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A construction of pseudo-Anosov homeomorphisms using
positive twists

YVON VERBERNE

We introduce a construction of pseudo-Anosov homeomorphisms on n–times punc-
tured spheres and surfaces of higher genus using only positive half-twists and Dehn
twists. These constructions produce explicit examples of pseudo-Anosov maps with
various number-theoretic properties associated to the stretch factors. For instance, we
produce examples where the trace field is not totally real and the Galois conjugates of
the stretch factor are on the unit circle. It follows that for these examples, no power
of these maps can arise from either Thurston’s or Penner’s constructions.

15A18, 37E30, 57M07

1 Introduction

Pseudo-Anosov homeomorphisms play an important role in the study of homeomor-
phisms of orientable finite-type surfaces. The Nielsen–Thurston classification theorem
states that, up to isotopy, every homeomorphism of a surface is either periodic, reducible,
or pseudo-Anosov; see Thurston [14]. Reducible homeomorphisms can be reduced
into pieces which are either finite-order or pseudo-Anosov. Therefore, understanding
periodic and pseudo-Anosov homeomorphisms helps us understand arbitrary homeo-
morphisms. In this paper, we focus our attention on pseudo-Anosov homeomorphisms.

Despite the importance of pseudo-Anosov homeomorphisms, constructing explicit
examples is difficult. Thurston [14] and Penner [10] each produced simple construc-
tions which produce an infinite number of pseudo-Anosov maps on surfaces. In both
constructions, the starting point is a pair of two filling multicurves which are used to
produce pseudo-Anosov homeomorphisms.

We introduce a new construction of pseudo-Anosov homeomorphisms on punctured
spheres. To prove that this construction produces maps which are different from the
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maps produced by the constructions of Penner and Thurston, we analyze the number-
theoretic properties associated to these homeomorphisms. We also explain how to lift
the construction to surfaces of higher genus using a branched cover.

1.1 The stretch factor of a pseudo-Anosov homeomorphism and
number-theoretic properties

Let S D Sg;n be a surface of genus g with n points removed from its interior. When
convenient, we treat the punctures as marked points. A homeomorphism f of a finite
type surface S is pseudo-Anosov if there is a representative homeomorphism �, a
real number � > 1 and a pair of transverse measured foliations Fu and Fs such that
�.Fu/D �Fu and �.Fs/D ��1Fs . The number � by which � stretches and contracts
its foliations is called the stretch factor of f , and Fu and Fs are called the unstable
foliation and stable foliation, respectively.

A considerable amount of research has probed the properties of the stretch factors of
pseudo-Anosov maps. For example, Thurston [14] proved that the stretch factor of
a pseudo-Anosov homeomorphism on a surface Sg;0 is an algebraic integer whose
degree is bounded above by 6g� 6, where g is the genus of the surface.

Hubert and Lanneau [5] proved that for any pseudo-Anosov homeomorphism arising
from Thurston’s construction, the trace field Q.�C��1/ is always totally real. Shin
and Strenner [13] proved that the Galois conjugates of the stretch factor for pseudo-
Anosov homeomorphisms arising from Penner’s construction are never on the unit
circle in C. This result from Shin and Strenner proved that it is not the case that every
pseudo-Anosov homeomorphism has a power that arises from Penner’s construction.
This leads one to ask whether every pseudo-Anosov homeomorphism has a power
which arises from either Penner’s or Thurston’s construction. To this end, one could
ask whether it is possible for a pseudo-Anosov homeomorphism to have a trace field
which is not totally real and have Galois conjugates of its stretch factor on the unit
circle. The results of this paper allow us to construct examples giving a positive answer
to this question.

Theorem 1.1 Let S be either S0;n for n� 8, or Sg;k for g � 3 and k � 0. Then there
exists a pseudo-Anosov homeomorphism �S on S with stretch factor ��S such that

(i) the trace field Q.��S C�
�1
�S
/ is not totally real , and

(ii) there exist Galois conjugates of ��S on the unit circle.

In particular , no power of �S arises from either Penner’s or Thurston’s constructions.
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Figure 1: Two-fold branched covering map from S3;0 to S0;8 induced by the
hyperelliptic involution.

In order to prove Theorem 1.1, we begin by constructing a family of pseudo-Anosov
homeomorphisms on S0;n for n � 6. We then show that in this family there exists
pseudo-Anosov homeomorphisms where the trace field is not totally real and where
there exist Galois conjugates of its stretch factor on the unit circle. If S0;n is a sphere
with n marked points, we can find branched covers Sg;m! S0;n. See Figure 1 for an
illustration. By lifting pseudo-Anosov homeomorphisms from S0;n to Sg;m through
these branched covers, we obtain the other examples in Theorem 1.1. Since the lifted
maps have the same stable and unstable foliations as �, and the stretch factor is a power
of �, we can promote the examples from Theorem 1.4 to examples on surfaces with
positive genus.

1.2 Constructing pseudo-Anosov maps on punctured spheres

Each map �S from Theorem 1.1 is a member of a new, large family of pseudo-Anosov
maps on punctured spheres that we introduce. We’ll see below that the stretch factors
for the maps in this family exhibit various number theoretic properties, similar to the
properties in Theorem 1.1.

Algebraic & Geometric Topology, Volume 23 (2023)
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Figure 2: Labeling of the punctures on the n-times punctured sphere.

For the n–times punctured sphere S0;n, label the punctures 0; 1; : : : ; n� 1 and fix the
curves ˛0; ˛1; : : : ; ˛n�1 as shown in Figure 2 such that ˛i cuts off the punctures i and
i � 1 (mod n), and i. j̨ ; j̨C1/D 2. For each i 2 f0; : : : ; ng, let Di denote the right
half-twist about the curve ˛i . The square of a half twist is one example of a Dehn twist.

The basis of our construction of pseudo-Anosov homeomorphisms will consist of
products of the Di ’s. If � WZ=n!Z=n is the map j 7! j C1 mod n which cyclically
permutes the set f0; : : : ; ng, then we say a partition �Df�0; : : : ; �kg of f0; : : : ; n�1g
is evenly spaced if k < n and �.�i /D �iC1, where the indices are taken mod k. In
the case of nD 6,

�D ff0; 3g; f1; 4g; f2; 5gg and N�D ff0; 2; 4g; f1; 3; 5gg

are both evenly spaced partitions of f0; 1; : : : ; 5g. If �D f�0; : : : ; �kg is a partition
of f0; : : : ; n� 1g, then for each j 2 f0; 1; : : : ; kg, let D�j denote the product of half
twists

Q
i2�j

Di . Note, the order of this product is irrelevant as for each i; k 2 �j , Di
commutes with Dk since the curves ˛i and ˛k are disjoint.

Our first construction of pseudo-Anosov homeomorphisms are products Dq0�0 � � �D
qk
�k

where the set f�0; : : : ; �kg is an evenly spaced partition of f0; : : : ; n� 1g and each
qj � 2.

Theorem 1.2 Let n � 6, let qj � 2 for each j 2 f0; 1; : : : ; kg, and let f�0; : : : ; �kg
be an evenly spaced partition of f0; : : : ; n� 1g. Then

� D

kY
jD0

D
qj
�j

is a pseudo-Anosov homeomorphism of S0;n.
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Our second construction of pseudo-Anosov homeomorphisms, which will be used
to produce the maps for Theorem 1.1, is an augmentation of the construction from
Theorem 1.2. We say a partition f�0; : : : ; �kg of f0; 1 : : : ; n� 1g reduces to an evenly
spaced partition if there exists k0 2 f0; 1; : : : ; kg and n0 2 f0; 1; : : : ; n� 1g such that
f�0; �1; : : : ; �k0g is an evenly spaced partition of f0; 1; : : : ; n0� 1g and �j contains a
single element for all j > k0.

Theorem 1.3 Let n� 7, let qj � 2 for each j 2 f0; 1; : : : ; kg, and let

f�0; : : : ; �k0 ; : : : ; �kg

be a partition of f0; 1; : : : ; n� 1g that reduces to an evenly spaced partition. Then

� D

kY
jD0

D
qj
�j

is a pseudo-Anosov homeomorphism of S0;n.

To prove that the homeomorphisms in Theorems 1.2 and 1.3 are pseudo-Anosov, we
explicitly construct the train tracks for each of the maps. For each pseudo-Anosov
homeomorphism, we show that the associated train track has a specific structural form.
Additionally, we show that the train track matrix associated to each map is Perron–
Frobenius. Lemma 2.4 states that having both the specific form of the train track and the
Perron–Frobenius train track matrix concurrently will imply that the homeomorphisms
we constructed are pseudo-Anosov.

The stretch factors for the pseudo-Anosov maps arising from Theorems 1.2 and 1.3
exhibit a wide variety of number-theoretic properties. In addition to the map �S
from Theorem 1.1, we produce examples of pseudo-Anosov maps with any desired
combination of having totally real trace field, or not, and having Galois conjugates of
the stretch factor on the unit circle, or not.

Theorem 1.4 For any of the following four statements , there exists a pseudo-Anosov
homeomorphism whose stretch factor � satisfies the statement :

(1) Q.�C��1/ is totally real and there exists no Galois conjugates of � on the unit
circle.

(2) Q.�C��1/ is not totally real and there exist no Galois conjugates of � on the
unit circle.

Algebraic & Geometric Topology, Volume 23 (2023)
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(3) Q.�C ��1/ is totally real and there exist Galois conjugates of � on the unit
circle.

(4) Q.�C��1/ is not totally real and there exist Galois conjugates of � on the unit
circle.

These homeomorphisms are constructed on the surfaces S0;6, S0;7, S0;8, and S0;8,
respectively.

We derive Theorem 1.1 as a corollary of Theorem 1.4. As discussed above, statement (4)
of Theorem 1.4 proves Theorem 1.1 in the case of the 8–times punctured sphere. By
using a branched cover to lift the homeomorphism from Theorem 1.4(4) to other
surfaces, we complete the proof of Theorem 1.1.

Outline

In Section 2, we begin by proving an adaptation of the nesting lemma, which was first
introduced by Masur and Minsky [8], an important lemma which allows us to determine
whether a map is pseudo-Anosov. In Section 3, we will prove Theorems 1.2 and 1.3
which detail the main constructions of pseudo-Anosov homeomorphisms presented
in this paper. Section 4 provides additional modifications which can be made to the
main constructions in order to produce additional pseudo-Anosov homeomorphisms,
and Section 5 details the various number-theoretic properties associated to the stretch
factors which will allow us to show that this construction differs from the previous
constructions. Lastly, Section 6 proves that the construction produces pseudo-Anosov
mapping classes on surfaces of higher genus through a branched cover.
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2 The nesting lemma

In this section, we begin by covering the required background information regarding
train tracks and the complex of curves. Afterwards, we prove the nesting lemma. The
nesting lemma is inspired by the work of Masur and Minsky in which they show that
the diameter of the cure complex is infinite. The nesting lemma in this paper allows us
to determine whether a map is pseudo-Anosov by analyzing the train track associated
to the map.

2.1 Train tracks

In this section, we recall some of the basic definitions for train tracks. For a thorough
treatment of the topic, the author recommends Combinatorics of train tracks by Penner
and Harer [11].

A train track � � S is an embedded 1–complex whose vertices are called switches and
edges are called branches. Branches are smooth parametrized paths, and at each switch
of � , there is a well-defined tangent space to the branches coming into the switch. The
tangent vector at the switch pointing toward the edge can have two possible directions
which divides the ends of edges at the switch into two sets. The end of a branch of �
which is incident on a switch is called incoming if the one-sided tangent vector of the
branch agrees with the direction at the switch and outgoing otherwise. Neither the set
of incoming nor the set of outgoing branches are permitted to be empty. In this paper,
whether a switch is incoming or outgoing is not part of the data in the train track, ie a
train track is unoriented.

The valence of each switch in � is at least 3, except for possibly one bivalent switch in
a closed curve component. Finally, we require that every complementary component of
S n � has a negative generalized Euler characteristic, in particular, for a complementary
component R 2 S n � ,

�.R/� 1
2
V.R/ < 0

where �.R/ is the usual Euler characteristic and V.R/ is the number of outward pointing
cusps on @.R/.

A train route is a nondegenerate smooth path in � . A train route traverses a switch only
by passing from an incoming to an outgoing edge (or vice-versa). We call a train track
� large if every component of S n � is a polygon or a once-punctured polygon, and we
call � generic if all switches are trivalent.

Algebraic & Geometric Topology, Volume 23 (2023)
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If � is a train track which is a subset of � , we write � < � and say � is a subtrack of � .
In this case we may also say that � is an extension of � . If there is a homotopy of S
such that every train route on � is taken to a train route on � we say � is carried on �
and write � � � .

Let B denote the set of branches of � . A nonnegative, real-valued function � W B!RC
is called a transverse measure on � if for each switch, � satisfies the switch condition:
for any switch, the sums of � over incoming and outgoing branches are equal.

A train track is recurrent if there is a transverse measure which is positive on every
branch, or equivalently, if each branch is contained in a closed train route.

Let ˛ be a simple closed curve which intersects � . We say ˛ intersects � efficiently
if ˛ [ � has no bigon complementary regions. A track � is transversely recurrent if
every branch of � is crossed by some simple curve ˛ intersecting � transversely and
efficiently. We call a track birecurrent if it is both recurrent and transversely recurrent.

Any positive scaling of a transverse measure is also a transverse measure. Therefore,
the set of all transverse measures when viewed as a subset of RB is a cone over
a compact polyhedron in projective space. For a recurrent train track � , let P.�/
denote the polyhedron of measures supported on � . By int.P.�// we denote the set
of weights on � which are positive on every branch. We say that � fills � if � � �
and int.P.�//� int.P.�//. Similarly, a curve ˛ fills � if ˛ � � and ˛ traverses every
branch of � .

One way to obtain a transverse measure on a train track � is as follows: Fix a reference
hyperbolic metric on S . A geodesic lamination in S is a closed set foliated by geodesics.
A geodesic lamination is measured if it supports a measure on arcs transverse to its
leaves, which is invariant under isotopies preserving the leaves. The space of all
compactly supported measured geodesic laminations on S , with suitable topology, is
known as ML.S/, and changing the reference metric on S will yield spaces which are
equivalent. A geodesic lamination � is carried on � if there is a homotopy of S taking
� to a set of train routes. In such a case, � induces a transverse measure on � , which in
turn uniquely determines �.

In this paper, we will blur the distinction between P.�/ as a subset of ML.S/, and as
a subset of the space RB

C
of nonnegative functions on the branch set B of � .

Let � be a large track. A diagonal extension of � is a track � such that � < � and every
branch of � n� is a diagonal of � , ie the endpoints of each edge in � n� terminate in the
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corner of a complementary region of � . LetE.�/ denote the set of all recurrent diagonal
extensions of � . Note that it is a finite set, and let PE.�/ denote

S
�2E.�/ P.�/. Let

int.PE.�// denote the set of measures � 2 PE.�/ which are positive on every branch
of � .

2.2 The linear algebra of train tracks

For each pseudo-Anosov homeomorphism �, there exists a train track � which is
invariant under the action of �. Under this action, � changes the weights of the
branches of � in a linear way. Thus, the action of the pseudo-Anosov homeomorphism
is able to be completely described by the train track matrix. In fact, for each pseudo-
Anosov mapping class the transition matrix M is Perron-Frobenius and the positive
eigenvector determines an invariant measure.

Definition 2.1 (Perron–Frobenius matrix) A Perron–Frobenius matrix is a matrix
with entries ai;j � 0 such that some power of the matrix has strictly positive entries.

It is also known that the eigenvalue of this eigenvector will correspond to the stretch
factor of the pseudo-Anosov map [9].

Theorem 2.2 Given a pseudo-Anosov mapping class f , there exists a train track �
invariant under the action of f such that the matrix M which determines the action
on the transverse measures is Perron–Frobenius. The positive eigenvector determines
an invariant measure corresponding to the invariant foliation and the eigenvalue is the
stretch factor.

2.3 Complex of curves

The complex of curves, defined by Harvey [3], is a combinatorial object which encodes
the intersection patterns of simple closed curves in Sg .

Definition 2.3 (complex of curves, C.Sg;n/) The complex of curves is an abstract
simplicial complex associated to a surface S . Its 1–skeleton is given by the following
data:

� Vertices There is one vertex of C.S/ for each isotopy class of essential simple
closed curves in S .

� Edges There is an edge between any two vertices of C.S/ corresponding to
isotopy classes a and b with i.a; b/D 0, ie a and b are disjoint.

Algebraic & Geometric Topology, Volume 23 (2023)
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We note that C.S/ is a flag complex, which means that kC1 vertices span a k–simplex
of C.S/ if and only if they are pairwise connected by edges. We will only make use of
the 1–skeleton of the complex of curves, and we will denote the 1–skeleton by C.S/.
By specifying that each edge has length 1, we turn C.S/ into a metric space. We let
dC.S/ denote the distance function obtained by taking shortest paths.

2.4 The nesting lemma

We are now in a position where we can state and prove the nesting lemma. This lemma
is one of the key steps to proving that the homeomorphisms constructed in this paper
are pseudo-Anosov.

Lemma 2.4 (the nesting lemma) Let � be a large , generic , birecurrent train track.
Let � W S ! S be a map such that � is carried by �. If the matrix associated to � is a
Perron–Frobenius matrix, then � is a pseudo-Anosov map.

Before we prove this lemma, we will state some lemmas from Masur and Minsky [8].
Let � be a measured lamination on a surface S . We defineN.�/ to be the union ofE.�/
over all large, recurrent subtracks � < � , and we define PN.�/D

S
�2N.�/ P.�/. The

following lemma provides a sufficient condition for when � is contained in int.PE.�//.

Lemma 2.5 [8, Lemma 4.1] There exists ı > 0 (depending only on S ) for which
the following holds. Let � < � where � is a large track. If � 2 P.�/ and , for every
branch b of � n� and b0 of � , �.b/ < ı�.b0/, then � is recurrent and � 2 int.PE.�//.

Let � and � be two large recurrent tracks such that � � � . In this case we say that the
train tracks � and � are nested. The following two lemmas tell us that when we have
train tracks which are nested, their diagonal extensions are also nested in a suitable
sense. Additionally, these lemmas tell us that the way in which the diagonal branches
cover each other is controlled.

Lemma 2.6 [8, Lemma 4.2] Let � and � be large recurrent tracks , and suppose � � � .
If � fills � , then PE.�/�PE.�/. Even if � does not fill � , we have PN.�/�PN.�/.

Lemma 2.7 [8, Lemma 4.3] Let � � � where � is a large recurrent track , and let
� 0 2E.�/ and � 0 2E.�/ be such that � 0 � � 0. Then any branch b of � 0 n � is traversed
by branches of � 0 with degree at most m0, a number which depends only on S .

The final lemma we require from Masur and Minsky is one which gives us a relation
between nesting train tracks and their distance in the complex of curves.

Algebraic & Geometric Topology, Volume 23 (2023)
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Lemma 2.8 [8, Lemma 4.4] Let ˛ and ˇ be simple , nonperipheral closed curves in
a surface S . If � is a large birecurrent train track and ˛ 2 int.PE.�// (ie ˛ is carried
on the maximal train track � so that it is carried on every branch ), then

dC.S/.˛; ˇ/� 1 D) ˇ 2 PE.�/:

In other words ,
N1.int.PE.�///� PE.�/;

where N1 denotes a radius 1 neighborhood in C.S/.

Notice that since there exist simple closed curves on the surface S which are also in
int.PE.�//, it means that we can consider a radius 1 neighborhood of int.PE.�//
in C.S/.

Before we prove Lemma 2.4, we give a brief outline. Given the train track � , we consider
a measure � which is positive on each branch. Since �.�/ fills � , it will follow that
there exists some k 2N such that �k.PE.�//� int.PE.�//. From this, it follows that
�jk.�/ fills �.j�1/k.�/, which will imply that PE.�jk.�// � int.PE.�.j�1/k.�///
for any j . At this point, we will suppose for the sake of contradiction that � is not
a pseudo-Anosov map. This would imply that there exists a curve ˛ on the surface
S disjoint from � such that there exists an m 2 N such that �m.˛/ D ˛. Using
Lemma 2.8 and the fact that PE.�jk.�//� int.PE.�.j�1/k.�/// for any j , we will
find that dC.S/.˛; �jk.˛//!1, which contradicts that there exists some m such that
�m.˛/D ˛. Therefore � is a pseudo-Anosov map.

Proof of Lemma 2.4 Let � be a measure that is positive on every branch of �.�/,
ie � 2 int.P.�.�///. Since �.�/ preserves � , � is a measure that is positive on any
branch of � , and we have int.P.�.�///� int.P.�//. This implies that �.�/ fills � .

The next paragraph follows the argument found in [8, Theorem 4.6] which shows that
if �.�/ fills � , then there exists some k 2N such that �k.PE.�//� int.PE.�//.

Suppose that � 0 2E.�/ is a diagonal extension of � . By Lemma 2.6, �.� 0/ is carried
by some Q� 2E.�/. There exists a constant c0 D c0.S/ such that for some c � c0 the
power �0 D �c takes � 0 to a train track carried by � 0, since the number of train tracks
in E.�0/ is bounded in terms of the topology of S . Let B represent the branch set of � 0,
and B� � B represent the branch set of � . In the coordinates of RB we may represent
�0 as an integer matrix M , with a submatrix M� which gives us the restriction to RB� .
Penner shows in [10] that M n

� has all positive entries, where n is the dimension jB� j.

Algebraic & Geometric Topology, Volume 23 (2023)
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In fact, Penner shows that jM n
� .x� /j � 2jx� j for any vector x� which represents a

measure on � . Indeed, M� has a unique eigenvector in the positive cone of RB� , which
corresponds to Œ.�; �/�. On the other hand, for a diagonal branch b 2BnB� , Lemma 2.7
shows that jM i .x/j �m� jxj for all x 2RB and all powers i > 0. Since � is generic,
we have that any transverse measure x on � 0 must put a positive measure on a branch
of B� . This implies that given ı > 0 there exists k1, depending only on ı and S , such
that for some k � k1 we have maxb2BnB� �

k.x/.b/ � ıminb2B� h
k.x/.b/, for any

x 2 P.� 0/. We apply this to each � 0 2E.�/, and by applying Lemma 2.5, we see that,
for an appropriate choice of ı,

�k.PE.�//� int.PE.�//:

Using the above argument, we find that �jk.�/ fills �.j�1/k.�/, from which it follows
that

(1) PE.�jk.�//� int.PE.�.j�1/k.�///

for any j .

By way of contradiction, suppose that � is not a pseudo-Anosov map. Then there exists
a curve ˛ on the surface S disjoint from � such that �m.˛/D ˛ for some m 2N.

Since there are elements of PE.�/ which are not in �k.PE.�//, it is possible to find
 2C.S/ such that  …PE.�/ and �k./2PE.�/. Then �2k./2 int.PE.�//, which
implies that dC.S/.; �2k.//� 1 by Lemma 2.8.

Since �jk./ 2 PE.�.j�1/k.�// for j � 1, we use (1) to find

�3k./ 2 PE.�2k.�//� int.PE.�k.�///;

�3k./ 2 PE.�k.�//� int.PE.�//;

�3k./ 2 PE.�/:

By Lemma 2.8, we have that for any k,

N1.int.PE.�k.�////� PE.�k.�//:

Therefore, we find that

�3k./ 2 PE.�2k.�//�N1.int.PE.�k.�////� PE.�k.�//

�N1.int.PE.�///� PE.�/:

Therefore, since  … PE.�/, we have that dC.S/.; �3k.//� 2.
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We continue inductively to show that dC.S/.; �jk.//� j � 1, which implies that as
j !1, dC.S/.; �jk.//!1. Since

dC.S/.˛; �
jk.˛//� dC.S/.; �

jk.//� dC.S/.˛; /� dC.S/.h
jk.˛/; hjk.//

D dC.S/.; �
jk.//� 2dC.S/.˛; /;

we have dC.S/.˛; �jk.˛//!1, which contradicts that there exists some m such that
�m.˛/D ˛. Therefore � is a pseudo-Anosov map.

3 Main construction on n–times punctured spheres

In this section, we will prove Theorem 1.2, that the homeomorphisms induced by evenly
spaced partitions are pseudo-Anosov, and Theorem 1.3, that the homeomorphisms
induced by partitions which reduce to an evenly spaced partition are pseudo-Anosov.

We begin with the proof of Theorem 1.2.

Theorem 1.2 Let n � 6, let qj � 2 for each j 2 f0; 1; : : : ; kg, and let f�0; : : : ; �kg
be an evenly spaced partition of f0; : : : ; n� 1g. Then

� D

kY
jD0

D
qj
�j

is a pseudo-Anosov homeomorphism of S0;n.

Proof Consider the surface S0;n for some fixed n 2N. Fix k > 1, k 2N, and fix a
partition�Df�1; : : : ; �kg of the n punctures of S0;n such that �.�i�1/D�.�.i mod k//.
We will prove that

� D

kY
iD1

Dqi�i DD
qk
�k
� � �Dq2�2D

q1
�1

is a pseudo-Anosov mapping class.

We first construct the train track � so that �.�/ is carried by � . Consider the partition
�D f�1; : : : ; �kg. Construct a k–valent pretrack by having a branch loop around each
puncture in the set �k , with each of these branches meeting in the center where they
are smoothly connected by a k–gon. See Figures 3, left, and 4, left, for examples which
correspond to pretracks from Example A.1 of the appendix. For the remaining labeled
punctures in �i , loop a branch around each puncture and have this branch turn left
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34

5

Figure 3: Constructing the train track for the map �� from Example A.1.

towards the k–valent pretrack meeting the branch of the pretrack whose label is next in
the ordering. See Figures 3, right, and 4, right, for examples which correspond to the
train tracks from Example A.1. We notice that the train track has rotational symmetry
of order k.

For each k, Dqi�i acts locally the same, by which we mean the following: Each half-
twist in Dqi�i involves a branch located around puncture b on the k–valent pretrack
and the branch located around puncture b0 which is directly next to puncture b in the
clockwise direction. As we consider a right half-twist to be positive, we notice that the
branch at puncture b will begin to turn into the branch at puncture b0, see Figures 11
and 13 for examples. Therefore, after the twist, the branch around puncture b0 is now
on the k–valent pretrack, and the branch around puncture b is directly next to the
branch at puncture b0 in the counterclockwise direction. Branches which are neither on
the k–valent pretrack nor directly clockwise to the k–valent pretrack are unaffected
by Dqi�i . Thus, after each application of Dqi�i , we arrive at a train track which is able to
be obtained by a rotation of 2�=n of our starting train track. Since � has a rotational
symmetry of order k, we notice that �.�/ is carried by � .

0

1 2

3

45

Figure 4: Constructing the train track for the map � N� from Example A.1.
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Let M� denote the matrix representing the induced action of the space of weights on � .
To prove that M� is Perron–Frobenius, fix an initial weight on each branch. For each
application ofDqi�i , the labels on the k–valent pretrack and directly next to the k–valent
pretrack in the clockwise direction will become a linear combination of the labels
associated to these two branches. In particular, let w be the weight of a branch on the
k–valent pretrack, and let w0 be the weight of the branch directly next to this branch in
the clockwise direction. After applying l half-twists, we see that the weight of branch
w is lw0C .l � 1/w and the weight of branch w0 is .l C 1/w0C lw. Since � rotates
clockwise by 2�=n after each application of Dqi�i , we know that after k applications
of �, the weight of each branch will be a linear combination of the initial weights of
each branch and the constants of this linear combination are strictly positive integers.
Equivalently, this implies that each entry in M k

� is a strictly positive integer value. This
implies that the matrix M� is Perron–Frobenius.

To finish the proof, we can see by inspection that each of the train tracks which were
constructed above are large, generic, and birecurrent. Therefore, we apply Lemma 2.4
which completes the proof that � is a pseudo-Anosov mapping class.

Using a similar argument as the proof of Theorem 1.2, we now provide a proof for
Theorem 1.3.

Theorem 1.3 Let n� 7, let qj � 2 for each j 2 f0; 1; : : : ; kg, and let

f�0; : : : ; �k0 ; : : : ; �kg

be a partition of f0; 1; : : : ; n� 1g that reduces to an evenly spaced partition. Then

� D

kY
jD0

D
qj
�j

is a pseudo-Anosov homeomorphism of S0;n.

Proof Fix some value of n2N, some k>1, k2N, and a partition�Df�1; : : : ; �kg of
the n punctures of S0;n such that �.�i�1/D�.�.i mod k//. We perform the modification
outlined in the statement of the theorem to obtain a partition �0D f�01; : : : ; �

0
k
; �0
kC1
g,

on the .nC1/–times punctured sphere S0;nC1, which defines the map

�0 D

kC1Y
iD1

D
q0
i
�i DD

q0
kC1

�0
kC1

D
q0
k

�0
k

� � �D
q0
2

�0
2

D
q0
1

�0
1

:

We prove that �0 is a pseudo-Anosov mapping class.
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3

45

6

Figure 5: Constructing the train track for the map  .

We first construct the train track � 0 so that �0.� 0/ is carried by � 0. We begin by
considering the train track � associated to the map � D

Qk
iD1D

qi
�i defined by the

partition �. We then add in a new puncture onto the sphere between punctures k� 1
and k, and relabel the punctures. See Figures 5, left, and 6, left, for examples which
correspond to the pretracks from Example A.2. Add a branch from puncture kC 1 so
that it turns tangentially into the k–valent pretrack meeting the same branch on the
pretrack as the branches associated to punctures 1; : : : ; k � 1. See Figures 5, right,
and 6, right, for examples which correspond to the train tracks from Example A.2. We
denote this modified train track by � 0.

To show that �0.� 0/ is carried by � 0, we notice that by the same reasoning in the proof
of Theorem 1.2 that for each 1� i < kC1, the application of Dq

0
i

�0
i

will result in a train
track which is obtained through a rotation by 2�=n of our starting train track. After
the first k applications of Dq

0
i

�0
i
, we have a resulting train track which is obtained by a

6

0

1

2

34

5

Figure 6: Constructing the train track for the map � N�0 .
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rotation by 2�k=n of our starting train track, which is not quite � 0. By applying the
final twist Dq

0
kC1

�0
kC1

, we find �0.� 0/D � 0 and thus �0.� 0/ is carried by � 0. See Figures 15
and 17 for examples.

By the same reasoning as in the proof of Theorem 1.2, the matrix representing the
induced action on the space of weights on � 0 will be Perron–Frobenius. To finish the
proof, we note that each of the train tracks that we have constructed are large, generic,
and birecurrent. Therefore, we can apply Lemma 2.4 which completes the proof that
the map is a pseudo-Anosov mapping class.

4 Modifications of construction

By considering the constructions described in Section 3, we notice that there are
additional modifications one can make to the construction to obtain more pseudo-
Anosov mapping classes.

Recall that in Theorem 1.3, we added extra branches to the same branch on the j�kj–
valent pretrack. The first modification in this section is obtained by allowing additional
branches to be added to any of the branches of the j�kj–valent pretrack. To make this
precise, we say a partition f�0; : : : ; �kg of f0; 1; : : : ; n� 1g 2–reduces to an evenly
spaced partition if there exists an n0 2 f0; 1; : : : ; n� 1g such that f�00; �

0
1; : : : ; �

0
k
g is

the partition of f0; 1; : : : ; n0� 1g[ f.n0C 1/� 1; .n0C 2/� 1; : : : .n� 1/� 1g defined
by

(2) �0j D fi j i 2 �j and i < n0g[ fi � 1 j i 2 �k and i > n0g;

and f�00; �
0
1; : : : ; �

0
k
g reduces to an evenly spaced partition. Similarly, we can iteratively

define a partition which k–reduces to an evenly spaced partition. Theorem 1.3 holds
for any partition which k-reduces to an evenly spaced partition, and the proof follows
by considering a modification of the train track analogous to the modification found in
the proof of Theorem 1.3.

To obtain a second modification, consider a map � from any of the possible maps found
in Theorem 1.3 or any of the modifications outlined above. It is possible to find an
additional pseudo-Anosov map which has the same train track as �. Since the train
track rotates by 2�=n for the first k applications of Dq

0
i

�0
i
, we can define a map that will

continue to rotate the train track by 2�=n in place of doing the final twist(s) Dq
0
kC1

�0
kC1

.
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For example, consider the first map from Example A.2. After applying D2�0
3
D2�0

2
D2�0

1
,

where �0 D ff1; 5g; f2; 6g; f3; 7gg D f�01; �
0
2; �
0
3g, the train track has rotated by 6�=7.

We can apply the rotations associated to punctures 4 and 1 next, then around puncture
5 and 2, around punctures 6 and 3, and finally around punctures 7 and 4, which will
have rotated our train track by a full rotation. In other words, you will obtain a new
“partition” containing the sets �00i D fi; i Cd7=3eg for 1� i � 7. More precisely, we
obtain the following additional construction:

Theorem 4.1 Consider the surface S0;n. Consider one of the maps from Theorem 1.2,
in particular , consider a partition of the n punctures into 1 < k < n sets f�igkiD1 such
that the partition is evenly spaced. Apply any number of applications of Theorem 1.3 to
obtain a new partition �0 D f�01; : : : ; �

0
k
; �0
kC1

; : : : ; �0
kCl
g, where j�kCj j< j�1j for

all 1� j � l which defines a map on the p–sphere , where p D
PkCl
iD1 j�i j. Consider

the train track � 0 associated to this map. Define the partition �00 to be the partition
containing the sets �00i D fi; i Cdp=ke; : : : ; i C .j�1j � 1/dp=keg, where 1 � i � p.
Then �00 defines the pseudo-Anosov mapping class

�0 D

pY
iD1

D
q00
i

�00
i

DD
q00
p

�00
p
� � �D

q00
2

�00
2

D
q00
1

�00
1

on S0;p, where q00j D fq
00
j1
; : : : ; q00jl g is the set of powers associated to each �00i .

Remark 4.2 The proofs for the modifications found in this section follow the same
format as the proofs for the theorems found in Section 3.

5 Number-theoretic properties

In this section, we prove Theorem 1.4 which describes the number-theoretic properties
associated to the maps arising from Theorems 1.2 and 1.3. To prove Theorem 1.4,
we provide explicit examples of pseudo-Anosov mapping classes resulting from the
constructions outlined in Theorems 1.2 and 1.3 which have the specific number-theoretic
properties we are looking for. An important consequence of Theorem 1.4 is that the
construction outlined in this paper differs from the constructions of both Penner and
Thurston.

5.1 Number-theoretic properties

We begin by introducing two properties of pseudo-Anosov homeomorphisms: the
placement of the Galois conjugates of the stretch factor, and the trace field.
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5.1.1 Galois theory We recall that if K is a field containing the subfield F , then
K is said to be an extension field (or simply an extension) of F . We denote this by
K=F . Let Aut.K=F / be the collection of automorphisms of K which fix F . If K=F
is a field extension, then K is said to be Galois over F and K=F is a Galois extension
if jAut.K=F /j D ŒK W F �. In a Galois extension K=F , the other roots of the minimal
polynomial over F of any element ˛ 2 K are precisely the distinct conjugates of ˛
under the Galois group K=F . Therefore, the Galois conjugates are precisely the other
roots of the minimal polynomial over F of an element ˛ 2K.

Let � be a pseudo-Anosov homeomorphism with stretch factor �. Let L=Q be the
Galois extension where L is the splitting field of the minimal polynomial of �. Whether
there exist Galois conjugates of the stretch factor on the unit circle is a number-theoretic
property of �.

5.1.2 Trace fields The trace field of a linear group is the field generated by the traces
of its elements. In particular the trace field of a group � � SL2.R/ is the subfield of R,

ftr.A/ j A 2 �g:

Work by Hubbard and Masur shows that for each pseudo-Anosov homeomorphism,
one can obtain a corresponding flat structure [4]. An affine diffeomorphism is a diffeo-
morphism which preserves the flat structure, and they form a group which we call the
affine diffeomorphism group. See [15] for a discussion of flat surfaces and the affine
diffeomorphism group. Kenyon and Smillie [6] proved that if the affine diffeomorphism
group of a surface contains an orientation preserving pseudo-Anosov element f with
largest eigenvalue �, then the trace field is Q.�C��1/.

5.2 Proof of Theorem 1.4

We now provide a proof of Theorem 1.4 by providing explicit examples of maps
satisfying each of the number-theoretic properties.

Theorem 1.4 For any of the following four statements , there exists a pseudo-Anosov
homeomorphism whose stretch factor � satisfies the statement :

(1) Q.�C��1/ is totally real and there exists no Galois conjugates of � on the unit
circle.

(2) Q.�C��1/ is not totally real and there exist no Galois conjugates of � on the
unit circle.
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(3) Q.�C ��1/ is totally real and there exist Galois conjugates of � on the unit
circle.

(4) Q.�C��1/ is not totally real and there exist Galois conjugates of � on the unit
circle.

These homeomorphisms are constructed on the surfaces S0;6, S0;7, S0;8, and S0;8,
respectively.

Proof First, we provide an example where the Galois conjugates are never on the unit
circle, and that the field Q.�C 1=�/ is totally real. This proves case (1).

Case (1) Consider the pseudo-Anosov map �2;2;2 on S0;6 which is induced by the
partition �2;2;2 D ff0; 3g; f1; 4g; f2; 5gg as studied in Example A.1,

�2;2;2 DD
2
5D

2
2D

2
4D

2
1D

2
3D

2
0 :

See Example A.1 for details. We find that the induced action on the space of weights
on �2;2;2 is given by the matrix

M D

0BBBBBBB@

3 2 0 0 0 2

6 3 2 4 0 4

12 6 3 6 0 8

0 0 2 3 2 0

4 0 4 6 3 2

6 0 8 12 6 3

1CCCCCCCA
which has the characteristic polynomial

p2;2;2 D .x� 1/
2.xC 1/2.x2� 18xC 1/:

The polynomial p2;2;2 is the characteristic polynomial associated to the action of this
map on the train track �2;2;2. We notice that the leading eigenvalue �2;2;2 is a root of
the factor

p�2;2;2;�2;2;2.x/D x
2
� 18xC 1;

which is an irreducible polynomial with real roots. Since �2;2;2 2 R is not on the
unit circle, as �2;2;2 > 1, ��12;2;2 is also not on the unit circle. Therefore, the Galois
conjugates of the stretch factor are not on the unit circle.

To show that Q.�2;2;2C��12;2;2/ is totally real, we notice that we can write

p2;2;2

x
D

�
xC

1

x

�
� 18D q

�
xC

1

x

�
:
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By considering the roots of q.y/D y�18, we notice that the only root is yD 18 which
implies that the field Q.�2;2;2C ��12;2;2/ is totally real. This completes the proof of
case (1).

Next, we will provide an example where the Galois conjugates are never on the unit
circle, and that the field Q.�C��1/ is not totally real. This will prove case (2).

Case (2) We consider the map �3;3;1 DD22D
2
6D

2
4D

2
1D

2
5D

2
3D

2
0 on S0;7 induced by

the partition �3;3;1 D ff0; 3; 5g; f1; 4; 6g; f2gg from Example A.2. We find that the
induced action on the space of weights on �3;3;1 is given by the matrix

M D

0BBBBBBBBB@

3 2 0 0 0 0 2

6 3 2 4 0 0 4

12 6 3 6 0 0 8

0 0 2 3 2 4 0

0 0 4 6 3 6 0

4 0 0 0 2 3 2

6 0 0 0 4 6 3

1CCCCCCCCCA
which has the characteristic polynomial

p3;3;1 D .xC 1/.x
3
� 15x2C 7x� 1/.x3� 7x2C 15x� 1/:

The polynomial p3;3;1 is the characteristic polynomial associated to the action of this
map on the train track We notice that the leading eigenvalue, �3;3;1, is a root of the
polynomial

p�3;3;1;�3;3;1.x/D x
3
� 15x2C 7x� 1:

The roots of this polynomial are

5C 1
3

3
p
2916� 12

p
19C

�
2
3

�2=3 3p
243C

p
93;

5C 1
3
.�1C i

p
3/

3
p
2916� 12

p
19�

.1C i
p
3/
� 3p1

2
.243C

p
93/
�

32=3
;

5� 1
3
.�1C i

p
3/

3
p
2916� 12

p
19C

.1C i
p
3/
� 3p1

2
.243C

p
93/
�

32=3
:

By the rational root theorem,

p� N�0 ;�.x/D x
3
� 15x2C 7x� 1

is irreducible over Q. None of the roots of p�3;3;1;�3;3;1.x/ are on the unit circle, so
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we have that there are no Galois conjugates of the stretch factor on the unit circle. We
now consider the polynomial�

1

x3

�
.x3� 15x2C 7x� 1/.x3� 7x2C 15x� 1/D x3� 22x2C 127x� 276:

We rewrite this polynomial as

q
�
xC

1

x

�
D

�
xC

1

x

�3
� 22

�
xC

1

x

�2
C 124

�
xC

1

x

�
� 232:

We calculate that the roots of the polynomial q.y/ are

1
3

�
22C

3
p
1801� 9

p
26554C

3
p
1801C 9

p
26554

�
;

1
6

�
44C i.

p
3C i/

3
p
1801� 9

p
26554C .�1� i

p
3/

3
p
1801C 9

p
26554

�
;

1
6

�
44C .�1� i

p
3/

3
p
1801� 9

p
26554C i.

p
3C i/

3
p
1801C 9

p
26554

�
:

By unique factorization, q.y/ is irreducible. Additionally, since two of the roots are
imaginary, the field Q.�3;3;1C��13;3;1/ is not totally real. This completes the proof of
case (2).

We now provide an example where there are Galois conjugates of the stretch factor on
the unit circle, and that the field Q.�C��1/ is totally real. This will prove case (3).

Case (3) We now consider the pseudo-Anosov map

�2;2;2;1;1 DD
2
4D

2
3D

2
7D

2
2D

2
6D

2
1D

2
5D

2
0

on S0;8, which is induced by the partition �2;2;2;1;1 D ff0; 5g; f1; 6g; f2; 7g; f3g; f4gg.
This is first map from Example A.1 with the modification from Theorem 1.3 applied
twice so that there are two partitions with one element each. The train track �2;2;2;1;1,
where �2;2;2;1;1.�2;2;2;1;1/ is carried by �2;2;2;1;1, is depicted in Figure 7.

The matrix associated to this map is

M D

0BBBBBBBBBBB@

3 2 0 0 0 0 0 2

6 3 2 4 0 0 0 4

12 6 3 6 0 0 0 8

0 0 2 3 2 0 0 0

0 0 4 6 3 2 0 0

0 0 8 12 6 3 2 0

4 0 16 24 12 6 3 2

6 0 32 48 24 12 6 3

1CCCCCCCCCCCA
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Figure 7: The train track associated to �2;2;2;1;1.

which has the characteristic polynomial

p2;2;2;1;1.x/D .xC 1/
4.x4� 28x3C 6x2� 28xC 1/:

The polynomial p2;2;2;1;1.x/ is the characteristic polynomial associated to the action
of this map on the train track �2;2;2;1;1. Our leading eigenvalue �2;2;2;1;1 is a root of

p�2;2;2;1;1;�2;2;2;1;1.x/D x
4
� 28x3C 6x2� 28xC 1:

The roots of this polynomial are

��1 D 7C 4
p
3� 2

p
24C 14

p
3; �D 7C 4

p
3C 2

p
24C 14

p
3;

x1 D 7� 4
p
3� 2i

p
14
p
3� 24; x2 D 7� 4

p
3C 2i

p
14
p
3� 24:

To prove that p�2;2;2;1;1;�2;2;2;1;1.x/ is irreducible we use the following fact, a proof of
which is found in [1].

Fact 5.1 If f .x/ 2 ZŒx� is primitive of degree d � 1 and there are at least 2d C 1
different integers a such that jf .a/j is 1 or a prime number , then f .x/ is irreducible
in QŒx�.

Thus, it suffices find 9 values of x such that p�; .x/ is prime. Indeed, the following
tuples .x; p�2;2;2;1;1;�2;2;2;1;1.x// contain 9 x–values such that p�2;2;2;1;1;�2;2;2;1;1.x/
is prime:

.�24; 722977/; .�16; 182209/; .�12; 70321/; .0; 1/; .2;�239/;

.6;�4703/; .8;�10079/; .24;�52511/; .38; 556321/:
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Figure 8: The train track associated to �3;3;1;1.

Therefore, p�2;2;2;1;1;�2;2;2;1;1.x/ is irreducible over Q. Notice that jx1j D 1 and
jx2j D 1, which we can verify by direct computation or by applying [7, Theorem 1].
This implies that there are Galois conjugates of the stretch factor on the unit circle. We
now show that the field Q.�2;2;2;1;1C��12;2;2;1;1/ is totally real by writing

p�; 

x
D

�
xC

1

x

�2
� 28

�
xC

1

x

�
C 4D q

�
xC

1

x

�
:

We notice that the roots of q.y/D y2� 28yC 4 are

14� 8
p
3 and 14C 8

p
3;

which implies that q.y/ is irreducible by unique factorization. Additionally, since both
roots are real we find that the field Q.�2;2;2;1;1C��12;2;2;1;1/ is totally real.

Lastly, we provide two examples where there are Galois conjugates of the stretch factor
on the unit circle, and where the field Q.�C��1/ is not totally real. This will prove
case (4).

Case (4) We begin with an example on S0;8 where there are Galois conjugates of
the stretch factor on the unit circle, and where the field Q.�C 1=�/ is not totally
real. We consider the second map from Example A.1 and apply the modification from
Theorem 1.3 twice to obtain the partition �3;3;1;1D ff0; 4; 6g; f1; 5; 7g; f2g; f3gg. This
induces the map

�3;3;1;1 DD
2
3D

2
2D

2
7D

2
5D

2
1D

2
6D

2
4D

2
0 :

The train track �3;3;1;1, where �3;3;1;1.�3;3;1;1/ is carried by �3;3;1;1, is depicted in
Figure 8.
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The matrix associated to this map is

M D

0BBBBBBBBBBB@

3 2 0 0 0 0 0 2

6 3 2 0 0 0 0 4

12 6 3 2 4 0 0 8

24 12 6 3 6 0 0 16

0 0 0 2 3 2 4 0

0 0 0 4 6 3 6 0

4 0 0 0 0 2 3 2

6 0 0 0 0 4 6 3

1CCCCCCCCCCCA
which has the characteristic polynomial

p�3;3;1;1.x/D x
8
� 24x7C 156x6� 424x5� 186x4� 424x3C 156x2� 24xC 1:

The polynomial p�3;3;1;1.x/ is the characteristic polynomial associated to the action of
this map on the train track �3;3;1;1. To show that p�3;3;1;1.x/ is irreducible, it suffices
find 17 values of x such that p�3;3;1;1.x/ is prime by Fact 5.1. Indeed, the following
tuples .x; p�3;3;1;1.x// contain 17 x–values such that p�3;3;1;1.x/ is prime:

.�160; 496582824202141441/; .�102; 14653782370731169/;

.�90; 5537981240501761/; .�76; 1495649690458849/;

.�52; 81377571089569/; .�46; 32071763417569/; .�40; 11167704826561/;

.�22; 134573887009/; .0; 1/; .8;�7522751/; .26; 59124433057/;

.72; 502376857985089/; .86; 2218259932983937/;

.90; 3237148147105441/; .120; 34853759407811521/;

.158; 331770565001360449/; .164; 449704327465370209/:

Therefore, we have that p�3;3;1;1.x/ is irreducible, and the leading eigenvalue �3;3;1;1
is a root of �3;3;1;1. By applying [7, Theorem 1] we find that there are roots of this
polynomial which are on the unit circle, and thus, there exist Galois conjugates of
�3;3;1;1 on the unit circle. We now write

p�3;3;1;1

x4
D

�
xC

1

x

�4
� 24

�
xC

1

x

�3
C 152

�
xC

1

x

�2
� 352

�
xC

1

x

�
� 496:

We prove that q.y/D y4� 24y3C 152y2� 352y � 496 is an irreducible polynomial
as follows. By Gauss’s lemma, a primitive polynomial is irreducible over the integers if
and only if it is irreducible over the rational numbers. Since q.y/ is primitive, it suffices
to show that q.y/ is irreducible over the integers. The rational root theorem gives us
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that q.y/ has no roots, so if it is reducible then q.y/D .y2C ayC b/.y2C cyC d/.
Therefore, suppose that q.y/D .y2C ayC b/.y2C cyCd/. Expanding gives rise to
the system of equations

(3) aC c D�24; acC bC d D 152; ad C bc D�352; bd D�496:

Substituting aD�24� c and b D�496=d into the second and third equations give

(4) �24c � c2�
496

d
C d D 152; .�24� c/d �

496c

d
D�352:

We solve for c in the second equation to find

c D
24d2� 352d

�d2� 496
:

Substituting this into the first equation gives

�24

�
24d2� 352d

�d2� 496

�
d �

�
24d2� 352d

�d2� 496

�2
d C d2� 152d � 496D 0;

which has no integer roots. Therefore, there is no d satisfying the conditions we require,
so q.y/ is irreducible. Finally, by using the formulas for the roots of a quartic equation,
we see that q.y/ has two imaginary roots. Therefore the field Q.�3;3;1;1C��13;3;1;1/ is
not totally real.

We end with an example on S0;10 where there are Galois conjugates of the stretch
factor on the unit circle, and where the field Q.�C 1=�/ is not totally real. For this
example, we will apply the modification from Theorem 1.3 to the map associated to
the partition

�3;3;3 D ff1; 4; 7g; f2; 5; 8g; f3; 6; 9gg

to obtain the partition

�3;3;3;1 D ff1; 5; 8g; f2; 6; 9g; f3; 7; 10g; f4gg:

This induces the map

�3;3;3;1 DD4D10D7D3D9D6D2D8D5D1:

The train track �3;3;3;1, where �3;3;3;1.�3;3;3;1/ is carried by �3;3;3;1, is depicted in
Figure 9.
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Figure 9: The train track associated to �3;3;3;1.

The matrix associated to this map is

M D

0BBBBBBBBBBBBBBB@

3 2 0 0 0 0 0 0 0 2

6 3 2 0 0 0 0 0 0 4

12 6 3 2 4 0 0 0 0 8

24 12 6 3 6 0 0 0 0 16

0 0 0 2 3 2 4 0 0 0

0 0 0 4 6 3 2 4 0 0

0 0 0 8 12 6 3 6 0 0

0 0 0 0 0 0 2 3 2 0

4 0 0 0 0 0 4 6 3 2

6 0 0 0 0 0 8 12 6 3

1CCCCCCCCCCCCCCCA
which has the characteristic polynomial

p 3;3;3;1.x/

D x10�30x9C285x8�1864x7�30x6C204x5�30x4�1864x3C285x2�30xC1:

The polynomial p�3;3;3;1.x/ is the characteristic polynomial associated to the action of
this map on the train track �3;3;3;1. To show that p�3;3;3;1.x/ is irreducible, it suffices
to find 21 values of x such that p�3;3;3;1.x/ is prime by Fact 5.1. Indeed, the following
tuples .x; p�3;3;3;1.x// contain 21 x–values such that p�3;3;3;1.x/ is prime:

.�224; 362492550167302377983553/; .�208; 174468986764240268082529/;

.�168; 21295969891012540121329/; .�160; 13184110259956391044801/;

.�76; 9311115506417745721/; .�72; 5528387844285055921/;

.�54; 351062674729634953/; .�52; 245103960106710121/;

.�12; 405908347321/; .�10; 87091192801/; .0; 1/; .2;�189671/;
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.6;�285219647/; .24; 6967292292721/; .74; 3161394113461923721/;

.186; 41960187610521563501353/; .204; 107295840626496890031721/;

.216; 191678753902872238701553/; .234; 431604542240603942600521/;

.258; 1160267613906359066071321/; .264; 1464201236305006987479121/:

Therefore, we have that p�3;3;3;1.x/ is irreducible; thus the leading eigenvalue �3;3;3;1
is a root of p�3;3;3;1.x/. Applying [7, Theorem 1] we find that there are roots of this
polynomial which are on the unit circle. We now write

p 3;3;3;1

x5
D

�
xC

1

x

�5
�30

�
xC

1

x

�4
C280

�
xC

1

x

�3
C1744

�
xC

1

x

�2
�880

�
xC

1

x

�
�3307:

We rewrite the above as q.y/D y5� 30y4C 280y3C 1744y2� 880y � 3307. To see
that q.y/ is irreducible over Q, it suffices to show that there are 11 values of y such
that q.y/ is prime. Indeed, the following tuples .y; q.y// contain 11 y–values such
that q.y/ is prime:

.�12;�1096363/; .�10;�500107/; .�6;�42379/;

.�4; 1493/; .�2:2677/; .0;�3307/; .2; 3701/;

.4; 32341/; .14; 479861/; .16; 658453/; .22; 1928821/:

Finally, we notice that the discriminant of the polynomial q.y/ is calculated to be

�10301707504334020544219:

As the discriminant is negative, we know that there must exist nonreal roots; therefore
the field Q.�3;3;3;1C��13;3;3;1/ is not totally real.

As we have provided explicit examples of pseudo-Anosov homeomorphisms for each
case of Theorem 1.4, we have completed the proof.

6 Construction on surfaces of higher genus

In this section, we prove Theorem 1.1. To prove this theorem, we begin by taking the
map � on S0;8 found in Theorem 1.4(4) and show that by further puncturing S0;8, we
obtain pseudo-Anosov homeomorphisms which differ from the Penner and Thurston
constructions on surfaces S0;n for n� 8. Furthermore, we lift the constructed pseudo-
Anosov mapping classes on S0;2gC2 to pseudo-Anosov mapping classes on surfaces of
genus g > 0 through a branched cover by treating the marked points as punctures; see
Figure 1 for an example. A branched cover Sg;0! S0;2gC2 is a true covering map in
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the complement of a finite set of points of S0;2gC2. These points are called the branch
points. We now provide a proof for Theorem 1.1.

Theorem 1.1 Let S be either S0;n for n� 8, or Sg;k for g � 3 and k � 0. Then there
exists a pseudo-Anosov homeomorphism �S on S with stretch factor ��S such that

(i) the trace field Q.��S C�
�1
�S
/ is not totally real , and

(ii) there exist Galois conjugates of ��S on the unit circle.

In particular , no power of �S arises from either Penner’s or Thurston’s constructions.

Proof In the proof of Theorem 1.4(4), we have already shown this theorem to be
true for the surfaces S0;8 and S0;10. To show that there exists a pseudo-Anosov
homeomorphism on punctured spheres S0;n where n� 9, we consider the map from
Theorem 1.4(4) on S0;8.

Let � be the pseudo-Anosov homeomorphism of S0;8 found in Theorem 1.4(4). For
any pseudo-Anosov homeomorphism of a surface S , the set of periodic points is dense
in S [2]. Since dense sets in a surface contain an infinite number of elements, this
implies that there must be at least n� 8 periodic points. There exists a power of the
pseudo-Anosov map, �k , which fixes the n�8 periodic points. If we delete these n�8
fixed points, �k restricts to a pseudo-Anosov map on an n–times punctured sphere.
Additionally, the foliations from the map � on S0;8 are the same foliations as for the
map �k on S0;n, but now the stretch factor is �k . Since the algebraic properties are
invariant under powers of the pseudo-Anosov homeomorphism, we see that we have
proven the claim for surfaces S0;n for n� 9.

From the above, we have the desired pseudo-Anosov mapping classes for all spheres
with at least 8 punctures. The hyperelliptic involution of Sg induces a branched double
cover Sg ! S0;2gC2, where S0;2gC2 is a sphere with 2g C 2 marked points. The
pseudo-Anosov maps we constructed above for S0;2gC2 lift to pseudo-Anosov maps
on Sg with the same stretch factor. Therefore, we have that the same number-theoretic
properties hold for the pseudo-Anosov maps on surfaces Sg;0, where g � 3. Since
we have pseudo-Anosov maps on a closed surface of genus g, we once again have
that periodic points are dense. Using a similar argument as above, this implies that
we may puncture the surface of genus g any number of times, to obtain the desired
pseudo-Anosov mapping classes on surfaces Sg;k for g � 3 and k � 0.
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Appendix Introductory examples

In this section, we present two detailed examples on how to apply Theorems 1.2
and 1.3. Consider the six-times punctured sphere. We will begin by constructing two
pseudo-Anosov maps on the six-times punctured sphere using Theorem 1.2.

Example A.1 Consider the six-times punctured sphere and label the punctures of
the sphere as introduced in Figure 2. Up to spherical symmetry, there are two unique
partitions of the six punctures so that the labels of the punctures are evenly spaced,
namely

�D ff0; 3g; f1; 4g; f2; 5gg D f�1; �2; �3g

and
N�D ff0; 2; 4g; f1; 3; 5gg D f N�1; N�2g:

Recall that we define the half-twist associated to puncture j as the half-twist around
the curve separating punctures j and j � 1. Therefore, these partitions can define the
two maps,

� DD25D
2
2D

2
4D

2
1D

2
3D

2
0 DD

2
�3
D2�2D

2
�1
;

and
� N� DD

2
5D

2
3D

2
1D

2
4D

2
2D

2
0 DD

2
N�2
D2N�1 ;

respectively. We prove that both maps are pseudo-Anosov.

We first prove that ��DD2�3D
2
�2
D2�1 is a pseudo-Anosov map on S0;6. To prove that

�� is a pseudo-Anosov map, we find a train track �� on S0;6 so that ��.��/ is carried
by �� and show that the matrix presentation of �� in the coordinates given by �� is a
Perron–Frobenius matrix.

0 1

2

34

5

Figure 10: Constructing the train track for the map ��.
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a b

c

de

f

→

3a + 2f

b

c + 2d

2c + 3de

2a + f

→

3a + 2f b

c + 2d

2c + 3de

2a + f

↓
3a + 2f + 2b 2(3a + 2f) + 3b

c + 2d

2c + 3d + 2e2(2c + 3d) + 3e

2a + f←

3a + 2f + 2b 2(3a + 2f) + 3b

c + 2d

2c + 3d + 2e2(2c + 3d) + 3e

2a + f

←

3a + 2f + 2b 2(c + 2d)+

3b + 2(3a + 2f)

3(c + 2d)+

2(3b + 2(3a + 2f))

2c + 3d + 2e2(2a + f)+

2(2c + 3d) + 3e

3(2a + f)

2(2(2c + 3d) + 3e)

↓
3a + 2f + 2b 2(c + 2d)+

3b + 2(3a + 2f)

3(c + 2d)+

2(3b + 2(3a + 2f))

2c + 3d + 2e2(2a + f)+

2(2c + 3d) + 3e

3(2a + f)

2(2(2c + 3d) + 3e)

Figure 11: The train track ��.��/ is carried by ��.

First, we describe how we construct the train track for the map �� based on the
partition �. Notice that � has three subsets containing two punctures. As the punctures
in each partition are such that ji � j j � 2 mod 6, the twists associated to the punctures
in each subset are disjoint. Since there are two twists in each subset and the partition
is evenly spaced, the train track has rotational symmetry of order two. Therefore,
we construct a two-valent pretrack around the punctures labeled 2 and 5, pictured in
Figure 10, left. Since there are three subsets, there are two branches turning tangentially
into each of the two nodes on the two-valent pretrack, where these branches will turn
left towards the pretrack, pictured in Figure 10, right.

The series of images in Figure 11 depict the train track �� and its images under
successive applications of the Dehn twists associated to ��. These images prove that
�.�/ is carried by ��, and for every application of D2�i , the train track �� rotates
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0

1 2

3

45

Figure 12: Constructing the train track for the map � N�.

clockwise by 2�=6. By keeping track of the weights on ��, we calculate that the
induced action on the space of weights on �� is given by the matrix

AD

0BBBBBBB@

3 2 0 0 0 2

6 3 2 4 0 4

12 6 3 6 0 8

0 0 2 3 2 0

4 0 4 6 3 2

6 0 8 12 6 3

1CCCCCCCA
:

Note that the space of admissible weights on �� is the subset of R6 given by positive real
numbers a, b, c, d , e and f such that aCbCf D cCdCe. The linear map described
above preserves this subset. The square of the matrix A is strictly positive, which
implies that the matrix is Perron–Frobenius. In fact, the top eigenvalue is 9C 4

p
5,

which is associated to a unique irrational measured lamination F carried by �� that is
fixed by ��. Lastly, since the train track �� is large, generic, and birecurrent, we can
apply Lemma 2.4 which finishes the proof that this map is pseudo-Anosov.

Notice that we can perform each of the half twists to any power and still have the exact
same train track constructed above. However, the labels associated to the branches will
subsequently increase or decrease in value according to how many twists are applied to
each curve. Since all the twists are positive, we still have that all values in the resulting
matrix will be positive and will be Perron–Frobenius. An application of Lemma 2.4
will give our desired result.

We will now show that � N� DD2N�2D
2
N�1

is a pseudo-Anosov on S0;6, which follows a
similar argument as above.

We again analyze the partition N� as it determines the construction of our train track � N�.
Notice that N� has two subsets containing three twists each. Since there are three
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ef

a

b c

d

→

2d + 3e2a + f

3a + 2f

b + 2c 2b + 3c

d + 2e

→

2d + 3e2a + f

3a + 2f

b + 2c 2b + 3c

d + 2e

↓

2(2a + f)+

2d + 3e

3(2a + f)+

2(2d + 3e)

2(b + 2c)+

3a + 2f

3(b + 2c)+

2(3a + 2f)

2(d + 2e)+

2b + 3c

3(d + 2e)+

2(2b + 3c)

←

2(2a + f)+

2d + 3e

3(2a + f)+

2(2d + 3e)

2(b + 2c)+

3a + 2f

3(b + 2c)+

2(3a + 2f)

2(d + 2e)+

2b + 3c

3(d + 2e)+

2(2b + 3c)

Figure 13: The train track � N�.� N�/ is carried by � N�.

punctures in each subset and the partition is evenly spaced, the train track has rotational
symmetry of order three. Therefore, we will construct a three-valent pretrack around
the punctures labeled 1, 3 and 5, pictured in Figure 12, left. Since there are two
subsets, there is one branch turning tangentially towards each of the three nodes on the
three-valent pretrack, where these branches will be turning left towards the pretrack,
pictured in Figure 12, right.

The series of images in Figure 13 depict the train track � N� and its images under
successive applications of the Dehn twists associated to � N�. These images prove that
� N�.� N�/ is indeed carried by � N�. We again notice that for every application of D2

N�i
, the

train track � N� rotates clockwise by 2�=6. By keeping track of the weights on � N�, we
calculate that the induced action on the space of weights on � is given by the matrix

B D

0BBBBBBB@

3 2 4 0 0 2

6 3 6 0 0 4

0 2 3 2 4 0

0 4 6 3 6 0

4 0 0 2 3 2

6 0 0 4 6 3

1CCCCCCCA
:
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0

1

2

3

45

6

Figure 14: Constructing the train track for the map  .

The space of admissible weights on � N� is the subset of R6 given by positive real
numbers a, b, c, d , e and f such that b � a, d � c and f � e are all positive and
satisfy the triangle inequalities. The linear map described above preserves this subset.
The square of the matrix B is strictly positive, which implies that the matrix is Perron–
Frobenius. The top eigenvalue is 7C 4

p
3, which is associated to a unique irrational

measured lamination F carried by � N� that is fixed by � N�. As the train track is large,
generic, and birecurrent, we may apply Lemma 2.4 to finish the proof that this map is
pseudo-Anosov.

We now modify the pseudo-Anosov maps from Example A.1 to find two pseudo-Anosov
maps on the seven-times punctured sphere. To achieve this, we apply Theorem 1.3
once to each of the maps found in Example A.1. For each of these maps, we note that
we can apply the modification more than once to obtain additional pseudo-Anosov
maps defined on spheres with more punctures.

Example A.2 We consider the seven-times punctured sphere with the labeling as
introduced in Theorem 1.2. After applying Theorem 1.3 to the two partitions found in
Example A.1, we obtain two partitions

�0 D ff0; 4g; f1; 5g; f2; 6g; f3gg D f�01; �
0
2; �
0
3; �
0
4g;

and
N�0 D ff0; 3; 5g; f1; 4; 6g; f2gg D f N�01; N�

0
2; N�
0
3g:

We begin by proving that the ��0 DD2�0
4
D2�0

3
D2�0

2
D2�0

1
induced by the partition �0 is

pseudo-Anosov. First, we describe how to construct the train track associated to ��0 ,
denoted by ��0 , from the train track �� associated to the map �� from the previous
example. Consider the train track � and place an extra puncture between the punctures
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a

b

c

d

ef

g

→

3a + 2g

b

c

d + 2e

2d + 3ef

2a + g

→

3a + 2g

b

c

d + 2e

2d + 3ef

2a + g

↓

3a + 2b + 2g

3b + 2(3a + 2g)

c

d + 2e

2d + 3e + 2f2(2d + 3e) + 3f

2a + g

←

3a + 2b + 2g

3b + 2(3a + 2g)

c

d + 2e

2d + 3e + 2f2(2d + 3e) + 3f

2a + g

←

3a+ 2b+ 2g

3b+ 2(3a+ 2g) + 2c

2(3b+ 2(3a+ 2g))+

3c

d+ 2e

2d+ 3e+ 2f2(2a+ g)+

2(2d+ 3e) + 3f

3(2a+ g)+

2(2(2d+ 3e) + 3f)

↓

3a+ 2b+ 2g

3b+ 2(3a+ 2g) + 2c 2(3b+ 2(3a+ 2g))+

3c

d+ 2e

2d+ 3e+ 2f2(2a+ g)+

2(2d+ 3e) + 3f

3(2a+ g)+

2(2(2d+ 3e) + 3f)

→

3a+ 2b+ 2g

3b+ 2(3a+ 2g) + 2c

3c+ 2(3b+ 2(3a+ 2g))+

2(d+ 2e)

3(d+ 2e)+

2(3c+ 2(3b+ 2(3a+ 2g)))

2d+ 3e+ 2f2(2a+ g)+

2(2d+ 3e) + 3f

3(2a+ g)+

2(2(2d+ 3e) + 3f)

→

Figure 15: The train track ��0.��0/ is carried by ��0 .

labeled 1 and 2 in the previous example. Relabel the punctures so that the labeling
is as in Theorem 1.2; see Figure 14, left. Therefore, we have a train track without a
branch around the puncture labeled 2, but the rest of the train track is as in Example A.1
(up to relabeling). We construct a branch around the puncture labeled 2 which will
turn tangentially towards the two valent pretrack, turning left towards the puncture
labeled 3; see Figure 14, right.
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6

0

1

2

34

5

Figure 16: Constructing the train track for the map � N�0 .

The series of images in Figure 15 depict the train track ��0 and its images under
successive applications of the Dehn twists associated to ��0 . These images prove that
��0.��0/ is carried by ��0 . By keeping track of the weights on ��0 , we calculate that
the induced action on the space of weights on ��0 is given by the matrix

C D

0BBBBBBBBB@

3 2 0 0 0 0 2

6 3 2 0 0 0 4

12 6 3 2 0 0 8

24 12 6 3 6 0 16

0 0 0 2 3 2 0

4 0 0 4 6 3 2

6 0 0 8 12 6 3

1CCCCCCCCCA
:

The space of admissible weights on � 0 is the subset of R7 given by the positive
real numbers a, b, c, d , e, f and g such that a C b C d C f D c C e C g. The
linear map described above preserves this subset. The square of the matrix C is
strictly positive, which implies that the matrix is Perron–Frobenius. Additionally, the
top eigenvalue is approximately 22:08646, which is associated to a unique irrational
measured lamination F carried by ��0 which is fixed by ��0 . As the train track is large,
generic, and birecurrent, we may apply Lemma 2.4 to finish the proof that this map is
pseudo-Anosov.

We now show that the map � N�0 DD2
N�3

0D
2
N�2

0D
2
N�1

0 induced by the partition N�0 is pseudo-
Anosov. To construct the train track, we will consider the train track � N� associated to
the map � N� from the previous example. Consider the train track � N� and place an extra
puncture between the punctures labeled 0 and 1 in the previous example. Relabel the
punctures so that the labeling is as in Theorem 1.2; see Figure 16, left. Therefore, we
have a train track on S0;7 which does not have a branch around the puncture labeled 1,
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a

b

c

de

f

g

→

3a + 2g

b

c + 2d

2c + 3de + 2f

2e + 3f

2a + g

→

3a + 2g

b

c + 2d

2c + 3de + 2f

2e + 3f

2a + g

↓

3a + 2g + 2b

3b + 2(3a + 2g)

c + 2d

2c + 3d+

2(e + 2f)

2(2c + 3d)+

3(e + 2f)

2e + 3f+

2(2a + g)

2(2e + 3f)+

3(2a + g)

←

3a + 2g + 2b

3b + 2(3a + 2g)

c + 2d

2c + 3d+

2(e + 2f)

2(2c + 3d)+

3(e + 2f)

2e + 3f+

2(2a + g)

2(2e + 3f)+

3(2a + g)

←

3a + 2g + 2b

2(c + 2d)+

3b + 2(3a + 2g)

3(c + 2d)+

2(3b + 2(3a + 2g))

2c + 3d+

2(e + 2f)

2(2c + 3d)+

3(e + 2f)

2e + 3f+

2(2a + g)

2(2e + 3f)+

3(2a + g)

↓

3a + 2g + 2b

2(c + 2d)+

3b + 2(3a + 2g)

3(c + 2d)+

2(3b + 2(3a + 2g))

2c + 3d+

2(e + 2f)

2(2c + 3d)+

3(e + 2f)

2e + 3f+

2(2a + g)

2(2e + 3f)+

3(2a + g)

Figure 17: The train track �0
N�.�
0
N�/ is carried by � 0

N�.

and the rest of the train track is as found in Example A.1 (up to relabeling). We then
construct a branch around the puncture labeled 1 which will turn tangentially into the
three valent pretrack, turning left towards the puncture labeled 2; see Figure 16, right.

The series of images in Figure 17 depict the train track � N�0 and its images under
successive applications of the Dehn twists associated to � N�0 .
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Figure 17 shows that � N�0.� N�0/ is indeed carried by � N�0 . By keeping track of the weights
on � N�0 , we calculate that the induced action on the space of weights on � N�0 is given by
the matrix

D D

0BBBBBBBBB@

3 2 0 0 0 0 2

6 3 2 4 0 0 4

12 6 3 6 0 0 8

0 0 2 3 2 4 0

0 0 4 6 3 6 0

4 0 0 0 2 3 2

6 0 0 0 4 6 3

1CCCCCCCCCA
:

The space of admissible weights on � N�0 is the subset of R7 given by the positive real
numbers a, b, c, d , e, f and g such that c � b � a, e� d and g� f are all positive
and satisfy the triangle inequalities. The linear map described above preserves this
subset. The square of the matrix D is strictly positive, which implies that the matrix is
Perron–Frobenius. The top eigenvalue of this matrix is

5C 1
3

3
p
2916� 12

p
93C

�
2
3

�2=3 3p
243C

p
93;

which is associated to a unique irrational measured lamination F carried by � 0
N� which

is fixed by �0
N�. As the train track is large, generic, and birecurrent, we may apply

Lemma 2.4 to finish the proof that this map is pseudo-Anosov.
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