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1552 Simon Covez, Marco Andrés Farinati, Victoria Lebed and Dominique Manchon

1 Introduction

A quandle X is an algebraic structure whose axioms describe what survives from a
group when one only looks at the conjugacy operation. Quandles have been intensively
studied since the 1982 work of D Joyce [14] and S Matveev [19], who showed how
to extract powerful knot invariants from them. But the history of quandles goes back
much further. Racks, which slightly generalize quandles, can be traced back to an
unpublished 1959 correspondence between J Conway and G Wraith; keis, or involutive
quandles, appeared in 1943 in an article of M Takasaki [29], and other related structures
were mentioned as early as the end of the 19th century. A thorough account, focusing
on topological aspects through the rack space, can be found in R Fenn, C Rourke and
B Sanderson [13]. Other viewpoints and various applications to algebra, topology, and
set theory are treated, for instance, in Andruskiewitsch and Graña [1], Dehornoy [8],
Elhamdadi and Nelson [9], Kinyon [15] and Przytycki [21].

Rack cohomology HR.X/ was defined by Fenn, Rourke and Sanderson in 1993 [11]. It
strengthened and extended the applications of racks. The cup product ^ on HR.X/

was first described in topological terms by F Clauwens [5]. Later S Covez proposed a
cubical interpretation, which allowed him to refine the cup product to a dendriform
structure using shuffle combinatorics, and further to a Zinbiel1 product ^ using acyclic
models [6; 7]. This yields in particular the commutativity of ^.

Rack cohomology is a particular case of the cohomology of set-theoretic solutions to
the Yang–Baxter equation, as constructed by J S Carter, M Elhamdadi and M Saito [2].
This very general cohomology theory still belongs to the cubical context. It thus
carries a commutative cup product, explicitly described by M Farinati and J García
Galofre [10]. V Lebed [17] gave it two new interpretations: in terms of M Rosso’s
quantum shuffles [26], and via graphical calculus. She gave a graphical version of an
explicit homotopy on the cochain level, which controls the commutativity defect of ^.

Our purpose is to study a differential graded bialgebra B.X/ that is attached to any
rack X , and governs the algebraic structure of its cohomology. This construction was
first unveiled in [10]. We show that B.X/ is graded cocommutative up to an explicit
homotopy, which implies the commutativity of the cup product ^ on HR.X/. This
yields a purely algebraic version of the diagrammatic construction from [17]. On

1The word Zinbiel is the mirror image of the word Leibniz, and the corresponding structures are Koszul-
dual. The definitions will be recalled in Section 7.
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Bialgebraic approach to rack cohomology 1553

a quotient B.X/ of B.X/, we refine the coproduct to a dg codendriform structure.
Even better, this codendriform structure is co-Zinbiel up to another explicit homotopy,
which has not been described before. As a result, the associative commutative cup
product on HR.X/ stems from a Zinbiel product ^, which coincides with the one
from [7]. Both the rack cohomology HR.X/ and our dg bialgebra B.X/ can be
enriched with coefficients. For finite X and suitably chosen coefficients, we complete
^ with a compatible coassociative coproduct. Here again our bialgebraic interpretation
considerably simplifies all verifications.

The rack cohomology of a quandle received particular attention, starting from the
work of Carter, Jelsovsky, Kamada, Langford and Saito [3] and R A Litherland and
S Nelson [18]. It is known to split into two parts, called quandle and degenerate:
HR DHQ˚HD. The degenerate part HD is far from being empty, since it contains (a
shifted copy of)HQ as a direct factor: HDDHQŒ1�˚HL. However, as an abelian group,
it does not carry any new information. As shown by J Przytycki and K Putyra [23], it
is completely determined by HQ. We recover these cohomology decompositions at the
bialgebraic level, and show that the cup product on rack cohomology restricts to HQ.
This result is new, to our knowledge. Rather unexpectedly, our proof heavily uses the
Zinbiel product ^ refining ^, even though ^ does not restrict to HQ. What we show
is that ^ induces a Zinbiel product on HQ; for this we need to regard HQ as a quotient
rather than a subspace of HR. Our results suggest the questions:

(i) DoesHD allow one to reconstructHQ as a Zinbiel, or at least associative, algebra?

(ii) In the opposite direction, does HQ determine the whole rack cohomology HR as
a Zinbiel, or at least associative, algebra?

Acknowledgements Farinati is a research member of Conicet, partially supported by
PIP 112-200801-00900, PICT 2006 00836, UBACyT X051 and MathAmSud 10-math-
01 OPECSHA. Lebed was partially supported by a Hamilton Research Fellowship
(Hamilton Mathematics Institute, Trinity College Dublin).

2 Cohomology of shelves and racks

We start with recalling the classical complexes defining rack homology and cohomology.
They will be given a bialgebraic interpretation in Section 3. The consequences of this
interpretation will be explored in the remainder of the paper.

Algebraic & Geometric Topology, Volume 23 (2023)



1554 Simon Covez, Marco Andrés Farinati, Victoria Lebed and Dominique Manchon

A shelf is a setX together with a binary operation GWX�X!X given by .x; y/ 7!xGy

(sometimes denoted by x G y D xy) satisfying the self-distributivity axiom

(1) .x G y/ G z D .x G z/ G .y G z/

for all x; y; z 2X . In exponential notation, it reads .xy/z D .xz/.y
z/. A shelf is called

a rack if the maps � G y W X ! X are bijective for all y 2 X , a spindle if x G x D x
for all x 2X , and a quandle if it is both a rack and a spindle. The fundamental family
of examples of quandles is given by groups X with x G y D y�1xy.

Define Cn.X/D ZXn to be the free abelian group with basis Xn, and put

C n.X/D ZX
n

Š Hom.Cn.X/;Z/:

Define the differential @ W C�.X/! C��1.X/ as the linearization of

(2) @.x1 � � � xn/D

nX
iD1

.�1/i�1.x1 � � � Oxi � � � xn� x
xi

1 � � � x
xi

i�1xiC1 � � � xn/;

where Oxi means that xi was omitted. Here and below we denote by x1 � � � xn the element
.x1; : : : ; xn/ of Xn. For cohomology, the differential will be @� W C �.X/! C �C1.X/.
These maps are of square zero (by direct computation or see Remark 11 later) and define,
respectively, the rack2 homology HR.X/ and cohomology HR.X/ of the shelf X .

In knot theory, a quandle Q can be used to color arcs of knot diagrams; a coloring rule
involving the operation G is imposed at each crossing. The three quandle axioms are
precisely what is needed for the number of Q–colorings of a diagram to depend on
the underlying knot only. These Q–coloring counting invariants can be enhanced by
Boltzmann-type weights, computed using a 2–cocycle of Q. Similarly, n–cocycles
of Q yield invariants of .n�1/–dimensional surfaces knotted in RnC1; see [4; 24].
Now, together with arcs, one can color diagram regions. The colors can be taken
from a Q–set, and the weights are given by cocycles with coefficients, which we will
describe next.

Given a shelf X , an X–set is a set S together with a map J W S �X ! S satisfying

(3) .x J y/J z D .x J z/J .y G z/

for all x 2 S and y; z 2X . The basic examples are

(i) X itself, with G as the action map J;

2The terminology is inconsistent here. Indeed rack (co)homology was originally defined for racks, and
only later was it realized that it works and is interesting, more generally, for shelves. The same goes for
the quandle (co)homology of spindles, considered in Section 8.
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(ii) any set with the trivial action x J y D x;

(iii) the structure monoid M.X/ of X (denoted simply by M if X is understood),
which is a quadratic monoid

M.X/D hX W yxy D xy for all x; y 2Xi;

and where the action map J is concatenation in M .

An X–set can also be seen as a set with an action of the monoid M.X/.

More generally, anX–module is an abelian groupR together with a mapJ WR�X!R

(often written exponentially) which is linear in R, and obeys relation (3) for all x 2R
and y; z 2 X . In other words, it is an M.X/–module. The basic examples are the
linearization ZS of an X–set S , or any abelian group with the trivial action.

Take a shelf X and an X–module R. Take the free R–module Cn.X;R/DRXn with
basis Xn, and put C n.X;R/ D Hom.Cn.X;R/;Z/. The differential @ on Cn is the
linearization of

(4) @.rx1 � � � xn/D

nX
iD1

.�1/i�1.rx1 � � � Oxi � � � xn� r
xix

xi

1 � � � x
xi

i�1xiC1 � � � xn/;

and the differential on C n is the induced one. Again, these maps are of square zero
and define, respectively, the rack homology HR.X;R/ and cohomology HR.X;R/ of
the shelf X with coefficients in R. If R is the linearization of an X–set S , we use the
notation CR.X; S/, HR.X; S/ etc. Choosing S to be the empty set, one recovers the
previous definitions. Another interesting coefficient choice is the structure algebra
A.X/ of X (often denoted simply by A), which is the monoid algebra of M.X/:

A.X/D ZM.X/Š ZhXi=hyxy � xy W x; y 2Xi:

Declaring every x 2 X group-like, one gets an associative bialgebra structure on A.
This coefficient choice is universal in the following sense. Any X–module R is a right
M.X/–module, hence a right A.X/–module. Then one has an obvious isomorphism
of chain complexes

Cn.X;R/ŠR˝A.X/ Cn.X;M.X//;

where A acts on the first factor of Cn.X;M/Š A˝Z ZXn by multiplication on the
left, and the differential acts on the second factor of R˝A Cn.X;M/.

Algebraic & Geometric Topology, Volume 23 (2023)
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3 A dg bialgebra associated to a shelf

The algebraic objects introduced in this section are aimed to yield a simple and explicit
description of a differential graded algebra structure on the complex .C �.X/; @�/ above,
which is commutative, and in fact even Zinbiel, up to explicit homotopies.

Fix a shelf X . All the (bi)algebra structures below will be over Z, and will be (co)unital.
Also, the tensor product A˝B of two graded algebras will always be endowed with
the product algebra structure involving the Koszul sign

.a1˝ b1/.a2˝ b2/D .�1/
jb1jja2ja1a2˝ b1b2;

where b1 2 B and a2 2 A are homogeneous of degree jb1j and ja2j, respectively. The
Koszul sign also appears whenA�˝B� acts onA˝B . Similarly, by a (co)derivation on
a graded (co)algebra we will always mean a super(co)derivation, and by commutativity
we will mean supercommutativity.

Define B.X/ (also denoted by B) as the algebra freely generated by two copies of X
with the relations

B.X/D Zhx; ey W x; y 2Xi=hyx
y
� xy; yexy � exy W x; y 2Xi:

The interest of this construction lies in the rich structure it carries:

Theorem 1 For any shelf X , B.X/ is a differential graded bialgebra and a differential
graded A.X/–bimodule , where:

� The grading is given by declaring jexj D 1 and jxj D 0 for all x 2X .
� The differential d is the unique derivation of degree �1 determined by

d.ex/D 1� x and d.x/D 0 for all x 2X:

� The comultiplication � W B ! B ˝B and the counit " W B ! k are defined on
the generators by

�.ex/D ex˝ xC 1˝ ex; ".ex/D 0;

�.x/D x˝ x; ".x/D 1
for all x 2X;

and extended multiplicatively.
� The A–actions � W A˝B! B and � W B˝A! B are defined by

x � b �y D xby for all x; y 2X and b 2 B:

By differential graded bialgebra we mean that the differential is both a derivation with
respect to multiplication, and a coderivation with respect to comultiplication.

Algebraic & Geometric Topology, Volume 23 (2023)
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Notice that B is neither commutative nor cocommutative in general.

As usual, from Theorem 1 one deduces dg algebra and dg A.X/–bimodule structures
on the graded dual B�.X/ of B.X/.

Proof Since the relations are homogeneous, B is a graded algebra. In order to see
that d is well defined, one must check that the relations yxy � xy and yexy � exy

are compatible with d . The first relation is easier:

d.yxy � xy/D d.y/xy Cyd.xy/� d.x/y � xd.y/D 0C 0� 0� 0D 0:

For the second relation, one has

d.yexy � exy/D yd.exy /� d.ex/y D y.1� x
y/� .1� x/y D y �yxy �yC xy

D xy �yxy :

So the ideal of relations defining B is stable by d .

Since d is a derivation and d2 vanishes on generators, we have d2 D 0, hence a
structure of differential graded algebra on B .

Next, we need to check that � is well defined. The first relation is easy since all x 2X
are group-like in B:

�.xy �yxy/D .x˝ x/.y˝y/� .y˝y/.xy ˝ xy/D xy˝ xy �yxy ˝yxy

D xy˝ .xy �yxy/C .xy �yxy/˝yxy :

For the second relation, we check

�.yexy � exy/D .y˝y/.exy ˝ xy C 1˝ exy /� .ex˝ xC 1˝ ex/.y˝y/

D yexy ˝yxy Cy˝yexy � exy˝ xy �y˝ exy

D .yexy � exy/˝yx
y
C exy˝ .yx

y
� xy/Cy˝ .yexy � exy/:

So the ideal defining the relations is also a coideal.

Clearly, � respects the grading.

Let us now check that d is a coderivation. It is enough to see this on generators:

�.d.x//D�.0/D 0D d.x/˝ xC x˝ d.x/D .d ˝ 1C 1˝ d/�.x/;

�.d.ex//D�.1� x/D 1˝ 1� x˝ x:

This coincides with
.d˝1C1˝d/�.ex/D .d˝1C1˝d/.ex˝xC1˝ex/

D .1�x/˝xC1˝.1�x/D 1˝x�x˝xC1˝1�1˝x

D 1˝1�x˝x:

Algebraic & Geometric Topology, Volume 23 (2023)
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The map " is also well defined, since

".xy �yxy/D ".yexy � exy/D 0:

An easy verification on the generators shows that it is indeed a counit.

Finally, the formula x � b � y D xby obviously defines commuting degree-preserving
A–actions on B . By the definition of the differential d , one has d.xby/ D xd.b/y,
thus d respects this bimodule structure.

Example 2 Let us compute�.exey/. By definition,�.exey/D�.ex/�.ey/ inB˝B ,
and this is equal to

.ex˝xC1˝ex/.ey˝yC1˝ey/D exey˝xyCex˝xey�ey˝exyC1˝exey

D exey˝xyCex˝xey�ey˝yexyC1˝exey :

Note the Koszul sign appearing in the product .1˝ ex/.ey ˝y/D�ey ˝ exy.

The structure on B.X/ survives in homology:

Proposition 3 For any shelf X the homologyH.X/ of B.X/ inherits a graded algebra
structure. Moreover , the A.X/–actions on B.X/ induce trivial actions on H.X/:

x � h �y D h for all x; y 2X and h 2H:

Dually , the cohomology H�.X/ of B.X/� inherits a graded algebra structure and
trivial A.X/–actions.

Here and below, by B.X/� we mean the graded dual of B.X/.

Proof The only nonclassical statement here is the triviality of the induced actions.
Take x 2 X and b 2 B . By the definition of d , one has d.exb/ D d.ex/b � exd.b/,
hence

(5) d.exb/D .1� x/b� exd.b/:

If b is a cycle, this shows that x � b D b modulo a boundary. Hence the induced left
A–action on H is trivial. The cases of the right action and the actions in cohomology
are analogous.

The proposition implies the following remarkable property of H : if b 2 B is a rep-
resentative of some homology class in H , and if one lets an x 2 X act upon all the
letters from X occurring in b (where the action is y 7! yx), then one obtains another
representative of the same homology class.

Algebraic & Geometric Topology, Volume 23 (2023)
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One can also define a version of the bialgebra B.X/ with coefficients in any unital
commutative ring k:

B.X; k/D khx; ey W x; y 2Xi=hyx
y
� xy; yexy � exy W x; y 2Xi:

In particular, all the tensor products should be taken over k. Theorem 1 and its proof
extend verbatim to this setting. For suitable coefficients k, one can say even more:

Proposition 4 For any shelf X and any field k, the homology H.X; k/ of B.X; k/
inherits a graded bialgebra structure. If , moreover , X is finite , then the cohomology
H�.X; k/ of B.X; k/� also inherits a graded bialgebra structure.

This results from the following general observation; it is surely known to specialists,
however the authors were unable to find it in the literature:

Lemma 5 Let k be a field.

(i) If
�
C D

L
Ci ; d;�

�
is a k–linear dg coassociative coalgebra , then � induces a

coproduct on the homology H of .C; d/.

(ii) If
�
C D

L
Ci ; d; �

�
is a k–linear dg algebra of finite dimension in each degree ,

then � induces a coproduct on the cohomology H� of .C �; d�/.

Proof (i) The relation �d D .d ˝ IdC Id˝ d/� implies that � survives in the
quotient C= Im.d/. To restrict it further to H D Ker.d/= Im.d/, we shall check that

�.Ker.d//� Ker.d/˝Ker.d/C Im.d/˝C CC ˝ Im.d/:

Since k is a field, the space K WD Ker.d/ has a complement L in C , on which d is
injective. Putting I WD Im.d/, one has

.d ˝ Id/.L˝L/D I ˝L; .Id˝ d/.L˝L/D L˝ I;

.d ˝ IdC Id˝ d/.K˝L/DK˝ I; .d ˝ IdC Id˝ d/.L˝K/D I ˝K;

.d ˝ IdC Id˝ d/.K˝K/D 0:

Moreover, in the first two lines all the maps are bijective. Now, from

.d ˝ IdC Id˝ d/�.K/D�d.K/D 0

and from the disjointness of L and K (and hence I ), one sees that �.K/ cannot have
components in L˝L, and its components from K˝L (resp. L˝K) necessarily lie
in I ˝L (resp. L˝ I ).

(ii) Due to the finite dimension in each degree, the product on .C; d/ induces a
coproduct on .C �; d�/, to which we apply the first statement.

Algebraic & Geometric Topology, Volume 23 (2023)
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Remark 6 The dg bialgebra B.X/ admits a variation B 0.X/, where one adds the
inverses x�1 of the generators x2X , with jx�1jD0, d.x�1/D0, �.x�1/Dx�1˝x�1

and ".x�1/ D 1. One obtains a dg Hopf algebra, with the antipode defined on the
generators by

s.x/D x�1; s.x�1/D x and s.ex/D�exx
�1;

and extended superantimultiplicatively, in the sense of s.ab/D .�1/d.a/d.b/s.b/s.a/
for homogeneous a and b. Indeed, one easily verifies that this map

� is well defined, that is, compatible with the defining relations of B 0.X/;

� is of degree 0, that is, js.b/j D jbj for all homogeneous b;

� yields the inverse of Id in the convolution algebra, that is, if �.b/D
P
i ai ˝ ci

for a given b 2 B 0.X/, one hasX
i

s.ai /ci D
X
i

ais.ci /D ".b/I

� commutes with the differential d , that is, ds D sd .

For the square of the antipode, one computes s2.ex/Dxexx�1. In a spindle it equals ex ,
yielding s2 D Id. In general s need not be of finite order; for the rack X D Z with
xy D xC 1, one has s2 � .ex/D ex�1. In a rack, one simplifies s2.ex/D ex QGx , where
the operation QG is defined by .x G y/ QG y D x for all x; y 2 X . The map x 7! x QG x

plays an important role in the study of racks; see for instance [28]. Finally, in the
computation

s.ex1
ex2
� � � exn�1

exn
/D .�1/.

n
2/.�exn

x�1n /.�exn�1
x�1n�1/ � � � .�ex2

x�12 /.�ex1
x�11 /

D .�1/
1
2
n.nC1/exn

exxn
n�1
� � � e

x
x3���xn

2

e
x

x2���xn

1

x�1n � � � x
�1
1

one recognizes the remarkable map

.x1; x2; : : : ; xn/ 7! .x
x2���xn

1 ; x
x3���xn

2 ; : : : ; xn/

of Przytycki [20].

4 The bialgebra encodes the cohomology

We will now show that the dg bialgebra B.X/ knows everything about the homology
.C�; @/ and the cohomology .C �; @�/ of our shelf X , and about its variations .CM

�
; @/

and .C �M ; @
�/ with coefficients in the structure monoid M.X/.

First, we need to modify B slightly:

Algebraic & Geometric Topology, Volume 23 (2023)
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Lemma 7 The following data define a dg coalgebra and a right dg A–module:

.Z˝AB; IdZ˝ d; IdZ˝�; IdZ˝ "; IdZ˝ �/:

Here the grading is the one induced from B , and the A–action on Z is the trivial one:
� � x D � for all x 2X and � 2 Z.

The dg coalgebra from the lemma will be denoted by B D B.X/. It has obvious
variants B.X; k/ with coefficients in any unital commutative ring k.

Proof On the level of abelian groups, one has

(6) B ' B=hxb� b W x 2X; b 2 Bi:

The grading survives in this quotient since jxj D 0, and the degree �1 differential
survives since d.x/D 0 and jxj D 0 imply d.xb/D xd.b/� d.b/. Further, we have
�.xb/D .x˝ x/�.b/��.b/, so � induces a coproduct on B compatible with the
grading and the differential. For the counit, we have ".xb/D ".x/".b/D ".b/. Finally,
the right A–action also descends to B , as .xb/ �y D xby D x.by/� by D b �y.

Remark 8 Observe that we lose the product in the quotient B . Indeed, for all x; y 2X
we have y � 1, but ex �y D exy D yexy � exy œ ex D ex � 1.

Lemma 9 As a left A–module , B can be presented as

B Š A˝ZhXi:

Proof Consider the map

A˝ZhXi ! B given by x1 � � � xk˝y1 � � �yn 7! x1 � � � xkey1
� � � eyn

:

It is well defined since the relations inA hold true for the corresponding generators of B .

Going in the opposite direction is trickier. A monomial b in B is a product of generators
of the form x and ey . Let a.b/ be what remains in b when all generators of the form
ey are erased. Further, start with a new copy of b and erase all generators of the form x

one by one, starting from the left. When erasing a generator x, replace all generators of
the form ey to its left by eyx . After that replace all the ey by y. This yields a monomial
t .b/ 2 ZhXi. Analyzing the defining relations of B , and using the self-distributivity
axiom (1) for X , one sees that we obtain a well-defined map

B! A˝ZhXi given by b 7! a.b/˝ t .b/:

Both maps are clearly A–equivariant, and are mutually inverse.

Algebraic & Geometric Topology, Volume 23 (2023)
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From this follows:

Proposition 10 One has the following isomorphisms of complexes:

(CM
�
; @/Š B; .C �M ; @

�/Š B�; .C�; @/Š B; .C �; @�/Š B�;

(C�.X; kM.X//; @/Š B.X; k/; .C �.X; kM.X//; @�/Š B�.X; k/;

(C�.X; k/; @/Š B.X; k/; (C �.X; k/; @�/Š B�.X; k/:

Here B� denotes the graded dual of B with the induced differential , and similarly
for B�. In the last isomorphisms , the ring k is considered as a trivial X–module.

Proof The preceding lemma yields isomorphisms of abelian groups

B Š CM
�

and B Š ZhXi D C�;

and their k–versions.

To compute the differential induced on this by d , we use that d is a derivation:

d.ex1
� � � exn

/

D

nX
iD1

.�1/i�1ex1
� � � exi�1

d.exi
/exiC1

� � � exn

D

nX
iD1

.�1/i�1ex1
� � � exi�1

.1� xi /exiC1
� � � exn

D

nX
iD1

.�1/i�1ex1
� � � exi�1

exiC1
� � � exn

�

nX
iD1

.�1/i�1ex1
� � � exi�1

xiexiC1
� � � exn

:

Using the relation exy D yexy , one gets

ex1
� � � exi�1

xiexiC1
� � � exn

D xiex
xi
1

� � � e
x

xi
i�1

exiC1
� � � exn

;

which in CM
�

corresponds to xix
xi

1 � � � x
xi

i�1xiC1 � � � xn. We thus recover the differen-
tial (4). In the quotient B , the last computation simplifies as e

x
xi
1

� � � e
x

xi
i�1

exiC1
� � � exn

,
and we recover the differential (2).

Remark 11 This proposition provides a very simple proof that @2D0 inC�.X;M.X//
and its versions.

From the proof of Lemma 9 one deduces the useful fact:

Lemma 12 The map A! B given by x 7! x is an injective algebra morphism.

In what follows we will often identify A with its isomorphic image in B .
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The isomorphisms in Proposition 10 allow one to transport the structure from B and B
to rack (co)homology:

Theorem 13 Take a shelf X and a field k. Then

(i) the chain complex .C�.X/; @/ carries a coassociative coproduct ,

(ii) the cochain complex .C �.X/; @�/ carries an associative product ,

(iii) the chain complex .C�.X;M.X//; @/ carries a bialgebra structure ,

(iv) the cochain complex .C �.X;M.X//; @�/ carries an associative product , enriched
to a bialgebra structure when X is finite.

This induces

(i) associative products on H�.X/, H�.X;M.X//, H�.X; k/, and H.X;M.X//,

(ii) a coassociative coproduct on H.X; k/,

(iii) a bialgebra structure on H.X; kM.X//,

(iv) an associative product on H�.X; kM.X//, which is completed to a bialgebra
structure for finite X .

The product in cohomology is called the cup product, and is denoted by ^.

Example 14 Take f; g 2 C 2.X/. To compute f ^ g, one needs to compute the
summands in �.exeyezet / with two tensors of type eu in each factor. Using the
computation from Example 2

�.exeyezet /D�.exey/�.ezet /

D .exey ˝ xyC 1˝ exey C ex˝ xey � ey ˝yexy /

� .ezet ˝ zt C 1˝ ezet C ez˝ zet � et ˝ tezt /

D exey ˝ xyezet C ezet ˝ exeyzt � exez˝ xeyzet C exet ˝ xey tezt

C eyez˝yexyzet � eyet ˝yexy tezt C � � � ;

where the dots hide terms on which f and g vanish. Pushing the eu to the right and
the elements of X to the left, we get

exey ˝ xyezet C ezet ˝ zxexzt eyzt � exez˝ xzeyzet

C exet ˝ xteyt ezt C eyez˝yzexyzet � eyet ˝ytexyt ezt C � � � ;
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so finally .f ^ g/.exeyezet / is equal to

f .exey/g.ezet /Cf .ezet /g.exzt eyzt /�f .exez/g.eyzet /

Cf .exet /g.eyt ezt /Cf .eyez/g.exyzet /�f .eyet /g.exyt ezt /:

This formula is to be compared with (23) of [5]. A full explanation of this agreement
is given in the next section.

The last piece of structure to be extracted from Proposition 10 is the A–action:

Proposition 15 For a shelf X , the complex .C �.X/; @�/ is a left A.X/–module , with

.x �f /.x1 � � � xn/ WD .x
x
1 � � � x

x
n /;

where f 2 C n.X/ and x; x1; : : : ; xn 2X . The induced A.X/–action in cohomology
is trivial.

Proof This directly follows from Propositions 3 and 10.

This property of rack cohomology was first noticed by Przytycki and Putyra [22]. In
our bialgebraic interpretation it becomes particularly natural.

5 An explicit expression for the cup product in cohomology

To give an explicit formula for the cup product in rack cohomology, we need to compute
�.ex1

� � � exn
/ for any x1; : : : ; xn in the rack X , generalizing Example 2. For this we

will introduce some notation. First, for any n� 1 and for any i 2 f1; : : : ; ng we define
two maps ı0i ; ı

1
i WX

n!Xn�1 by

ı0i .x1; : : : ; xn/D .x1; : : : ; xi�1; xiC1; : : : ; xn/;

ı1i .x1; : : : ; xn/D .x1 G xi ; : : : ; xi�1 G xi ; xiC1; : : : ; xn/:

The above identification of B with A˝ZhXi given by aex1
� � � exn

$ a˝ x1 � � � xn

allows one to transport ı0i and ı1i to A–linear endomorphisms of B:

ı0i .aex1
� � � exn

/D

�
aex1
� � � exi�1

exiC1
� � � exn

if i � n;
0 if i > n;

ı1i .aex1
� � � exn

/D

�
axiex1Gxi

: : : exi�1Gxi
exiC1

� � � exn
if i � n;

0 if i > n:

A straightforward computation using self-distributivity yields

(7) ı"i ı
�
j D ı

�
j�1ı

"
i
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for any i <j and any "; �2f0; 1g. Identities (7) are the defining axioms for�–sets [27];
see also [5; 12]. Now, the boundary (2) can be rewritten as

(8) @D
X
i�1

.�1/i�1.ı0i � ı
1
i /:

For any finite subset S of N and for " 2 f0; 1g, we denote by ı"S the composition, in
increasing order, of the maps ı"a for a 2 S .

Proposition 16 Given a rack X , the coproduct in B.X/ can be computed by the
formula

(9) �.aex1
� � � exn

/D
X

S�f1;:::;ng

�.S/aı0S .ex1
� � � exn

/˝ aı1Sc .ex1
� � � exn

/

for all a 2 hXi and xi 2X . Here Sc D f1; : : : ; ng nS , and �.S/ is the signature of the
unshuffle permutation of f1; : : : ; ng which puts Sc on the left and S on the right.

We use the canonical form aex1
� � � exn

of a monomial in B.X/.

Proof Since �.a/ D a˝ a, we can omit this part of our monomial. Let us then
proceed by induction on n, the case nD 1 being immediate:

�.ex1
� � � exn

/

D�.ex1
� � � exn�1

/�.exn
/

D

� X
B�f1;:::;n�1g

�.B/ı0B.ex1
� � � exn�1

/˝ ı1Bc .ex1
� � � exn�1

/

�
.exn
˝ xnC 1˝ exn

/

D

X
B�f1;:::;n�1g

.�1/jBj�.B/ı0B.ex1
� � � exn�1

/exn
˝ ı1Bc .ex1

� � � exn�1
/xn

C

X
B�f1;:::;n�1g

�.B/ı0B.ex1
� � � exn�1

/˝ ı1Bc .ex1
� � � exn�1

/exn

D

X
S�f1;:::;ng

n…S

�.S/ı0S .ex1
� � � exn

/˝ ı1Sc .ex1
� � � exn

/

C

X
S�f1;:::;ng

n2S

�.S/ı0S .ex1
� � � exn

/˝ ı1Sc .ex1
� � � exn

/

D

X
S�f1;:::;ng

�.S/ı0S .ex1
� � � exn

/˝ ı1Sc .ex1
� � � exn

/:

Corollary 17 The cup product in rack cohomology induced from the coproduct in B
coincides with the cup product given by Clauwens in [5, (32)].
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Proof This is immediate by comparing (9) with [5, (32)]. The overall sign .�1/km

in [5] is the Koszul sign.

6 The cup product is commutative

In the preceding section we established that our cup product on rack cohomology coin-
cides with Clauwens’s product. The latter comes from the cohomology of a topological
space, and is thus commutative (where, as usual, we mean supercommutative). We
will now give a direct algebraic proof based on an explicit homotopy argument. This
homotopy is a specialization of the graphically defined map, constructed for solutions
to the Yang–Baxter equation by Lebed [17].

Let us start with a low-degree illustration:

Example 18 Take f; g 2 C 1.X/, identified with A–linear maps from B to Z (also
denoted by f and g) determined by the values f .ex/ WD f .x/ and g.ex/ WD g.x/ for
x 2X , and vanishing in degrees other than 1. Then the cup product f ^ g 2 C 2.X/

is defined by

.f ^ g/.exey/D .f ˝g/�.exey/

D .f ˝g/.exey ˝ xyC 1˝ exey C ex˝ xey � ey ˝yexy /

(see Example 2). Since f and g vanish on elements of degree 0 and 2, and are left
A–linear (where x and y act on Z trivially), the only remaining terms are

�f .ex/g.xey/Cf .ey/g.yexy /D�f .ex/g.ey/Cf .ey/g.exy /:

Note the Koszul sign .�1/jgjjex jD�1, and similarly in the second term. So the product
is in general not commutative. On the other hand, the cocycle condition @�gD 0 means
precisely g.ex/D g.exy / for all x and y, so the cup product restricted to 1–cocycles
is commutative.

Now, take f; g 2 C 1.X;M.X//, identified with maps B ! Z vanishing in degrees
other than 1. Then, for monomials a 2 A and x; y 2X , one computes

.f ^ g/.aexey/D�f .aex/g.axey/Cf .aey/g.aexy/

and

(10) .f ^ gCg ^ f /.aexey/

D�f .aex/g.axey/Cf .aey/g.aexy/�g.aex/f .axey/Cg.aey/f .aexy/:
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Suppose that f and g are 1–cocycles. This yields the relation

0D .�d�f /.aexey/D f .d.aexey//D f .d.a/exey/Cf .ad.ex/ey/�f .aexd.ey//

D f .a.1�x/ey/�f .aex.1�y//D f .aey/�f .axey/�f .aex/Cf .aexy/;

and similarly for g. Note the Koszul sign in �d�f D fd . Define a map h WB!Z by

h.aex/D f .aex/g.aex/

for all monomials a 2 A and all x 2X . Then (10) becomes

�f .aex/g.axey/Cf .aey/.g.aex/�g.aey/Cg.axey//

�g.aex/.f .aexy/�f .aex/Cf .aey//Cg.aey/f .aexy/

D .f .aey/�f .aex//g.axey/�h.aey/Ch.aex/C.g.aey/�g.aex//f .aexy/

D .f .axey/�f .aexy//g.axey/�h.aey/Ch.aex/C.g.axey/�g.aexy//f .aexy/

D h.axey/�h.aey/Ch.aex/�h.aexy/D .d
�h/.aexey/;

yielding the relation f ^ gC g ^ f D d�h, and hence the supercommutativity of
the cup product of degree 1 cohomology classes.

Lemma 19 Let h WB!B˝B be the degree 1 linear map defined on monomials in B
written in the canonical form as follows: h.a/D 0, and

h.aex1
� � � exn

/ WD

nX
iD1

.�1/i�1.a˝ a/.��/.ex1
� � � exi�1

/.exi
˝ exi

/�.exiC1
� � � exn

/;

where � W B ˝ B ! B ˝ B is the signed flip �.a ˝ b/ D .�1/d.a/d.b/b ˝ a for
homogeneous a and b. Then for any homogeneous b1; b2 2 B we have

(11) h.b1b2/D h.b1/�.b2/C .�1/
jb1j.��/.b1/h.b2/:

Also , h induces a map B! B˝B .

The induced map will still be denoted by h.

Proof Using the fact that both � and �� are algebra morphisms, one rewrites the
definition of h as

h.aex1
� � � exn

/

D

nX
iD1

.�1/i�1.a˝ a/.��/.ex1
/ � � � .��/.exi�1

/.exi
˝ exi

/�.exiC1
/ � � ��.exn

/:

This immediately yields (11) on b1 D a1ex1
� � � exp

(ie any monomial in B) and
b2 D expC1

� � � expCq
. To check (11) on general monomials b1 and b02 D a2b2, with
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a2 2 hXi and b2 a product of the ex , one observes that the maps h, �, and �� are
X–equivariant both on the left and on the right, which gives

h.b1.a2b2//D h..b1a2/b2/D h.b1a2/�.b2/C .�1/
jb1a2j.��/.b1a2/h.b2/

D h.b1/.a2˝ a2/�.b2/C .�1/
jb1j.��/.b1/.a2˝ a2/h.b2/

D h.b1/�.a2b2/C .�1/
jb1j.��/.b1/h.a2b2/:

Finally, h survives in the quotient B since its X–equivariance reads

h.aex1
� � � exn

/D .a˝ a/h.ex1
� � � exn

/� h.ex1
� � � exn

/;

with the usual notation.

For example, an easy computation gives

h.exey/D .xey C ex/˝ exey � exey ˝ .exyC ey/;

which in B becomes

h.exey/D .ey C ex/˝ exey � exey ˝ .exy C ey/:

Proposition 20 The map h is a homotopy between � and ��:

(12) .d ˝ IdB C IdB ˝ d/hC hd D�� ��:

Of course, h remains a homotopy in B as well.

Proof We will use the shorthand notation dh WD .d ˝ IdB C IdB ˝ d/h.

If x is a degree zero generator ofB then .dhChd/.x/D0 and�.x/Dx˝xD .��/.x/,
hence (12) holds. Now, for a degree one generator ex we have

.dhC hd/.ex/D d.ex˝ ex/C 0D .1� x/˝ ex � ex˝ .1� x/

D�x˝ exC ex˝ xC 1˝ ex � ex˝ 1D .�� ��/.ex/:

The proof can then be carried out by induction on the degree, using (11):

.dhC hd/.b1b2/

D d.h.b1/�.b2/C .�1/
jb1j.��/.b1/h.b2//C h.db1 � b2C .�1/

jb1jb1 � db2/

D dh.b1/�.b2/C .�1/
jb1jC1h.b1/d�.b2/C .�1/

jb1jd.��/.b1/h.b2/

C .��/.b1/dh.b2/C hd.b1/�.b2/C .�1/
jb1jC1.��/.db1/h.b2/

C .�1/jb1jh.b1/�.db2/C .��/.b1/hd.b2/

D .�� ��/.b1/�.b2/C .��/.b1/.�� ��/.b2/

D�.b1/�.b2/� .��/.b1/.��/.b2/D .�� ��/.b1b2/:
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Theorem 21 For a shelf X , the map h induces a homotopy between the cup product
^ and its opposite version ^op WD^� on C �.X/ and C �.X;M.X//.

Using a standard argument we obtain an elementary algebraic proof of the commutativity
of the cup product on the rack cohomologies HR.X/ and HR.X;M.X//. The same
result holds for the more general cohomologies HR.X; k/ and HR.X; kM.X//.

Proof The cup product of two cochains f and g is given by the convolution product

f ^ g D �.f ˝g/�;

where the coproduct � is taken in B , and � is the multiplication in Z. Hence for any
homogeneous x 2 B of degree jf jC jgj we have

.f ^ g� .�1/jf jjgjg ^ f /.x/D
X
.x/

.�1/jf jjgjf .x1/g.x2/�g.x1/f .x2/

D

X
.x/

.�1/jx1jjx2jf .x1/g.x2/�f .x2/g.x1/

D �.f ˝g/.�� ��/.x/

D �.f ˝g/.hd C dh/.x/:

We use Sweedler’s notation for �.x/. Hence H W HomA.B;Z/˝2 ! HomA.B;Z/
defined by

H.f ˝g/ WD �.f ˝g/h

is a homotopy between ^ and ^op. The proof for the cohomology with coefficients
in M is similar.

7 Rack cohomology is a Zinbiel algebra

To better understand the coproduct � on B.X/, we now refine it to an (almost) dg
codendriform structure. That is, in positive degree it decomposes as �D

 

�C
!

�, the
two parts

 

� and
!

� being compatible. Moreover, we establish the relation
!

� D �
 

�

(where � is as usual the signed flip), up to an explicit homotopy Nh. This homotopy is
inspired by the homotopy h from Section 6, and is, to our knowledge, new. We thus
recover the Zinbiel product on rack cohomology, first described by Covez in [7].

Coalgebras need not be unital in this section. General definitions are given over a unital
commutative ring k; in particular, all the tensor products are taken over k here.
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Definition 22 A graded coalgebra
�
C D

L
i>0 Ci ; �

�
is called C–codendriform if

there exist two maps of degree 0 on its positive-degree part CC D
L
i>1 Ci , denoted

by
 

� W CC! CC˝C and
!

� W CC! C ˝CC, satisfying

.
 

�˝ Id/
 

�D .Id˝�/
 

�;(13)

.Id˝
!

�/
!

�D .�˝ Id/
!

�;(14)

.Id˝
 

�/
!

�D .
!

�˝ Id/
 

�;(15)

and where � decomposes as
 

�C
!

� on CC and � is coassociative on C0. It is called
C–co-Zinbiel if moreover

!

�D �
 

�, where � is the signed flip. A dgC–codendriform
or C–co-Zinbiel coalgebra carries in addition a differential d satisfying

 

�d D .d ˝ Id/
 

�C .Id˝ d/
 

� on
M
i>2

Ci ;(16)

!

�d D .d ˝ Id/
!

�C .Id˝ d/
!

� on
M
i>2

Ci ;(17)

�d D .d ˝ Id/
 

�C .Id˝ d/
!

� on C1:(18)

Dually, one defines (dg) C–dendriform and C–Zinbiel algebras.

In the case when the 0–degree partC0 is empty, one recovers the familiar (co)dendriform
and (co)Zinbiel structures. One can play with this idea further, and extend a posi-
tively graded codendriform coalgebra .CC;

 

�C;
!

�C/ by a unit: C WD CC˚ k1, with
�.1/D

 

�.1/D
!

�.1/D 1˝1, and
 

�.c/D
 

�C.c/Cc˝1 and
!

�.c/D
!

�C.c/C1˝c

for all c 2 C . One can also go in the opposite direction:

Lemma 23 Let .C;�;
 

�;
!

�/ be aC–codendriform coalgebra. Denote by " WC !CC

and � W CC! C the obvious projection and inclusion , where CC WD
L
i>0 Ci . Put

�C WD ."˝ "/��,
 

�C WD ."˝ "/
 

�� and
!

�C WD ."˝ "/
!

��. Then .CC;
 

�C;
!

�C/ is a
codendriform coalgebra.

The proof is straightforward. These observations explain our choice of the name. In the
literature there exist alternative approaches to such “almost codendriform” structures.

Finally, one easily checks that a C–codendriform structure refines a coassociative one:

Lemma 24 In a (dg) C–codendriform coalgebra , the coproduct � is necessarily
coassociative. It is also compatible with the differential : writing �.b/D

P
i ai ˝ ci

for a given b 2 C , with all the ai homogeneous , one has

�.d.b//D
X
i

d.ai /˝ ci C
X
i

.�1/jai jai ˝ d.ci /:
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Let us now return to shelves and their associated dg bialgebras.

Proposition 25 Let X be a shelf. Define two maps
 

� W B.X/C! B.X/C˝B.X/

and
!

� W B.X/C! B.X/˝B.X/C by
 

�.aex1
� � � exn

/D .aex1
˝ ax1/�.ex2

� � � exn
/;

!

�.aex1
� � � exn

/D .a˝ aex1
/�.ex2

� � � exn
/;

where as usual we use the canonical form of monomials in B.X/, and extend this
definition by linearity. These maps and the coproduct � yield a C–codendriform
structure on B.X/.

Proof Put �2 D .�˝ Id/�D .Id˝�/�. Then both sides of (13) act on a canonical
monomial as follows:

aex1
� � � exn

7! .aex1
˝ ax1˝ ax1/�

2.ex2
� � � exn

/:

Similarly, both sides of (14) and (15) act by

aex1
� � � exn

7! .a˝ a˝ aex1
/�2.ex2

� � � exn
/

and
aex1
� � � exn

7! .a˝ aex1
˝ ax1/�

2.ex2
� � � exn

/;

respectively. Thus our maps satisfy relations (13)–(15). Finally, in positive degree their
sum clearly yields �, and in degree 0 the coproduct � is coassociative.

The maps above are not compatible with the differential in general, since
 

�d.exey/D ey ˝y � xey ˝ xy � ex˝ xC exy˝ xy;

.d ˝ Id/
 

�C .Id˝ d/
 

�.exey/D ey ˝ xy � xey ˝ xy � ex˝ xC exy˝ xy

C1˝ xey � x˝ xey :

As usual, the solution is to work in the quotient B.X/. Indeed,
 

� and
!

� descend to
maps B.X/C!B.X/C˝B.X/ and B.X/C!B.X/˝B.X/C, still denoted by

 

�

and
!

�, and one has:

Proposition 26 The induced maps
 

� and
!

� make B.X/ a dg C–codendriform
coalgebra.

Proof Recall the interpretation (6) of B as the quotient of B by xb � b for all x 2X
and b 2 B . This yields that the maps

 

� and
!

� are symmetric in B:
 

�.ex1
� � � exn

/D .ex1
˝1/�.ex2

� � � exn
/;

!

�.ex1
� � � exn

/D .1˝ ex1
/�.ex2

� � � exn
/:
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Also, it turns (5) into

d.ex1
� � � exn

/D�ex1
d.ex2

� � � exn
/:(19)

We can now establish relation (16):
 

�d.ex1
� � � exn

/D
 

�.�ex1
d.ex2

� � � exn
//D�.ex1

˝1/�d.ex2
� � � exn

/

D�.ex1
˝1/.d˝Id/�.ex2

� � � exn
/�.ex1

˝1/.Id˝d/�.ex2
� � � exn

/

D .d˝Id/.ex1
˝1/�.ex2

� � � exn
/C.Id˝d/.ex1

˝1/�.ex2
� � � exn

/

D .d˝IdCId˝d/
 

�.ex1
� � � exn

/:

Relation (17) is proved similarly. Finally, relation (18) follows from

�d D .d ˝ IdC Id˝ d/�

in degree 1.

Proposition 27 Define the map Nh W B.X/! B.X/˝B.X/ by Nh.a/D 0 and

Nh.aex1
� � � exn

/D�.ax1˝ aex1
/h.ex2

� � � exn
/:

It induces a map B ! B ˝B , still denoted by Nh, which is a homotopy between
!

�

and �
 

�.

Proof The map Nh clearly descends to B . For this induced map, one has

Nh.ex1
� � � exn

/D�.1˝ ex1
/h.ex2

� � � exn
/:

It remains to check the relation

.d ˝ IdB C IdB ˝ d/ NhC Nhd D �
 

��
!

� W BC! B˝B:

Using (19), one computes

.d ˝ Id/ Nh.ex1
� � � exn

/D�.d ˝ Id/.1˝ ex1
/h.ex2

� � � exn
/

D .1˝ ex1
/.d ˝ Id/h.ex2

� � � exn
/;

.Id˝ d/ Nh.ex1
� � � exn

/D�.Id˝ d/.1˝ ex1
/h.ex2

� � � exn
/

D .1˝ ex1
/.Id˝ d/h.ex2

� � � exn
/;

Nhd.ex1
� � � exn

/D� Nh.ex1
d.ex2

� � � exn
//D .1˝ ex1

/hd.ex2
� � � exn

/:
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The sum yields

.1˝ ex1
/..d ˝ IdC Id˝ d/hC hd/.ex2

� � � exn
/

D .1˝ ex1
/.�� ��/.ex2

� � � exn
/

D .1˝ ex1
/�.ex2

� � � exn
/� �..ex1

˝ 1/�.ex2
� � � exn

//

D
!

�.ex1
ex2
� � � exn

/� �
 

�.ex1
ex2
� � � exn

/;

as desired.

As usual, using Lemma 9 one deduces from Proposition 25 aC–dendriform structure on
the complex defining rack cohomology, and from Proposition 27 a C–Zinbiel product
on the rack cohomology. Lemma 23 then yields dendriform and Zinbiel structures in
positive degree:

Theorem 28 For a shelf X , the complex
�L

n>1 C
n.X/; @�

�
admits a dendriform

structure , which is Zinbiel up to a homotopy induced by Nh. The rack cohomology of X
thus receives a strictly Zinbiel product.

Remark 29 The dendriform structures above are not surprising. In [16; 17], rack
cohomology is interpreted in terms of quantum shuffle algebras, which are key examples
of dendriform structures. The shuffle interpretation generalizes to the cohomology of
solutions to the Yang–Baxter equation, where dendriform structures reappear as well.
The Zinbiel structure in cohomology is on the contrary remarkable, and does not extend
to the YBE setting. Shuffles also suggest that, for B.X/C, the codendriform structure
and the associative product are compatible, in the sense of [25]. However, this does
not seem to yield Zinbiel-coassociative structures on rack cohomologies. If we choose
to work without coefficients (ie in B.X/C), the dendriform structure is compatible
with the differential but the coproduct is lost. If we take coefficients kM.X/ (ie we
work in B.X/C), where k is a field and X is finite, the coproduct is preserved but the
dendriform structure does not survive in cohomology.

8 Quandle cohomology inside rack cohomology

IfX is a spindle (eg a quandle), then the complexC�.X; k/ has a degenerate subcomplex

CD
�
.X; k/D hx2 W x 2Xi:
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In other words, it is the linear envelope of all monomials with repeating neighbors.
Carter et al [3] defined the quandle (co)homology of X via the complexes

CQ
�
.X; k/ WD C�.X; k/=C

D
�
.X; k/ and C �Q.X; k/ WD Hom.CQ

�
.X; k/; k/:

Litherland and Nelson [18] showed that in this case the complex C�.X; k/ splits:

C D CN
˚CD:

The quandle (co)homology is then the (co)homology of the complement CN. We will
now show that this decomposition is already visible at the level of the dg bialgebraB.X/.
Moreover, in the bialgebraic setting it will be particularly easy to prove that

� the Zinbiel product on rack cohomology induces one on quandle cohomology
but does not restrict to quandle cohomology,

� the associative cup product on rack cohomology restricts to quandle cohomology.

Proposition 30 Let X be a spindle. In B.X/, consider the ideal

BD.X/ WD he2x W x 2Xi;

and the left sub-A.X/–module BN.X/ generated by the elements 1 and

(20) .ex1
� ex2

/.ex2
� ex3

/ � � � .exn�1
� exn

/exn
where n> 1 and all xi 2X:

Then B decomposes as a dg A–bimodule:

(21) B.X/D BN.X/˚BD.X/:

Moreover BD is a coideal and BN is a left coideal and a left codendriform coideal of B .

Proof The expression (20) vanishes when xi D xiC1 for some i . Moreover, one has

ex1
� � � exn

D .ex1
� ex2

/.ex2
� ex3

/ � � � .exn�1
� exn

/exn
C terms from BD:

This implies the decomposition (21) of abelian groups.

The subspaces BN and BD are homogeneous, and for any y 2X one has

.ex1
� ex2

/ � � � .exn�1
� exn

/exn
y D y.exy

1
� exy

2
/ � � � .exy

n�1
� exy

n
/exy

n
:

So, BN and BD are graded sub-A–bimodules of B .
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Let us now check that BD is a differential coideal. Indeed, using the property xx D x
of a spindle, one computes

d.e2x/D d.ex/ex�exd.ex/D .1�x/ex�ex.1�x/D ex�xex�exCxexx D 0;(22)

�.e2x/D e
2
x˝x

2
C1˝e2xCex˝xex�ex˝xexx D e2x˝x

2
C1˝e2x :(23)

To check that BN is a subcomplex of B , we need its alternative description:

Lemma 31 BN.X/ is the left sub-A.X/–module generated by the elements 1 and

(24) .ex1
� ey1

/.ex2
� ey2

/ � � � .exn�1
� eyn�1

/exn
where n> 1 and all xi ; yi 2X:

Proof It is sufficient to represent an element of the form (24) as a linear combination of
elements of the form (20). This can be done inductively using the following observation:

.ex � ey/.ex1
� ex2

/.ex2
� ex3

/ � � � .exn�1
� exn

/exn

D .ex � ex1
/.ex1

� ex2
/.ex2

� ex3
/ � � � .exn�1

� exn
/exn

�.ey � ex1
/.ex1

� ex2
/.ex2

� ex3
/ � � � .exn�1

� exn
/exn

:

Now, for a 2 A and x1; : : : ; xn 2X , we have

d.a.ex1
� ex2

/.ex2
� ex3

/ � � � .exn�1
� exn

/exn
/

D ad.ex1
� ex2

/.ex2
� ex3

/ � � � .exn�1
� exn

/exn

� a.ex1
� ex2

/d..ex2
� ex3

/ � � � .exn�1
� exn

/exn
/

D a.x2� x1/.ex2
� ex3

/ � � � .exn�1
� exn

/exn

� a.ex1
� ex2

/d..ex2
� ex3

/ � � � .exn�1
� exn

/exn
/:

An inductive argument using the lemma shows that this lies in BN.

It remains to prove that �,
 

� and
!

� send BN to B ˝BN. In degree 0 everything is
clear. In higher degree, from

�.ex � ey/D ex˝ x� ey ˝yC 1˝ .ex � ey/

one sees that any of �,
 

� and
!

� sends an expression of the form (24) to a linear
combination of tensor products, where on the right one has a product of terms of the
form z, ex � ey and possibly an eu at the end. By Lemma 31, all these right parts lie
in BN.

The proposition describes all the structure inherited from B by BD and BN. Indeed,

� BD is not a subcoalgebra, as follows from (23),
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� BD is not a coideal in the dendriform sense, since

(25)
 

�.e2x/D e
2
x˝ x

2
C ex˝ xex;

� BN is not a subalgebra of B , since ex 2 BN for any x 2X , whereas e2x 2 B
D,

� BN is not a subcoalgebra either, since one has

(26) �..ex � ey/ey/D e
2
y ˝ .x�y/yC terms from BN

˝BN;

and e2y ˝ .x�y/y is a nonzero term from BD˝BN in general.

In particular, there is no natural way to define a codendriform structure on BN. Passing
to the quotient B does not solve this problem: BD is still not a codendriform coideal
because of (25), and BN is not a subcoalgebra of B . Indeed, even if (26) implies
�..ex � ey/ey/ 2 B

N˝BN, things go wrong in degree 3, since

�..ex � ey/.ey � ez/ez/D e
2
z ˝ .eXY � eXz � eY C eY z /C terms from BN

˝BN;

where X D xz and Y D yz . One gets a term from BD˝BN which does not vanish in
general. However, since eXY D eX D eXz and eY z D eY modulo the boundary, this
term disappears in homology. More generally:

Proposition 32 Let X be a spindle. The homology H.X/ of B.X/ decomposes as a
graded abelian group:

(27) H.X/DHN.X/˚HD.X/:

If k is a field , then one obtains a decomposition

(28) H.X; k/DHN.X; k/˚HD.X; k/;

with HD a coassociative coideal and HN a co-Zinbiel (and hence coassociative)
coalgebra.

Dually , the cohomology H �.X/ of B.X/� decomposes as

(29) H �.X/DH �N.X/˚H
�

D.X/;

with H �D a Zinbiel (and hence associative) ideal , and H�N an associative subalgebra
of H �. The same holds for H �.X; k/.

Proof Proposition 30 yields the desired decompositions, and, together with Propo-
sitions 4 and 26, shows that HD is a coideal and HN a left codendriform coideal. In
particular,

 

�..HN/C/� .HN/C˝HN
˚ .HD/C˝HN
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and
!

�..HN/C/�HN
˝ .HN/C˚HD

˝ .HN/C:

But Proposition 27 yields the relation
!

� D �
 

� in homology, hence the terms in
.HD/C˝HN and HD˝ .HN/C above must be trivial. This shows that HN is in fact
a co-Zinbiel coalgebra.

The proof for the cohomology H � is analogous.

Again, this proposition describes all the structure inherited by HD.X; k/: it is neither
a subcoalgebra, nor a codendriform coideal. Indeed, computations (23) and (25) still
yield counterexamples, since e2x and ex represent nontrivial classes in HD and HN,
respectively.

Now, in order to understand what our proposition means for quandle cohomology, we
need to recall Lemma 9 and observe that the construction of BD precisely repeats that
of the degenerate complex. This yields:

Lemma 33 For any spindle X , one has isomorphisms of complexes

.CQ
�
; @/Š BN and .C �Q; @

�/Š B�N:

Proposition 32 then translates as follows:

Theorem 34 The rack cohomology of a spindle X decomposes into quandle and
degenerate parts , so one has the isomorphism

HR.X/'HQ.X/˚HD.X/

of graded abelian groups. Moreover ,

� HQ is an associative subalgebra of HR and HD is an associative ideal ,

� HD is a Zinbiel ideal , hence HQ carries an induced Zinbiel product.

The situation is rather subtle here. The Zinbiel product on rack cohomology does not
restrict to the quandle cohomology; to get a Zinbiel product onHQ, we need to consider
it as a quotient of HR. However, the associative product induced by the Zinbiel product
does restrict to HQ.
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9 Quandle cohomology vs rack cohomology

The rack cohomology of spindles and quandles shares a lot with the Hochschild coho-
mology of monoids and groups. This analogy suggests that the degenerate subcomplex
CD can be ignored, and that the rack cohomology HR and the quandle cohomology
HQ carry the same information about a spindle. Litherland and Nelson [18] showed
this is not as straightforward as that: the degenerate part is highly nontrivial, and in
particular contains the entire quandle part:

CD
�
' C

Q
��1˚C

L
�

for �> 2:

Here C L
�
.X/ WDZX ˝CD

��1.X/ is the late degenerate subcomplex, which is the linear
envelope of all monomials with repetition at some place other than the beginning. This
refines the rack cohomology splitting from Theorem 34:

(30) H �R 'H
�

Q˚H
��1
Q ˚H �L for �> 2:

We will now recover this decomposition in our bialgebraic setting. However, our
methods are not sufficient for coupling this decomposition with the algebraic structure
on HR:

Question 35 Do the cup product and the Zinbiel product on the rack cohomology
of a spindle respect the decomposition (30) in any sense? In particular, can the
quandle cohomology regarded as a Zinbiel algebra be reconstructed from the degenerate
cohomology?

Now, even though HD is big, it is degenerate in a certain sense. Indeed, Przytycki and
Putyra [23] showed the quandle cohomology HQ of a spindle to completely determine
its rack cohomology HR, and hence HD, on the level of abelian groups. In light of the
preceding section, the following question becomes particularly interesting:

Question 36 Can Zinbiel and associative structures on the rack cohomology of a
spindle be recovered from the corresponding structures on its quandle cohomology?

Let us now return to our dg bialgebra B.X/:

Proposition 37 Let X be a spindle. Put

BL.X/ WD BC.X/˝A.X/B
D.X/;
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where BC is the positive-degree part of B . One has the following isomorphism of
graded A.X/–bimodules:

(31) BD
�
.X/' BL

�
.X/˚B

Q
��1.X/ for �> 2:

This results immediately from the following technical lemma:

Lemma 38 Let X be a spindle. Define a map s W BC.X/! BD.X/ as follows: take
any element from BC written using the generators of the form x and ey , and in each of
its monomials replace the first letter of the form ey by eyey . Then

� s is a well-defined injective A–bilinear map of degree 1,

� one has the decomposition of graded A–bimodules

BD
D BL

˚ s..BN/C/:

The map s yields the first degeneracy s1 for the cubical structure underlying quandle
cohomology, hence the notation.

Proof To show that s is well defined, one needs to check that it is compatible with the
relation exy D yexy in B , that is, we should have exexy D yexyexy . This is indeed
true:

exexy D exyexy D yexyexy :

This map is A–bilinear and of degree 1 by construction. Injectivity becomes clear if
one writes all the monomials in B in the canonical form x1 � � � xkey1

� � � eyn
.

Further, the map b ˝ b0 7! bb0 identifies BL with an A–invariant subspace of BD,
which is again clear using canonical forms.

Now, s.BC/ and BL are graded A–subbimodules of BD, with s.BC/C BL D BD

and s.BC/ \ BL D s.BD/. As usual, this is clear using canonical forms. Since
s.BC/D s.BD˚ .BN/C/D s.BD/˚ s..BN/C/, we obtain the desired decomposition
BD D BL˚ s..BN/C/.

As usual, decomposition (31) implies

(32) BD
�
.X/' BL

�
.X/˚B

Q
��1.X/ for �> 2;

with obvious notation. And as usual this decomposition respects more structure than (31):
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Proposition 39 Let X be a spindle. Then (32) is an isomorphism of differential graded
A.X/–bimodules.

Proof Let us check that the differential preserves BL. An element of BL is a linear
combination of (the �–equivalence classes of) terms of the form exb, with b 2 BD.
Since d.exb/ D �exd.b/ in B by relation (6), and since d preserves BD, we have
d.exb/ 2 B

L.

Now, the map s from Lemma 38 induces a map s W BC! BD. We need to check that
the differential preserves s..BN

�
/C/ ' B

Q
��1.X/. Adapting the arguments from the

proof of Proposition 30, we see that an element of s..BN/C/ is a linear combination
of the classes of terms of the form .e2x � e

2
y/b, with b 2 BN. Then (22) yields

d..e2x � e
2
y/b/D d.e

2
x � e

2
y/bC .e

2
x � e

2
y/d.b/D .e

2
x � e

2
y/d.b/:

Since d preserves BN, we conclude d..e2x � e
2
y/b/ 2 s..B

N/C/.
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