Download this article
 Download this article For screen
For printing
Recent Issues

Volume 23
Issue 9, 3909–4400
Issue 8, 3417–3908
Issue 7, 2925–3415
Issue 6, 2415–2924
Issue 5, 1935–2414
Issue 4, 1463–1934
Issue 3, 963–1462
Issue 2, 509–962
Issue 1, 1–508

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
On the functoriality of $\mathfrak{sl}_{2}$ tangle homology

Anna Beliakova, Matthew Hogancamp, Krzysztof K Putyra and Stephan M Wehrli

Algebraic & Geometric Topology 23 (2023) 1303–1361
Bibliography
1 M M Asaeda, J H Przytycki, A S Sikora, Categorification of the Kauffman bracket skein module of I–bundles over surfaces, Algebr. Geom. Topol. 4 (2004) 1177 MR2113902
2 D Bar-Natan, Khovanov’s homology for tangles and cobordisms, Geom. Topol. 9 (2005) 1443 MR2174270
3 A Beliakova, M Hogancamp, K K Putyra, S M Wehrli, On unification of colored annular 𝔰𝔩2 knot homology, preprint (2023) arXiv:2305.02977
4 A Beliakova, K K Putyra, S M Wehrli, Quantum link homology via trace functor, I, Invent. Math. 215 (2019) 383 MR3910068
5 C Blanchet, An oriented model for Khovanov homology, J. Knot Theory Ramifications 19 (2010) 291 MR2647055
6 J Brundan, C Stroppel, Highest weight categories arising from Khovanov’s diagram algebra, II : Koszulity, Transform. Groups 15 (2010) 1 MR2600694
7 J Brundan, C Stroppel, Highest weight categories arising from Khovanov’s diagram algebra I : Cellularity, Mosc. Math. J. 11 (2011) 685, 821 MR2918294
8 C Caprau, An 𝔰𝔩(2) tangle homology and seamed cobordisms, preprint (2007) arXiv:0707.3051
9 S Cautis, J Kamnitzer, S Morrison, Webs and quantum skew Howe duality, Math. Ann. 360 (2014) 351 MR3263166
10 Y Chen, M Khovanov, An invariant of tangle cobordisms via subquotients of arc rings, Fund. Math. 225 (2014) 23 MR3205563
11 D Clark, S Morrison, K Walker, Fixing the functoriality of Khovanov homology, Geom. Topol. 13 (2009) 1499 MR2496052
12 B Cooper, V Krushkal, Categorification of the Jones–Wenzl projectors, Quantum Topol. 3 (2012) 139 MR2901969
13 M Ehrig, C Stroppel, D Tubbenhauer, Generic 𝔤𝔩2–foams, web and arc algebras, preprint (2016) arXiv:1601.08010
14 M Ehrig, C Stroppel, D Tubbenhauer, The Blanchet–Khovanov algebras, from: "Categorification and higher representation theory" (editors A Beliakova, A D Lauda), Contemp. Math. 683, Amer. Math. Soc. (2017) 183 MR3611714
15 M Ehrig, D Tubbenhauer, P Wedrich, Functoriality of colored link homologies, Proc. Lond. Math. Soc. 117 (2018) 996 MR3877770
16 M W Hirsch, Differential topology, 33, Springer (1976) MR0448362
17 M Jacobsson, An invariant of link cobordisms from Khovanov homology, Algebr. Geom. Topol. 4 (2004) 1211 MR2113903
18 M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359 MR1740682
19 M Khovanov, A functor-valued invariant of tangles, Algebr. Geom. Topol. 2 (2002) 665 MR1928174
20 M Khovanov, sl(3) link homology, Algebr. Geom. Topol. 4 (2004) 1045 MR2100691
21 M Khovanov, Categorifications of the colored Jones polynomial, J. Knot Theory Ramifications 14 (2005) 111 MR2124557
22 M Khovanov, An invariant of tangle cobordisms, Trans. Amer. Math. Soc. 358 (2006) 315 MR2171235
23 A D Lauda, H Queffelec, D E V Rose, Khovanov homology is a skew Howe 2–representation of categorified quantum 𝔰𝔩m, Algebr. Geom. Topol. 15 (2015) 2517 MR3426687
24 T Leinster, Basic bicategories, preprint (1998) arXiv:9810017
25 M Mackaay, M Stošić, P Vaz, 𝔰𝔩(N)–link homology (N 4) using foams and the Kapustin–Li formula, Geom. Topol. 13 (2009) 1075 MR2491657
26 P S Ozsváth, J Rasmussen, Z Szabó, Odd Khovanov homology, Algebr. Geom. Topol. 13 (2013) 1465 MR3071132
27 K K Putyra, A 2–category of chronological cobordisms and odd Khovanov homology, from: "Knots in Poland, III : Part III" (editors J H Przytycki, P Traczyk), Banach Center Publ. 103, Polish Acad. Sci. Inst. Math. (2014) 291 MR3363817
28 K K Putyra, A quantum colored 𝔰𝔩(2) knot homology : three approaches, same invariant, conference recording (2019)
29 H Queffelec, Skein modules from skew Howe duality and affine extensions, Symmetry Integrability Geom. Methods Appl. 11 (2015) 030 MR3336022
30 H Queffelec, D E V Rose, The 𝔰𝔩n foam 2–category : A combinatorial formulation of Khovanov–Rozansky homology via categorical skew Howe duality, Adv. Math. 302 (2016) 1251 MR3545951
31 H Queffelec, P Wedrich, Khovanov homology and categorification of skein modules, preprint (2018) arXiv:1806.03416
32 J Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010) 419 MR2729272
33 L Rozansky, A categorification of the stable SU(2) Witten–Reshteikhin–Turaev invariant of links in 𝕊2 × 𝕊1, preprint (2010) arXiv:1011.1958
34 C Stroppel, Parabolic category 𝒪, perverse sheaves on Grassmannians, Springer fibres and Khovanov homology, Compos. Math. 145 (2009) 954 MR2521250
35 P Vogel, Functoriality of Khovanov homology, preprint (2015) arXiv:1505.04545