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The Heisenberg plane

STEVE TRETTEL

The geometry of the Heisenberg group acting on the plane arises naturally in geomet-
ric topology as a degeneration of the familiar spaces S2;H2 and E2 via conjugacy
limit as defined by Cooper, Danciger and Wienhard. This paper considers the defor-
mation and regeneration of Heisenberg structures on orbifolds, adding a carefully
worked low-dimensional example to the existing literature on geometric transitions.
In particular, the closed orbifolds admitting Heisenberg structures are classified, and
their deformation spaces are computed. Considering the regeneration problem, which
Heisenberg tori arise as rescaled limits of collapsing paths of constant curvature cone
tori is completely determined in the case of a single cone point.

57M50

1 Introduction

Heisenberg geometry is a geometry on the plane given by all translations together with
shears parallel to a fixed line. Viewing this fixed line as “space” and any line intersecting
it transversely as “time”, this is the geometry of 1C1–dimensional Galilean relativity.

Definition 1.1 Heisenberg geometry is the .G;X / geometry Hs2 WD .Heis;A2/, where

HeisD

8<:
0@˙1 a c

0 ˙1 b

0 0 1

1A ˇ̌̌̌ˇ a; b; c 2R

9=; and A2
D fŒx Wy W 1� 2RP2

j x;y;2Rg:

The identity component Heis0 < Heis is the real Heisenberg group, and the index two
subgroup of orientation-preserving transformations is denoted HeisC.

The Heisenberg plane represents a particularly simple example of a non-Riemannian
degeneration of Riemannian symmetric spaces via conjugacy limit, as studied by Cooper,
Danciger and Wienhard [7], Danciger [9] and Fillastre and Seppi [13]. The semi-
Riemannian geometries with automorphism groups O.p; q/ and their degenerations
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Figure 1: The poset of subgeometries of RP 2 with automorphism groups
PO.p; q/ (spherical, hyperbolic and (anti-)de Sitter space) and their degenera-
tions (adapted from [7]). The first degenerations are geometries of Euclidean
and Minkowski space together with their contragredient dual representations
( yM2 is the half-pipe geometry of [9]). The Heisenberg plane is a degeneration
of all of these.

form a poset1 with a minimum element in each dimension [7]. This “most degenerate”
geometry has the property that no nontrivial orthogonal group of any dimension appears
as a subgroup of its automorphisms, and in dimension two is the Heisenberg plane.

We attempt to provide a detailed exploration of Heisenberg geometry to add to the
literature describing explicit geometric transitions. We pay particular attention to
aspects of interest to geometric topology, namely classifying Heisenberg orbifolds,
calculating deformation their spaces and constructing regenerations of Heisenberg
structures into familiar geometries. In order to lower the prerequisites, when some
result for the Heisenberg plane is a consequence of more general geometric theorems
we mention this, but attempt to also provide self-contained proofs when possible and
succinct.

1.1 Heisenberg orbifolds

The first main result concerns the moduli problem for Heisenberg orbifolds. As a
subgeometry of the affine plane, all Heisenberg orbifolds are finitely covered by a torus,
so computing the deformation space DHs2.T 2/ is the natural starting point. Geometric
structures on tori generalize elliptic curves (the conformal structures), especially in
the presence of a compatible group operation. As in the complete affine case studied
by Baues and Goldman [3], each Heisenberg torus admits a group structure with
Heisenberg maps realizing the group operation, which we explicitly describe. As a first

1The fact that spheres of increasing radius limit to their tangent plane can be used to produce a degeneration
of spherical geometry to Euclidean showing that E2 � S2, for example.
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step to determining these structures we compute the representation variety of potential
holonomies:

Theorem 1.2 The representation variety Hom.Z2;Heis0/ is isomorphic , as a real
algebraic variety , to the product V � R2, where V is the 3–dimensional variety
V D f.x;y; z; w/ 2 R4 j xy D zwg. Topologically , this is homeomorphic to the
product of a plane with the cone on a torus.

The Heisenberg plane admits no invariant Riemannian metric, so the possibility of
incomplete structures must be taken seriously. In contrast to the affine case (see
Baues [2] and Nagano and Yagi [19]) however, a geometric argument shows all
Heisenberg structures are complete, and the deformation space DHs2.T 2/ of tori
identifies with the conjugacy classes of faithful representations Z2 ! HeisC acting
properly discontinuously on R2. The projection onto conjugacy classes admits a section
allowing us to select a preferred holonomy (and construct the corresponding developing
map) for each point in deformation space.

Theorem 1.3 All Heisenberg tori are complete , and the projection onto holonomy
DHs2.T 2/! Heis.Z2;HeisC/=HeisC is an embedding. The deformation space identi-
fies with the classes of faithful representations acting properly discontinuously , and is
homeomorphic to R3 �S1.

An explicit description of the deformation space of tori greatly simplifies the calculation
of the remaining deformation spaces, which is relegated to the appendix. As all
structures are complete, the problem of determining Heisenberg structures on an
orbifold O finitely covered by T 2 is equivalent to the following algebraic extension
problem: when does a representation � W �1.T /

2! Heis extend to a representation of
�1.O/ > �1.T

2/?

Theorem 1.4 There are nine closed Heisenberg orbifolds , namely the quotients of
the torus with at most order two cone points and right angled reflector corners. All
Heisenberg orbifolds are complete , and the holonomy map

hol W DHs2.O/! Hom.�1.O/;Heis/=HeisC
is an embedding.

1.2 Regenerating Heisenberg tori

Our second main result concerns the regeneration of Heisenberg structures to constant
curvature ones, adding a detailed example to the collection of regenerations studied in
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O DHs2.O/

S1 �S1 R3 �S1

S1z�S1, S1 � I , S1z�I R3 tR2

S2.2; 2; 2; 2/ R2 �S1

D2.2; 2I¿/;D2.¿I 2; 2; 2; 2/ R2 tR2

RP2.2; 2/;D2.2I 2; 2/ R2 tR2

Table 1: The Heisenberg orbifolds and the homeomorphism type of their
deformation spaces.

Danciger [11], Danciger, Guéritaud and Kassel [12], Heusener, Porti and Suárez [16],
Leitner [18] and Porti [20]. Understanding the behavior of geometric structures along
a transition is in general difficult, as one cannot directly use techniques from either
geometry involved. Suitably constructing degenerations of S2, E2 and H2 to the
Heisenberg plane within the projective plane allows us to use constructions in projective
geometry to bridge the gap and overcome the additional difficulty posed by the lack of
an invariant metric on Hs2.

As the Heisenberg plane is a common degeneration of the familiar constant curvature
geometries, focusing on tori we ask when a given Heisenberg torus is the rescaled
limit of a sequence of constant curvature cone manifold structures. Restricting to
structures with at most one cone point, this has a clean resolution, illustrating a stark
dichotomy between two “flavors” of Heisenberg tori: translation tori with holonomy
images intersecting Heis0 only in translations, and shear tori with holonomy images
containing a nontrivial shear.

Theorem 1.5 Let T be a Heisenberg torus , and X 2 fS2;E2;H2g. Then if Xt is a
sequence of conjugate models of X limiting to the Heisenberg plane within RP2, there
is a sequence of Xt –cone tori Tt with a single cone point limiting to T if and only if
T is a translation torus.

A constructive argument for the “if” direction builds a fundamental domain Q�R2

for each translation torus R2=.ZEv˚Z Ew/, and a sequence of collapsing X cone tori
such that under rescaling X degenerates to Hs2 and the rescaled fundamental domains
converge to Q. This construction is analogous to the regeneration of Euclidean tori as
hyperbolic cone tori. The “only if” direction follows from a geometric characterization
of Heisenberg tori, relating shears in the image of the holonomy homomorphism to the
distribution of simple geodesics on the surface.

Algebraic & Geometric Topology, Volume 23 (2023)
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Theorem 1.6 A Heisenberg orbifold O has a nontrivial shear in its holonomy if and
only if all simple geodesics on O are parallel.

This provides a clear obstruction to regenerating shear tori. Any two simple geodesics
on a shear torus are disjoint, but constant curvature cone tori with a single cone point
have geodesic representatives of each homotopy class. In particular, any generating
set for H1.T

2/ can be pulled tight to give intersecting simple geodesics. An argument
in projective geometry shows that any limit of X 2 fS2;H2;E2g–cone tori as RP2

structures inherits a collection of intersecting simple geodesics, finishing the proof.
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2 Background

We list some terminology and notations used throughout the paper for quick reference.
We denote by Heis0 the real Heisenberg group of upper triangular unipotent 3 � 3

matrices, and by Heis D .Z2/
2 Ì Heis0 the group generated by this together with

reflections diag.˙1;˙1; 1/. HeisC is the index two orientation-preserving subgroup
of Heis, and Tr the subgroup acting by translations on the plane. The Lie algebra heis

consists of the strictly upper triangular 3� 3 matrices, and provides useful coordinates
for the representation varieties. For ease of inline typesetting we will often denote the
element 0@0 x z

0 0 y

0 0 0

1A 2 heis
by the shorthand notation

�x z
y

�
.

We denote a closed two-dimensional orbifold O with underlying topological space X

by X.Ec/ if O has cone points of order Ec D .c1; : : : ; cm/, and by X.EcI Er/ if in addition
@X ¤¿ and O has corner reflectors of order Er D .r1; : : : ; rn/.
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The algebraic variety cut out by f 2 RŒx1; : : : ;xn� is denoted by V .f /. A finite
presentation for a group � D hs1; : : : ; sn j r1; : : : ; rmi gives an injection

ev W Hom.�;Heis/ ,! Heisn

by evaluation on generators: ev.�/ D .�.s1/; : : : ; �.sn//. The image is an algebraic
variety cut out by the polynomials fri�Ig. Pulling this structure back via the evaluation
map equips the set of homomorphisms with a variety structure which is independent of
the original choice of presentation (see for example [14]).

2.1 Klein geometry

A geometry in the sense of Klein is a pair .G;X / consisting of a Lie group G acting
analytically and transitively on a smooth manifold X . Examples of Kleinian geome-
tries abound in geometric topology, from spherical geometry as in the sphere with
an SO.3/ action, to the hyperbolic plane as a disk in C together with the Möbius
transformations preserving it, and even non-Riemannian examples such as projective
space, .SL.nC 1IR/;RPn/. Consult [7; 15; 23] for additional reference and examples.

For convenience we often work with pointed geometries .G; .X;x// selecting a par-
ticular point stabilizer Gx D stabG.x/. As G acts transitively, the particular choice of
basepoint is immaterial and often notationally suppressed. A morphism of geometries
.G;X /! .H;Y / is a pair .ˆ;F / consisting of a group homomorphism ˆ WG!H

with ˆ.Gx/ <Hy , together with a ˆ–equivariant smooth map F W .X;x/! .Y;y/. A
subgeometry of .G;X / is the image of a monomorphism .H;Y / ,! .G;X /, namely
a subset Y � X together with a subgroup H < G preserving and acting transitively
on Y . An open subgeometry is a subgeometry with Y �X open. One may alternatively
build the theory of Klein geometries abstractly as pairs .G;Gx/ of a Lie group and
closed subgroup, recovering the space X as X D G=Gx with basepoint Gx . This
automorphism-stabilizer perspective is equivalent to the group-space definitions above,
with the map .G; .X;x// 7! .G;Gx/ defining an equivalence of categories.

A geometry is said to be effective if the only automorphism acting trivially is the
identity. Its failure to be effective is measured by the intersection of all point stabilizers
KG D

T
x2X stabG.x/, and a geometry is locally effective if KG is discrete. The

assignment E W .G;X / 7! .G=KG ;X / induces an equivalence of categories onto the
subcategory of effective geometries; we say two geometries are effectively equivalent
if their images under E. � / are isomorphic. As is commonplace, we switch between
effectively equivalent geometries when convenient.
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2.2 Geometric structures and collapse

A .G;X / structure on a manifold M is defined by a maximal atlas of X –valued charts
on M with transition maps in G. The set of such structures is denoted by S.G;X /.M /.
Pulling an atlas back to the universal cover and analytically continuing a chosen
base chart provides an alternative definition via a developing pair: an immersion
f W zM ! X called the developing map, which is equivariant with respect to the
holonomy homomorphism � W�1.M /!G. A .G;X / structure on M , only determines
such a developing pair up to the action of G by g : .f; �/D .g : f;g�g�1/, identifying
S.G;X /.M / with the set of G orbits of developing pairs under this action. S.G;X /.M /

inherits the quotient topology from the space of developing pairs topologized by uniform
convergence on compact sets. The deformation space of .G;X / structures D.G;X /.M /

is the result of further identifying isotopy classes of structures. More precisely, let
Diff0.M / denote the diffeomorphisms of M isotopic to the identity, and eDiff0.M /

their lifts to �1.M /–equivariant maps zM ! zM . Then D.G;X /.M / is the quotient
of S.G;X /.M / by the action of eDiff0.M / by precomposition on the developing map
factor. More detailed accounts of deformation space can be found in [2; 14; 15]. A
subgeometry .H;Y / < .G;X / induces a map D.H ;Y /.M /!D.G;X /.M / by viewing
an .H;Y / structure up to .G;X / equivalence, called weakening. Note that this map
is rarely injective. For example, weakening Euclidean to affine structures collapses
the entirety of DE2.T 2/ to a point. Dually, a developing pair for a .G;X / structure
with holonomy image in .H;Y / can be strengthened to an .H;Y / structure by only
considering equivalence up to H–conjugacy.

A sequence of geometric structures degenerates if the developing maps fail to con-
verge to an immersion even after adjusting by diffeomorphisms of M and coordinate
changes in G. Of particular interest are collapsing degenerations, with developing maps
converging to a submersion into a lower-dimensional submanifold and holonomies
limiting to a representation into the subgroup preserving this submanifold. A trivial
example is given by the collapse of Euclidean manifolds under volume rescaling. Given
a Euclidean structure .f; �/ on a manifold M n and any r 2RC, the developing pair
.rf; r�/ describes the rescaled manifold with volume rn times that of the original. As
r ! 0 these structures collapse to a constant map and the trivial holonomy. More
interesting examples include the collapse of hyperbolic structures onto a codimension-1
hyperbolic space as studied by Danciger [9; 11; 10] and the collapse of hyperbolic and
spherical structures in [20; 22].
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Collapsing geometric structures can often be “saved” by allowing more flexible coordi-
nate changes. If a geometry .H;Y / can be realized as an open subgeometry of .G;X /,
then a sequence .fn; �n/ of collapsing .H;Y / structures may actually converge as
.G;X / structures, meaning there are gn 2G such that the developing pairs gn :.fn; �n/

converge to a .G;X / developing pair .f1; �1/. When f1 has image in an open subset
Z �X , and �1 maps into the subgroup L<G of Z–preserving transformations, this
.G;X / developing pair strengthens to an .L;Z/ structure. It is tempting to say that
within .G;X / these .H;Y / structures converge to an .L;Z/ structure. Formalizing
this notion motivates the field of transitional geometry.

2.3 Geometric transitions

A geometric transition is a continuous path of geometries .Ht ;Yt /, each isomorphic
to a fixed geometry .H;Y /, which converge to a geometry .L;Z/ 6Š .H;Y /. This is
difficult to define in full generality, but here it suffices to formalize geometric transitions
occurring as subgeometries of a fixed ambient geometry. Subgeometries .H;Hx/ of
.G;Gx/ correspond directly to closed subgroups H <G (with HxDH\Gx), providing
a natural topology on the space of subgeometries of .G;X /. The hyperspace CG of
closed subgroups of a compact Lie group G admits the Hausdorff metric, inducing a
topology in which fZng converges to the set of all subsequential limits of sequences
fzng 2Zn. This generalizes to all Lie groups G by equipping CG with the topology of
Hausdorff convergence on compact sets, otherwise known as the Chabauty topology [6].

Definition 2.1 Given a geometry .G; .X;x//, the space of open subgeometries S.G;X /
is defined by

S.G;X / D f.H;H \Gx/ jH <G and dim H � dim.H \Gx/D dim G � dim Gxg

equipped with the subspace topology from CG �CGx
.

Definition 2.2 A continuous path of subgeometries of .G;X / is a continuous map
I !S.G;X /. A geometry .L;Z/ is a degeneration of .H;Y / in .G;X / if there is a
continuous path  W Œ0; 1�!S.G;X / with  .t/Š .H;Y / for t ¤ 0 and  .0/Š .L;Z/.
A geometry .L;Z/ is a transitional geometry from .H;Y / to .H 0;Y 0/ in .G;X / if it
is a degeneration of both .H;Y / and .H 0;Y 0/.

The automorphisms G of the ambient geometry act on the space of subgeometries by
g : .H;Y /D .gHg�1;g :Y /. A degeneration which occurs as the limit of a sequence

Algebraic & Geometric Topology, Volume 23 (2023)
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gt : .H;Y / for gt 2G is called a conjugacy limit of .H;Y / in .G;X /. This provides
the necessary background to formally consider the degeneration and regeneration of
geometric structures.

Definition 2.3 Fix an ambient geometry .G;X / and a subgeometry .H;Y /. Then
a collapsing sequence of .H;Y / structures .ft ; �t / on a manifold M degenerates to
an .L;Z/ structure if there is a path gt 2 G with gt : .H;Y /! .L;Z/ such that
gt : .ft ; �t / converges as developing pairs. Dually, an .L;Z/ structure on M is said
to regenerate into .H;Y / if such a collapsing path of .H;Y / structures exists.

Danciger develops half-pipe geometry [9], as half-pipe structures are the limits of the
aforementioned collapse of hyperbolic cone manifolds onto codimension-1 hyperbolic
space, and together with Guéritaud and Kassel studies regenerations of AdS spacetimes
from flat spacetimes [12]. Hodgson [17] and Porti [20] analyze Euclidean limits
resulting from hyperbolic cone manifolds collapsing to a point, which plays an important
role in the orbifold theorem of Cooper, Hodgson, and Kerckhoff [8] and Boileau, Leeb
and Porti [5]. Further work of Porti studies the nonuniform collapse of hyperbolic
structures and regenerations of Nil [21] and Sol [16], and the work of Ballas, Cooper
and Leitner concerns the degeneration of cusps in projective space [1; 18].

2.4 An example: the spherical-to-hyperbolic transition

As a final installment of introductory material, we introduce models of the constant
curvature geometries S2, E2 and H2 as subgeometries of projective space, and then
construct a geometric transition from spherical to hyperbolic space via conjugacy limit.

Definition 2.4 As subgeometries of projective space, the constant curvature geometries
are realized by the following three models:

� S2 D .SO.3/;RP2/. This twofold quotient of the unit sphere is often called the
elliptic plane in older literature.

� E2 D .Euc.2/;A2/ with Euc.2/D
�
SO.2/ R2

0 1

�
, the Euclidean group acting tran-

sitively on the affine patch A2 D fŒx Wy W 1�g �RP2.

� H2 D .SO.2; 1/;D2/ with D2 D fŒx Wy W 1� j x2Cy2 < 1g, the unit disk in the
affine patch A2.

Note that the projective point p D Œ0 W 0 W 1� lies in each of the above models, and the
stabilizing subgroup of p is equal in all three geometries to S D

�
SO.2/ 0

0 1

�
.
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The underlying spaces of these geometries will often be denoted by S2, E2 and H2 as
well to remind us of the inherent geometric structure. On the level of curvature one can
easily imagine producing a transition from (a small patch of) spherical space to (a small
patch of) hyperbolic space through Euclidean geometry by appropriately varying the
Riemannian metric. Below we give an example realizing this transition as a conjugacy
limit connecting the three specific models above within an ambient copy of RP2.

From the group stabilizer perspective, the models above are given by the points
S2 D .SO.3/;S/, E2 D .Euc.2/;S/ and H2 D .SO.2; 1/;S/ in the space SRP2

of subgeometries of the projective plane. Let Ct D diag.1; 1; t/ and define the path
 W Œ�1; 1�! CGL.3IR/:

 .t/D

8<:
Ct : .SO.2; 1/;S/ if t < 0;

.Euc.2/;S/ if t D 0;

Ct : .SO.3/;S/ if t > 0:

The point stabilizer subgroup S is invariant under Ct conjugacy, thus checking the
continuity of  reduces to considering the limits of Ct :SO.3/ and Ct :SO.2; 1/ in
CGL.3IR/. The fact that each of these paths has limit Euc.2/ as t! 0 is a straightforward
computation in the Lie algebra, a reduction which is justified by [7, Proposition 3.1] as
both are conjugacy limits of algebraic groups. Thus  realizes a continuous transition
as subgeometries of RP2 from  .�1/DH2 to  .1/D S2 through  .0/D E2.

3 Heisenberg geometry

The Heisenberg plane is not a metric geometry but supports other familiar geometric
quantities. The standard area form dAD dx ^ dy on R2 is invariant under the action
of HeisC, furnishing Hs2 with a well defined notion of area. The 1–form dy is Heis0

invariant, and induces a Heis–invariant foliation of Hs2 by horizontal lines together
with a transverse measure. As a subgeometry of the affine plane, Hs2 inherits an affine
connection and notion of geodesic. A curve  is a geodesic if  00 D 0, tracing out a
constant speed straight line in Hs2.

Heisenberg geometry arises as a limit of the constant curvature spaces S2, H2 and
E2 by “zooming into while unequally stretching” a projective model. Details can be
reconstructed from [7], and the precise characterization is reviewed in Section 4. Here
we briefly explore one degeneration of hyperbolic space to the Heisenberg plane as
subgeometries of RP2. Acting on H2 2SRP2 by the path At D diag.t2; t; 1/ results
in a path of subgeometries AtH2 isomorphic to the hyperbolic plane with underlying
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space the origin-centered ellipsoid in A2 with semimajor and semiminor axes of lengths
t2 and t parallel to the x and y axes, respectively. As t tends to infinity, the limit of
these domains is A2 and the groups AtO.2; 1/A

�1
t limit to Heis. The aforementioned

invariant foliation on Hs2 is a remnant of this stretching, and is parallel to the limiting
direction of the major axes of AtH2.

Unlike the degeneration of S2 and H2 to Euclidean space, the uneven stretching
required to produce a Heisenberg limit distorts even the point stabilizer subgroups,
which become noncompact in the limit. Conjugation by At stretches the circle

S D

�
SO.2/ 0

0 1

�
�M.3IR/

into ellipses of increasing eccentricity limiting to the parallel lines
�

1 ˙x
0 1

�
in the upper

2 � 2 block. As a consequence, the role of the unit tangent bundle in the constant
curvature geometries is replaced for the Heisenberg plane by an appropriate space of
based lines. Indeed let LD PT.Hs2/ be the space of pointed lines in the Heisenberg
plane, and H � L those belonging to the invariant horizontal foliation. The action
of Heis0 on the plane extends to a simple transitive action on L XH, analogous to
the action of Isom.X/ on the unit tangent bundle UT.X/ for X 2 fH2;E2;S2g. The
noncompactness of point stabilizers is sufficient to preclude an invariant Riemannian
metric, but moreover the existence of shears in the automorphism group of Heis forces
any continuous Heis–invariant map d W R2 �R2 ! R to be constant along the lines
fxg�R in both factors of the domain, so there are no continuous Heis–invariant distance
functions at all.

3.1 Heisenberg structures on orbifolds

As a subgeometry of the affine plane, every Heisenberg structure on an orbifold O
canonically weakens to an affine structure. This provides strong restrictions on which
orbifolds can possibly admit Heisenberg structures. It follows from a result of Benzécri
that closed affine orbifolds have Euler characteristic zero [4]; an additional self contained
proof appears in [2]. The deformation space of affine tori has been computed [2], and
weakening Heisenberg structures to affine structures provides a (noninjective) map
! W DHs2.T 2/! DA2.T 2/. Each Heisenberg orbifold inherits an area form from Hs2

and has a well defined finite total area. The group RC of homotheties of the plane
acts on DHs2.O/, sending an orbifold O with total area ˛ to an orbifold r :O with
area r2˛, allowing the deformation space to be easily recovered from the space of unit
area structures.
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Observation The action of RC by homotheties on the plane induces an action on
DHs2.O/ defined by r : Œf; ��D Œrf; r��. This gives a homeomorphism

DHs2.O/DRC � THs2.O/

for THs2.O/, the subspace of unit area structures, analogous to the Teichmüller space
for Euclidean tori.

As dy is invariant under the action of Heis0, any Heisenberg surface with holonomy
into Heis0 inherits a closed nondegenerate 1–form and corresponding foliation. This
observation leads to a self-contained proof that every Heisenberg orbifold has vanishing
Euler characteristic, simple enough that we include it for completeness.

Proposition 3.1 Every closed Heisenberg orbifold is finitely covered by a torus with
holonomy in Heis0.

Proof Let O be a Heisenberg orbifold, with developing map f W zO ! Hs2 and
holonomy � W �1.O/! Heis. As f immerses zO in the plane it has no singular locus,
thus zO is a manifold and O is good. Then by the classification of two-dimensional
orbifolds O is not the spindle or teardrop, and is finitely covered by some surface†!O.
The Heisenberg structure on O pulls back to † with developing pair .f; �j�1.†//.
Passing to an at most 4–sheeted cover, we may assume the holonomy of † takes
values in Heis0. Thus † inherits a nondegenerate 1–form ! 2�1.†/ from dy on Hs2.
Choose a Riemannian metric g on †. Then ! defines a nonvanishing vector field
X! by !. � / D g.X! ; � /, and so �.†/ D 0. As Heis0 acts by orientation-preserving
transformations, † is a torus.

Thus Heisenberg tori with holonomy in Heis0 play a fundamental role in the classifi-
cation of Heisenberg orbifolds, and it is natural to study them first. By the previous
observation, in particular it suffices to study the Teichmüller space of unit area structures,
whose holonomy are determined up to conjugacy and homotheties of the plane.

3.2 Representations of Z2 into Heis

To classify tori with holonomy into Heis0, we compute the representation variety
RDHom.Z2;Heis0/. The quotients of R by homothety and Heisenberg conjugacy are
denoted by HDR=RC and X DR=Heis0, respectively. The holonomies of unit area
structures lie in the double quotient U D X=RC ŠH=Heis0. Representations into the
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center of Heis0 act by collinear translations on Hs2, and a simple argument of Section 3.3
precludes these from being the holonomy of any Heisenberg structure. Thus, we are
primarily concerned with the subset R? �R of representations not into the center, and
its quotients X?�X , H?�H and U?�U . Explicitly dealing with these representation
spaces is easiest using coordinates from the Lie algebra, introduced below.

Proposition 3.2 The map log W Heis0 ! heis induces an isomorphism of varieties
Hom.Z2;Heis0/Š Hom.R2; heis/.

Proof Both Heis0 and heis inherit their structure as algebraic varieties from their
inclusion in the affine space M.3;R/ of 3 � 3 real matrices. As heis is nilpotent,
the power series exp W heis! Heis0 terminates, and thus is algebraic. Indeed, exp is
an isomorphism of varieties with polynomial inverse log W Heis0! heis. Recall that
evaluation on the generators e1; e2 2 Z2 � R2 identifies the collections of represen-
tations with subvarieties of Heis0 �Heis0 and heis� heis, respectively. Applying the
exponential/logarithm coordinatewise provides the required algebraic isomorphism
Hom.Z2;Heis0/Š Hom.R2; heis/.

Hom.Z2;Heis0/ Heis0 �Heis0

Hom.R2; heis/ heis� heis

ev

log log� log

ev

exp exp� exp

We continue to denote the induced isomorphisms RŠ Hom.R2; heis/ by exp and log,
and call the vector .Ex; Ey; Ez/ 2 R6 the Lie algebra coordinates for the representation
� 2R when ev.log �/D

��x1 z1
y1

�
;
�x2 z2

y2

��
.

Proposition 3.3 R is isomorphic to V .x1y2�x2y1/�R2.

Proof Evaluation on the generators identifies the representation variety Hom.R2; heis/

with the kernel of the Lie bracket Œ � ; � � W heis2
! heis. Indeed��

x1 z1

y1

�
;

�
x2 z2

y2

��
D

�
0 x1y2�x2y1

0

�
;

so kerŒ � ; � � is cut out precisely by x1y2 D x2y1 in heis2 and .Ex; Ey; Ez/ 2R6 is the Lie
algebra coordinates of a representation � 2R if and only if .Ex; Ey/ 2 V .x1y2�x2y1/

and .z1; z2/ 2R2.
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Proposition 3.4 The space H? DR?=RC of representations modulo homothety with
image not contained in the center of Heis is homeomorphic to R2 �T 2.

Proof Denote by R2
.Ex; Ey/

the fiber above .Ex; Ey/ under the projection .Ex; Ey; Ez/ 7! .Ex; Ey/.
The hypersurface V D V .x1y2 � x2y1/ has one singularity at zero, above which
R2
.0;0/

consists of the representations into the center. Homotheties of Hs2 induce the
RC action t : .Ex; Ey; Ez/D .t Ex; t Ey; tEz/ on R, thus V � R4 is a cone and H? identifies
with the product of R2 with the intersection V \ S3. The change of coordinates
on R4 given by .x1;x2;y1;y2/ D .u1C v1; v2C u2; v2 � u2;u1 � v1/ provides an
isomorphism V Š V .u2

1
C u2

2
� v2

1
� v2

2
/ identifying V \S3 with the Clifford torus

T D f.u; v/ 2C2 W kEuk D kEvk D 1=
p

2g, verifying the claim.

Corollary 3.5 The section of R?!H? sending each homothety class

Œ��RC
D Œ.Ex; Ey; Ez/�RC

to the representative with .Ex; Ey/ 2 T 2 � S3 is a diffeomorphism of H? onto its image.
This identifies H? with the algebraic variety V .x2y1�x1y2; kxk

2Ckyk2� 1/�R6.

We have identified the space R of all representations as a product R2 �V of a plane
with a cone on the torus, with representations into the center parametrized by the plane
above the cone point of V . Restricting to representations not into the center, it proves
useful to remove this cone point and consider the space V X f0g ŠRC �T 2, which
we denote by V ? to remain consistent with other notations.

Proposition 3.6 Let X? be the conjugacy quotient X?DR?=Heis0. Then the function
� W X?! V ? defined by sending the Heis0 orbit of �D .Ex; Ey; Ez/ 2R? to .Ex; Ey/ 2 V ?

equips X? with the structure of a line bundle over V ?. Topologically we can identify
this line bundle up to isomorphism by noting that it is once-twisted above each generator
of �1.V

?/D Z2.

Proof A computation reveals the conjugation action of Heis0 on R in Lie algebra
coordinates is expressed as0@1 g k

1 h

1

1A : .Ex; Ey; Ez/D .Ex; Ey; EzCg Ey � hEx/:

Thus Heis0 acts trivially on the first factor of R D V �R2 and the orbit of a point
Ez2R2

.Ex; Ey/
is the coset of spanfEx; Eyg�R2

.Ex; Ey/
containing it. In the subset R? at least one

of Ex or Ey is nonzero, and the condition that .Ex; Ey/ 2 V .x1y2�x2y1/D V
�
det
�x1 y1

x2 y2

��
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implies Ex and Ey are linearly dependent. It follows that the Heis0 orbits on R? are lines,
foliating each R2

.Ex; Ey/
over V ?, and the leaf space is a line bundle over V ?.

Equipping each R2
.Ex; Ey/

with the standard Euclidean inner product, the orthogonal line
`?
.Ex; Ey/

�R2
.Ex; Ey/

gives canonical representatives for cosets of `.Ex; Ey/ D spanfEx; Eyg. This
defines a section X?!R? sending a conjugacy class Œ��Heis0

D Œ.Ex; Ey; Ez/�Heis0
to its

representation with Ez–coordinate on `?
.Ex; Ey/

, and identifies

X? D f.Ex; Ey; Ez/ j .Ex; Ey/ 2 V ?; Ez 2 `?
.Ex; Ey/
g

with a subbundle of V ? �R2! V ?.

Line bundles over V ?ŠRC�T 2 are in bijection with H 1.T 2;Z2/ŠZ2
2
, determined

up to isomorphism by whether pulling back along generators of �1.T /
2 gives cylinders

or Möbius bands. A convenient choice of generators in the .Eu; Ev/ coordinates introduced
above is ˛.�/D . Ee1; Ep� / and ˇ.�/D . Ep� ; Ee1/ for e1D

�
1
0

�
and Ep� D

� cos �
sin �

�
. An explicit

computation using the description of X? above shows the bundle restricts to a Möbius
band above each of ˛ and ˇ, so X? is the line bundle over RC �T 2 represented by
.1; 1/ 2H 1.T 2;Z2/.

The choice of explicit sections has identified H? and X? with subsets of R. The space
of interest U? identifies with their intersection, X? \H?, which is the restriction of
X?! V ? to the base T 2 � S3.

Corollary 3.7 Let U? denote the quotient of R? by homothety and conjugacy
(equivalently, the quotient of X? by homothety). Then the map U? ! T 2 defined
by sending the orbit of � D .Ex; Ey; Ez/ to .Ex=kExk; Ey=k Eyk/ 2 V \S3 Š T 2 equips U?

with the structure of a line bundle over the torus. We may realize U? explicitly as the
subvariety of U? �R6 consisting of triples of vectors .Ex; Ey; Ez/ such that Ex and Ey are
collinear , and Ez is orthogonal to their span:

U? D V

�
kxk2Ckyk2 D 1; Ez � Ex D 0

x1y2�x2y1 D 0; Ez � Ey D 0

�
�R6:

As with X?, we may characterize the bundle U?! T 2 topologically by noting that its
restriction to each standard generator of T 2 is a Möbius band.

The developing pair of a Heisenberg torus is only well defined up to orientation-
preserving transformations, so potential holonomies lie in the space R=HeisC, a twofold
quotient of U? computed here. We will deal with this Z2 D HeisC=Heis0 ambiguity
after determining which points of U? are in fact holonomies.
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3.3 The deformation space of tori

As a warm-up to computing the deformation space of Heisenberg tori, we review
the analogous problem for both Euclidean and affine structures. Euclidean tori are
complete metric spaces, and so are determined by their holonomy, which is necessarily
discrete and faithful (for instance, by Thurston [23, Proposition 3.4.10]). Discrete
subgroups Z2 < Isom.E2/ act by translations, and thus the deformation space of
Euclidean tori identifies with the Isom.E2/–conjugacy classes of marked planar lattices,
DE2.T 2/Š GL.2IR/=O.2/. The unit area structures are parametrized by the familiar
Teichmüller space H2 D SL.2IR/=SO.2/.

The affine plane admits no invariant metric, which complicates the story significantly.
Complete affine structures have universal cover affinely diffeomorphic to A2, but in
contrast to the Euclidean case incomplete structures abound. The work of Baues [2]
provides a remarkably comprehensive description of the classification of affine tori, in
particular containing the following classification theorem:

Theorem 3.8 [2, Theorem 5.1] The universal cover of an affine torus is affinely
diffeomorphic to one of the following spaces: the affine plane A2, the half plane
HD f.x;y/ j y > 0g, the quarter plane QD f.x;y/ 2A2 j x;y > 0g or the universal
cover of the punctured plane P D AA2 X 0. Furthermore the developing maps of affine
structures are covering projections onto their images.

As Hs2 admits no invariant metric, we must be prepared for complications similar to
the affine case. Such difficulties do not materialize however, as canonically weakening
Heisenberg structures to affine ones, we may use the classification above to show all
Heisenberg tori are complete.

Corollary 3.9 All Heisenberg structures on the torus are complete.

Proof Let .f; �/ be the developing pair for a Heisenberg torus T , considered as
an affine structure. If T is not complete, there is an affine transformation A with
A : f . zT / 2 fH;Q;A2 X 0g and holonomy A�A�1 preserving this developing image.
But by the classification of affine tori, holonomies of these tori contain elements of
det¤1, whereas Heis is unipotent so det A�.Z2/A�1Df1g. Thus T is in fact complete,
with developing map a diffeomorphism f W zT !A2.

Here we pursue a self-contained computation of the deformation space DHs2.T 2/,
using the understanding of representations Z2! Heis0 up to conjugacy developed in

Algebraic & Geometric Topology, Volume 23 (2023)



The Heisenberg plane 1479

Section 3.1. Specifically, for � 2 Hom.Z2;Heis/ we either construct a corresponding
developing map f giving a Heisenberg structure .f; �/ on T 2 (and prove its uniqueness),
or we show no developing map for � can exist.

A developing map for � W Z2 ! Heis is a �–equivariant immersion f W R2 ! Hs2.
A natural �–equivariant self map of the plane can be constructed directly from �,
relying on the fact that each representation of Z2 extends uniquely to a representation
O� W R2! Heis0 via O�.x;y/ D �.e1/

x�.e2/
y . The orbit map f� W R2! Hs2 defined

by .x;y/ 7! O�.x;y/ : E0 for this extended representation is �–equivariant, and thus a
developing map for a Heisenberg structure when it is an immersion. As the following
two propositions show, this construction actually produces developing maps for all
complete Heisenberg tori (and thus by Corollary 3.9 for all Heisenberg tori, although
with the aim of producing a self-contained proof we do not presume that here).

Proposition 3.10 Let F � U be the subset of representations � with extensions O�
acting freely on Hs2. Then each � 2 F determines a unique Heisenberg structure
on T 2 which is complete , and all complete structures with holonomy in Heis0 arise
this way.

Proof If O� acts freely, the orbit map f� WR2!Hs2 is injective, and a computation
reveals .df�/0 WT0R2!T0Hs2 is injective. Furthermore .df�/xD O�.x/:.df�/0, so f�
is an immersion of R2 and .f�; �/ is a developing pair for a Heisenberg torus. Similarly,
the other orbit maps Eu 7! O�.Eu/ : q are immersions (thus open maps) for any q 2Hs2,
and distinct O�.R2/ orbits partition Hs2 into a disjoint union of open sets. Then by
connectedness f� is onto, hence a diffeomorphism, so the corresponding Heisenberg
structure is complete.

Alternatively, let � W Z2 ! Heis0 be the holonomy of a complete torus, but assume
O� W R2! Heis0 fails to act freely. Then some element, and hence some 1–parameter
subgroup L<R2, fixes a point under the action induced by O�. This line L intersects
Z2 only in E0 (as � acts freely by completeness), and so is dense in the quotient R2=Z2.
Thus there are sequences Evn 2 Z2 with �.vn/ coming arbitrarily close to stabilizing a
point, and O� does not act properly discontinuously, contradicting completeness.

Finally, let .f; �/ be a complete structure and .�; �/ another structure with the same
holonomy. Then f �1� W zT ! zT is �1.T /–equivariant and descends to a diffeomor-
phism  W T ! T . But  � is the identity on fundamental groups, and as the torus is
K.�; 1/,  is isotopic to the identity. Thus .f; �/ and .�; �/ are developing pairs for
the same Heisenberg structure.
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Constructing developing maps from the extensions O� provides endows these tori with the
structure of a commutative group via the identification O�.R2/=�.Z2/Š f�.R2/=�.Z2/.
The existence of this group structure can more generally be deduced from the similar
observation of Baues and Goldman concerning affine structures [3].

Corollary 3.11 Complete Heisenberg tori are the group objects in the category of
Heisenberg manifolds , analogous to elliptic curves in the category of Riemann surfaces.

Proposition 3.12 The subset F � U of conjugacy classes with freely acting extensions
O� WR2! Heis0 is a trivial R� bundle over the cylinder CylD T 2 XS for S , the circle
defined by the intersection of T 2 D V .x1y2�x2y1/\S3 with the plane V .y1;y2/.

Proof A representation O� 2 U is faithful if and only if the logarithm of its generators�x1 z1
y1

�
and

�x2 z2
y2

�
are linearly independent in heis. In Lie algebra coordinates,

linearly dependent elements of heis2 form the variety Rk1 � M3�2.R/ of rank one
matrices .Ex; Ey; Ez/ D

�x1 y1 z1
x2 y2 z2

�
, alternatively described as triples of simultaneously

collinear vectors Ex k Ey k Ez 2R2. There are no faithful R2 representations into the 1–
dimensional center of Heis, so it suffices to consider the representations in U?. Recalling
Corollary 3.7, points .Ex; Ey; Ez/ of U? satisfy Ex k Ey, and Ez is perpendicular to their span.
Thus any .Ex; Ey; Ez/ 2 U?\Rk1 necessarily has Ez D 0, so the intersection U?\Rk1 is
the torus .Ex; Ey; 0/� X?. The conjugacy classes of faithful representations constitute
the complement of this zero section of U?! T 2.

A nonidentity element of Heis0 stabilizes a point of Hs2 if and only if it acts trivially
on the leaf space of the invariant foliation and has nontrivial shear. In Lie algebra
coordinates this forms the set S D

˚�x z
0

�
j x ¤ 0

	
� heis. The extension O� acts

freely if and only if, in Lie algebra coordinates, each generator misses S. All faithful
representations .Ex; Ey; Ez/ with y1;y2 ¤ 0 act freely, and all with Ey D 0 fail to. If
Ey D .0;y2/, then � 2R implies x1 D 0 so � acts freely, and similarly for Ey D .y1; 0/.
Thus faithful representations fail to act freely if and only if Ey D 0, and the space of
freely acting representations is F D U? XV .z1; z2/[V .y1;y2/.

The intersection S D T 2 \ V .y1;y2/ is a .1; 1/ curve with respect to the .Eu; Ev/
coordinates, and U? XV .y1;y2/ is an R–bundle over CylD T 2 XS . This bundle is
trivial as the generator of �1.Cyl/ is parallel to V .y1;y2/ and the restriction of the
doubly twisted bundle X to a .1; 1/ curve in the base is a cylinder. The subvariety
V .z1; z2/ is the zero section of this bundle, thus its complement is the trivial R� bundle
over Cyl.
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This classification gives a simple, self contained argument that no incomplete structures
exist. An incomplete structure must have holonomy in U XF , but geometric reasons
preclude these from being the holonomy of Heisenberg tori. This completes the
classification of tori with Heis0 holonomy, and a quick observation implies there can
be no others.

Proposition 3.13 Representations � 2 U XF are not the holonomy of any Heisenberg
torus. Consequently all Heisenberg tori are complete , with holonomy into Heis0.

Proof There are three classes of elements in U XF : representations into the center,
representations .Ex; Ey; Ez/with EzD0 and representations with EyD0. These classes are all
topologically conjugate, and preserve a fibration of the plane Hs2�R. Representations
into the center act by translations parallel to the x axis, preserving the invariant foliation
of Hs2, and similarly for those with Ey D 0. Representations with EzD 0 are not faithful,
and factor through a representation R!Heis with orbits foliating the plane by parabolas.

To see that these cannot be the holonomy of tori, let � 2 U XF preserve the fibration
� W Hs2 � R, and assume .f; �/ is a developing pair for some Heisenberg torus.
Let � D f . zT / be the developing image, and note that �.�/ � R is open as f is
a local diffeomorphism and � is a bundle projection. Let Q � zT be a compact
fundamental domain for the action of Z2 by covering transformations, and note that
�.f .Q//D �.f .�// as � is fiber preserving. But �.f .Q// is compact, and thus not
open in R, a contradiction.

It follows from this that all Heisenberg tori are complete, and have holonomy in Heis0.
Indeed let T be any Heisenberg torus with developing pair .f; �/ and zT ! T the
cover corresponding to the subgroup �.Z2/\Heis0. Then zT is complete so T is also,
and �.Z2/ acts freely and properly discontinuously on Hs2. As T 2 is orientable, the
holonomy takes values in HeisC, but every element of HeisC XHeis0 fixes a point in
Hs2 so in fact � is Heis0–valued and T D zT .

Thus a representation � WZ2!Heis is either the holonomy of a unique complete structure
on T 2, or is not the holonomy of any geometric structure at all. After dealing with the
slight annoyance of Heis0 vs HeisC conjugacy, this directly provides a description of the
Teichmüller space THs2.T 2/ of unit area structures and the corresponding deformation
space DHs2.T 2/DRC � THs2.T 2/.

Theorem 3.14 The projection onto holonomy identifies the Teichmüller space of unit
area Heisenberg tori with the quotient of F by the free Z2 action of conjugacy by
diag.�1;�1; 1/ and THs2.T 2/Š F=Z2 ŠR2 �S1.
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Figure 2: Some examples of developing maps for Heisenberg shear tori.

Proof The map hol W DevHs2.T 2/ ! R that projects a developing pair onto its
holonomy is a local homeomorphism by the Ehresmann–Thurston principle, which
induces a continuous map hol W DHs2.T 2/! R=HeisC. The work above shows the
map dev W F ! DHs2.T 2/ defined by � 7! Œf�; �� is a continuous surjection onto the
Teichmüller space THs2.T 2/. As F � U was defined only up to Heis0 conjugacy, dev
factors through the quotient by .HeisC=Heis0/ŠZ2 conjugacy to a continuous bijection
dev W F=Z2! THs2.T 2/. The composition hol ı dev is the identity on F=Z2, so dev
is a homeomorphism.

Thus THs2.T 2/ŠF=Z2. The quotient HeisC=Heis0ŠZ2 generated by diag.�1;�1; 1/

acts by conjugation in Lie algebra coordinates as

diag.�1;�1; 1/ : .Ex; Ey; Ez/D .Ex;�Ey;�Ez/:

This action is free on F and the quotient THs2.T 2/ is the trivial RC bundle over Cyl,
which is homeomorphic to the open solid torus R2�S1, and DHs2.T 2/ŠR3�S1.

The identification THs2.T 2/D F=Z2 identifies two distinct classes of Heisenberg tori:
those containing a shear in their holonomy and those with holonomy into the subgroup
of translations of the plane. We will refer to these as shear tori and translation tori,
respectively.

Corollary 3.15 The space of unit-area translation tori is homeomorphic to R�S1,
corresponding to the points of F \V .x1;x2/.

It is notable that the set of developing pairs for Heisenberg translation tori is the same as
the set of developing pairs for Euclidean tori, but the corresponding deformation spaces
are not homeomorphic, with TE2.T 2/ a disk and THs2.T 2/ a cylinder. This is due to
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Figure 3: Developing maps for translation tori. The left two are equivalent as
Euclidean structures, whereas the right two are as Heisenberg structures. All
three represent the same (unique) affine translation torus.

the different notions of equivalence coming from HeisC and IsomC.E2/ conjugacy, the
former acting by shears and the latter by rotations. The familiar fact that Euclidean torus
has a representative holonomy containing horizontal translations is a consequence of
this, as is the fact that each Heisenberg translation torus has a representative holonomy
translating along (Euclidean) orthogonal lines.

Every Heisenberg structure canonically weakens to an affine structure, defining the
map ! W DHs2.T 2/! DA2.T 2/ with image in the complete structures.

Corollary 3.16 The space !.DHs2.T 2// of Heisenberg structures up to affine equiva-
lence is one-dimensional , and homeomorphic to R.

Proof By Goldman and Baues [3], the space of complete affine structures on T 2 is
diffeomorphic to the plane, and by completeness we identify this with its projection
onto holonomy. This realizes !.DHs2.T 2// as the quotient of F by affine conjugacy,
on which the subgroups of rotations and linearly independent scalings act freely. Thus
the S1 factor and R2

C directions of independent scalings collapse in the quotient, and
!.DHs2.T 2//ŠR.

3.4 Which orbifolds admit Heisenberg structures?

We may use this description of the deformation space of tori to understand all Heisenberg
orbifolds. An orbifold covering � WQ!O induces a map �� W DHs2.O/! DHs2.Q/
by pullback of geometric structures, which is easily expressed on developing pairs as
��.Œf; ��/D Œf; �j�1.Q/� for �1.Q/ < �1.O/, the subgroup corresponding to the cover.
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Proposition 3.17 All Heisenberg structures on orbifolds are complete , and projection
onto the holonomy is an embedding DHs2.O/ ,! Hom.�1.O/;Heis/=HeisC. Under
this identification , a finite sheeted covering Q! O describes the deformation space
DHs2.O/ as the preimage of DHs2.Q/ under the restriction �� W � 7! �j�1.Q/.

Proof Let O be a Heisenberg orbifold with developing pair Œf; ��, and choose a finite
covering � W T !O. Then by the completeness of ��Œf; �� 2DHs2.T /, the developing
map f is a diffeomorphism and �j�1.T 2/ (hence �, as �1.T

2/ is finite index in �1.O/)
acts properly discontinuously. As �1.T

2/ < �1.O/ is an essential subgroup for all
orbifolds covered by the torus, the faithfulness of �j�1.T 2/ implies faithfulness of �.
Thus the structure Œf; �� on O is complete. Let Œ�; �� be another Heisenberg structure
on O with the same holonomy, then �f �1 W zO! zO is �1.O/ equivariant and descends
to a Heisenberg map O!O, inducing the identity on fundamental groups. Thus these
structures represent the same point in deformation space, so projection onto holonomy
is an embedding.

This further restricts the possible topologies of Heisenberg orbifolds. In particular, any
torsion in the fundamental group is represented faithfully by the holonomy, so orbifolds
may only have corner reflectors and cone points of order two. In the appendix, we show
that all of these actually admit Heisenberg structures, and calculate their deformation
spaces.

Corollary 3.18 If O is a Heisenberg orbifold , necessarily O is T 2, the Klein bottle
S1z�S1, or the pillowcase S2.2; 2; 2; 2/ or one of their quotients: the cylinder S1 � I ,
the Möbius band S1z�I , the square D2.¿I 2; 2; 2; 2/, D2.2; 2I¿/, D2.2I 2; 2/ and
RP2.2; 2/.

4 Collapse and regenerations

Unless otherwise specified, X denotes any one of the constant curvature geometries S2,
E2 or H2 realized as a subgeometry of RP2 (see Section 2.4) throughout. Conjugate
models will be denoted by C :X for C 2 GL.3IR/. Recall, a collapsing path Œft ; �t �

of X structures degenerates to a Heisenberg structure if there is a path Ct 2 GL.3IR/

with Ct : Œft ; �t � D ŒCtft ;Ct�tC
�1
t � converging in the space of developing pairs to

Œf1; �1� with f1 an immersion into the affine patch Hs2 D fŒx W y W 1�g and �1
with image in Heis. We may view these rescaled X structures as geometric structures
modeled on the conjugate subgeometry Ct :X which converge to a Heisenberg structure
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as Ct :X itself converges to Hs2. The following proposition, a consequence of [7]
(or a straightforward calculation of conjugacy limits of Lie algebras), describes which
conjugacies of X 2 fS2;E2;H2g limit to the Heisenberg plane:

Proposition 4.1 Let X be a projective model of a constant curvature geometry in RP2,
and Ct W Œ0;1/!PGL.3IR/ be any path of projective transformations. After potentially
rescaling the matrix representatives and applying the KBH decomposition (Theorem 4.1
of [7]) we write Ct DKtDtHt for Kt 2O.3/, Ht 2 Isom.X/ and Dt Ddiag.�t ; �t ; 1/

with �t � �t � 1. Then for X 2 fS2;H2g, the path of geometries Ct :X limits to the
Heisenberg plane if and only if

(i) Kt converges in O.3/, and

(ii) �t , �t and �t=�t all diverge to 1.

For XD E2, the divergence �t=�t !1 alone is necessary and sufficient for (ii).

For convenience, we may without loss of generality restrict our attention to conjugacy
limits by diagonal matrices Dt D diag.�t ; �t ; 1/ with �t > �t > 1. To see this, let
X 2 fS2;E2;H2g and suppose Ct is any path of projective transformations such that
CtX!Hs2. Writing Ct DKtDtHt as above, we note that CtXDKtDtX for all t

as Ht 2 Isom.X/, and as Kt converges, we see that K�1
t CtXDDtX is conjugate to

the original path, even in the limit.

In this section, we classify which Heisenberg tori arise as rescaled limits of collapsing
constant curvature geometric structures. As all constant curvature tori are Euclidean,
we consider the natural generalization of cone manifold structures on the torus, which
exist in both positive and negative curvature.

4.1 Constant curvature cone tori

Definition 4.2 An X cone surface is a surface † with a complete path metric that is
the metric completion of an X structure on the complement of a discrete set.

An X cone torus T with cone points C Dfp1; : : : ;png gives an incomplete X structure
on T 2

? DT 2XC encoded by a class of developing pairs [8]. The space of all such X cone
tori can be identified with the subset CX.T

2/� DX.T
2
? / with metric completions T 2,

given the subspace topology under this inclusion.

Definition 4.3 A path Tt of X cone tori converges projectively if the associated in-
complete structures .ft ; �t /2DX.T

2
? / converge in DRP2.T 2

? / to a projective structure
.f1; �1/ which can be completed to a projective torus T . Conversely, we say a
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Heisenberg torus T regenerates to X structures if there is a sequence of X cone tori
converging to T in RP2.

In the above definition we always require the limiting projective structure on the torus
to be nonsingular and allow only sequences of Riemannian cone tori where the cone
point(s) vanish in the limit. Allowing singularities in the limiting structure requires a
notion of real projective cone manifolds, which is beyond the scope of this work.

In considering the question of regeneration, we further restrict our attention to sequences
containing tori with a single cone point. Cone tori with a single cone point admit a
convenient combinatorial description via marked parallelograms, which provides us
substantial control. A marked X parallelogram is a convex quadrilateral Q�X with
opposing geodesic sides of equal length, equipped with an ordering of the vertices
.v1; v2; v3; v4/ proceeding counterclockwise from some initial vertex v1. Such a
marked parallelogram is determined by a vertex v D v1, the geodesic lengths of the
sides adjacent to v and the angle of incidence at v. The moduli space P.X/ of marked
parallelograms is R2

C � .0; �/ in nonpositive curvature and .0; �=.2�//2 � .0; �/ in
spherical space of radius �. Just as deformation spaces of Euclidean tori can be identified
with isometry classes of marked parallelograms P.E2/, so can the deformation spaces
of H2 and S2 cone structures (with the caveat that in positive curvature we must restrict
our interest to sufficiently small cone angle).

Proposition 4.4 The map Glue WP.X/! CX.T?/ induced by isometrically identifying
opposing sides of Q 2 P.X/ is a homeomorphism onto its image. For XDH2 this
image is the entire deformation space CX.T?/. For XD S2 the image contains all cone
tori whose marked curves each have length less than 1

2
� .

Proof There is a unique orientation-preserving isometry sending any oriented line
segment in X to any other of the same length. Thus a marked quadrilateral Q � X

determines unique side pairings A;B 2 IsomC.X/ identifying opposing sides. The
quotient is topologically a torus and inherits an X structure on the complement of Œv�.
If Q0 is isometric to Q then there is a g 2 Isom.X/ with g :QDQ0, so the induced
structures are isomorphic and Glue is well defined.

We may also define an inverse cutting map as follows. A marked X cone torus T has
generators a; b 2 �1.T / based at the cone point, which may be pulled tight relative to
p to length minimizing representatives ˛ and ˇ as T is a compact path metric space.
These are locally length minimizing, and so X–geodesics away from p. As a ' ˛

and b ' ˇ generate �1.T /, ˛ and ˇ have algebraic intersection number 1. As each is
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Figure 4: Small portions of the developing map for a hyperbolic and spherical
cone torus

globally length minimizing in its pointed homotopy class, the complement T Xf˛[ˇg

contains no bigons. From this it follows that ˛\ˇ D fpg, and so cutting along ˛ and
ˇ gives a simply connected surface locally modeled on X, with four geodesic boundary
components, opposing pairs of which have equal length.

For XDH2 such a surface always embeds in H2 as a hyperbolic parallelogram, so
this process defines a map Cut W CX.T?/! P.X/. When XD S2 it is possible that the
resulting surface does not embed in S2 (indeed the area of Q may exceed the area
of S2!). However, if both ˛ and ˇ have length less than 1

2
� , then Q certainly embeds

in S2 (in fact it embeds into a hemisphere, and thus into the projective model RP2 of
spherical geometry). These maps fCut;Glueg are inverses where their composition is
defined, and thus define a pair of homeomorphisms.

To study regenerations from this combinatorial perspective, we characterize when a
collapsing path in CX.T?/ converges in DRP2.T?/ in terms of marked parallelograms.
First, we show such a characterization is possible as all convergent paths of cone tori
admit such a representation.

Proposition 4.5 Let Xt be a sequence of geometries conjugate to a constant curvature
geometry X which converges to Hs2 in the space SRP2 of subgeometries of RP2.
If Tt is any convergent sequence of Xt cone tori , then for all sufficiently large t the
structures Tt lie in the image of the gluing map Glue W P.X/! CX.T?/.

Proof For XDH2 the gluing map is surjective by Proposition 4.4 so there is nothing
more to prove. For XDS2 by the same proposition it is enough to show that eventually
all the structures Tt have marked curves of sufficiently short length. Choose a smooth
curve  representing one of the markings on T?. For each t we pull  tight, fixing
the cone point to a geodesic whose length `t � LengthTt

. / defines the length of this
marking curve in the Tt structure. As t !1, we show that LengthTt

. /, and hence
`t tends to 0.
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Let .ft ; �t / be a convergent sequence of developing pairs for the cone tori Tt . Choosing
a lift Q of  we note that LengthTt

. /D LengthXt
.ft ı Q /, allowing computation of

lengths in Tt via the geometry Xt . By the assumed convergence of this path of
structures the developing maps ft converge to some f W zT? ! RP2 uniformly in
the C1 topology on compact sets, so fixing any � > 0, for all sufficiently large t ,
jLengthXt

.ft ı Q /�LengthXt
.f ı Q /j< ".

Therefore we only need to understand the length of the fixed curve f ı Q in the
changing geometries Xt . The geometry Xt D DtS2 is a conjugate of spherical
geometry by some projective transformation Dt , which, as in the discussion following
Proposition 4.1, we may without loss of generality take to be represented by a diagonal
matrix Dt D diag.�t ; �t ; 1/. Changing perspective (applying D�1

t ) we note that
LengthDt S2.f ı  / D LengthS2.D�1

t ı f ı Q /, allowing us to instead compute the
length of a varying curve in a fixed model of S2.

As DtS2 limits to the Heisenberg plane, by Proposition 4.1 the eigenvalues �t and �t

of Dt diverge to1, hence the effect of D�1
t on the standard affine patch fŒx Wy W1�g of

RP2 is to collapse everything towards the origin. Thus as t!1, the curve D�1
t ıf ı

converges to a constant map, and its sequence of lengths converges to 0. All together
this implies for any " > 0, for all sufficiently large t ,

`t � LengthTt
. /D LengthXt

.f ı Q / < LengthXt
.f ı Q /C 1

2
"

D LengthS2.D�1
t f ı Q /C 1

2
" < ":

This is stronger than we strictly require: taking " D 1
2
� and applying this to both

marking curves is enough to provide the desired result in light of Proposition 4.4.

Next, we give a precise description of these convergent sequences of structures in terms
of their parallelogram representatives.

Proposition 4.6 Let Xt DDtX be a sequence of geometries conjugate to X which
converges to Hs2 in the space SRP2 of subgeometries of RP2, and Tt a sequence of
Xt cone tori. Then the structures Tt converge to a Heisenberg torus if and only if :

(1) For all sufficiently large t , there is a choice of embeddings Qt ,!Xt �RP2 of
the fundamental parallelograms for Tt whose images converge in the Hausdorff
space of closed subsets of RP2 to a projective quadrilateral Q.

(2) The induced side pairings At and Bt of Qt converge in PGL.3IR/ to a com-
muting pair of projective transformations A and B.
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Proof Again without loss of generality we may assume that the conjugating transfor-
mations Dt are represented by diagonal matrices. Let .ft ; �t / be a convergent sequence
of developing pairs for the incomplete structures on T?D T 2Xf�g for Xt cone tori Tt .
Choose a generating set a; b 2 �1.T?/ and a basepoint q 2 zT?. The universal cover zT?
is tiled by ideal quadrilaterals formed from the lifts of a and b. For each t these can be
straightened to geodesics in the Xt structure; let zQt �

zT? be the geodesic quadrilateral
containing q 2 zT?.

By Proposition 4.5, for all sufficiently large t , the quadrilateral zQt can be embedded
as a subset of Xt . For these structures the developing map ft itself provides such
an embedding, and we define Qt D ft . zQt / � Xt together with the side pairings
At D �t .a/ and Bt D �t .b/. When X D H2 the convergence of developing pairs
then implies At and Bt are convergent in PGL.3IR/ to A and B and Qt converges to
Q1, a fundamental domain for the Heisenberg structure T with sides paired by the
commuting transformations A and B.

Conversely let Qt be a sequence of Xt parallelograms convergent in the Hausdorff space
CRP2 of closed subsets of RP2 to an affine parallelogram Q. The triples .Qt ;At ;Bt /

of the quadrilateral with side pairings define Xt cone tori, and hence RP2 punctured
tori for all t . As t !1 these converge to a punctured torus T1 with holonomy in
Heis, and so T1 2 DHs2.T?/. As ŒA;B�D I , the limiting holonomy factors through
Z˚Z and so the limiting torus can be completed to a torus T1. That the limits A and
B and in Heis follows from the definition of Xt converging to Hs2, so this limiting
projective structure canonically strengthens to a Heisenberg structure.

4.2 Translation tori

This combinatorial description of cone tori with at most one cone point provides enough
control to completely understand the regeneration of translation tori.

Theorem 4.7 Let X 2 fS2;E2;H2g and Xt D Dt : X be a sequence of diagonal
conjugates converging to Hs2. Given any translation torus T there is a sequence of Xt

cone tori with at most one cone point converging to T .

Proof (Euclidean case) Heisenberg tori arise as limits of collapsing families of smooth
Euclidean tori (there are no Euclidean cone tori with a single cone point, per Gauss–
Bonnet). Let T be a Heisenberg translation torus and Et DDt :E2 be a sequence of
diagonal conjugates of E2 converging to the Heisenberg plane. Choose a fundamental
domain Q for T �Hs2, together with side pairings A and B by translations for T .
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Figure 5: A fixed Quadrilateral and various conjugate models of H2 contain-
ing it.

The underlying spaces for the models E2, Et and Hs2 in RP2 are all the entire affine
patch A2 D fŒx W y W 1�g, and the group Tr of translations acting on this affine patch
is contained in each conjugate Dt Isom.E2/D�1

t as well as Heis. Thus .Q;A;B/
encodes an Et structure Œf; ��Et

on T 2 for each t 2 RC. Canonically weakening to
projective structures, this is the constant sequence Œf; ��RP2 , thus clearly convergent.
As �.Z2/ � Tr < Heis, the limit canonically strengthens to the original Heisenberg
structure Œf; ��Hs2 .

When viewed as Euclidean structures in the fixed model E2, the developing pairs
ŒD�1

t f;D�1
t �Dt � encode a collapsing collection of tori with one of the generators of

the holonomy shrinking much faster than the other. That is, even after rescaling to unit
area structures this path fails to converge in Teichmüller space and limits to a point in
the Thurston boundary. The foliation represented by this point can actually be seen in
the limiting Heisenberg structure as the invariant foliation pulled back from dy on Hs2.

The approach for producing translation tori as limits of hyperbolic and spherical cone
tori is similar in spirit, but more involved in the details. Again we take a fundamental
domain with side pairings .Q;A;B/ for the proposed limit, and view Q as a geometric
parallelogram in each of the model geometries Xt . Side pairings At ;Bt 2 Isom.Xt /

are uniquely determined by each Xt structure on Q, and converge to A and B in
the limit.

Proof (hyperbolic and spherical cases) If X 2 fS2;H2g, let Q be an origin-centered
fundamental domain for T with side pairings A;B 2 Tr. The existence of a convergent
sequence of Xt cone tori Tt ! T follows from:

Claim 1 For large t , the quadrilateral Q defines an Xt parallelogram.
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Claim 2 The side pairing At preserves the entire projective line through the Xt

midpoints of paired sides.

Claim 3 If Q is an Xt parallelogram for all t and At 2 Isom.Xt / pairs opposing
sides , At converges as a sequence of projective transformations.

Claim 4 The Xt midpoints of the edges of Q converge to the Euclidean midpoints as
t !1.

Given that Q defines an Xt parallelogram, there are unique side pairing transformations
At ;Bt 2 Isom.Xt / determining an Xt cone torus. By the third claim, these sequences
of transformations converge in PGL.3;R/, and as Xt !Hs2 in fact A1;B1 2 Heis0.
Recalling the discussion in Section 3, Heis0 acts simply transitively on the subspace
LXH of pointed lines, so the limiting transformations are completely determined by
their action on a pair .p; `/ of a point p on a nonhorizontal line `.

m1.t/ m2.t/

�t

`1

`2

Let `1 and `2 be a pair of opposing sides of Q, with Euclidean midpoints m1 and m2.
For each t , let m1.t/ and m2.t/ be the Xt corresponding midpoints, and �t the projective
line connecting them. The second claim implies At preserves �t , and so the fourth
fact above implies that A1 preserves �Dm1m2. Thus A1 sends the pair .m1; `1/

to .m2; `2/, as well as the pair .m1; �/ to .m2; �/. At least one of the lines `1 or
� is nonhorizontal, and so this completely determines the behavior of A1. As this
agrees precisely with the action of the original transformation A, we have A1DA and
similarly for B. Thus the sequence of cone tori corresponding to the triples .Q;At ;Bt /

converges to the original Heisenberg torus T as t !1.

Thus the proof reduces to an argument for the four claims above. Throughout, it’s
often helpful to switch between the perspectives of a fixed fundamental domain Q in
expanding model geometries Xt and the equivalent picture of shrinking domains Qt

in the fixed model X.

Claim 1 Let Q be an affine parallelogram centered at E0 2 A2 and Xt ! Hs2 a
sequence of diagonal conjugates of X 2 fS2;H2g. Then for all t � 0, Q defines an
Xt parallelogram.
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Proof The �–rotation about E0 2 A2 represented by R D diag.�1;�1; 1/ is in
O.3/\O.2; 1/ and is invariant under diagonal conjugacy. Thus for each t , R2 Isom.Xt /.
As Q is an affine parallelogram with centroid E0, RQDQ, so there is an Xt isometry
exchanging opposing sides of Q. Thus if Q�Xt , it defines an Xt parallelogram. For
XD S2 this is always satisfied, and for XDH2, the domains Xt limit to the affine
patch and so eventually contain any compact subset.

Claim 2 Let A 2 Isom.X/ pair opposing sides of the X parallelogram Q. Then A

preserves the projective line through the midpoints of the paired sides.

Proof We argue in classical axiomatic geometry without assuming the parallel pos-
tulate as this applies equally to S2 and H2. Opposite angles of a constant curvature
parallelogram are congruent. Connect the opposing sides of Q paired by At with a line
segment � through their midpoints. This divides Q into two quadrilaterals, subdivided
by their diagonals into four triangles. The outer two of these triangles are congruent by
side-angle-side, and so the diagonals are congruent. Thus the inner two triangles are
congruent by side-side-side, meaning the opposite angles made by the edges with the
line connecting their midpoints are equal. Consider Q and its translate A :Q. These
share an edge, which meets the segments � and At� at its midpoint m. As A is an
isometry, it follows that opposite angles at m are congruent. Thus � and A : � are
segments of a single projective line, so A preserves the line extending � as claimed.

Claim 3 The side pairings At ;Bt 2 Isom.X/ converge in PGL.3;R/.

Proof A projective transformation of RP2 is completely determined by its values on
a projective basis (a collection of four points in general position). The vertices .vi/

of Q form a convenient projective basis with images .Atvi/ completely specifying
the transformations At . These transformations converge in PGL.3IR/ if and only if
.Atvi/ limits to a projective basis, which, as the images Atvi remain in a bounded
neighborhood of Q,2 is equivalent to no triangle ��Q formed by three vertices of Q

collapsing in the limit. That is, it suffices to show AreaE2.At�/=AreaE2.�/ 6! 0.

2The conjugating path Ct is expansive with eigenvalues �t > �t each monotonic in t . Then it’s easy to
see for XDH2 that At Q�AQ and for XD S2 that At Q<A0Q, for all t > 0.
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Diagonal transformations act linearly on the affine patch and do not change ratios of
areas, thus we may transform this to the fixed model X with a collapsing sequence
of triangles �t being moved by transformations Ct D DtAtD

�1
t . For large t , both

�t and Ct�t are extremely close to the origin E0 2A2 and we may estimate their area
ratio analytically. By Claim 2, Ct preserves the geodesic through the midpoints of
paired sides, thus is either a hyperbolic in Isom.H2/ or rotation in Isom.S2/ with axis
represented by an ideal point relative the affine patch. In each of these cases we may
bound the distortion of Euclidean area under these isometries as follows.

Up to conjugation by a rotation we may express any such isometry as

C D

0@c.�/ 0 s.�/

0 1 0

s.�/ 0 c.�/

1A ;
where .c; s/D .cosh; sinh/ for XDH2 and .cos; sin/ for XDS2, and � is the translation
length along the preserved geodesic. At any p D Œx Wy W 1� 2A2, the infinitesimal area
distortion J.p/ is given by the Jacobian of the projective action of C on the affine patch.
On any region R�A2 then, the overall area distortion AreaE2.C.R//=AreaE2 R is
bounded below by Jmin.R/D infp2R J.p/ and above by Jmax.R/D supp2R J.p/.

Consider again the region �t and the side pairing Ct with side pairing of translation
length �t . As t !1, both �t and Ct�t collapse to E0. Thus for any " > 0 and all
sufficiently large t , both of these regions are subsets of the "–ball about 0, and we may
bound the overall area distortion by Jmin.B"/ and Jmax.B"/. Computing these, we see

1

.c.�/C "s.�//3
�

AreaE2.Ct�t /

AreaE2.�t /
�

1

.c.�/� "s.�//3
:

As t !1 the translation length �t converges to 0 (as the geometric structure’s de-
veloping map collapses to the constant map onto the origin). Thus, the above bounds
squeeze the limiting area of Ct�t to �t by 1, so the area of At� does not collapse in
the limit.

Claim 4 Let `�A2 be a line segment and Xt!Hs2 as above. Then the Xt midpoint
of ` converges to the Euclidean midpoint.

Proof Let ` D pq and m 2 ` be the Euclidean midpoint. Viewing ` in Xt , it has
Xt midpoint yt , and to show yt ! m it suffices to see dXt

.p;m/=dXt
.m; q/! 1.

Ratios of collinear line segment lengths are invariant under linear transformations, so
we may choose to view this situation in the fixed model X for ease of calculation, with
a shrinking line segment `t D ptqt with Euclidean midpoint mt and X midpoint xt .
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For X D H2 a straightforward computation shows that the length of any segment
`� BE2.0; "/ is bounded by a multiple of its Euclidean length

LengthE2.`/� LengthX.`/�K" LengthE2.`/;

where K" may be chosen3 so that K" > 1 and lim"!0 K" D 1. Similarly, pulling back
the spherical metric to the affine patch there is such a K" > 1 with

LengthE2.`/

K"
� LengthX.`/� LengthE2.`/:

We may use this to bound the difference between the X and Euclidean midpoints of
the shrinking segments `t :

1

K"
D

dE2.pt ;mt /

K"d.mt ; qt /
�

dX.pt ;mt /

dX.mt ; qt /
D

dXt
.p;m/

dXt
.m; q/

�
K"dE2.pt ;mt /

dE2.mt ; qt /
DK":

As Xt !Hs2, `t collapses to E0 and we may take smaller and smaller " so this ratio
converges to 1.

4.3 Shear tori

Every translation Heisenberg torus arises as a limit of Euclidean, hyperbolic or spher-
ical cone tori with at most one cone point. Translation structures are rather special
Heisenberg tori, compromising a codimension-1 subset of deformation space. Here we
investigate the generic case, Heisenberg tori with nontrivial shears in their holonomy,
and show none regenerate as cone structures with a single cone point. Shears of the plane
fix a single line, and alter the slope of all lines not parallel to this. All shears in Heis are
parallel, so the holonomy of any shear torus leaves invariant precisely one slope on Hs2.
This has strong consequences for the distribution of geodesics on Heisenberg orbifolds.

Proposition 4.8 A Heisenberg orbifold O has a shear in its holonomy if and only if
all simple geodesics on O are pairwise disjoint.

Proof Let O be a shear orbifold and  a simple geodesic on O. As O is covered by a
complete torus we identify zO with Hs2, and the preimage of  under the covering with
a �1.O/–invariant collection f Q g of lines in Hs2. As  is simple these are pairwise
disjoint and so parallel in A2. Because O has a shear structure, some ˛ 2 �1.O/ acts
on Hs2 by a nontrivial shear, which alters the slope of all nonhorizontal lines. Thus
f Q g is a subset of the horizontal foliation. But this holds for any simple geodesic on O
3For hyperbolic space we may choose K" D 1=

p

1� 4"2 and for the sphere K" D 1=.1C "2/ with "
measured in the Euclidean metric on the affine patch.

Algebraic & Geometric Topology, Volume 23 (2023)



The Heisenberg plane 1495

so any two must each lift to a subset of the horizontal foliation, which are then disjoint
or (by �1.O/ invariance) equal. If the two geodesics lift to disjoint collections then
their projections are also disjoint, meaning any two distinct simple geodesics on T

cannot intersect.

Conversely, assume O is an orbifold covered by a translation torus T given by the
developing pair .f; �/, for � WZ2! Tr. Then �.e1/ and �.e2/ are linearly independent
translations, each preserving each component of a family of parallel lines descending to
closed intersecting geodesics on T and further descend to intersecting geodesics on O.

Hyperbolic, spherical and Euclidean (cone) tori behave quite differently than this.
Recall that any generators ha; bi D �1.T / have geodesic representatives through the
cone point, and cutting along these gives a constant curvature parallelogram with side
pairings. Claim 2 of the previous section shows these side parings must preserve
the full projective lines through the midpoints of the paired edges, so these descend
to intersecting closed geodesics on T . The following argument shows this property
remains true in the limit:

Theorem 4.9 Let X 2 fS2;E2;H2g and Xt D DtX be a sequence of conjugate
geometries converging to the Heisenberg plane for Dt diagonal. Let Tt be a sequence
of Xt cone tori with at most one cone point converging to some Heisenberg torus T .
Then T is a translation torus.

Proof By Proposition 4.6 we may represent these structures by a sequence of Xt

parallelograms .Qt ;At ;Bt / converging to the triple .Q1;A1;B1/ describing the
Heisenberg torus T .

Claim 2 of the previous section implies that for each t , the side pairing At preserves
the projective line ˛t connecting the Xt midpoints of the paired sides. As t !1 this
sequence of lines in RP2 subconverges to a projective line ˛1. Since At .˛t /D ˛t for
all t , it follows that A1.˛1/D ˛1, so this line is preserved by the limiting action.
By Claim 3, ˛1 passes through the Euclidean midpoints of opposing sides of Q1.
Thus ˛1 and ˇ1 descend to closed geodesics on T .

As ˛t and ˇt intersect @Qt in the Xt midpoints of opposing sides, they divide Qt into
four congruent quadrilaterals. Thus the lines ˛t and ˇt intersect at the center of mass
of Qt . It follows that in the limit the lines ˛1 and ˇ1 intersect at the center of Q1,
and the closed geodesics on T given by the projections of ˛1 and ˇ1 intersect. As T

has intersecting geodesics, T cannot have any shears in its holonomy, and thus is a
translation torus.
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T2

K Cyl S2.2; 2; 2; 2/

Mob D2.¿; 2; 2; 2; 2/ D2.2; 2I¿/ D2.2I 2; 2/ RP2.2; 2/

Figure 6: All Heisenberg orbifolds are finitely covered by a Heisenberg torus,
and furthermore all with cone points or corner reflectors are covered by the
pillowcase S2.2; 2; 2; 2/.

It would be interesting to consider the regeneration of shear tori without restricting to a
single cone point. In particular, whether a sequence of Euclidean cone tori with two
cone points, one of cone angle less than � and the other greater than � , could converge
to a Heisenberg shear torus provides an intriguing possibility that is yet unknown to
the author. Constructing such examples (or proving the nonexistence thereof) likely
requires different techniques than those of Section 4.

Appendix Heisenberg orbifolds

Proposition 3.17 provides a strategy for computing the remaining orbifold deformation
spaces: given D.Q/ and a covering map Q!O we identify D.O/ with the collection of
all extensions of � 2Hom.�1.Q/;Heis/=HeisC to �1.O/ up to Heis conjugacy fixing �.
Figure 6 shows all Heisenberg orbifolds, with arrows representing the finite covers
used in the calculation of their deformation spaces.

Recall that a translation torus has holonomy acting purely by translations. The Teich-
müller space of translation tori is homeomorphic to RC �S1, and is parametrized by
rectangular lattices with ratio of generator lengths in RC and angle of first vector � 2S1

with the horizontal. A translation torus is called axis-aligned if the holonomy contains
a translation along the invariant foliation (up to Heis0 conjugacy such a structure can
actually be assumed to have holonomy generated by translations along the coordinate
axes). Within the Teichmüller space THs2.T 2/, the subset of axis-aligned translation
tori is homeomorphic to RCtRC, corresponding to the points of F\V .x1;x2;y1y2/.

Proposition A.1 Every Heisenberg structure on the pillowcase P D S2.2; 2; 2; 2/ is
uniquely covered by a translation torus , and so THs2.P /ŠR�S1.
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Proof The twofold branched cover T ! S2.2; 2; 2; 2/ D P exhibits �1.P / as a
Z2Dhri extension of �1.T /Dha; bi with rar D a�1 and rbr D b�1. Thus DHs2.P /

is parametrized by pairs Œ�;R� for R conjugating images under � to their inverses. Any
orientation-preserving element of order two in Heis is a �–rotation about some point
p 2Hs2. Rotations only conjugate translations to their inverses, so � is the holonomy
of a translation torus. Given any translation torus, the �–rotation about any point in the
plane provides an extension of �, and any two are conjugate by conjugacies fixing �.
Thus restriction provides a bijection from DHs2.S2.2; 2; 2; 2// onto translation tori.

Proposition A.2 All Heisenberg cylinders are quotients of an axis-aligned translation
torus , or a shear torus with one generator of the holonomy a horizontal translation.
Thus THs2.Cyl/ŠRtR2.

Proof The doubling mirror double of a cylinder is a torus, and the corresponding
orbifold cover T ! Cyl exhibits �1.Cyl/ as a Z2 D hf i extension of �1.T / with
faf D a and f bf D b�1. Thus DHs2.Cyl/ is parametrized by conjugacy classes of
pairs Œ�;F � with � 2 D.T / and F satisfying the relations above with respect to �.a/
and �.b/. For each � with �.a/ a horizontal translation, there is a one-parameter family
of solutions F to the system, all conjugate via conjugacies fixing � to a reflection across
the horizontal, diagf1;�1; 1g. Thus there is a unique quotient corresponding to each
� 2 DHs2.T / with �.a/ a horizontal translation. If �.a/ is not a horizontal translation,
the system of equations above only has solutions when � 2 D.T / is an axis-aligned
translation torus with �.a/ vertical, �.b/ horizontal and F D diagf�1; 1; 1g. Thus the
Teichmüller space consists of the union of the space of axis-aligned tori with all tori
having �.a/, a horizontal translation. The space of tori with �.a/ horizontal identifies
with a slice RC �R of THs2.T 2/DRC �R�S1 with fixed � D 0 2 S1, intersecting
the space RC tRC of axis-aligned translation tori in one copy of RC.

Proposition A.3 All Heisenberg Klein bottles are quotients of an axis-aligned transla-
tion torus , or a shear torus with one generator of the holonomy a horizontal translation.
Thus THs2.K/ŠRtR2.

Proof The Klein bottle K has orientation double cover T ! K corresponding to
�1.K/Dhx; b jxbx�1Db�1iwith �1.T /Dhx

2; bi, so D.K/ is parametrized by pairs
Œ�;X � for � 2DHs2.T / and X 2D �.a/ satisfying X�.b/X�1�.b/D I . As orientation-
reversing elements of Heis square to translations, �.a/ 2 Tr, and we distinguish two
cases depending on the component X lies in.
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If X 2 diagf�1; 1; 1gHeis0 reflects across the vertical and conjugates �.b/ 2 Heis0

to its inverse, �.b/ cannot have any vertical translation component, and so preserves
the horizontal foliation. As � 2 DHs2.K/, combining with �.a/ 2 Tr shows � is the
holonomy of an axis-aligned translation torus, and there is a unique solution for X up
to conjugacy:

Q�.X /D

0@�1 0 0

0 1 1
2
r

0 0 1

1A :
If X 2diagf1;�1; 1gHeis0 reflects across the horizontal, the only solutions to X 2D�.a/

are horizontal translations, and �.b/ must not have horizontal translational component.
There is a one-parameter family of solutions X to the system, all conjugate, via
conjugacies fixing �, to a glide reflection across the horizontal:0@�1 0 �1

2
�

0 1 0

0 0 1

1A :
Corollary A.4 The space of Möbius bands identifies with the space of Klein bottles or
cylinders , THs2.M/ŠRtR2.

Proof A Heisenberg Möbius band has mirror double a Klein bottle and orientation
double cover an annulus, so points of DHs2.M / correspond to triples Œ�;F;X � for
Œ�;X � 2 D.K/ and Œ�;F � 2 D.Cyl/ satisfying FX D XF . Every � 2 DHs2.T / that
extends to a representation of �1.Cyl/ does so uniquely, and also uniquely extends to a
representation of �1.K/, and so there is a unique Möbius band covered by the torus
with holonomy �.

Proposition A.5 Suppose O2fD2.2; 2I¿/;D2.¿; 2; 2; 2; 2/;RP2.2; 2/g. Then each
Heisenberg structure on O is the quotient of a unique axis-aligned translation torus.
Thus THs2.O/ŠRC tRC.

Proof These three orbifolds are twofold covered by S2.2; 2; 2; 2/, and thus fourfold
covered by translation tori. The orbifolds D2.2; 2I¿/ and D2.¿I 2; 2; 2; 2/ are also
covered by the annulus, and the only translation annuli are axis-aligned. Each such
axis-aligned torus has a unique D2.2; 2I¿/ and D2.¿I 2; 2; 2; 2/ quotient. The orbifold
RP2.2; 2/ arises as a fourfold quotient of the torus by glide reflections x and y such
that �1.T

2/D hx2;y2i. As seen in Proposition A.3, each glide reflection squaring to
a generator of �1.T

2/ is along an axis of R2, so in this case the torus cover must be an
axis-aligned translation torus. Each such cover admits a unique RP2.2; 2/ quotient.
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Proposition A.6 The orbifold D2.2I 2; 2/ has Teichmüller space homeomorphic to
RtR.

Proof This orbifold is the quotient of the pillowcase by a reflection passing through two
opposing cone points, and thus is fourfold covered by a translation torus. Algebraically
this is an extension of �1.P /D ha; b; ri by hf i D Z2 satisfying faf D b, f bf D a

and f rf D r�1. Up to HeisC conjugacy we may choose representations for homothety
classes of translation tori translating along v� D

� cos �
sin �

�
and �v?

�
D
�
�� sin �
� cos �

�
, uniquely

defined for � 2 Œ0; �/ and � > 0. The only reflections F representing f are parallel to
the x or y axes, so the covering torus T cannot be axis-aligned for this to pass through
the cone points of the pillow quotient. For F 2 diag.�1; 1; 1/Heis0, computing with
the relations shows there is a solution if and only if � 2 .0; �/ and �D tan � . Similarly,
for F 2 diag.1;�1; 1/Heis0, a solution exists for � 2

�
1
2
�; �

�
and �D� tan � . These

solutions are unique up to conjugacy and so THs2.D2.2I 2; 2//ŠRtR.
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