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The realization problem
for noninteger Seifert fibered surgeries

AHMAD ISSA

DUNCAN MCCOY

Conjecturally, the only knots in S3 with noninteger surgeries producing Seifert fibered
spaces are torus knots and cables of torus knots. We make progress on the associated
realization problem. Let Y be a small Seifert fibered space arising by p=q–surgery
on a knot in S3, where p=q is positive and a noninteger. Let e denote the weight of
the central vertex in the minimal star-shaped plumbing that Y bounds. We show that
if e ��2 or e � 3, then Y can be obtained by p=q–surgery on a torus knot or a cable
of a torus knot.
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1 Introduction

One of the simplest operations to produce new 3–manifolds is Dehn surgery on a knot
K in S3. Thus, it is natural to consider how certain 3–manifolds may arise by surgery
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Figure 1: Surgery diagram of the Seifert fibered space S2.eIp1=q1; p2=q2; p3=q3/.

on a knot in S3. It is, of course, well known that every closed oriented 3–manifold
arises by surgery on a link in S3; see Lickorish [18] and Wallace [33]. A natural
candidate for studying such questions is the family of Seifert fibred spaces.

Question 1.1 Which Seifert fibered spaces can arise by surgery on a knot in S3?

As Seifert fibered spaces are not hyperbolic 3–manifolds, this is naturally related
to the problem of understanding exceptional surgeries on hyperbolic knots in S3.
One conjecture is the following, which explains why one might consider integer and
noninteger Seifert fibered surgeries separately.

Conjecture 1.2 (Gordon [10, Conjecture 4.8]) If S3
p=q

.K/ is a Seifert fibered space
and K is a hyperbolic knot, then q D 1.

This has an equivalent formulation which provides a conjectural list of knots in S3 with
noninteger Seifert fibered surgeries; see Proposition 2.2 for a proof of the equivalence.

Conjecture 1.3 If S3
p=q

.K/ is a Seifert fibered space and q � 2, then K is a torus
knot or a cable of a torus knot.

We consider Question 1.1 for noninteger surgeries and show that for a significant subset
of the Seifert fibered spaces the only ones arising by noninteger surgery on a knot in
S3 are the ones predicted by Conjecture 1.3.

Culler, Gordon, Luecke and Shalen’s cyclic surgery theorem shows that lens spaces arise
by noninteger surgery only on torus knots [4]. Boyer and Zhang have shown that Haken
Seifert fibered spaces can arise only by integer surgeries on knots in S3 [1, Corollary J],
a fact that also follows from later work of Gordon and Luecke [11]. Thus it remains to
consider noninteger surgeries yielding small Seifert fibered spaces, that is spaces that
fiber over S2 with three exceptional fibers. We use Y Š S2.eIp1=q1; p2=q2; p3=q3/
to denote the Seifert fibered space obtained according to the surgery diagram in Figure 1.

Algebraic & Geometric Topology, Volume 23 (2023)



The realization problem for noninteger Seifert fibered surgeries 1503

If Y is a rational homology sphere, then it arises as the boundary of a definite manifold
obtained by plumbing sphere bundles according to a star-shaped graph. We define
e.Y / 2 Z n f0g to be the weight of the central vertex of the unique minimal definite
plumbing which Y bounds; see Section 3.1.

Theorem 1.4 Let Y be a Seifert fibered space over S2 with three exceptional fibers
and e.Y / … fC1;C2;�1g. If there is a knot K in S3 with Y Š S3

p=q
.K/ where

p=q > 0 and p=q 2 Q nZ, then there is a knot K 0 which is either a torus knot or a
cable of a torus knot with S3

p=q
.K 0/Š Y and �K.t/D�K0.t/.

It turns out that the spaces arising in the conclusion of Theorem 1.4 are all L–spaces.
Thus, the fact that K and K 0 have the same Alexander polynomial shows that they
have isomorphic knot Floer homology groups; see Ozsváth and Szabó [30]. In order
to make full use of Theorem 1.4, one also needs to understand for which surgeries on
torus knots or cables of torus knots we have e.Y / … fC1;C2;�1g. Thus, we provide
the following result as a companion to Theorem 1.4.

Proposition 1.5 Let K be a torus knot or a cable of a torus knot. Then for p=q > 0
we have that S3

p=q
.K/ is a Seifert fibered space over S2 with three exceptional fibers

and e.S3
p=q

.K// … f�1;C1;C2g if and only if

(i) K is a torus knot K D Tr;s with r; s > 1, p=q > rs� 1 and jp� rsqj> 1, or

(ii) K is a cable of a torus knot K D Ca;b ıTr;s , where r; s > 1, b=a > rs� 1 and
p=q D ab˙ 1=q.

Since Theorem 1.4 is phrased in terms of positive surgeries, we will reflect Y , if
necessary, to assume that it bounds a positive definite plumbing, ie so that e.Y /� 2.
Thus in order to prove Theorem 1.4 we have two possible cases to consider. Either
we have e.Y / D 2 and p=q < 0 or we have that e.Y / � 3. We deal with these two
regimes differently. The main technical content of this paper comes in the analysis
of the e.Y /D 2 case. The key point is that the definite plumbing bounding a Seifert
fibered space is an example of a “sharp” manifold, meaning that, roughly speaking,
its intersection form determines the Heegaard Floer d–invariants of its boundary; see
Ozsváth and Szabó [29]. This allows us to apply the changemaker lattice surgery
obstruction developed by Greene for integer and half-integer surgeries [13; 14] and
extended to all noninteger surgeries by Gibbons [7]. This reduces the problem to
studying when the intersection form of a star-shaped plumbing can be isomorphic to a
changemaker lattice. Almost all previous applications of changemaker lattices have
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involved studying situations in which changemaker lattices are isomorphic to graph
lattices. However, when e.Y / D 2 the intersection form of the relevant star-shaped
plumbing is not a graph lattice, meaning that new ideas are required to apply the
changemaker obstruction. The majority of the technical innovation in this paper comes
from circumventing the fact that we are not dealing with a graph lattice. When e.Y /� 3
the Seifert fibered space is the double branched cover of an alternating Montesinos link.
This allows us to apply previous results describing when the double branched cover
of an alternating link can arise by noninteger surgery; see McCoy [19]. Although the
results of [19] were derived using changemaker lattices, we do not explicitly use lattice
theoretic techniques in this part of the proof. We prove the theorem by considering
Conway spheres in alternating diagrams of Montesinos links.

The structure of the paper is as follows. We begin in Section 2 by recalling some
properties of Seifert fibered surgeries and observing that Conjecture 1.3 is true for
surgeries with q � 9. Sections 3 and 4 contain the necessary background on lattices,
with Section 3 discussing the necessary results on the intersection forms of plumbings
and Section 4 addressing changemaker lattices. The technical results necessary for
the e.Y /D 2 case of Theorem 1.4 are developed in Section 5. The e.Y / � 3 case is
studied in Section 6. Finally, in Section 7, we pull together all the necessary results to
prove Theorem 1.4 and Proposition 1.5.
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2 Seifert fibered surgeries

In this section we justify the equivalence of Conjecture 1.2 and Conjecture 1.3. We
also note that Conjecture 1.2 is true for q � 9.

Lemma 2.1 Let K be a knot which is not a torus knot or a cable of a torus knot with a
Seifert fibered surgery S3

p=q
.K/ for some q � 2. Then there is a hyperbolic knot K 0

and q0 � q such that S3
p=q

.K/Š S3
p=q0

.K 0/.

Algebraic & Geometric Topology, Volume 23 (2023)
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Proof By Thurston’s work every knot is either a hyperbolic knot, a satellite knot or a
torus knot [31; 32]. Applied to K, this shows that K is a hyperbolic knot or a satellite
knot. If K is hyperbolic then we may take K 0 DK and q0 D q. Thus suppose that K
is a satellite knot. Consider an innermost incompressible torus R in S3 n �K. This
cuts S3 n �K into two components. One of these is the complement of a knot K 0 � S3
and on the other side of the complement of a knot C � S1 �D2 in a solid torus. The
innermost assumption on R implies that K 0 is either a hyperbolic knot or a torus knot.
Since S3

p=q
.K/ is a small Seifert fibered space [1, Corollary J], it is irreducible and

atoroidal. Therefore after performing surgery, the torus R must bound a solid torus.
In particular, C must be a knot in S1 �D2 with a nontrivial S1 �D2 surgery. By the
work of Gabai [5, Lemma 2.3], this implies that C is either a torus knot or a 1–bridge
braid in the solid torus. However Gabai has also shown that 1–bridge braids admit only
integer solid torus surgeries [6, Lemma 3.2]. Thus C must a torus knot in S1 �D2.
This implies that K is a cable of K 0. As we are assuming that K is not a cable of a
torus knot, it follows that K 0 is a hyperbolic knot. Since the torus R bounds a solid
torus after performing surgery on C , it follows that S3

p=q
.K/ Š S3

p0=q0
.K 0/, where

p0=q0 is the slope on R which bounds a disk after this surgery. By considering how the
homology of a solid torus changes under surgery one can see that p0=q0 D p=.qw2/,
where w � 2 is the winding number of C [9, Lemma 3.3].

This allows us to prove the following two useful results.

Proposition 2.2 Conjecture 1.2() Conjecture 1.3

Proof The implication Conjecture 1.2 D)Conjecture 1.3 follows from the fact that
torus knots and cables of torus knots are not hyperbolic knots. The reverse implication
follows from Lemma 2.1, since Conjecture 1.2 asserts that no hyperbolic knot K 0
satisfying the conclusion of the lemma can exist.

Proposition 2.3 If S3
p=q

.K/ is a Seifert fibered space and q � 9 then K is a cable of a
torus knot or a torus knot.

Proof Lackenby and Meyerhoff have shown that the distance between exceptional
fillings on a hyperbolic knot is eight [17]. Therefore if K 0 is a hyperbolic knot such
that S3

p=q0
.K 0/ is a Seifert fibered space, then q0 � 8. Hence the proposition follows

from Lemma 2.1.
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3 Seifert fibered spaces and plumbings

We use S2.eIp1=q1; p2=q2; p3=q3/ to denote the space obtained by surgery on the link
as in Figure 1, where e 2Z and for each i the integers pi and qi are coprime. This is a
Seifert fibered space with three exceptional fibers provided that jpi j> 1 for i D 1; 2; 3.
By performing Rolfsen twists on the pi=qi–framed components, we see that there is
an orientation preserving homeomorphism between S2.eIp1=q1; p2=q2; p3=q3/ and
S2.e0Ip01=q01; p02=q02; p03=q03/ whenever

(3-1) e�
q1

p1
�
q2

p2
�
q3

p3
D e0�

q01
p01
�
q02
p02
�
q03
p03

and there is a permutation � of f1; 2; 3g such that

(3-2)
qi

pi
�
q0
�.i/

p0
�.i/

mod 1 for i D 1; 2; 3:

Conversely it follows from the classification of Seifert fibered space (see, for example,
the results in [26, Section 5.3]) that conditions (3-1) and (3-2) are, in fact, necessary
for there to be an orientation preserving homeomorphism between

S2
�
eI
p1

q1
;
p2

q2
;
p3

q3

�
and S2

�
e0I
p01
q01
;
p02
q02
;
p03
q03

�
:

The generalized Euler invariant of Y Š S2.eIp1=q1; p2=q2; p3=q3/ is defined to be

".Y / WD e�
q1

p1
�
q2

p2
�
q3

p3
:

By the above discussion, one sees that ".Y / is a topological invariant. Reversing the
orientation on the Seifert fibered space Y yields the Seifert fibered space

�Y Š S2
�
�eI �

p1

q1
;�
p2

q2
;�
p3

q3

�
:

Thus we see that the generalized Euler characteristic satisfies

".�Y /D�".Y /:

Using the surgery description of Y in Figure 1, one finds that the order of its first
homology can be calculated as

jH1.Y IZ/j D j.p1p2p2/".Y /j:

It follows that Y is a rational homology sphere if and only if ".Y /¤ 0. Thus if Y is a
Seifert fibered space rational homology sphere, Y can be oriented so that ".Y / > 0.
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3.1 Minimal definite plumbings

Let Y be a Seifert fibered rational homology sphere with three exceptional fibers
oriented so that ".Y / > 0. The discussion at the start of this section shows that Y has a
unique description in the form

Y Š S2
�
eI
p1

q1
;
p2

q2
;
p3

q3

�
;

where e > 0 and p1=q1; p2=q2; p3=q3 > 1. We define e.Y / to be the value e in this
presentation with the convention that e.�Y / D �e.Y /. This is the invariant e.Y /
appearing in the statement of Theorem 1.4. As we will see, this quantity is precisely
the weight of the central vertex in the minimal definite plumbing that Y bounds.

There is a unique continued fraction expansion

p1

q1
D Œa1; : : : ; ak�

�
D a1�

1

a2�
1

: : : ak�1�
1

ak

;

where k � 1 and aj � 2 for j 2 f1; : : : ; kg. Similarly, we write p2=q2 D Œb1; : : : ; bl ��
and p3=q3D Œc1; : : : ; cm��, where l; m�1, and bj �2 and cj �2 for all j . Performing
a sequence of reverse slam dunks to convert the fractional surgery coefficients to integer
coefficients, we see that Y has a surgery description as shown in Figure 2. Since
these surgery coefficients are integers, this can also be viewed as a Kirby diagram for
a 4–manifold X with @X D Y . This manifold is diffeomorphic to one obtained by
plumbing disk bundles over S2 according to the star-shaped graph given in Figure 3; see
Section 6.1 of [8]. This X is precisely the unique minimal positive definite plumbing
that Y bounds [25, Theorem 5.2]. Given the plumbing diagram as in Figure 3, we can
define an integer lattice .ƒ� ;Q�/, where ƒ� is the free abelian group generated by
the vertices of � and Q� Wƒ� �ƒ� ! Z is the bilinear pairing with

Q�.u; v/D

8<:
w.v/ if uD v;
�1 if vertices u and v are connected by an edge;
0 otherwise;

where u and v are vertices of � and w.v/ denotes the weight of vertex v. The lattice
.ƒ� ;Q�/ is naturally isomorphic to the intersection form of X , and hence is positive
definite. We write x �y to denote the pairing QX .x; y/ and kxk2 to denote QX .x; x/.
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e

a1 a2 ak�1
ak

b1 b2 bl�1
bl

c1 c2 cm�1
cm

: : :

: : :

: : :

Figure 2: The Kirby diagram for X (also a surgery diagram for @X D Y ).

3.2 Quasialternating plumbings

In order to prove Theorem 1.4 we need to understand the properties of lattices arising as
the intersection forms in the case eD 2. For topological reasons we need only consider
a special subset of such forms. The following was proven by the first author in his
classification of quasialternating Montesinos links [15].

Lemma 3.1 Let Y D S2.eIp1=q1; p2=q2; p3=q3/ with e � 2 be such that Y is
the boundary of the (canonical ) positive definite plumbing 4–manifold X . Then the
following are equivalent :

e

a1 a2 ak�1 ak

b1 b2 bl�1 bl

c1 c2 cm�1 cm

Figure 3: Weighted star-shaped plumbing graph � .
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(i) Y bounds a negative definite 4–manifold W with H1.W / torsion free.

(ii) Y is homeomorphic to the double branched cover of a quasialternating Mon-
tesinos link.

(iii) Either e � 3, or e D 2 and qi=pi C qj =pj < 1 for some i; j 2 f1; 2; 3g with
i ¤ j .

(iv) If A is a matrix representing some embedding H2.X/ ,! Zn with n 2 Z>0 of
the intersection lattice of X into a standard positive diagonal lattice with respect
to a pair of bases , then AT is surjective.

On account of the condition Lemma 3.1(ii):

Definition 3.2 Let � be a star-shaped plumbing graph as in Figure 3. We say that �
is quasialternating if e D 2 and the continued fractions

p1

q1
D Œa1; : : : ; ak�

�

and
p2

q2
D Œb1; : : : ; bl �

�

satisfy q1=p1Cq2=p2 <1. We also call the corresponding lattice ƒ� quasialternating.

In order to study quasialternating lattices, it will be convenient to define the following
quadratic form:

Definition 3.3 Suppose k > 0 and n1; : : : ; nk 2 Z. We denote by Qn1;:::;nk
the

quadratic form given by

(3-3) Qn1;:::;nk
.x1; : : : ; xk/D n1x

2
1 � 2x1x2Cn2x

2
2 � � � � � 2xk�1xkCnkx2k

for all x1; : : : ; xk 2 Z.

We will begin by proving some preparatory inequalities on quadratic forms of this type.

Lemma 3.4 Let c1; : : : ; cm � 2 be integers and z1; : : : ; zm be integers. We have the
following inequalities:

(i) If at least one zi is nonzero , then

Qc1;:::;cm
.z1; : : : ; zm/� 2C

mX
iD1

.ci � 2/jzi j:
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(ii) Q1;c1;:::;cm
.c; z1; : : : ; zm/� jcjC

mX
iD1

.ci � 2/jzi j:

(iii) If c ¤ 0 or zi ¤ 0 for some i , then

Q1;c1;:::;cm
.c; z1; : : : ; zm/Cjcj � 2C

mX
iD1

.ci � 2/jzi j:

Proof We prove (i) first. Since ci � 2 for all 1� i �m, we can complete the square
to obtain

Qc1;:::;cm
.z1; : : : ; zm/D z

2
1C .z1�z2/

2
C� � �C .zm�1�zm/2Cz2mC

mX
iD1

z2i .ci �2/:

If zi is nonzero for some i , then at least two of the terms

z21 ; .z1� z2/
2; : : : ; .zm�1� zm/2; z2m

must be nonzero. Since these terms are all integers, this gives the desired inequality
when combined with the previous equation.

Now we prove (ii) and (iii). Since ci � 2 for all 1� i �m, we can complete the square
to obtain

(3-4) Q1;c1;:::;cm
.c; z1; : : : ; zm/

D .c � z1/
2
C .z1� z2/

2
C � � �C .zm�1� zm/2C z2mC

mX
iD1

z2i .ci � 2/:

However, notice that we have

.c � z1/
2
C .z1� z2/

2
C � � �C .zm�1� zm/2C z2m

� jc � z1jC jz1� z2jC � � �C jzm�1� zmjC jzmj
� j.c � z1/C � � �C .zm�1� zm/C zmj D jcj:

Combining this with (3-4) proves (ii).

To prove (iii) observe that if at least one of c; z1; : : : ; zm is nonzero then at least two
of the terms

jcj; .c � z1/
2; .z1� z2/

2; : : : ; .zm�1� zm/2; z2m

must be nonzero. Since each of these terms are integers, this gives the desired inequality
when combined with (3-4).
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Lemma 3.5 Let a1; : : : ; ak; b1; : : : ; bl � 2 be integers and let p1=q1D Œa1; : : : ; ak��
and p2=q2D Œb1; : : : ; bl �� where .pi ; qi /D 1 and pi > qi � 1 for i 2 f1; 2g. Suppose
that q1=p1C q2=p2 < 1. Then for any integers x1; : : : ; xk; y1; : : : ; yl ; c with at least
one of c or the xi or yi nonzero , we have

(3-5) Qak ;:::;a1;1;b1;:::;bl
.xk; : : : ; x1; c; y1; : : : ; yl/Cjcj

� 2C

kX
iD1

.ai � 2/jxi jC

lX
iD1

.bi � 2/jyi j:

Proof First observe that

Qa1;:::;ak ;1;b1;:::;bl
.0; : : : ; 0; c; 0; : : : ; 0/Cjcj D c2Cjcj:

So if c ¤ 0 and x1 D � � � D xk D y1 D � � � D yl D 0, then

Qak ;:::;a1;1;b1;:::;bl
.xk; : : : ; x1; c; y1; : : : ; yl/� 2;

which is the desired inequality. Thus we may assume that at least one of the xi or yj
terms is nonzero.

Consider the integers x1; : : : ; xk; y1; : : : ; yl ; c. The right hand side of (3-5) is invariant
under changing the signs of any subset of these integers. Moreover, the left hand side
of (3-5) is minimal when all these integers have the same sign, and is invariant under
simultaneously replacing all of the integers by their negatives. Hence, it suffices to
consider the case x1; : : : ; xk; y1; : : : ; yl ; c � 0.

Now consider

(3-6) a1x
2
1 � 2x1cC c

2
� 2y1cC b1y

2
1 C c

D .a1� 1/x
2
1 � 2x1y1C .b1� 1/y

2
1 C x1Cy1C

�
x1Cy1� c �

1
2

�2
�
1
4

� .a1� 1/x
2
1 � 2x1y1C .b1� 1/y

2
1 C x1Cy1;

where the inequality follows from the observation that the square of a half integer is
always at least a quarter. It follows from (3-6) that

(3-7) Qak ;:::;a1;1;b1;:::;bl
.xl ; : : : ; x1; c; y1; : : : ; yl/Cjcj

�Qak ;:::;a1�1;b1�1;:::;bl
.: : : ; x1; y1; : : :/Cjx1jC jy1j;

where we are using the positivity assumption to write jx1j, jy1j and jcj in place of x1,
y1 and c.

We will use (3-7) to prove (3-5) by induction.

Note that q1=p1C q2=p2 < 1 implies that at most one of a1 and b1 can equal two.

Algebraic & Geometric Topology, Volume 23 (2023)



1512 Ahmad Issa and Duncan McCoy

If a1 > 2 and b1 > 2, then Lemma 3.4(i) applies to show that

Qak ;:::;a1�1;b1�1;:::;bl
.xl ; : : : ; x1; y1; : : : ; yl/

� 2C
X
jxi j.ai � 2/� x1C

X
jyi j.bi � 2/�y1:

Combining this with (3-7) gives the desired inequality.

Thus it suffices to consider the possibility that a1 D 2 or b1 D 2. Without loss of
generality we can assume that a1 D 2. If k D 1, then Lemma 3.4(iii) combined with
(3-7) gives the desired bound.

Thus, it remains to consider the case that a1 D 2 and k > 1. Let

p01
q01
D Œa2; : : : ; ak�

� and
p02
q02
D Œb1� 1; b2; : : : ; bl �

�:

We wish to show that these satisfy q01=p01C q02=p02 < 1. Since a1 D 2, we have that
p1=q1 D 2 � q01=p01. We also have that p02=q02 D p2=q2 � 1. The condition that
q1=p1C q2=p2 < 1 implies that p1=q1 > p2=p2� q2. Thus we see that

q01
p01
C
q02
p02
D 2�

p1

q1
C

q2

p2� q2
< 2�

p2

p2� q2
C

q2

p2� q2
D 1;

as required.

This allows us to prove the lemma inductively, by considering

Qak ;:::;a2;1;b1�1;:::;bl
.xk; : : : ; x1; y1; : : : ; yl/;

with x1 taking the role of c.

With these inequalities in place, we can prove our key result on quasialternating lattices:

Lemma 3.6 Let ƒ be a quasialternating lattice associated to a graph � and let V �ƒ
be the basis elements corresponding to the vertices of � . Then for any nonzero
x D

P
v2V cvv, we have

kxk2 � 2C
X
v2V
jcvj.kvk

2
� 2/:

Proof Suppose that ƒ is the lattice corresponding to the star-shaped plumbing in
Figure 3 with e D 2, and

p1

q1
D Œa1; : : : ; ak�

�; p2

q2
D Œb1; : : : ; bl �

� and
p3

q3
D Œc1; : : : ; cm�

�;
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where ai ; bi ; ci � 2 and q1=p1C q2=p2 < 1. Thus if we take

cv D

8̂̂̂<̂
ˆ̂:
xi if v is the ai–weighted vertex;
yi if v is the bi–weighted vertex;
zi if v is the ci–weighted vertex;
c if v is the central vertex;

then it is not hard to verify that kxk2 can be calculated as

kxk2 DQak ;:::;a1;1;b1;:::;bl
.xk; : : : ; x1; c; y1; : : : ; yl/CQ1;c1;:::;cm

.c; z1; : : : ; zm/:

If c D 0, then this simplifies to

kxk2 DQak ;:::;a1
.xk; : : : ; x1/CQb1;:::;bl

.y1; : : : ; yl/CQc1;:::;cm
.z1; : : : ; zm/:

In this case the required inequality follows from Lemma 3.4(i).

Thus it suffices to suppose that c ¤ 0. In this case, we can apply Lemma 3.4(ii) to the
second summand of the first equation for kxk2 above. This gives

kxk2 �Qak ;:::;a1;1;b1;:::;bl
.xk; : : : ; x1; c; y1; : : : ; yl/CjcjC

mX
iD1
jzi j.ci � 2/:

By applying Lemma 3.5, we get the desired inequality.

Lemma 3.6 has several consequences that will be of use later. To describe these
consequences we need the following lattice-theoretic concepts:

Definition 3.7 Let ƒ be an integer lattice and let v 2ƒ.

� The vector v is irreducible if, for all x; y 2ƒ, if v D xCy and x �y � 0 then
either x D 0 or y D 0.

� The vector v is unbreakable if, for all x; y 2 ƒ, if v D xC y and x � y D �1
then either kxk2 D 2 or kyk2 D 2.

Lemma 3.8 Let ƒ be a quasialternating lattice associated to a graph � and let V �ƒ
be the basis elements corresponding to the vertices of � . Then:

(i) If x 2ƒ is nonzero , then kxk2 � 2.

(ii) If x D
P
v2V cvv, then if cw ¤ 0 for some w 2 V , then kxk2 � kwk2.

(iii) Any vertex v 2 V is irreducible.

(iv) Any vertex v 2 V is unbreakable.

Algebraic & Geometric Topology, Volume 23 (2023)



1514 Ahmad Issa and Duncan McCoy

Proof The statements (i) and (ii) follow immediately from Lemma 3.6.

Suppose that a vertex v can be written as v D x C y for x; y 2 ƒ. If we write
x D

P
cww and y D

P
dww, then since the vertices are a basis for ƒ, we see that

we must have cv ¤ 0 or dv ¤ 0. Without loss of generality assume that cv ¤ 0. Thus
by (ii), kxk2 � kvk2. However, we also have

kvk2 D kxCyk2 D kxk2C 2.x �y/Ckyk2;

showing that
0� kyk2 � �2.x �y/:

Thus if x � y � 0, then kyk2 D 0 implying that y D 0. This shows irreducibility. If
x � y D �1, then y ¤ 0 and kyk2 � 2. By (i) this means kyk2 D 2. Thus we have
shown unbreakability.

The following observation will also be useful.

Lemma 3.9 Suppose ƒ is a quasialternating lattice with the vertex basis V . If
x D

P
v2V cvv 2ƒ is irreducible , then we have cv � 0 for all v or cv � 0 for all v.

Proof Let P D fv 2 V W cv > 0g and N D fv 2 V W cv < 0g and let wC D
P
v2P cvv

and w�D
P
v2N cvv. We have xDwCCw� and wC �w� � 0. Since x is irreducible

this implies that x D wC or x D w�, proving that the cv must all have the same sign,
as required.

4 Changemaker lattices

In this section we recall the changemaker theorem and the properties of changemaker
lattices. The changemaker theorem was first developed by Greene for integer surgeries
in his work on the lens space realization problem [12] and the cabling conjecture [14],
and for half-integer surgeries in his work on 3–braid knots with unknotting number
one [13]. It was extended to general noninteger slopes by Gibbons [7]. A proof of the
changemaker theorem at the level of generality stated here can be found in the second
author’s thesis [20].

The changemaker theorems are obstructions to manifolds arising by positive surgery
and bounding sharp negative definite manifolds. Recall that given a negative-definite
manifold X with @X D Y equipped with a spinc–structure s which restricts to t on Y ,
there is an upper bound [28]:

(4-1) d.Y; t/� 1
4
.c1.s/

2
C b2.X//:
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Here d.Y; t/ denotes the d–invariant from Heegaard Floer homology. A sharp manifold
is one for which (4-1) is sufficient to determine all d–invariants on the boundary.

Definition 4.1 A negative definite manifold X with boundary Y is sharp if for every
t 2 Spinc.Y / there is s 2 Spinc.X/ such that s restricts to t and s attains equality
in (4-1), that is,

d.Y; t/D 1
4
.c1.s/

2
C b2.X//:

Definition 4.2 We say that a tuple of increasing positive integers .�1; : : : ; �t / satisfies
the changemaker condition if, for every

1� n� �1C � � �C �t ;

there is A� f1; : : : ; tg such that nD
P
i2A �i .

The changemaker has an equivalent formulation which will sometimes be useful:

Proposition 4.3 (Brown, [2]) A tuple .�1; : : : ; �t / of increasing positive integers
satisfies the changemaker condition if and only if

�1 D 1 and �i � �1C � � �C �i�1C 1 for 1 < i � t:

The key definition we will need is that of a changemaker lattice.

Definition 4.4 Let p=q > 0 be given by the continued fraction

p=q D Œa0; : : : ; al �
�
D a0�

1

a1�
1

: : : �
1

al

;

where a0 � 1, and ai � 2 for i � 1. Suppose further that ff0; : : : ; fs; e1; : : : ; etg is an
orthonormal basis of ZtCsC1, where s D

Pl
iD1.ai �1/. Let w0; : : : ; wl 2ZsCtC1 be

such that:

(I) w0 has norm kw0k2 D a0 and takes the form

w0 D

�
�1e1C � � �C �tet if l D 0;
f0C �1e1C � � �C �tet if l > 0;

where .�1; : : : ; �t / is a tuple satisfying the changemaker condition.
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(II) For k � 1,
wk D�f˛k�1

Cf˛k�1C1C � � �Cf˛k
;

where ˛0 D 0 and ˛k D
Pk
iD1.ai � 1/.

Then we say that the orthogonal complement

LD hw0; : : : ; wli
?
� ZsCtC1

is a p=q–changemaker lattice.

Moreover, we say that the �i are the changemaker coefficients of L and that the �i
satisfying �i > 1 are the stable coefficients of L.

Some remarks on this definition are in order.

Remark 4.5 (1) As the ˛i are defined so that ˛i �˛i�1 D ai � 1, the wi satisfy

wi �wj D

8<:
ai if i D j;
�1 if ji � j j D 1;
0 if ji � j j> 1:

(2) By definition, we have ˛l D s. Thus for every 0 � j � s there is wk with
wk � fj D 1. As w0 � ei > 0 for every 1 � i � t , this shows that there are no
vectors of norm one in a changemaker lattice.

(3) A p=q–changemaker lattice is determined up to isomorphism by its stable coef-
ficients. Given the stable coefficients, the remaining changemaker coefficients
are all equal to one and the number of remaining coefficients is determined by
the requirement that a0 D kw0k2 D dp=qe. All other wi are determined by the
continued fraction expansion for p=q.

We are now ready to state the changemaker surgery obstruction.

Theorem 4.6 [20, Theorem 2.1] Let K � S3 be such that S3
p=q

.K/ bounds a sharp
manifold X for p=q > 0. Then the intersection form QX satisfies

�QX Š L˚ZS ;

where S � 0 is an integer and

LD hw0; : : : ; wli
?
� ZsCtC1

Algebraic & Geometric Topology, Volume 23 (2023)



The realization problem for noninteger Seifert fibered surgeries 1517

is a p=q–changemaker lattice such that , for all 0� i � n=2,

(4-2) 8Vi D min
jc�w0jDn�2i

c2Char.ZsCtC1/

kck2� .sC t C 1/;

where nD dp=qe.

Here the Vi are a nonincreasing sequence of nonnegative integers that are determined
by the knot Floer complex CFK1 of K.

Remark 4.7 It is clear from (4-2) that the vector w0 determines the Vi . It turns
out that the sequence of Vi , along with (4-2), is sufficient to determine the stable
coefficients of w0 [21]. In particular, this means that the intersection form QX is
determined by the knot, the surgery slope p=q and the second Betti number of X .

In the case where K is an L–space knot (a knot with positive L–space surgeries) the
Vi can be computed from the Alexander polynomial. For an L–space knot we may
write its Alexander polynomial in the form

�K.t/D a0C

gX
iD1

ai .t
i
C t�i /;

where g D g.K/ is the genus of K and the nonzero values of the ai alternate in sign
and take values ai D˙1. We also assume that �K.1/D 1. With these conventions,
we define the torsion coefficients of �K.t/ to be

ti .K/D
X
j�1

jaji jCj :

For K an L–space knot we have that Vi D ti .K/.

Remark 4.8 The torsion coefficients are sufficient to determine the Alexander poly-
nomial. For j � 1, we can recover aj by the relation

aj D tj�1.K/� 2tj .K/C tjC1.K/:

Since we are normalizing so that �K.1/D 1, this is also sufficient to recover a0.

When applied to Seifert fibered surgeries, Theorem 4.6 yields:
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Lemma 4.9 Let Y DS2.2Ip1=q1; p2=q2; p3=q3/ be a Seifert fibered space bounding
positive-definite plumbed 4–manifold X� such that Y Š S3�p=q.K/ for some K � S3

and p=q > 0. Then Y is an L–space and Q� Š L, where L is the p=q–changemaker
lattice determined by the Alexander polynomial of �K.t/.

Proof Since Y arises by surgery of a negative slope, Y bounds a negative definite
manifold W with H1.W IZ/ D 0. Combined with the positive definite plumbing,
this shows that Y satisfies condition (i) of Lemma 3.1. Consequently, Y satisfies the
other conditions of Lemma 3.1. This shows that Y is the double branched cover of a
quasialternating link and, consequently, is an L–space.

Reversing orientations shows that �Y Š S3
p=q

.K/. Ozsváth and Szabó have shown that
the negative definite plumbing �X� is a sharp 4–manifold [29, Corollary 1.5]. Since
the intersection form of �X� is isomorphic to �Q� , Theorem 4.6 applies to show that
Q� is isomorphic to L˚ZS for some S � 0, where L is the p=q–changemaker lattice
whose stable coefficients are determined by the Alexander polynomial of K. However,
since Y satisfies the conditions of Lemma 3.1, Lemma 3.8 applies toQ� . This shows in
particular thatQ� contains no vectors of norm one and hence that S D 0, as required.

4.1 Standard bases

Having stated the changemaker surgery obstruction, we now discuss the properties of
changemaker lattices that will be required. We begin first by constructing a basis for a
p=q–changemaker lattice; see also [19; 20]. Let

LD hw0; : : : ; wli
?
� ZsCtC1

be a p=q–changemaker lattice for p=q D n� r=q for n > 1 and 1� r < q. Let

w0 D f0C �1e1C � � �C �tet

and 0D ˛0 < � � �< ˛l D s be as in the definition of L. Consider the set

M D f0; : : : ; sg n f˛1; : : : ; ˛l�1g:
Write M as

M D fˇ0; : : : ; ˇmg;

where the ˇi are ordered to be increasing. Notice that ˇ0 D 0 and ˇm D ˛l D s. For
0� k < m define

�k D

�
f0C � � �Cfˇ1

if k D 0;
�fˇk

CfˇkC1C � � �CfˇkC1
if k > 0:
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These are constructed so that �k 2L for k > 0. By construction the �i pair as follows:

(4-3) �i ��j D

8<:
k�ik

2 if i D j;
�1 if ji � j j D 1;
0 if ji � j j> 1:

In particular this means, for any 0� a � b �m,

(4-4) k�aC � � �C�bk
2
D 2C

bX
iDa

.k�ik
2
� 2/:

It will also be useful to note that the �i are determined by r=q by the continued fraction
identity:

Lemma 4.10 [20, Lemma 4.8] The �i satisfy

Œk�0k
2; : : : ; k�mk

2�� D q

q� r
:

Remark 4.11 Of particular interest will be the cases where p=q D n � 1=q and
p=q D n� .q� 1/=q. In these cases Lemma 4.10 says:

(i) If p=q D n� 1=q, then mD q� 2 and

k�0k
2
D � � � D k�q�2k2 D 2:

(ii) If p=q D n� .q� 1/=q, then there is just �0 and it satisfies k�0k2 D q.

For 1� k � t , we say that �k is tight if

�k D 1C �1C � � �C �k�1:

If �k is not tight, then Proposition 4.3 shows that there is a subset A� f1; : : : ; k� 1g
such that �k D

P
i2A �i . For each k, let Ak denote the maximal such subset with

respect to the lexicographical ordering on subsets of f1; : : : ; k� 1g. Define �k by

�k D

�
�ekC ek�1C � � �C e1C�0 if �k is tight;
�ekC

P
i2Ak

ei otherwise:

Note that in any changemaker lattice �1D 1 is always tight and we have �1D�e1C�0.
We say that a standard basis element �k is gapless if it takes the form1

�k D�ekC ek�1C � � �C el
for some l < k.
1Such elements were called just right by Greene.
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Remark 4.12 The lexicographical maximality condition on Ak has the following
useful consequences.

(i) For k > 1, we always have �k � ek�1 D 1. When �k is tight this is by definition.
When �k is not tight, Proposition 4.3 shows that we can construct the set Ak
by a “greedy algorithm”. Under such an algorithm, k� 1 is the always the first
element to be included in Ak .

(ii) If v 2 L takes the form

v D�ekC ek�1C � � �C el ;

then v D �k is necessarily a gapless standard basis vector.

We say that
S D f�1; : : : ; �t ; �1; : : : ; �mg

is the standard basis for L. The standard basis is, in fact, a basis for L.

Lemma 4.13 [20, Proposition 4.9] The standard basis S is a basis for L.

Recall that the notions of irreducibility and unbreakability are given in Definition 3.7.

Lemma 4.14 [20, Lemma 4.13] Every element v 2 S is irreducible.

We will also require the following structure result on certain irreducible and unbreakable
elements of L. It is an extension of Lemmas 4.16 and 4.17 of [20].

Lemma 4.15 Let v 2 L be irreducible and unbreakable with v �fi ¤ 0 for some i .

(i) If v �f0 D 0, then v takes the form

˙v D �aC � � �C�b;

where there is at most one c in the range a � c � b with k�ck2 > 2.

(ii) If v �f0 ¤ 0, then v takes the form

˙v D�eg C ek�1C � � �C e1C�0C � � �C�b;

where �k is tight , �g D �k and k�ik2 D 2 for 1� i � b.

Proof Since v is irreducible, it follows from Lemmas 4.16 and 4.17 of [20] that if
v �f0 D 0, then v takes the form

˙v D �aC � � �C�b
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for 1� a � b �m. We claim the unbreakability of v implies that there is at most one
a � c � b with k�ck2 > 2. Take c to be minimal such that k�ck2 > 2. If c < b, then

.�aC � � �C�c/ � .�cC1C � � �C�b/D�1:

Thus, the unbreakability of v implies that we must have k�cC1C � � �C�bk2 D 2, and
hence by (4-4) that k�cC1k2 D � � � D k�bk2 D 2. Similarly, if a < c then

.�aC � � �C�c�1/ � .�c C � � �C�b/D�1;

implying that k�ak2 D � � � D k�c�1k2 D 2, as required.

Now suppose that v �f0 ¤ 0. In this case Lemmas 4.16 and 4.17 of [20] imply that v
takes the form

˙v D xI C xF ;

where xI ¤ 0 and xI �fi D 0 for all i and xF takes the form

xF D �0C � � �C�b:

Since�1; : : : ; �b are inL, we have xIC�02L. We also have kxIC�0k2>k�0k2�2.
So by applying the unbreakability condition to .xI C�0/ � .�1C � � �C�b/D�1 we
obtain that

k�1C � � �C�bk
2
D 2:

Using (4-4), this implies that

k�1k
2
D � � � D k�bk

2
D 2;

as required.

Now we study the structure of xI . Let k � 1 be minimal such that xI � ek � 0. By
Proposition 4.3, there is a subset B � f1; : : : ; k� 1g such that

�k � 1D
X
i2B

�i :

Thus we can consider
z D�ekC

X
i2B

ei C xF 2 L:

Note that, by assumption, we have xI � ei � 1 for all i < k and hence for all i 2 B .
Thus we obtain the bound

(4-5) .xI C xF � z/ � z D�.xI � ekC 1/C
X
i2B

.xI � ei � 1/� �xI � ek � 1� �1:
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Thus, by the assumption of irreducibility,

.xI C xF � z/ � z D

�
0 if z D xI C xF ;
�1 otherwise:

Suppose first that zD xI CxF . Since k was chosen to be minimal such that xI �ek � 0,

xI C xF D�ekC ek�1C � � �C e1C�0C � � �C�b;

which is in the required form. Thus we can assume that

.xI C xF � z/ � z D�1;

which can only occur if xI �ekD0. Since kzk2>2, it follows from the indecomposability
condition that xI CxF � z has norm two. We have .xI CxF � z/ � ek D�.z � ek/D 1.
Thus xI C xF � z takes the form

xI C xF � z D ek � "eg

for some g ¤ k and some " 2 f˙1g. The fact that .xI C xF � z/ �w0 D 0 shows that
�g D �k and "D 1. Thus

xI C xF D zC ek � eg

for some g with �g D �k . Since k is minimal with v � ek � 0, it follows that g > k and

xI C xF D�eg C ek�1C � � �C e1C�0C � � �C�b;

as required.

Remark 4.16 When rewritten in terms of the orthonormal basis for ZsCtC1 the two
types of vector arising in the previous lemma are

�aC � � �C�b D�fˇa
CfˇcC1C � � �CfˇcC1�1CfˇbC1

where, if it exists, c is unique in the range a � c � b with k�ck2 > 2, and

�eg C ek�1C � � �C e1Cf0C � � �Cfˇ1�1CfˇbC1
:

We end with a final useful observation:

Remark 4.17 There is a certain redundancy in the choice of indexing of f0; : : : ; fs
and e1; : : : ; et . Whenever �a D �b for a ¤ b (equivalently if ea � eb 2 L), then
we can reindex the ei to exchange ea and eb . Similarly given fa and fb such that
fa�fb 2Lnf0g, then we can exchange fa and fb . More formally, this is the observation
that automorphism of ZsCtC1 exchanging ea and eb or fa and fb preserves L as subset
of ZsCtC1. We will make frequent use of such relabeling in Section 5.
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5 Analysis for the e D 2 case

Although the formal proof of Theorem 1.4 is stated in Section 7, this section contains
the analysis necessary to prove Theorem 1.4 for e D 2. The section culminates in
Lemma 5.15, which combines with Lemma 4.9 to give the proof.

Let L be a p=q–changemaker lattice

LD hw0; : : : ; wli
?
� hf0; : : : ; fs; e1; : : : ; et i D ZsCtC1

for q > 1. Suppose that L is isomorphic to the intersection form of some plumbing
� (as in Figure 3) with e D 2. Let V denote the image of the vertices of � in L. In a
mild abuse of notation we will simply refer to the elements of V as the vertices of � .
We seek to understand the structure of V and � . The eventual aim is to show that if
Y is the Seifert fibered space for which � is the canonical plumbing then Y arises by
p=q–surgery. In order to do this, we will take L to have standard basis elements

f�1; : : : ; �t ; �1; : : : ; �mg;

as defined in Section 4.1.

Key to this section will be the observation that � is quasialternating. Consequently the
results of Section 3 apply, showing in particular that the vertices are irreducible and
unbreakable.

Proposition 5.1 The plumbing graph � is quasialternating.

Proof Let A be the matrix representing the inclusion L! ZsCtC1 with respect to
the standard basis for L and the orthonormal basis for ZsCtC1. By ordering the basis
vectors appropriately AT takes the form

AT D

0BBBBBBBB@

�t �fs : : : �t �f0 �t � e1 : : : �t � et
:::

:::
:::

:::

�1 �fs : : : �1 �f0 �1 � e1 : : : �1 � et
�1 �fs : : : �1 �f0 �1 � e1 : : : �1 � et
:::

:::
:::

:::

�m �fs : : : �m �f0 �m � e1 : : : �m � et

1CCCCCCCCA
:

However by definition of the standard basis elements, this matrix is in row echelon
form and the first nonzero entry in each row is �1. Consequently AT is surjective over
the integers. This shows that Lemma 3.1(iv) is satisfied. Therefore, Lemma 3.1(iii)
applies to show � is quasialternating.
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Now we set about understanding the vertices of � in L.

Lemma 5.2 We may assume that �1; : : : ; �m are vertices.

Proof We prove the lemma inductively by establishing that if �kC1; : : : ; �m are
vertices, then we may further assume that �k is a vertex.

Since the vertices of � span L, there are integers cv such that �k D
P
v2� cvv. For

any v with cv ¤ 0, Lemma 3.8(ii) shows that kvk2 � k�kk2. We may write each v
as an integer combination of the standard basis elements in a unique way. Thus we
see there must be some v with cv ¤ 0, for which �k appears with nonzero coefficient
when v is expressed as an integer combination of standard basis elements. As v is
irreducible and unbreakable, Lemma 4.15 combined with the fact that kvk2 � k�kk2

shows that v takes the form

˙v D �aC � � �C�b;

where a � k � b and there is at most one c in the range a � c � b with k�ck2 � 2.
If such a c exists, then we have k D c, since kvk2 D k�ck2 � k�kk2. Thus we have
k�ik

2 D 2 for a � i < k and k < i � b. If a < k, then a relabelling of the fi (the one
exchanging the roles of fˇa

and fˇk
) allows us to assume that aD k.

If kDm, then we have shown that we can assume˙�m is a vertex. So, by multiplying
all vertices by �1 if necessary, we can assume that �m is a vertex. This deals with the
base case of the induction.

Thus, suppose that k < m. By the previous discussion we can assume there is a vertex
v of the form v D ".�kC � � �C�b/. One can easily calculate that

(5-1) �i � v D

8̂̂̂<̂
ˆ̂:

0 if k < i < b;
" if i D b;
�" if i D bC 1;
0 if i > bC 1.

Since �kC1; : : : ; �m form a connected chain of vertices, v can pair nontrivially with
at most one of them and this pairing must be �1. Thus it follows from (5-1), that we
must have either b D k and "D 1, or b Dm and "D�1. In the former case we must
have v D �k as required. In the latter,

(5-2) v D�.�kC � � �C�m/:
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However in this case we have that

�kC1 D�fˇkC1
CfˇkC2

; : : : ; �m D�fs�1Cfs
are all of norm two and that

v D fˇk
�fˇkC1� � � � �fˇkC1�1�fs:

Thus if we relabel the fi so as to reverse the order of fˇkC1
; : : : ; fs , then the set of

vertices fv; �kC1; : : : ; �mg becomes f��k; : : : ;��mg. Therefore, after multiplying
every vertex by �1, we may assume that we have the desired set of vertices.

This verifies the inductive step and completes the proof.

Lemma 5.3 Let v be a vertex distinct from �1; : : : ; �m with v � fi ¤ 0 for some i .
Then v takes the form

(5-3) v D�eg C ek�1C � � �C e1C�0
or

(5-4) v D eg � ek�1� � � � � e1��0� � � � ��m;

where k � g, and this latter case can occur only if

k�1k
2
D � � � D k�mk

2
D 2:

Proof Since every vertex is irreducible and unbreakable, by Lemma 4.15 we see that
either v is a linear combination of �1; : : : ; �m or it has v �f0 ¤ 0. Since the vertices
are linearly independent, we must have v � f0 ¤ 0. By Lemma 4.15 we may assume
that such a vertex takes the form

(5-5) v D ".�eg C ek�1C � � �C e1C�0C � � �C�b/

for some "2f˙1g and g�k with �kD�g and �k is tight, and k�1k2D� � �Dk�bk2D2.
Since the �i form a linear chain of vertices, we see that v can have nonzero pairing
with at most one of them. However, as we have the pairings

(5-6) �i � v D

8̂̂̂<̂
ˆ̂:

0 if 0 < i < b;
" if i D b;
�" if i D bC 1;
0 if i > bC 1;

either "D 1 and b D 0, or "D�1 and b Dm. In the "D 1 and b D 0 case, this puts v
in the form of (5-3). In the "D�1 and b Dm case, this puts v in the form of (5-4).

Lemma 5.4 We may assume that �1 is a vertex.
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Proof Expressing �1 as a linear combination of vertices, we see that there must be a
vertex v with v �f0 ¤ 0, and kvk2 � k�1k2 D k�0k2C 1 by Lemma 3.8. We see that
such a vertex must take either the form

(5-7) v D�eg C�0;

coming from (5-3), or the form

(5-8) v D eg ��0� � � � ��m;

coming from (5-4). In both cases �g D �1 D 1, and in the latter case k�ik2 D 2 for
1 � i � m. By relabelling the ei , we may assume that g D 1. Thus there is nothing
further to check when v take the form given in (5-7). So suppose that v takes the
form given in (5-8). In this case, we apply an argument similar to the one at the
end of the proof of Lemma 5.2. We can relabel the fi so as to reverse the order of
fˇ1

; : : : ; fs . Under this relabelling the vertices �1; : : : ; �m become ��m; : : : ;��1
and v becomes ��1. Thus by reversing signs on all vertices, we can assume that
�1; �1; : : : ; �m are all vertices, as required.

Lemma 5.5 If v … f�1; �1; : : : ; �mg is a vertex, then either

(a) v � e1 D 0 and v �fi D 0 for all 0� i � s, or

(b) v � e1 D 1 and v �fi D 0 for all 0� i � s, or

(c) p=q D n� 1=q and v can be assumed to take the form

v D ek � ek�1� � � � � e1��0� � � � ��m;

where k > 1 and �k is tight.

Moreover , there is at most one vertex of type (c).

Proof Let v ¤ �1; �1; : : : ; �m be a vertex with v �fi ¤ 0 for some i . By Lemma 5.3,
there are two possible forms for v. First assume that v takes the form given in (5-3).
In this case, we have v � �1 � k�0k2� 1 > 0, which is impossible unless v D �1. Thus
v must take the form given in (5-4).

If mD 0, then

v � �1 D�k�0k
2
� v � e1 2 f�k�0k

2
˙ 1;�k�0k

2
g:

However since v and �1 are both vertices, v � �1 2 f0;�1g. As k�0k2 � 2, this implies
that v � e1 D�1 and k�0k2 D 2. This implies that q D 2 and k > 1 (see Remark 4.11).
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If m> 0, the argument is similar. Since �m �vD�1 and �1; �1; : : : ; �m form a linear
chain of vertices, we must have v � �1 D 0. This implies that

v � �1 D�.k�0k
2
� 1/� v � e1 D 0:

This shows that k�0k2 D 2 and v � e1 D�1. In either case this shows that p=q takes
the form p=q D n� 1=q (see Remark 4.11). Since v � e1 D�1, it follows that k > 1.

To see that such a v is necessarily unique, suppose that v and w are both vertices of
the form given in (5-4). For such vertices we have

v �w � k�0C � � �C�mk
2
� 1 > 0;

which is impossible, unless v D w.

Given that such a v is unique and k > 1, we see that there is no loss of generality in
relabelling the ei to assume that g D k. This shows that v can be taken to be in the
form given by (c).

Finally, consider the case that v is a vertex with v �fi D 0 for all i . Since �1 is a vertex,
we have

v � �1 D�v � e1 2 f0;�1g:

This shows that v is in the form described by (a) or (b), as required.

Given a vertex v ¤ �1; �1; : : : ; �m, we refer to it as being of type (a), (b) or (c) if it
satisfies conditions (a), (b) or (c) from Lemma 5.5, respectively. This allows us to show
that the vertex set satisfies the following trichotomy.

Lemma 5.6 The vertex set takes one and only one of the following forms:

(I) There are no type (c) vertices and �1 is adjacent to a single vertex of type (b).

(II) p=q D n� .q� 1/=q and �1 is adjacent to two vertices of type (b).

(III) p=q D n� 1=q and there is a unique vertex of type (c) and at most one vertex of
type (b).

Proof As we are assuming that the central vertex is of norm two and k�1k2 > 2, we
see that �1 is not the central vertex of � . Thus �1 pairs with at most two vertices in the
graph. Since a vertex of type (b) is always adjacent to �1, this shows there are at most
two vertices of type (b).

Suppose that the vertex set contains two vertices of type (b). We will show that the
vertex set is of type II. Since both vertices of type (b) pair with �1, the vertex �1 cannot
exist and hence p=q takes the form p=qD n� .q�1/=q by Remark 4.11. If the vertex
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�1 �1

: : :

�m

�1

�1 �1

: : :

�q�2

Figure 4: From top to bottom: types I, II and III.

set further contains a vertex of type (c), this would be a third vertex adjacent to �1.
Thus the vertex set is of type II.

Now suppose that the vertex set contains a vertex of type (c). We will show that the
vertex set is of type III. By the argument in the previous paragraph, the vertex set
contains at most one vertex of type (b). By Lemma 5.5 the existence of a vertex of
type (c) shows that p=q takes the form p=qD n�1=q. Thus the vertex set is of type III.

Finally suppose that the vertex set contains no vertex of type (c) and at most one
vertex of type (b). Note that if there is no vertex of type (b) then the graph � would
have a connected component consisting of the linear chain �1; �1; : : : ; �m, which is
incompatible with our assumptions on � . Thus the vertex set contains a unique vertex
of type (b) and is hence of type I, as required.

The local structure of each of these three types is shown in Figure 4. It turns out that
a type I vertex set corresponds to surgery on a torus knot. Type II and III vertex sets
both correspond to surgery on a cable of a torus knot.

5.1 Type I and II

Now that we understand vertices pairing nontrivially with the fi , we turn our attention
to the remaining vertices. In the case where there are no vertices of type (c), these
vertices can be taken to be exactly the standard basis elements.

Lemma 5.7 If the vertex set of � is of type I or II , then we can assume that the
vertices are the standard basis elements and are all gapless.

Proof We prove inductively that we can take the vertices to be standard basis elements.
By Lemmas 5.2 and 5.4, we can assume that �1; �1; : : : ; �m are vertices. This is the
base case.

Now assume that �1; : : : ; �m; �1; : : : ; �k are all vertices.
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Claim Suppose that v is a vertex which is not one of �1; : : : ; �m; �1; : : : ; �k . Then v
has the properties

(i) v �fi D 0 for all i ,

(ii) v � ei � 0 for 1� i � k, and

(iii) if v � ej > 0 for some j < k, then v � ei > 0 for all j � i � k.

Proof By the assumption that there are no type (c) vertices, we have v � fi D 0 for
all i . Now suppose that v � ei ¤ 0 for some 1� i � k. Let l � 1 be minimal such that
v � el ¤ 0. In this case we have v � �l D�v � el . As v and �l are both vertices then this
shows that v � el D 1. Now let g > l be minimal such that v � eg � 0. By Remark 4.12,
we have that �g � eg�1 D 1. Therefore we see that

v � �g � �v � eg C v � eg�1 > 0:

From this we conclude that either v D �g or �g is not a vertex. In either case this
implies g > k. This gives (ii) and (iii).

Let v1; : : : ; vN , be the vertices which are not already known to be standard basis
elements. The preceding claim shows that each vj can be written as vj D v0j C v

C
j ,

where
v0j � ei D 0 for i � k

and
vCj � ei � 0 for i � k and vCj � ei D 0 for i > k:

Now consider �kC1. There are integers ˛i and ǰ such that

(5-9) �kC1 D
kX
iD1

˛i�i C

NX
jD1

ǰ vj :

A priori one might expect the �i to appear in this sum. However it follows from
considering the pairing with the fi that there is no need to include them. By construction
of the standard basis vectors �kC1 � fi can be nonzero only if i � ˇ1. If there were
�i appearing in the sum (5-9), then we would have �k � fi ¤ 0 for some i > ˇ1,
contradicting this.

Since �kC1 is irreducible, Lemma 3.9 shows that all nonzero ˛i and ǰ must have the
same sign.
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Now if we write �kC1 in the form �kC1 D�ekC1C �C, then (5-9) yields

(5-10) �C D
kX
iD1

˛i�i C

NX
jD1

ǰ v
C
j :

By taking the pairing of (5-10) with w0 and observing that, by construction, w0 �vj D 0
for all j , we obtain

(5-11) �kC1 D �C �w0 D
NX
jD1

ǰ .v
C
j �w0/:

Since �kC1 > 0 and vCj �w0 � 0 for all j , this shows that the ˛i and ǰ must all be
nonnegative.

Let kxk1 denote the `1–norm

kxk1 D

tX
iD1
jx � ei jC

sX
jD0
jx �fj j:

Since the coefficients of �C are equal to 0 or 1, we have k�Ck1 D k�Ck2. However
by writing �C as a sum in (5-10) and computing k�Ck1 we obtain

(5-12) k�Ck2 D
kX
iD1

˛i .k�ik1� 2/C

NX
jD1

ˇikv
C
i k1;

where the k�ik1�2 terms come from the fact that �i �ei D�1 and �i �ej � 0 for j ¤ i .

By the inequality in Lemma 3.6 we have the bound

k�kC1k2 D k�Ck2C 1(5-13)

� 2C

kX
iD1

˛i .k�ik
2
� 2/C

NX
jD1

ǰ .kvj k
2
� 2/

D 2C

kX
iD1

˛i .k�ik1� 2/C

NX
jD1

ǰ .kv
C
j k

2
Ckv0j k2� 2/

D k�Ck2C 2C
NX
jD1

ǰ .kv
C
j k

2
�kvCj k1Ckv

0
j k
2
� 2/;

where (5-12) was used to obtain the last line. Comparing the first and last lines in
(5-13) shows that

(5-14)
NX
jD1

ˇi .kv
C
i k

2
�kvCi k1Ckv

0
ik
2
� 2/� �1:
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Since there must be at least one negative summand on the left hand side of (5-14), we
can assume that

kvC1 k
2
�kvC1 k1Ckv

0
1k
2
� 1 and ˇ1 � 1:

Since kv01k2 � 1 and kvC1 k2 � kv
C
1 k1, we must have kv01k2 D 1 and kvC1 k2 D kv

C
1 k1.

However kvC1 k2 D kv
C
1 k1 only if vC1 � ej 2 f0;˙1g for all j . By the restrictions on v1

proven in the claim at the start of the proof, this shows that v1 takes the form

(5-15) v1 D�eg C ekC � � �C el

for some g > k and l � k.

Since g > k we have that �g � �kC1. On the other hand, the condition v1 �w0 D 0
implies that vC1 �w0 D eg �w0 D �g . Furthermore, computing as in (5-11) and using
the fact that ˇ1 � 1 and that ǰ .v

C
j �w0/� 0 for each j shows that

�kC1 D
NX
iD1

ˇi .v
C
j �w0/� v

C
1 �w0:

Thus we have �kC1D�g . By relabelling we can assume that v1D�ekC1CekC� � �Cel .
As mentioned in Remark 4.12 it follows that �kC1 D v1 is a gapless standard basis
vector. Thus we have shown we may assume that �kC1 is vertex. This completes the
inductive step of the proof.

This has several useful consequences.

Remark 5.8 Suppose that � is a plumbing whose intersection form is isomorphic to
a p=q–changemaker lattice L with type I or type II vertex set.

(i) Since the vertices can be taken to be standard basis elements of L, the plumbing
graph � is completely determined by L.

(ii) L can have no tight standard basis elements except �1. Since a type III vertex
set implies the existence of a tight standard basis element, this shows that the
type of vertex set is intrinsic to the lattice L rather than the plumbing � or the
choice of vertex set.

(iii) Since there can be no tight standard basis elements we have �2 D �e2 C e1
as one type (b) vertex. In the type II case the other type (b) vertex must take
the form

�eg C eg�1C � � �C e1;

for some g > 1. This shows that � takes the form shown in Figure 5. Recall that
in the type II case there is no vertex �1; see Remark 4.11(ii).
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�2 �1 �1 �m

: : :

�2 �1 �g

Figure 5: Further structure of � in the type I (top) and II (bottom) cases.

We now show that under some circumstances the converse to Remark 5.8(i) holds. This
will be useful for recovering the Alexander polynomial from the structure of � .

Lemma 5.9 Suppose that q is a positive integer and � is a plumbing graph with
intersection form isomorphic to an .NC1=q/–changemaker lattice L for some integer
N � 0. If q is larger than the number of vertices of � , then L, and hence N , are
uniquely determined by � .2

Proof Since � must have at least four vertices q > 2. Thus there can be no vertices of
type (c), showing that the vertex set must be of type I or II. Recall from Remark 4.11
that there are no vertices of the form �i when p=q takes the form p=q D nC 1=q.
Thus by Lemma 5.7 we can assume that the vertices are the standard basis elements
�1; : : : ; �t . For k > 1, we have

k�kk
2
� k � t;

where the upper bound involving k comes from observing that the largest possible
norm of a nontight standard basis element occurs when �k D�ekC ek�1C � � �C e1.
However, using Lemma 4.10 we have that k�1k2 D qC 1. Therefore, the assumption
that q > t implies that �1 is the unique vertex of norm qC 1 in � . Now we can see
inductively that the remaining vertices have unique embeddings as gapless standard
basis elements. If we have a vertex v whose image is not among �1; : : : ; �k but pairs
with some �l for l � k, then v must be embedded as vD�egCeg�1C� � �Cel , where
g D lCkvk2� 1, in order to ensure that v � �l D�1 and v has the correct norm. Thus
the choice of �1 determines the rest of the embedding and hence the standard basis
vectors of L. However, one can easily recover the structure of L from its standard
basis elements.

The following example shows that the requirement that q be sufficiently large is
necessary for the conclusion of Lemma 5.9 to hold.

2The value of N can also be determined by comparing the discriminant of both lattices.
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Example 5.10 The two 133
2

–changemaker lattices

hf1�f0; f0C e1C e2C e3C 2e4C 3e5C 5e6C 5e7i
?

and
hf1�f0; f0C e1C e2C 2e3C 2e4C 2e5C 4e6C 6e7i

?

are both isomorphic to the same plumbing lattice. This can be seen by writing down
the standard bases in each case. This example arises from the fact that 133

2
–surgery on

T5;13 and the .2; 33/–cable of T3;5 both yield the Seifert fibered space S2
�
2I 13

5
; 5
3
; 3
1

�
.

5.2 The marked vertex

Now let � be a star-shaped or linear plumbing whose intersection form is isomorphic
to an

�
n�1

2

�
–changemaker lattice L0 by an isomorphism which carries the vertices of

� to gapless standard basis elements of L0. We define the marked vertex of � to be the
vertex of� which corresponds to �1D�e1Cf0Cf1. Note that this definition depends
a priori on the lattice L0 and the choice of isomorphism. In practice, we will always
have a fixed lattice L0 and a choice of isomorphism in mind, so it will be convenient to
think of the marked vertex as being a property of �. Although we will be primarily
interested in the case where � is a star-shaped plumbing with e D 2, we extend the
definition to include the degenerate case that � is a linear plumbing as these will arise
in the course of some ensuing proofs.

Example 5.11 Consider the 17
2

–changemaker lattice

L0 D hf1�f0; f0C e1C e2C e3C e4C 2e5i?:

The standard basis elements for this lattice are �1 D�e1C f0C f1, �2 D�e2C e1,
�3 D�e3C e2, �4 D�e4C e3 and �5 D�e5C e4C e3. These are gapless and form
the set of vertices for a plumbing � shown in Figure 6.

�4

�3 �2 �1

�5

2

2 2 3

3

Figure 6: The plumbing � corresponding to Example 5.11 with the marked
vertex on the right indicated in red.
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2 3 2 k�1k
2 k�1k

2

: : :

k�mk
2

2 3 g 2 qC 1 g

Figure 7: Obtaining � from � in the type I (top) or II (bottom) case. In both
cases the marked vertices are the vertices of weight three in the plumbings on
the left hand side.

For each changemaker lattice isomorphic to the intersection form of a plumbing graph �
with eD 2, we will produce a plumbing graph� whose intersection form is isomorphic
to a half-integer changemaker lattice with vertices mapping to gapless standard basis
elements such that � is obtained by modifying � near its marked vertex. We will then
use this � to construct a knot in S3 which surgers to give the Seifert fibered space
corresponding to � .

First we show how to obtain an appropriate �. In the type I and II cases this is an easy
consequence of Lemma 5.7. Recall that the stable coefficients of a changemaker lattice
are defined in Definition 4.4.

Lemma 5.12 Let L be a p=q–changemaker lattice , where p=q D n � r=q with
1 � r < q. Suppose that L is isomorphic to the intersection form of a plumbing �
with e D 2 and the vertex set is of type I or II. Then the

�
n�1

2

�
–changemaker lattice

L0 with the same stable coefficients as L is isomorphic to the intersection form of a
plumbing�, where the vertex set is of type I or II. Moreover � is obtained by replacing
the marked vertex of � by a chain of vertices of weights k�1k2; k�1k2; : : : ; k�mk2;
see Figure 7.

Proof Let �1; : : : ; �t ; �1; : : : ; �m be the standard basis elements of L. By Lemma 5.7
we can assume that these are the vertices of � and by the type I or II assumption none
of �2; : : : ; �t are tight. Thus the standard basis for L0 is

�e1Cf0Cf1; �2; : : : ; �t :

These standard basis elements pair exactly like the vertices of the plumbing graph �
obtained from � by deleting the vertices �1; : : : ; �m and changing the weight of �1
to three.

The type III case is a little more subtle:
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2 3 g 3

q�2 vertices‚ …„ ƒ
2

: : :
2 gC 1

Figure 8: Obtaining � from � in the type III case. The marked vertex is the
vertex of weight three in the plumbing on the left hand side.

Lemma 5.13 Let L be a p=q–changemaker lattice , where p=q D n� 1=q and q > 1.
Suppose that L is isomorphic to the intersection form of a plumbing � with e D 2 and
the vertex set is of type III. Then the

�
nC1

2

�
–changemaker lattice L0 with the same

stable coefficients as L is isomorphic to the intersection form of a plumbing �, where
the vertex set is of type II. Moreover � is obtained by increasing the weight of the two
vertices adjacent to the marked vertex of � by one and converting the marked vertex to
a chain of q� 2 vertices of weight two; see Figure 8.

Proof It will be convenient to write L0 as

L0 D hf0C e0C �1e1C � � �C �tet ; f1�f0i? � hf0; f1; e0; : : : ; et i D ZtC3:

This differs from the notation in Section 4 only by a shift in the indices of the ei . We
will show that L0 is isomorphic to the intersection form of the relevant plumbing.

Let �1; : : : ; �m; v1; : : : ; vt be the vertices of � , where we assume that v1 D �1 and
v2 is the unique type (c) vertex. By Lemma 5.5 we may assume that v2 takes the
form v2 D�.�kC�1C � � �C�m/, where k > 1 and �k is tight. We modify these to
obtain a collection of vectors v00; : : : ; v0t 2 L0 as follows. Take v00 D �e0C f0C f1,
v01 D�e1C e0, v02 D ek � ek�1� � � � � e0 and v0

k
D vk for k > 2. By construction we

have that each of the v0i is in L0.

Claim The vectors v00; : : : ; v0t span L0.

Proof Consider the standard basis �1; : : : ; �t for L. Since the standard basis elements
for L and the vertices of � both form bases for L, there are integers ˛ik; ǰk such that

�k D

tX
iD1

˛ikvi C

mX
jD1

ǰk�j :

Consider instead the vectors �01; : : : ; �0t in L0 defined by

�0k D
tX
iD1

˛ikv
0
i :
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2

3

2 2 1
2

3

2 1
2

3

1

1

2

1∅

Figure 9: The sequence of blowdowns from �0 to the empty plumbing when
the marked vertex of the plumbing � of Example 5.11 is changed to one.

By construction we have, for all j � 1, that vj �ei D v0j �ei for i � 1 and vj �f0D v0j �e0.
Thus we see that �0

k
D �k unless �k is tight, in which case �0

k
D�ekCek�1C� � �Ce0.

In either case we see that, up to reindexing the ei to agree with the notation in Section 4,
the vectors v00; �01; : : : ; �0t are precisely the standard basis vectors for L0. Since they
are a linear combination of the v0i , this proves that the v0i span L0.

Let � be the plumbing graph obtained by replacing the linear chain in � given by
v1; �1; : : : ; �m; v2 by the linear chain of vectors of norm 2, 3 and kv2k2 � 1. By
construction, the v0i almost pair as the vertices of �: the only exception being that
v02 � v00 D 1. However as � is a tree, we can choose signs "i D˙1 so that "0 D "1 D 1,
"2 D�1 and "0v00; : : : ; "rv0t pair as the vertices of �. Thus as the v0i span L0 we see
that the intersection form of � is isomorphic to L0. By construction the vertex set
given by "0v00; : : : ; "tv0t is of type II.

Finally, we observe that changing the weight on a marked vertex to one results in a
plumbing representing S3. Figure 9 illustrates how the plumbing from Example 5.11
blows down to the empty plumbing when the weight on the marked vertex is changed
to one.

Lemma 5.14 Let � be a star-shaped plumbing or a linear plumbing whose intersection
form is isomorphic to a half-integer changemaker lattice L by an isomorphism mapping
vertices to gapless standard basis elements. Let �0 be the plumbing obtained from �

by changing the weight of the marked vertex to one. Then �0 can be reduced to the
empty plumbing by a sequence of blowdowns on weight one vertices.
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e1� e2 �e1Cf0Cf1 �eg C eg�1C � � �C e1
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�e2Cf0Cf1 �eg C eg�1C � � �C e2

blow-down blow-down
S3

Figure 10: Showing inductively that �0 blows down.

In particular , the 4–manifold X obtained by plumbing disk-bundles according to �0
has boundary @X Š S3 and the corresponding surgery diagram for S3 can be reduced
to the empty diagram by performing a sequence of Rolfsen twists on 1–framed unknots.

Proof We will prove this inductively on the number of vertices in �. Suppose that �
is a tree whose intersection form is isomorphic to a half-integer changemaker lattice
for which each vertex is a gapless standard basis element of L. When L has rank one
� consists of just a single vertex, �1. The lemma is clearly true in this case.

So now suppose that L has rank t > 1 and the vertices of � are gapless standard
basis elements �1; : : : ; �t . With the exception of �1, these basis elements are not
tight since they must have pairing �1 � �k 2 f0;�1g. Thus we must have �2 D 1

and �2 D �e2C e1. Note that any other vertex pairing with �1 must take the form
�g D�eg C eg�1C � � �C e1 for some g > 2. If it exists then this �g is unique. For if
we had �k D�ekC ek�1C � � �C e1 for some k > g, then

�k � �g D g� 1 > 0;

which is impossible for distinct vertices.

Thus if we obtain �0 by changing the weight of the marked vertex �1 to have weight
one, we may perform a blow-down on this weight one vertex in �0. This produces
a new plumbing z�0 with one fewer vertex. Since blowing down a weight one vertex
decreases the weight of its neighbors by one, z�0 contains a vertex of weight one. Let
z� be the plumbing obtained by changing the weight of this vertex to three. These
operations are illustrated in Figure 10.

The intersection form of z� embeds into the diagonal lattice that is generated by
e2; : : : ; et ; f0; f1 by taking vertices �02; : : : ; �0t , where �02 D�e2Cf0Cf1, if there is
�g D �eg C eg�1C � � � C e1 then �0g D �eg C eg�1C � � � C e2, and �0

k
D �k for all
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other k. However, these �02; : : : ; �0t are precisely the standard basis elements for some
half-integer changemaker lattice

L0 D hw00; f1�f0i? � hf0; f1; e2; : : : ; et i

of rank t�1, wherew00Df0C� 02e2C� � �C� 0tet is defined by choosing the � 0i inductively
so that � 02 D 1 and � 0

k
is chosen to ensure that �0

k
�w00 D 0. Moreover, these standard

basis elements for L0 are gapless by construction. Thus we have an isomorphism from
the intersection form of z� to a half-integer changemaker lattice which maps vertices
to gapless standard basis elements. Moreover, the vertex corresponding to �02 is the
marked vertex of z�. Thus z�0 is obtained by changing the marked vertex in z�. Since z�
has t � 1 vertices, we can assume inductively that z�0 can be blown down to the empty
diagram. Since z�0 is obtained from �0 by a blow-down, it follows that �0 can also be
blown down to the empty plumbing, as required.

The statement about Rolfsen twists follows, since a blow-down on the plumbing graph
is achieved by a Rolfsen twist in the corresponding surgery diagram.

5.3 From lattices to surgeries

Now we show how to pass from changemaker lattices to knots with Seifert fibered
space surgeries.

Lemma 5.15 Let � be a plumbing graph with e D 2 whose intersection form is
isomorphic to a p=q–changemaker lattice L, where p=q 2 Q nZ. If Y is the corre-
sponding Seifert fibered space then there is a knot K 0 which is either a torus knot or a
cable of a torus knot such that S3�p=q.K

0/Š Y and the Alexander polynomial of K 0 is
determined by the stable coefficients of L.3

Proof First consider the following construction. Let � be a plumbing isomorphic
to an

�
n�1

2

�
–changemaker lattice L0 with the same stable coefficients as L and with

vertices of type I or II. Note here that n is the integer nD dp=qe. By Lemma 5.7, we
can assume that the vertices of � in L0 are gapless standard basis vectors and � has a
marked vertex as defined at the start of Section 5.2. Let �0 be the plumbing obtained
by changing the weight of the marked vertex in � to one and let D be the surgery
diagram corresponding to �0. By Lemma 5.14, D is a surgery diagram for S3. Thus

3That is to say that the torsion coefficients of�K0.t/ can be computed from L by (4-2). As in Remark 4.8,
this allows us to calculate �K0.t/ from L (see also Lemma 4.9).
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ˇ
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Figure 11: The construction of Lemma 5.15 applied to the plumbing from
Example 5.11. After performing the necessary blowdowns, the curve C
becomes the trefoil and the ˛=ˇ surgery coefficient becomes ˛=ˇ� 9.

if we let C be the meridian of the unique 1–framed unknot in D, then C describes a
knot K 0 � S3. Note that even though C is unknotted in the diagram D, the knot K 0
will be nontrivial in general (see, for example, Figure 11).

Let Y 0 be the 3–manifold obtained by performing ˛=ˇ–surgery on C for some ˛=ˇ 2Q.
By Lemma 5.14, we may perform a sequence of Rolfsen twists on 1–framed unknots to
obtain a surgery description of Y 0 involving only the component given byC (ie we obtain
the surgery description for Y in terms of the knot K 0). Since each such Rolfsen twist
decreases the framing on C by a nonnegative integer, we see that Y 0Š S3�.N�˛=ˇ/.K

0/
for some integer N > 0 which is independent of ˛=ˇ.

Now consider the special case where ˛=ˇ D �1=d for d � 2. In this case we may
perform a slam dunk on the component C to obtain a framing of 1Cd on the component
with which C is linked. Observe that this is the surgery diagram corresponding to the

K 0

�
�
N � ˛

ˇ

�

1 ˛
ˇ

1� ˇ
˛Rolfsen twists slam dunk

:::
:::

:::
:::

: : : : : : : : : : : :

Figure 12: The knot K 0.

Algebraic & Geometric Topology, Volume 23 (2023)



1540 Ahmad Issa and Duncan McCoy

plumbing graph �d obtained by changing the weight of the marked vertex of � to
d C 1. If Xd is the plumbed 4–manifold corresponding to �d , then we have that

S3�.NC1=d/.K
0/Š @Xd :

It follows from Lemma 4.9 that the intersection form of �d is isomorphic to an
.NC1=d/–changemaker lattice whose stable coefficients compute the Alexander poly-
nomial�K0.t/. However, the intersection form of�d is isomorphic to the .n�1C1=d/–
changemaker lattice with the same stable coefficients as L0. This isomorphism can be
seen by observing that the standard basis elements of this .n�1C1=d/–changemaker
lattice form a set of vertices for the plumbing �d (see Lemma 5.12). Since d can be
taken to be arbitrarily large, it follows from Lemma 5.9 thatN Dn�1 and the Alexander
polynomial of K 0 is computed from the stable coefficients of L0. Moreover, as all these
surgeries are Seifert fibered spaces, Proposition 2.3 implies that K 0 is either a torus
knot or a cable of a torus knot. With this construction in hand we prove the lemma.

Type I or type II Suppose that L is of type I or II. Write p=q D n� r=q, where
1� r < q. The standard basis elements �1; �1; : : : ; �m of L form a chain of vertices
in � . Take L0 to be the

�
n�1

2

�
–changemaker lattice with the same stable coefficients

as L. By Lemma 5.12, L0 is isomorphic to the intersection form of the plumbing �
obtained by deleting �1; : : : ; �m and changing the weight on �1 to be three. Let K 0 be
the knot constructed from L0 as in the first part of this proof. We have shown that the
Alexander polynomial of K 0 is determined by the stable coefficients of L and that K 0 is
either a torus knot or a cable of a torus knot. It remains to check that S3�p=q.K

0/Š Y .
We obtain a surgery diagram for S3�p=q.K

0/ by taking the diagram D and performing
.r=q�1/–surgery on the meridian of C . Performing a slam dunk allows us to absorb
C into the 1–framed component and replace the framing on this component by

1C
q

q� r
D 1�

1
r
q
� 1

:

In the type II case, we have r=q D .q � 1/=q. Thus after performing this slam dunk
we obtain a .1Cq/–framed component, giving us the surgery diagram corresponding
to the plumbing � (see Figure 14). This shows that S3�p=q.K

0/ is the required Seifert
fibered space.

In the type I case, we perform a sequence of reverse slam dunks to obtain an integer
surgery diagram. Using Lemma 4.10 and k�1k2 D 1Ck�0k2, we see that

1C
q

q� r
D Œk�1k

2; k�1k
2; : : : ; k�mk

2��:
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k�1k
2 k�1k

2r
q
� 1 1C q

q�r1 k�mk
2

: : :

Figure 13: Surgery calculus in the type I case.

Thus if we perform a sequence of reverse slam dunks to convert this to a surgery
diagram with integer coefficients, then this gives a chain of unknots with surgery
coefficients k�1k2; k�1k2; : : : ; k�mk2. This is illustrated in Figure 13. However, this
surgery diagram is precisely the surgery diagram for Y corresponding to � , so we have
shown that S3�p=q.K

0/ is the required Seifert fibered space.

Type III When the vertices of � are of type III and p=q D n� 1=q, take L0 to be the�
nC1

2

�
–changemaker lattice with the same stable coefficients as L. By Lemma 5.13

this is isomorphic to the intersection form of a plumbing � with type II vertices.

Let K 0 be the knot constructed from L0 as in the first part of the proof. Such a knot is
either a torus knot or a cable of a torus knot and has the required Alexander polynomial.
Thus it remains only to check that it has the desired surgery. We obtain a surgery
diagram for S3�p=q.K

0/ by performing 1=q–surgery on the curve C . By performing
a slam dunk, this can be absorbed to a give a .1�q/–framed unknot. This results
in a chain of unknotted components with framings 2, 1� q and g, for some g. By
performing a sequence of q� 2 blow-ups introducing 1–framed components, we can
increase the 1� q framing to �1. Then can we blow the �1–components down to
obtain a chain of unknots with every framing at least two. The result of these operations
is to replace the chain with weights 2; 1� q; g, by a chain with weights

3; 2; : : : ; 2„ ƒ‚ …
q�2

; gC 1:

k�1k
2 D 1C q

�
1
q

1

Figure 14: Surgery calculus in the type II case, where r D q� 1.
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1� q

g

3

1

2� q

g

3

2
:::

2

1
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2
:::
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gC 1
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Figure 15: Surgery calculus in the type III case.

This is shown in Figure 15. However, this diagram is precisely the surgery diagram
for Y corresponding to � . Thus we have shown that S3�p=q.K

0/ is the required Seifert
fibered space.

Remark 5.16 Some observations on the preceding lemma are in order.

(i) Although we used Proposition 2.3 to deduce that the knot K 0 is a torus knot or a
cable of a torus knot, one can also deduce this fact directly by studying how the
curve C sits inside the surgery diagram for S3.

(ii) One can check that the knot K 0 constructed in the previous lemma is a torus
knot in the type I case and a cable of a torus knot in the type II and III cases.

6 Analysis for the e � 3 case

In this section, we develop the methods to prove Theorem 1.4 for e� 3. In this case the
surgered Seifert fibered space is the double branched cover of an alternating Montesinos
link. This allows us to apply results of [19; 20] which characterize when the double
branched cover of an alternating link can arise by noninteger surgery. Before we state
these results we will set out some conventions.

A tangle T D .B3; A/ will always be a properly embedded 1–manifold A in B3 where
@B3 \A consists of four points. Thus the double branched cover of a tangle T will
always be a 3–manifold with torus boundary. When considering isotopies between
tangles, we will allow isotopies that move @B3. In particular, we will allow isotopies
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that exchange boundary points of A. If two tangles T and T 0 are isotopic, then their
double branched covers are homeomorphic. For the purposes of this paper, one may
take a rational tangle to simply mean a tangle whose double branched cover is a solid
torus. The notion of slope for rational tangles will not be used.

A Conway sphere for a knot K is an embedded sphere in S3 intersecting the knot
transversely in four points. A Conway sphere is said to be visible in a diagram if it
intersects the plane of the diagram in a connected simple closed curve and intersects
the diagram transversely in four points. Note that a Conway sphere always separates a
diagram into two tangles.

The following is an amalgamation of Theorems 7.1 and 7.12 of [20].

Theorem 6.1 Let L be an alternating knot or link such that S3
p=q

.K/ Š †.L/ for
some knot K � S3 and p=q 2Q nZ. Then L has a reduced alternating diagram D

with a visible Conway sphere C which separates D into two tangles such that

(i) one tangle is a rational tangle containing at least one crossing which can be
replaced with a single crossing to obtain an almost-alternating diagram of the
unknot , and

(ii) the double branched cover of the other tangle is homeomorphic to the complement
of a knot K 0 � S3 with �K.t/D�K0.t/ and S3

p=q
.K 0/Š S3

p=q
.K/Š†.L/.

Recall that an almost-alternating diagram is one that can be transformed into an alter-
nating diagram by changing a single crossing. Although Theorem 6.1 only guarantees
the existence of a single diagram for L with a nice Conway sphere, we can easily
obtain a similar condition on any alternating diagram of L. This uses the fact that any
two reduced alternating diagrams of the same alternating link are related by flypes and
planar isotopy [22]. See Figure 17 for an example of a flype.

Proposition 6.2 Let L be an alternating knot or link such that S3
p=q

.K/Š†.L/ for
some knot K � S3 and p=q 2Q nZ. Then for any reduced alternating diagram D of
L there is a visible Conway sphere C separating D into two tangles such that

(i) one tangle is a single crossing ,

(ii) the double branched cover of the other tangle is homeomorphic to the complement
of a knot K 0 � S3 with �K.t/D�K0.t/ and S3

p=q
.K 0/Š S3

p=q
.K/Š†.L/.

Proof First we will show that there is some reduced alternating diagram for L with
the required property. To do this take the diagram D of L along with the Conway
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C

C 0

Figure 16: Shrinking C to obtain C 0.

sphere C guaranteed by Theorem 6.1. The rational tangle side of C contains at least
one crossing. We will show that if C contains more than one crossing, then it can be
“shrunk” until it contains a single crossing. It follows from the results of [16, Section 4]
that in any alternating diagram of a rational tangle at least one pair of arcs emerging
from the boundary sphere must meet in a crossing.

Thus we can assume that C appears as in Figure 16. Take C 0 to be the Conway sphere
obtained by shrinking C to omit this crossing. Notice that the tangles on the outside of
C and C 0 are isotopic by an isotopy swapping the two right-most endpoints to eliminate
a crossing. Thus we see that the branched cover of the exterior of C 0 is still the knot
complement S3 n �K 0. Continuing this way we can reduce C until it contains a single
crossing, thus giving a Conway sphere in D with the required properties.

Thus suppose that we have a diagram D with a Conway sphere C with the desired
properties. Now let D0 be any other reduced alternating diagram for L. This can be
obtained from D by a sequence of planar isotopies and flypes. It is clear that planar
isotopies preserve the required property, so we only need to check that the existence
of C is preserved under flypes. Consider a flype as depicted in Figure 17. When C
is contained in one of the tangles marked F or B , then it is clear that the image of C
under the flype will again be a Conway sphere with the required properties. Thus we
need only consider the case that C encloses the crossing destroyed by the flype. In this
case we take C 0 to be a Conway sphere in D0 containing only the crossing created by

F B F B

Figure 17: A flype.
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F B F B

Figure 18: The choice of C and C 0 after flyping.

the flype; see Figure 18. Consider the tangles on the outside of C and C 0. It is not hard
to see that these tangles are related by a sequence of isotopies and mutations. Since
isotopies and mutations do preserve the homeomorphism type of the double branched
cover, C 0 has the required properties.

Combining Propositions 6.2 and 2.3 allows us to prove Theorem 1.4 for e � 3:

Lemma 6.3 Let Y D S2.eIp1=q1; p2=q2; p3=q3/ be a Seifert fibered space with
e � 3 such that S3

p=q
.K/Š Y for some K � S3 and p=q 2QnZ. Then there is a knot

K 0 � S3 which is either a torus knot or a cable of a torus knot with S3
p=q

.K 0/Š Y and
�K.t/D�K0.t/.

Proof It follows from the classification of Montesinos knots in terms of their double
branched covers (see, for example, [3, Chapter 12]) that such a Y is the double branched
cover of an alternating Montesinos link L with three arms. Such a link has a diagram
of the form D shown in Figure 19, where the rectangular boxes are twist regions, each
containing some number of crossings.

By Proposition 6.2, there is a Conway sphere C containing on one side a single
crossing c and on the other a tangle such that the double branched cover of its exterior
is homeomorphic to the complement of a knotK 0 in S3 such that S3

p=q
.K 0/Š†.L/ŠY

and with �K.t/D �K0.t/. Thus we need only to check that K 0 is a torus knot or a
cable of a torus knot.

The crossing c lies in some twist regionR ofD. For any n>1, letDn be the alternating
diagram obtained by replacing c with a twist region containing n crossings, where
we insert the crossings so that the twist region R is extended in length. Since we
started with a diagram of the form shown in Figure 19 and extended the length of
a twist region, we see that Dn is still in the form given in Figure 19. Thus Dn is
a Montesinos knot or link and its double branched cover †.Dn/ is a Seifert fibered
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e� 3
crossings

: : :

: : :

: : :

Figure 19: A diagram for a three armed Montesinos link. The boxes represent
twist regions.

space [3, Chapter 12]. Since we obtainedDn by replacing the crossing c with a rational
tangle, the Montesinos trick shows that there is a rational number pn=qn 2Q such that
S3
pn=qn

.K 0/Š†.Dn/ [23]. Since the crossing numbers of the Dn are monotonically
increasing, we see that the Dn are diagrams for distinct knots or links. As there are
only finitely many nonsplit alternating knots or links with a given determinant, we see
that detDn, and hence jpnj, tends to infinity. By [21, Theorem 1.1] any such pn=qn
satisfies jpn=qnj � 4g.K 0/C 3. So for n sufficiently large we have qn � 9. Thus
Proposition 2.3 applies to show that K 0 is either a torus knot or a cable of a torus knot,
as required.

7 Proofs of Theorem 1.4 and Proposition 1.5

Theorem 1.4 Let Y be a Seifert fibered space over S2 with three exceptional fibers
and e.Y / … fC1;C2;�1g. If there is a knot K in S3 with Y Š S3

p=q
.K/ where

p=q > 0 and p=q 2 Q nZ, then there is a knot K 0 which is either a torus knot or a
cable of a torus knot with S3

p=q
.K 0/Š Y and �K.t/D�K0.t/.

Proof We have two cases to consider: either e.Y /D�2 or je.Y /j � 3. First suppose
that e.Y /D�2. Since

e.�Y /D 2 and �Y Š S3�p=q.K/;

where K is knot obtained by reflecting K, Lemma 4.9 shows that the intersection
form of the canonical plumbing bounding �Y is isomorphic to a p=q–changemaker
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lattice whose stable coefficients compute the Alexander polynomial of K. Lemma 5.15
then shows that the existence of this changemaker lattice allows us to construct a
knot K 0 which is a torus knot or a cable of a torus knot with �K0.t/ D �K.t/ and
S3�p=q.K/ŠS

3
�p=q.K 0/. Reflecting yields a knotK 0 with the desired properties. After

reflecting suitably, the case that je.Y /j � 3 is precisely given by Lemma 6.3.

We now turn to the proof of Proposition 1.5. First, note that the Seifert invariants
of surgeries on a torus knot can easily be calculated directly; see, for example,
[24; 27, Lemma 4.4].

Proposition 7.1 For coprime r; s > 1, let Y Š S3
p=q

.Tr;s/. Then:

(i) Y is reducible if p=q D rs.

(ii) Y is a lens space if p=q D rs˙ 1=q.

(iii) Otherwise Y is the small Seifert fibered space with three exceptional fibers

Y Š S2
�
1I
r

s0
;
s

r 0
;
p

q
� rs

�
;

where integers s0 and r 0 satisfy 1� s0<r , 1� r 0<s and s0=rCr 0=sD 1C1=rs.

The corresponding result for negative torus knots can be obtained by changing orienta-
tions, since S3

p=q
.Tr;s/Š�S

3
�p=q.T�r;s/. Next we calculate e.Y / for these surgeries.

Lemma 7.2 Let Y Š S3
p=q

.Tr;s/ be a small Seifert fibered space , where r; s > 1. Then
e.Y / satisfies

(i) e.Y /D�1 if p=q < 0,

(ii) e.Y /D 2 if 0 < p=q < rs� 1,

(iii) e.Y /� 3 if rs� 1 < p=q < rs, and

(iv) e.Y /� �2 if p=q > rs.

Proof By Proposition 7.1, we have that

(7-1) Y Š S2
�
1I
r

s0
;
s

r 0
;
p

q
� rs

�
:

This shows that

".S3p=q.Tr;s//D
1

rs

 p
q

rs� p
q

!
;
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which implies that ".Y / > 0 if 0 < p=q < rs and ".Y / < 0 if p=q < 0 or p=q > rs.

First suppose that 0 < p=q < rs, so that ".Y / > 0. We apply Rolfsen twists to (7-1) to
show that Y takes the form

Y Š S2
�
1CnI

r

s0
;
s

r 0
;

p� rsq

qCn.p� rsq/

�
;

where n is such that .p�rsq/=.qCn.p�rsq// > 1. One can check that the necessary
value of n is nD dq=.rsq�p/e. Thus we have that e.Y /D 2 if 0 < p=q < rs�1 and
e.Y /� 3 if rs� 1 < p=q < rs, as required.

By Rolfsen twisting twice, we see that Y can be written in the form

(7-2) Y Š S3p=q.Tr;s/Š S
2

�
�1I �

r

r � s0
;�

s

s� r 0
;
p

q
� rs

�
:

If p=q < 0, then ".Y / < 0 and we have that p=q � rs < �1. Thus the description in
(7-2) shows that e.Y /D�1 in this case. If p=q > rs, then ".Y / < 0, but p=q� rs > 0.
Thus by Rolfsen twisting we see that Y takes the form

Y Š S2
�
�1�nI �

r

r � s0
;�

s

s� r 0
;

p� qrs

q�n.p� qrs/

�
;

where n � 1 is chosen to ensure that .p� qrs/=.q � n.p� qrs// < �1. This shows
that e.Y /� �2 in this case.

This allows us to determine the surgeries arising in the conclusion of Theorem 1.4.

Proposition 1.5 Let K be a torus knot or a cable of a torus knot. Then for p=q > 0
we have that S3

p=q
.K/ is a Seifert fibered space over S2 with three exceptional fibers

and e.S3
p=q

.K// … f�1;C1;C2g if and only if

(i) K is a torus knot K D Tr;s with r; s > 1, p=q > rs� 1 and jp� rsqj> 1, or

(ii) K is a cable of a torus knot K D Ca;b ıTr;s , where r; s > 1, b=a > rs� 1 and
p=q D ab˙ 1=q.

Proof IfK is a torus knot, then this is a consequence of Lemma 7.2 and Proposition 7.1.
The result is deduced for cables of torus knots by using the fact that Seifert fibered
surgeries on Ca;b ıTr;s take the form

S3ab˙1=q.Ca;b ıTr;s/Š S
3
.qab˙1/=.qa2/

.Tr;s/;

where a is the winding number of the pattern torus knot; see [9, Lemma 3.3]. The
condition that b=a > rs�1 is a consequence of the fact that .qab˙1/=.qa2/ > rs�1
if and only if b=a > rs� 1.
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