0/m.b0/C
X

b>m.b0/

˛b;b0b:

Then B0 is free.
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Proof Consider a vanishing linear combination
P

b02B0 xb0b
0 D 0, where xb0 2 k.

Set S WD fm.b0/ j xb0 ¤ 0g. For contradiction, suppose that S ¤ ∅ and choose b0

a minimum for S . Let b0
0
2 B0 be the unique element such that m.b0

0
/ D b0. Then

the equality
P

b02B0 xb0b
0 D 0 together with the decomposition hypothesis imply that

c.b0
0
/xb0

0
D 0. Since c.b0

0
/ 2 k� is invertible by hypothesis, xb0

0
D 0, so we have a

contradiction.

Notation 3.12 (i) Let .D; s/ be a stated diagram and a a be boundary arc. We
denote by da.ŒD; s�/ 2 N the number of pairs .v; w/ in @aD such that v <a w and
.s.v/; s.w// D .C;�/; recall that the orientation of †P induces an orientation of a

which in turn induces the order <a. We also write d.ŒD; s�/D
P

a da.ŒD; s�/. Note
that ŒD; s� 2 B if and only if d.ŒD; s�/D 0.

(ii) Let D denote the set of stated diagrams .D; s/ with D simple, so both B and BG
C

are subsets of D. Define a binary operation 7!o on D as follows. If .D; s/ contains a
pair .v; w/ in @aD of consecutive points for the height ordering (there is no z 2 @aD

such that v <a z <a w) with v <a w and such that .s.v/; s.w//D .C;�/, let .D0; s0/
be the stated diagram obtained by joining v and w to a single point and then pushing it
to the interior of †, that is .D0; s0/ is obtained from .D; s/ by the local move

�

C
7! :

Let .D00; s00/ be obtained from .D0; s0/ by removing the possible trivial component if any.
In this case, we write .D; s/ 7!o .D

00; s00/. Since d.ŒD00; s00�/ < d.ŒD; s�/, the relation
7!o is terminal, with B as the set of terminal objects. Define a partial order�o by setting
.D; s/ >o .D

0; s0/ if there exists a sequence .D; s/ 7!o .D2; s2/ 7!o � � � 7!o .D
0; s0/.

Clearly, �o is filtrant, ie if .D1; s2/ �o .D; s/ and .D2; s2/ �o .D; s/ there exists
.D0; s0/ such that .D0; s0/�o .Di ; si/ for i D 1; 2.

(iii) Let ˛ be an oriented arc. Since G is a generating set, the associated path in
…1.†P ;V / decomposes as ˛ D ˇ"1

1
� � �ˇ

"k

k
and, since .G;∅/ is a presentation with

no relation, this decomposition is unique. We denote by lw.˛/ WD k its length. For
.D; s/ 2 D, where D D ˛1[ � � � [˛n with ˛i connected, we set

l.D; s/ WD

nX
iD1

.lw.˛i/� 1/:

Note that BG
C is the subset of elements .D; s/ 2 D such that l.D; s/D 0.
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�
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C

C
C
C C

Figure 15: An element b 2 BG
C (left) and its associated element m.b/ 2 B

(right). Here G D fˇ1; ˇ2; ˇ3; ˇ4g is the set of generators of Figure 6.

(iv) We define a binary operation 7!B on D as follows. Let .D; s/ 2 D and ˛ a
connected component of D with lw.˛/ > 1. Choose a decomposition ˛ D ˛1˛2 where
lw.˛i/ < lw.˛/, set D0 WD .D n˛/[˛1[˛2 and fix the height orders and the state s0

such that .D0; s0/ is obtained from .D; s/ by the local move

7!
�

C
:

In this case, we write .D; s/ 7!G .D
0; s0/. Since l.D0; s0/ < l.D; s/, the relation 7!G is

terminal with Bo
C as the set of terminal objects. Define a partial order�G on D by setting

.D; s/ >G .D0; s0/ if there exists a sequence .D; s/ 7!G .D2; s2/ 7!G � � � 7!G .D0; s0/.
It follows from the unicity of the decomposition of a path in G (so from the fact that
.G;∅/ is a presentation with no relation) that �G is filtrant.

(v) Let m W BG
C ! B be the map sending a class ŒD; s� to the class of the unique

minimum for �o of the successors of .D; s/ (the existence and unicity are guaranteed
by the fact that �o is terminal and filtrant). Similarly, let m0 W B! BG

C be the map
sending a class ŒD; s� to the class of the unique minimum for�G of the set of successors
of .D; s/; see Figure 15 for an example.

Proof of Proposition 3.10 We will apply Lemma 3.11 to the map m W B! BG
C , where

we equip B with the partial order � where ŒD; s�� ŒD0; s0� if j@Dj< j@D0j.

The map m is injective By definition, if .D; s/ 7!G .D0; s0/ then .D0; s0/ 7!o .D; s/

(the converse if false in general). Therefore, for ŒD; s� 2 B, given a sequence

.D; s/ 7!G .D2; s2/ 7!G � � � 7!G .Dn; sn/ 7!G m.D; s/

one has a sequence

m.D; s/ 7!o .Dn; sn/ 7!o � � � 7!o .D2; s2/ 7!o D:

This implies that m0.m.D//DD so m0 ımD id and m is injective.
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BG
C

is upper triangular Suppose that .D; s/ 7!o .D
0; s0/. The skein relation

�

C
D q C

�
C!

shows that ŒD; s�D!ŒD0; s0�CqŒD00; s00�, where j@D0j< j@D00j. So for ŒD; s�2BG
C with

m.ŒD; s�/D ŒD0; s0� and given .D; s/ 7!o .D2; s2/ 7!o � � � 7!o .Dn; sn/ 7!o .D0; s0/,
we have

ŒD; s�D !nm.D; s/C higher terms;

where “higher terms” is a linear combination of elements .D0; s0/ with j@D0j> j@D0j.
Since B is free, Lemma 3.11 implies that BG

C is free. To prove that it spans S!.†/ we
note that if .D; s/ 7!G .D0; s0/, the same skein relation

�

C
D q C

�
C!

implies that

ŒD; s�D !�1ŒD0; s0��!�5ŒD00; s00�

for another element .D00; s00/ 2D such that l.D0; s0/ < l.D; s/ and l.D00; s00/ < l.D; s/.
We then prove that any element of B is a linear combination of elements of BCG by
induction on l.D; s/.

We now want to deduce that BG is a basis from the fact that BG
C is a basis. The argument

is based on the use of an algebra filtration of S!.†/ that we now introduce:

Definition 3.13 For n 2NG , we let jnj WD
P
˛2G n.˛/. For a class ŒD.n/; s�, we set

kŒD.n/; s�k WD .jnj;�d.ŒD.n/; s�// 2N �Z. Denote by < the lexicographic order on
N �Z, ie .k1; k2/ < .k

0
1
; k 0

2
/ if either k1 < k 0

1
, or k1 D k 0

1
and k2 < k 0

2
. Finally, to

kD .k1; k2/ 2N �Z we associate the submodule

Fk WD Span
�
ŒD.n/; s� W kŒD.n/; s�k � k

�
:

In order to prove that fFkg forms an algebra filtration, the following elementary
observation will be quite useful:

Lemma 3.14 Let T and T 0 be two tangles in†P�.0; 1/which are isotopic through an
isotopy that does not preserves the height orders. Let s 2 St.T / and s0 2 St.T 0/ be two
states such that for a boundary arc a, if @aT D fv1; : : : ; vng and @aT 0 D fw1; : : : ; wng
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are ordered so that h.vi/ < h.viC1/ and h.wi/ < h.wiC1/, then s.vi/D s0.wi/ for all
i 2 f1; : : : ; ng. Then one has

(29) ŒT; s�D !nŒT 0; s0�C
X

�2St.T 0/;d.ŒT 0;��/<d.ŒT 0;s0�/

x� ŒT
0; � �;

where n 2Z, x� 2 k and the sum in the right-hand side is over states � of T 0 such that
d.ŒT 0; � �/ < d.ŒT 0; s0�/.

Proof We say that a tangle Ti is obtained from a tangle TiC1 by an elementary height
exchange if there exists a boundary arc a and two consecutive points v and w in
@aTi with h.v/ < h.w/ (“consecutive” means that there does not exist any p 2 @aTi

such that h.v/ < h.p/ < h.w/) such that TiC1 is the tangle obtained from Ti by
exchanging the heights of v and w. Since T and T 0 are isotopic, through an isotopy
that does not preserve the height orders, we can obtain T 0 from T by a finite sequence
T D T1 7! T2 7! � � � 7! Tn D T 0 of elementary height exchanges. It is clear that if one
has a development (29) when the pair .T;T 0/ is equal to a pair .Ti ;TiC1/ and a pair
.TiC1;TiC2/, then it holds for the pair .Ti ;TiC2/. So by induction on the size n of
the finite sequence, it is sufficient to prove the lemma in the particular case where T

and T 0 differ by an elementary height exchange. In this case, (29) follows from the
height exchange relations

C

C
DA C

C
;

�

�
DA �

�
; C

�
DA�1 �

C
;

�

C
DA�1 C

�
C .A�A�3/ �

C
:

Notation 3.15 Let b 2 BG , so by definition b D b˛1
� � � b˛n

, where b˛i
2 B.˛i/. That

is, one has either b˛i
D ˛

ai

CC˛
bi

C�˛
ci
�� or b˛i

D ˛
ai

CC˛
bi

�C˛
ci
�� for some ai ; bi ; ci � 0.

Let n 2NG be defined by n.˛i/ WD ai C bi C ci . Let T .n/ be the tangle underlying
D.n/. Let .T; s/ be a stated tangle (unique up to isotopy) such that b D ŒT; s�, so that
T .n/ is obtained from T by an isotopy that does not necessarily preserve the height
order. Finally we define the element bC WD ŒT .n/; sC� 2 BG

C , where sC 2 StC.T .n// is
the unique state such that .T; s/ and .T .n/; sC/ satisfy the assumptions of (29). Note
that the induced map . � /C W BG! BG

C , sending b to bC, is a bijection.

Lemma 3.16 (i) For k;k0 2N �Z, one has Fk �Fk0 � FkCk0 .

(ii) For b 2 BG, one has

(30) b D !nbCC lower terms;
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where n2Z and “lower terms” is a linear combination of basis elements bCi 2B
G
C

such that kbCi k< kb
Ck.

Note that the second assertion of Lemma 3.16 implies that BG spans S!.†/, so reproves
Proposition 2.14.

Proof (i) Let x WD ŒT .n/; s� and y WD ŒT .n0/; s0�, and denote by .T .n/[T .n0/; s[s0/

the stated tangle obtained by stacking .T .n/; s/ on top of .T .n0/; s0/, so that

x �y D ŒT .n/[T .n0/; s[ s0�:

The tangles T .n/[T .n0/ and T .nCn0/ differ by an isotopy that does not necessarily
preserve the height orders, so Lemma 3.14 implies that x �y is a linear combination
of elements of the form ŒD.nCn0/; �� such that kŒD.nCn0/; ��k � kxkCkyk. This
proves the first assertion.

(ii) Using Notation 3.15, we apply Lemma 3.14 to b D ŒT; s� and bC D ŒT .n/; sC�,
and (30) is just a rewriting of (29).

Proof of Theorem 3.7 Both Proposition 2.14 and the second assertion of Lemma 3.16
imply that BG generates S!.†/. To prove that BG is free, we apply Lemma 3.11 to the
injective map . � /C W BG! BG

C where we equip BG
C with the ordering ŒD; s� < ŒD0; s0�

if kŒD; s�k > kŒD0; s0�k. The hypotheses of Lemma 3.11 are satisfied by virtue of
Proposition 3.10 and Lemma 3.16, so B is free.

4 Lattice gauge field theory

4.1 Ciliated graphs and quantum gauge group coaction

Since the pioneering work of Fock and Rosly [29], constructions in lattice gauge field
theory are based on ciliated graphs. As we now explain, to a ciliated graph .�; c/
one can associate a punctured surface †0 together with a finite presentation P of its
associated groupoid.

Definition 4.1 (i) A ribbon graph � is a finite graph together with the data, for each
vertex, of a cyclic ordering of its adjacent half-edges. An orientation for a ribbon graph
is the choice of an orientation for each of its edges.

Algebraic & Geometric Topology, Volume 23 (2023)



Finite presentations for stated skein algebras and lattice gauge field theory 1285

(ii) A ciliated ribbon graph .�; c/ is a ribbon graph � together with a lift, for each
vertex, of the cyclic ordering of the adjacent half-edges to a linear ordering. If the
half-edges adjacent to a vertex have the cyclic ordering e1 < e2 < � � � < en < e1 that
we lift to the linear ordering e1 < e2 < � � �< en, we draw a cilium between en and e1.

(iii) We associate surfaces to ribbon graphs as follows.

(a) Place a disc Dv on top of each vertex v and a band Be on top of each edge e,
then glue the discs to the bands using the cyclic ordering. We thus get a surface
S.�/ named the fattening of � .

(b) The closed punctured surface †.�/D .†.�/;P/ associated to � is the closed
punctured surface obtained from S.�/ by gluing a disc to each boundary com-
ponent and placing a puncture inside each added disc. So S.†/ deformation
retracts to †P.�/.

(c) The open punctured surface †0.�; c/D .†0.�; c/;P0/ associated to .�; c/ is
obtained from S.�/ by first pushing each vertex v to the boundary of S.�/ in
the direction of the associated cilium. Said differently, if the ordered half-edges
adjacent to v are e1 < e2 < � � � < en, we push v in the boundary of Dv so
that it lies between the band Ben

and the band Be1
. Next place a puncture pv

next to v (in the counterclockwise direction) on the same boundary component
as v. Finally, to each boundary component of S.�/ which does not contain any
puncture pv , glue a disc and place a puncture inside the disc. In the so-obtained
punctured surface †0.�; c/, each boundary arc contains exactly one vertex v
of � , so we denote by av the boundary arc containing v. Suppose that � is
oriented. Then the oriented edges of � form a set G of generators of…1.†

0
P ;V /

such that P .�; c/ WD .G;∅/ is a finite presentation without relations.

(iv) For v1 and v2 two distinct vertices of .�; c/, the ciliated graph .�v1#v2
; cv1#v2

/ is
obtained by gluing the vertices v1 and v2 to a vertex v in such a way that if e1< � � �< en

and f1 < � � �< fm are the ordered half-edges adjacent to v1 and v2, respectively, then
the linear order of the half-edges adjacent to v is e1 < � � �< en < f1 < � � �< fm. Note
that cv1#v2

¤ cv2#v1
.

Figure 16 illustrates two examples having the same ribbon graph but different ciliated
structures: the punctured surface †0.�; c/ is a disc with two inner punctures and two
boundary punctures whereas †0.�; c0/ is an annulus with one puncture per boundary
component and one inner puncture.
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.�; c/ S.�/ †0.�; c/ †.�/

.�; c0/ †0.�; c0/

Figure 16: Top, from left to right: a ciliated graph .�; c/, its fattening S.�/,
its open punctured surface †0.�; c/ and its closed punctured surface †.�/.
Bottom: the same ribbon graph with a different ciliated structure c0 (left) and
the associated open punctured surface †0.�; c0/ (right).

Remark 4.2 In [26] Costantino and Lê made the following important remark: the
punctured surface †0.�v1#v2

; cv1#v2
/ is obtained from †0.�; c/ t T by gluing the

boundary arcs av1
and av2

to two faces of the triangle T . In particular, when �D�1t�2

with v1 2 �1 and v2 2 �2, this property, together with Theorem 2.10, permitted the
authors of [26] to prove that S!.†0.�v1#v2

; cv1#v2
// is the cobraided tensor product of

S!.†0.�1; c1// with S!.†0.�2; c2//. The same gluing property was first discovered
by Alekseev, Grosse and Schomerus in [2; 3] for the quantum moduli spaces (see [37]
for a survey on the classical and quantum versions of the fusion operation).

For an oriented ciliated graph .�; c/, we denote by V .�/ its set of vertices and E.�/
its set of (oriented) edges. Like in the previous section, we see the elements of E.�/
as oriented arcs. Denote by D0 the punctured surface made of a disc with a single
puncture on its boundary. The closed punctured surface †.�/ is obtained from the
open one †0.�; c/ by gluing a copy D0 along each boundary arc av . Therefore, writing
yD WD

F
v2V .�/D0, by Theorem 2.10 one has the exact sequence

(31) 0! S!.†.�// i
�! S!.†0.�; c/t yD/

�R��ı�L

��������! S!.†0.�; c/t yD/˝Oq ŒSL2�
˝V .�/;

where i represents the gluing map.

Using the isomorphism S!.D0/Š k sending the class of the empty stated tangle to the
neutral element 1 2 k, we define an isomorphism

� W S!.†0.�; c/t yD/Š S!.†0.�; c//˝
O
v2V .�/

S!.D0/Š S!.†0.�; c//:
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Denote by � WS!.†.�// ,!S!.†0.�; c// the injective morphism � WD �ıi . Also denote
by�G WS!.†0.�; c//!S!.†0.�; c//˝Oq ŒSL2�

˝V .�/ the (unique) morphism making
the following diagram commute:

S!.†0.�; c/t yD/ S!.†0.�; c/t yD/˝Oq ŒSL2�
˝V .�/

S!.†0.�; c// S!.†0.�; c//˝Oq ŒSL2�
˝V .�/

�R

�Š �˝idŠ

�G

Definition 4.3 The quantum gauge group is the Hopf algebra Oq ŒG� WDOq ŒSL2�
˝V .�/.

The (right) Hopf-comodule map �G W S!.†0.�; c//! S!.†0.�; c//˝Oq ŒG� is called
the quantum gauge group coaction.

Note that, by definition, the following diagram commutes:

S!.†0.�; c/t yD/ S!.†0.�; c/t yD/˝Oq ŒG�

S!.†0.�; c// S!.†0.�; c//˝Oq ŒG�

�ı�L

�Š �˝idŠ

id˝�

Therefore the exactness of (31) implies that we have the exact sequence

(32) 0! S!.†.�// ��! S!.†0.�; c// �
G�id˝�
������! S!.†0.�; c//˝Oq ŒG�:

Said differently, �.S!.†.�/// is the subalgebra of S!.†0.�; c// of coinvariant vectors
for the quantum gauge group coaction.

Notation 4.4 For x 2Oq ŒSL2� and v0 2 V .�/ the element of the form
N
v yv , where

yv D 1 for v ¤ v0 and yv0
D x, is denoted by x.v0/ 2Oq ŒG�DOq ŒSL2�

˝V .�/.

Let ˛ be an arc of type either a or d and write v1 and v2 for the elements of V

corresponding to the boundary arcs containing s.˛/ and t.˛/, respectively. The quantum
gauge group coaction is characterized by the following formula illustrated in Figure 17:

(33) �G.˛ij /D
X

a;bD˙

˛ab˝x
.v2/

jb
x
.v1/
ia :

In order to prepare the comparison between stated skein algebras at !DC1 and relative
character varieties in the next subsection, let us derive from Theorem 1.1 an alternative
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j

i

b

a

b

a

j

i

˛ ˛
�G
��!

X
a;bD˙

˝

Figure 17: An illustration of (33).

presentation of S!.†/. During the rest of the section, we fix a finite presentation
P D .G;RL/ of …1.†P ;V / such that every arc of G is either of type a or d .

When comparing skein algebras with character varieties, there is a well-known sign
issue which requires some attention. When † is closed, the skein algebra SC1.†/

is generated by the classes of closed curves 
 whereas the algebra CŒXSL2
.†/� of

regular functions of the character variety is generated by curve functions �
 , sending
a class Œ�� of representation � W �1.†P/! SL2.C/ to �
 .Œ��/ WD tr.�.
 //. However
there is no isomorphism SC1.†/ŠCŒXSL2

.†/� sending 
 to �
 . Instead, we fix a spin
structure on †P with associated Johnson quadratic form � W H1.†P IZ=2Z/! Z=2Z

and define w.
 / WD 1C�.Œ
 �/. Then it follows from [7; 17; 44] that we have an
isomorphism SC1.†/Š CŒXSL2

.†/� sending 
 to .�1/w.
/�
 . A similar sign issue
appears when dealing with stated skein algebras and relative character varieties; this
was studied in [39] to which we refer for further details (see also [26; 48] for an elegant
interpretation of this sign issue in term of twisted character variety).

In short, the authors defined in [39] the notion of relative spin structure to which one
can associate a map w WG! Z=2Z having the property that for any simple relation
R D ˇk ? � � � ? ˇ1, one has

Pk
iD1w.ˇi/ D 1. We will call a map w W G ! Z=2Z

satisfying this property a spin function.

Notation 4.5 Let w be a spin function. For ˛ 2G, we denote by U.˛/ the 2�2 matrix
with coefficients in S!.†/ defined by

(34) U.˛/ WD

�
.�1/w.˛/!C�1M.˛/ if ˛ is of type a,
.�1/w.˛/C�1M.˛/D .�1/w.˛/N.˛/ if ˛ is of type d .

Proposition 4.6 (i) The stated skein algebra S!.†/ admits the alternative presenta-
tion with generators the elements U.˛/

j
i and with ˛ 2G and i; j D˙, together

with the following relations:
� The q–determinant relations detq.U.˛// D 1 when ˛ is of type a, and

detq2.U.˛//D 1 when ˛ is of type d .
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� For RD ˇk ? � � �?ˇ1 2RL a relation where l generators ˇi are of type a,
the trivial loop relation

(35) U.ˇk/ � � �U.ˇ1/DA3!l :

� For each pair of generators in G, the arc exchange relations obtained from
the relations in Lemma 2.24 by replacing N.˛/ by U.˛/ if ˛ is of type d or
by CN.˛/ if ˛ is of type a.

(ii) The quantum gauge group coaction is characterized by the formula

(36) �G.U.˛/
j
i /D

X
a;bD˙

U.˛/ba˝S.xbj /
.v2/x

.v1/
ia ;

where we use the same notation as in (33).

Proof It is clear from (34) that the matrix elements U.˛/
j
i generate the same algebra

as the elements M.˛/
j
i D ˛ij , so they generate S!.†/. We need to check that the q–

determinant, trivial loop and arc exchange relations for the elements ˛ij are equivalent
to the relations of the proposition for the elements U.˛/

j
i . When ˛ 2G is of type d ,

clearly the relation detq2.N.˛// D 1 is equivalent to the relation detq2.U.˛// D 1.
When ˛ 2G is of type a, the equivalence

detq.M.˛//D 1 () detq.U.˛//D 1

follows from a straightforward computation (and is the reason for the ! in the ex-
pression U.˛/ D .�1/w.˛/!C�1M.˛/). The equivalence between (10) and (35) is
straightforward (and is responsible for the introduction of the spin function and for
the .�1/w.˛/ factor in the definition of U.˛/). The fact that the arc exchange relations
are equivalent to the same relations with N.˛/ replaced by U.˛/ or C U.˛/ depending
whether ˛ is of type d or a follows from the definition of U.˛/ and the fact that the
arc exchange relations are homogeneous.

It remains to derive the formula (36) from (33). This is done by direct computation,
left to the reader, using the fact that for the two 2� 2 matrices

X D

�
xCC xC�
x�C x��

�
and S.X /D

�
S.xCC/ S.xC�/

S.x�C/ S.x��/

�
with coefficients in Oq ŒSL2�, one has S.X / D C�1tXC . Figure 18 illustrates (36).
In Figure 18, we use a special convention: we have drawn stated diagrams that go
“outside” of †P in some small bigon neighborhoods of the boundary arcs. It must be
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Figure 18: An illustration of (36).

understood that we need to apply a boundary skein relation in those neighborhoods.
This convention permits us to draw the matrix coefficients .C�1M.˛//

j
i . Note also

that in Figure 18 we drop the scalar factor .�1/w.˛/.

4.2 Relative character varieties

Since the quantum moduli algebras are deformation quantizations of the (relative)
character varieties studied by Fock and Rosly in [29], we briefly recall their construction
and refer to [6] for a detailed survey.

Let † be a punctured surface and V � †P be a finite subset which intersects each
boundary arc exactly once and each connected component of† at least once. Denote by
VV WDV \ V†P its (possibly empty) subset of inner points and let …1.†P ;V / be the full

subcategory of …1.†P/ generated by V . The representation space RSL2
.†;V / is the

set of functors � W…1.†;V /! SL2.C/. The discrete gauge group is GV WD SL2.C/
VV

and it acts on RSL2
.†;V / by

.� �g/.˛/ WDg.t.˛//�1�.˛/g.s.˛// for �2RSL2
.†;V /; g 2 GV ; ˛ 2…1.†P ;V /:

We claim that RSL2
.†;V / can be given the structure of affine variety in such a way

that the action of the reducible algebraic group GV is algebraic, so we can define the
GIT quotient

XSL2
.†/ WDRSL2

.†;V /==GV ;

which we call the relative character variety. To prove this, consider a finite presentation
P D .G;RL/ of …1.†P ;V / and write G D .˛1; : : : ; ˛n/ and RL D .R1; : : : ;Rm/.
Consider the regular map R W SL2.C/

G ! SL2.C/
RL written R D .R1; : : : ;Rm/,

where the coordinate Ri associated to a relation Ri D ˛
"1

i1
? � � �?˛

"k

ik
is the polynomial

function
Ri.g1; : : : ;gn/D g

"1

i1
� � �g

"k

ik
:
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Clearly one has RSL2
.†;V /DR�1.12; : : : ; 12/, where 12 is the identity matrix, so

RSL2
.†;V / is a subvariety of SL2.C/

G.

Note that the algebra CŒRSL2
.†;V /� of regular functions lies in the exact sequence

(37) CŒSL2.C/�
˝RL R���˝Gı�˝RL

�����������!CŒSL2.C/�
˝G
!CŒRSL2

.†;V /�! 0;

where � and � are the unit and counit of CŒSL2�. So we have turned RSL2
.†;V / into

an affine variety. Now the discrete gauge group action is induced by the Hopf comodule
map �G W CŒRSL2

.†;V /�! CŒRSL2
.†;V /�˝CŒGV �, which is the restriction of the

right comodule map z�G WCŒSL2.C/�
˝G!CŒSL2.C/�

˝G˝CŒSL2.C/�
˝ VV defined by

z�G.x.˛//D
X

x00
.˛/
˝S.x000/.v2/x0

.v1/ for x 2Oq ŒSL2� and ˛ W v1! v2 2G;

using Sweedler’s notation �.2/.x/D
P

x0˝ x00˝ x000. In particular, when x D xij

with i; j 2 f�;Cg, the formula gives

(38) �G.x
.˛/
ij /D

X
a;bD˙

x
.˛/

ab
˝S.xbj /

.v2/x
.v1/
ia :

Note the analogy between (38) and (36).

Finally, the algebra of regular functions of the relative character variety is defined as
the set of coinvariant vectors for this coaction, that is by the exact sequence

(39) 0!CŒXSL2
.†/�!CŒRSL2

.†/� �
G�id˝�
������!CŒRSL2

.†/�˝CŒGV �:

The relative character variety XSL2
.†/ does not depend (up to unique isomorphism) on

the choice of the triple .V ;G;RL/ used to define it, but only on †; we refer to [36]
for a proof. Note that in the particular case where V � @†P , the gauge group is trivial
so XSL2

.†/DRSL2
.†/. Moreover, if the presentation P does not have any relations,

then RSL2
.†/D SL2.C/

G . As we saw in Example 2.13, such a presentation P always
exists when † is a connected punctured surface with nontrivial boundary, therefore in
that case one has

XSL2
.†/D SL2.C/

G:

Now consider an oriented ciliated graph .�; c/ and consider the associated finite
presentation .V ;G;RL/ of the groupoid …1.†

0
P.�; c/;V / associated to the open

punctured surface defined in the previous subsection. The same triple .V ;G;RL/ also
gives a finite presentation of …1.†P.�/;V / associated to the closed punctured surface,
where this time all elements of V are inner vertices of †P.�/. Therefore one has

XSL2
.†0.�; c//DRSL2

.†.�//D SL2.C/
E.�/;
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where as before E.�/ denotes the set of edges of � . So the exact sequence (39) can be
rewritten as

0!CŒXSL2
.†.�//�!CŒXSL2

.†0.�; c//� �
G�id˝�
������!CŒXSL2

.†0.�; c//�˝CŒGV �:

Note the analogy with the exact sequence (32). The main achievement of Fock and Rosly
in [29] is the construction of Poisson structures on CŒXSL2

.†0.�; c//�DCŒSL2�
˝E.�/

and CŒGV �DCŒSL2�
˝ VV .�/ such that the coaction�G is a Poisson morphism. Therefore,

using the above exact sequence, the affine variety XSL2
.†.�// receives a (quotient)

Poisson structure. A good plan then is to show that this Poisson structure only depends
on the surface †P.�/ and not on .�; c/. This strategy permitted the authors of [29] to
extend the Atiyah–Bott–Goldman Poisson structure from unpunctured closed surfaces to
closed general punctured surfaces (see also [36] for a general treatment in the language
of punctured surfaces rather than ciliated graphs and using groupoid cohomology, and
for a Goldman type formula for the Poisson bracket).

Let us conclude this subsection with the following observation. It is well known
that the (stated) skein algebra SC1.†/ is isomorphic (though noncanonically) to the
algebra CŒXSL2

.†/� of regular functions of the (relative) character variety. For closed
punctured surfaces this was shown by Bullock [17] under the assumption that SC1.†/

is reduced; this assumption was proved in [44] (see also [23] for an alternative proof).
For open punctured surfaces this was proved independently in [39, Theorem 1.3] and
[26, Theorem 8.12] using triangulations of surfaces. Let us note that Theorem 1.1
gives a straightforward alternative proof of this result with the additional assumption
that P ¤∅.

Theorem 4.7 [17; 26; 39; 44] The algebras SC1.†/ (where kDC) and CŒXSL2
.†/�

are isomorphic.

Proof First suppose that † is an open connected punctured surface, let V be such that
each of its vertices are on the boundary (so the representation and relative character
varieties are the same), let P D .G;RL/ be a finite presentation of …1.†P ;V / whose
generators are either of type a or d and fix a spin function w. By (37), the algebra
CŒXSL2

.†/� is presented by the generators x
.˛/
ij for ˛ 2G and i; j 2 f�;Cg, with

� the exchange relations x
.˛/
ij x

.ˇ/

kl
D x

.ˇ/

kl
x
.˛/
ij for all ˛; ˇ 2G and i; j 2 f�;Cg,

� the determinant relations det.X.˛//D 1 for all ˛ 2G,

� the trivial loop relations X.ˇk/ � � �X.ˇ1/D 12 for RD ˇk ? � � �?ˇ1 2RL,
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where we set

X.˛/ WD

 
x
.˛/
CC x

.˛/
C�

x
.˛/
�C x.˛/��

!
:

By comparing this presentation of CŒXSL2
.†/� with the presentation of S!.†/ obtained

in Proposition 4.6 by setting ! DC1, we see that one has an isomorphism of algebras
‚ W SC1.†/

Š
�!CŒXSL2

.†/� sending U.˛/ to X.˛/; note that RD � when ! DC1, so
all arc exchange relations become U.˛/ˇU.ˇ/D �U.˛/ˇU.ˇ/� giving relations
˛ijˇkl D ˇkl˛ij . Moreover, by comparing (38) and (36), we see that ‚ is equivariant
for the gauge group coactions.

Now suppose that † is closed and connected with P¤∅, and let .�; c/ be a ciliated fat
graph such that †.�/D†. By the preceding case, one has an equivariant isomorphism
‚ W SC1.†

0.�; c// Š�!CŒXSL2
.†0.�; c//�, so one has a commutative diagram

0 SC1.†.�//� SC1.†
0.�; c//� SC1.†

0.�; c//�˝CŒGV �

0 CŒXSL2
.†.�//� CŒXSL2

.†0.�; c//� CŒXSL2
.†0.�; c//�˝CŒGV �

9!Š

�G�id˝�

‚Š ‚˝idŠ

�G�id˝�

Since both lines are exact there exists an isomorphism SC1.†.�//
Š
�!CŒXSL2

.†.�//�

obtained by restriction of ‚.

4.3 Combinatorial quantizations of (relative) character varieties

The work of Fock and Rosly suggests a natural way of quantizing character varieties.
The following problem was raised and solved independently by Alekseev, Grosse and
Schomerus [2; 3] and Buffenoir and Roche [15] (see also [20] for a survey):

Problem 4.8 Associate to each oriented ciliated graph .�; c/ an (associative unital)
algebra L!.�; c/ over the ring k WDCŒ!˙1� satisfying:

(A1) As a k–module, L!.�; c/ is just the (free) module

CŒRSL2
.†0.�; c//�˝C kŠCŒSL2�

˝E.�/
˝C k:

(A2) As before, write Oq ŒG� WDOq ŒSL2�
˝V .�/. The linear map

�G
W L!.�; c/! L!.�; c/˝Oq ŒG�

defined by the formulas

�G.x
.˛/
ij /D

X
a;bD˙

x
.˛/

ab
˝S.xbj /

.v2/x
.v1/
ia

is a Hopf-comodule map. In particular, it is a morphism of algebras.
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(Inv) The subalgebra Linv
! .�/� L!.�; c/ defined by the exact sequence

0! Linv
! .�/! L!.�; c/ �

G�id˝�
������! L!.�; c/˝Oq ŒG�

only depends (up to canonical isomorphism) on the (homeomorphism class of)
surface S.�/.

(Q) Let k„ WD CŒŒ„�� and write !„ WD exp.�.i�/=.2„// 2 k„ so that � W k! k„
defined by �.!/ WD !„ is a ring morphism. Then the k„ algebra Linv

! .�/˝� k„
is a deformation quantization of the Poisson algebra CŒXSL2

.†.�//� equipped
with its Fock–Rosly Poisson structure.

Theorem 4.9 (Alekseev, Grosse and Schomerus [2; 3; 5], Buffenoir and Roche [15; 16])
Problem 4.8 admits the solution L!.�; c/ WD L!.†0.�; c//, where the k–module
isomorphism L!.�; c/ŠCŒRSL2

.†0.�; c//�˝C k is given by sending U.˛/ to X.˛/.

The algebras L!.�; c/ are the so-called quantum moduli algebras and Theorem 1.3 is
an obvious consequence of Theorem 1.1.

More precisely, the ciliated graphs considered in [15; 16] are those whose underlying
graph is the 1–skeleton of some combinatorial triangulation of a Riemann surface. By
combinatorial we mean that each edge has two distinct endpoints, so every arc is of type
a and the only arc exchange relations among distinct arcs are in configurations (i) or
(ii) (in the notation of Lemma 2.24). In [2; 3; 5] general ciliated graphs are considered,
though in [3; 5] special attention is given to the quantum moduli algebras of the daisy
graphs defined in Example 2.13 (they are called standard graphs in [3; 5]) and are
further studied and related to stated skein algebras in [27]. In those daisy graphs, the
arcs are of type d and the more complicated arc exchange relations in configurations
(viii), (ix) and (x) appear under the name braid relations; see [3, Definition 12].

Note that, except for the study of the Poisson structure (which could have been easily
done), we reproved Theorem 4.9. In [43], Meusburger and Wise proved that the solution
of Problem 4.8 is unique, provided that we add some natural axioms for the operation
of gluing graphs together. Actually the authors of [43] consider quantum moduli
algebras associated to finite-dimensional ribbon algebras, whereas here we consider the
infinite-dimensional one Uqsl2, but their proof extends word-for-word to our context.

4.4 Comparison with previous works

Let †0 be a connected punctured surface with one boundary component, one puncture
on its boundary and possibly some inner punctures. Let .�; c/ be its daisy graph
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and P D .G;∅/ be the associated finite presentation as defined in Example 2.13 (so
†0 D†0.�; c/). In this case, since the presentation has no relations, one can consider
the spin functionw sending every generator to 02Z=2Z. Since every generator ˛2G is
of type d , the isomorphism‰ WS!.†0/ Š�!L!.�; c/ sends U.˛/DC�1M.˛/ to X.˛/.
By precomposing with the reflection anti-involution � , one obtains an isomorphism

‰0 W S!�1.†0/op Š
�! L!.�; c/;

which corresponds to Faitg’s isomorphism in [27]. Let us stress that our notation is
quite different from that in [27]; in particular:

� The letter q in [27] is what we denoted by A (so our q corresponds to q2 in [27]).

� The letter R in [27] is related to our R by RD � ıR.

� Faitg actually considered S!�1.†0/op, the opposite of the stated skein algebra.

As Faitg, Jordan and Safronov kindly explained to the author, the existence of an
isomorphism ‰ W S!.†0/ Š�! L!.�; c/ could have been derived from [9; 31] as we
now briefly explain using the notation in [31] to which we refer for further details. Set
kDCŒ!˙1� and fix a structure of a Riemann surface †. To any k–ribbon category A,
one can associate a skein category SkCatA.†/ whose objects are oriented embeddings
of finitely many disjoint discs D!† colored by objects in A and whose morphisms
are framed A–colored ribbon graphs in †� Œ0; 1� considered up to skein relations; see
[24, Section 4:2] for a precise definition. We denote by 1 2 SkCatA.†0/ the empty set.
Let †0 be obtained from a connected closed oriented surface † by removing an open
disc. Fixing an arbitrary disc embedding D!†0 gives a functor P WA! SkCatA.†0/

in an obvious way. Let yA WD Fun.Aop;Vect/ be the free cocompletion of A (which
inherits a monoidal structure from A). The internal skein algebra is defined as the
coend

SkCatint
A .†

0/ WD
Z x2A

HomSkCatA.†0/.P.x/; 1/˝x 2 yA:

The functor HomSkCatA.†0/.P. � /; 1/ WAop!Vect has a natural lax monoidal structure,
given by stacking ribbon graphs on top of each other, which endows SkCatint

A .†
0/ with

the structure of an algebra object in yA. If A is Tannakian, that is if it is equipped with
a fully faithful monoidal functor for WA! Vect, then

SA.†
0/ WD for.SkCatint

A .†
0//D

Z x2A
HomSkCatA.†0/.P.x/; 1/˝ for.x/ 2 Vect

is a unital associative algebra that we might call the stated skein algebra associated
to A and †0. Let us consider two Tannakian ribbon categories: the (Cauchy closure
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of the) Temperley–Lieb category TL and the category of finite-dimensional Uqsl2
left modules Repfd

q .SL2/ (recall that q is generic here). The Tannakian structure
forget W Repfd

q .SL2/! Vect is just the forgetful functor. It is well known that one has a
monoidal braided equivalence of categories (which does not preserve the pivotal struc-
ture) G W TL! Repfd

q .SL2/ sending the one strand ribbon Œ1� 2 TL to the fundamental
representations V of Section 2.1 with basis fvC; v�g, thus we get a Tannakian structure
forget ıG W TL! Vect.

On the one hand, there is a natural algebra morphism

‰1 W S!.†0/! STL.†
0/

sending the class ŒT; s� of a stated tangle, where @T has n elements, to the class of
T ˝ vs 2 HomSkCatTL.†0/.P.Œ1�˝n/; 1/˝V ˝n, where vs 2 V ˝n is obtained from the
state s by identifying the signs C and � with the basis vectors vC and v� of V . As
noted in [31, Remark 2.21] and fully explored in [32], a detailed comparison of the
definitions shows that ‰1 is an isomorphism.

On the other hand, thanks to Cooke’s excision theorem in [24] and as proved in
[31, Proposition 2:19], the internal skein algebra SkCatint

A .†
0/ is isomorphic to the so-

called moduli algebra A†0 DEnd.1/2 yA introduced in [9, Definition 5:3]. The authors
of [9, Theorem 5:14] defined an explicit isomorphism ŒRepfd

q .SL2/�†0 Š L!.�/, so by
composing the two isomorphisms, one get an isomorphism

‰2 W STL.†
0/ Š�! L!.�/:

Putting ‰1 and ‰2 together, we get an alternative construction of Faitg’s isomorphism.

Remark 4.10 The above construction generalizes the notion of a stated skein algebra
SC.†

0/ to an arbitrary Tannakian ribbon category C (how to replace †0 with an arbitrary
punctured surface is obvious), and [9, Theorem 5:14] seems to permit us to give explicit
finite presentations for SC.†

0/. A detailed study of these generalized stated skein
algebras will appear in a separate publication [25].

5 Concluding remarks

We conclude the paper by making some remarks concerning the usefulness of relating
stated skein algebras and quantum moduli spaces (Theorem 1.3). We can see the stated
skein algebras as defined by a huge set of generators (all stated tangles) and a huge set
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of relations (isotopy and skein relations) whereas the quantum moduli algebra is defined
by a finite subset of generators and by a finite subset of relations. Both presentations
have their own advantages.

(i) The fact that the quantum moduli algebra Linv
! .�/ only depends, up to canonical

isomorphism, on the thickened surface S.�/ (or equivalently †.�/) is usually proved
by defining elementary moves on graphs that preserve the thickened surface and showing
that those elementary moves induce isomorphisms on the algebras. This strategy was
pioneered by Fock and Rosly in the classical case of relative character varieties [29] and
later carried on in [3; 16] for quantum moduli algebras (see also [43] for very detailed
study). Thanks to the isomorphism Linv

! .�/ Š S!.†.�// (and the fact that stated
skein algebras depend on surfaces rather than graphs), this fact is also an immediate
consequence of Theorem 1.3. Also, the image of a closed curve 
 through the reverse
isomorphism ‰�1 W†.�/! Linv

! .�/ is usually called its holonomy Hol.
 / or Wilson
loop operators, and the expression of this holonomy in terms of generators as well as the
proof of some composition properties is the subject of long and technical computations
in [2; 3; 15; 16; 28; 43], whereas they become easy in the skein algebra setting.

(ii) Since the quantum moduli algebra L!.�; c/ is quadratic homogeneous, we might
have tried to prove that it is Koszul (proving that BG is free) without the help of the
stated skein algebra. The standard technique to prove that the family B of (26) is a
PBW basis consists in examining the set of critical monomials of the form vivjvk

(we use the notation of Section 3.2) where both vivj and vjvk are leading terms. To
such a critical monomial we associate a finite graph (which might have the shape of a
diamond) and the diamond lemma implies that if each of these graphs is confluent (has a
terminal object) then B is a basis, so the quadratic algebra is Koszul; see [42, Section 4]
for details. In our case, due to the huge amount of different kinds of relations in our
presentation, this strategy would require us to verify the confluence of 6578 different
graphs! This is way too much to be handled by hand. It is thanks to the fact that stated
skein algebras have a lot of relations and generators that Lê was able to successfully
use the diamond lemma in [40] to prove that B is basis, and our proof that BG is a
basis is directly derived from this fact. So proving the Koszulness of L!.�; c/ without
the help of stated skein algebras could have been a very difficult problem.

(iii) Even if we could find PBW bases for the algebras L!.�; c/ without the help
of skein algebras, finding bases for Linv

! .�/ would be extremely difficult, since it
is only defined as a kernel and no presentation is known. However, skein algebras
S!.†.�//Š Linv

! .�/ have well-known bases (of multicurves).
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(iv) As we saw in Section 4.2, the fact that LC1.†;P / is isomorphic to the algebra
of regular functions of the (relative) character variety XSL2

.†/ is very easy to prove,
whereas relating the (stated) skein algebra SC1.†/ to CŒXSL2

.†/� is not so obvious
(see [17; 44] for closed surfaces and [26; 39] for open ones).

(v) In [13] Bonahon and Wong proved that the Kauffman-bracket skein algebra
SC1.†/, with deforming parameter C1, embeds into the center of the skein algebra
S�.†/ with deforming parameter � a root of unity of odd order (see also [41] for
an alternative proof). This result was generalized in [39] to stated skein algebras as
well (see also [11] for generalizations). In [8], Baseilhac and Roche showed that
the construction of this so-called Chebyshev–Frobenius morphism is much easier
in the context of quantum moduli algebras (that is, using the finite presentations of
Theorem 1.1). Even though their study only concerns genus 0 surfaces, their proofs
seem to generalize easily to general surfaces, providing simpler proofs for the results
in [13; 39].

(vi) Bullock, Frohman and Kania-Bartoszynska already proved in [19, Theorem 10]
that Linv

! .�/ and S!.†.�// are isomorphic when k D CŒŒ„�� and ! D � exp
�
�

1
4
„
�
.

Their proof consists of defining an algebra morphism ‰ W Linv
! .�/! S!.†.�// (by

techniques similar to what we did in Section 2.2), and noting that under the .mod „/
identifications Linv

! .�/=.„/ŠCŒXSL2
.†/� and S!.†.�//=.„/Š S�1.†.�//, the mor-

phism ‰ reduces modulo „ to Bullock’s isomorphism CŒXSL2
.†/�Š S�1.†.�//. So

the fact that the reduction of ‰ modulo „ is an isomorphism implies that ‰ is an
isomorphism. This proof does not seem (at least to the author) to generalize to prove
the identification Linv

! .�/Š S!.†.�// for more general rings (such as kDC and ! a
root of unity), whereas our Theorem 1.3 works in full generality. A second reason why
the approach in [19] does not work at roots of unity is described in (vii).

(vii) The following important remark was kindly explained to us by the anonymous
referee, whom the author warmly thanks. In traditional papers in lattice gauge field
theory (like [3; 8]) the algebras L!.�; c/ are seen as Uqsl˝n

2
–modules instead of

Oq ŒSL2�
˝n–comodules (here n is the number of external vertices of � , ie the number of

boundary arcs of †.�; c/) and Linv
! .�/ is then defined as the algebra of Uqsl˝n

2
–invariant

vectors instead of Oq ŒSL2�
˝n–coinvariant vectors. When q is generic, there is a perfect

pairing between the two Hopf algebras Uqsl2 and Oq ŒSL2� so that both definitions
coincide. However, at roots of unity, the induced morphism Oq ŒSL2�! Uqslı2 is no
longer injective nor surjective. As a consequence, the two definitions of Linv

! .�/ do not
coincide anymore and Theorem 1.3 only holds for the definition used in the present
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paper. For instance, consider the case where .�; c/D so that m1 WD†.�; c/

is a once-punctured monogon, that is, a disc with one inner puncture and one boundary
puncture. In this case S!.m1/ŠL!.�; c/ is Majid’s braided quantum group; see [26; 8].
On the one hand, when q WD !�4 is a root of unity of odd order, Baseilhac and Roche
have proved [8, page 41] that the subalgebra of Uqsl2–invariant vectors coincides with
the center of S!.m1/ (denoted by L"

0;1
in [8]). This center is generated by the peripheral

curve 
p encircling the inner puncture p together with the image of the Chebyshev–
Frobenius morphism. On the other hand, the Oq ŒSL2�–coinvariant vectors form the
algebra CŒ
p � generated by the peripheral curve, isomorphic to the skein algebra of
a punctured disc †0.�; c/ as expected. Therefore the subalgebra of Uqsl2–invariant
vectors is bigger than the algebra of Oq ŒSL2�–coinvariant vectors and Theorem 1.3
would fail with the original definition of Linv

! .�/ at roots of unity.
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We construct an explicit equivalence between the (bi)category of gl2 webs and foams
and the Bar-Natan (bi)category of Temperley–Lieb diagrams and cobordisms. With
this equivalence we can fix functoriality of every link homology theory that factors
through the Bar-Natan category. To achieve this, we define web versions of arc
algebras and their quasihereditary covers, which provide strictly functorial tangle
homologies. Furthermore, we construct explicit isomorphisms between these algebras
and the original ones based on Temperley–Lieb cup diagrams. The immediate appli-
cation is a strictly functorial version of the Beliakova–Putyra–Wehrli quantization of
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1 Introduction
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collections of points [19] and then to all tangles by Brundan and Stroppel [6] and Chen
and Khovanov [10]. The main advantage of the Khovanov homology with respect to
the Jones polynomial is that link cobordisms induce chain maps between Khovanov’s
complexes; see Bar-Natan [2], Jacobsson [17], and Khovanov [22]. Even though the
original construction is not strictly functorial — the sign of the chain map associated
with a link cobordism depends on the decomposition of the cobordism into elementary
pieces [17] — it was used by Rasmussen to provide a lower bound for the slice genus
of a knot and a combinatorial proof of the Milnor conjecture [32].

In the last 15 years there were many attempts to fix the functoriality of Khovanov
homology. In Caprau [8] and Clark, Morrison and Walker [11] this was done by
modifying the Bar-Natan category [2], in which the construction of the complex can be
naturally described, by taking into account orientations and by enlarging the ground
ring; see also Vogel [35]. In 2014 Blanchet [5] proposed a more conceptual solution,
which does not change the ring of scalars, but replaces circles and surfaces in the
Bar-Natan category with webs and foams: certain planar trivalent graphs and singular
cobordisms between them respectively. This construction, commonly referred to as
gl2 homology, has been widely accepted as the most natural way to fix functoriality
of Khovanov homology. The resulting, a priori potentially different, gl2 homology is
known to coincide with Khovanov homology in case of links [5].

To obtain a computable invariant of tangles, Chen and Khovanov constructed a functor
from the Bar-Natan bicategory to the bicategory of bimodules over extended Khovanov’s
arc algebras [10]. Because of its diagrammatic definition, it is straightforward to
generalize this functor to the case of webs. However, it is no longer clear whether
the new algebra or tangle invariant is isomorphic to those constructed by Chen and
Khovanov. A partial solution to this problem, that considers only a special class of
webs, was presented by Ehrig, Stroppel and Tubbenhauer [13; 14], but not much was
known beyond this case. The special webs from [13; 14] are discussed in Example 6.6
below.

The Hochschild homology of the Chen–Khovanov invariant of an .n; n/–tangle T has
been identified by Beliakova, Putyra and Wehrli in [4] with the annular Khovanov
homology of the annular closure yT of the tangle. In the same paper the annular invariant
has been quantized by deforming the Hochschild homology. The original goal of this
paper was to make this quantized annular homology functorial, in order to construct
its colored versions following Khovanov [21] and Cooper and Krushkal [12]. These
quantized colored homologies are constructed in the follow up paper by the authors [3],

Algebraic & Geometric Topology, Volume 23 (2023)
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where we also show that both complexes coincide when the deformation parameter is
generic; see also Putyra [28].

In order to obtain a strictly functorial quantized annular homology, we wanted first to
understand the Ehrig–Stroppel–Tubbenhauer isomorphism between Khovanov’s arc
algebras and their web algebras, and then reconstruct the Chen–Khovanov functor in
the framework of webs and foams. However, after a chain of simplifications of their
arguments, especially replacing the foam basis used in [13] with another one, more
natural from the topological perspective, we understood the real reason why all the
isomorphisms popped out: foams and cobordisms constitute equivalent bicategories.
Despite sounding as a natural thing, the result is by no means obvious — compare eg
Lauda, Queffelec and Rose [23, Section 3.1.2] or [14, page 186].

In this paper we construct a functor between foams and cobordisms by taking into
account orientability of foams and another beautiful topological tool called shadings.
They allow to think of a web (resp. a foam) as two transversely intersecting flat tangles
(resp. surfaces), so that each of the two tangles or surfaces can be isotoped separately
(see Lemma 3.6, the bicolored isotopy lemma). This approach makes many results
on foams straightforward, but also leads to a simple diagrammatic representation of a
basis of the space of foams bounded by a fixed web, on which the action of foams is
very easy to compute. We use this basis to construct explicitly equivalences between
the two bicategories in both directions and to obtain full web versions of the TQFT
functors from [6; 10; 19].

To summarize, the above mentioned equivalence between foams and cobordisms gives
an ultimate solution to all functoriality issues related with Khovanov homology. Our
recipe is simple: precompose any link or tangle homology theory that factors through
the Bar-Natan category with our equivalence and obtain a strictly functorial theory. In
the following sections we discuss the above approach in more details.

1.1 The equivalence of foams and Bar-Natan cobordisms

In order to compute the Khovanov homology of a link L, one first picks its diagram D

and constructs the cube of resolutions of D: a commutative diagram in the shape of
the c–dimensional cube, where c equals the number of crossings in D, with vertices
decorated by Kauffman resolutions of D and edges by saddle cobordisms between
them [18]. Applying a 2–dimensional TQFT to this cube, changing signs of some maps,
and collapsing the cube along diagonals results in an actual chain complex, which —

Algebraic & Geometric Topology, Volume 23 (2023)
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depending on the choice of the TQFT functor — computes the Khovanov homology of
L or its deformation.

It was observed by Bar-Natan that most of the construction can be performed formally
before applying a TQFT functor to get an invariant of a tangle T in the form of a
formal complex ŒŒT �� called the Khovanov bracket of T [2]. This complex is constructed
in the Bar-Natan bicategory BN, the locally additive graded bicategory with objects
collections of points on a line, 1–morphisms generated by flat tangles, and 2–morphisms
generated by isotopy classes of surfaces embedded in a 3–space and decorated by dots,
modulo the following local relations:

� sphere evaluations:

(1-1) D 0 D 1

� neck-cutting relation:

(1-2) D C � h

� dot-reduction:

(1-3) D h C t

Here h and t are fixed elements of the ring of scalars k. When hD 0, then the neck-
cutting relation evaluates a handle attached to a plane as a dot scaled by 2. Because
of that it is common to think of a dot as “half” of a handle, even when 2 is not an
invertible scalar. However, this interpretation is not correct if h¤ 0, in particular in the
universal case kD ZŒh; t �.

The formal bracket is projectively functorial [2]. Indeed, there is a way to associate
a formal chain map with each Reidemeister move as well as any cobordism with a
unique critical point. One constructs a formal chain map for any tangle cobordism
by decomposing the cobordism into a sequence of the above elementary pieces and
composing the associated maps; choosing a different decomposition may at most change
the global sign of the map.

In Blanchet’s construction [5] the role of flat tangles is played by gl2–webs, trivalent
graphs with each edge colored blue or red,1 and dotted surfaces are replaced with

1When compared to [5], blue edges are those with label 1 and red edges are those with label 2.
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foams, which are singular cobordisms with each facet also colored blue or red. They
constitute a bicategory Foam, where certain local relations between foams, including
(1-1)–(1-3), are imposed; see Definition 2.6. Following [2] we can construct a formal
complex ŒŒT ��F in Foam, which we refer to as the Blanchet–Khovanov bracket.

The collection of blue edges of a web ! is a flat tangle !b , which we call the underlying
tangle of !. Likewise, there is an underlying surface Sb associated with any foam S .
It is tempting to consider a 2–functor Foam! BN that forgets red edges in webs and
red facets in foams. However, this operation is not compatible with relations between
foams, and it is not clear at first how to solve this problem. For instance, it was observed
in [23] that if such a functor exists, then it cannot be the identity on all foams with no
red facets.

We resolved the above problem by taking into account the orientation of blue edges
and facets. Shortly speaking, we fix an orientation for each flat tangle and surface in a
canonical way, reinterpreting them as webs and foams respectively (recall that tangles
and surfaces from BN, though orientable, come with no particular orientation). This
results in a 2–functor, which, however, does not reach every object of Foam. In order
to fix this we replace BN with the product wBN WD BN �Z, where Z is seen as a
discrete bicategory. We use the extra integer to determine how many red points, edges,
or facets have to be added to the right of the oriented blue points, tangle, or surface
respectively.2 This way we end up with a 2–functor E WwBN! Foam, such that every
object of Foam is equivalent to one from the image of E .

Theorem A The 2–functor E W wBN! Foam is an equivalence of bicategories.

From the point of view of representation theory, E and its inverse can be understood
as the categorification of the induction–restriction pair between representations of sl2
and gl2.

There is also a local version of Theorem A. Having fixed a collection † of oriented
blue and red points on @D2, write Foam.†/ for the category of webs in D2 bounded
by † and foams in D2 � Œ0; 1� between such webs. Likewise we consider the category
BN.†b/ of flat tangles bounded by †b and dotted surfaces between them, where †b is
the collection of blue points from †. We construct a functor E† WBN.†b/! Foam.†/
in Section 4.1 by extending coherently all flat tangles to webs bounded by † and
surfaces to foams.
2Compare this with the relation between the weight lattices of sl2 and gl2 — the latter is isomorphic to the
product of the former with Z.
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Theorem B The functor E† W BN.†b/! Foam.†/ is an equivalence of categories.

We construct the functor E† explicitly as well as its inverse E_†. The latter not only
forgets red facets of foams, but also scales them by a sign when necessary; we provide
an explicit way to compute these signs in terms of the Blanchet evaluation of foams.
When combined with a homological argument presented in Ozsváth, Rasmussen and
Szabó [26] and Putyra [27], Theorem B implies that for every tangle T the image of the
Khovanov bracket ŒŒT �� under E† is isomorphic to the Blanchet–Khovanov bracket ŒŒT ��F.
Hence, any TQFT functor on BN.†b/ that leads to a tangle or link homology can
be precomposed with E_† to obtain a functor on Foam.†/ that computes the same
homology groups, but which is strictly functorial with respect to tangle cobordisms.

1.1.1 Main tools: shadings and bicolored isotopies The key step in the proofs of
Theorems A and B is to understand how foams with the same underlying surface are
related. We achieve this by constructing foams from shadings. A shading is a union of
two possibly intersecting surfaces: a nonoriented blue and an oriented red one, that are
in general position in R3, together with a checkerboard black and white coloring of
the connected components of their complement, called regions. Forgetting those red
facets of a shading, the orientations of which disagree with the one induced from the
white regions, results in a foam, and all foams can be constructed this way. The same
applies to webs.

A particularly nice feature of representing foams by shadings is the flexibility of this
construction, which we call the bicolored isotopy argument: deforming any of the two
surfaces by an isotopy results in a foam that differs from the original one only up to a
sign or replacing some dots with their duals; see Proposition 2.10 in Section 2.2 for a
precise statement. This has a number of important consequences:

� closed foams can be evaluated (Theorem 2.14) using the bicolored isotopy
argument by moving the blue and red facets away from each other;

� more generally, foams with the same boundary and underlying surfaces coincide
up to a sign and types of dots (Proposition 2.10);

� a foam, the underlying surface of which is a product ! � Œ0; 1�, is invertible.

We then use the above to construct a basis of the space of foams bounded by a closed
web !. It is given in terms of shadings of a plane that extend !, the blue loops of which
may carry dots. The foam associated with such a picture !C is given by attaching
blue and red cups to the loops of !C— red cups above all blue ones — and placing
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a dot at the minimum of every blue cup attached to a loop that is marked by a dot.
This leads to an explicit description of the tautological TQFT functor on Foam.∅/ that
associates the space HomFoam.∅/.∅; !/ with a closed web !, presented in Section 5.
When compared with [14], our basis is not only easier to visualize, but also the formula
for the action of foams involves fewer signs.

1.2 Functorial tangle homology

Khovanov extended his construction first to tangles with an even number of boundary
points at each side [19]. For this he constructed a 2–functor FıKh WBNı!Bimod, where
BNı is the subbicategory of BN with only even collections of points as objects. The
2–functor FıKh associates with a collection of 2n points the arc algebra

(1-4) Hn
WD

M
a;b

HomBN.a; b/;

where a and b run through the set of Temperley–Lieb cup diagrams in R�.�1; 0� with
2n boundary points at the top boundary line.3 This algebra Hn is known to categorify
the invariant subspace Inv.V ˝n/ of V ˝n, where V is the fundamental representation
of Uq.sl2/. Cup diagrams parametrize indecomposable projective Hn–modules, which
in turn correspond to elements of the canonical basis of V ˝n. Let CKh.T / be the
chain complex associated with an .2n; 2n0/–tangle T , ie the result of applying FıKh
to ŒŒT ��. The functors CKh.T /˝ .�/ lift the action of tangles on Inv.V ˝n/ to the
derived categories of the arc algebras [19].

In order to categorify the whole tensor power V ˝n, Chen and Khovanov considered
a family of algebras Ak;n�k , where 0 � k � n, each constructed as a subquotient
of Hn. These algebras were discovered independently by Stroppel [34], who proved
with Brundan [6; 7] that they are quasihereditary covers of arc algebras and Koszul.
Furthermore, projective modules over Ak;n�k categorify the weight space V ˝n.�/
with �D n� 2k [7; 10]. As in the case of arc algebras, there is a family of 2–functors
F�Kh WBN!Bimod, such that F�Kh assigns to a collection of n points the algebra Ak;n�k

with �D n� 2k [6; 10]. Write CKh.T I�/ for the result of applying F�Kh to ŒŒT ��. Then
the functor CKh.T I�/˝ .�/ lifts the action of T on the weight space V ˝n.�/.

Using Theorem A we can construct a strictly functorial version of both Khovanov and
Chen–Khovanov homologies by precomposing FıKh and F�Kh with E_. We provide a
direct construction of both invariants.
3This presentation of Hn comes from Rozansky [33].
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Following [14] we call the web version of Hn the Blanchet–Khovanov algebra. It is
defined for any collection of oriented red and blue points † that is balanced, ie bounds
a web, as the direct sum

WB
WD

M
a;b2B

HomFoam.†/.a; b/;

where B is a cup basis of webs bounded by †; its elements play the role of cup
diagrams for Hn. Although WB depends a priori on B, we show that different choices
of basis lead to isomorphic algebras. Moreover, there is a special basis of webs — the
red-over-blue basis — such that forgetting red facets in cup foams is compatible with
multiplication. In particular, WB admits a positive basis. This results immediately
in an algebra isomorphism WB Š Hn, where n is half of the blue points in †. We
further extend this construction to a 2–functor Fıw W Foamı ! Bimod following the
construction of FıKh.

Suppose that T is an oriented tangle, the input and output of which are balanced. Then
all resolutions of T are in Foamı and Fıw can be applied to ŒŒT ��F to produce a chain
complex of bimodules CW.T /. We call it the Blanchet–Khovanov complex.

Theorem C The 2–functor Fıw is equivalent to FıKh ı E
_. In particular , the complexes

CW.T / and CKh.T / are isomorphic for any tangle T with balanced input and output.

The construction of a web version of Chen–Khovanov algebras is more challenging.
We first describe two extensions of a sequence † to a balanced one †ı by inserting
extra blue points to the left and to the right of †. Then we pick a basis B of webs
bounded by †ı and the corresponding Blanchet–Khovanov algebra WB. The extended
Blanchet–Khovanov algebra A†;�, where � 2 Z has the same parity as the number of
blue points in †, is a certain subquotient of WB. Following the same procedure we
associate a bimodule with a web and a bimodule map with a foam for every � 2 Z,
obtaining a family of 2–functors F�w W Foam!Bimod, each defined on the entire foam
bicategory. As in the previous construction, F�w is compatible with relations between
foams, so that applying it to ŒŒT ��F results in an invariant chain complex of bimodules
CW.T I�/. We call it the extended Blanchet–Khovanov complex of T .

We construct an explicit isomorphism AB;�ŠAk;n�k , where n counts blue points in †
and �D n� 2k. Contrary to the previous case, it is not enough to forget red facets in
cup foams to get the isomorphism, because the basic webs from B may have too many
blue arcs. This issue is resolved by stabilization — adding beneath webs and foams
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extra blue arcs and disks respectively. We then extend this isomorphism to bimodules
and prove the following fact:

Theorem D The 2–functor F�w is equivalent to F�Kh ı E
_. In particular , the complexes

CW.T I�/ and CKh.T I�/ are isomorphic for any tangle T .

All the isomorphisms are constructed explicitly and — in case nice bases are used —
given by very simple formulas. Furthermore, by the discussion following Theorem B,
the tangle homology computed with Fıw and F�w are isomorphic to the Khovanov and
Chen–Khovanov invariants respectively.

1.3 Functoriality of quantized annular Khovanov homology

The above results allow us to construct a strictly functorial version of the quantized
annular Khovanov homology, which was the motivation for this paper. Combining
Theorem D with [4, Proposition 6.6] we get:

Corollary E Suppose k is flat over ZŒq˙1�. Then the quantum Hochschild homology
groups qHHi .A

B;�/ with coefficients in k vanish for i > 0, whereas the Chern character
map

h WK0.A
B;�/˝ZŒq˙1� k! qHH0.A

B;�/

is an isomorphism.

Choose now an oriented tangle T that is bounded at both top and bottom by the same
collection of oriented points †. We define for its annular closure yT the quantum
annular gl2 complex as

KhAq .
yT / WD

M
�

qHH�.A
B;�; CA.T I�//

where B is a cup basis of webs bounded by † and CA.T I�/— the chain complex of
bimodules obtained by applying F�w to ŒŒT ��F. Corollary E together with [4, Theorem B]
imply the following:

Corollary F The quantum annular gl2 homology KhAq .L/ is a triply graded invariant
of annular links that is strictly functorial with respect to annular link cobordisms.
Moreover , it admits an action of Uq.gl2/ that commutes with the differential and the
maps induced by annular link cobordisms.

It follows now from Theorem D and the following discussion that KhAq .L/ is isomor-
phic with the quantized annular complex as constructed in [4].
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1.4 Further generalizations

The Khovanov homology has been extended by Asaeda, Przytycki, and Sikora to links in
thickened surfaces [1], but the functoriality has not been addressed until the recent paper
of Quefellec and Wedrich [31]. There they have defined gl2 foams in thickened oriented
surfaces, and the natural question is whether the results of this paper can be extended
to show equivalence of the two constructions. This is addressed in a follow-up paper,
where we also discuss foams in arbitrary 3–manifolds, including nonorientable ones.

Another natural question is about glN foams for N > 2; see Khovanov [20], Mackaay,
Stošić and Vaz [25], and Queffelec and Rose [30]. Again there are two (bi)categories
involved: of enhanced and not enhanced foams, the latter allowing only facets of
labels up to N � 1. We expect that a proper generalization of this paper would prove
equivalence of both (bi)categories, hence also of the associated link homologies. Notice
that functoriality of glN homology has been shown by Ehrig, Tubbenhauer and Wedrich
in [15] using enhanced foams.

1.5 Organization of the paper

Section 2 provides a brief exposition of webs and foams. All the results presented there
are well known, except perhaps the choice of defining relations. Section 3 discusses
shadings, their connection to webs and foams, and bicolored isotopies. It ends with a
construction of a basis of the space of foams bounded by a given web. The equivalence
of bicategories BN and Foam together with the local versions are constructed in
Section 4, in which we also compare the two versions of the Khovanov bracket. Finally,
Sections 5–7 provide detailed constructions of TQFT functors: a description of the
tautological functor on Foam.∅/ in terms of planar pictures, the constructions of the
Blanchet–Khovanov algebras, their subquotients, and the 2–functors Fıw and F�w .

1.6 Conventions and notation

Throughout the paper we fix a commutative unital ring k and linearity means k–
linearity. We denote by fdg the upward degree shift by d , ie M fdgi D Mi�d for
a graded module M . Hence, a homogeneous m 2M has degree deg.m/C d when
seen as an element of M fdg. We write Com=h.C/ for the homotopy category of a
linear category C, the objects of which are formal complexes in C and morphisms —
homotopy classes of chain maps.
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Manifolds are assumed to be smooth (or at least piecewise smooth when necessary)
and submanifolds are neat — that is N �M is transverse to @M and @N DN \ @M ,
see Hirsch [16]. Orientation of a surface S �R3 is often identified with the canonical
normal vector field �, defined by the property that for each p 2 S the triple .e1; e2; �p/,
where .e1; e2/ is an oriented basis of TpS , is an oriented basis of TpR3. Such a vector
field is unique up to an isotopy and can be found by the right-hand rule.
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2 Main players

This section provides basic definitions and facts about webs and foams. Most of the
material is well known [5; 8; 13; 23]; the exception is the choice of defining relations.
The main purpose of this part is to fix notation and introduce terms used throughout
the paper.

2.1 Webs

A web is an oriented trivalent graph with edges colored blue or red4 in such a way, that
at each vertex either two blue edges merge to a red one, or a red edge splits into two
blue edges:

(2-1)

In this paper webs will be always embedded in a disk D2 or a sphere S2 with a fixed
basepoint � that lies on @D2 in the case of a disk. Edges of a web in a disk can be
attached transversely to the boundary circle away from �; each boundary point inherits

4Red edges are drawn as double thick lines to make the difference visible when the paper is printed black
and white.
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then both the color and orientation from the attached edge: outwards (resp. inwards)
oriented edges terminate with positive (resp. negative) points. A web is closed if its
boundary is empty.

Remark 2.1 By moving the basepoint � to infinity, we can consider webs in D2 or
S2 as embedded in a half plane R� .�1; 0� or a full plane R2 respectively.

Definition 2.2 We write Web for the module generated by isotopy5 classes of webs in
a disk, modulo the local6 relations

D qC q�1 D 1(2-2)

D D(2-3)

where the webs above can carry any coherent orientation unless indicated. For each
collection of oriented red and blue points † � @D2 there is a submodule Web.†/
generated by webs bounded by † and Web is the direct sum of all of them.

Exercise 2.3 Show that webs satisfy the local relations

(2-4) D D .qC q�1/

Hint: Start with the left relation in (2-3).

Blue edges of a web ! form a crossingless tangle !b , which we call the underlying
tangle of !. In particular, it is a collection of disjoint circles when ! is closed. Write
`.!/ for the number of blue loops in !b . Let r.!/ be a web, the underlying tangle
of which is !b with closed loops removed. We call it a reduction of !. We construct
reductions later in Section 3.2 using the bicolored isotopy argument and show the
following fact, which implies in particular that r.!/ does not depend on the placement
of red edges.

Proposition 2.4 Webs with same boundary and isotopic underlying tangles coincide
in Web. In particular , ! D .qC q�1/`.!/r.!/ for any web !.

5Isotopies are assumed to fix points on the boundary circle.
6The word local means that two webs are identified if there is a disk outside of which the webs coincide
and inside they look like in the pictures.
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The second statement in Proposition 2.4 is equivalent to [31, Lemma 2.1]. Let �! be
the result of reversing orientation of all edges in a web !. This operation preserves the
relations (2-2) and (2-3), hence it induces an involution on Web. It does not preserve
the submodules Web.†/, but there is a pairing

(2-5) .!; !0/ WD .qC q�1/`.�![!
0/;

which can be visualized by placing �! and !0 on the lower and upper hemisphere of a
sphere and applying Proposition 2.4 to the resulting web (entirely red webs evaluate
to 1).

Lemma 2.5 The pairing (2-5) is nondegenerate.

Proof Choose a nonzero w 2Web.†/ and write it as a linear combination

c1!1C � � �C cr!r

of pairwise nonisotopic webs !1; : : : ; !r , the underlying tangles of which contain
no loops. We may further assume that the polynomial c1 contains a term qd with
the maximal value of jd j among all ci . Because `.�!1 [ !i / < `.�!1 [ !1/ for
any i ¤ 1, the term qd .!1; !1/ is not canceled in the expansion of .w; !1/. Hence,
.w; !1/¤ 0.

2.2 Foams

A foam is a collection of facets, oriented blue and red7 surfaces, embedded in a 3–ball
B3 with boundary components attached transversely to @B3 or glued together along
singular curves called bindings in a way, such that locally two blue facets merge into
a red one in an orientation-preserving way as shown in Figure 1. Furthermore, blue
facets may carry dots, but not the red ones, and bindings inherit orientation from blue
facets. We say that a foam is closed if its boundary is empty. Otherwise it is bounded
by a web in @B3. Notice that blue facets alone, forgetting orientation, form a surface
Sb with dots, the underlying surface of S . As in the case of webs, we fix a basepoint
� 2 @B3 away from @S . By moving it to infinity we can reinterpret foams as embedded
in a half 3–space R2 � .�1; 0�.

There is a canonical cyclic order of facets attached to a binding that follows the right-
hand rule: point the thumb of your right hand along the binding curve and slightly bend
the other fingers — they indicate the orientation of a small circle around the binding,
hence a cyclic order of facets. We call a blue facet positive or negative depending on

7As in the case of webs, red facets of a foam are doubled in pictures.
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C

�

Figure 1: The local model for a foam. The orientation of the binding is
coherent with the orientation of the blue facets, but opposite to the one
induced from the red facet. The cyclic order is counterclockwise, when seen
from above, so that the front blue facet is the negative one.

whether it succeeds or precedes the red facet respectively. For nonembedded foams this
cyclic order is usually provided explicitly by drawing small arrows around the binding;
see [5].

Definition 2.6 We write Foam for the module generated by isotopy classes of foams
in B3 with the following local relations imposed:

� sphere evaluations:

(2-6) D 0 D 1 D�1

� neck-cutting relations:

(2-7) D C � h D�

� dot-reduction and dot-moving relations:

(2-8)
D h C t

D h �

� red facet detachments:

D D�
(2-9)

D D�(2-10)
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Foams bounded by a web ! � S2 (with � … !) generate a submodule Foam.!/. As in
the case of webs, Foam is the direct sum of all these submodules.

Remark 2.7 The sign in (2-9) and (2-10) can be read easily from the direction of the
canonical normal vector at the critical point on the red surface: it is positive exactly
when the normal vector is directed towards the blue plane. For example, (2-9) can be
written as

D D�

Remark 2.8 Definition 2.6 does not follow [5], where foams were defined using
the universal construction, from which a sufficient set of relations has been derived.
Instead, it looks more like the one in [23]. However, our set of relations is smaller and
more natural from the topological point of view. The parameters h and t have already
appeared in [8; 13].

When k is graded with h and t homogeneous in degree 2 and 4 respectively, then Foam
is a graded module with a foam S being a homogeneous element in degree

(2-11) deg.S/ WD ��.Sb/C 2 dots.S/:

Here �.Sb/ stands for the Euler characteristic of the underlying surface and dots.S/
counts dots carried by the foam.

The dot-moving relation — the right one in (2-8) — takes a particularly simple form for
hD 0: it allows to move a dot on the underlying surface at a cost of a sign. To have a
similar interpretation in the general case, we introduce the dual dot as the difference:

(2-12) WD h �

The following exercise lists several relations satisfied by dual dots.

Exercise 2.9 Show the following equalities between foams:

D�1 D 0

D h C t D
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� D D �

The detaching relations (2-9) and (2-10) can take many other forms. For instance,
redrawing them to make red facets horizontal results in

D D�(2-13)

D D�(2-14)

Likewise, (2-9) together with (2-6) allow us to remove a red membrane attached to a
blue cup

(2-15) D D�

and other well-known relations arise by redrawing (2-10) and (2-15) in a way, such
that blue facets form a horizontal plane and the boundary of red facets is vertical:

D D�(2-16)

D D�(2-17)

Notice that in each case the sign can be read from the direction of the normal vector as
explained in Remark 2.7.

We interpret the above relations later as isotopies between two surfaces, a blue and a
red one. This will be a key ingredient in the proofs of the two facts listed below. In
what follows we write S :

D S 0 if foams S and S 0 differ only by a sign and dualizing
dots. For instance, S :

D S 0 when S 0 is the result of moving a dot on the underlying
surface of S .

Proposition 2.10 Let S and S 0 be foams with isotopic underlying surfaces and same
boundary. Then S :

D S 0 in Foam.
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We prove the above proposition at the end of Section 3.2. An important consequence
of it is the uniqueness (up to a sign) of a foam cup.!/, the underlying surface of which
is a collection of disjoint disks bounded by !b . We call it the cup foam associated to !.
Then for any family X of blue loops in !b we denote by cup.!;X/ the cup foam with
a dot placed on every blue disk that bounds a curve from X . These foams constitute a
linear basis of Foam.!/ as shown in Section 3.3.

Theorem 2.11 Choose a closed web !. The set fcup.!;X/ jX � BL.!/g is a linear
basis of Foam.!/. In particular , Foam.!/ is a free graded module of rank .qCq�1/`.!/.

2.3 Decategorification

Fix a collection of red and blue oriented points † � D2. A foam with corners in †
is a foam S in D2 � Œ0; 1� with S \ @D2 D†� Œ0; 1�. We gather them into a category
Foam.†/, in which

� objects are webs bounded by † with no relation imposed,

� morphisms from !0 to !1 are generated by foams with corners in †, with
!1 at the top and �!0 at the bottom disk of D2 � Œ0; 1�, modulo the relations
(2-6)–(2-10), and

� the composition is given by stacking foams, one on top of the other.

We further enhance it to a graded additive category by introducing formal direct sums
and formal degree shifts, so that objects are of the form !1fd1g˚ � � � ˚!rfdrg, and
redefining the degree of a foam S W !0fag ! !1fbg as

(2-18) deg.S/ WD .b� a/��.Sb/C 2dots.S/C 1
2

#†b;

where, as before, �.Sb/ is the Euler characteristic of the underlying surface of S and
dots.S/ counts dots on S , whereas #†b is the number of blue points in †. The reason
for the last term is to make the identity foam a morphism of degree zero; it also makes
the degree additive under the composition of foams. Furthermore, reinterpreting foams
with corners as foams in B3 leads to an isomorphism of graded k–modules

(2-19) HomFoam.†/.!; !
0/Š Foam.�! [!0/

˚
1
2

#†b
	

for any webs ! and !0 bounded by †.

The orientation-reversing diffeomorphism of the thickened disk .p; t/ 7! .p; 1� t /

induces a contravariant involutive functor

(2-20) HomFoam.†/.!; !
0/ 3 S 7! S Š 2 HomFoam.†/.!

0; !/
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that reflects a foam vertically and reverses orientation of its facets. We check directly
that all the defining relations (2-6)–(2-10) are preserved.

Foams with corners categorify webs. Indeed, web relations are lifted to isomorphisms

∅f�1g˚∅fC1g

26664
�h

37775
h i ∅

�

(2-21)

˙
�

(2-22)

where the sign in the bottom left corner depends on the orientation of the edges.
Therefore, there is a well-defined epimorphism 
 WWeb.†/!K0.Foam.†//˝ZŒq˙1�k

that takes a web ! to its class Œ!� in the Grothendieck group.

Theorem 2.12 The linear map 
 WWeb.†/!K0.Foam.†//˝ZŒq˙1� k is an isomor-
phism.

Proof We have to show that 
 is injective. Consider a bilinear form h�;�i on
K0.Foam.†// defined for webs ! and !0 as hŒ!�; Œ!0�i WD rkq HomFoam.†/.!; !

0/.
It is well defined, because the rank of the morphism space depends only on the
images of webs in the Grothendieck group. Theorem 2.11 and the isomorphism (2-19)
imply together that hŒ!�; Œ!0�i D .!; !0/, where the latter is the nondegenerate pairing
from (2-5). Hence, 
.w/D 0 forces .w;�/D 0, so w must be zero.

2.4 Higher structures

It is common to consider webs embedded in a horizontal stripe R� Œ0; 1� instead of
a disk. This is equivalent to picking two basepoints on @D2, � and �0, and placing
them at the left and right infinities respectively. Such webs are morphisms of a linear
category Web, the objects of which are finite collections of oriented red and blue points
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on a line, whereas the composition is defined by stacking stripes vertically:

C

� C

ı

C

�

� C

C

WD

C � C

C

Formally, HomWeb.†;†
0/DWeb.�†[†0/. This category is closely related to repre-

sentations of Uq.gl2/ [9]: there is a monoidal functor V WWeb! Rep.Uq.gl2// such
that

� a blue positive (resp. negative) point is assigned the fundamental representation
V (resp. its dual V �) and a red positive (resp. negative) point — the determinant
representation^2V (resp.^2V �/, whereas a sequence of such points is assigned
the tensor product of the corresponding representations,

� the merge and split webs (2-1) are assigned the canonical inclusion and quotient
maps between representations, and

� cups and caps represent coevaluation and evaluation maps.

The relations between webs make the above functor faithful.

Define the weight of a point from † according to:

point C � C �

weight C1 �1 C2 �2

The total weight w.†/ of † is the sum of weights of its points. A quick analysis of
the local model for webs (2-1) reveals that webs exist only between objects of the
same weight. Hence, the category of webs decomposes into weight blocks Webk , each
spanned by objects of weight k 2 Z. In particular, HomWeb.∅; †/ ¤ 0 only when
w.†/D 0; such collections are called balanced.

In a similar manner one collects the foam categories Foam.†/ into a bicategory Foam,
which also decomposes into blocks Foamk parametrized with k 2 Z. Theorem 2.12
can be then rephrased to say that Foamk categorifies Webk , ie the category of webs is
obtained by replacing morphism categories of Foam with their Grothendieck groups.
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2.5 Blanchet evaluation formula

We end this section recalling the evaluation formula for closed foams in a 3–ball B3

following [5]. It requires two 2–dimensional TQFTs, one for blue and one for red
facets. Each is uniquely determined by the (associative) commutative Frobenius algebra
assigned to a circle. We choose the algebras

Ab WD kŒX�=.X2� hX � t / and Ar WD k

for blue and red circles respectively, where h; t 2 k are fixed parameters (the standard
choice is hD t D 0). The comultiplications and counits are defined by the formulas

�b.1/D 1˝X CX ˝ 1� h1˝ 1; �b.X/DX ˝X C t1˝ 1; �r.1/D�1˝ 1;

�b.1/D 0; �b.X/D 1; �r.1/D�1:

A dot on a blue surface is interpreted as the multiplication with X . Notice that h�X ,
which represents a dual dot, satisfies the polynomial relation defining Ab , so that
X WD h �X extends to a conjugation compatible with multiplication. One checks
directly that �b.a/D��b. Na/ and �b. Na/D��b.a/ for any a 2 Ab .

When k is graded with h and t homogeneous in degree 2 and 4 respectively, then
we make Ab a graded algebra by setting deg.X/ D 2; comultiplication and counit
increase and decrease the degree by 2 respectively. Assigning now Abf�1g to a blue
circle produces a graded TQFT: deg.1/D�1 and deg.X/DC1, in which case both
multiplication and comultiplication are homogeneous in degree 1, matching the degree
of a saddle. Likewise for the unit and counit. The other TQFT is upgraded by inheriting
the grading on Ar from k.

Assume that a closed foam S is obtained from a blue surface Sb and a red one Sr by
identifying boundary circles CCi ; C

�
i � @Sb with C 0i � @Sr for 1� i �m, such that

CCi and C�i come from the positive and negative facet respectively. Let

Zb.Sb/ 2 .Ab˝Ab/
˝m and Zr.Sr/ 2 .Ar/

˝m

be the elements assigned by the two TQFTs to the blue and red surface, where the first
factor in Ab˝Ab corresponds to CCi and the second to C�i . The evaluation assigns to
S the value

(2-23) Z.S/D tr˝m
�
�˝m.Zb.Sb//˝ �

˝m.Zr.Sr//
�
2 k;

where � W Ab ˝ Ab ! Ab sends x ˝ y to x Ny and � W Ar ! Ab is the inclusion of
algebras; the trace map tr W Ab˝Ab! k is the composition of the multiplication with
the counit of Ab .
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Example 2.13 Let S be a blue sphere with a red disk inside and one dot, as shown
below. It decomposes into three cups, two blue and a red one, where one of the blue
cups carries a dot:

D [ [

The orientation of the binding determines that the dotted cup is attached to the negative
boundary. Hence,

Zb.Sb/D 1˝X; Zr.Sr/D 1;

resulting in Z.S/D tr.1˝X/D �b.h�X/D�1.

The relations (2-15) and (2-6) evaluate the foam S from the example above to �1 as
well. This is not a coincidence: the defining relations were looked up in the kernel
of Z. In fact, Proposition 2.10 implies a stronger statement. It was first proven in [5].

Theorem 2.14 (cf [5]) The evaluation (2-23) descends to an isomorphism

Z W Foam.∅/! k:

Proof We first check that Z is well defined, ie it preserves the relations (2-6)–(2-10).
Those involving facets of one color can be checked directly, whereas moving a dot
through an i th binding corresponds to taking it from a facet attached to CCi (multipli-
cation by X ) and placing it on the facet attached to C�i (multiplication by X D h�X ).
Hence, (2-8) is satisfied. We follow now Example 2.13 to compute

(2-24) Z

� �
D 0; Z

� �
D 1; Z

� �
D�1;

which immediately implies (2-9): using (2-7) cut both the red cylinder and the plane
around the binding to obtain a sum of three foams, each consisting of a red cup, a blue
plane, and a blue sphere with a red membrane inside. Two of these foams have an
additional dot, one on the plane and the other the sphere; only the latter term survives
and the sign comes from (2-24). We leave (2-10) as an exercise.

Assume now that Z.S/D 0. By Proposition 2.10, S coincides up to a sign with an
entirely blue foam S 0, which is the blue surface Sb , perhaps with some dots replaced
with dual dots. However, applying the blue neck-cutting relation (2-7) to any component
of positive genus reduces S 0 further to a sum of collections of dotted spheres. These in
turn can be completely evaluated with (2-8) and (2-6). Hence, S 0 DZ.S 0/D 0, which
shows that Z is invertible.
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3 Shadings and a basis of foams

This part is the backbone of the paper. We introduce here shadings of manifolds, use
them to construct webs and foams, and prove the bicolored isotopy lemma: isotopic
shadings encode equal webs and foams (the latter up to a sign and type of dots). Using
this language we introduce then a basis of foams that is especially easy to visualize.

3.1 Shadings and trivalent manifolds

A shading of a manifold M n consists of two codimension 1 submanifolds, an ori-
ented Ur and a nonoriented Ub , that are transverse to each other and to @M n, together
with a checkerboard coloring of M n: a choice of color, white or black, for each
connected component of the complement of Ur [Ub , such that any two components
with a common facet have different colors. We refer to Ur and Ub as red and blue
respectively. The components of the intersection Ur \Ub are called bindings; they
decompose both Ur and Ub into facets. Finally, we refer to the components of the
complement of Ur [Ub in M n as regions.

Lemma 3.1 Assume M n is simply connected and fix a point � 2M n. Then a pair of
codimension 1 submanifolds of M n, that are transverse to each other and away from �,
determines a unique shading of M n with the region containing � painted white.

Proof Given a pair of transverse codimension 1 submanifolds .Ur ; Ub/ we construct
a desired shading as follows. Given p 2 M n n .Ur [ Ub/ choose a path 
 from �
to p, transverse to both Ur and Ub , and let d.
/ WD #.
 \Ur/C #.
 \Ub/ count the
intersection points of 
 with both submanifolds. Color p white or black depending
on whether d.
/ is even or odd. Because M n is simply connected, the parity of d.
/
does not depend on the choice of 
 and the color of p is well defined.

Remark 3.2 It follows from Lemma 3.1 that every codimension 1 submanifold U of
a simply connected manifold M n admits a standard orientation: the one induced from
white regions, when U is considered as a shading with Ur D∅. In particular, every
codimension 1 submanifold ofM n is orientable. WhenM n is a line and U a collection
of blue points, then the standard orientation on U is the alternating one. Likewise for
the case M n D S1, assuming the cardinality of U is even (otherwise it does not extend
to a shading).

A trivalent manifold embedded in M n is a generalization of webs and foams. It is a
collection of facets, oriented codimension 1 submanifolds colored blue or red, with
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�

Figure 2: The construction of a web from a shading of a disk. The annihilated
red edges are drawn as dashed lines on the right diagram.

boundary components attached transversely to @M n or glued together along bindings in
such a way that locally two blue facets merge into a red one. In other words, each point
of a trivalent manifold has a neighborhood diffeomorphic to either Rn�1 or Y �Rn�2,
where Y is an oriented merge or a split from (2-1).

Given a shading .Ur ; Ub/ of M n we construct a trivalent manifold �.Ur ; Ub/ by
examining the orientation on facets induced from white regions:

� Blue facets inherit the orientation.

� Red facets are preserved (“amplified”) if the induced orientation agrees with the
given one or annihilated otherwise.

An example is presented in Figure 2. In particular, �.∅; Ub/ is Ub with its standard
orientation as defined in Remark 3.2. It appears that every trivalent manifold arises this
way, the proof of which is presented below and visualized in Figure 3. Hence, shadings
can be considered as completions of trivalent manifolds, because of which we shall
refer to shadings of D2 and B3 as completed webs and completed foams respectively.

b

w
b

w

b

w
b

w

orient
boundary

push

& shade

Figure 3: The construction of a shading from a planar web that extends a
given shading of its boundary. The boundary of the disk is oriented in the
middle picture, whereas the curves U 0i are identified and pushed inwards the
corresponding regions in the third picture.
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Lemma 3.3 Choose a trivalent manifold V � M n, such that @V D �. zUr ; zUb/ for
some shading . zUr ; zUb/ of @M n. Then there exists a shading .Ur ; Ub/ of M n that
restricts to . zUr ; zUb/ on @M n and satisfies �.Ur ; Ub/D V .

Proof Consider the orientation of @M n induced from M n and reverse it at all black
edges in the given shading. Then the boundary of any region R �M n is a union of
facets of V and regions in @M n, such that oppositely oriented components meet only
in two situations: when they are both contained in the boundary (so that they meet at a
facet of @V ) or both are blue facets of V adjacent to a red facet outside of R. Consider
the union of those components of @R, the orientation of which does not match the one
induced from R. They constitute certain oriented .n�1/–dimensional submanifolds
U1; : : : ; Uk . Taking a red colored copy U 0i of each Ui , push its interior inside R and
paint the newly created region black. Repeating this for each region produces the
desired shading.

A useful consequence of Lemma 3.3 is that tangles and surfaces can be extended to webs
and foams with given boundary. Recall that a collection †� @D2 of oriented red and
blue points is balanced if it bounds a web, which is equivalent to being of weight zero.

Proposition 3.4 (1) Let †� @D2 be a balanced collection of oriented red and blue
points and � a tangle bounded by †b . Then there exists a web ! bounded by †
with !b D � .

(2) Let ! � @B3 be a web and W a surface bounded by !b . Then there is a foam S

bounded by ! with Sb DW .

Proof Extend † to a shading z† D .†r [†
0
r ; †b/. Then z† has an even number

of points and the orientation of points from † matches the one induced from white
regions. Let b, r , and r 0 be the sums of orientations of blue points in †, red points
in †, and red points added to z† respectively. Then bC 2r D 0, because † is balanced,
and bC r C r 0 D 0, because the orientation of points in z† alternate. Subtracting the
two equalities reveals that r � r 0 D 0. It follows that there is an oriented collection of
disjoint intervals �r �D2 bounded by z†r , the orientation of which agree with the points
from †r and disagree with those from †0r . Hence, ! WD �.�r ; �/ is the desired web.

The second statement is even easier to show. Extend the web ! to a shading ˛. Then
˛r is a collection of disjoint loops and each such collection bounds a family Wr of
disjoint disks in B3. Therefore, S WD �.Wr ; W / is the desired foam.
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3.2 Bicolored isotopies

Choose an isotopy ˆ of M n and a subset A. The set

Trˆ.A/D f.ˆt .a/; t/ j a 2 A; t 2 Œ0; 1�g

is called the trace of A �M n under ˆ [16]. We say that a pair of isotopies .ˆ;‰/
of M n is an isotopy of a shading .Ur ; Ub/ if .Trˆ.Ur/;Trˆ.Ub// is a shading of
M n� Œ0; 1� that coincides with .Ur ; Ub/ at the level t D 0. When M n is a 2–disk, then
a generic pair of isotopies can be encoded by a sequence of bigon moves

(3-1) $

whereas in case of a 3–ball two moves are necessary:

(3-2) $ and $

In each move a shading of one side determines a shading of the other. Hence, we obtain
the following characterization of isotopies of shadings in these cases.8

Lemma 3.5 Shadings .Ur ; Ub/ and .U 0r ; U
0
b
/ of D2 or B3 are isotopic if and only if

Ur is isotopic to U 0r and Ub is isotopic to U 0
b
.

When a basepoint � 2M n is present, then one must be careful how it behaves under
the isotopy. There is no problem when ‰ and ˆ coincide at � (and in this paper we
always assume that both ‰ and ˆ fix �). Otherwise, the basepoint should stay at the
same region if possible. However, when the region disappears, then the basepoint has
to reappear in a white region. For instance, when � lies in the small bigon on the
left-hand side of (3-1), then it reappears between the two strands on the right-hand side.
Likewise, if � lies in the ball bounded in the left figure in (3-2), then in the right figure
it must reappear between the blue plane and the red cup.

Recall from Section 2.2 that we write S :
D S 0 for foams S and S 0 if they agree up to a

sign and replacing some dots with their duals.

Lemma 3.6 (bicolored isotopy) (1) �.˛r ; ˛b/D�.˛
0
r ; ˛
0
b
/ in Web if .˛r ; ˛b/ and

.˛0r ; ˛
0
b
/ are isotopic shadings of D2.

(2) �.Wr ; Wb/
:
D �.W 0r ; W

0
b
/ in Foam if .Wr ; Wb/ and .W 0r ; W

0
b
/ are isotopic shad-

ings of B3.

8This can be extended to all manifolds by a detailed analysis of singular levels of a pair of isotopies.
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Proof It is enough to consider the case of elementary isotopies. When applied to each
side of the bigon move (3-1), � removes red edges in both pictures from the same
side of the blue line. Hence, �.˛r ; ˛b/ and �.˛0r ; ˛

0
b
/ are related by the left relation in

either (2-3) or (2-4). Likewise, the moves (3-2) correspond to the detaching relations
(2-9) and (2-10).

The above result has far reaching consequences when paired with Lemma 3.3. The
statements about comparing webs and foams with isotopic blue pieces follows, which
in turn were used in the proof of Theorem 2.14 to show bijectivity of the Blanchet
evaluation map Z.

Proof of Proposition 2.4 Let ! and !0 have isotopic underlying tangles and take the
trace of !b under this isotopy as Sb; it is the underlying surface of a foam S W !! !0

due to Proposition 3.4. Extend the foam to a shading . zSr ; Sb/ of D2 � Œ0; 1�. When in
generic position, it can be represented by a finite sequence of level sets, such that in
between any two consecutive levels zSr has either no critical points (so that the level
sets are related by the bicolored isotopy lemma) or a unique Morse type critical point —
a cap, a cup, or a saddle — in which case the corresponding webs coincide (if the
affected red edges are erased) or are identified by the right relations in (2-2) and (2-3)
(if the red edges survive). Notice that Sb has no critical points.

For the second part, extend ! to a shading .z!r ; !b/ of D2 and isotope closed blue loops,
so that they do not intersect !r . Applying � results in a new web !0 that coincides
with ! as shown above. Removing blue circles from !0 results in r.!/ and the desired
equality follows from (2-2).

Proof of Proposition 2.10 Let foams S1 and S2 have isotopic blue parts. Extend them
to shadings W1 and W2 respectively and pick a ball O in the interior of B3, outside of
which the red facets of the shadings coincide. Using Lemma 3.6 isotope blue facets
away from O (this may dualize dots), reducing the problem to showing equality for
foams with only red facets. In such case, use the neck-cutting relation (2-7) to reduce
each red surface to a collection of disjoint disks and spheres (the existence of such a
system of cuts follows from the theory of incompressible surfaces). This may change
the sign of the foam. The thesis follows, because each red sphere evaluates to �1 and
the disks are uniquely determined up to an isotopy by the boundary circles.

It follows immediately from Proposition 2.10 that the foam used in the proof of
Proposition 2.4 is invertible. That would be enough to prove the latter if we knew that
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Foam categorifies Web. However, the proof of the categorification result is based on
Theorem 2.11, which is proven only in the next section.

3.3 Cup foams

We will now apply the above results to show that cup foams, as defined in Section 2.2,
constitute a free basis of spaces of foams. In particular, the category of foams is
nondegenerate.

Let ! be a closed web, so that !b is a collection of blue loops. Orient them in a standard
way (see Remark 3.2) and pick a foam I! 2 HomFoam.∅/.!b; !/ with !b � Œ0; 1� as
its underlying surface; the existence of such a foam follows from Proposition 3.4.
According to Proposition 2.10, there is a sign sgn.!/D˙1 satisfying

I Š!I! D sgn.!/.!b � Œ0; 1�/;

where I Š! 2 HomFoam.!; !b/ is the vertical flip of I! as defined in (2-20). The sign
can also be computed directly as sgn.!/D sgn.!/.C �!C!/DZ.C

�

!I
Š
!I!C!/; where

C!2HomFoam.∅;!b/ is a collection of disks bounded by!b andC �!2HomFoam.!b;∅/
is the same collection, except that each disk is decorated by a dot. Hence, sgn.!/ is a
well-defined integer, which we call the sign of the web !.

Lemma 3.7 The sign sgn.!/ does not depend on the choice of I! .

Proof Let S 2HomFoam.!b; !/ be another foam with SbD!b�Œ0; 1�. Then SD˙I!
by Proposition 2.10 and S Š S D I Š!I! , because the same sign relates S Š with I Š! .

Let BL.!/ be the collection of blue loops in !. For each subset X � BL.!/ we
construct the cup foam cup.!;X/ by attaching blue disks to the input of I! and placing
a dot on each disk bounded by a loop from X . Notice that red facets of cup.!;X/
are above all dots and minima of blue facets. Therefore, we say that cup.!;X/
is a red-over-blue cup foam decorated by X . We construct likewise a cap foam
cap.!;X/ 2 HomFoam.∅/.!;∅/ by reflecting cup.!;X/ vertically and replacing each
dot with the dual one scaled by �1. For instance, we have the following correspondence
between cup and cap foams bounded by two blue loops:

$ $ �

$ $ �
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Let us now represent a foam S 2 HomFoam.∅/.!; !
0/ by a vertical cylinder labeled S ,

with ! and !0 at the bottom and top disk respectively. When no label is present, it is
understood that ! D !0 and the cylinder represents the identity foam ! � Œ0; 1�. We
emphasize the cases ! D ∅ and !0 D ∅ by drawing a cup or a cap instead and, to
simplify notation, we decorate it directly with X � BL.!/ when S is a cup or a cap
foam:

cup.!;X/D X

!

and cap.!;X/D
X

!

Moreover, Xc WD BL.!/ nX stands for the complement of a subset X � BL.!/.

Lemma 3.8 Foams satisfy the relations

!

X

Y

D

�
sgn.!/ if Y DXc ;
0 otherwise;

(3-3)

!

!

D sgn.!/
X

X�BL.!/

!

Xc

!

X

(3-4)

Proof From the construction of cup and cap foams,

!

X

Y

D

!b

!

!b

X

Y

I!

I Š!

D sgn.!/ !b

X

Y

and the right-hand side is a collection of spheres, each carrying at most one regular and
one dual dot, scaled by .�1/jY j. Such a sphere evaluates to 1 or �1 when it carries
either one regular or one dual dot respectively and vanishes otherwise (see Exercise 2.9).
Hence, (3-3) follows.

The second relation follows from the equality ! � Œ0; 1�D sgn.!/I!I Š! and the neck-
cutting relation from Exercise 2.9.
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We are ready to prove that cup foams form a linear basis of foams.

Proof of Theorem 2.11 The first relation of Lemma 3.8 implies that cup foams are
linearly independent. To show that they generate Foam.!/Š HomFoam.∅/.∅; !/, use
the second relation to write a foam S bounded by ! as a sum

!

S D sgn.!/
X

X�BL.!/
!

S

Xc

!

X

which is a linear combination of cup foams, because closed foams evaluate to scalars.
Finally,

deg.cup.!;X//D 2jX j � `;

as the underlying surface of the cup foam consists of ` disks decorated by jX j dots, so
that

rkq Foam.!/D
X
X

q2jX j�` D
X̀
sD0

�`
s

�
q2s�` D .qC q�1/`

as desired.

4 Equivalences of foam and cobordism categories

In this section we prove Theorems A and B, which state that foams and Bar-Natan
cobordisms constitute equivalent (bi)categories. Then we relate the complexes ŒŒT ��
and ŒŒT ��F associated with a tangle T .

4.1 Embedding cobordisms into foams

Fix a balanced collection†�@D2 away from a fixed basepoint �2@D2 and write†b for
the subset consisting of all blue points from†. Consider first the case when†D†b and
the points are oriented in a standard way as explained in Remark 3.2. This means that,
when following the orientation of the boundary circle, the first point after the basepoint
is negative and then the orientation alternates. Theorem B is in this case a direct
consequence of Proposition 2.4 and Theorem 2.11: each web is isomorphic to an entirely
blue one (and each such web is a flat tangle equipped with the standard orientation) and
for such webs ! and !0 the cup basis of HomFoam.†/.!; !

0/ consists of foams with no

Algebraic & Geometric Topology, Volume 23 (2023)



1332 Anna Beliakova, Matthew Hogancamp, Krzysztof K Putyra and Stephan M Wehrli

�

C

C

C

C C

�

�

�

C

�

�

�

�

C

� �
C
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�
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�

C

C

C

�

�

Figure 4: A collection of points † with four red and six blue points and an
annular web E† as in Remark 4.2. Dashed red lines are not part of the web,
but they represent the additional red edges in the associated shading.

red facets. Hence, the naive map HomBN.†/.!; !
0/!HomFoam.†/.!; !

0/ that orients
a cobordism in a standard way does the job. A little more work has to be done to cover
the general case.

Lemma 4.1 There is a web E† � S1� Œ0; 1� bounded by† at S1�f1g and standardly
oriented †b at S1 � f0g, which is disjoint from f�g� Œ0; 1� and with †b � Œ0; 1� as the
underlying tangle.

Proof Let � be a collection of radial blue intervals connecting blue points at S1 � f0g

with those at S1 � f1g. Cut the annulus to a disk along f�g � Œ0; 1� and apply
Proposition 3.4 to get a desired web.

Remark 4.2 The extension of a tangle to a web is constructed in Lemma 3.3 from
a shading of the disk, which is by no means unique. In case of an annulus, however,
the situation is different: there is a unique up to an isotopy family of counterclockwise
oriented arcs that bounds a given collection of oriented points at the outer boundary
circle. Some of the arc may intersect the interval f�g� Œ0; 1�; moving them through the
hole results in a preferred shading and a preferred web E†.

Inserting a tangle inside the web E† and a surface inside the foam E† � Œ0; 1� results
in a functor E† W BN.†b/! Foam.†/, as it preserves units and composition.

Theorem B The functor E† W BN.†b/! Foam.†/ is an equivalence of categories.

Proof It follows from Propositions 2.4 and 2.10 that E† is essentially surjective
and full. Faithfulness follows from Theorem 2.11: both HomBN.†b/.!b; !

0
b
/ and
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HomFoam.†/.!; !
0/ are free graded modules of graded rank .q C q�1/`, where `

counts blue loops in �! [!0.

4.2 A coherent way to forget red facets

The inverse functor to E† forgets red facets of a foam, but it may also change its
sign and dualize some dots. To construct the functor explicitly, fix for each web !
an invertible foam I! 2 HomFoam.†/.E†.!b/; !/. According to Proposition 2.10, for
every foam S W !! !0 there is a sign sgn.S/D˙1 and a cobordism Scob W !b! !0

b
,

which agrees with Sb up to dualizing some dots, that fit into a commuting square

(4-1)

! !0

E†.!b/ E†.!0b/

S

sgn.S/E†.Scob/

I! I!0

Let us explain how both sgn.S/ and S 0
b

can be obtained from the given data.

To construct Scob take Sb and dualize all dots that are carried by blue facets with
orientation opposite to the standard orientation on Sb . Indeed, the isotopy used in the
proof of Proposition 2.10 to take red facets of I�1!0 SI! away from Sb involves an odd
number of the dot migration moves (the right relation in (2-8), see also Exercise 2.9) for
such dots, because this is the only move that reverses the local orientation around a dot.

The sign sgn.S/ is uniquely defined by (4-1) in case S does not vanish and it can be
computed then from the formula

sgn.S/D
Z.C [S I!/

Z.C [ I!0E†.Scob//
;

where Z is the Blanchet evaluation map from Section 2.5 and C is a cup foam bounded
by the web �E†.!b/[!0, for which the two quantities being divided do not vanish.9

Proposition 4.3 The assignment

! 7! !b; S 7! sgn.S/Scob

defines a functor E_† W Foam.†/! BN.†b/ inverse to E†.

Proof Clearly, .S 00S 0/cobDS
00
cobS

0
cob for composable foams S 0 W!!!0 and S 00 W!0!

!00. Furthermore, the equality

S 00S 0I! D sgn.S 00/ sgn.S 0/.I!00E†.S 00b /E†.S
0
b//D sgn.S 00/ sgn.S 0/.I!00E†.S 00bS

0
b//

9Explicitly, C D cup.�E†.!b/[!0; X/ where X contains exactly one boundary circle of each genus 0
component of Sb that does not carry a dot.
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forces sgn.S 00S 0/D sgn.S 00/ sgn.S 0/ if the composition S 00S 0 does not vanish. Hence,
E_† is a functor. To end the proof, we check directly that E_† ı E† is the identity functor
on BN.†b/, whereas the collection of the invertible foams I! constitute a natural
isomorphism between E† ı E_† and the identity functor on Foam.†/.

Example 4.4 Let ! be a blue circle oriented clockwise. This is the orientation induced
from the unbounded region, hence standard, so that ! D !b and E_∅ simply forgets
orientation:

E_∅
� �

D and E_∅
� �

D

However, when ! is oriented counterclockwise, then the invertible foam I! is a cylinder
with a red membrane, the canonical normal vector of which is oriented upwards. The
membrane can be removed with (2-15) and (2-8). This gives no difference for the cup
with no dot

E_∅
� �

D E_∅

� �
D E_∅

� �
D

but in the presence of the dot, the dot is replaced by its dual:

E_∅
� �

D E_∅

� �
D E_∅

�
� C h

�
D

Recall that if hD 0, the dual dot equals minus the normal dot.

Remark 4.5 Although the construction of E_† depends on the choice of foams I! , the
functor is unique up to a unique natural isomorphism. To see this directly, suppose
that zE_† is constructed using a different family of foams QI! . Then QI! D s.!/I! for a
well-defined sign s.!/D˙1 and it follows from a direct computation that the collection
of morphisms �! WD s.!/ �!b � Œ0; 1� is a natural isomorphism from E_† to zE_†.

4.3 An equivalence of bicategories

Recall that a 1–morphism f W x ! y in a bicategory C is an equivalence if there
exists g W y! x such that the compositions f ıg and g ı f are isomorphic to identity
1–morphisms. A 2–functor F W C! D is an equivalence of bicategories when it is

� a local equivalence, that is, the functor Fx;y W C.x; y/! D.F.x/;F.y// is an
equivalence of categories for all objects x; y of C, and

� essentially surjective: each object of D is equivalent to an object of the form F.x/.

Indeed, the above conditions imply the existence of an inverse of F [24].
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There is a 2–functor

(4-2) E0 W BN! Foam

that equips points, tangles, and cobordisms with the standard orientation.10 It is a local
equivalence due to Theorem B, but not essentially surjective: objects from the image
of E0 have weight 0 or 1, so that the whole image is contained in Foam0

t Foam1.
We fix this by enlarging the source bicategory to wBN WD BN�Z, the product of BN
with Z seen as a discrete bicategory. In other words, objects of wBN are pairs .†; k/
consisting of an object † from BN and a number k 2Z, whereas morphism categories
are zero or copied from BN,

(4-3) wBN..†; k/; .†0; k0// WD
�

BN.†;†0/ if k D k0;
0 otherwise:

We then extend (4-2) to a 2–functor

(4-4) E W wBN! Foam

in such a way that .†; k/ is taken to the collection E0.†/ with jkj red points added
to the right, all positive when k > 0 and negative otherwise. Likewise for 1– and 2–
morphisms: E takes a tangle � (resp. a cobordism W ), orients it in a standard way, and
adds to the right jkj vertical red lines (resp. vertical red squares) with the appropriate
orientation.

Theorem A The 2–functor E W wBN! Foam is an equivalence of bicategories.

Proof By Theorem B, E is a local equivalence. Hence, it is enough to show that it is
essentially surjective. For that choose an object † from Foam and let k D bw.†/=2c,
wherew.†/ is the weight of†. Then†0 WDE.†b; k/ has the same weight. Considering
R� Œ0; 1� as a disk with two boundary points removed, we can apply Lemma 3.3 to the
collection of points �†0[† to obtain a web E† W†0!† with vertical lines as the
underlying tangle. Another application of Lemma 3.3 combined with Proposition 2.10
shows that it is an equivalence, with its mirror image the inverse 1–morphism.

We write E_ for the 2–functor inverse to E . It can be constructed explicitly like
the functors E_†, except that the computation of signs requires not only a choice of

10Recall the convention that the basepoint � is placed at the left infinity, so that the left unbounded region
is painted white. This implies in particular that the left most point of an object of BN receives the positive
orientation and the left most vertical strand of a 1–morphism is oriented upwards.
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0 1 0 1

Figure 5: Web resolutions of a positive (to the left) and negative (to the right)
crossing, together with the minimal foams between them.

isomorphisms between webs, but also a choice of equivalences between collections of
points. For the latter one can use the webs

which are equivalences by Proposition 2.10. They can be used to construct an explicit
equivalence from a collection † to †0 D E.†b; bw.†/=2c/ by examining the points
of † from left to right. The details are left to the reader.

4.4 Comparison of Khovanov brackets

We finish this section by comparing two invariant complexes for a tangle T : the
Khovanov bracket ŒŒT �� from [2], which is a formal complex of objects from BN.@T /,
and the Blanchet–Khovanov bracket ŒŒT ��F constructed using webs and foams instead.
In what follows we recall the construction of the latter — forgetting red edges in webs
and red facets in foams recovers the former.

Let c be the number of crossings in T , out of which cC are positive and c� are negative.
The first step to construct ŒŒT ��F is to compute the cube of resolutions of IF.T /: a
commutative diagram with resolutions of T at vertices of the c–dimensional cube
Œ0; 1�c . Namely, a vertex � D .�1; : : : ; �c/ 2 f0; 1g

c is decorated with the web T�
obtained from T by replacing each i th crossing of the tangle with its resolution of
type �i , as shown in Figure 5. Let � 0 be another vertex, obtained from � by changing
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one coordinate from 0 to 1. The directed edge � W �! � 0 is decorated with the minimal
foam T� W T�! T�0 , which is a collection of vertical facets except over the region where
the two resolutions do not match; here T� is a zip or an unzip as shown in Figure 5. It is
evident that IF.T / commutes: directed paths between same vertices represent isotopic
foams.

Pick a sign assignment �, that is a collection of signs �.�/D˙1, one sign per edge
in the cube, such that the product of signs around any square in the cube is equal
to �1. The standard choice is �.�/ D .�1/s.�;�

0/, where s.�; � 0/ counts 1’s left to
the place at which � and � 0 disagree. Scaling each edge � by �.�/ makes the cube
anticommute and it can be shown that the isomorphism type of the cube is independent
of the sign assignment — compare with [26, Lemma 2.2] or [27, Lemma 5.7]. The
formal complex ŒŒT ��F is obtained by flattening the cube along diagonals and shifting
degrees accordingly. Explicitly,

ŒŒT ��iF WD
M

j�jDiCc�

T�fc�� cC� ig

where j�j WD �1C � � �C �c , with the differential

d jT� D
X

� W �!�0

�.�/T� :

The Khovanov bracket ŒŒT �� is constructed following the same steps, except that webs
and foams are replaced with flat tangles and cobordisms. In particular, one has to erase
in Figure 5 the red edges in resolutions and red facets in foams.

Theorem 4.6 The homotopy type of ŒŒT ��F is an invariant of the tangle T , strictly
functorial with respect to tangle cobordism. Its image under E_

@T
is isomorphic to ŒŒT ��.

Proof Following [2] one can show that ŒŒT �� is functorial up to a sign and strict
functoriality is shown in [5] in the case of links, ie when T has no endpoints. From
these two facts strict functoriality follows, because every tangle can be closed to a link.

To compare ŒŒT ��F with ŒŒT �� consider the cube of resolutions IF.T / constructed in
Foam.@T / and let I.T /0 be its image in BN.@T / under the equivalence of cate-
gories E_

@T
. It differs from I.T /, the cube of resolutions in BN.@T / that computes ŒŒT ��,

only in signs at edges. Hence, the two cubes are isomorphic and the thesis follows.

Remark 4.7 The construction of ŒŒT ��F can be easily extended to an invariant of knotted
webs [29] and it is conjectured to be strictly functorial with respect to foams embedded
in a four-dimensional space.
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5 A diagrammatic TQFT on Foam.¿/

The assignment of the module Foam.!/ to a closed web ! extends to a functor

HomFoam.∅/.∅;�/ W Foam.∅/! k�Mod:

In what follows we provide a diagrammatic description of this functor by representing
red-over-blue cup foams from Foam.!/ using certain planar diagrams and examine
how the diagrams change under the action of the linear maps associated with foams. In
this section we assume that webs and foams are embedded in the plane R2 � f0g and
the half-space R2 � .�1; 0� respectively.

5.1 A planar representation of cup foams

Let ! be a bounded planar web and !C its completion, which is a shading .!Cr ; !
C

b
/

satisfying �.!Cr ; !
C

b
/D !. It is assumed that the basepoint � marks the unbounded

region, so that the region is painted white. To simplify the picture and make the web
! better visible, we do not color regions and we draw red edges as double or dashed
lines depending on whether they survive or disappear after � is applied; see Figure 6.
Furthermore, we allow to mark blue loops of !C with (any number of) dots. We
assign to such a planar diagram a completed foam cup.!C/D cupr.!

C/[ cupb.!
C/

bounded by !C that satisfies the following conditions:

(CF1) cupr.!
C/ � R2 � Œ�1; 0� and consists of disks that project injectively onto

R2 � f0g.

(CF2) cupb.!
C/ is a collection of disks such that

cupb.!
C/\ .R2 � Œ�1; 0�/D !C

b
� Œ�1; 0�:

(CF3) Each blue disk is decorated with as many dots as its boundary loop in !C, all
placed at heights smaller than �1 (hence, below all red facets).

Figure 6: Two completions of the same web. The surrounding dashed circle
in the right picture is required by the condition that the unbounded region is
painted white.
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The intersection of red and blue disks in cup.!C/ consists of intervals only; hence it
is minimal among all completed cup foams bounded by !C. Painting the unbounded
region white extends to a unique shading supported by cup.!C/. The resulting foam
�.cup.!C// 2 Foam.!/ is a red-over-blue cup foam, ie its red facets are above all dots
and minima of blue discs. We call it the cup foam associated to !C. The following
observation is an immediate consequence of Theorem 2.11.

Lemma 5.1 Choose a completion !C of ! and consider the family of all dotted
completed webs obtained from !C by placing at most one dot on each blue loop. Then
the corresponding cup foams form a linear basis of Foam.!/.

Notice that dots in these pictures only mark loops. In particular, moving a dot along
a loop — even passing through a crossing with a red strand — does not affect the cup
foam represented by the diagram.

Example 5.2 Let ! be a blue circle. Then Foam.!/ is generated by two blue cups:
one with and the other without a dot. These are the cup foams associated to !C when
! is oriented clockwise, because this orientation is oriented from the unbounded region,
hence !C D !. Otherwise, !C is ! surrounded by a dashed red circle, which results
in the change of the sign of the cup with a dot; see Table 1. This is consistent with the
computation from Example 4.4.

5.2 Action of foams

We now provide a description of the linear maps associated to foams in terms of the
dotted completed webs. In fact, it is enough to analyze the elementary completed foams

a pocket a blue cup a blue cap a blue saddle a dot

a reversed pocket a red cup a red cap a red saddle

because every foam can be decomposed into these.

Pockets and bicolored isotopies A bicolored isotopy is a sequence of several bigon
moves (3-1), which are realized by the pocket foams. When applied to a (completed) cup
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web completion basis

$

$

$ D

$ D�

Table 1: A basis for foams bounded by a circle, represented as planar dia-
grams and as foams.

foam, it results in a collection of disks that may or may not satisfy (CF1); see Figure 7.
In order to describe the map by local pictures, we shade the projection of the disk
bounded by the red loop involved in the bigon move, ie the region bounded by the loop.

If the projection of the red disk is pushed through a blue arc, then the resulting cup
foam is minimal — no double points in the projection are created. Hence, the associated
map takes a dotted web to the result of applying the bigon move:

7! 7!(5-1)

7! 7!(5-2)

However, pulling the projection of a red disk off a blue arc creates double points, like
in the right column of Figure 7. Indeed, the new red disk intersects the blue surface in
a circle, so that either of (3-2) has to be applied. This may cost a sign, depending on
the orientation of the edges:

7! 7!(5-3)
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push

leftwards

pull

rightwards

Figure 7: A cup foam with its projection on the horizontal plane (the left
column) and the results of applying the bigon move twice (the middle and
right columns). The middle foam is again a cup foam, but not the right one:
the projection has double points — the shaded region outside of the cup —
coming from the disk to the side of the vertical plane.

7! � 7! �(5-4)

7! 7!(5-5)

7! � 7! �(5-6)

Indeed, the left moves in (5-3) and (5-4) are realized by detaching red cylinders with
(2-9), whereas the right ones are by eliminating red caps with (2-16). Likewise, the
relations (2-17) and (2-10) give the signs for the left and right sides respectively of
both (5-5) and (5-5).

Placing a dot Placing a dot on cup.!C/ near the boundary violates (CF3). To obtain
a minimal cup foam, the dot has to be moved down.

Let p be the projection of the dot onto the horizontal plane and assume that it does not
lie on a red loop. We define the nestedness n.p/ as the number of red loops encircling p.
It counts red facets below p in the cup foam, hence, the number of times the dot-moving
relation (2-8) has to be applied to move the dot from top to the bottom of a blue disk.
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Therefore, placing a dot on a blue loop results in the map

(5-7) 7!

8̂̂<̂
:̂

if n.p/ is even;

h � if n.p/ is odd:

Blue cups, caps, and saddles Suppose now that W is a completed foam with !C

at its bottom and a unique critical point that lies on the blue surface. In this case
W [ cup.!C/ is no longer a cup foam associated with the output of W : to have one,
the critical point of W has to be slid downwards, below all red facets, and this may
cost a sign. Moreover, a cap creates a sphere that has to be evaluated, whereas a saddle
splitting one loop into two11 creates a neck that has to be cut.

Let p be the projection of the critical point onto the horizontal plane and assume that
p … !C. We say that a red loop 
 encircling p is evenly distanced if any generic
path connecting p to a point q from a solid (resp. dashed) red arc of 
 intersects blue
circles in an even (resp. odd) number of points. Otherwise, 
 is oddly distanced. Let
s.p/ count oddly distanced counterclockwise and evenly distanced clockwise red loops
surrounding p. This corresponds to two types of red facets below p:

(1) the facets that survive in the cup foam �.!C/ and with the canonical normal
vector (see Remark 2.7) oriented downwards, and

(2) those removed from �.!C/ and with the canonical normal vector oriented
upwards.

These are exactly the situations, in which there is a sign in the relations (2-9) and
(2-10). Hence s.p/ determines the result of isotoping the blue critical point below all
red facets. Therefore, the maps induced by critical blue points are the usual ones scaled
by .�1/s.p/:

� a cup:

(5-8) ∅ 7! .�1/s.p/

� a cap:

(5-9) 7! .�1/s.p/

11Such a saddle is called a split. The other one, which joins two loops into one, is called a merge.

Algebraic & Geometric Topology, Volume 23 (2023)



On the functoriality of sl2 tangle homology 1343

� a merge:

(5-10) 7! .�1/s.p/

� a split:

(5-11) 7! .�1/s.p/
�

C

�
Red cups, caps, and saddles Placing a red cup at the top of cup.!C/ results in a cup
foam. Hence, no sign appears. Conversely, capping off an isolated red circle creates
a red sphere, which can be removed by (2-6) at a cost of sign. Hence, we obtain the
maps:

� a cup:

(5-12) ∅ 7! ∅ 7!

� a cap:

(5-13) 7! �1 7! 1

The behavior of merging and splitting saddles depends on whether the two red circles
(those being merged or the result of a split) are nested or not. In the latter case, merging
two loops takes a minimal cup foam to a minimal cup foam, whereas splitting a red
circle creates a neck that has to be cut with (2-7) if it survives in the foam. Therefore,
the corresponding maps satisfy the rules:

� a merge:

(5-14) 7! 7!

� a split:

(5-15) 7! � 7!

Merging nested red loops of a cup foam

7!
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results in a red disk, which does not project injectively onto the horizontal plane, but
which can be isotoped to a croissant:

This isotopy can be described as a finger move: place your finger vertically near the
saddle and move it inwards, pushing the red disk. The disk is then isotoped through
every blue facet attached to a blue arc that cuts the inner red circle and through every
cylinder attached to a blue circle surrounded by the inner red circle:

�! �!

Depending on which red facets survive, each move represents two relations between
foams. We leave it to the reader to check that the foams involved in the right move are
always equal, whereas the left move costs a sign only in the two configurations

where the position of a saddle is marked with a cross. Let c be the number of such
configurations. Then we end up with the following formula for merging nested red loops:

(5-16) 7! .�1/c 7! .�1/c

Dually, splitting a red loop into two nested loops is realized by the inverse of the
finger move followed by stacking a red saddle over the little saddle connecting the two
boundary loops. This creates a neck that has to be cut if it survives in the cup foam,
so that in this case the sign is opposite to the one of the nested merge:

(5-17) 7! �.�1/c 7! .�1/c
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Other common foams There are other moves of interest, such as blue saddles with
vertical red facets (in particular, zips and unzips) or red cups and caps that intersect
vertical blue facets. All can be represented as compositions of those described above.
For instance, a zip is isotopic to a pocket move followed by a saddle:

�! �!

As before, the shaded regions represent a projection of a red disk, and it is clear that
the first move takes a basic cup foam to a basic cup foam, so that signs are governed
by the second move. Therefore, the map induced by a zip is one of

� a merging zip:

(5-18) 7! .�1/s
C.p/

� a splitting zip:

(5-19) 7! .�1/s
C.p/

�
C

�
where sC.p/ is computed like s.p/, except that we take into account the loop passing
through the created red edge if it is oriented counterclockwise.

In the unzip the saddle precedes the pocket and to ensure that the latter does not affect
the sign, we perform the saddle to the side of the red disk attached to the red edge:

�! �!

Therefore, the induced map is one of

� a merging unzip:

(5-20) 7! .�1/s
�.p/

� a splitting unzip:

(5-21) 7! .�1/s
�.p/

�
C

�
where again s�.p/ is computed like s.p/ without counting the loop passing through
the removed red edge.

Algebraic & Geometric Topology, Volume 23 (2023)



1346 Anna Beliakova, Matthew Hogancamp, Krzysztof K Putyra and Stephan M Wehrli

6 The Blanchet–Khovanov invariant of tangles with balanced
boundaries

Let Foamı be the subbicategory of Foam generated by balanced sequences. In what
follows we construct a TQFT functor Fıw W Foamı! Bimod. If T is an oriented tangle
with balanced input and output collections of points, then its resolutions are in Foamı,
so that applying Fıw to ŒŒT ��F results in a chain complex of bimodules. We then show
that this chain complex is isomorphic to the Khovanov’s tangle invariant [19], but it
admits a strictly functorial action of tangle cobordisms.

6.1 A linear basis of webs

A web ! �R� .�1; 0� is called a cup web if its underlying tangle is a cup diagram,
ie a collection of disjoint arcs. All cup webs with the same boundary and extending
the same cup diagram coincide in Web due to Proposition 2.4 (and are isomorphic as
objects of Foam). Moreover, choosing a cup web for each cup diagram results in a
basis of the space of webs with given boundary, which we call a cup basis.

� C C � C �

Step 0: the initial collection of points.

� � C C C � C �

Step 1: additional red points inserted.

� � C C C � C �

Step 2: a bicolored cut with a shading.

� C C � C �

Step 3: applying � produces the web E†.

� C C � C � � C C � C �

Step 4: connect bottom endpoints in all possible ways to obtain a web basis.

Figure 8: The construction of a cup basis for †D
� C C � C �

, together
with completions of the cup webs (the edges erased in the third step are drawn
as dashed arcs). The first three steps follow the proof of Proposition 3.4.
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We describe now a particular nice cup basis of webs bounded by a balanced † (see also
Figure 8). Let n be half of the number of blue points in † (being balanced, † has an
even number of blue points). Proposition 3.4 provides an invertible web E† W†b!†

with 2n vertical lines as blue edges. To obtain a cup basis, attach cup diagrams to
the bottom of E†. In other words, the basis is the image of cup diagrams under the
equivalence E† from Section 4. We call it the red-over-blue basis of type E†, because
all red edges in the webs appear above minima of blue cups.

6.2 Blanchet–Khovanov algebras

Fix a balanced collection of points † and let B be a cup basis of Web.†/.

Definition 6.1 The Blanchet–Khovanov algebra WB associated with B is the direct
sum of spaces of foams with corners

(6-1) WB
WD

M
a;b2B

HomFoam.†/.a; b/

with multiplication given by the composition (and zero if foams cannot be composed).

Remark 6.2 The above algebra appeared first in [14] for † a collection of positively
oriented blue points followed by negatively oriented red points, the latter drawn in [14]
at the bottom.

Choose a completion aC for any cup web a and write aŠ (resp. .aC/Š) for the result
of reflecting a (resp. aC) along the horizontal line and reversing orientation of edges.
Using the natural isomorphisms HomFoam.†/.a; b/Š Foam.bŠa/fng we can represent
elements of the algebra by dotted completed webs, in which case the multiplication is
induced from the family of generalized saddles

(6-2) .cC/ŠbC t .bC/ŠaC
Sc;b;a
���! .cC/ŠaC

each consisting of the identity foams .cC/Š � Œ0; 1� and aC � Œ0; 1� glued to the half-
rotation of bC around the boundary line. These foams take a particularly nice form
when B is a red-over-blue basis, as they involve then only three types of moves:

� merging (5-10) and splitting (5-11) blue loops at points outside of all red circles,

� merging unnested red loops (5-14), and

� removing bigons external to the projection of red disks (5-1).

Hence, the product of two dotted diagrams is a positive linear combination of other
diagrams.
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Corollary 6.3 The algebra WB admits a positive basis.

When † is a collection of blue points oriented in the alternating way and B consists
of oriented cup diagrams (ie webs with no red edges), then WB coincides with the
arc algebra Hn from [19]. Indeed, WB is the image of Hn under the embedding of
bicategories E W BN! Foam. However, when B is not a red-over-blue basis, then
the generalized saddles (6-2) may involve moves on red arcs that cost a sign, such as
splits (5-15) or nested saddles (5-16) and (5-17). Hence, cup foams do not constitute a
positive basis of the algebra in such case. Yet, it is still isomorphic to the arc algebra.

Theorem 6.4 Let † be a balanced collection of points with 2n blue points. Then
there is an algebra isomorphism WB ŠHn for any cup basis B of webs bounded by †.
When B is a red-over-blue basis , then the isomorphism simply forgets red facets of
basic cup foams.

Proof Assume first that B is a red-over-blue basis of type E†. Then WB is the image
of Hn under the equivalence of categories E†, which equips a collection of dotted cups
with its standard orientation. The inverse of E† simply forgets red edges in webs and
red facets in foams. Hence, the thesis follows.

Let now B0 be any cup basis and pick for each cup web a0 2 B0 the isomorphic
cup web a 2 B, an invertible foam Ia 2 Foam.a; a0/, and s.a/ D ˙1 such that
I ŠaIa D s.a/ !a � Œ0; 1�. Then the collection of linear isomorphisms

'ba W Foam.a0; b0/ Š�! Foam.a; b/; S 7! s.b/I ŠbSIa;

constitutes an isomorphism of algebras WB0 ŠWB, where the latter is isomorphic
to Hn.

Example 6.5 Let †D
C C � C �

. Then the cup basis B consists of two elements

C C � C �

and
C C � C �

that form four pairs: two of them have two blue loops and each of the other two has
one blue loop. Hence, dimWB D 12. The multiplication of any two diagrams involves
only merges and splits of blue loops (5-10)–(5-11) with s.p/D 0, an unnested merge
of red loops (5-14) and bigon moves (5-1). None of them introduces signs, so that the
product is always a positive sum of diagrams, like in H 2. For instance:
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� D C

� D

Erasing red edges recovers the usual diagrammatic calculus of H 2.

Example 6.6 Recall the Blanchet–Khovanov algebra from [14]: it is defined using
webs that have only vertical red edges, 2n positive blue endpoints at the top and positive
n red endpoints at the bottom. We call them here EST webs. To fit this construction into
our framework, we move the bottom endpoints rightwards and to the top by appending
a collection of nested red cups; see Figure 9. Contrary to the case of red-over-blue
bases, minima of red cups in EST webs appear below blue cups. This is the reason
why the minus sign appears in the formula for multiplication quite often, already in
the case of four points. Yet Theorem 6.4 provides a direct isomorphism between this
algebra and Khovanov’s arc algebra. Such an isomorphism was explicitly constructed
in [13] by providing a sign for each generator, then checking directly that these signs
result in a homomorphism of algebras.

6.3 Blanchet–Khovanov bimodules

Pick now two balanced collections † and †0 with cup bases B and B0 respectively.
We assign to a web ! W†!†0 its Blanchet–Khovanov bimodule Fıw .!/, which is the

Figure 9: Turning red edges rightwards and to the top produces a cup web
from an EST web. There is a natural completion, visualized by dashed arcs,
with minima of red cups below all blue ones.
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Figure 10: An element of Foam.a; !; b/ is a foam in a cube, bounded by the
webs !, a, and b at the top and opposite vertical facets of the cube respectively.

.WB;WB0/–bimodule

(6-3) Fıw .!/ WD
M

a2B;b2B0
Foam.a; !; b/;

where Foam.a; !; b/ is the space of foams bounded by bŠ[![a and seen as foams in a
cube with! at the top facet, whereas a and b lie on opposite vertical facets; see Figure 10.
The algebras WB and WB0 act on the left and on the right respectively, and there is a
diagrammatic presentation of this bimodule as explained in Section 5. Moreover, placing
a foam S 2 Foam.!; !0/ on top results in a bimodule map Fıw .S/ W Fıw .!/! Fıw .!0/.
The assignment S 7! Fıw is clearly functorial in S and it preserves the foam relations
(2-6)–(2-10). In particular, Fıw .!/ Š Fıw .!0/ if S is invertible. Finally, horizontal
composition of foams induces a canonical homomorphism of graded bimodules

(6-4) Fıw .!
0/˝W†0 Fıw .!/! Fıw .!

0!/

for any pair of composable webs ! W †! †0 and !0 W †0 ! †00. The proof of [19,
Theorem 1] can be adapted to our framework to show that (6-4) is an isomorphism.

Remark 6.7 Contrary to the case of Blanchet–Khovanov algebras, the isomorphism
(6-4) may not take a pair of cup foams into a positive combination of cup foams.
When using the diagrammatics of completed webs, (6-4) is induced by a collection
of generalized saddles, the description of which — contrary to the case of algebras —
may involve moves on red loops that cost a sign, such as (5-15)–(5-17). However, this
is not the case when both webs have only blue endpoints, oriented in an alternating
way — in this case all red loops lie inside the webs and are not affected when webs are
composed.

As in the case of algebras, Fıw .!/ coincides with the arc bimodule FıKh.!/ defined
in [19] when ! is a standardly oriented flat tangle and both B and B0 are collections of
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cup diagrams. Although in general Fıw .!/ is not a priori a bimodule over arc algebras,
it can be made such through the algebra isomorphisms Hn ŠWB and Hn0 ŠWB0

provided by Theorem 6.4. Hence, it makes sense to compare Fıw .!/ with FıKh.!b/.

Theorem 6.8 Let ! W†!†0 be a web between balanced collections of points with
2n and 2n0 blue points respectively. Then there is an isomorphism of .Hn;Hn0/–
bimodules Fıw .!/Š FıKh.!b/. The isomorphism simply forgets red facets of basic cup
foams when B and B0 are red-over-blue web bases.

Proof Assume first that B and B0 are red-over-blue cup bases of types E† and E†0
respectively. Fix a foam I! in a cube with vertical rectangles as blue facets, bounded
by !b and ! at the bottom and top facets, and with E† and E†0 at appropriate vertical
facets. Placing it on top of an element from Foam.a; !b; b/ results in a k–linear
isomorphism Foam.a; !b; b/Š Foam.E† [ a; !;E†0 [ b/. It is straightforward to
check that these isomorphisms are compatible with the action of the arc algebras, so that
they constitute an isomorphism of bimodules FıKh.!b/Š Fıw .!/; it takes a collection
of dotted cups to a basic cup foam. Forgetting red facets is the inverse map.

The general case is reduced to the above as in the proof of Theorem 6.4: choose a
collection of invertible foams, one per a 2 B and one per b 2 B0, and glue them to the
sides of foams generating FıKh.!/.

Remark 6.9 When B is a red-over-blue basis of type E†, then the action of Hn can
be understood pictorially as follows: a dotted surface S 2Hn is standardly oriented
and combined with E† � Œ0; 1� before acting on FıKh.!/. The same applies to Hn0 if
B0 is a red-over-blue basis.

We say that a linear basis fx1; : : : ; xd g of an .A;B/–bimodule is positive with respect
to bases faig of A and fbj g of B , when each aixk and xkbj has positive coefficients in
this basis. Because dotted cups constitute a positive basis of arc bimodules, Theorem 6.8
implies the existence of a positive basis for Blanchet–Khovanov bimodules.

Corollary 6.10 Suppose that both B and B0 are red-over-blue cup bases of webs. Then
basic cup foams constitute a positive basis for Fıw .!/.

Although the formulas for the actions of the algebras on a Blanchet–Khovanov bimodule
involve no signs when red-over-blue bases as used, this is not the case for action of
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foams: the square

(6-5)

Fıw .!/ Fıw .!0/

FıKh.!b/ FıKh.!
0
b
/

Fıw .S/

FıKh.Sb/

I! Š I!0 Š

commutes only up to a sign, where we abuse the notation and denote the isomorphism
from the proof of Theorem 6.8 by the same symbol I! as the foam used to construct
it. However, the sign does not depend on the direct summand of the bimodule: it is
determined by the configuration of red loops (see Section 5) and the configuration is
the same for all closures bŠ!a.

6.4 A functorial homology for tangles with balanced boundaries

The previous sections describe a morphism of bicategories Fıw W Foamı ! Bimod,
which we extend naturally to Com=h.Foamı/. As mentioned in the introduction, we
can apply it to the formal bracket ŒŒT ��F of a tangle T with balanced input and output,
producing a chain complex CW.T /. Invariance and functoriality of the bracket implies
that the homotopy type of CW.T / is an invariant of the tangle T that is functorial with
respect to tangle cobordisms.

Theorem C The 2–functor Fıw is equivalent to FıKh ı E
_. In particular , the complexes

CW.T / and CKh.T / are isomorphic for any tangle T with balanced input and output.

Proof The two functors coincide on objects by Theorem 6.4 and on 1–morphisms by
Theorem 6.8. Furthermore, the collection of isomorphisms I! is natural in !, because
the square (6-5) commutes when Sb is replaced with E_.S/. Indeed, the sign relating
Fıw .S/ ı I! with I!0 ıFıKh.Sb/ is exactly the one provided by E_. The last statement
is a direct consequence of Theorem 4.6.

7 Subquotient algebras and an invariant for all tangles

Inspired by [10] we use the TQFT from the previous section to define a family of
2–functors F�w WFoam!Bimod parametrized by �2Z, which are defined on the whole
bicategory of foams. As before, these 2–functors lead to invariant chain complexes for
tangles that are strictly functorial versions of the Chen–Khovanov tangle invariants.
Contrary to the previous sections, we assume here that hD t D 0. In particular, a foam
vanishes when it has a blue facet with two dots.
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C � C C� C � � � �„ ƒ‚ …
†

†
k;n�k
mir W

C � C CC � � � � �„ ƒ‚ …
†

†
k;n�k
can W

Figure 11: A visualization of two ways to balance a sequence for k D 2. For
the mirror balancing (above) replace each red point with two blue points first,
then reflect the left kCmD 4 points to the left and the remaining ones to the
right platform, changing their orientations. In the canonical balancing (below)
the points on each platform are ordered with respect to their orientation.

7.1 Balancing

Suppose that † has m red and n blue points and choose 0 6 k 6 n. We say that
a sequence †ı on a line with platforms is a balancing of † of type n � 2k if it is
balanced and obtained from † by placing ` and r blue points to the left and right of †
respectively, where r�`D n�2k. We say that the extra points lie on platforms, which
are drawn as dashed lines. In what follows we describe two methods to balance a given
sequence; see Figure 11.

The mirror balancing †k;n�kmir of † of type �D n� 2k is constructed as follows. First,
replace each red point by two blue points oriented the same way and call the new
sequence †0. Then †k;n�kmir is obtained from † by reflecting the first k Cm points
of †0 on the left and the remaining ones on the right platform, so that both sequences
appear on the platforms in a reversed order; we also change the orientation of these
points (compare with Figure 11). It is a balanced sequence, which is an alternating
sequence of blue points if † is. However, it depends heavily on the orientations of
points of †. The next construction does not share this drawback.

The canonical balancing †k;n�kcan of type �D n� 2k is constructed again by placing
kCm points on the left and n� kCm points on the right platform, except that now
we order the points in such a way that, when read from left to right, positive points
on each platform appear first. Moreover, we want the minimal number of negative
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(resp. positive) points on the left (resp. right) platform. This leads to one of the following
distributions, depending on the total weight w D w.†/ of the sequence †.

If jwj � j�j:

Left platform: place 1
2
.jwj ��/ points of type � sgn.w/, then fill with C’s.

Right platform: place 1
2
.jwjC�/ points of type � sgn.w/, then fill with �’s.

If jwj< �:

Left platform: fill with C’s.

Right platform: place 1
2
.��w/ points of type C, then fill with �’s.

If jwj< ��:

Left platform: place 1
2
.w��/ points of type �, then fill with C’s.

Right platform: fill with �’s.

We check directly that in each case we obtain a balanced sequence with at most kCm
negative and at most n�kCm positive points on the left and right platform respectively.

Remark 7.1 The distribution of points on platforms in †k;n�kcan depends only on the
total weight w of the sequence and the type � of the balancing, but not directly on the
number of points nor their orientation. This is why we call it canonical.

7.2 Webs and foams with platforms

We now allow foams to meet the side vertical facets of the ambient cube in collections
of horizontal blue lines. More precisely, fix a web ! W†0!†1 together with balanced
collections†ı0 and†ı1, such that the first ` and last r points of both†ı1 and†ı1 are blue,
oriented the same way, and removing them recovers †1 and †2 respectively. Given
cup webs a and b bounded by †ı0 and †ı1 respectively, we write fFoam.`;r/.a; !; b/

for the space of foams embedded in a cube with the following boundary:

� the web ! at the top facet of the cube,
� ` and r horizontal blue lines at the vertical facets to the left and to the right of !

respectively, and
� the cup webs a and b at the vertical facets attached to the input and output of !.

Figure 12 provides examples of such foams. We say that such a foam is violating if it
has a connected component that either

� meets a platform in more than one line, or
� intersects a platform and carries a dot.
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left platform

b

a

right platform

left platform

b

a

right platform

Figure 12: Examples of foams with platforms. The right foam is violating,
because it is connected and intersects the right platform (the front facet in the
picture) in two lines. The left foam is not violating unless it carries a dot.

It is straightforward to check that the property of being a violating foam is preserved by
foam relations. Hence, violating foams generate a linear subspace offFoam.`;r/.a; !; b/.
We write Foam.`;r/.a; !; b/ for the quotient space, or simply Foam.`;r/.a; b/ when
! is the identity web.

Gluing foams horizontally results in a linear mapfFoam.`;r/.a; !0; b/˝fFoam.`;r/.b; !1; c/!fFoam.`;r/.a; !0!1; c/

and it is straightforward to notice that a foam S 0S is violating when either S or S 0 is a
violating foam. Hence, there is an induced linear map

Foam.`;r/.a; !0; b/˝Foam.`;r/.b; !1; c/! Foam.`;r/.a; !0!1; c/:

Consider now webs with platforms as discussed in Section 7.1. Their blue arcs fall into
three families visualized in Figure 13:

� inner arcs, with at least one endpoint not on a platform,

� outer arcs, with each endpoint on a different platform, and

� violating arcs, with both endpoints on the same platform.

Webs with no violating arcs and no red endpoints on platforms are admissible. Outer
arcs of an admissible web are nested one in another and the most nested one of them

inner arcs an outer arc a violating arc

Figure 13: Three types of blue arcs in a cup diagram with platforms.
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D C

stabilized violatingthe lowest boundary
component of the foam

Figure 14: A way to destabilize a foam bounded by stabilized webs.

encloses all inner arcs. Notice that Foam.`;r/.a; !; b/D 0 when either a or b has a
violating arc.

Lemma 7.2 Let †ı be a balancing of † with ` and r points on the left and on the right
platform , and let n count the blue points of †. Then an admissible cup web bounded
by †ı has at least .`C r �n/=2 outer arcs.

Proof An admissible web bounded by †ı has at most n inner arcs, so that at least
.`C r/�n points from the platforms must be connected by outer arcs.

Given a cup basis B of webs bounded by †ı, we shall write B`;r for the subset of
admissible webs with ` and r points on the left and right platform respectively.

7.3 Stabilization

We say that a foam yS is a stabilization of a foam S , when it is obtained by placing
a blue horizontal rectangle below S . Likewise, stabilizing a web means adding an
additional outer arc. It follows that yS is a violating foam if and only if the foam S is
violating. Hence, there is a well-defined injection

(7-1) Foam.`;r/.a; !; b/
c.�/
��! Foam.`C1;rC1/. Oa; !; Ob/

where Oa and Ob are appropriate stabilizations of the webs. It is also surjective: by applying
the neck-cutting relation (2-7) we can write every foam S 2 Foam.`;r/. Oa; !; Ob/ as a
sum S0CS1, such that the lowest blue boundary curve bounds a blue disk in each Si ,
see Figure 14. Furthermore, stabilization is natural with respect to placing foams on
top as well as to the horizontal composition of foams, ie

W [! yS D3W [! S and yS 0 yS DbS 0S
for any S 2 Foam.`;r/.a; !; b/, S 0 2 Foam.`;r/.b; !0; c/ and W W !! !00.

Let B be a cup basis of webs bounded by †ı and B`;r the subset of admissible webs.
We write yB`;r for the set of stabilized basic webs; they are bounded by a bigger
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collection c†ı. It is in general only a subset of a basis of admissible webs bounded
by c†ı. However, it is a basis when platforms carry sufficiently many points.

Lemma 7.3 Let ` and r count points of †ı on the left and on the right platform ,
whereas n is the number of the remaining blue points. Then yB`;r is a cup basis if
`C r > n.

Proof The collection c†ı has `C1 points on the left and rC1 points on the right plat-
form. Hence, by Lemma 7.2, every admissible web bounded by c†ı has an outer arc.

7.4 Subquotient algebras and bimodules

We are now ready to construct a foam version of the subquotient algebras and bimodules
from [10]. Let † be a sequence of n blue and m red points, and pick �D n� 2k with
0 6 k 6 n. Choose a balancing †ı with kCm and n� kCm points on the left and
right platform respectively and a cup basis B for webs bounded by it; the admissible
webs form a subset BkCm;n�kCm.

Definition 7.4 The extended Blanchet–Khovanov algebra AB;� is the direct sum of
spaces of foams with platforms

(7-2) AB;�
WD

M
a;b2BkCm;n�kCm

Foam.kCm;n�kCm/.a; b/

with multiplication given by the composition (and zero if foams cannot be composed).

It follows from the definition that AB;� is a quotient of a subalgebra of WB. In
particular, it inherits the description in terms of dotted completed webs with the
following modifications:

� the horizontal line, along which cup webs are glued, has platform sections on its
sides;

� we allow only completions of admissible cup foams; and

� such a diagram vanishes when it contains a blue loop intersecting a platform at
least twice or a blue loop intersecting a platform and carrying a dot at the same
time.

In particular, AB;� is isomorphic to the Chen–Khovanov algebra Ak;n�k when †
consists of n blue points that are oriented in an alternating way and †ı is the mirror
balancing. With the help of the stabilization map (7-1) we can find such isomorphisms
for all extended Blanchet–Khovanov algebras.
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Theorem 7.5 Let † be a collection of m red and n blue points with a balancing
†ı of type � D n � 2k, where 0 6 k 6 n. Then there is an algebra isomorphism
AB;�ŠAk;n�k for any cup basis B of webs bounded by†ı. When B is a red-over-blue
basis , the isomorphism simply forgets red facets of basic cup foams and dropsm lowest
blue rectangles.

Proof We assume that B is a red-over-blue basis — the general case is proven the
same way as in Theorem 6.4. Let B0 be the collection of admissible cup diagrams with
2n blue endpoints, k of which are on the left and n�k on the right platform. It follows
from Lemma 7.2 that each cup web from B has m outer arcs, so that it is constructed
by placing an invertible web E on top of cup diagrams from B0 stabilized m times.
Hence, as a k–module, AB;� is isomorphic to stab.m/.Ak;n�k/, the algebra Ak;n�k

stabilized m times. Because stabilization is compatible with horizontal composition of
foams, we obtain an algebra isomorphism

Ak;n�k
c.�/.m/
���! stab.m/.Ak;n�k/ .E�Œ0;1�/[.�/

���������! AB;�

which takes a dotted surface with platforms, adds m extra horizontal rectangles below,
and then glues E � Œ0; 1� to it along the top and platforms. The inverse of this map
simply forgets red facets and drops the extra m blue rectangles as desired.

We follow the same ideas to construct a collection of bimodules for a web ! W†0!†1.
Let ni be the number of blue points in †i . Choose 06 ki 6 ni for i D 0; 1 such that
n0� 2k0 D n1� 2k1 DW �, and let †ı0 and †ı1 be the canonical balancings of type �,
except that we stabilize one of them, so that both sequences have the same numbers of
points on platforms: ` on the left and r on the right one. Notice that †0 and †1 have
the same weight, so that their balancings agree on platforms. Choose cup bases B0 and
B1 for †ı0 and †ı1 respectively. We assign to the web ! the .AB0;�;AB1;�/–bimodule

F�w .!/ WD
M

a2B`;r0 ;b2B`;r1

Foam.`;r/.a; !; b/;

which we call the extended Blanchet–Khovanov bimodule of weight �. The algebras
AB0;� and AB1;� act on the left and right by composing foams horizontally, stabilized
sufficiently many times when necessary. It should be also clear that placing a foam
W W!!!0 on top induces a bimodule map F�w .W / WF�w .!/!F�w .!0/, and that taking
tensor products over the algebras corresponds to composing webs

F�w .!/˝AB;� F�w .!
0/ Š�! F�w .!

0!/:
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As before, Theorem 7.5 allows us to think of F�w .!/ as a bimodule over the algebras
Aki ;ni�ki , so that we can compare it with the bimodule CCK.!bI�/ assigned to the
flat tangle !b in [10]. We leave the following as an easy exercise:

Theorem 7.6 Let ! W†!†0 be a web between collections of points with n and n0

blue points , respectively, and choose 06 k 6 n and 06 k0 6 n0, such that

n� 2k D n0� 2k0 D �:

Then there is an isomorphism of .Ak;n�k; Ak
0;n0�k0/–bimodules F�w .!/ŠCCK.!b; �/,

which — up to stabilization — forgets red facets of cup foams when F�w .!/ is con-
structed using red-over-blue web bases.

7.5 A functorial homology for all tangles

The above sections describe a family of 2–functors F�w W Foam! Bimod parametrized
with � 2 Z, which — as before — we extend to the bicategory of formal complexes
Com=h.Foam/. Applying F�w to the bracket ŒŒT ��F of a tangle T results in a chain
complexes of bimodules, the homotopy type of which is an invariant of T and which is
functorial with respect to tangle cobordisms.

Theorem D The 2–functor F�w is equivalent to F�Kh ı E
_. In particular , the complexes

CW.T I�/ and CKh.T I�/ are isomorphic for any tangle T .

Proof The equivalence of F�w and F�Kh ı E
_ follows from Theorems 7.5 and 7.6

along the same lines as in the proof of Theorem C. The second statement is a direct
consequence of Theorem 4.6.
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Asymptotic translation lengths and normal generation for
pseudo-Anosov monodromies of fibered 3–manifolds

HYUNGRYUL BAIK

EIKO KIN

HYUNSHIK SHIN

CHENXI WU

Let M be a hyperbolic fibered 3–manifold. We study properties of sequences
.S˛n ;  ˛n/ of fibers and monodromies for primitive integral classes in the fibered
cone of M . The main object is the asymptotic translation length `C. ˛n/ of the
pseudo-Anosov monodromy  ˛n on the curve complex. We first show that there
exists a constant C > 0 depending only on the fibered cone such that for any primitive
integral class .S;  / in the fibered cone, `C. / is bounded from above by C=j�.S/j.
We also obtain a moral connection between `C. / and the normal generating property
of  in the mapping class group on S . We show that for all but finitely many primitive
integral classes .S;  / in an arbitrary 2–dimensional slice of the fibered cone,  
normally generates the mapping class group on S . In the second half of the paper,
we study if it is possible to obtain a continuous extension of normalized asymptotic
translation lengths on the curve complex as a function on the fibered face. An
analogous question for normalized entropy has been answered affirmatively by Fried
and the question for normalized asymptotic translation length on the arc complex in
the fully punctured case has been answered negatively by Strenner. We show that such
an extension in the case of the curve complex does not exist in general by explicit
computation for sequences in the fibered cone of the magic manifold.

30F60, 37E30; 32G15, 37B40

1 Introduction

Let M be a hyperbolic fibered 3–manifold. Thurston introduced the so-called Thurston
norm on the first cohomology group ofM , and showed that the unit norm ball is a finite
sided polyhedron. Let F be a top-dimensional face of this polyhedron and consider a
primitive integral class contained in the open cone CD CF over F . Thurston showed
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that if this cohomology class corresponds to a fibration of M over the circle S1, then
all primitive integral classes in C correspond to fibrations of M over S1. In such a
case, we call F a fibered face and the open cone C a fibered cone.

For each primitive integral class ˛ 2 C, let (S˛;  ˛/ be the pair of corresponding
fiber and its monodromy. Since M is hyperbolic, the monodromy  ˛ is pseudo-
Anosov by Thurston’s hyperbolization theorem; see, for example Farb and Margalit [8,
Theorem 13.4]. We will study the asymptotic translation length of  ˛ on the curve
complex of the surface S˛ and the normal generators of mapping class groups Mod.S˛/.

Let G be a group acting isometrically on a metric space .X; dX /. For h 2 G, the
asymptotic translation length (or stable length) of h is defined by

`X .h/D lim inf
n!1

dX .x; h
nx/

n
;

where x is a point in X . It is not hard to see that `X .h/ is independent of the choice
of x.

For a surface S , let T .S/ be the Teichmüller space of S and let C.S/ be the curve
complex of S . Since  ˛ acts by an isometry on both T .S˛/ and C.S˛/, one can
consider the asymptotic translation lengths of  ˛ on T .S˛/ and on C.S˛/, denoted by
`T . ˛/ and `C. ˛/ respectively.

There has been a lot of work on `T . ˛/ for primitive integral classes ˛ in the fibered
cone; see Fathi, Laudenbach and Poénaru [9], Fried [10; 11], Long and Oertel [22],
Matsumoto [26], and McMullen [27]. In the case of `C. ˛/, there has also been some
progress in the literature; see Aougab and Taylor [1], Bowditch [5], Farb, Leininger and
Margalit [7], Gadre, Hironaka, Kent and Leininger [12], Gadre and Tsai [13], Masur
and Minsky [24], Valdivia [34; 35], and the authors [2; 3; 16].

The following is a general upper bound of `C. ˛/ in the fibered cone in terms of the
Euler characteristic �.S˛/ of S˛.

Theorem 1.1 [3] LetF be a fibered face of a closed hyperbolic fibered 3–manifoldM
and K be a compact subset of int.F /, the interior of F . Then there exists a con-
stant C depending on K such that for any sequence .S˛n

;  ˛n
/ of primitive integral

classes which is contained in the intersection between the cone over K and a .dC1/–
dimensional rational subspace of H 1.M/,

`C. ˛n
/�

C

j�.S˛n
/j1C1=d

:
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Here a .dC1/–dimensional rational subspace of H 1.M/ means a subspace of H 1.M/

which admits a basis v1; : : : ; vdC1 2H 1.M IQ/. We note that in [3] the above theorem
was stated in the case of closed hyperbolic fibered 3–manifolds, but almost the same
proof can be adapted to the case of compact hyperbolic fibered 3–manifolds possibly
with boundary; see Remark 2.5.

Two additional questions naturally arise from Theorem 1.1. First, what can we say if
the sequence is not contained in the cone over any compact subset of the fibered face F ?
For instance, given a sequence that has a subsequence converging projectively to the
boundary @F , can we determine the upper bound of the asymptotic translation length
of the pseudo-Anosov monodromies? We answer the first question in the following
theorem.

Theorem 3.1 Let F be a fibered face of a compact hyperbolic fibered 3–manifold ,
possibly with boundary. Then there exists a constant C depending on F such that for
any primitive integral class .S;  / 2 CF ,

`C. /�
C

j�.S/j
:

We make a couple of remarks regarding Theorem 3.1. We first note that a version
of Theorem 3.1 was obtained by Schleimer in [30]. Even though he used different
language, [30, Theorem 4.4] can be reinterpreted to give a statement of the form of
Theorem 3.1 when the manifold is closed. We give an alternative argument which
works for the nonclosed case as well.

Secondly we remark that the upper bound in Theorem 3.1 is optimal. In Lemma 4.12,
we give an explicit sequence .S˛n

;  ˛n
/ converging projectively to a point in @F such

that the asymptotic translation length of the corresponding pseudo-Anosov monodromy
is comparable to 1=j�.S˛n

/j. That is, there exists a constant C such that

1

C

1

j�.S˛n
/j
� `C. ˛n

/�
C

j�.S˛n
/j
:

In general, for real-valued functions A.x/ and B.x/, we say that A.x/ is comparable to
B.x/ if there exists a constant C independent of x such that 1=C � A.x/=B.x/� C ,
and we denote it by A.x/� B.x/.

The second question is whether the upper bound in Theorem 1.1 is sharp. It is noted
in [3] that the bound is optimal for d D 1. We show that it is also optimal when d D 2
by constructing an example coming from the magic manifold N , which is the exterior
of some 3–component link in the 3–sphere S3.

Algebraic & Geometric Topology, Volume 23 (2023)
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Theorem 4.13 Let F be a fibered face of the magic manifold. Then there exist two
points , b0 2 @F and c0 2 int.F /, which satisfy the following:

(1) For any r 2Q\ Œ1; 2/, there exists a sequence .S˛n
;  ˛n

/ of primitive integral
classes in CF converging projectively to b0 as n!1 such that

`C. ˛n
/�

1

j�.S˛n
/jr
:

(2) For any r 2Q\
�
3
2
; 2
�
, there exists a sequence .S˛n

;  ˛n
/ of primitive integral

classes in CF converging projectively to c0 as n!1 such that

`C. ˛n
/�

1

j�.S˛n
/jr
:

In particular , the upper bound in Theorem 1.1 is optimal when d D 2.

As an immediate corollary of Theorem 4.13, we conclude that there is no normalization
of the asymptotic translation length function defined on the rational classes of the
fibered face, which continuously extends to the whole fibered face. More precisely, we
have the following.

Corollary 4.15 LetF be a fibered face of the magic manifoldN. For ˛2F\H 1.N IQ/,
let .Sz̨;  z̨/ be the fiber and pseudo-Anosov monodromy corresponding to the primitive
integral class z̨ lying on the ray of ˛ passing through the origin. Then there is no
normalization of the asymptotic translation length function

F \H 1.N IQ/!R�0; ˛ 7! `C. z̨/;

in terms of the Euler characteristic �.Sz̨/ which admits a continuous extension on F .

For the arc complex, Strenner defined in [31] the normalized asymptotic translation
length function �d for each integer d � 1 on the rational classes of a fibered face with
the fully punctured condition. Strenner proved in the same paper that the functions
�d for d � 2 are typically nowhere continuous. His result and Corollary 4.15 stand
in contrast to Fried’s result [10]. See also Matsumoto [26] and McMullen [27]. They
proved that the normalized entropy function of pseudo-Anosov monodromies has a
continuous extension on the fibered face, which is strictly convex.

Now we turn our attention to normal generation of mapping class groups. Let S D Sg;n
be an orientable surface of genus g with n punctures, possibly nD 0. We denote Sg;0
by Sg . We say that an element h of a group G normally generates G if the normal

Algebraic & Geometric Topology, Volume 23 (2023)
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closure of h is equal to G. For a given primitive class .S˛;  ˛/ in the fibered cone C,
when does  ˛ normally generate Mod.S˛/? Normal generation in the mapping class
group has been studied by many authors. For instance, D Long [21] asked if there
exist pseudo-Anosov normal generators. Later Ivanov asked in [14] what properties are
satisfied by the pseudo-Anosov normal generators. A work of Lanier and Margalit [20]
(partially) answered the questions of Long and Ivanov. In particular, they showed
that for a pseudo-Anosov element f 2Mod.Sg/, if the stretch factor �.f / is smaller
than
p
2, then f normally generates Mod.Sg/. The normal closure of random elements

was studied as well, for instance by Maher and Tiozzo [23]. They showed that with
asymptotic probability 1, the normal closure of a random element is free. This in
particular implies that random elements are not normal generators.

This connects to our brief discussion of asymptotic translation length, since the log-
arithm of the stretch factor, log�.f /, is equal to `T .f /. In other words, if a pseudo-
Anosov element of Mod.S/ is contained in some proper normal subgroup, then its
asymptotic translation length on the Teichmüller space cannot be too small. It is natural
to ask an analogous statement for the curve complexes, ie if a pseudo-Anosov element
of Mod.S/ is contained in some proper normal subgroup, then its asymptotic translation
length on the curve complex cannot be too small in some sense. The following question
was raised by Dan Margalit (via personal communication).

Question 1.2 For a subgroup H of Mod.Sg/, set

LC.H/Dminf`C.f / j f is pseudo-Anosov and f 2H g:

Is there a constant C > 0 such that

LC.H/�
C

g

for any g � 2 and for any proper normal subgroup H of Mod.Sg/?

As a partial evidence toward this question, it is shown by Baik and Shin [2] that

LC.Ig/�
1

g
;

where Ig is the Torelli group, ie the proper normal subgroup of Mod.Sg/ whose action
on the first homology is trivial. In fact, by [2, Theorem 3.2],

LC.Ig/�
1

96.g� 1/
for all g � 2.

Algebraic & Geometric Topology, Volume 23 (2023)
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Combining with Theorem 3.1, we propose the following conjecture regarding the
normal generators of mapping class groups contained in the fibered cone which was
originally asked as a question by Dan Margalit (via personal communication).

Conjecture 1.3 Let F be a fibered face of a closed hyperbolic fibered 3–manifold M .
Then for all but finitely many primitive classes .S˛;  ˛/ 2 CF ,  ˛ normally generates
Mod.S˛/.

We give a partial answer when primitive integral classes are contained in a 2–dimensional
rational subspace of H 1.M/. See also Remark 3.7.

Theorem 3.4 Let F be a fibered face of a closed hyperbolic fibered 3–manifold M ,
and let L be a 2–dimensional rational subspace of H 1.M/. Then for all but finitely
many primitive integral classes .S;  / in CF \L,  normally generates Mod.S/. In
particular , if the rank of H 1.M/ equals 2, then Conjecture 1.3 is true.
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2 Arithmetic sequences in the fibered cone

For a hyperbolic 3–manifold M , possibly with boundary @M , Thurston [32] defined a
norm k � k on H2.M; @M IR/. It turns out the unit norm ball BM with respect to the
Thurston norm is a finite-sided polyhedron. Let F be a top-dimensional face of BM .
We consider an open cone CD CF over F . Thurston showed that if M is a fibered
3–manifold, then either all integral points in C are fibered or none of them are fibered.
(When an integral cohomology class corresponds to a fibration of M over S1, we say
the integral point is fibered.) In the former case, we call C a fibered cone. We denote
by C the closure of the fibered cone C.
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By abuse of notation, the first cohomology classes are treated as their dual second
homology classes throughout this paper without explicitly mentioning it. Furthermore,
we will write a primitive integral class ˛ 2H 1.M/ as a pair .S;  / when S and  are
the fiber and the monodromy for the fibration over S1 corresponding to ˛.

In this section, we will show a key property of infinite arithmetic sequences in a fibered
cone for the proof of Theorem 3.4. Here by an arithmetic sequence we mean a sequence
.˛ C nˇ/n2Z�0

where ˛ (resp. ˇ) is a primitive integral class in a fibered cone C

(resp. the closure C of the fibered cone C). We first need to find some criterion for
a given element of the mapping class group to be a normal generator. In [20], the
so-called well-suited curve criterion is introduced. Roughly speaking, this criterion
says that if there is a simple closed curve c such that the configuration of c [f .c/ is
simple enough, then f is a normal generator for the mapping class group.

Here we state one special case that we need and show its proof for the sake of com-
pleteness. For more general statements, see [20, Sections 2, 7 and 9]. For a closed
curve c in the surface Sg without specified orientation, Œc� means the homology class
in H1.Sg/ with arbitrary orientation.

Lemma 2.1 [20, Lemma 2.3] Let f 2Mod.Sg/ for g � 3. Suppose that there is a
nonseparating curve c in Sg such that c and f .c/ are disjoint and

˙Œc�¤ Œf .c/� 2H1.Sg/:

Then the normal closure of f is Mod.Sg/.

Proof Let f and c be as in the statement of the lemma. Then one can find nonsepa-
rating curves a, b, d , x and y which satisfy the following conditions.

� a, b, c and d bound a subsurface S of Sg which is homeomorphic to a 4–
punctured sphere.

� Each of the triple of curves .a; b; x/, .b; d; y/ and .b; c; f .c// bounds a pair of
pants contained in S .

� No two of the curves a, b, c, d , x, y and f .c/ are homologous.

To see the existence of such curves, start with Figure 1, left, which is the surface of
genus 0 with four boundary components (ie, a 4–punctured sphere) labeled A, B , C
and D. Glue a pair of pants along the boundary components labeled A and B , and glue
another pair of pants along the boundary components labeled C and D. Then we get a

Algebraic & Geometric Topology, Volume 23 (2023)
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D
X

A B

Y
C

Z

D A

C B

Figure 1: Left: a 4–punctured sphere. Right: a genus 2 surface with two
boundary components.

surface of genus 2 with two boundary components (Figure 1, right). Along the two
boundary components, we glue in another surface of genus k � 0 with two boundary
components. The resulting surface is a closed surface of genus 3Ck. We take k so that
3C k D g which is the genus of our given surface Sg . This is our model surface, and
we let † denote the model surface. If we set a D A, b D B , c D C , d DD, x D X ,
y D Y and f .c/DZ, then the above conditions are satisfied by construction.

By the classification of the compact orientable surfaces, for any two pairs of disjoint
nonhomologous simple closed curves on the surface, there exists a homeomorphism
which maps one pair to the other. (This is a special case of the so-called change of
coordinates principle. See for instance [8].) Hence, there exists a homeomorphism ˆ

from † to Sg such that ˆ.C/D c and ˆ.Z/D f .c/. Now set aDˆ.A/, b Dˆ.B/,
d Dˆ.D/, x Dˆ.X/ and y Dˆ.Y /. Then we get the desired set of curves a, b, d ,
x and y which satisfy all the conditions together with c and f .c/.

For any curve 
 on Sg , let T
 be the left-handed Dehn twist about 
 . Then by the
lantern relation, we have TaTbTcTd D Tf .c/TxTy . Using the commutativity of the
Dehn twists about disjoint curves, one can rewrite the lantern relation as

Td D T
�1
c Tf .c/T

�1
a TxT

�1
b Ty :

Note that T �1c Tf .c/ D T
�1
c .f Tcf

�1/ D .T �1c f Tc/f
�1 which is contained in the

normal closure of f.

As before, by the change of coordinates principle, there exists an orientation-preserving
homeomorphism h of Sg such that h.c/D a and h.f .c//D x. Then

T �1a Tx D T
�1
h.c/Th.f .c// D h

�1T �1c Tf .c/h;

Algebraic & Geometric Topology, Volume 23 (2023)
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ie it is just a conjugate of T �1c Tf .c/. Hence T �1a Tx is in the normal closure of f.
Similarly, T �1

b
Ty is also contained in the normal closure of f.

This shows that Td lies in the normal closure of f. From the fact that there exists only
one mapping class group orbit of nonseparating simple closed curves and the Dehn
twists about nonseparating simple closed curves generate the mapping class group, we
can now conclude that the entire mapping class group Mod.Sg/ is contained in the
normal closure of f.

Now we prove the key proposition on the sequences in the fibered cone.

Proposition 2.2 Let C be a fibered cone for a closed hyperbolic fibered 3–manifoldM .
Let ˛ 2 C and ˇ 2 C be integral classes. Then there is some integer n0 > 0 depending
on ˛ and ˇ which satisfies the following. If .S;  / D ˛ C nˇ 2 C is a primitive
integral class for n� n0, then there is an essential simple closed curve c on S such that
c;  .c/; : : : ;  n�1.c/ are disjoint , and˙Œc�¤ Œ .c/� in H1.S/.

Proof Let n be a positive integer such that ˛C nˇ is a primitive integral class. Let
S˛ and Sˇ be embedded surfaces in M which represent ˛ and ˇ respectively. Note
that their orientations are assigned, and each connected component of those surfaces
has genus at least 2, since M is a closed hyperbolic 3–manifold. In what follows, we
explain how to choose these representatives more explicitly.

For any primitive integral class in C, one obtains a suspension flow F of the monodromy.
Fried showed that when M is a closed hyperbolic fibered 3–manifold, the flow F is an
invariant of C in the following sense: if one considers the suspension flows from two
primitive integral classes in C, then they are the same flow up to reparametrization and
conjugation by homeomorphisms on M . Moreover Fried showed that if an embedded
surface S in M is a fiber for a primitive integral class in C, then S can be made
transverse to F , and the first return map along the flow F represents the monodromy;
see [11] and [9, Theorem 14.11 and Lemma 14.12].

Surely S˛ can be made transverse to F , since ˛2C. If ˇ2C, then the same holds for Sˇ .
However if ˇ 2 @CD C nC, then this may or may not be possible for representatives
of ˇ. The transverse surface theorems by Mosher [28] and Landry [19] including the
case of compact hyperbolic 3–manifolds tells us that, for any integral class ˇ 2C, there
exists a flow yF , which is semiconjugate to F , such that a representative Sˇ of ˇ is
transverse to yF . Here yF is obtained from F by using the dynamic blowup of some
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(possibly empty) singular periodic orbits of F . The flow yF is called a dynamic blowup
of F for ˇ 2 C. (The dynamic blowups of F may not be unique.) For more details of
the dynamic blowup of singular orbits, see [28, pages 8–9] and [19, Section 3.1].

We now explain some relevant properties of yF which are needed in the proof of
Proposition 2.2. The new flow yF is obtained from F by replacing the singular orbits of
F by a set of annuli such that flow lines in the interior of each annulus spiral toward
boundary components of the annulus. Moreover S˛ \A is a union of embedded trees
in S˛ , where A is the collection of annuli created during the finitely many blowups of
singular orbits. When ˇ 2 C, it is shown in the transverse surface theorem that yF is
obtained by dynamically blowing up F along an empty collection of periodic orbits,
and hence yF is the same as F . Now Sˇ is transverse to yF . From the construction of yF ,
we may suppose that S˛ is still transverse to yF .

For any positive integer n, we can consider n parallel copies of Sˇ , say S1; : : : ; Sn
such that the Si are very close to each other. Whenever we are in this situation, the n
copies of Si are labeled so that for 1� i < n, Si gets mapped to SiC1 by the flow yF
before touching any other Sj . Note that n is not fixed.

We now describe the surgery, ie cut and paste, on S˛; S1; : : : ; Sn along the intersection
locus to get a surface S which represents ˛ C nˇ. Along each component of the
intersection between S˛ and each copy of Sˇ , we cut those surfaces. Locally there are
four sheets of surfaces, two from S˛ and two from the copy of Sˇ . Glue one sheet
from S˛ to one sheet from Sˇ so that the orientations on those sheets match up. One
can do the same for the other two remaining sheets. The resulting surface S represents
˛C nˇ. Clearly S is transverse to yF . We note that this is a standard operation. For
instance, it is the same as the oriented sum in [6].

The transversality of S to yF implies two things. First of all, this means S is transverse
to A. Since the original flow F is obtained from yF by collapsing the annuli in A to
singular orbits of F , S is transverse to F after the collapsing. Second, the intersection
S \A is a collection of trees on S by transversality together with the construction of A
in the dynamic blowup. Now let y‰ and ‰ be the first return maps on S for yF and F ,
respectively. Since y‰ and ‰ differ only on the trees and each tree is contractible, y‰
and ‰ are clearly homotopic to each other. Therefore y‰ represents the monodromy
 D Œ‰� for ˛Cnˇ.

Note that because all Si are parallel copies of Sˇ , any curve or region on Sˇ gives rise
to a curve or region on each of the Si that are parallel to it. Hence, in what follows,
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d.e00/D 1

d.e0/D 0

d.e/D�1

v w
v�1 v0 v1 v2

w�1 w0 w1 w2

Figure 2: Left: a multicurve C together with its 3–regular graph G on Sˇ '
closed surface of genus 2. Middle: an example of a cochain d on G: for three
edges from w to v, their values are �1, 0 and 1 respectively. Right: a Z–fold
cover G0 corresponding to d of the middle diagram.

whenever we specify any multicurve on Sˇ we implicitly specify multicurves on all of
the Si which are parallel to each other.

Let C be a multicurve on Sˇ such that all the connected components of Sˇ nC have
genus 0 with three ends (Figure 2, left). Furthermore, we assume that every intersecting
curve between S˛ and Sˇ is parallel to one of the curves in C . Such a multicurve
C always exists. To construct one, group the intersecting curves between S˛ and
Sˇ into parallel families, choose one in each parallel family and use them to form
a multicurve C 0. Now, if some connected component of Sˇ nC 0 has genus greater
than 0, or has more than three ends, then we can add an extra curve to C 0 to break it
into components of lower complexity, and repeat this process until all the connected
components of Sˇ nC 0 have genus 0 with three ends.

Now we make use of the graph theoretic lemma below.

Lemma 2.3 Let G be a 3–regular finite graph. Let d be an integer valued cellular
cochain on G whose value on each edge is bounded above by k � 0, and let G0 be the
Z–fold cover constructed from d (ie the vertices of G0 are Z–copies of the vertices
of G and each edge e in G from w to v is lifted to edges from the j th lift of w to the
.jCd.e//th lift of v; see Figure 2, middle and right). Then there is some R depending
only on k and the number of edges jE.G/j of G such that G0 has a simple loop 
 0 of
length no more than 2R.

Proof Suppose there are no such loops of length less than 2R in G0 for any R. Then
the R–neighborhood (ie neighborhood with radius R assigning each edge length 1)
of any vertex v0 in G0 must be a tree whose vertices have valence 1 or 3. Hence it
contains 3 � .2R � 1/ edges. However, such a neighborhood must contain at most
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A00 A A0 A00 A A0 A00 A A0

AC A� ACA�

Figure 3: Left: parallel curves on Sˇ which are some components of the
intersection between S˛ and Sˇ . Middle: an annular neighborhood of A
and the side of A˙. Right: for an edge e starting from the side of AC, A
contributes to d.e/ byC1.

.2RkC 1/jE.G/j edges. (This is because in R steps, one can travel up at most Rk
levels, ie Rk copies of the fundamental domain, or travel down at most Rk levels.
Together with the original level, there are .2RkC 1/ levels in total that one might be
able to pass through, and hence there are at most .2RkC 1/jE.G/j edges in them.)

Since the exponential function grows faster than the linear one, one can setR sufficiently
large to reach a contradiction.

We continue the proof of Proposition 2.2. Note that the multicurveC above gives a pants
decomposition of Sˇ . Let G be the 3–regular graph where each vertex corresponds
to a pair of pants in the pants decomposition of Sˇ , and each edge corresponds to the
component of the multicurve between two pairs of pants; see Figure 2, left. Now we
define the cochain d on G which only depends on S˛ and Sˇ as follows; see Figure 3.

Consider the surface S obtained from the cut and paste construction of S˛ and n copies
of Sˇ . If a curve A is one component of the intersection between S˛ and Sˇ , we cut
Sˇ along A (hence we cut each copy of Sˇ along a curve corresponding to A) which
results in two boundary curves for each copy of Sˇ , say AC and A�. The labeling AC

and A� are determined as follows: in the surface obtained from S˛ and the copies of
Sˇ via the cut and paste construction, an annular piece of S˛ connecting the i th copy
of Sˇ to the .iC1/th copy of Sˇ is attached to the i th copy of Sˇ along AC (the index
of each copy of Sˇ is understood as an integer modulo n). We label the other boundary
component A�.

Now the labeling on each copy of Sˇ is well defined, and if one considers an annular
neighborhood of A, then one can make sense of the statement that one side is the side
of AC and the other side is the side of A�.

Let us consider an edge e on G which intersects the curve A. If e is with the orientation
so that it passes from the side of AC to that of A�, then A contributes to d.e/ by C1,
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and A contributes to d.e�1/ by �1, where e�1 is the same edge as e with the opposite
orientation. The number d.e/ is obtained by summing up all the contributions of curves
in S˛ \Sˇ that the edge e passes through. Note that the cochain d does not depend on
n but only on S˛ and Sˇ , since we consider copies of Sˇ very close to each other, the
intersection with S˛ looks exactly the same in any copy of Sˇ .

Let k be the maximum of the values of d on all edges on G, and let R be the constant
from Lemma 2.3. Now let n be any integer so that n � 2Rk C 2, and consider the
surface S obtained from S˛ and n copies of Sˇ by a cut and paste construction. (In
other words, here we will argue that the integer n0 in Proposition 2.2 can be chosen
as 2RkC 2.) Let 
 0 be a simple loop in G0 in Lemma 2.3. The fact that jd.e/j � k
implies that 
 0 passes through at most 2RkC 1 consecutive fundamental domains of
the deck group action on G0. The embedding of these 2RkC 1 fundamental domains,
together with one more, to 2RkC 2 copies of Sˇ after the surgery, sends 
 0 to some
simple loop 
 on the surface S . (To do that, pick a point in each pant in Si . Now pick
a starting vertex v0 on 
 0, and let 
 start at the point associated to the corresponding
pant in SRkC2. Now, we travel along 
 0, and for each edge, connect the points in the
two pants associated with the two end points of the edge. The construction of G0 and
Lemma 2.3 imply that the resulting path 
 will also be closed.)

Let c 2 C be a component of the multicurve on Sˇ and let ci be the corresponding
copies of c on the i th copy Si of Sˇ . Suppose that c is chosen such that cl is crossed by

 once for some l , and that 
 does not cross the lowest copy S1; see Figure 4. One can
choose such a c since the length of 
 0 is no more than 2R. Note that all ci survive under
surgery because they do not cross the intersections between Si and S˛. Furthermore,
except for the top cn, their images under the first return map are  .ci /D ciC1. By the
construction of S , it follows that c1;  .c1/D c2; : : : ;  n�1.c1/D cn are disjoint. For
the proof of Proposition 2.2, we only need to show that Œc2�˙ Œc1� is not homologous
to 0. (This also implies that c1 on S is essential.) To do so, one only needs to show that

. l�2� C l�3� C � � �C id�/.Œc2�� Œc1�/D Œcl �� Œc1�

and

. l�2� � l�3� C � � �C .�1/l�2id�/.Œc2�C Œc1�/D Œcl �C .�1/
l�2Œc1�

are not 0. Since 
 passes through cl and it does not pass through c1, the simple closed
curves cl and c1 do not bound a subsurface. Therefore Œcl � 6D ˙Œc1�. This completes
the proof of Proposition 2.2.
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S1

Sl

c1

cl




Figure 4: The horizontal line segments (with dots) represent the copies
S1; S2; : : : of Sˇ , and the curve with arrow represents the loop 
 which
passes through Sl but not the lowest copy S1 of Sˇ .

We now consider a compact hyperbolic fibered 3–manifold M . In order to obtain an
estimate for the asymptotic translation length of monodromies from the arithmetic
sequences in the fibered cone for M , we show the following variant of Proposition 2.2.

Proposition 2.4 Let C be a fibered cone for a compact hyperbolic fibered 3–manifold
M possibly with boundary, let ˛ 2 C and ˇ 2 C be integral classes , and suppose
.S;  /D˛Cnˇ 2C is a primitive integral class for an integer n� 2. Then there is an es-
sential simple closed curve c on S or essential arc on S such that c;  .c/; : : : ;  n�1.c/
are disjoint. In particular ,

`C. /�
2

n�1
:

Proof Let F be the suspension flow for the fibered cone C. In [19, Appendix A],
Landry generalized Fried’s theory on the fibered cone (for closed hyperbolic fibered
3–manifolds) to the case of compact hyperbolic fibered 3–manifolds M possibly with
boundary. In particular F is an invariant of C as well. Then we use the transverse
surface theorem [19; 28] for compact hyperbolic fibered 3–manifolds M again. Let
yF be a dynamic blowup of F for ˇ 2 C. We can take representatives S˛ and Sˇ of ˛
and ˇ respectively so that S˛ and Sˇ are transverse and they intersect the new flow
yF transversely. We may assume that S˛ and Sˇ intersect minimally, ie the number of
components of the intersection between S˛ and Sˇ is minimal among all representatives
of ˛ and ˇ. The surface obtained from S˛ and Sˇ by a cut and paste construction is
a fiber of the fibration associated with ˛C ˇ 2 C. This implies that S˛ and Sˇ are
minimal representatives of ˛ and ˇ.
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Do surgery (as in the proof of Proposition 2.2) at the intersection locus of S˛ and
n copies of Sˇ to obtain a surface S representing ˛C nˇ. We now find the desired
essential simple closed curve on S or an essential arc c on S . Let c be one of the
intersection curves or arcs between S˛ and Sˇ , and let S1 be the lowest copy of Sˇ .
The fact that c is essential on S˛ and on Sˇ follows from the fact that the intersection
between S˛ and Sˇ is minimal; see [32] or [6, Lemma 5.8]. It is not hard to see from
the cut and paste construction that c is also essential on S .

From the choice of c, it follows that c and  n�1.c/ are disjoint. They are distinct in the
arc and curve complex AC.S/, since  is pseudo-Anosov. Thus the distance between c
and  n�1.c/ in AC.S/ equals 1. This implies that .n�1/`AC. /D `AC. 

n�1/� 1—
cf [16, Lemma 2.1] — where `AC. / is the asymptotic translation length of  on
AC.S/. It is known that the inclusion map C.S/!AC.S/ is 2–bilipschitz; see, for
instance, [25, Lemma 2.2] or [18]. In particular, this tells us that

`C. /� 2`AC. /:

Thus we have `C. /� 2`AC. /� 2=.n� 1/.

Remark 2.5 In [3], Theorem 1.1 was proved in the case of closed hyperbolic fibered
3–manifolds. We note that almost the same proof can be adapted to the case of compact
hyperbolic fibered 3–manifold. In fact, one only needs to modify the last paragraph
(after Lemma 8) in the proof of [3, Theorem 5] to allow 
 and 
 0 to be either an essential
simple closed curve or an essential simple arc. Then one obtains the same conclusion
of Theorem 1.1 by the fact that inclusion map C.S/!AC.S/ is 2–bilipschitz as in the
proof of Proposition 2.4 in this paper.

3 Applications of arithmetic sequences

3.1 Asymptotic translation lengths in fibered cones

In this section, we show the following estimate for the asymptotic translation lengths
in the curve complexes.

Theorem 3.1 Let F be a fibered face of a compact hyperbolic fibered 3–manifold
possibly with boundary. Then there exists a constant C depending on F such that for
any primitive integral class .S;  / 2 CF ,

`C. /�
C

j�.S/j
:
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To prove this theorem, we need the following lemma about rational cones. Here a
rational cone in Euclidean space Rm is the set of the points of the form

fx D .x1; : : : ; xm/ 2Rm j Axt � 0g

for some k �m matrix A with integer entries (where xt is the transpose of x.) We
further assume that this set has nonempty interior.

Lemma 3.2 Let P be a rational cone in Rm, and let int.P / be its interior. Then there
exist two nonempty finite sets �0 � int.P /\Zm and �� P \Zm such that

int.P /\Zm D

�
aC

X
b2�

kbb
ˇ̌̌
a 2�0; kb 2 Z; kb � 0

�
:

Proof It is a classical result — see [33, Proposition 3.4] — that P \Zm is a finitely
generated monoid. Let � be a finite set of generators of P \Zm, and let

�0 D

�X
b2W

b
ˇ̌̌
W ��;W 6� F for all faces F of @P

�
:

Here a face of @P is a polytope of dimension m� 1 which is the intersection of @P
with a .m�1/–dimensional subspace of Rm. Note that W can possibly contain only a
single point in int.P /. Clearly �0 is a finite set with at most 2j�j elements.

Note that a linear combination of elements in � with nonnegative coefficients lie on a
face of @P if and only if all the coefficients for those generators that are not on this
face are 0. In other words, if

P
b2� kbb is in int.P / and kb are all nonnegative, then

the set fb 2� j kb � 1g must not be contained in any face of @P . Hence

int.P /\Zm D

�
aC

X
b2�

kbb
ˇ̌̌
a 2�0; kb 2 Z; kb � 0

�
and in particular �0 � int.P /\Zm as we desire.

Here is an example of the two finite sets �0 and � for a rational cone in R2.

Example 3.3 Let us consider the following rational cone in R2.

P D

�
x D .x1; x2/ 2R2

ˇ̌̌ �
0 1

3 �2

��
x1
x2

�
�

�
0

0

��
:

One can take � D fb1 D .1; 0/; b2 D .1; 1/; b3 D .2; 3/g as a set of generators of
P \Z2. There are two faces of @P . One is f.x; 0/ j x � 0g which contains fb1g as a
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subset, and the other is
˚�
x; 3
2
x
�
j x� 0

	
which contains fb3g as a subset. One sees that

�0 consists of five elements, b2, b1C b2 D .2; 1/, b1C b3 D .3; 3/, b2C b3 D .3; 4/
and b1C b2C b3 D .4; 4/.

Proof of Theorem 3.1 For a fibered cone C, the closure C is a rational cone in
H 1.M/, because the unit Thurston norm ball is a polytope whose vertices are rational
points [32]. By Lemma 3.2, if an integral class ı is in C, then it can always be written
of the form ı D aC

P
b2� kbb, where a 2�0 and kb is a nonnegative integer. If S is

a norm-minimizing surface of ı, then we have kıkD j�.S/j and it is bounded above by

max
�
1;max
b2�

.kb/
��
kakC

X
b2�

kbk

�
:

Hence, when j�.S/j>maxa2�0
kakC

P
b2� kbk,

j�.S/j �max
b2�

.kb/

�
kakC

X
b2�

kbk

�
:

Therefore,

max
b2�

.kb/�
j�.S/j

kakC
P
b2� kbk

�
j�.S/j

maxa2�0
kakC

P
b2� kbk

:

Let bm be a b in � that maximizes kb . We set ˛D aC
P
b2�;b¤bm

kbb, ˇD bm and
nD kbm

. We have ˛ 2 C and ˇ 2 C. Then ı is given by ı D ˛Cnˇ with

n�
j�.S/j

maxa2�0
kakC

P
b2� kbk

:

Note that the denominator in the right hand side only depends on the fibered cone. Now,
when kıkDj�.S/j>maxa2�0

kakC
P
b2� kbk, the conclusion of the theorem follows

directly from Proposition 2.4. The remaining case kık �maxa2�0
kakC

P
b2� kbk

consisting of finitely many primitive integral classes ı; hence the theorem is proved.

3.2 Normal generation in the fibered cone

In this section we prove the following theorem as a partial answer to Conjecture 1.3.

Theorem 3.4 Let F be a fibered face of a closed hyperbolic fibered 3–manifold M ,
and let L be a 2–dimensional rational subspace of H 1.M/. Then for all but finitely
many primitive integral classes .S;  / in CF \L,  normally generates Mod.S/. In
particular , if the rank of H 1.M/ equals 2, then Conjecture 1.3 is true.
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p

Np
F

o

D D

F

o

Figure 5: Left: the fibered face F in the fibered cone C (p and Np lie on the
same ray in CF passing through the origin). Right: the subset ND � C.

For the proof of Theorem 3.4, we first prove the following result.

Theorem 3.5 Let C be a fibered cone of a closed hyperbolic fibered 3–manifold M .
Then there exists some x 2 C such that for each primitive integral class .S;  / 2 xCC,
 normally generates Mod.S/, where xCCD fxC v j v 2 Cg.

Proof Let d be any Euclidean metric onH 1.M/. Let F be the fibered face correspond-
ing to C. For every point p 2C, let Np be the intersection of F with the ray starting from
the origin and passing p (Figure 5, left). By [27, Corollary 5.4], we have a real analytic,
strictly concave and degree 1 homogeneous function y D 1=logK. � / defined on C,
such that the stretch factor �.p/ for p2C is equal toK.p/ and y.p/D1=logK.p/!0

as p! @F . The concavity implies that there must be some k > 0 (independent of the
choice of Np) such that

1

log.K. Np//
� k � d. Np; @C/:

A way to see the existence of k is as follows. Concavity of y implies that there is some
point p0 2 F where y.p0/ > 0. Then, for any point Np 2 F , consider the line segment
from p0 to the boundary of F passing through Np. Then concavity of y means that on
this line segment, y is bounded from below by the linear function L which takes value
0 at one end and y.p0/ at another end. Hence it has a slope sD s. Np/ that depends on Np
and s D s. Np/ is continuous on Np. On the other hand, the function d. � ; @C/, restricted
to this line segment, is piecewise linear, and hence it is also bounded from above by a
linear function L0 taking value 0 at the end on @F . We choose such linear function L0

with the smallest slope s0 D s0. Np/. Then s0 D s0. Np/ is continuous on Np. Now k can be
chosen as any number below the ratio s=s0 between these two slopes. As both slopes
depend continuously on Np, and F has compact closure, we can choose a universal k
that works on the whole face F .
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Furthermore, the degree 1 homogeneity implies that

1

log.K.p//
D
d.0; p/

d.0; Np/
�

1

log.K. Np//
:

For D > 0, we consider the set ND (Figure 5, right),

ND D fp 2 C j d.p; @C/�Dg:

From the above computation, the stretch factor for p 2 C nND satisfies

�.p/D elogK.p/
D .elogK. Np//d.0; Np/=d.0;p/

� .e1=.kd. Np;@C///d.0; Np/=d.0;p/ D e1=.kd.p;@C//
� e1=.kD/:

Hence as long asD is sufficiently large, �.p/ can be made to be as close to 1 as needed.
In particular it is smaller than

p
2 when D is large enough. This together with [20,

Theorem 1.2] shows that for someD, all primitive integral classes in CnND are normal
generators. The theorem now follows by picking an arbitrary x 2 C nND , due to the
fact that the boundary of ND must be parallel to that of @C itself; see Figure 5, right.

The next result follows immediately from Lemma 2.1 and Proposition 2.2.

Theorem 3.6 Let C be a fibered cone of a closed hyperbolic fibered 3–manifold.
Suppose that .S˛n

;  ˛n
/ is a sequence of primitive integral classes in C such that

˛n D vC nw, where v 2 C and w 2 C are fixed integral classes. Then  ˛n
normally

generates Mod.S˛n
/ for sufficiently large n.

We are now ready to prove Theorem 3.4.

Proof of Theorem 3.4 Let L be a 2–dimensional rational subspace of H 1.M/ sat-
isfying the assumption of Theorem 3.4. Theorem 3.5 says that there is some x 2 C

such that all primitive integral classes .S;  / in xCC normally generate Mod.S/. In
particular this holds for all primitive integral classes in .xCC/\L. Because L is of
dimension 2, the integral classes in .C n .xCC//\L are the union of finitely many
sequences of the form .vCnw/n2N , where v 2C and w 2C. Thus by Theorem 3.6, for
all but finitely many primitive integral classes .S;  / in .Cn .xCC//\L,  normally
generates Mod.S/.

Remark 3.7 Our approach to Theorem 3.4 does not work when the dimension of
the rational subspace L of H 1.M/ is more than 2. This is because in this case, the
intersection .Cn.xCC//\L no longer consists of finitely many sequences of primitive
integral classes of the form vCnw, where v 2 C and w 2 C.
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4 Sequences in the fibered cone of the magic manifold

Let C3 be the 3–chain link in S3 as in Figure 6, left. The magic manifold N is the
exterior of C3 (hence @N consists of three boundary tori), and it is a hyperbolic and
fibered 3–manifold. We give some background on invariant train tracks in Section 4.1
and we discuss the fibered cone of N in Section 4.2. We compute the upper and lower
bounds of the asymptotic translation length of particular sequences in the fibered cone
of N in Sections 4.3 and 4.4. Then we prove Theorem 4.13 in Section 4.5.

4.1 Invariant train tracks for pseudo-Anosov maps

For definitions and basic results on train tracks, see [4; 8; 29]. Let WS!S be a pseudo-
Anosov homeomorphism defined on a surface S possibly with boundary/punctures.
When S is a punctured surface, we say that  is fully punctured if the set of singularities
of the unstable foliation for  is contained in the set of punctures of S .

Let � be an invariant train track for  . Then  W S ! S induces a map on � to itself
which takes switches (vertices) to themselves. Such a map is called the train track map.
By abuse of notation, we denote the train track map on � also by  W � ! � . Following
[4, Section 3.3], we say that a branch e of � is real if there exists an integer m� 1 such
that  m.e/ passes through all branches of � . Otherwise we say that e is infinitesimal.
The train track map  W � ! � induces a finite digraph � by taking a vertex for each
real branch of � , and then adding mij directed edges from the j th real branch ej to the
i th real branch ei , where mi;j is the number of times that the image  .ej / under the
train track map  passes through ei in either direction.

For the lower bound of `C. /, we recall a result of Gadre and Tsai. The follow-
ing statement is a consequence of [13, Lemma 5.2] together with the proof of [13,
Theorem 5.1].

Proposition 4.1 Let  2Mod.Sg;n/ be a pseudo-Anosov element and let � be an in-
variant train track for . Suppose that r is a positive integer such that for any real branch
e of � ,  r.e/ passes through every real branch. If we set hD rC24j�.Sg;n/j�8n, then
 h.e/ passes through every branch of � (including infinitesimal branches). Moreover ,
if we set

w D hC 6j�.Sg;n/j � 2nD r C 30j�.Sg;n/j � 10n� r C 30j�.Sg;n/j;

then we have
`C. /�

1

w
�

1

r C 30j�.Sg;n/j
:
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.0; 1; 0/

.�1; 0; 0/

.�1;�1;�1/

.0; 0;�1/

.1; 1; 1/

.0; 0; 1/

.1; 0; 0/

.0;�1; 0/

F
.0; 1; 0/ .1; 1; 1/

.1=3; 2=3; 0/

.1=2; 1=2; 0/

.0; 0;�1/ .1; 0; 0/

Figure 6: Left: the 3–chain link C3. Right: the Thurston norm ball of N and
fibered face F .

4.2 Fibered cones of the magic manifold

We consider coordinates of integral classes in fibered cones of N . We assign orien-
tations of the three components of C3 as in Figure 6, left. Let S˛, Sˇ and S
 be the
oriented 2–punctured disks bounded by these components of C3. We set ˛ D ŒS˛�,
ˇ D ŒSˇ � and 
 D ŒS
 � in H2.N; @N IZ/'H 1.N IZ/. Then ˛, ˇ and 
 form a basis
of H2.N; @N IZ/. We denote by .x; y; z/ the class x˛ C yˇ C z
 . The Thurston
norm ball BN is the parallelepiped with vertices ˙˛ D˙.1; 0; 0/, ˙ˇ D˙.0; 1; 0/,
˙
 D˙.0; 0; 1/ and ˙.˛CˇC 
/D˙.1; 1; 1/; see Figure 6, right.

A symmetry of C3 tells us that every top-dimensional face of BN is a fibered face.
Moreover all fibered faces of N are permuted transitively by homeomorphisms of N .
Hence they have the same topological types in their fibers and the same dynamics of their
monodromies. To study monodromies of fibrations on N , it suffices to pick a particular
fibered face, say F with vertices .1; 0; 0/, .1; 1; 1/, .0; 1; 0/ and .0; 0;�1/; see Figure 6,
right. For a primitive integral class .S;  / 2 CF , the monodromy  is pseudo-Anosov
defined on S with boundary components, since @N ¤∅. Each connected component
of @S is a simple closed curve which lies on one of the boundary tori of N . By abusing
notation, we often regard boundary components of S as punctures of S by crushing
each boundary component to a puncture. Hence we think of  as a pseudo-Anosov map
defined on the punctured surface S . Such ambiguity does not matter for our purpose
since the computation of the asymptotic translation lengths of the pseudo-Anosov
monodromies on the curve complex will not be affected. Under this convention, one
sees that for any primitive integral class .S;  / 2 CF , the pseudo-Anosov monodromy
 is fully punctured; see for example [15].
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Figure 7: Digraphs �.1;j;k/C , left, �.1;n;n2/C
, middle, and �.1;3;9/C , right.

The open face int.F / is written by

int.F /D f.x; y; z/ j xCy � z D 1; x > 0; y > 0; x > z; y > zg:

This implies that .x; y; z/ 2CF if and only if x > 0, y > 0, x > z and y > z. The next
lemma tells us the topological type of the corresponding fiber S.x;y;z/.

Lemma 4.2 [17] For a primitive integral class .x; y; z/ 2 CF , let j@S.x;y;z/j denote
the number of the boundary components of S.x;y;z/. The Thurston norm

k.x; y; z/k D j�.S.x;y;z//j

equals xCy � z, and j@S.x;y;z/j is given by

j@S.x;y;z/j D gcd.x; yC z/C gcd.y; zC x/C gcd.z; xCy/:

More precisely , each term in the right-hand side expresses the number of boundary
components of S.x;y;z/ which lie on one of the boundary tori of N .

We introduce another coordinate, .i; j; k/C. For i; j; k � 0, define

.i; j; k/C D i.1; 1; 1/C j.0; 1; 0/C k.1; 1; 0/D .i C k; i C j C k; i/:

Note that .1; 1; 0/ 2 CF , but .0; 1; 0/ … CF and .1; 1; 1/ … CF (in fact the two classes
lie on @F ); see Figure 6, right. We denote by .i; j; k/C, the class with the Thurston
norm 1 which is projectively equal to .i; j; k/C.
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If i , j and k are integers with i � 0, j � 0 and k > 0, then .i; j; k/C 2 CF . If
.i; j; k/C is a primitive integral class in CF , then we let .S.i;j;k/C ;  .i;j;k/C/ be the
pair of the fiber and its monodromy. In [15, Section 3], the second author constructs
an invariant train track � D �.i;j;k/C and the digraph � D �.i;j;k/C of the train track
map  D  .i;j;k/C W � ! � for each primitive integral class .i; j; k/C 2 CF . Figure 7,
left, illustrates � D �.1;j;k/C when i D 1, j > 0 and k > 0; see also [15, Figure 22(4)].
The vertices in the left column of � are denoted by s; a1; : : : ; ak from bottom to top;
vertices in the right column of � are denoted by r1; : : : ; rj ; b1; : : : ; bk from bottom to
top. (Recall that each vertex of � corresponds to a real branch of � .) The numbers
j �1 and k�1 near the “thick” edges of � indicate their lengths of paths. For instance,
the edge r1

j�1
��! rj from r1 to rj indicates the edge path r1! � � � ! rj�1! rj . See

Figure 7, right, for the concrete example. When j D 1 or k D 1, the corresponding
“thick” edges collapse; see Figure 11.

4.3 Computing the lower bounds

For fixed positive integers p and q, we consider the sequence

.1; np; nq/C D .1Cn
q; 1CnpCnq; 1/ 2 CF

for a varying positive integer n. The integral class .1; np; nq/C is primitive, since
gcd.1; np; nq/ D 1. From the formula of the Thurston norm in Lemma 4.2, it is
immediate to see the following lemma. See also Figure 6, right.

Lemma 4.3 Let .1; np; nq/C be the projective class of .1; np; nq/C.

(1) If p D q, then .1; np; nq/C!
�
1
3
; 2
3
; 0
�
2 int.F / as n!1.

(2) If p < q, then .1; np; nq/C!
�
1
2
; 1
2
; 0
�
2 int.F / as n!1.

(3) If p > q, then .1; np; nq/C! .0; 1; 0/ 2 @F as n!1.

Here we consider the following three cases: q < p < 2q, p < q � 2p and 2p � q. We
define

k D kp;q D

8<:
nq.2nqC 1/ if q < p < 2q;
nq.2npC 1/ if p < q � 2p;
nq.2nq�pC 1/ if 2p � q:

Proposition 4.4 For any two vertices v and w of � D �.1;np;nq/C , there exists an
edge path from v to w of length kC 2npC 3nq .
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In other words, if we set k0 D kp;q C 2n
p C 3nq , then for any real branch v of � ,

 k
0

.v/ passes through every real branch. For the proof of Proposition 4.4, we need
some lemmas. Recall that s is the bottom vertex in the left column of � . Let v0 be the
top vertex anq in the left column of �; see Figure 9.

Lemma 4.5 For any vertex v in the left column of � , there exists an edge path from s

to v of length k.

Proof We have an edge path s! a1
nq�1
���! anq D v0 from s to v0 of length nq . For

the proof of the lemma, it suffices to show that for any vertex v in the left column of � ,
there exists an edge path from v0 to v of length k�nq . Then the desired path can be
obtained from the concatenation of the two paths, the path from s to v0 and the path
from v0 to v. Equivalently, we show that for any i D 0; : : : ; nq , there exists a cycle
based at v0 of length k�nqC i .

It is easy to find two cycles based at v0 in � of lengths nq and nqC 1; see Figure 7,
left. We have another cycle based at v0 in � of length npCnqC 1,

v0 D anq ! r1
np�1
���! rnp ! s! a1

nq�1
���! anq D v0

We show that repeated use of these three cycles is enough to produce the cycles we
desire. Suppose q < p < 2q. Then k � nq D 2n2q . We now show that for any
i D 0; : : : ; nq , there exist nonnegative integers a, b and c such that

anqC b.nqC 1/C c.nqCnpC 1/D 2n2qC i:

This is done by setting c D 0, b D i and aD 2nq � i .

Suppose p < q � 2p. Then k � nq D 2npCq . We claim that for any i D 0; : : : ; nq ,
there exist nonnegative integers a, b, and c such that

anqC b.nqC 1/C c.nqCnpC 1/D 2npCqC i:

This can be done by setting

c D

�
i

npC 1

�
; b D i � .npC 1/

�
i

npC 1

�
; aD 2np � b� c;

where b � c is the floor function. Here b and c are nonnegative integers by definition, and
b is the remainder of i divided by npC 1. Hence b must be no larger than np . On the
other hand c�nq�p , because i �nq <nq�p.npC1/. Thus bCc�npCnq�p � 2np ,
which implies that a is nonnegative.

Algebraic & Geometric Topology, Volume 23 (2023)



Asymptotic translation lengths for pseudo-Anosov monodromies of fibered 3–manifolds 1387

Lastly, suppose 2p � q. Then k�nq D 2n2q�p . We claim that for any i D 0; : : : ; nq ,
there exist nonnegative integers a, b, and c such that

anqC b.nqC 1/C c.nqCnpC 1/D 2n2q�pC i:

This can be done by setting

c D

�
i

npC 1

�
; b D i � .npC 1/

�
i

npC 1

�
; aD 2nq�p � b� c:

Here b and c are nonnegative integers by definition, and b is the remainder of i divided
by npC 1. Hence b must be no larger than np . On the other hand c � nq�p , because
i � nq < nq�p.np C 1/. Thus b C c � np C nq�p � 2nq�p, which says that a is
nonnegative. This finishes the proof.

Lemma 4.6 For any vertex v in the left column of � and for any m� 0, there exists
an edge path from s to v of length kCm.

Proof Let v be any vertex in the left column of � . For any m � 0, one can find a
vertex v0 in the left column of � such that there is an edge path from v0 to v of length
m. (To see this, use the above cycles based at v0 of lengths nq and nqC1.) Lemma 4.5
tells us that there exists an edge path from s to v0 of length k. The concatenation of
these edge paths is a desired edge path of length kCm.

Lemma 4.7 For any vertex v in the right column of � and for any m� 0, there exists
an edge path from s to v of length kCnpCnqCm.

Proof Let v be an arbitrary vertex in the right column of � . Then there exists an edge
path from v0 to v of length ` with 1� `� npCnq . To see this, use the path

v0 D anq ! r1
np�1
���! rnq ! b1

nq�1
���! bnq

from v0 to bnq . On the other hand, Lemma 4.6 tells us that there exists an edge path
from s to v0 of length kC .npCnq � `/Cm. Here .npCnq � `/Cm plays the role
of m in Lemma 4.6. Concatenating these two paths, one obtains an edge path from s

to v of length kCnpCnqCm.

By Lemmas 4.6 and 4.7, we immediately have the following lemma.

Lemma 4.8 For any vertex v of � and for any m� 0, there exists an edge path from s

to v of length kCnpCnqCm.

We are now ready to prove Proposition 4.4.
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Proof of Proposition 4.4 Note that for any vertex v, there exists an edge path from
v to s of length 0 � ` � np C 2nq . To see this, one can use the edge path of length
npC 2nq passing through all vertices of � ,

r1
np�1
���! rnq ! b1

nq�1
���! bnq ! a1

nq�1
���! anq ! s:

By Lemma 4.8 there exists an edge path from s to any vertex w of length exactly
kC .2npC 3nq � `/, since 2npC 3nq � `� npCnq . The concatenation of the two
paths has length kC 2npC 3nq .

Now we are ready to compute the lower bounds. For real-valued functions A.x/ and
B.x/, we write A.x/& B.x/ if there is a constant C > 0 independent of x such that
A.x/� C �B.x/.

Theorem 4.9 The sequence .1; np; nq/C in CF satisfies

`C. .1;np;nq/C/&

8<:
1=n2q if q < p < 2q;
1=npCq if p < q � 2p;
1=n2q�p if 2p � q:

Proof By Lemma 4.2, it is not hard to see that

.kp;qC 2n
p
C 3nq/C 30j�.S.1;np;nq/C/j �

8<:
n2q if q < p < 2q;
npCq if p < q � 2p;
n2q�p if 2p � q:

Then the desired claim follows from Propositions 4.1 and 4.4.

4.4 Computing the upper bounds

To prove Theorem 4.13, we will also compute the upper bound of the asymptotic
translation length of  .1;np;nq/C .

Theorem 4.10 For any fixed positive integers p and q with q < p < 2q, the sequence
.1; np; nq/C of primitive integral classes in CF converges projectively to .0; 1; 0/2 @F
as n!1, and

`C. .1;np;nq/C/�
4

n2q
:

The first half of Theorem 4.10 follows from Lemma 4.3(3). For the rest of the proof,
we first introduce the dual arcs of real branches of train tracks. Consider an invariant
train track � for the monodromy  defined on the fiber S of a fibration on N . If we
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�

s
v

˛v

˛s

Figure 8: Cell decomposition, branches, and dual arcs.

think of the surface S with boundary as the punctured surface which is again denoted
by S abusing notation, each component of the complement S n � of the train track
is a once-punctured ideal polygon, because  is fully punctured. Consider the cell
decomposition of S corresponding to � . That is, 0–cells are switches of � , 1–cells are
branches of � , and 2–cells are ideal polygons of S n � .

Given a real branch v, the dual arc ˛v of v is defined to be the edge of the dual cell
complex that connects the punctures in two polygons (possibly the same polygon)
sharing the real branch v; see Figure 8.

Notice that the dual arc ˛v is an essential arc. In order to see this, consider a rectangle
associated with the real branch v, contained in a Markov partition for a pseudo-Anosov
homeomorphism which represents  . Then v corresponds to leaves of the unstable
foliation and the dual arc ˛v corresponds to leaves of the stable foliation in this rectangle.
If the dual arc is not essential, then this implies that the real branch v cannot support a
positive transverse measure, which is a contradiction to a property of pseudo-Anosov
homeomorphisms.

Readers may notice that the dual arc associated to a real branch is a general notion for
fully punctured pseudo-Anosov homeomorphisms. More precisely, if � is an invariant
train track for a fully punctured pseudo-Anosov  , then for a real branch v of � , one
can define the dual arc ˛v which is essential.

Proof of Theorem 4.10 Let .S;  / D .S.1;np;nq/C ;  .1;np;nq/C/ be the pair of the
fiber and its monodromy for .1; np; nq/C. Let � be the digraph of the train track � for
.1; np; nq/C, and let  � W V.�/!V.�/ be the induced map, where V.�/ is the set of
vertices of � . The map  � can be read off Figure 9.
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Here is the outline of the proof. We will compute the upper bound of the asymptotic
translation length `AC. / of  on the arc and curve complex AC.S/. Since C.S/ and
AC.S/ are quasi-isometric, this gives an upper bound on C.S/. We show that there are
distinct vertices t and v in � , ie distinct real branches t and v of � , such that  n

2q

� .t/

does not contain v. Using this fact, we also show that there are disjoint arcs ˇt and
˛v in AC.S/ such that  n

2q

.ˇt / and ˛v are disjoint. This implies that the distance in
AC.S/ satisfies dAC.ˇt ;  

n2q

.ˇt //� 2, and we deduce that `AC. /� 2=n
2q .

Step 1 C.S/ and AC.S/ are quasi-isometric.

Proof Just recall that the inclusion map C.S/!AC.S/ is 2–bilipschitz.

Hence for the proof of Theorem 4.10, it is enough to show that the asymptotic translation
length  on AC.S/ satisfies

`AC. /�
2

n2q
:

Step 2 Let t be the vertex bnq of � . Then  n
2q

� .t/ doesn’t contain all vertices in � .

Proof We will show that there is a vertex v that is not contained in  n
2q

� .t/. Consider
the partition fA;B;R1; R2; : : : ; Rnp�qg of vertices ai , bi , and ri of � , where each
partition element consists of nq vertices as in Figure 9. Under the iteration of the .nq/th

power  n
q

� of  �, one can see that

 n
q

� .t/D fanq ; rnqg;

 2n
q

� .t/D fanq ; anq�1; rnq ; r2nqg;

 3n
q

� .t/D fanq ; anq�1; anq�2; rnq ; rnq�1; r2nq ; r3nqg;
:::

and that the number of vertices in each partition element contained in  j �n
q

� .t/ is
increasing by at most one as j increases. Hence one can see that there are vertices in
each Rk .kD 1; : : : ; np�q/ that are not contained in  n

2q

� .t/. More precisely, consider
R1 D fr1; r2; : : : ; rnqg. One can check that for vertices in R1, the image  j �n

q

� .t/

contains only
frnq ; rnq�1; : : : ; rnq�jC2g �R1

for 2�j �nq . Therefore n
2q

� .t/ does not contain r1, and we may choose v to be r1.
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s

a1 b1

b2

:::

rnp

:::

r3

r2

r1

anq bnq

A B

R2

R1

Figure 9: Left: digraph �.1;np ;nq/C
. Right: digraph �.1;23;22/C

with
partition fA;B;R1; R2g.

Step 3 There are distinct arcs ˛v and ˇt in AC.S/ such that  n
2q

.ˇt / and ˛v are
disjoint.

Before proving Step 3, we first discuss some properties of the primitive integral class
.1; j; k/C with j > 0 and k > 0. Recall that r1; : : : ; rj ; b1; : : : ; bk are vertices of
� D �.1;j;k/C which lie on the right column of � (Figure 7, left). There is a single
ideal polygon P DP.1;j;k/C containing a single puncture cP of the fiber S DS.1;j;k/C
such that the two endpoints of each real branch bi .i D 1; : : : ; k/ are switches (of � ) in
the boundary @P of P ; see Figure 10. From the construction of � in [15], it follows that
@P consists of periodic branches, ie infinitesimal branches, and  D  .1;j;k/C maps
cP to itself (and hence the ideal polygon P is preserved by  ). To see  .cP /D cP ,
we consider the fiber S D S.i;j;k/C with boundary. (So we now think of the above
cP as a boundary component of S .) By using Lemma 4.2 for the primitive integral
class .1; j; k/C, we see that there is a boundary torus T of N such that cP is the only
boundary component of S which lies on T . This implies cP is preserved by  .

For the real branch ri .i D 1; : : : ; j /, consider its dual arc ˛ri
. Let cri

and c0ri
be

boundary components in @S which are connected by ˛ri
. (Possibly cri

D c0ri
.) Then

there is another boundary torus T 0 of N on which the both cri
and c0ri

lie.
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t

ˇt

cP

P�

Figure 10: Part of the train track � . The ideal polygon P , real branch t D bnq ,
and arc ˇt based at cP .

Proof of Step 3 Consider the primitive integral class .1; np; nq/C in question. The
two endpoints of the real branch t D bnq are switches (of �) in @P . Join cP and each
endpoint of the real branch t by an arc and then we obtain an arc ˇt in S; see Figure 10.
Since t is a real branch, one sees that the arc ˇt is essential. Since  maps cP to itself,
 `.ˇt / is an essential arc based at the same cP for each `> 0. Moreover  `.ˇt / is not
homotopic to ˇt for each ` > 0, since  is pseudo-Anosov. Let us consider the dual
arc ˛v of v D r1. Recall that cv and c0v which are connected by ˛v lie on a boundary
torus T 0 of N , yet cP lies on the different boundary torus T of N . The arc ˇt has end
points at cP , and hence ˇt is not homotopic to ˛v.

Now we prove that  2q.ˇt / and ˛v are disjoint. The ideal polygon P is preserved
by  , and  n

2q

.t/ is carried by � since � is invariant under  . Moreover, since  n
2q

.t/

does not pass through v by the proof of Step 2, it follows that  n
2q

.ˇt / is disjoint
from v, and hence also disjoint from its dual arc ˛v.

Step 4 `AC. /�
2

n2q
:

Proof Clearly ˇt and ˛v are disjoint. Since  n
2q

.ˇt / is an essential arc based at cP ,
we have  n

2q

.ˇt / ¤ ˛v in AC.S/ by the same argument as in the proof of Step 3.
This together with the fact that the geometric intersection number i. n

2q

.ˇt /; ˛v/D 0
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implies that ˇt and n
2q

.ˇt / are at most distance 2 in AC.S/, ie dAC.ˇt ;  
n2q

.ˇt //�2.
By the definition of the asymptotic translation length, it follows that

`AC. /�
2

n2q
:

Thus we have finished the proof of Theorem 4.10.

Theorem 4.11 For any fixed positive integers p and q with 2p � q, the sequence
.1; np; nq/C of primitive integral classes in CF converges projectively to

�
1
2
; 1
2
; 0
�

in
int.F / as n!1, and

`C. .1;np;nq/C/�
C

n2q�p
;

where C is a constant independent of n.

Proof The first half of the claim follows from Lemma 4.3(2). For the rest of the
proof, let  D  .1;np;nq/C . Consider the digraph � D �.1;np;nq/C and the induced
map  � W V.�/! V.�/. Let t be the vertex bnq of � . By using a similar argument as
in Step 2 of the proof of Theorem 4.10, one can show that the set of vertices  j �n

q

� .t/ is
contained in V.�/nR for j D 1; : : : ; b.nq�1/=.npC1/c, whereRDfr1; r2; : : : ; rnpg.
In other words, each vertex in R is not contained in  j �n

q

� .t/ for such j . In particular,
if we set D D D.n/ D b.nq � 1/=.np C 1/c, then r1 is not contained in  Dn

q

� .t/.
Then we consider the two arcs ˇt and ˛v as in Step 3 of the proof of Theorem 4.10.
By the same argument, it follows that ˇt , ˛t and  Dn

q

.ˇt / are distinct elements in
AC.S/. Moreover we have i. Dn

q

.ˇt /; ˛v/D 0 and i.ˇt ; ˛v/D 0. Therefore ˇt and
 Dn

q

.ˇt / are at most distance 2 in AC.S/, and we have `AC. /� 2=.Dn
q/, which

implies that `C. /� 4=.Dnq/. Since Dnq � n2q�p, we have finished the proof.

4.5 The behaviors of asymptotic translation lengths

We prove the following lemma which implies that the upper bound of Theorem 3.1 is
optimal.

Lemma 4.12 The sequence .1; n; 1/C of primitive integral classes in CF converges
projectively to a point in @F as n!1, and

`C. .1;n;1/C/�
1

j�.S.1;n;1/C/j
:
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a b

s
rn

rn�1

r2

r1

Figure 11: The digraph �.1;n;1/C .

Proof The first half of the claim follows from that fact that .1; n; 1/C! .0; 1; 0/2 @F

as n!1. Since j�.S.1;n;1/C/jDnC3, it is enough to prove that `C. .1;n;1/C/� 1=n.
By the digraph � D �.1;n;1/C (see Figure 11) together with Proposition 4.1, it is not
hard to see that `C. .1;n;1/C/& 1=n.

Now we compute the upper bound. Let .S;  / D .S.1;n;1/C ;  .1;n;1/C/ and let t be
the vertex b of � . We have

 �.t/D fr1g;  
2
�.t/D fr2g; : : : ;  

n
� .t/D frng:

In particular this implies that  n.t/ does not pass through the real branch r1 of
�D �.1;n;1/C . We consider the essential arc ˇt for t as in the proof of Theorem 4.10, and
consider the dual arc ˛r1

of r1. By the same argument as in the proof of Theorem 4.10,
one sees that the three arcs ˇt ,  n.ˇt / and ˛r1

are distinct elements in AC.S/. Fur-
thermore for the geometric intersection numbers between arcs, we have i.ˇt ; ˛r1

/D 0

and i. n.ˇt /; ˛r1
/ D 0. Therefore ˇt and  n.ˇt / are at most distance 2 in AC.S/,

and we have `AC. /� 2=n, which gives the desired upper bound `C. /� 4=n.

Now we are ready to prove the following theorem.

Theorem 4.13 Let F be a fibered face of the magic manifold. Then there exist two
points , b0 2 @F and c0 2 int.F /, which satisfy the following:
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(1) For any r 2Q\ Œ1; 2/, there exists a sequence .S˛n
;  ˛n

/ of primitive integral
classes in CF converging projectively to b0 as n!1 such that

`C. ˛n
/�

1

j�.S˛n
/jr
:

(2) For any r 2Q\
�
3
2
; 2
�
, there exists a sequence .S˛n

;  ˛n
/ of primitive integral

classes in CF converging projectively to c0 as n!1 such that

`C. ˛n
/�

1

j�.S˛n
/jr
:

In particular , the upper bound in Theorem 1.1 is optimal when d D 2.

Proof Because of the symmetry of the Thurston norm ball BN , it suffices to prove
the theorem for the fibered face as we picked in Section 4.2. For (1), if 1 < r < 2, let
p and q be positive integers such that r D 2q=p with q < p < 2q. By Lemma 4.3,
the sequence.1; np; nq/C converges projectively to .0; 1; 0/ 2 @F . By Theorems 4.9
and 4.10, we have `C. .1;np;nq/C/� 1=n

2q . Since we have k.1; np; nq/Ck � np, it
follows that

`C. .1;np;nq/C/�
1

j�.S.1;np;nq/C/j
2q=p

D
1

j�.S.1;np;nq/C/j
r
;

where r D 2q=p 2 .1; 2/. If r D 1, it follows from Lemma 4.12.

For (2), if 3
2
� r < 2, let p and q be positive integers such that r D 2�p=q with 2p� q.

By Lemma 4.3, the sequence .1; np; nq/C converges projectively to
�
1
2
; 1
2
; 0
�
2 int.F /

as n!1. By Theorems 4.9 and 4.11, we have `C. ˛n
/� 1=n2q�p. Since we have

k.1; np; nq/Ck � n
q , it follows that

`C. .1;np;nq/C/�
1

j�.S.1;np;nq/C/j
2�p=q

D
1

j�.S.1;np;nq/C/j
r
;

where r D 2 � p=q 2
�
3
2
; 2
�
. For r D 2, one can choose a sequence of primitive

integral classes contained in the intersection between the cone over some compact set
K � int.F / and some 2–dimensional rational subspace of H 1.M/, eg the sequence
.1; n; n/C. Then the sequence satisfies the desired property from [3, Corollary 1].

Finally we consider the upper bound in Theorem 1.1 when d D 2. If .p; q/D .1; 2/,
then

`C. .1;n;n2/C
/�

1

j�.S.1;n;n2/C
/j1C1=2

:
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Then Theorem 1.1 implies that the sequence .1; n; n2/C of primitive integral classes
can not be contained in any finite union of 2–dimensional rational subspaces ofH 1.N /.
The fibered cone CF is a .2C1/–dimensional rational subspace of H 1.N /. Thus
Theorem 1.1 is optimal when d D 2.

In light of Theorem 4.13(1), we ask the following question.

Question 4.14 Let F be a fibered face of a compact hyperbolic fibered 3–manifold.
Does there exist a sequence .S˛n

;  ˛n
/ of primitive integral classes in CF converging

projectively to @F as n!1 such that `C. ˛n
/� 1=j�.S˛n

/j2?

By Theorem 4.13, we immediately have the following corollary.

Corollary 4.15 LetF be a fibered face of the magic manifoldN. For ˛2F\H 1.N IQ/,
let .Sz̨;  z̨/ be the fiber and pseudo-Anosov monodromy corresponding to the primitive
integral class z̨ lying on the ray of ˛ passing through the origin. Then there is no
normalization of the asymptotic translation length function

F \H 1.N IQ/!R�0; ˛ 7! `C. z̨/;

in terms of the Euler characteristic �.Sz̨/ which admits a continuous extension on F .
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Geometric triangulations and highly twisted links
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It is conjectured that every cusped hyperbolic 3–manifold admits a geometric triangu-
lation, that is, it can be decomposed into positive volume ideal hyperbolic tetrahedra.
We show that sufficiently highly twisted knots admit a geometric triangulation. In
addition, by extending work of Guéritaud and Schleimer, we also give quantified
versions of this result for infinite families of examples.
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1 Introduction

A topological triangulation of a 3–manifoldM is a decomposition ofM into tetrahedra
or ideal tetrahedra such that the result of gluing yields a manifold homeomorphic to M .
Every compact 3–manifold with boundary consisting of tori has interior that admits a
topological ideal triangulation; see Bing [4] and Moise [22].
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Figure 1: Constructing a fully augmented link.

A geometric triangulation is a much stronger notion. It is an ideal triangulation of a
cusped hyperbolic 3–manifold M such that each tetrahedron is positively oriented and
has a hyperbolic structure of strictly positive volume, and such that the result of gluing
gives M a smooth manifold structure with its complete hyperbolic metric. It is still
unknown whether every finite volume hyperbolic 3–manifold admits a geometric trian-
gulation, and there are currently only a few families which provably admit one. These
include 2–bridge knots and punctured torus bundles (due to Guéritaud and Futer [15]),
and all the manifolds of the SnapPy census (see Culler, Dunfield, and Weeks [6]), as well
as manifolds built from isometric Platonic solids; see Goerner [13; 14]. On the other
hand, Choi has shown that there exists an orbifold with no geometric triangulation [5].

We prove that a large family of knots admit geometric triangulations. To state the main
result, we recall the following definitions.

A twist region of a link diagram consists of a portion of the diagram where two strands
twist around each other maximally. More carefully, let D.K/ be a diagram of a link
K � S3. Two distinct crossings of the diagram are twist equivalent if there exists a
simple closed curve on the diagram that runs transversely through the two crossings,
and is disjoint from the diagram elsewhere. The collection of all twist equivalent
crossings forms a twist region.

Note that one can perform flypes on a link diagram until all twist equivalent crossings
line up in a row, forming bigons between them. Suppose every simple closed curve that
meets the diagram transversely only in two crossings has the property that it bounds a
region of the diagram consisting only of bigons, or possibly contains no crossings. If
this holds for every simple closed curve, the diagram is called twist-reduced. Figure 1,
left, shows an example of a twist-reduced diagram with exactly two twist regions.

Theorem 5.5 For every n� 2, there exists a constant An depending on n, such that
if K is a link in S3 with a prime , twist-reduced diagram with n twist regions , and at
least An crossings in each twist region , then S3�K admits a geometric triangulation.

Algebraic & Geometric Topology, Volume 23 (2023)
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The proof uses links called fully augmented links. These are obtained by starting with
a twist-reduced diagram of any knot or link, and for each twist-region adding a simple
unknot called a crossing circle encircling the twist-region. We further remove all pairs
of crossings in each twist region; see Figure 1.

The result has explicit geometric properties, and can be subdivided into geometric
tetrahedra. The original link complement is obtained by Dehn filling the crossing
circles. We complete the proof of Theorem 5.5 by arguing that Dehn filling can be
performed in a way that gives a geometric triangulation.

In fact, we can prove a result that is more general than Theorem 5.5, allowing any
Dehn fillings on crossing circles and indeed leaving some crossing circles unfilled:

Theorem 5.4 Let L be a hyperbolic fully augmented link with n� 2 crossing circles.
Then there exist constants A1; : : : ; An such that if M is a manifold obtained by Dehn
filling the crossing circle cusps of S3�L along slopes s1; : : : ; sn whose lengths satisfy
len.si /�Ai for each i D 1; : : : ; n, then M admits a geometric triangulation. Allowing
some collection of si D1, meaning leaving some crossing circle cusps unfilled , also
admits a geometric triangulation.

Guéritaud and Schleimer considered geometric triangulations and Dehn filling [16].
They showed that if a cusped manifold satisfies certain “genericity” conditions, then
Dehn filling can be performed via geometric triangulation.1 Unfortunately, the usual
geometric decomposition of a fully augmented link, as in Agol and Thurston [2] or Futer
and Purcell [11] and Purcell [27], fails Guéritaud and Schleimer’s genericity conditions.
Nevertheless, we may adjust the decomposition to give a triangulation satisfying the
Guéritaud–Schleimer conditions. This is the idea of the proof of Theorem 5.5.

Highly twisted knots, as in Theorem 5.5, are known to have other useful geometric
properties. For example, they can be shown to be hyperbolic when there are at least six
crossings in each twist region [11]. When there are at least seven, there are bounds on
the volumes of such knots and links; see Futer, Kalfagianni, and Purcell [10]. With
at least 116 crossings per twist region, there are bounds on their cusp geometry; see
Purcell [25]. The results of Theorem 5.5 are not as nice as these other results, because
we do not have an effective universal bound on the number of crossings per twist region
required to guarantee that a knot admits a geometric triangulation. Nevertheless, we
conjecture such a bound holds.

1In fact, they showed something stronger: that Dehn filling gives a triangulation that is actually canonical,
ie dual to the Ford–Voronoi domain, but we will not consider canonical decompositions here.
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To obtain effective results, we need to generalise and sharpen results of Guéritaud and
Schleimer, and we do this in the second half of the paper. This allows us to present
two effective results, which guarantee geometric triangulations of new infinite families
of cusped hyperbolic 3–manifolds.

Theorem 8.6 Let L be a fully augmented link with exactly two crossing circles. Let
M be a manifold obtained by Dehn filling the crossing circles of S3�L along slopes
m1; m2 2 .Q[f1=0g/�f0; 1=0;˙1;˙2g. Then M admits a geometric triangulation.

There are three fully augmented links with exactly two crossing circles. One is the
Borromean rings and the others are closely related; these are shown in Figure 13. The
Dehn fillings of these links include double twist knots, which were already known to
admit geometric triangulations by Guéritaud and Futer [15]. They also include large
families of cusped hyperbolic manifolds that do not embed in S3. More generally:

Theorem 9.12 Let L be a result of taking the standard diagram of a 2–bridge link ,
and then fully augmenting the link , such that L has n > 2 crossing circles (and no
half-twists). Let s1; s2; : : : ; sn 2 Q[ f1=0g be slopes , one for each crossing circle ,
that are all positive or all negative. Suppose finally that s1 and sn are the slopes on the
crossing circles on either end of the diagram , and the slopes satisfy

s1; sn … f0=1; 1=0;˙1=1;˙2=1g and s2; : : : ; sn�1 … f0=1; 1=0;˙1=1g:

Then the manifold obtained by Dehn filling S3�L along these slopes on its crossing
circles admits a geometric triangulation.

For ease of notation, we will refer to a link such as L in the above theorem as a fully
augmented 2–bridge link. That is, a fully augmented 2–bridge link is obtained by fully
augmenting the standard diagram of a 2–bridge link.

The Borromean rings and other links of Theorem 8.6 form examples of fully augmented
2–bridge links, and therefore instances of Theorem 8.6 also follow from Theorem 9.12.
However, we prove the theorems separately to build up tools.

The manifolds included in Theorem 9.12 include many 2–bridge links, obtained by
setting each sj D 1=mj where mj is an integer with appropriate sign. Such a Dehn
filling gives a 2–bridge link with a diagram with at least two crossings per twist region,
an even number of crossings in each twist region, and conditions on signs of twisting.
All 2–bridge links were already known to admit geometric triangulations [15]. However,
again Theorem 9.12 also includes infinitely many additional manifolds obtained by
different Dehn fillings.

Algebraic & Geometric Topology, Volume 23 (2023)
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1.1 More on geometric triangulations

It is known that every cusped hyperbolic 3–manifold has a decomposition into convex
ideal polyhedra, due to work of Epstein and Penner [7]. The convex polyhedra may be
further subdivided into tetrahedra, but the result may not give a geometric triangulation.
The difficulty is that the subdivision involves triangulating the polygonal faces of
the polyhedra, and these triangulations may not be consistent with each other under
gluing. To solve this problem, flat tetrahedra are inserted between identified faces of
the polyhedra; see Petronio and Porti for more discussion [24].

If we pass to finite covers, then geometric triangulations exist by work of Luo, Schleimer,
and Tillmann [21]: every cusped hyperbolic 3–manifold admits a finite cover with a
geometric triangulation.

If we relax the restriction that the tetrahedra glue to give a complete hyperbolic metric,
and only require that the dihedral angles of each tetrahedron are strictly positive and sum
to 2� around each edge of the triangulation, then the result is called an angle structure
(or sometimes a strict angle structure). Geometric triangulations admit angle structures.
Moreover, Hodgson, Rubinstein, and Segerman show that many 3–manifolds admit an
angle structure, including all hyperbolic link complements in S3 [18]. However, they
note that the triangulations they find are not generally geometric.

There was some hope in the past that a class of triangulations introduced by Agol [1],
called veering triangulations, give geometric triangulations. Indeed it was shown by
Hodgson, Rubinstein, Segerman, and Tillmann [19] and by Futer and Guéritaud [9] that
veering triangulations admit angle structures. However Hodgson, Issa, and Segerman
found a 13–tetrahedron veering triangulation that is not geometric [17], and recently
Futer, Taylor, and Worden showed that a random veering triangulation is not geo-
metric [12]. Thus, tools to exhibit geometric triangulations must come from other
directions.

Why geometric triangulations? Various results become easier with geometric triangula-
tions. For example, Neumann and Zagier showed that certain useful bounds exist on the
volume of a hyperbolic 3–manifold that admits a geometric triangulation [23], although
this can be proven in general with more work; see Petronio and Porti [24]. Similarly,
Benedetti and Petronio give a straightforward proof of Thurston’s hyperbolic Dehn
surgery theorem using geometric triangulations [3]. Choi finds nice conditions on the
deformation variety for manifolds admitting geometric triangulations [5]. In summary,
such triangulations seem to lead to simpler proofs, and more manageable geometry.

Algebraic & Geometric Topology, Volume 23 (2023)
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1.2 Organisation

The paper is organised as follows. Sections 2 through 5 give the proof of Theorem 5.5
on more general highly twisted knots. We recall fully augmented links in Section 2,
layered solid tori in Sections 3 and 4, and put this together with Dehn filling in Section 5.

Sections 6 through 8 give the proof of Theorem 8.6, on Dehn fillings of links with two
crossing circles, and build up the new machinery required for both Theorem 8.6 and
Theorem 9.12.

Finally, in Section 9, we complete the proof of Theorem 9.12, on Dehn fillings of fully
augmented 2–bridge links.

Acknowledgements We thank B Nimershiem for helping us to improve the exposition
in Section 4. We also thank the referees for their comments, which helped us improve
the paper. Both authors were supported in part by the Australian Research Council.

2 Fully augmented links

The links of the main theorem, Theorem 5.5, are obtained by Dehn filling a parent link,
called a fully augmented link. In this section, we review fully augmented links and
their geometry, and show that they admit geometric triangulations.

Begin with any twist-reduced diagram of a link. As in Figure 1, middle, for each set of
twist equivalent crossings, insert a single unknotted curve that encircles the bigons of
the twist region. If a twist region consists of only a single crossing, there are two ways
to insert this link component; either will do. These unknotted components are chosen
to be disjoint, and to bound discs that are punctured by exactly two strands of the
original link. We call them crossing circles. A fully augmented link is a link obtained
by adding a single crossing circle to every twist region of a twist-reduced diagram, and
then removing all crossings that bound a bigon. That is, crossings are removed in pairs.
The resulting diagram consists of crossing circles that are perpendicular to the plane
of projection and strands that lie on the plane of projection except possibly for single
crossings in the neighbourhood of a crossing circle; see Figure 1, right.

Agol and Thurston studied the geometry of fully augmented links using a decomposition
into ideal polyhedra [2]. In particular, they show that every fully augmented link admits
a decomposition into two identical totally geodesic polyhedra that determine a circle
packing on C. The result we need is the following:
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Figure 2: Left: the general form of a circle packing determining a polyhedron,
with a vertex that projects to a crossing circle cusp at the point at infinity. The
dashed lines show two parallel shaded faces meeting at infinity. The region
between the circles and lines will be filled with a circle packing. Note, white
and shaded faces through infinity cut out a rectangle. Right: a specific example.

Proposition 2.1 A fully augmented link decomposes into the union of two identical
ideal polyhedra with the following properties.

(1) Each polyhedron is convex, right-angled , with a checkerboard colouring of its
faces , shaded and white. The shaded faces are all ideal triangles , each a subset
of a 2–punctured disc bounded by a crossing circle.

(2) Each polyhedron is determined by a circle packing on R2 [ f1g, with white
faces lifting to planes in H3 whose boundaries are given by the circles. Shaded
faces lift to planes with boundaries given by the dual circle packing.

(3) Embed the ideal polyhedron in H3 as a convex right-angled polyhedron. Each
ideal vertex projects to a link component , or more precisely , the boundary of a
sufficiently small horoball neighbourhood of an ideal vertex projects to a subset
of a horospherical torus about a link component.

Apply an isometry so that an ideal vertex corresponding to a crossing circle lies
at the point at infinity in the upper half space model of H3. Then two white faces
form parallel vertical planes meeting the point at infinity, with two shaded faces
forming perpendicular parallel vertical planes , cutting out a rectangle. Two other
white faces , defining circles tangent to the white parallel vertical planes , meet
the shaded parallel vertical planes at right angles. This forms a rectangle with
two circles; see Figure 2.

Moreover , none of the four ideal vertices on R2 corresponding to the corners of
the rectangle project to crossing circles.
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Figure 3: Left to right: Slice along shaded faces bounded by 2–punctured
discs and unwind single crossings. Then slice along the white plane of
projection. Shrinking remnants of the link to ideal vertices gives the ideal
polyhedron. The circle packing is obtained by lifting the polyhedron to H3,
and taking boundaries of white faces.

Proofs of Proposition 2.1 can be found in various places, including [11; 27]. We review
the details briefly as they are important to our argument.

Proof of Proposition 2.1 There are two types of totally geodesic surface in the
complement of a fully augmented link, and these will form the white and shaded faces
of the polyhedra. The first totally geodesic surface comes from embedded 2–punctured
discs bounded by crossing circles; colour each of these shaded.

The second comes from a surface related to the plane of projection. If the fully
augmented link has no crossings on the plane of projection, then it is preserved by a
reflection in the plane of projection and the white surface is the plane of projection.
This reflection is realised by an isometry fixing the white surface pointwise, so the
white surface is totally geodesic. If the link admits single crossings adjacent to crossing
circles, reflection in the plane of projection will change the direction of each crossing.
However, a full twist about the adjacent crossing circle is a homeomorphism of the
complement, and it returns the link to its original position. The combination of reflection
followed by twists is an isometry fixing a surface pointwise; this is the white surface.
Again it is totally geodesic.

To obtain the decomposition into ideal polyhedra, first cut along each shaded 2–
punctured disc. Near single crossings, rotate one copy of the 2–punctured disc by 180ı

to remove the crossing from the diagram. The white face then lies on the projection
plane. Slice along the projection plane. This process is shown in Figure 3.

The result is two ideal polyhedra. We now show that these satisfy the properties
stated. First, the checkerboard colouring is as claimed, by construction. The involution
described above is the reflection through white faces taking one polyhedron to another.
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Also, note that under the involution, shaded 2–punctured discs are taken to their
reflections in the projection plane, hence must still be geodesic. It follows that they are
perpendicular to white faces, and so the polyhedron is right-angled.

The circle packing comes from the totally geodesic white faces. These faces are all
disjoint, and correspond to regions of the plane of projection. They lift to a collection
of geodesic planes in H3, whose boundaries form a collection of circles that are tangent
exactly when two white faces are adjacent across a strand of the link, or meet a common
crossing circle. The shaded faces lift to ideal triangles, dual to the white circles. Thus
this corresponds to a circle packing by shaded circles dual to a circle packing of white
circles. The intersections of the exteriors of planes in H3 defined by the circles gives a
convex region with all right-angled dihedral angles; this is the geometric structure on
the ideal polyhedron.

The fact that the cusp is as claimed follows from the fact that each ideal vertex of the
polyhedron is 4–valent, so moving one to infinity gives a rectangle, and each shaded
face is an ideal triangle, so beneath a vertical shaded face lies a single white circle. The
shaded ideal triangle is obtained by slicing a 2–punctured disc through the projection
plane. One vertex corresponds to an arc of the crossing circle above (or below) the
projection plane, and the other two vertices correspond to strands of the link running
through the crossing circle. Thus, exactly one of the ideal vertices of the shaded
triangle corresponds to a crossing circle. Because the ideal vertex corresponding to the
crossing circle lies at infinity, the other two ideal vertices, lying at points of intersection
of vertical shaded and white planes, must correspond to link strands on the plane of
projection. These are other vertices of the rectangle on R2.

We will show that fully augmented links admit a geometric triangulation coming from
the decomposition into polyhedra of Proposition 2.1. To do so, we will show that
appropriate neighbourhoods of crossing circles can be triangulated separately.

Consider a polyhedron from the decomposition of a fully augmented link, as in
Proposition 2.1. Arrange the polyhedron in H3 so that the point at infinity projects to a
crossing circle cusp, with vertical planes cutting out a rectangle on @H3. Then there is
a unique circle on @H3 meeting each vertex of the rectangle. It intersects exactly four
of the circles in the circle packing corresponding to white faces of the polyhedron; see
Figure 4. The circle is the boundary of a geodesic plane in H3. The intersection of the
plane with the polyhedron determines a totally geodesic rectangular surface.
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Figure 4: For each ideal vertex corresponding to a crossing circle, there exists
a circle running through all four vertices of the rectangle of Proposition 2.1(3).
Each of these defines a plane in H3, and their intersection with the polyhedron
defines a rectangle R.

Lemma 2.2 Let R1; : : : ; Rn denote the totally geodesic rectangular surfaces arising
as above , one for each crossing circle vertex. Then either the interiors of the rectangles
are pairwise disjoint , or there exist exactly two crossing circles , each ideal polyhedron
is a regular ideal octahedron , and the rectangle R1DR2 cuts each polyhedron into two
square prisms.

Proof Let C denote the circle running through the four vertices of the rectangle
of a crossing circle cusp. Consider the intersection of this circle C and the circles
corresponding to white faces of the polyhedron. The circle C intersects the two vertical
planes that form two of the four edges of the rectangle; this gives two intersections.
Additionally, the circle C intersects the two hemispheres bounded by circles meeting
the vertical planes, as at the top and bottom of Figure 4.

The fact that C cannot meet any other white faces of the polyhedron now follows
from the fact that it encloses the region on @H3 bounded by the parallel vertical planes
and by the two white circles tangent to them. All other white circles are completely
contained in this region. Therefore, the hemispheres they determine cannot intersect C .

Now we consider the intersections of two rectangular surfaces R1 and R2 arising from
circles C1 and C2 from different crossing circles. Arrange the polyhedron so that
the crossing circle vertex corresponding to R1 lies at infinity, and R1 determines a
circle C1 running through four vertices of a rectangle. The rectangular surface R2

lies on a geodesic hemisphere H2 whose boundary on @H3 is a circle C2. By the
argument above, C2 meets exactly four of the white circles in the circle packing; these
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intersections cut C2 into four circular arcs. Note that the endpoints of each arc are
ideal vertices of the polyhedron.

If the surfaces R1 and R2 intersect, then the circles C1 and C2 intersect. Because the
circular arcs of C2 lie inside white circles of the circle packing, this is possible only
if a point of intersection of C1 and C2 occurs within one of the circles of the circle
packing. Because C1 only meets the two parallel sides of the rectangle and two circles
tangent to them, the circles where C1 and C2 intersect must be among these circles.

Next note that C1 and C2 must intersect twice within the same circle of the circle
packing, else the ideal vertices met by circular arcs of C1 and C2 interleave on a circle.
However, C1 runs through the outermost ideal vertices on each of the four circles under
consideration: there are no additional ideal vertices outside the rectangle for C2 to
meet for interleaving.

Finally, the intersection points either lie on the vertices of the rectangle defining R1, or
lie outside that rectangle, because C1 lies outside that rectangle. But only points inside
the rectangle lie inside the polyhedron, so intersections outside the rectangle cannot
give intersections of R1 and R2, which both are embedded in the polyhedron.

The only remaining possibility is that C1 and C2 both run through at least two of the
same ideal vertices on the rectangle defining R1. If exactly two, R1 and R2 share
an edge, but have disjoint interiors as claimed. If more than two, then they must
share all four ideal vertices, and R1 and R2 agree. In this case, the polyhedron is
determined: it must be a regular ideal octahedron with R1 DR2 cutting off an ideal
vertex corresponding to a crossing circle on either side. The fully augmented link
can only have two crossings circles, corresponding to the ideal vertices used to define
R1 and R2. The rectangles R1 D R2 cut the octahedron into two pyramids over a
square base.

Proposition 2.3 Every fully augmented link admits a geometric triangulation with the
following properties:

(1) Each crossing circle meets exactly four tetrahedra , two in each polyhedron.

(2) The triangulation is symmetric across the white faces. That is , a reflection across
white faces preserves the triangulation.

Proof Begin with the ideal polyhedral decomposition of Proposition 2.1. For either
one of the two symmetric ideal polyhedra, cut off each ideal vertex corresponding to a
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crossing circle by cutting along the rectangles of Lemma 2.2. This splits the polyhedron
into n pyramids over a rectangular base corresponding to crossing circles, where n is
the number of crossing circles, and one remaining convex ideal polyhedron P . In the
case that there are just two crossing circles, the remaining convex ideal polyhedron is
degenerate: it is just the rectangle R1 DR2. In all other cases, it has 3–dimensional
interior.

Split each rectangular pyramid into two geometric tetrahedra by choosing a diagonal
of the rectangle and cutting along it.

When we reglue into the fully augmented link, the choices of diagonals on the rectangles
R1; : : : ; Rn are mapped to ideal edges on the convex polyhedron P . When R1 DR2,
and P is degenerate, choosing the same diagonal gives the desired triangulation.

When P is nondegenerate, we triangulate it by coning. Choose any ideal vertex w
of P . For any face not containing w that is not already an ideal triangle, subdivide
the face into ideal triangles in any way by adding ideal edges. Then take cones from
w over all the triangles in faces disjoint from w. Because P is convex, the result is a
division of P into geometric ideal tetrahedra.

Transfer the triangulation on the first polyhedron to the second by reflection in the
white surface. This gives both polyhedra exactly the same subdivision, up to reflection.

Now note that the polyhedra glue by reflection in the white faces, so no new flat
tetrahedra need to be introduced in these faces to obtain the gluing. All shaded faces
are ideal triangles, which are glued by isometry and again no flat tetrahedra need to
be introduced. Thus the decomposition of the polyhedra into geometric tetrahedra
described above gives a decomposition of the fully augmented link complement into
geometric tetrahedra.

Finally, the fact that the geometric triangulation satisfies the two properties of the
theorem follows by construction: each crossing circle meets two rectangles, hence four
tetrahedra, and the triangulation is preserved by the reflection in the white faces.

The previous lemma gives a geometric triangulation of a fully augmented link, but
four tetrahedra meet each crossing circle. We need a triangulation for which only two
tetrahedra meet each crossing circle:

Proposition 2.4 Every fully augmented link admits a geometric triangulation with the
property that each crossing circle meets exactly two tetrahedra.
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R1 R2

C

Figure 5: Glue both polyhedra in the decomposition of a fully augmented link
along a white face corresponding to a vertical plane in H3. Two rectangles,
R1 and R2, are glued as shown. A larger circle C runs through vertices of
both R1 and R2.

Proof Begin with the geometric triangulation of Proposition 2.3 and consider the cross-
ing circles. These are triangulated by exactly four tetrahedra, two in each polyhedron.
For each of the two tetrahedra in one polyhedron, one face lies on a totally geodesic
ideal rectangle coming from Lemma 2.2 embedded in H3. Call the two rectangles, one
for each polyhedron, R1 and R2.

Adjust the geometric triangulation as follows. At an ideal vertex corresponding to a
crossing circle, two polyhedra are glued along a white face. The result of gluing both
polyhedra together along such a face is shown in Figure 5. Note, rectangles R1 and
R2 are glued along an edge. The boundary of the two glued polyhedra forms an even
larger rectangle, with boundary the outermost parallel lines in Figure 5 and the dashed
lines.

There is a circle C running through each vertex of that rectangle, shown in red in
Figure 5. Note that the hemisphere defined by C in H3 meets an edge of R1 and an
edge of R2. Cutting along the hemisphere cuts the two polyhedra along a rectangle R.
The region bounded by R1, R2, R and the two polyhedra is a solid with three ideal
quadrilateral faces and two ideal triangle faces; it forms a prism over an ideal triangle.
The region between R and infinity forms a neighbourhood of the crossing circle vertex.
Triangulate it by adding an edge along a diagonal of R and then coning to infinity. This
gives two geometric ideal tetrahedra meeting the crossing circle vertex. These are the
only tetrahedra meeting this vertex.
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It remains to triangulate the prism over the ideal triangle bounded by R1, R2, and R.
The rectangles R1, R2, and R all have been triangulated by a choice of diagonal;
the one on R comes from the paragraph just above, and those on R1 and R2 come
from Proposition 2.3. These three edges determine two ideal triangles whose interiors
are disjoint in the interior of the triangular prism. They divide the prism into three
geometric tetrahedra.

3 Layered solid tori

To obtain highly twisted links, we will be performing Dehn filling on the crossing circle
cusps of fully augmented links, using the triangulation of Proposition 2.4. We need a
triangulation of the solid torus used in the Dehn filling. The triangulation that will work
in this setting is a layered solid torus, first described by Jaco and Rubinstein [20]. In
this section, we will review the construction of layered solid tori, and how they can be
used to triangulate a Dehn filling of a triangulated manifold such as a fully augmented
link.

The boundary of a layered solid torus consists of two ideal triangles whose union is a
triangulation of a punctured torus. The space of all such triangulations of punctured tori
is described by the Farey graph. Guéritaud and Schleimer present a description of the
layered solid torus using the combinatorics of the Farey graph [16], and then glue this
into the boundary of a manifold to be Dehn filled. We will follow their presentation.

3.1 Review of layered solid tori

Recall first the construction of the Farey triangulation of H2. We view H2 in the
disc model, with antipodal points 0=1 and 1=0D1 in @H2 lying on a horizontal line
through the centre of the disc, with 1=0 on the left and 0=1 on the right. Put 1=1 at the
north pole, and �1=1 at the south pole. Two points a=b and c=d in Q[f1=0g � @H2

have distance measured by

i.a=b; c=d/D jad � bcj:

Here i. � ; � / denotes geometric intersection number of slopes on the torus. We draw
an ideal geodesic between each pair a=b and c=d with jad � bcj D 1. This gives the
Farey triangulation.

Any triangulation of a once-punctured torus consists of three slopes on the boundary of
the torus, with each pair of slopes having geometric intersection number 1. Denote the
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Figure 6: Each triangle in the Farey graph determines a triangulation of a
punctured torus. Moving across an edge replaces one of the three slopes of
the triangulation by a different slope.

slopes by p, q, and r . Note that this triple determines a triangle in the Farey triangulation.
Moving across an edge of the Farey triangulation changes the triangulation by replacing
one slope with another, say r 0 replaces r ; see Figure 6.

In the case that we wish to perform a Dehn filling by attaching a solid torus to a
triangulated once-punctured torus, there are four important slopes involved. Three of
the slopes are the slopes of the initial triangulation of the once-punctured solid torus.
In our setting, these will typically either be f0=1; 1=0; 1=1g or f0=1; 1=0;�1=1g. They
form an initial triangle in the Farey graph. The last slope is m, the slope of the Dehn
filling.

Now consider the geodesic in H2 from the centre of the initial triangle to the slope
m� @H2. This passes through a sequence of triangles in the Farey graph by crossing
edges of the Farey triangulation. In particular, there will be a finite sequence of triangles,
each determined by three slopes,

.T0; T1; : : : ; TN /D .pqr; pqr
0; : : : ; stm/;

with initial triangle T0 and final triangle TN such that m is not a slope of any previous
triangle in the sequence. For our purposes, we will require that N � 2. Thus we do
not allow m to be a slope of the initial triangle T0 nor a slope of the three triangles
adjacent to T0.

We build a layered solid torus by stacking a tetrahedron onto a once-punctured torus,
initially triangulated by the slopes of T0, and replacing one slope with another at each
step as we stack. That is, two consecutive once-punctured tori always have two slopes
in common and two that differ by a diagonal exchange. The diagonal exchange is
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Figure 7: Folding m makes it homotopically trivial.

obtained in three dimensions by layering a tetrahedron onto a given punctured torus
such that the diagonal on one side matches the diagonal to be replaced. In Figure 6, note
that the diagonal exchanges have been drawn in such a way to indicate the tetrahedra.

For each triangle in the path from T0 to TN�1, layer on a tetrahedron, obtaining a
collection of tetrahedra homotopy equivalent to T 2�Œ0; 1�. At the kth step, the boundary
component T 2�f0g has the triangulation of T0 and T 2�f1g has the triangulation of Tk .
Continue until kDN �1, obtaining a triangulated complex with boundary consisting of
two once-punctured tori, one triangulated by T0 and the other by TN�1. Recall that m
is a slope of TN — notice that we are not adding on a tetrahedron corresponding to TN .

If we stop at TN�1 (not TN ), then one further diagonal exchange will give the slope m.
That is, m is not one of the slopes of the triangulation of TN�1, but a single diagonal
exchange replaces the triangulation TN�1 with TN , which is a triangulation consisting
of two slopes s and t in common with TN�1 and the slope m cutting across a slope m0

of TN�1.

Recall, we are trying to obtain a triangulation of a solid torus for which the slope m is
homotopically trivial. To homotopically kill the slopem, fold the two triangles of TN�1

across the diagonal slope m0. Gluing the two triangles on one boundary component of
T 2 � I in this manner gives a quotient homeomorphic to a solid torus, with boundary
still triangulated by T0. Inside, the slopes t and s are identified. The slope m has been
folded onto itself, meaning it is now homotopically trivial; see Figure 7.

4 Angle structures

In order to prove that the triangulations we construct are geometric, we will use tools
from the theory of angle structures on 3–manifolds. (These are also often called strict
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angle structures in the literature.) We are following the lead of Guéritaud and Schleimer
in [16], who use angle structures to show that layered solid tori admit geometric
triangulations. The results we need are only slight generalisations of Guéritaud and
Schleimer’s work, and the proofs follow almost immediately. However, we believe it is
useful to step through the results and many of the proofs here as well. Not only does
that make this paper more self-contained, but it also sets up a number of tools that we
will need later in the paper when we further generalise to different triangulations of
solid tori. Thus in this section we review angle structures, relevant results such as the
Casson–Rivin theorem, and we work through the proof that layered solid tori admit
geometric triangulations using angle structures.

Definition 4.1 An angle structure on an ideal triangulation � of a 3–manifold M
(possibly with boundary) is an assignment of dihedral angles on each tetrahedron such
that opposite edges of the tetrahedron carry the same angle, and such that

(1) all angles lie in the range .0; �/,

(2) around each ideal vertex of a tetrahedron, the dihedral angles sum to � ,

(3) around each edge in the interior of M , the dihedral angles sum to 2� .

The set of all angle structures for the triangulation � is denoted by A.�/.

An angle structure on an ideal tetrahedron uniquely determines a hyperbolic structure
on that tetrahedron. However, an angle structure on a triangulated 3–manifold is not
as restrictive as a geometric triangulation. While one can assemble a space from
hyperbolic triangles determined by the angles, under the gluing there may be shearing
along edges. Thus the structure does not necessarily give a hyperbolic structure on M .

However, an angle structure determines a volume by summing the volumes of the
hyperbolic ideal tetrahedra with the dihedral angles given by the angle structures.
That is, recall that a hyperbolic ideal tetrahedron with dihedral angles ˛, ˇ, and 

has volume ƒ.˛/Cƒ.ˇ/Cƒ.
/, where ƒ is the Lobachevsky function. Define the
volume functional V WA.�/!R as follows. For p 2A.�/�R3n, assign to the angle
structure p D .p1; p2; p3; : : : ; p3n/ the real number

V.p/Dƒ.p1/Cƒ.p2/Cƒ.p3/C � � �Cƒ.p3n/:

The volume functional is a convex function on A.�/. That means it either takes its
maximum on the interior of the space A.�/, or there is no maximum in A, and V is
maximised on the boundary of the closure A.�/; see for example [8].
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The following theorem, proved independently by Casson and Rivin, will allow us to
use angle structures to obtain a geometric triangulation in the case that the maximum
occurs in the interior of the space A.�/.

Theorem 4.2 (Casson and Rivin) Let M be an orientable 3–manifold with boundary
consisting of tori , and let � be an ideal triangulation of M . Then a point p 2 A.�/
corresponds to a complete hyperbolic metric on the interior of M if and only if p
maximises the volume functional V WA.�/!R.

The proof of Theorem 4.2 follows from work in [28]. A different proof that includes a
nice exposition is given by Futer and Guéritaud [8].

4.1 Angle structures on layered solid tori

This subsection is devoted to the following proposition and its proof, which guarantees
an angle structure on a layered solid torus. The result is essentially [16, Proposition 10],
and the proof is very similar, but our statement is slightly more general. Additionally,
parts of the proof will be needed in a later section, so we include the full argument.

Proposition 4.3 Let p, q, and r be slopes on the torus that bound a triangle in the
Farey graph in H2. Let m be a slope separated from the triangle .p; q; r/ by at least
one triangle; that is , the geodesic 
 in H2 from the centre of triangle .p; q; r/ to m
intersects at least three triangles (one containing m, one containing .p; q; r/, and at
least one more). Relabel p, q, and r if necessary so that the geodesic 
 exits the
triangle .p; q; r/ by crossing the edge .p; q/, and exits the next triangle .p; q; r 0/ by
crossing the edge .q; r 0/. (Thus r is the first slope to disappear from the triangulation ,
and p is the second.) Assign to p, q, and r exterior dihedral angles �p, �q , and �r ,
respectively, satisfying

.4.4/ �pC �qC �r D �; �� < �p; �q < �; and 0 < �r < �:

Finally, consider the layered solid torus T with boundary @T a punctured torus triangu-
lated with slopes p, q, and r , and meridian the slope m. Set interior dihedral angles at
edges of slope p, q, and r of @T equal to � � �p, � � �q , and � � �r , respectively.

There exists an angle structure on T with the given interior dihedral angles if and only if

.4.5/ i.m; p/�pC i.m; q/�qC i.m; r/�r > 2�;

where i.a; b/ denotes geometric intersection number.
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Remark 4.6 Guéritaud and Schleimer actually require 0� �p; �q in the statement of
their proposition. However, most of their argument applies equally well if one of �p
or �q , say �p , is negative, provided � � �p < 2� . The other conditions will then imply
that �q is positive, and that �pC �r is positive, and these conditions suffice to prove
the proposition.

We start by setting up notation. Let T be a layered solid torus constructed by following a
geodesic 
 in the Farey graph in H2 from the centre of triangle .p; q; r/ to the slope m,
with 
 intersecting at least three triangles. Let .T0; T1; : : : ; TN�1; TN / denote the
sequence of triangles. As in the statement of Proposition 4.3, we label so that r is the
first slope to be replaced by diagonal exchange and p is the second.

Let �1; : : : ; �N�1 denote the tetrahedra in T , constructed as in Section 3. Thus �1

meets the boundary of the layered solid torus in slopes .p; q; r/, and the tetrahedron
�N�1 is folded on itself to form the solid torus with m homotopically trivial.

Lemma 4.7 The solid torus T has a single ideal vertex. A horosphere about this ideal
vertex intersects each tetrahedron of T in four triangles , arranged corner to corner
so that their outer boundary forms a hexagon , with opposite angles agreeing. For
tetrahedra �1; : : : ; �N�2, an inner boundary is also a hexagon , with inner boundary
of the triangles of �i identified to the outer boundary of the triangles of �iC1. For
tetrahedron �N�1, the four triangles form a solid hexagon.

Proof Consider the boundary of any layered solid torus. This is a 1–punctured torus
triangulated by two triangles. A path that stays on the 1–punctured torus that runs
once around the puncture will run over exactly six triangles; these form a hexagon in
the cusp neighbourhood of the solid torus; see Figure 8. Stripping the k outermost
tetrahedra off a layered solid torus yields a smaller layered solid torus for k < N � 1;
its boundary still forms a hexagon as in Figure 8.

The innermost tetrahedron has its two inside triangles folded together. This gives one
of the hexagons shown in Figure 9.

For the tetrahedron �i , label the (interior) dihedral angles by xi , yi , and zi , with
xiCyiCzi D� . By adjusting these labels, we may ensure that zi is the angle assigned
to the slope that is covered by �i , and that xi and yi are chosen to be in alphabetical
order when we run around one of the cusp triangles in anticlockwise order. These
labels agree with the choices in Figures 8 and 9.
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Figure 8: Left: a path encircling the puncture of the 1–punctured torus meets
exactly six triangles, meeting slopes p, q, r , p, q, and r , in order. Right:
These triangles lift to give a hexagon in the cusp neighbourhood of a layered
solid torus. The tetrahedron that effects the diagonal exchange from r to r 0 is
glued to the hexagon along two faces, forming a new hexagon in the interior.

Since opposite edges of a tetrahedron have the same angles, this choice of angles xi , yi ,
and zi completely determines the angles on the hexagons. We summarise the result in
the following lemma.

Lemma 4.8 For i 2 f1; : : : ; N � 2g, two opposite interior angles of the outer hexagon
of �i are zi , two opposite exterior angles of the inner hexagon are zi , and at the four
vertices shared by both hexagons , two angles xi meet at two of the opposite vertices ,
and two angles yi meet at two other opposite vertices.

For �N�1, the interior angles of the solid hexagon are either zN�1, 2xN�1C zN�1,
and 2yN�1 (with opposite angles agreeing), or zN�1, 2yN�1C zN�1, and 2xN�1

(with opposite angles agreeing).

Gluing tetrahedron�iC1 to�i in the construction of the layered solid torus corresponds
to performing a diagonal exchange in the triangulation of the boundary. One of the
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Figure 9: The last tetrahedron in the layered solid torus has two interior
triangles folded together. The two possible cases are shown.
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L

�i�1

�i

L

�iC1

ri�1

pi�1

ri

riC1

qi�1

ri�2

Figure 10: Turning left then left again in the Farey graph. Tetrahedron �i�1

has inner boundary with slopes pi�1, qi�1, and ri�1, with angles xi�1, yi�1,
and zi�1, respectively. Adding �i in the L direction removes the slope pi�1

from the inner boundary, replacing it with slope ri , with angle zi . Adding
�iC1 removes slope ri�1, replacing it with slope riC1, with angle ziC1.

three edges on the punctured torus boundary is covered by this move. In the cusp
picture of the hexagons, gluing �iC1 to �i glues four triangles to the inner hexagon.
Two opposite vertices are covered by the triangles and two new vertices are added to
the interior; see Figure 11 for an example.

The labelling of Lemma 4.8 implies that two vertices of the inner hexagon formed at
the i th step by �i have interior angle 2� � zi . These vertices were just added at the
previous step by diagonal exchange. Since the path 
 in the Farey graph is a geodesic,
these vertices will not be covered in the next step. Thus there are two choices for
vertices to cover. We call the choices L and R, referring to a choice of direction in
the Farey graph, as follows. After crossing the first edge in the Farey graph, L and R
are determined by the direction the geodesic 
 takes in the Farey graph, left or right.
Except in the last triangle of the Farey graph, this corresponds to attaching a tetrahedron
and covering a diagonal. Label the corresponding tetrahedron �i with an L or R, for
i D 2; : : : ; N � 1; see Figure 10 for an example.

We need to consider the interior angles of each hexagon. When values of the zi are
given, we will choose the xi and yi so that the interior angles form a Euclidean hexagon
at each step. Consider the outermost hexagon. The slopes of the edges of the outermost
hexagon are p, q, and r , and their interior angles are � � �p, � � �q , and � � �r ,
respectively, as in Proposition 4.3. These are chosen so that the sum of all interior
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angles is 4� , as usual for a Euclidean hexagon. Since tetrahedron�1 covers the edge of
slope r , the angle z1 must agree with the interior angle along the slope r , or z1D���r .
Now we consider the next hexagon.

Lemma 4.9 Let �r , �p, and �q denote exterior dihedral angles as in Proposition 4.3.
In particular , recall that r is the first slope covered , and p is the second.

For the first tetrahedron �1, set z1 D � � �r . Suppose z2 2 .0; �/, and define a new
variable z0 D � C �p.

The tetrahedron �2 has either an L or an R label. Assign the same label to �1, so
both are labelled L or both are labelled R.

� If both �1 and �2 are labelled L, set x1D��
1
2
.z0Cz2/, and y1D��z1�x1.

� If both �1 and �2 are labelled R, set y1D��
1
2
.z0Cz2/, and x1D��z1�y1.

Then the values of the interior angles of the hexagon between �1 and �2 are z2 (at the
two edges of slope p), 2� � z1, and z1� z2.

Proof One of the interior angles is immediate: the angle at the newly added edge of
slope r 0 is 2� � z1.

If �2 is labelled L, then the slope p is given angle x1 in �1, as in Figure 8, right.
Otherwise it is given angle y1 in �1, based on our orientation conventions. Assume
first that �2 is labelled L.

Before adding�1, the interior angle at the edge of slope p was ���p . After adding�1,
it decreases by 2x1. Thus the interior angle is

� � �p � 2x1 D � � �p � 2� C .z0C z2/D z2:

Similarly, after adding �1 the interior angle at the edge of slope q becomes

� � �q � 2y1 D � � .� � �p � �r/� 2.� � z1� x1/

D �pC �r � 2� C 2z1C 2� � z0� z2 D z1� z2:

Similar equations hold, only switching the roles of x1 and y1, if �2 is labelled R.

We will deal with the last tetrahedron �N�1 separately. For the others:

Lemma 4.10 Let �p, �q , and �r denote the exterior dihedral angles as they did in
Proposition 4.3. Suppose z0 D � C �p, z1 D � � �r , and z2; : : : ; zN�1 lie in .0; �/.
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For iD1; : : : ; N�2, assign the angles xi and yi as below , with assignments depending
on the labels (L or R) of �i and �iC1:

� If �i and �iC1 are labelled L, set xiD��
1
2
.zi�1CziC1/, and yiD��zi�xi .

� If �i and �iC1 are labelled R, set yiD��
1
2
.zi�1CziC1/, and xiD��zi�yi .

� If �i is labelled L and �iC1 labelled R, set yi D
1
2
.zi�1 � zi � ziC1/, and

xi D � � zi �yi .

� If �i is labelled R and �iC1 labelled L, set xi D
1
2
.zi�1 � zi � ziC1/, and

yi D � � zi � xi .

Then for i D 1; : : : ; N � 2, the hexagon between tetrahedra �i and �iC1 has interior
angles ziC1, 2� � zi , and zi � ziC1.

Moreover , for any interior edge obtained by layering tetrahedra �1; : : : ; �N�2, the
sum of the dihedral angles about that edge is 2� .

Proof The proof is by induction. We will show that after layering tetrahedron �iC1

onto tetrahedra �1; : : : ; �i , the interior edges of hexagons are as claimed, and the sum
of dihedral angles around all interior edges is 2� .

By Lemma 4.9, the interior angles of the hexagon are as claimed when i D 1. When
layering �1 onto the tetrahedra outside of the layered solid torus, there are no interior
edges created, so the statement on interior edges is vacuously true.

Now assume by induction that the interior angles of the hexagon between �i�1 and �i

are as claimed in the lemma, and that dihedral angles sum to 2� around any interior
edges in the layering of tetrahedra �1; : : : ; �i . Consider �iC1.

The argument is mainly a matter of bookkeeping, particularly keeping track of labels on
tetrahedra when turning left or right. We have illustrated the process carefully for the
case that�i and�iC1 are both labelled L. Figure 10 shows the path in the Farey graph.
What is important at each step is which slope is covered by the diagonal exchange
effected by adding the next tetrahedron. Thus �i covers a slope pi�1 and �iC1 covers
a slope ri�1.

Figure 11, left, shows the effect on the cusp triangulation. In that figure, the outermost
hexagon lies on the outside of �i�1, with the thick lines the hexagon between �i�1

and �i . The edges of �i�1 with slopes ri�1 are both assigned angle zi�1. In the
figure, slope ri�1 is marked by the red dot.
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Figure 11: Left: the cusp diagram of the portion of a layered solid torus
obtained by turning left, then left again. The red dot indicates an edge of the
triangulation that is surrounded by the three tetrahedra �i�1, �i , and �iC1.
Right: turning left then right. The vertices of the outer hexagon for �i�1 are
adjacent to these three tetrahedra, and to no other interior tetrahedra.

Adding tetrahedron �i gives a new hexagon, indicated by the thinner line in Figure 11,
left, between �i and �iC1. The edges of �i with slopes pi�1 and ri are assigned
angle zi . Our orientation convention then ensures that the edge of slope ri�1 is assigned
angle xi .

Finally we add tetrahedron �iC1. This gives a new innermost hexagon, indicated by
the dashed lines in Figure 11, left. The edge of slope ri�1 is assigned angle ziC1.

First we consider the interior angles of the hexagon between �i and �iC1. One of
these is 2� � zi , as desired. The other two are obtained by subtracting 2xi and 2yi

from interior angles of the hexagon at the previous step. In particular, we have angles

2� � zi�1� 2xi D 2� � zi�1� 2� C zi�1C ziC1 D ziC1

and

zi�1� zi � 2yi D zi�1� zi � 2� C 2zi C .2� � zi�1� ziC1/D zi � ziC1;

as desired.

Notice that after adding tetrahedron �iC1, the edge of slope ri�1 is completely sur-
rounded by tetrahedra �i�1, �i , and �iC1, and thus it becomes an interior edge.
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Notice also that this is the only new interior edge obtained by adding �iC1. Thus we
only need to ensure the sum of dihedral angles about this edge is 2� . We read the
dihedral angles off of Figure 11, left:

zi�1C 2xi C ziC1 D 2�:

This will hold if and only if xi satisfies the requirements of the lemma.

A very similar pair of pictures, Farey graph and cusp triangulation, gives the result
in the case where �i and �iC1 are both labelled R. In this case, however, the slope
qi�1 will be covered by �i . Again, ri�1 will then be covered by �iC1, but by turning
right, the angles adjacent to the slope ri�1 in this case will be zi�1, two copies of yi ,
and ziC1. Thus this case differs from the previous only by switching the roles of xi

and yi .

If we first turn left then turn right, the slope pi�1 is covered first by �i , then qi�1 by
�iC1; see Figure 11, right. The interior angles of the hexagon between �i and �iC1

are 2� � zi , 2� � zi�1� 2xi , and zi�1� zi � 2yi . The last two simplify as follows:

2� � zi�1� 2xi D 2� � zi�1� 2� C 2zi C 2yi

D 2� � zi�1� 2� C 2zi C .zi�1� zi � ziC1/D zi � ziC1;

zi�1� zi � 2yi D zi�1� zi � zi�1C zi C ziC1 D ziC1:

Finally, in this case, none of the newly added edges are surrounded by the three
tetrahedra �i�1, �i , and �iC1. However, adding �iC1 may have created an interior
edge at qi�1 if qi�1 does not lie on the boundary of the layered solid torus. By induction,
we know that the interior angle of the hexagon between �i�1 and �i at the edge of
slope qi�1 must be zi�1� zi . To this we add two angles yi coming from �i , and one
angle ziC1 from �iC1.

In particular, the angles will fit into the Euclidean hexagon, and therefore have the
correct angle sum, if and only if

2yi C ziC1 D zi�1� zi :

This holds if and only if yi satisfies the requirement of the lemma.

The case of R followed by L is nearly identical, with the roles of xi and yi switched.
Thus by induction, the result holds for i D 1; : : : ; N � 2.
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Figure 12: Shown are both cases when �N�1 is labelled L. On the left, the
empty tetrahedron �N is labelled L, and on the right, the empty tetrahedron
�N is labelled R.

Lemma 4.11 Consider the last tetrahedron �N�1. Assign a label L or R to an empty
tetrahedron �N depending on whether 
 turns left or right when running into the final
triangle TN of the Farey complex, and set zN D 0. Define the angles xN�1 and yN�1

in terms of zN , zN�1, and zN�2 depending on the labels L or R on �N�1 and �N

exactly as in Lemma 4.10. Then the sum of dihedral angles is 2� around the interior
edges in the layered solid torus that are surrounded by �N�2 and �N�1.

Proof The proof is very similar to that of Lemma 4.10. The cusp triangulations for
cases LL and LR are shown in Figure 12.

In the case LL, exactly one edge in the interior of the solid torus is surrounded by
�N�2 and �N�1. The sum of the angles around this edge is

zN�2C 2xN�1 D zN�2C 2� � zN�2� zN D 2�;

since zN D 0. Thus the sum is 2� in the LL case when i DN � 1.

In the case LR, an interior edge is surrounded by �N�1 and �N�2, and the sum of
angles around the edge must be

zN�2C2xN�1CzN�1 D zN�2CzN�1C2.��zN�1�yN�1/

D zN�2CzN�1C2��2zN�1�zN�2CzN�1CzN D 2�:

The cases RR and RL hold similarly.

Lemma 4.12 Let �p, �q , and �r be as in Proposition 4.3. Let

.z0 D � C �p; z1 D � � �r ; z2; : : : ; zN�1; zN D 0/
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be a sequence of numbers with zi 2 .0; �/ for i D 1; : : : ; N �1. Let xi or yi be defined
in terms of the sequence of the zj via the equations of Lemma 4.10. Then xi , yi , and zi

give an angle structure on the layered solid torus if and only if , for each iD1; : : : ; N�1,
the sequence satisfies�
zi�1 > zi C ziC1 if �i and �iC1 are labelled RL or LR (hinge condition);
zi�1C ziC1 > 2zi if �i and �iC1 are labelled RR or LL (convexity condition),

and additionally z2 < � � �p.

Moreover , if they give an angle structure , then the sequence is strictly decreasing.

Proof Suppose first that we have an angle structure. Then xi ; yi ; zi 2 .0; �/ for
i D 1; : : : ; N � 1, and xi C yi C zi D � . We can use this equation along with the
equations of Lemma 4.10 to write both xi and yi in terms of zi�1, zi , and ziC1.

In the LL or RR case, each of the xi and yi are one of

.4.13/ 1
2
.zi�1� 2zi C ziC1/ and � � 1

2
.zi�1C ziC1/:

Thus, because we are assuming we have an angle structure, we have:

0 < 1
2
.zi�1� 2zi C ziC1/ < � and 0 < � � 1

2
.zi�1C ziC1/ < �:

The first inequality on the left implies the convexity equation. When i D 1, the first
inequality on the right implies z2 < � � �p.

In the RL or LR case, each of the xi and yi are one of

.4.14/ 1
2
.zi�1� zi � ziC1/ and � � 1

2
.zi�1C zi � ziC1/:

Because we have an angle structure,

0 < 1
2
.zi�1� zi � ziC1/ < � and 0 < � � 1

2
.zi�1C zi � ziC1/ < �:

Again the first inequality on the left implies the hinge equation. This concludes one
direction of the proof.

Now suppose for each i D 1; : : : ; N � 1, the sequence satisfies the convexity or hinge
condition. We check the conditions on an angle structure, Definition 4.1. Condition (2)
holds by our definition of xi and yi : by hypothesis we require xi Cyi C zi D � .

Condition (3) follows from Lemmas 4.10 and 4.11. These lemmas prove that, given
our definitions of xi and yi in terms of zi�1, zi , and ziC1, the sum of dihedral angles
around every interior edge of the layered solid torus is 2� .
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As for condition (1), by hypothesis each zi 2 .0; �/ for i D 1; : : : ; N �1. It remains to
show that xi and yi lie in .0; �/ for i D 1; : : : ; N �1. In the LL or RR case, we have
noted that xi and yi are as in (4.13). Thus we need

0 < 1
2
.zi�1� 2zi C ziC1/ < � and 0 < � � 1

2
.zi�1C ziC1/ < �:

These give four inequalities. When i D 2; : : : ; N � 1, three of the inequalities are
automatically satisfied when zi�1, zi ; ziC1 2 .0; �/ or when i D N � 1 and zN D 0.
The final inequality holds if and only if zi�1 C ziC1 > 2zi , which is the convexity
condition.

When i D 1, the inequalities become

0 < 1
2
..� C �p/� 2.� � �r/C z2/ < � and 0 < � � 1

2
..� C �p/C z2/ < �:

These give four inequalities, one of which is automatically true for 0 < � C �p < � ,
and the other three all hold if and only if

� � �p � 2�r < z2 < � � �p:

For 2� i �N � 1 in the RL or LR case, xi and yi are as in (4.14). Thus we require

0 < 1
2
.zi�1� zi � ziC1/ < � and 0 < � � 1

2
.zi�1C zi � ziC1/ < �:

Again this gives four inequalities, two of which are automatic for zi�1; zi ; ziC1 2 .0; �/,
or when i DN � 1, for zN D 0. The other two inequalities that must be satisfied are
zi�1 > ziC1� zi and zi�1 > ziC1C zi . Both hold if and only if zi�1 > ziC1C zi .

This proves the if and only if statement of the lemma.

Now suppose we have an angle structure. At this point, we know all the inequalities
of the lemma must hold, plus an extra one: zi�1 > ziC1. However, the hinge and
convexity equations imply that the sequence is strictly decreasing: the proof is by a
downward induction starting at zN D 0.

Lemma 4.15 Suppose all tetrahedra are glued via RR or LL and never a hinge RL
or LR. Then there exists a sequence satisfying the previous lemma if and only if

i.m; p/�pC i.m; q/�qC i.m; r/�r > 2�:

Proof Suppose first that such a sequence holds.

We claim that the convexity condition implies that zN�k < zN�.kC1/k=.kC 1/ for
k D 1; : : : ; N � 1. This can be seen by induction. When k D 1, the inequality
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zN�2CzN > 2zN�1 implies zN�1 <
1
2
zN�2. Assuming zN�.j�1/ < zN�j .j �1/=j ,

then zN�.j�1/C zN�.jC1/ > 2zN�j implies zN�j .j � 1/=j C zN�.jC1/ > 2zN�j ,
which implies jzN�.jC1/ > .j C 1/zN�j , as desired.

Now observe that when k D N � 1, the inequality is Nz1 < .N � 1/z0, which then
becomes N.� � �r/ < .N � 1/.� C �p/. Simplifying, we obtain

� < .N � 1/�pCN�r () 2� < �qCN�pC .N C 1/�r ;

using �pC �qC �r D � .

Suppose that the tetrahedra are all glued in the pattern LL : : : L. Apply an isometry
to H2 so that the triangle .p; q; r/ maps to .0; 1=0;�1/. Then the slope m is mapped
to the slope N=1 2Q, and the geometric intersection numbers satisfy i.1=0;N /D 1,
i.0;N /DN , and i.�1;N /DN C 1. Because applying an isometry of H2 preserves
intersection numbers, it follows that the inequality holds above if and only if

i.m; p/�pC i.m; q/�qC i.m; r/�r > 2�:

The argument in the case that all tetrahedra are glued in the pattern RR : : : R is similar.
It follows that if a sequence .z0; : : : ; zN / exists, then the inequality holds.

Conversely, suppose the inequality holds. Set z0 D � C �p and z1 D � � �r . Choose
z2 such that

maxf0; 2z1� z0 D � � 2�r � �pg< z2 <minfz1 D � � �r ; � � �pg:

Inductively, choose a decreasing sequence zk such that zk > 2zk�1 � zk�2 and
zk 2 .0; �/. We need to ensure we can choose the sequence all the way to zN�1

and set zN D 0. Note by this choice of zk , we have

zk > � � k�r � .k� 1/�p;

so, when k DN ,

zN > � �N�r � .N � 1/�p:

But, as above, the inequality on �p, �q , and �r is equivalent to

� �N�r � .N � 1/�p < 0:

Thus we may set zN D 0 and satisfy all the required conditions.
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Lemma 4.16 Suppose there exists a hinge RL or LR in the sequence of labels of
�1; : : : ; �N . Then the inequality

i.m; p/�pC i.m; q/�qC i.m; r/�r > 2�

is satisfied for every �p, �q , and �r as in Proposition 4.3.

Proof If there exists a hinge, it is not in the first two labels by choice of p and r .
Suppose first that the first two labels areRR. Apply an isometry to H2 taking .p; q; r/ to
.0; 1=0;�1/. Then the first two steps in the Farey graph move from triangle .0; 1=0;�1/
to .0; 1; 1=2/. There may be some additional instances of R in the sequence. Starting
at .0; 1=0;�1/ and stepping through n initial labels R in the Farey graph puts 
 in
the triangle .0; 1=.n� 1/; 1=n/. At this point, the path 
 goes left, crossing the edge
.1=.n� 1/; 1=n/. Because 
 never returns to an edge, this means that the slope m lies
between 1=.n� 1/ and 1=n in the Farey complex. Write m D a=b in lowest terms.
The set of rational numbers between 1=.n� 1/ and 1=n in the Farey complex can be
obtained inductively by summing numerators and denominators of 1=.n � 1/, 1=n
and other rationals obtained in this manner. Since a=b lies in this range, a � 2 and
b � 2n� 1 > 2.

Now, note that for .p; q; r/D .0; 1=0;�1/, we have i.a=b; p/D a, i.a=b; q/D b, and
i.a=b; r/D aC b. Thus

i.m; p/�pC i.m; q/�qC i.m; r/�r D a.�pC �r/C b.�qC �r/:

Because �p C �q C �r D � and �� < �p; �q < � , both �p C �r D � � �q and
�qC �r D � � �p are positive. Thus

a.�pC �r/C b.�qC �r/�minfa; bg.�pC �qC 2�r/Dminfa; bg.� C �r/ > 2�:

Since intersection numbers are unchanged under isometry of H2, this proves the result
when the first two labels are RR.

The case that the first two labels are LL is similar.

Lemma 4.17 Suppose there exists a hinge RL or LR. Then there exists a sequence
satisfying Lemma 4.12.

Proof Let h 2 f2; 3; : : : ; N � 1g be the smallest index such that �h is a hinge of the
formRL orLR. Set z0D�C�p and z1D���r . We can choose inductively a positive
decreasing sequence zk such that z2<���p , each zk 2 .0; �/, and zk >2zk�1�zk�2

for 2� k � h.
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The rest of the sequence zi is constructed backwards from i DN to i D h. Consider
a sequence z0i . Set z0N D 0 and z0N�1 D 1. For each i such that N � 2 � i � hC 1,
inductively choose z0i such that z0i > z

0
iC1C z

0
iC2 or z0i C z

0
iC2 > 2z

0
iC1, depending on

whether �iC1 has a different label (L or R) from �i or not, respectively. Observe, z0i
must be greater than z0iC1 for each i .

Choose � such that
0 < � <

zh�1� zh

z0
hC1

:

Set zi D �z
0
i for hC 1� i �N . We need zh to satisfy the hinge condition

zh < zh�1� zhC1 or zh < zh�1� �z
0
hC1:

This holds by our choice of �.

Finally, we need each zi to lie in .0; �/, for hC1� i �N �1. Observe that zh�1 <� ,
so 0 < � < �=z0

hC1
. Then zi D �z

0
i < �z

0
i=z
0
hC1

. For hC 1 � i � N � 1, we know
z0i � z

0
hC1

, hence z0i is strictly less than � , as desired. Because z0i is at least z0N�1 > 0,
zi D �z

0
i > 0. Thus we have found a sequence satisfying Lemma 4.12.

Proof of Proposition 4.3 Suppose

i.m; p/�pC i.m; q/�qC i.m; r/�r � 2�:

By Lemma 4.16, there is no hinge RL or LR in the sequence of labels of tetrahedra
making the layered solid torus. By Lemma 4.15, there does not exist a sequence
satisfying Lemma 4.12. But such a sequence is required in an angle structure on a
layered solid torus, so there is no angle structure in this case.

Now suppose i.m; p/�pC i.m; q/�qC i.m; r/�r > 2� . Then Lemmas 4.17 and 4.15
imply there exists a sequence satisfying Lemma 4.12. It follows from that lemma that
there exists an angle structure.

4.2 Volume maximisation

We now show that the volume functional on the space of angle structures takes its
maximum on the interior. This is essentially [16, Proposition 15], but we extract slightly
more information from the proof.
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Lemma 4.18 Suppose the volume functional on the space of angle structures on
a layered solid torus takes its maximum on the boundary. Then the corresponding
structure consists only of flat tetrahedra , with angles .xi ; yi ; zi / a permutation of
.0; 0; �/ for each i D 1; : : : ; N � 1.

Proof By work of Rivin [28], if the volume functional takes its maximum on the
boundary of the space of angle structures, then any tetrahedron with an angle 0 must
also have an angle � . Thus those tetrahedra that do not have all angles strictly within
.0; �/ must have angles .xi ; yi ; zi / a permutation of .0; 0; �/; this is a flat tetrahedron.

By Lemma 4.12, a point on the boundary of the space of angle structures corresponds to
a sequence .z0D �C�p; z1D ���r ; z2; : : : ; zN�1; zN D 0/ satisfying the hinge and
convexity equations, except the strict inequalities will be replaced by weak inequalities.
This must be a nonincreasing sequence.

Suppose the i th tetrahedron is the first flat tetrahedron. Then zi 2f0; �g but zi�12 .0; �/

unless i �1D 0. If zi D � , then convexity implies zj D � for j D iC1; : : : ; h, where
h is the next hinge index. The hinge condition then implies that all later zj equal 0.
Similarly, if zi D 0 then all later zj equal 0.

Now consider zi�1. We have xi ; yi ; zi ; ziC12f0; �g. Thus by one of Lemmas 4.10, 4.9,
or 4.11, depending on the index i , we have zi�1D2� . But 0<zi�1<� unless i�1D0.
So i � 1D 0. Then the first flat tetrahedron is the first tetrahedron, so the entire solid
torus consists of flat tetrahedra.

Corollary 4.19 Suppose the set of angle structures as in Proposition 4.3 is nonempty.
Then the volume functional takes its maximum on the interior of such angle structures.

The following follows immediately from the Casson–Rivin theorem, Theorem 4.2.

Corollary 4.20 For slopes p, q, r , and m as in Proposition 4.3, and any angles �p,
�q , and �r satisfying (4.4), there exists a geometric triangulation of the layered solid
torus T of that proposition with exterior dihedral angles �p, �q , and �r .

5 Dehn filling

In this section, we complete the proof of Theorem 5.5.

Let s be a slope, and let len.s/ denote the Euclidean length of a geodesic representative
of s on a horospherical cusp torus.
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The following is a consequence of Thurston’s hyperbolic Dehn filling theorem [29].
The version below can be proved assuming a geometric triangulation exists for M ,
with ideas in Benedetti and Petronio [3], using methods of Neumann and Zagier [23].

Theorem 5.1 (hyperbolic Dehn filling theorem) Let M be a hyperbolic 3–manifold
with a geometric ideal triangulation such that exactly two ideal tetrahedra , � and �0,
meet a cusp of M . Let s be a slope on this cusp. Then for all but finitely many choices
of s, the Dehn filled manifold M.s/ admits a complete hyperbolic structure , obtained by
deforming the triangulation of M , and taking the completion of the resulting structure.
The tips of the tetrahedra � and �0 spin asymptotically along the geodesic core of the
filling solid torus of M.s/. As len.s/ goes to infinity, the cross-ratios of the tetrahedra
of M.s/ become uniformly close to those of M .

In particular, since M admits a geometric ideal triangulation, the cross-ratios of its
tetrahedra have strictly positive imaginary part. This is an open condition. Thus for
s large enough, the triangulation of M.s/ also has cross-ratios with strictly positive
imaginary part. It follows that the incomplete, spun triangulation of M.s/ is built of
geometric tetrahedra. However, we are not interested in incomplete triangulations.
We will use the incomplete spun triangulation to build a complete geometric ideal
triangulation.

5.1 Dehn filling and spun triangulations

The following proposition is essentially Proposition 8 of Guéritaud–Schleimer [16].

Proposition 5.2 Let X be a solid torus with boundary @X a punctured torus that is
triangulated by two ideal triangles. Let m� @X be the meridian of X . The following
are equivalent.

(1) A complete hyperbolic structure on X is obtained by taking the completion of a
spun triangulation consisting of two tetrahedra � and �0, where one face of �
and one face of �0 form the two ideal triangles making up @X .

(2) The exterior dihedral angles a, b, and c on the edges of the triangulation satisfy
a; b 2 .��; �/, c 2 .0; �/, and aC bC c D � , and also

naaCnbbCncc > 2�;

where na, nb , and nc denote the number of times the meridian m � @X of X
crosses the edge with angle a, b, and c, respectively.

Moreover , if the hyperbolic structure exists on X , then it is unique.
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Remark 5.3 Proposition 8 of [16] is not quite stated the same as Proposition 5.2,
but an almost identical proof gives the result claimed here. One difference is that
in [16], they restrict to a; b; c 2 Œ0; �/. However, this restriction is not required for
the proof. What is required, if these form exterior dihedral angles of a solid torus as
claimed, is that aC bC c D � and a; b; c 2 .��; �/. These conditions follow from
considering the Euclidean geometry of a horospherical neighbourhood of the puncture
on @X . Moreover, the condition aC bC c D � forces one of a, b, and c to be strictly
positive; we let this angle be denoted by c.

Now in the proof of [16, Propostion 8], it is shown that angle structures can be put onto
� and �0 to form the spun triangulation of X if and only if naaCnbbCncc > 2� . In
the case the inequality holds, it is shown that the volume functional takes its maximum
on the interior of the space of such angle structures, meaning there exists a hyperbolic
structure, and that structure is unique by the Casson–Rivin theorem, Theorem 4.2.

Theorem 5.4 Let L be a hyperbolic fully augmented link with n� 2 crossing circles.
Then there exist constants A1; : : : ; An such that if M is a manifold obtained by Dehn
filling the crossing circle cusps of S3�L along slopes s1; : : : ; sn whose lengths satisfy
len.si /�Ai for each i D 1; : : : ; n, then M admits a geometric triangulation. Allowing
some collection of si D1, ie leaving some crossing circle cusps unfilled , also admits
a geometric triangulation.

Proof By Proposition 2.4, S3 �L admits a geometric ideal triangulation with the
property that each crossing circle meets exactly two ideal tetrahedra. By Theorem 5.1,
for any sufficiently long slope, the Dehn filling along that slope is obtained by taking
the completion of a spun triangulation consisting of two tetrahedra. In particular, for
the j th twist region, there exists Aj such that if the length of the slope is at least Aj ,
then Dehn filling yields a manifold with spun triangulation. This can be repeated
sequentially for each crossing circle, giving constants A1; : : : ; An.

For each crossing circle, consider the two tetrahedra that spin around the core of the
Dehn filled solid torus. These two tetrahedra together form a spun triangulation of a
solid torus. By Proposition 5.2, this torus is unique, and the exterior dihedral angles a, b,
and c must satisfy naaCnbbCncc > 2� , where na, nb , and nc denote the number
of times the meridian meets the edge on the boundary with corresponding dihedral
angle. Then Corollary 4.20 implies there exists a corresponding layered solid torus
with the same dihedral angles along slopes on the boundary, and the same meridian,
with a complete, geometric hyperbolic structure.
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Because dihedral angles agree, each spun solid torus can be removed and replaced by
the layered solid torus by isometry. The result is a geometric ideal triangulation of the
Dehn filling of S3�L.

Theorem 5.5 For every n� 2, there exists a constant An depending on n, such that if
K is a link in S3 with a prime , twist-reduced diagram with n twist regions , and at least
An crossings in each twist region , then S3�K admits a geometric triangulation.

Proof If K has a prime, twist-reduced diagram with n� 2 twist regions, then S3�K

is obtained by Dehn filling a hyperbolic fully augmented link L with n crossing circles,
where the Dehn filling is along slopes on each crossing circle. Let mj be the number of
crossings in the j th twist region. Then the length of the j th slope is at least

q
m2

j C 1

by [11, Theorem 3.10].

Note that for fixed n, there are only finitely many fully augmented links with n crossing
circles. Fix one of these fully augmented links; call it Lk . By Theorem 5.4, there
exist constants Ak;1; : : : ; Ak;n such that if the slope on the j th crossing circle of Lk

has length at least Ak;j , for j D 1; : : : ; n, then the Dehn filling admits a geometric
triangulation. Consider An DmaxfAk;j g, where the maximum is taken over all links
Lk with n crossing circles. Then provided the number of crossings in each twist region
of K is at least An, the length of each slope on each crossing circle will be at least An,
which implies the Dehn filling yields a geometric triangulation.

6 Borromean rings and related links

In the previous section, we completed the proof of Theorem 5.5, which is unfortunately
not effective: the constants A1; : : : ; An are unknown. In this section, by restricting the
fully augmented links we consider, we are able to prove an effective result, giving an
explicit family of hyperbolic 3–manifolds with geometric triangulations. This is similar
in spirit to Section 5 of [16], in which Guéritaud and Schleimer show a similar result
for Dehn filling one cusp of the Whitehead link. We extend first to the Borromean
rings, which is a fully augmented link with two crossing circle cusps, and to the two
other fully augmented links with exactly two crossing circle cusps.

The augmented links we consider next are shown in Figure 13. The link on the left of
Figure 13 shows a fully augmented link with three link components; this is ambient
isotopic to the Borromean rings. There are two different fully augmented links obtained
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Figure 13: A picture of the Borromean rings as a fully augmented link, and
the other two fully augmented links with exactly two crossing circles.

by inserting half-twists into the crossing circles of the Borromean rings shown; these
are the links in the middle and right of that figure.

Following the procedure for decomposing fully augmented links into polyhedra as in
Section 2, we find that all three links in Figure 13 decompose into two ideal octahedra;
the decomposition for the middle link is exactly the illustration shown in Figure 3.

Lemma 6.1 Let L be one of the three fully augmented links with exactly two crossing
circles , as shown in Figure 13. ThenM D S3�L has a decomposition into two regular
ideal octahedra. Fix one of the two crossing circle cusps. The octahedra meet the fixed
crossing circle cusp as follows.

� One vertex of each octahedron meets the crossing circle cusp. Taking such a
vertex to infinity gives a square on R2 in @H3. We may arrange that one square
has corners at .0; 0/, .1; 0/, .1; 1/, and .0; 1/ in R2, and the other has corners at
.1; 0/, .2; 0/, .2; 1/, and .1; 1/ in R2.

� When the crossing circle does not encircle a half-twist , then the arc running from
.0; 0/ to .0; 1/ projects to a meridian of the crossing circle. When the crossing
circle encircles a half-twist (single crossing), the arc from .0; 0/ to .1; 1/ projects
to a meridian.

� In all cases , the arc from .0; 0/ to .2; 0/ projects to a longitude of the crossing
circle , bounding a disc in S3.

Proof The lemma is proved by considering the decomposition. White faces become
the circles shown in Figure 14, left. On each circle packing an x indicates a crossing
circle cusp. Take one of these points to infinity to obtain the required square. Because
the two polyhedra are glued along a white side, the squares line up side-by-side as
claimed; see Figure 14, right. A longitude runs along two shaded faces, which runs
along the base of both squares, as claimed.
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C D

B 0 A0
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C D

B 0

A0

C 0D0

A0

B 0

C 0 D0

Figure 14: On the left are shown the two identical circle packings arising
from the decomposition of the links of Figure 13. An x marks a crossing
circle cusp in the two polyhedra. On the right, the two cusp neighbourhoods
are shown, obtained by taking each pair of crossing circle cusps to infinity.
Dashed lines indicate shaded faces.

When there is no half-twist, the shaded face running across the bottom of the square is
glued to the shaded face running across the top of the same square, and hence the base
of each square is glued to the top of the same square to form a fundamental domain for
the cusp torus. A meridian runs along a white side of a square.

When there is a half-twist, a shaded face running across the bottom of the square on
the left is glued to the shaded face running across the top of the square on the right,
and so a shearing occurs; see [27, Proposition 3.2]. The result is that a meridian runs
across the diagonal of a square, as claimed.

Lemma 6.2 Let M be the complement of one of the three fully augmented links with
exactly two crossing circles. Then M has a decomposition into exactly eight ideal
tetrahedra , with four tetrahedra meeting each crossing circle cusp , two in each square
of Lemma 6.1.

The square bases are glued as follows. The square on the left of one cusp is glued to the
square on the left of the other cusp by reflecting across the diagonal of negative slope.
The other square , on the right of the first cusp , is glued to the square on the right of the
other cusp by reflecting across the diagonal of positive slope , as shown in Figure 15.

a

a0b

b0c

c0d

d 0

F1
F2

F
1

F
2

Figure 15: How to glue the bases of the crossing circle cusps of fully
augmented links with two crossing circles. Note, we could choose the
opposite diagonals instead.
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Proof The gluing is obtained by considering squares at the base of the octahedra
in Figure 14. For the cusp shown in Figure 14, middle right, one square base has as
vertices the points of intersection of circles A \ C , A \D, B \D, and B \ C in
anticlockwise order. This is glued to a square in the opposite cusp meeting the same
points of intersection. Note that the points A\C , A\D, B \D, and B \C are now
in clockwise order in the cusp on the right, with A\C and B\D in the same location
in both. It follows that the squares are glued by a reflection in the negative diagonal.

The other square of Figure 14, middle right, has as vertices the points of intersection
A0\C 0, B 0\C 0, B 0\D0, and A0\D0 in anticlockwise order. It is glued to a square
on the right with the same vertices, but now A0\C 0, B 0\C 0, B 0\D0, and A0\D0

are in clockwise order on the right, with A0 \C 0 and B 0 \D0 in the same location.
Thus the squares are glued by a reflection in the positive diagonal.

To triangulate, choose both positive diagonals or both negative diagonals in the cusp of
Figure 14, middle right. This splits the two squares into four triangles; either choice
of diagonal will do, but we will choose the same diagonal in each square (as opposed
to Figure 15 where different diagonals are marked). There are four tetrahedra lying
over the four triangles in this cusp. Under the gluing, the diagonals and the squares are
preserved, so the four triangles are mapped to four triangles in the second cusp. The
four additional tetrahedra lie over these four triangles in the second cusp.

7 Doubling layered solid tori

When the boundary of M is a once-punctured torus triangulated by just two ideal
triangles, then we may glue a layered solid torus to @M to perform Dehn filling. In the
case of the Borromean rings, the boundary of our manifold is a twice-punctured torus
triangulated by four ideal triangles, in symmetric pairs. To perform Dehn filling, we
need to modify the construction. This modification essentially appears at the end of
Guéritaud and Schleimer [16] when they consider the Whitehead link. However, the
construction applies much more generally than the Whitehead link application, so we
walk through it carefully.

There are two different modifications required, depending on the slope we wish to Dehn
fill. Consider the cover R2 of the twice-punctured torus obtained by putting punctures
at integral points Z2 �R2. Assume first that there are no half-twists, so a meridian �
of slope 1=0 lifts to run from .0; 0/ to .0; 1/. A longitude � of slope 0=1 lifts to run

Algebraic & Geometric Topology, Volume 23 (2023)



Geometric triangulations and highly twisted links 1437

from .0; 0/ to .2; 0/. Then any slope mD `=k D `�C k� on the torus lifts to an arc
beginning at .0; 0/ and ending at .2k; `/.

The two modifications depend on whether ` is even or odd. If ` is odd, the lift of the
slope `=k will only meet the points of Z2, which are lifts of punctures, at its endpoints.
In this case, we will take a double cover of a layered solid torus.

Lemma 7.1 Suppose mD `=k D `�C k� is a slope on the torus (with generators �,
� as above) such that ` is odd , and `=k … f1=0;˙1g.

Consider first the layered solid torus X , constructed as follows. Begin in the Farey
triangle with vertices .1=0; 0=1;˙1=1/ and step to the triangle with slope `=2k, building
the corresponding layered solid torus X as in Section 3.

Let Y be the double cover of X . Then Y satisfies the following properties.

� The boundary of Y is a twice-punctured torus , triangulated by four ideal triangles
(in two symmetric pairs), lifting to give a triangulation of the cover R2. The
basis slope � lifts to run from .0; 0/ to .2; 0/ in R2, and projects to run twice
around the slope 0=1 in @X . The slope � lifts to run from .0; 0/ to .0; 1/ in R2.
Diagonals of the triangulation of @Y have positive or negative slope , depending
on whether m is positive or negative.

� The meridian of Y is the slope mD `�C k�.

Proof Let X denote the layered solid torus with a boundary triangulation that includes
the slopes 0=1 and 1=0 and a diagonal ˙1=1, with sign agreeing with the sign of m,
and with meridian `=2k. Note that since ` is odd and ` … f1=0;˙1g, we have that
`=2k … f0; 1=0;˙1;˙2;˙1=2g, which were the excluded slopes for building a layered
solid torus in Section 3.

Let Y denote the double cover of X . The double cover of a solid torus is a solid torus,
and the once-punctured torus boundary lifts to a twice-punctured torus, with triangles
lifting to triangles. We need to show that the slopes behave as claimed.

First, the slope 1=0 and the meridian `=2k of X have geometric intersection number
j1 �2k�` �0j D j2kj, which is even, and thus 1=0 is homotopic to an even power of the
core of the solid torus X . Thus in the double cover Y , the slope 1=0 lifts to a closed
curve. As 1=0 is an edge of a triangle on @X , it will remain an edge of a triangle on @Y ,
and lift to a generator of the fundamental group denoted by �. We may take this to run
from .0; 0/ to .0; 1/ in R2.
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Next, the curve 0=1 meets `=2k a total of j0 � 2k � ` � 1j D j`j times on @X , which is
odd. Therefore it lifts to an arc rather than a closed curve on @Y , with endpoints on
distinct punctures. Thus a second generator of the fundamental group of @Y is given
by taking two lifts of 0=1, end to end. Denote this generator by �. Its lift runs from
.0; 0/ to .2; 0/ in R2.

Finally we check that the meridian of Y is the slope m, written in terms of � and � as
claimed. In X , the curve `=2k bounds a disc. This lifts to bound a disc in Y as well.
However, note the lift runs ` times along � and k times along �. Thus the meridian
slope is as claimed.

If ` is even, say `D 2s for some integer s, the lift of mD `=k to R2 is an arc running
from .0; 0/ through .k; s/ 2 Z2 to .2k; 2s/ 2 Z2. Thus it meets a lift of a puncture in
its interior. In this case, taking a double cover of a layered solid torus will not suffice.
Instead, we need to give a different construction.

Construction 7.2 Let m D `=k be a slope such that ` is even, say ` D 2s, and
m…f0=1;˙2=1g. Let .T0; : : : ; TN / be a sequence of triangles in the Farey triangulation
where T0 is a triangle with slopes 0=1, 1=0, and either 1=1 or �1=1, with sign agreeing
with the sign of m, and TN is a triangle with slopes u, t , and s=k.

Start with the triangulation of the twice-punctured torus consisting of two side-by-side
copies of the slopes of T0. More precisely, fill R2�Z2 with unit squares with diagonals
matching that of T0, and quotient by .x; y/ 7! .xC 2; y/ and .x; y/ 7! .x; yC 1/.

Inductively, for the j th step across an edge in the Farey triangulation, attach two ideal
tetrahedra to the twice-punctured torus, effecting two identical diagonal exchanges with
the slopes of Tj�1, and producing a triangulation of a space homotopy equivalent to the
product of the interval and the twice-punctured torus, with one boundary triangulated
by two side-by-side copies of T0, and the other triangulated by two side-by-side copies
of Tj . Note that so far, this is identical to the procedure for the layered solid torus,
only we are taking two copies of each tetrahedron instead of just one; see Figure 16.

This time, continue until j DN , so one boundary is labelled by slopes u, t , and s=k,
repeated twice in each of two parallelograms lying side-by-side. Now obtain a solid
torus as follows. First, identify the two slopes s=k in the two boundary triangles. Then
fill the remaining space with a single tetrahedron whose four faces are glued to the
inner faces.
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Figure 16: To create a solid torus with boundary a 2–punctured torus, at each
step layer two identical tetrahedra onto the current boundary triangulation,
effecting a diagonal exchange.

Remark 7.3 To construct a layered solid torus in Section 3, we needed to exclude
slopes in T0 and T1 in the Farey graph. It is no longer necessary to exclude slopes
in T1 for the previous construction, because of the addition of extra tetrahedra corre-
sponding to j DN and a final tetrahedron after identifying diagonals of the tetrahedra
corresponding to j DN . We still exclude slopes in T0.

Lemma 7.4 Suppose mD `=k D `�C k� is such that mD `=k … f0=1;˙2=1g and
` is even. Then the triangulated space Y constructed as above , by taking a sequence of
side-by-side tetrahedra and attaching a final tetrahedron at the core , forms a solid torus
satisfying:

� The boundary of Y is a twice-punctured torus , triangulated by four triangles
(in symmetric pairs), with basis slopes � running over one edge of a triangle ,
lifting to run from .0; 0/ to .0; 1/ in R2, and � running over two edges (and
two punctures), lifting to run from .0; 0/ to .2; 0/ in R2. Diagonal edges of the
triangulation have positive or negative slope , where the sign is determined by the
sign of m.

� The meridian of the solid torus Y is the slope mD `�C k�.

Proof Generators for the fundamental group of the boundary torus consist of edges
1=0 in the original triangulation, and two copies of 0=1 by construction. Denote the
first generator by � and the second, consisting of two edges, by �.

The meridian of the solid torus is the curve that is homotopically trivial. This is the
curve formed by pinching together two edges of slope s=k on the inside boundary of
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the triangulated space. Thus it runs twice over this edge. In terms of the generators �
and �, the curve running twice over the edge s=k of the innermost twice-punctured
torus has slope 2s�C k� or `�C k�.

Remark 7.5 (symmetry of Construction 7.2) Notice that the solid torus Y from
Construction 7.2 will admit an involution. This involution takes the innermost tetrahe-
dron to itself (setwise), and for each of the other tetrahedra in the construction, it swaps
the two tetrahedra that were layered together, corresponding to the same triangle in the
Farey graph. We will give this solid torus an angle structure. We will choose the angles
to be preserved under this involution. Thus, although tetrahedra are layered in pairs,
and although there are two punctures on the boundary, the two cusp triangulations will
be identical, with angles on any tetrahedron agreeing with the angles on its image under
the involution.

Lemma 7.6 Let V be a solid torus with twice-punctured torus boundary , and with
triangulation either as in Lemma 7.1 or Lemma 7.4, depending on whether the meridian
mD `�C k� has ` even or odd. We also assume m … f0=1; 1=0;˙1=1;˙2=1g.

Let f�p; �q; �rg be exterior dihedral angles along edges of the twice-punctured torus ,
where each is repeated twice symmetrically, such that

0 < �r < �; �� < �p; �q < �; and �pC �qC �r D �:

Suppose also that in the case ` is odd , intersection numbers satisfy

i.p; `=2k/�pC i.q; `=2k/�qC i.r; `=2k/�r > 2�:

Then there exists an angle structure on the triangulated solid torus with these exterior
angles. Conversely, if an angle structure exists and ` is odd , then the intersection
numbers satisfy the above equation.

Proof The case of the double cover of a layered solid torus follows from the same
result for usual layered solid tori, Proposition 4.3. In this case, the angle structure
exists for the layered solid torus; lift the angles to the double cover to obtain the result.
This gives the proof when ` is odd.

In the case that ` is even, we work with the side-by-side solid torus. For every pair of
tetrahedra layered on at the i th step of Construction 7.2, where 1 � i � N , label
the dihedral angles of both tetrahedra by xi , yi , and zi with xi C yi C zi D � .
Similarly for the last tetrahedron, label its angles xNC1, yNC1, and zNC1 with
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Figure 17: The innermost triangles of one of the two hexagons forming a
cusp triangulation of a side-by-side solid torus.

xNC1CyNC1CzNC1D� . As in Section 4, we build an angle structure on the side-by-
side layered solid torus by finding a sequence .z0D�C�p; z1D���r ; : : : ; zN ; zNC1/

with zi 2 .0; �/.

The side-by-side layered solid torus has two ideal vertices. The cusp triangulation of
each of the two ideal vertices is still a sequence of hexagons, and these will be identical
because of the symmetry of the solid torus. The cusp triangulations are constructed
exactly as in the case of the layered solid torus for the first N steps; these agree with
Figure 11. But the cusp triangulation differs from that of the usual layered solid torus
at the innermost hexagon, where the last tetrahedron is attached.

Because cusp triangulations agree before the last step, the dihedral angles xi , yi , and
zi for 2� i �N satisfy the same conditions of Lemma 4.10. Similarly, z0 D � C �p,
z1 D � � �r , x1, and y1 satisfy the conditions of Lemma 4.9, with the same cusp
pictures. Therefore, just as in Lemma 4.12, for 1� i �N the sequence satisfies�
zi�1 > zi C ziC1 if �i and �iC1 are labelled RL or LR (hinge condition);
zi�1C ziC1 > 2zi if �i and �iC1 are labelled RR or LL (convexity condition):

Moreover, for the first two tetrahedra,

� � �p � 2�r < z2 < � � �p:

Recall that to make the slope m trivial in the side-by-side case, we identify the two
edges of slope .`=2/=k in the pair of tetrahedra at the N th step. This corresponds to
identifying a pair of opposite vertices in the innermost hexagon; see Figure 17.

As in the proof of Lemma 4.11, the sum of the interior angles of the hexagon is 4� .
This gives the equation

.2xN C xNC1/C .2yN C zNC1/C zN D 2� or zN D zNC1C xNC1:
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Since xNC1 > 0, this implies that 0 < zNC1 < zN . Thus for angle structure to exist
on the side-by-side layered solid torus, we require that 0 < zNC1 < zN . Finally, note
again that by a downward induction, convexity and hinge equations imply that the
sequence is strictly decreasing.

As in Lemmas 4.15 and 4.17, we find a sequence .z0; z1; : : : ; zN ; zNC1/ satisfying
the above conditions. In the layered solid torus case, we had to split into two cases,
depending on whether or not a hinge existed. When there was no hinge, we needed
a convex sequence with the last term equal to zero. However, in this case, we need a
convex sequence with zNC1 > 0, which can always be arranged. Thus we only need to
show that a sequence satisfying the above requirements exits.

To find such a sequence, the same argument of Lemma 4.17 can be used. Namely, let
h 2 f2; 3; : : : ; N C 1g be the smallest index such that �h is a hinge of the form RL or
LR, or set hDN C 1 if no such index exists. Set z0 D � C �p and z1 D � � �r . We
can choose inductively a positive decreasing sequence zk such that zk > 2zk�1� zk�2

for 1� k � h.

The rest of the sequence zi is constructed backwards from i DNC1 to i D h. Consider
a sequence z0i . Set 1 > z0NC1 > 0 and z0N D 1. For each i such that N �1� i � hC1,
inductively choose z0i such that z0i > z

0
iC1C z

0
iC2 or z0i C z

0
iC2 > 2z

0
iC1, depending on

whether �iC1 is a hinge or not.

Now choose � such that 0< � < .zh�1�zh/=z
0
hC1

. Set zi D �z
0
i for hC1� i �N C1.

The sequence zi satisfies the required inequalities for i < h and i > h. Because of our
choice of �, it also satisfies the hinge condition zh<zh�1�zhC1 or zh<zh�1��z

0
hC1

.
Thus we have found a sequence giving an angle structure.

Lemma 7.7 Let V be the triangulated solid torus of Lemma 7.6. In particular , the
meridian m of V is not one of f0=1; 1=0;˙1=1;˙2=1g. If the volume functional takes
its maximum on the boundary of the space of angle structures , then all tetrahedra in the
solid torus must be flat. Thus the volume functional is maximised in the interior.

Proof Suppose the volume functional is maximised on the boundary for the double
cover V of a layered solid torus. There is a symmetry of the triangulated solid torus V
swapping triangles in pairs, changing the basepoint of the double covering. If the
volume is maximised at a point in which angles are not preserved by this symmetry,
then applying the symmetry gives two distinct maxima, contradicting the fact that the
volume functional is convex. Thus a point of maximum for the double cover descends
to a maximal point for the original layered solid torus. By Lemma 4.18, if the volume
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functional is maximised on the boundary, all tetrahedra are flat. Thus the maximum is
in the interior in this case.

For the side-by-side triangulation, a point on the boundary of the space of angle
structures corresponds to a sequence .z0; z1; : : : ; zNC1/ satisfying hinge and convexity
equations, but now with weak inequalities. This must be a nonincreasing sequence.
Suppose the i th tetrahedron is the first flat tetrahedron. Then zi 2f0; �g but zi�12 .0; �/

unless i�1D 0. If zi D� , then convexity implies zj D� for j D iC1; : : : ; h, where h
is the next hinge index. The hinge condition then implies that all later zj D 0. Similarly,
if zi D 0 then all later zj D 0.

Now consider zi�1. We have xi ; yi ; zi ; ziC1 2 f0; �g. Thus by one of the formulas
determining angles, as in Lemma 4.10, zi�1 D 2� . But 0 < zi�1 < � unless i � 1D 0.
If i � 1D 0, the first flat tetrahedron is the first tetrahedron, so the entire solid torus
consists of flat tetrahedra.

There is one final thing to check. Above, we have restricted to angle structures in
which a tetrahedron and its image under the involution preserving the side-by-side solid
torus are given the same angles. We have shown that under this restriction, volume is
maximised in the interior. However, note that if the volume were maximised for an
angle structure on Y that did not have symmetric angles, then applying the involution
would give a distinct angle structure on Y with the same volume, contradicting the fact
that the volume functional has a unique maximum. Hence the maximum of the volume
functional must occur at an angle structure that is preserved under our involution.

Lemma 7.8 Let V be the triangulated solid torus of Lemma 7.6. In particular , the
meridian m of V is not one of f0=1; 1=0;˙1=1;˙2=1g. Suppose V is a subset of a
triangulation of a 3–manifold M such that the volume functional onM is maximised at
a point in which a tetrahedron of V is flat. Then the exterior dihedral angles .�p; �q; �r/

of V are equal to one of .�;��; �/, .��; �; �/, .�; 0; 0/, or .0; �; 0/. Conversely , if
the exterior dihedral angles satisfies one of these choices , then all tetrahedra in V are flat.

Proof By Lemma 7.7, if one of the tetrahedra in the solid torus is flat then all of the
tetrahedra in the solid torus are flat.

Next observe that the exterior dihedral angles of the solid torus satisfy �r D � � z1,
�q D � � .z2C2x1/ or �q D � � .z2C2y1/, and �p D � ��q��r , where z1, x1, and
y1 are the dihedral angles of the outermost tetrahedron in the flat layered solid torus,
and z2 is an angle in the next outermost tetrahedron. Exactly one of x1, y1, or z1 is � ,
and the other two are 0.
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If z1D 0, then z2D 0 because the zi form a nonincreasing nonnegative sequence. Then
�r D � and �q is either � or �� , depending on x1 and y1. Since �pC �q C �r D � ,
this implies that .�p; �q; �r/ equals .�;��; �/ or .��; �; �/.

Now suppose z1 D � . Then x1 and y1 equal 0, and z2 is 0 or � . In this case,
�r D � � z1 D 0, �q is 0 or � depending on z2, and �p D � � �r � �q is � if �q D 0

or 0 if �q D � . Therefore, .�p; �q; �r/ equals .�; 0; 0/, or .0; �; 0/.

Conversely, suppose the exterior dihedral angles are as in the lemma. Then z1D���r

must be 0 or � . In either case, the angles of the outermost tetrahedron must then be
a permutation of .0; 0; �/, and hence that tetrahedron is flat. By Lemma 7.7, if any
tetrahedron is flat, all tetrahedra are flat.

7.1 The case of a half-twist

In the case that a crossing circle encircles a half-twist, the cusp is still formed from two
squares, but a meridian of the crossing circle cusp lifts to R2 to run from .0; 0/ to .1; 1/.

Suppose first that m is positive. Then apply a homeomorphism to the fully augmented
link complement that reverses the direction of the crossing. The meridian �D 1=0 of
this new link complement lifts to run from .0; 0/ to .�1; 1/, and the longitude �D 0=1
to run from .0; 0/ to .2; 0/. The vertical line from .0; 0/ to .0; 1/ is a lift of the slope 1=1.
Now given ` and k relatively prime, perform the construction of the solid torus in
Lemma 7.1 or Lemma 7.4 depending on whether ` is even or odd. Only now, lift � to
the curve running from .0; 0/ to .�1; 1/ in R2. As the lift is purely topological, this
gives a solid torus that can be used to perform the Dehn filling just as before. Moreover,
Lemmas 7.6 and 7.7 still hold with their proofs unchanged in this case.

If m is negative, then the meridian �D 1=0 of the crossing circle cusp lifts to run from
.0; 0/ to .1; 1/, the longitude �D 0=1 lifts to run from .0; 0/ to .2; 0/, and the slope
�1=1 lifts to run from .0; 0/ to .0; 1/. Given mD `=k, again perform the construction
of the solid torus of Lemma 7.1 or Lemma 7.4, depending on whether ` is even or
odd, and lift � to the curve running from .0; 0/ to .1; 1/ in R2. Again Lemmas 7.6
and 7.7 hold with proofs unchanged to give the required angle structures, with volume
maximised in the interior. Thus the construction works equally well with or without a
half-twist.

7.2 A vertical construction

Finally, the above work is sufficient to perform all Dehn fillings on the family of fully
augmented links with exactly two twist regions, shown in Figure 13. However, in
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Section 9, we will need to extend this construction to obtain a solid torus in which
�D 1=0 lifts to run from .0; 0/ to .0; 2/ and �D 0=1 lifts to run from .0; 0/ to .1; 0/.
We treat that case in this subsection.

Note that above, we constructed a solid torus by taking side-by-side tetrahedra, ie
stacking identical tetrahedra horizontally, in the x–axis direction. More precisely, we
tiled all of R2�Z2 by unit squares cut through by a diagonal, layered on tetrahedra
coming from a walk in the Farey graph, and then took the quotient by .2Z;Z/.

This construction could instead have been done by taking identical tetrahedra stacked in
the y–axis direction. That is, quotient out by .Z; 2Z/. All the results above immediately
hold for this construction. In particular:

Lemma 7.9 Let m D `=k be such that k is even , and m … f1=0;˙1=2g. The
“vertical side-by-side” solid torus , constructed by layering on tetrahedra in a path from
T0 D .0=1;˙1=1; 1=0/ to TN D .u; v; `=.k=2//, has the following properties:

(1) Its boundary is a twice-punctured torus , triangulated by four ideal triangles in
two symmetric pairs , with basis slopes � running over two edges of a triangle ,
lifting to run from .0; 0/ to .0; 2/ in R2, and � running over one edge , lifting to
run from .0; 0/ to .1; 0/ in R2.

(2) The meridian of the solid torus is the slope mD `�C k�.

(3) The triangulated solid torus admits an angle structure , with volume functional
taking its maximum in the interior.

(4) In a volume-maximising structure , if there is one flat tetrahedron then all
tetrahedra must be flat. Moreover , all tetrahedra are flat if and only if the
exterior dihedral angles .�p; �q; �r/ are one of .�;��; �/, .��; �; �/, .�; 0; 0/,
or .0; �; 0/.

Similarly, if `=k is a slope such that k is odd, we may take a double cover of a layered
solid torus to produce a solid torus whose boundary is a twice-punctured torus, only
now with a fundamental domain that consists of two squares stacked vertically rather
than horizontally:

Lemma 7.10 Let m D `=k be such that k is odd and m … f0=1;˙1=1g. Then the
(vertical ) double cover Y of the layered solid torus X constructed from a walk in the
Farey graph from T0 D .0=1; 1=0;˙1=1/ to slope .2`/=k has the following properties:

� The boundary of Y is a twice-punctured torus , triangulated by four ideal triangles
(in two symmetric pairs), lifting to give a triangulation of the cover R2. The
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basis slope � lifts to run from .0; 0/ to .0; 2/ in R2, and projects to run twice
around the slope 1=0 in @X . The basis slope � lifts to run from .0; 0/ to .1; 0/.

� The meridian of Y is the slope mD `�C k�.

Proof Let X be a layered solid torus with meridian slope 2`=k, where k is odd. Let
Y be the (vertical double) cover of X .

The slope from .0; 0/ to .0; 1/ is a generator in the solid torus X . It meets the meridian
2`=k of X a total of j1 � k � 0 � 2`j D jkj times, which is odd. Therefore the curve
from .0; 0/ to .0; 1/ lifts to an arc in @Y . Thus a generator of the fundamental group
of @Y is given by taking two lifts of the curve from .0; 0/ to .0; 1/, lined up end-to-end.
Denote the resulting closed curve in Y by �. Its lift runs from .0; 0/ to .0; 2/ in R2.

The slope from .0; 0/ to .1; 0/ is a generator in the solid torus X . This curve and the
meridian of X , of slope 2`=k, have geometric intersection number j0 �k�2 � `j D j2`j,
which is even. Thus the curve from .0; 0/ to .1; 0/ is homotopic to an even power of
the core of X . Therefore a second generator of the fundamental group of @Y is given
by taking the lift of the curve from .0; 0/ to .1; 0/. Denote this generator by �. Its lift
runs from .0; 0/ to .1; 0/ in R2.

The meridian 2`=k of X lifts to bound a disc in Y . Note that the lift runs 2` times
along � and k times along �. So in the basis for Y the meridian has the form
`=k D `�C k�.

8 Dehn filling the Borromean rings

In this section we finish the proof that triangulations of Dehn fillings of the crossing
circles of the Borromean rings are geometric, for appropriate choices of slopes, and
similarly for the other fully augmented link complements shown in Figure 13.

Lemma 8.1 Let M be one of the fully augmented link complements with exactly two
crossing circles. Let m1 and m2 be slopes such that

m1; m2 … f0=1; 1=0;˙1=1;˙2=1g:

Then the Dehn filling of M on its crossing circle cusps along slopes m1 and m2,
denoted by M.m1; m2/, admits a topological triangulation built by gluing together two
triangulated solid tori that are both double covers of layered solid tori , one double cover
and one solid torus with the side-by-side construction of Lemma 7.4, or two solid tori
of that form.
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Proof The slopes m1 and m2 on the two crossing circle cusps each determine a
triangulation of a solid torus by Lemma 7.1 or Lemma 7.4. To perform Dehn filling,
we remove interiors of all edges, faces, and tetrahedra meeting a crossing circle cusp,
and replace them by one of these two triangulated solid tori.

Removing interiors of edges, faces, and tetrahedra meeting the two crossing circle
cusps removes all but two squares from the manifold, namely the squares shown in
Figure 15, identified as shown in Lemma 6.2. We wish to attach triangulated solid tori
to these squares. There are two cases to consider.

Case 1 (the triangulations on the boundary of the solid tori agree) If M is the
Borromean rings complement, this is the case that the slopes m1 and m2 are both
positive, or the case that the slopes m1 and m2 are both negative. In this case, the
squares of Figure 15 are triangulated by the same diagonals. If M has one or two
half-twists, again the sign of m1 and m2 determine the diagonals. This is the case that
the choice of triangulation gives the same diagonals.

In this case, the corresponding solid tori have boundary triangulation that matches the
triangulation on the squares. Moreover, when we attach the two solid tori to opposite
sides of the squares, following the gluing instructions of Figure 15, their triangulations
match the given triangulations, giving a topological triangulation of the Dehn filling.

Case 2 (the triangulations disagree) For example, this is the case that m1 and m2

have opposite signs when M is the Borromean rings complement.

The triangulations of the solid tori will induce triangulations of the two squares with
opposite diagonals. To glue these together, we add two identical extra tetrahedra between
the two squares, with the tetrahedra effecting a diagonal exchange on the squares.

Because both tetrahedra are attached along exactly two faces to the second solid torus,
in fact they form an extra layer on the solid torus, equivalent to changing the initial
triangulation on the boundary in the construction from .0; 1; 1=0/ to .0;�1; 1=0/, or
vice versa. Thus we glue these two tetrahedra to the second solid torus. Then the
second solid torus has the form of Lemma 7.1 or Lemma 7.4, except with triangulation
on its boundary consisting of diagonals having opposite sign from the slope.

Lemma 8.2 Suppose the exterior dihedral angles on the i th solid torus are denoted
by ˛i for the diagonal edges , and �i for the horizontal edges , for i D 1; 2. If an angle
structure exists on M.m1; m2/ then ˛1 D�˛2 and

�1 D �2C˛2; �2 D ˛1C �1:
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Proof Angle structures for each of the triangulated solid tori will come from Lemma 7.6,
once we decide on exterior dihedral angles. Angle structures on the solid tori will
induce an angle structure on the entire manifold if and only if the edge equations are
satisfied for edges that lie on the two squares, on the boundaries of the solid tori.

Each solid torus has six edges on its boundary, and we assign three angles, giving a pair
of symmetric edges the same angle. On the first solid torus, the horizontal edges all
have the same exterior angle, denoted by �1. The diagonal edges have the same exterior
angle, denoted by ˛1, and the vertical edges have the same exterior angle, which must
be � �˛1� �1. Similarly denote the horizontal, diagonal, and vertical exterior angles
on the second solid torus by �2, ˛2, and � � �2�˛2, respectively.

Diagonal edges are glued to diagonal edges. Thus the sum of interior angles satisfies

.� �˛1/C .� �˛2/D 2� or ˛1 D�˛2:

Horizontal edges with exterior angle �1 are identified to vertical edges with exterior
angle � � �2�˛2; both vertical edges in the second solid torus lie in this edge class.
Similarly, horizontal edges with exterior angle �2 are identified to the vertical edges
of the first solid torus. Thus the sum of interior angles around these two edge classes
satisfy

2.� � �1/C 2.�2C˛2/D 2� or �1 D �2C˛2;

and
2.� � �2/C 2.�1C˛1/D 2� or �2 D �1C˛1:

Lemma 8.3 Let M denote the complement of a fully augmented link with two crossing
circles , as in Figure 13, and let M.m1; m2/ denote its Dehn filling along slopes m1

and m2 on the crossing circle cusps. If m1 and m2 satisfy

m1; m2 … f0=1; 1=0;˙1=1=;˙2=1g;

then M.m1; m2/ admits an angle structure.

Proof If an angle structure exists, it must satisfy the equations of Lemma 8.2. In
addition, there is an angle structure on each of two solid tori, with exterior angles
denoted by �p1

, �q1
, and �r1

in the first solid torus, satisfying

.8.4/ �p1
C �q1

C �r1
D �; �� < �p1

; �q1
< �; 0 < �r1

< �;

and denoted by �p2
, �q2

, and �r2
in the second solid torus, satisfying similar conditions.
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In addition, in the special case that mi D `i=ki and `i is odd, and moreover the path in
the Farey graph from the initial triangulation has no hinges, then we require the slopes
pi , qi , ri and `i=.2ki / to satisfy the intersection condition (4.5).

Provided we can find any angles that simultaneously satisfy all the above, we will have
proved the lemma.

The difficulty is that the angles �pi
, �qi

, and �ri
have different relationships with angles

˛i , �i and � � ˛i � �i depending on whether m1 and m2 have the same or different
sign, and on whether a crossing circle has a half-twist.

Suppose first that there are no half-twists, ie M is the Borromean rings complement,
and that m1 and m2 have the same sign; for concreteness, say they are both positive.
In this case, we build the two solid tori corresponding to m1 and m2 by starting in the
triangle in the Farey graph with vertices 0, 1, and 1=0, and go up. In this case, 1 is not
covered in the first step, so r D 0 or r D 1=0, and 1 is the slope p or q. If both solid
tori have hinges, then the intersection condition will either be automatically satisfied
for the layered solid tori we construct, or it is unnecessary for the side-by-side tori we
construct. So the more difficult remaining case is when m1 D `1=k1 with `1 odd, and
there are no hinges in the path from the triangle .0; 1; 1=0/ to `1=.2k1/, and similarly
for `2=.2k2/.

No hinges means the slope `i=.2ki / is of the form 1=2n for n a positive integer, or of
the form n=1; the second is impossible because 1¤ 2ki . Thus the path in the Farey
graph consists only of copies of L, and goes from .0; 1; 1=0/ to 1=.2ki /. Then we
know that ri , the first slope covered, corresponds to 1=0, which is the vertical edge
in the initial triangulation, labelled with exterior angle � �˛i � �i . The slope pi , the
second slope covered, corresponds to 1=1, which is the diagonal edge in the initial
triangulation, labelled with exterior angle ˛i . Thus the slope qi corresponds to 0, the
horizontal edge, with exterior angle �i . The required equations then become �i D �qi

,
˛i D �pi

, and � � �i �˛i D �ri
, satisfying (8.4), as well as intersection conditions

i.1=.2ki /; 1=1/˛i C i.1=.2ki /; 0=1/�i C i.1=.2ki /; 1=0/.� �˛i � �i / > 2�

or
.2ki � 1/˛i C �i C 2ki .� �˛i � �i / > 2�:

There are many solutions to these equations. For example, set ˛1D�=6 and �1D 5�=9,
so � � ˛1 � �1 D 5�=18, and ˛2 D �˛1 D ��=6 and �2 D ˛1 C �1 D 13�=18, so
� �˛2� �2 D 4�=9. This gives an angle structure, as desired.

The case that both m1 and m2 are negative is similar.
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Next suppose there are no half-twists, but m1 and m2 have opposite signs; say m1 > 0

and m2 < 0. Then we insert an extra tetrahedron onto the first solid torus. Thus
the construction of this solid torus now starts at the Farey triangle .0;�1; 1=0/ and
immediately crosses into the triangle .0; 1; 1=0/. It follows that r D�1, corresponding
to exterior angle ˛1. The only case in which the intersection condition comes up is
if the path in the Farey triangulation only steps L, and the slope m1 equals 1=.2k1/.
Then in this case, p D 1=0, corresponding to exterior angle � � ˛1 � �1, and q D 0,
corresponding to exterior angle �1. The intersection condition is similar to above, the
only difference is that we need to ensure we have a solution in which ˛1 now lies
strictly between 0 and � . But notice we already found such a solution in the previous
case. Thus the same angles in the previous case still work to give an angle structure in
this case. Notice that ˛2<0, but becausem2<0 as well, ˛2 does not correspond to the
exterior angle on slope r2, the first slope covered, and so�� <˛2<0 works in this case.

In the case that there is one half-twist, the half-twist changes the names of the slopes in
the framing: the meridian of the unfilled manifold is now a diagonal and the longitude
runs over two horizontal segments. However, we still assign the same exterior angles ˛1

to the diagonal and �1 to the horizontal. In fact, this gives the same required equations
as above, both in the case of m1 and m2 having the same sign, and m1 and m2 having
opposite signs, and so the same choices of angles will give an angle structure.

Finally, when there are two half-twists, again we change the framing on both solid tori,
but ensuring the triangulations match up will again give the same required equations,
and so the solution above always gives an angle structure.

Lemma 8.5 Let M denote the complement of one of the fully augmented links with
two crossing circles , shown in Figure 13, and let M.m1; m2/ denote its Dehn filling
along slopes m1 and m2 on the crossing circle cusps. Suppose m1 and m2 satisfy

m1; m2 … f0=1; 1=0;˙1=1=;˙2=1g:

Then , for the space of angle structures on the triangulation of M.m1; m2/ from above ,
the volume functional takes a maximum in the interior.

Proof Consider a point on the boundary of the space of angle structures. Because it is
on the boundary, it contains a flat tetrahedron, with angles 0, 0, and � . Because the
triangulation of M.m1; m2/ is built of two triangulated solid tori, one of the tetrahedra
in one of the solid tori is flat. Then by Lemma 7.7, all of the tetrahedra in this solid
torus are flat.
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By Lemma 7.8, we know that the exterior dihedral angles of the flat solid torus
.�p; �q; �r/ are .�;��; �/, .��; �; �/, .�; 0; 0/, or .0; �; 0/.

Suppose that .�p; �q; �r/D .�;��; �/ or .��; �; �/. In either case, this implies that
˛1D˙� , so �˛2D ˛1D˙� , and �2D ˛1C�1D 0 (it cannot be 2� since we restrict
to exterior angles between �� and �), by Lemma 8.2. Then the third angle satisfies
� �˛2� �2 D 0. So the exterior dihedral angles of the second solid torus are .�; 0; 0/.
It follows from Lemma 7.8 that the second solid torus must also be flat. Thus such an
angle structure has zero volume, and cannot maximise volume.

Now suppose that .�p; �q; �r/ D .0; 0; �/, up to permutation. Then ˛1 is 0 or � , so
˛2 D�˛1 is 0 or �� , and �2 D ˛1C �1 is 0 or � . In any case, the exterior dihedral
angles must all be either 0 or ˙� , which again implies that the second layered solid
torus is flat. As before the angle structure cannot maximise volume.

Theorem 8.6 Let L be a fully augmented link with exactly two crossing circles , as
in Figure 13. Let M be the manifold obtained by Dehn filling the crossing circles
of S3�L along slopes m1; m2 2 .Q[f1=0g/�f0; 1=0;˙1;˙2g. Then M admits a
geometric triangulation.

Proof By Lemma 8.1, M.m1; m2/ admits a topological triangulation. By Lemma 8.3,
this triangulation admits an angle structure. By Lemma 8.5, the volume functional takes
its maximum on the interior of the space of angle structures. Then the Casson–Rivin
theorem, Theorem 4.2, implies that the triangulation is geometric.

9 Fully augmented 2–bridge links

In this section we consider links obtained by fully augmenting the standard diagram of
a 2–bridge link, which we call fully augmented 2–bridge links for short. These admit a
decomposition into two identical, totally geodesic, right-angled ideal polyhedra as in
Section 2. In this case, the polyhedra have a particularly nice form: they are built by
gluing finitely many regular ideal octahedra. The construction is illustrated carefully in
[26, Section 4]. We review it briefly here.

A 2–bridge link has one of two forms, depending on whether there are an even or odd
number of twist regions; see Figure 18. As before, we augment each twist region with
a crossing circle, and remove all even pairs of crossings from the corresponding twist
region, leaving one or zero crossings encircled by each crossing circle. When there is
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Figure 18: Top: the two forms of a 2–bridge link. Bottom: the forms of the
fully augmented 2–bridge link (without half-twists).

one crossing, we say the crossing circle has a half-twist. In fact, we will not consider
half-twists here, so assume the fully augmented 2–bridge link has no half-twists.

To obtain the polyhedra, cut the fully augmented 2–bridge link along the geodesic
surface of the projection plane. This cuts each of the 2–punctured disks bounded by a
crossing circle in half. The 3–sphere is cut into two pieces, one above and one below
the projection plane. For each half, we cut open half discs and flatten them in the
projection plane. Lastly, shrink the link components to ideal vertices; see Figure 19,
left. The circle packing giving the polyhedral decomposition of a fully augmented
2–bridge link is shown in Figure 19, right.

Lemma 9.1 The cusp shapes of any fully augmented 2–bridge link complement with
no half-twists consist of a 1� 2 block of squares if the cusp is the first or the last in the
diagram , or a 2� 2 block of squares for all other cusps.

...

...

... ...

...

... ...

...

C2

C1C3

C4
Ck�1

Ck

CkC1Cn
C1

C2

C3

C4 Ck

Cn

Figure 19: How to decompose a fully augmented 2–bridge link into two
polyhedra. On the right is the corresponding circle packing.
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Figure 20: Left to right: the first cusp, the next cusp, the .2k/th cusp, and the
.2kC1/th cusp.

Proof The fully augmented 2–bridge link has a circle packing built of two tangent
circles, labelled C1 and C2, and a string of circles C3; : : : ; Cn, each tangent to both
C1 and C2, and Cj tangent to Cj�1 and CjC1 for j D 4; : : : ; n� 1, as in Figure 19,
right. This circle packing describes each of the two polyhedra making up the link
complement.

We need to determine the cusp shapes of the crossing circle cusps. In each polyhedron
the crossing circle cusps correspond to tangencies in the circle packing between C2

and C3, between C4 and C1, and more generally, between C2 and C2kC1, and between
C1 and C2k . We take each of these tangent points to infinity to determine the cusp
shape. There are two cases.

Case 1 Consider the first and last crossing circles, corresponding to tangencies of C2

and C3, and of either C2 and Cn or C1 and Cn if n is odd or even, respectively.

Take the point of tangency to infinity. In the case of C2 and C3, there are two circles,
C1 and C4, tangent to both C2 and C3, and tangent to each other. Thus the circle
packing forms a square, similar to the case of the Borromean rings. When we glue
across white faces, we glue an identical square coming from the second polyhedron,
and the cusp becomes a 1� 2 rectangle; see Figure 20, left. The case of Cn is similar.

Case 2 For tangencies between circles C1 and C2k or C2 and C2kC1, where the
circles C2k or C2kC1 are not the first or last such circles, when we take the point of
tangency to infinity we see a pattern as shown in Figure 20, right. That is, in the first
case, circles C1 and C2k become parallel lines. Between them are three circles tangent
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Figure 21: How the square faces of pyramids glue to each other.

to both parallel lines, namely C2k�1, C2, and C2kC1. These circles form the cusp
circle packing. Again glue a white face to another white face to obtain the full cusp
shape, shown in Figure 20, middle right. In this case, the cusp shape is a 2�2 rectangle.
The case of C2 and C2kC1 is similar, and is illustrated in Figure 20, far right.

Notice that each crossing circle cusp is tiled by ideal pyramids over a square base. The
first and last crossing circle cusps are tiled by two pyramids, the others by four.

The fully augmented 2–bridge link is obtained by gluing all these pyramids together
according to the following pattern.

Lemma 9.2 Consider the fully augmented 2–bridge link , with no half-twists , and
cusp shapes as in Lemma 9.1. The gluing is as follows:

� The first cusp , which is a 1� 2 rectangle , is glued to the top half of the second
cusp , with left side gluing by a reflection in the diagonal of positive slope , and
right side gluing by reflection in the diagonal of negative slope.

� The bottom half of the second cusp , another 1 � 2 rectangle , is glued to the
top half of the third cusp , with the left side gluing by reflection in the negative
diagonal , and the right side gluing by reflection in the positive diagonal.

� Inductively, the 1� 2 bottom half of the kth cusp glues to the 1� 2 top half of
the .kC1/th cusp , with left side gluing by reflection in one diagonal , and the
right side gluing by reflection in the other diagonal ; see Figure 21. Importantly ,
diagonals glue to diagonals , and horizontal lines glue to vertical and vice-versa.

� Finally, on the last 2 � 2 rectangle , the bottom 1 � 2 rectangle glues to the
final crossing circle cusp , a 1� 2 rectangle , again with vertical edges gluing to
horizontal and horizontal to vertical , and diagonals gluing to diagonals.
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Proof As in the case of the link with two crossing circles, this result is obtained by
observing the intersections of circles in the circle packings; refer to Figure 20. For
the first cusp, the square on the left has ideal vertices C1\C2, C2\C4, C3\C4, and
C3 \C1 in anticlockwise order. These map to the top square in the middle left, but
note this list of vertices now runs in clockwise order, with C2\C4 and C3\C1 in the
same locations. It follows that the gluing is a reflection in the diagonal of positive slope.
For the square on the right, ideal vertices C 01\C

0
3, C 03\C

0
4, C 02\C

0
4, and C 02\C

0
1 in

anticlockwise order are mapped to the top right square in the middle left, only now in
clockwise order. The gluing is a reflection in the diagonal of negative slope.

The rest of the squares are treated similarly to obtain the result.

To Dehn fill, we remove the interiors of the pyramids meeting the cusp, leaving only
the square base of each pyramid behind. We will then put in a triangulated solid torus
in which the chosen slope bounds a meridian and the boundary is triangulated to match
the triangulation on the original manifold.

We know how to fill in a solid torus in the case of the 1�2 rectangles: we just take the
double cover of the layered solid torus as in Lemma 7.1 or the side-by-side solid torus
as in Lemma 7.4.

For the 2� 2 rectangle, we see in Lemma 9.3 that the double cover of one of the solid
tori we have already encountered will always work.

Lemma 9.3 Suppose a=b is a slope , and a=b … f0=1; 1=0;˙1=1g.

(1) If a is odd and b is even , then let Y be the double cover of the vertical side-by-
side solid torus X from Lemma 7.9, constructed so that X has meridian a=2b.

(2) If a is even and b is odd , or if a is odd and b is odd , then let Y be the double
cover of the horizontal side-by-side solid torus X from Lemma 7.4, constructed
so that X has meridian 2a=b.

In either case , Y is a triangulated solid torus whose boundary consists of eight ideal
triangles in four symmetric pairs , forming a 2� 2 square. The slope a=b is a meridian
of Y .

Proof Case 1 Suppose a=b is of the form odd over even.

Let X be the triangulated solid torus that is a “vertical” side-by-side of a layered solid
torus, constructed so that the meridian of X has slope a=2b WDmX , as in Lemma 7.9.
Note that to build such a triangulation, we walk to the slope a=b in the Farey graph,
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then identify edges of slope a=b in the final layered tetrahedra, and insert one more
tetrahedron. In R2, the slope 1=0 WD �X in X lifts to run from .0; 0/ to .0; 2/, and
0=1 WD �X lifts to run from .0; 0/ to .1; 0/. The meridian of X , the slope a=2b DmX ,
lifts to run from .0; 0/ to .2b; 2a/.

Let Y denote the (horizontal) double cover of X . We will show Y gives the required
Dehn filling. To do so, we need to show that a=b, now written as a slope on Y , in the
basis for Y , bounds a disc.

In the solid torus X , the slope �X D 1=0 lifts to the curve running from .0; 0/ to .0; 2/
in R2. The meridian slopemX Da=2b meets the slope �X a total of ja �0�2b �1jD j2bj
times, which is even. Thus the curve �X is homotopic to an even power of the core ofX .
Therefore it lifts to a generator of the fundamental group of @Y . Denote this generator
by �Y D 1=0. When we lift @Y to R2, the lift of �Y still runs from .0; 0/ to .0; 2/.

The meridian slope mX D a=2b of X meets �X D 0=1 a total of j2b � 0� a � 1j D jaj
times, which is odd. Thus a second generator of the fundamental group of @Y is given
by taking two lifts of the curve �X D 0=1, lined up end-to-end. Denote this generator
by �Y . When we lift @Y to R2, �Y lifts to run from .0; 0/ to .0; 2/ in R2, ie twice the
lift of the corresponding generator in @X .

The meridian mX D a=2b of X lifts to bound a disc in Y . Note that the lift runs a
times along �Y and b times along �Y . This means the meridian of Y is the slope a=b,
as desired.

Case 2 Suppose a=b is of the form even over odd or is of the form odd over odd.

Let X be the triangulated solid torus that is a “horizontal” side-by-side solid torus,
constructed so that the meridian of X has slope 2a=b WDmX . Note that to build such a
triangulation, we walk to the slope a=b in the Farey graph, as in Lemma 7.4. The solid
torus X has generators of the fundamental group given by slopes �X D 1=0, lifting
to run from .0; 0/ to .0; 1/ in the R2 cover of @X , and �X D 0=1, lifting to run from
.0; 0/ to .2; 0/. The meridian 2a=b lifts to run from .0; 0/ to .2b; 2a/.

Let Y denote the (vertical) double cover of X . We will show Y gives the required Dehn
filling. To do so, we need to show that a=b, written in the basis for Y , bounds a disc.

In X , �X D 1=0 meets the meridian slope mX D 2a=b a total of j1 � b� 0 � 2aj D jbj
times, which is odd. Thus �X inX lifts to an arc in @Y . A generator of the fundamental
group of @Y is given by taking two lifts of this curve, lined up end-to-end. Denote the
resulting closed curve in Y by �Y . Its lift runs from .0; 0/ to .0; 2/ in R2.
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In X , the slope �X D 0=1 meets the meridian slope mX D 2a=b of X a total of
j0 � b� 1 � 2aj D j2aj times, which is even. Thus the curve �X is homotopic to an even
power of the core of X , and it lifts to a closed curve in Y . A second generator of the
fundamental group of @Y is given by taking this lift of �X . Denote it by �Y . When we
lift @Y to R2, the lift of �Y is the same as the lift of �X : it runs from .0; 0/ to .0; 2/ in R2.

The meridian mX D 2a=b of X lifts to bound a disc in Y . Note that the lift runs a
times along �Y and b times along �Y , hence has the slope a=b, as desired.

Lemma 9.4 Let a=b 2Q[f1=0g be such that a=b … f0=1; 1=0;˙1=1g. Let Y denote
the triangulated solid torus with meridian a=b of Lemma 9.3. Let f�p; �q; �rg be
exterior dihedral angles along the boundary of the four-punctured torus forming the
2� 2 square , each repeated four times symmetrically, satisfying

0 < �r < �; �� < �p; �q < �; and �pC �qC �r D �:

Then there exists an angle structure on the triangulated solid torus of Lemma 9.3 with
these exterior angles.

Proof This is automatic from Lemma 7.6 or Lemma 7.9: our solid torus is the double
cover of a vertical or horizontal side-by-side solid torus X , with meridian of X not one
of the slopes f0=1; 1=0;˙1=1;˙1=2;˙2=1g. For such solid tori, the angle structure
exists, so it exists for the double cover by lifting angles.

Lemma 9.5 Let T be the triangulated solid torus of Lemma 9.3. If the volume
functional has its maximum in the boundary of the space of angle structures , then all
tetrahedra of T must be flat. Hence , the volume functional takes its maximum in the
interior.

Moreover , all tetrahedra are flat if and only if exterior angles .�p; �q; �r/ are one of
.�; 0; 0/, .0; �; 0/, .��; �; �/ or .�;��; �/.

Proof This follows immediately from the similar fact for side-by-side solid tori,
Lemmas 7.7 and 7.8, or in the vertical side-by-side case by Lemma 7.9.

After removing pyramids from the fully augmented 2–bridge link, and putting in
triangulated solid tori satisfying the above lemmas, we have a triangulation of a Dehn
filling. To obtain an angle structure, we need gluing equations to be satisfied. Since
we already know gluing equations inside the solid tori, we only need to ensure gluing
equations hold on the boundaries of these solid tori where they glue to each other.
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Lemma 9.6 Let L be a fully augmented 2–bridge link with n>2 crossing circles (and
no half-twists). Let s1; : : : ; sn be slopes that are all positive or all negative , and further

s1; sn … f0=1; 1=0;˙1=1;˙2=1g and s2; : : : ; sn�1 … f0=1; 1=0;˙1=1g:

Label horizontal edges in all crossing circle cusps by �j , diagonals by j̨ , and verticals
by � � �j � j̨ . (These are exterior angles). Let T be the triangulation of the Dehn
filling of S3�L along these slopes obtained by inserting solid tori as above. Then if
there is an angle structure , exterior angles on the solid tori must satisfy

(Diagonal equations) ˛i D�˛iC1 for all i;.9.7/

(Interior equations) 2.�iC˛i /��i�1��iC1D 0 for 2� i �n�1;.9.8/

(End equations) �1C˛1��2D 0 and �nC˛n��n�1D 0:.9.9/

Proof This follows from the gluing description given above.

Diagonal edges map to diagonal edges, and these are the only edges in this edge class.
Thus for all i , .� �˛i /C .� �˛iC1/D 2� , which implies ˛i D�˛iC1, giving (9.7).

For the first end equation, the vertical edges with angles � � �1�˛1 in the first 1� 2
cusp glue to the horizontal edges on the left side of the first 2� 2 cusp, labelled �2.
Note that both vertical edges and both horizontal edges are glued to the same edge class.
Thus 2.�� .���1�˛1//C2.���2/D 2� . This gives the first end equation in (9.9).

For the interior equations, the horizontal edge with angle �i�1 in the .i�1/th cusp
glues to both vertical edges in the i th cusp, with angles � � �i � ˛i . In turn, both
vertical edges in the i th cusp glue to the horizontal edge with angle � � �iC1 in
the .iC1/th cusp. Note that this is true for 2 � i � n � 1. Thus we require that
� � �i�1C 2.� � .� � �i � ˛i //C� � �iC1 D 2� for 2 � i � n� 1. This gives the
interior equations in (9.8).

For the second end equation, both horizontal edges with angle �n�1 in the last 2� 2
cusp glue to both vertical edges with angle � � �n � ˛n in the last 1� 2 cusp. Thus
2.� � �n�1/C2.� � .� � �n�˛n//D 2� , giving the second end equation in (9.9).

Lemma 9.10 For the triangulation on the Dehn filling of the fully augmented 2–bridge
link given above , the space of angle structures is nonempty.

Proof Because the signs of all the slopes agree, say all are positive, the solid tori are
constructed by starting in the Farey triangulation in the triangle .0; 1; 1=0/, and moving
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either across the edge from 0 to 1 or from 1 to 1=0. In either case, the slope 1=1 cannot
correspond to the slope covered first, so j̨ will never correspond to the slope �rj

; it
will be �pj

or �qj
. Then set all j̨ D 0. This is in the required range of Lemma 9.4.

Because j̨ D 0 for all j , the end equations imply �1 D �2, and the interior equations
imply 2�2 D �1 C �3, hence �3 D �1. Inductively assume �j D �1 for j � k and
k � n � 1. Then 2�k D �k�1 C �kC1, hence �kC1 D �1 as well. Finally, the end
equations imply �n D �n�1 D �1. So all angles �j equal �1.

Now by Lemma 9.4 in the case of the 2� 2 square, or by Lemma 7.6 in the case of
the 1� 2 square, an angle structure exists on the solid tori. By choice of angles, these
satisfy the gluing equations required in Lemma 9.6. So this gives an angle structure.

Lemma 9.11 Volume is maximised in the interior of space of angle structures.

Proof Suppose volume is not maximised in the interior. Then there is a flat tetrahedron,
say in the i th solid torus a tetrahedron is flat. By Lemma 9.5 the i th solid torus must be
a flat solid torus.

A solid torus is flat if and only if the exterior angles ˛i , �i , and ��˛i ��i are .0; 0; �/
or .�;��; �/, up to permutation, by Lemma 9.5. There are five cases:

Case 1 (˛i D �i D 0) Here j̨ D 0 for all j by the diagonal equations (9.7). As in
the proof of Lemma 9.10, this implies that �j D �1 for all j . In particular, �1D �i D 0,
so all �j D 0, so all the solid tori are flat by Lemma 9.5.

Case 2 (˛i D 0 and �i D �) Here 2�i D �i�1C �iC1 by the interior equations (9.8).
Since �i D� , we have 2� D �i�1C�iC1, which implies that both �i�1 and �iC1 are � .
Hence all solid tori are flat by Lemma 9.5.

Case 3 (˛i D � and �i D 0) By the interior equations (9.8), �iC1C�i�1�2�i D 2� .
Now �i D 0 gives �i�1C �iC1 D 2� , which implies that �i�1 and �iC1 are � . Then
the diagonal equations plus these results imply ˛i�1 D �� and �i�1 D � . This is
case 5. We show below that all tetrahedra are flat.

Case 4 (˛i D � and �i D ��) First suppose i is even, where 1 < i � n. Then

j̨ D � for j D 2k and j̨ D �� for j D 2k C 1. In particular, ˛1 D �� . By the
end equations (9.9), we have �2 D �1 � � . By the interior equations (9.8), we have
2�j � �j�1 � �jC1 D 2� for j D 2kC 1, and 2�j � �j�1 � �jC1 D�2� for j D 2k.
In particular, when j D 2k D 2, this implies �1 D �3.
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Now inductively assume that �2jC1 D �1 for j � k and �2j D �1�� for j � k, and
2kC 3� n� 1. Then the interior equations imply

2�2kC1� �2k � �2kC2 D 2�1� �1C� � �2kC2 D 2�;

and so �2kC2 D �1�� . Moreover,

2�2kC2� �2kC1� �2kC3 D 2.�1��/� �1� �2kC3 D�2�;

thus �2kC3 D �1. Finally, the end equation implies

�n D

�
�n�1�� D �1�� if n even;
�n�1C� D .�1��/C� D �1 if n odd:

Since our fixed i is even, we have �1 D �i C � D �� C � D 0. This implies that
�j D 0 for all j even and �j D�� for all j odd. It follows that all tetrahedra are flat
by Lemma 9.5.

Now suppose i is odd, ˛i D � , and �i D�� . Then j̨ D�� for j even and j̨ D �

for j odd. In particular, ˛1 D � . As above, the end and interior equations imply that
�j D �1 when j is odd, and �j D �1C� when j is even. So again, �� D �i D �1D �j

for all j odd, and 0D �1C� D �j for all j even. Thus again all tetrahedra are flat.

Case 5 (˛i D�� and �i D �) This case is similar to case 4 above. When i is odd,
one can show �2jC1 D �1 and �2j D �1�� for all j , implying �1 D �i D � D �2jC1

and �2j D 0. Thus all tetrahedra are flat.

When i is even, one can show �2jC1 D �1 and �2j D �1 C � for all j , implying
� D �i D �1C� , so �1D �2jC1D 0 and �2j D 0C� , so again all tetrahedra are flat.

Theorem 9.12 Let L be a fully augmented 2–bridge link with n > 2 crossing circles
(and no half-twists). Let s1; s2; : : : ; sn 2Q[ f1=0g be slopes , one for each crossing
circle , that are all positive or all negative. Suppose finally that s1 and sn are the slopes
on the crossing circles on either end of the diagram , and the slopes satisfy

s1; sn … f0=1; 1=0;˙1=1;˙2=1g and s2; : : : ; sn�1 … f0=1; 1=0;˙1=1g:

Then the manifold obtained by Dehn filling S3�L along these slopes on its crossing
circles admits a geometric triangulation.

Proof With these slopes, there exists a triangulated solid torus with meridian sj
and boundary triangulated by a number of triangles matching that on the crossing
circle boundary. Topologically, the Dehn filling is given by triangulating the solid
tori and gluing them together. By Lemma 9.10, the result admits an angle structure.
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By Lemma 9.11, the volume is maximised in the interior of the angle structure. The
Casson–Rivin Theorem, Theorem 4.2, then implies the triangulation is geometric.
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