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Actions of solvable Baumslag–Solitar groups on
hyperbolic metric spaces

CAROLYN R ABBOTT

ALEXANDER J RASMUSSEN

We give a complete list of the cobounded actions of solvable Baumslag–Solitar
groups on hyperbolic metric spaces up to a natural equivalence relation. The set
of equivalence classes carries a natural partial order first introduced by Abbott,
Balasubramanya and Osin, and we describe the resulting poset completely. There are
finitely many equivalence classes of actions, and each equivalence class contains the
action on a point, a tree, or the hyperbolic plane.

20E06, 20E08, 20F16, 20F65

1 Introduction

The Baumslag–Solitar groups BS.m; n/ are a classically studied family of groups
defined by the particularly straightforward presentations ha; t j tamt�1 D ani. In the
case mD nD 1, BS.1; 1/ is isomorphic to the abelian group Z2. In general, for n� 2,
BS.1; n/ is a nonabelian solvable group via the isomorphism BS.1; n/Š Z

�
1
n

�
ÌZ.

The group BS.1; n/ admits several natural actions on hyperbolic metric spaces. The
Cayley graph of BS.1; n/ with respect to the generating set fa˙1; t˙1g consists of a
number of “sheets”, each of which is quasi-isometric to the hyperbolic plane H2. The
sheets are glued together along complements of horoballs in a pattern described by the
.nC1/–regular tree. The result is pictured in Figure 1 for the case nD 2. Collapsing
each sheet down to a vertical geodesic line gives a projection from the Cayley graph to
the .nC1/–regular tree. Moreover, the action of BS.1; n/ on its Cayley graph permutes
the fibers of this projection, so that we obtain an action of BS.1; n/ on the .nC1/–
regular tree. Similarly, the idea of “collapsing the sheets down to a single sheet” gives
an action on the hyperbolic plane, although this idea is a bit harder to formalize.
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1642 Carolyn R Abbott and Alexander J Rasmussen

Figure 1: Two natural actions of the group BS.1; 2/ via projections.

Formally, the action of BS.1; n/ on H2 is given by the representation

BS.1; n/! PSL.2;R/;

where
a 7!

�
1 1

0 1

�
; t 7!

�p
n 0

0 1=
p
n

�
:

Another way to obtain the natural action on the .nC1/–regular tree is by expressing
BS.1; n/ as an HNN extension over the subgroup hai Š Z and considering the action
of BS.1; n/ on the Bass–Serre tree of the resulting one-edge graph of groups.

In addition to these actions, BS.1; n/ admits an obvious homomorphism BS.1; n/!Z

defined by a 7! 0 and t 7! 1. This defines an action of BS.1; n/ on (the hyperbolic
metric space) R via integral translations. This action may also be obtained by collapsing
either the hyperbolic plane or the .nC1/–regular tree onto a vertical geodesic in a
height-respecting manner and noting that BS.1; n/ permutes the fibers of the resulting
projection. Even more trivially, any group admits an action on a point (which is a
hyperbolic metric space).

All of these actions are cobounded in the sense that the orbit of a point under the action
admits the entire space as a bounded neighborhood. One may naturally wonder whether
these four actions (the actions on a tree, the hyperbolic plane, the line, and a point) give
a complete list of the nontrivial cobounded actions of BS.1; n/ on hyperbolic metric
spaces up to equivalence. We show that this is indeed the case if n is prime.

Algebraic & Geometric Topology, Volume 23 (2023)
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In the case that n is not prime, we show that BS.1; n/ admits actions on certain other
Bass–Serre trees which may be understood algebraically. For each divisor l of n, Z

�
1
l

�
is a subring of Z

�
1
n

�
. We may form an ascending HNN extension of Z

�
1
l

�
. Specifically,

consider the one-edge graph of groups with vertex group Z
�
1
l

�
and edge group Z

�
1
l

�
which includes isomorphically onto Z

�
1
l

�
on one end and as the subgroup nZ

�
1
l

�
on

the other end. It is not too hard to show that the fundamental group of this graph of
groups is BS.1; n/ and thus there is an action of BS.1; n/ on the corresponding Bass–
Serre tree. Considering these actions on Bass–Serre trees together with the canonical
actions described in the above paragraph, we show that this gives a complete list of
the cobounded hyperbolic actions of BS.1; n/ (up to an equivalence relation, described
below). Before stating these results precisely, we need to introduce some terminology.

1.1 Hyperbolic structures on groups

In groups that admit interesting actions on hyperbolic metric spaces, it is natural to
wonder whether it is possible to describe all such actions explicitly. Unfortunately,
this (slightly naive) goal is currently unattainable for almost all commonly studied
groups. For instance, using the machinery of combinatorial horoballs introduced by
Groves and Manning in [7], one may produce uncountably many parabolic actions of
any countable group on hyperbolic metric spaces, ie actions with a fixed point on the
boundary and all group elements acting elliptically or parabolically. For this reason,
we restrict to considering cobounded actions on hyperbolic metric spaces, which are
never parabolic. Moreover, we must use some notion of equivalence for the actions of
a fixed group on different hyperbolic spaces, as it is quite easy to modify an action on
a given hyperbolic space equivariantly to produce an action on a quasi-isometric space.
The equivalence relation we consider, introduced by Abbott, Balasubramanya and Osin
in [1], is roughly equivariant quasi-isometry. See Section 2 for more details.

Having restricted to cobounded actions up to equivalence, it is usually still quite
difficult to describe explicitly all of the equivalence classes of actions of a given group
on different hyperbolic metric spaces. For instance, in [1] Abbott, Balasubramanya
and Osin considered the hyperbolic actions of acylindrically hyperbolic groups, a very
wide class of groups all displaying some features of negative curvature. There they
showed that any acylindrically hyperbolic group admits uncountably many distinct
equivalence classes of actions on hyperbolic spaces.

But for groups which don’t display strong features of negative curvature, it may be
possible to give a complete list of their cobounded hyperbolic actions. For instance,

Algebraic & Geometric Topology, Volume 23 (2023)
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in [1], Abbott, Balasubramanya and Osin gave a complete list of the equivalence
classes of cobounded actions of Zn on hyperbolic metric spaces. More recently, in [3],
Balasubramanya gave a complete list of the actions of lamplighter groups on hyperbolic
spaces. Our work draws inspiration from her strategy.

In these cases, it is possible to say even more about the actions of a fixed group on
different hyperbolic metric spaces. We are interested in the question of when one action
“retains more information” about the group than another. This question leads to a partial
order on the set of equivalence classes of actions of a group G on hyperbolic spaces X ,
defined in [1]. Roughly, we say that GÕX dominates GÕ Y when the action GÕ Y

may be obtained by equivariantly coning off certain subspaces of X . See Section 2.2
for the precise definition. This partial order descends to a partial order on equivalence
classes of actions.

Hence, for a group G, the set of equivalence classes of actions of G on different
hyperbolic metric spaces is a poset H.G/. We will give a complete description of the
poset H.BS.1; n//. Let nD pn1

1 p
n2

2 � � �p
nk

k
be the prime factorization of n and let Kn

be the poset 2f1;:::;kg n f∅g, with the partial order given by inclusion.

Theorem 1.1 For any n� 2, H.BS.1; n// has the following structure: Hqp.BS.1; n//,
the subposet of quasiparabolic structures , consists of a copy of Kn and a single addi-
tional structure which is incomparable to every element of Kn, and every quasiparabolic
structure dominates a single lineal structure , which dominates a single elliptic structure;
see Figure 2.

Following [1], we say a group G is H–accessible if H.G/ contains a largest element.
Otherwise, we say G is H–inaccessible. The following result is immediate.

Corollary 1.2 BS.1; n/ is H–inaccessible.

Farb and Mosher prove in [5] that two solvable Baumslag–Solitar groups BS.1;m/
and BS.1; n/ with m; n� 2 are quasi-isometric if and only if they are commensurable,
which occurs if and only if there exist integers r; i; j > 0 such that mD r i and nD rj .
In this case, we have Kn D Km, which yields the following corollary.

Corollary 1.3 If BS.1;m/ and BS.1; n/ are quasi-isometric , then the posets

H.BS.1;m// and H.BS.1; n//
are isomorphic.

Algebraic & Geometric Topology, Volume 23 (2023)
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Õ �

ÕR

ÕH2

Õ T

: : :

: : :

2f1;:::;kg

Figure 2: The poset H.BS.1; n//. The subposet circled is isomorphic to the
power set 2f1;:::;kg, which is a lattice.

Theorem 1.1 may be related to the algebraic description of Bass–Serre trees described
above. Recall that for each divisor l of n there is a Bass–Serre tree of BS.1; n/
corresponding to the subring Z

�
1
l

�
of Z

�
1
n

�
. Note moreover that if the integers l and

m both have the same prime divisors then in fact Z
�
1
l

�
D Z

�
1
m

�
. Thus the subring

and the Bass–Serre tree only depend on the set of prime divisors of l . We obtain one
Bass–Serre tree for each subset of fp1; : : : ; pkg, and these correspond exactly to the
subposet Kn of H.BS.1; n//.

1.2 About the proof

Any group action on a hyperbolic space falls into one of finitely many types (elliptic,
parabolic, lineal, quasiparabolic, or general type) depending on the number of fixed
points on the boundary and the types of isometries defined by various group elements.
See Section 2 for precise definitions.

Since BS.1; n/ is solvable, it contains no free subgroup and therefore — by the ping-
pong lemma — any nonelliptic action of BS.1; n/ on a hyperbolic metric space must

Algebraic & Geometric Topology, Volume 23 (2023)
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have a fixed point on the boundary. Since we consider only cobounded actions, we see
that BS.1; n/ can have only lineal or quasiparabolic cobounded actions on hyperbolic
metric spaces. Hence we are left to consider such actions.

We crucially use the fact that BS.1; n/ can be written as a semidirect product Z
�
1
n

�
Ì˛Z.

In [4] Caprace, Cornulier, Monod and Tessera classified the lineal and quasiparabolic
actions of certain groups H ÌZ in the language of confining subsets of H under the
action of Z; see Section 2.

Using techniques developed in [4], we show that the lineal and quasiparabolic actions
of BS.1; n/ naturally correspond to confining subsets of Z

�
1
n

�
under the actions of ˛

and ˛�1, and so we are led to try to classify such subsets. The confining subsets under
the action of ˛�1 are straightforward to classify, and in fact they all correspond to (the
equivalence class of) the action of BS.1; n/ on H2. On the other hand, the classification
of confining subsets under the action of ˛ is more complicated. We show that such
subsets correspond in a natural way to ideals in the ring of n–adic integers Zn. To see
how such ideals arise, we consider confining subsets Q � Z

�
1
n

�
under the action of ˛

and write elements a 2Q in base n,

aD˙ar : : : a0:a�1 : : : a�s;

allowing any number of zeros at the end of this expression. We then consider the set
of all : : : x2x1x0 2 Zn such that for any s, the sequence xsxs�1 : : : x0 appears as the
sequence of digits to the right of the decimal point in some element of Q. That is, we
require that there is a number of the form

ar : : : a0:xs : : : x0

in Q for arbitrarily large s. We show that the set of n–adic integers : : : xsxs�1 : : : x0
obtained in this manner is an ideal of Zn. It may be thought of as a kind of limit set
of Q. We also show that this process can be reversed to associate confining subsets
of ZŒ1

n
� to ideals of Zn. With this correspondence in hand, we describe how all of the

resulting actions are equivalent to the actions of BS.1; n/ on certain Bass–Serre trees.

1.3 Other results and results in the literature

The poset described in Theorem 1.1 is interesting because of its asymmetry (when
n is not a power of a prime). In [3] Balasubramanya described H.Ln/, where Ln is
the Lamplighter group Z=nZ oZ D Z=nZ o hti. In this case, H.Ln/ splits into two
isomorphic subposets of quasiparabolic structures (corresponding to actions in which
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the fixed point of Ln is the attracting fixed point of t , and respectively the repelling
fixed point of t ) which each dominate a single lineal structure which in turn dominates
an elliptic structure. Work of the authors in [2] shows that this structure also holds for
semidirect products Z2 Ì˛ Z where ˛ 2 SL.2;Z/ is an Anosov matrix. It would be
interesting to see what extra properties of a semidirect product G ÌZ are needed to
ensure this kind of symmetry.

In [3] Balasubramanya considers hyperbolic actions of general wreath products

G oZD

�M
n2Z

G

�
ÌZ

and shows that H.G oZ/ always contains two copies of the poset of subgroups of G.
In the case G DZ=nZ we have G oZD Ln and this suffices to describe all of H.Ln/.

In Section 5 we describe a general algebraic construction of quasiparabolic structures
on semidirect products H ÌZ. We show that in the case of Z oZ, this construction
suffices to produce a countable chain of quasiparabolic structures.

Acknowledgements Abbott was partially supported by NSF award DMS-1803368.
Rasmussen was partially supported by NSF award DMS-1610827. The authors thank
Denis Osin for pointing out Corollary 1.3 and the referee for helpful comments.

2 Background

2.1 Actions on hyperbolic spaces

Given a metric spaceX , we denote by dX the distance function onX . A map f WX!Y

between metric spaces X and Y is a quasi-isometric embedding if there is a constant
C such that for all x; y 2X ,

1

C
dX .x; y/�C � dY .f .x/; f .y//� CdX .x; y/CC:

If, in addition, Y is contained in the C–neighborhood of f .X/ then f is called a
quasi-isometry. If a group G acts (by isometries) on X and Y , then a map f WX ! Y

is coarsely G–equivariant if for every x 2X we have

sup
g2G

dY .f .gx/; gf .x// <1:

We will assume that all actions are by isometries. The action of a group G on a metric
space X is cobounded if there exists a bounded diameter subspace B �X such that
X D

S
g2G gB .
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Given an action G Õ X of G on a hyperbolic space, an element g 2 G is elliptic if
it has bounded orbits; loxodromic if the map Z! X given by n 7! gn � x0 for some
(equivalently, any) x0 2X is a quasi-isometric embedding; and parabolic otherwise.

Any group action on a hyperbolic space falls into one of finitely many types depending
on the number of fixed points on the boundary and the types of isometries defined by
various group elements. This classification was described by Gromov in [6]: the action
GÕX (where X is hyperbolic) is

� elliptic if G has a bounded orbit in X ;

� lineal if G fixes two points in @X ;

� parabolic if G fixes a unique point of @X and no element of G acts as a loxo-
dromic isometry of X ;

� quasiparabolic if G fixes a unique point of @X and at least one element of G
acts as a loxodromic isometry; and

� general type if G doesn’t fix any point of @X and at least one element of G acts
as a loxodromic isometry.

2.2 Hyperbolic structures

Fix a group G. For any (possibly infinite) generating set S of G, let �.G; S/ be the
Cayley graph of G with respect to the generating set S , and let k � kS denote the word
norm on G with respect to S . Given two generating sets S and T of a group G, we
say T is dominated by S , written T � S , if

sup
g2S

kgkT <1:

It is clear that � is a preorder on the set of generating sets of G and so induces an
equivalence relation: S �T if and only if T �S and S �T . Let ŒS� be the equivalence
class of a generating set. Then the preorder � induces a partial order 4 on the set of
all equivalence classes of generating sets of G via ŒS�4 ŒT � if and only if S � T .

Definition 2.1 Given a group G, the poset of hyperbolic structures on G is defined to
be

H.G/ WD fŒS� jG D hSi and �.G; S/ is hyperbolicg;

equipped with the partial order 4.

Algebraic & Geometric Topology, Volume 23 (2023)
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Notice that since hyperbolicity is a quasi-isometry invariant of geodesic metric spaces,
the above definition is independent of the choice of representative of the equivalence
class ŒS�. Every element ŒS� 2H.G/ gives rise to a cobounded action on a hyperbolic
space, namely G Õ �.G; S/. Moreover, given a cobounded action on a hyperbolic
spaceGÕX , a standard Schwarz–Milnor argument — see [1, Lemma 3.11] — provides
a generating set S of G such that �.G; S/ is equivariantly quasi-isometric to X . We
say that two actions G Õ X and G Õ Y are equivalent if there exists a coarsely
G–equivariant quasi-isometry X ! Y . By [1, Proposition 3.12], there is a one-to-one
correspondence between equivalence classes ŒS� 2H.G/ and equivalence classes of
cobounded actions GÕX with X hyperbolic.

We denote the set of equivalence classes of cobounded elliptic, lineal, quasiparabolic,
and general-type actions by He , H`, Hqp, and Hgt, respectively. Since parabolic actions
cannot be cobounded, we have for any group G,

H.G/DHe.G/tH`.G/tHqp.G/tHgt.G/:

A lineal action of a group G on a hyperbolic space X is orientable if no element of G
permutes the two limit points of G on @X . We denote the set of equivalence classes of
orientable lineal actions of G by HC

`
.G/.

The action of a group G on a hyperbolic metric space X is focal if it fixes a boundary
point � 2 @X and if some element of G acts as a loxodromic isometry. If ŒS� 2H.G/
is a focal action, then ŒS� 2HC

`
.G/tHqp.G/.

Quasicharacters A map q WG!R is a quasicharacter (also called a quasimorphism)
if there exists a constantD such that for all g; h2G, we have jq.gh/�q.g/�q.h/j�D.
We say that q has defect at most D. If, in addition, the restriction of q to every cyclic
subgroup is a homomorphism, then q is called a pseudocharacter (or homogeneous
quasimorphism). Every quasicharacter q gives rise to a pseudocharacter � defined by
�.g/D limn!1 1

n
q.gn/; we call � the homogenization of q. Every pseudocharacter is

constant on conjugacy classes. If q has defect at most D, then it is straightforward to
check that jq.g/� �.g/j �D for all g 2G.

Let GÕX be an action on a hyperbolic space with a global fixed point � 2 @X . For
any sequence x D .xn/ in X converging to � and any fixed basepoint s 2X , we define
the associated quasicharacter qx WG!R as follows. For all g 2G,

(1) qx.g/D lim sup
n!1

.dX .gs; xn/� dX .s; xn//:

Algebraic & Geometric Topology, Volume 23 (2023)
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Its homogenization �x WG!R is the Busemann pseudocharacter. It is known that for
any two sequences x and y converging to �, supg2G jqx.g/� qy.g/j<1, and thus
we may drop the subscript x in �x . If � is a homomorphism, then the action GÕX is
called regular.

Lemma 2.2 [4, Lemma 3.8] Let GÕX be an action on a hyperbolic space with a
global fixed point � 2 @X . Then the (possibly empty) set of loxodromic isometries of
the action is fg 2 G j �.g/ ¤ 0g, and the set of those with attracting fixed point � is
fg 2G j �.g/ < 0g. In particular , the action of G is elliptic or parabolic if and only if
�� 0, and lineal or quasiparabolic otherwise.

2.3 Confining subsets

Consider a group G D H Ì˛ Z where ˛ 2 Aut.H/ acts by ˛.h/ D tht�1 for any
h 2H , where t is a generator of Z. Let Q be a symmetric subset of H . The following
definition is from [4, Section 4].

Definition 2.3 The action of ˛ is (strictly) confining H into Q if it satisfies the
following three conditions:

(a) ˛.Q/ is (strictly) contained in Q;

(b) H D
S
k�0 ˛

�k.Q/; and

(c) ˛k0.Q �Q/�Q for some k0 2 Z�0.

Remark 2.4 The definition of confining subset given in [4] does not require symmetry
of the subset Q � H . However, according to [4, Theorem 4.1], to classify regular
quasiparabolic structures on a group it suffices to consider only confining subsets which
are symmetric. See also Proposition 2.6 in this paper.

Remark 2.5 By the discussion after the statement of [4, Theorem 4.1], if there is a
subsetQ�H such that the action of ˛ is confining H intoQ but not strictly confining,
then ŒQ[ft˙1g�2HC

`
.G/. If the action is strictly confining, then ŒQ[ft˙1g�2Hqp.G/.

We will focus primarily on describing subsets Q of H into which the action of ˛ is
(strictly) confining H . For brevity, we will refer to such Q as (strictly) confining under
the action of ˛, or simply (strictly) confining if the action of ˛ is understood.

To see an example of how confining subsets arise, it is useful to consider the action
BS.1; n/ÕH2 described in the introduction. In this action, the conjugates of t act as
loxodromic isometries whereas the elements of H D Z

�
1
n

�
act as parabolic isometries.

Algebraic & Geometric Topology, Volume 23 (2023)
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Consider the subset Q �H of isometries that translate a given point p (say i in the
upper half plane model) by some bounded distance (say 1). If g 2H then we consider
the action of a conjugate t�kgtk where k� 0. Considering the actions of tk , g, and
t�k in turn we see that

� tk first translates p vertically by a very large distance,

� g shifts tkp within the horocycle based at 1 containing it by a very small
distance,

� t�k takes this horocycle isometrically back to the horocycle containing p.

In other words, t�kgtk is a parabolic isometry which moves p by a much smaller
distance than g itself does. In particular, if k is large enough, then t�kgtk 2 Q.
Furthermore, the infimal k with t�kgtk 2Q depends only on how far g moves the
original point p. Using these facts it is easy to see that Q is a confining subset of H .

Thus there is a correspondence of quasiparabolic structures on BS.1; n/ and confining
subsets of H . Precisely, we have the following result, which is a minor modification of
[3, Theorems 4.4 and 4.5] and [4, Proposition 4.5]. It is proved in Section 4.1.

Proposition 2.6 A hyperbolic structure ŒT � is an element of Hqp.BS.1; n// if and only
if there exists a symmetric subsetQ�Z

�
1
n

�
which is strictly confining under the action

of ˛ or ˛�1 such that ŒT �D ŒQ[ft˙1g�.

2.4 n–adic integers

Definition 2.7 An n–adic integer is an infinite series
1X
iD0

ain
i ;

where ai 2f0; 1; : : : ; n�1g. Such an element can also be written in its base n expansion
as

: : : a3a2a1a0:

We denote the set of n–adic integers by Zn.

We define operations of addition and multiplication on Zn, which gives it the structure
of a ring.

Definition 2.8 Let aD
P1
iD0 ain

i and b D
P1
iD0 bin

i be elements of Zn. Then the
sum aC b is the n–adic integer c D

P1
iD0 cin

i defined inductively as follows. Let
c0Da0Cb0 mod n (we identify Z=nZ with f0; : : : ; n�1g) and t0Db.a0Cb0/=nc, so

Algebraic & Geometric Topology, Volume 23 (2023)
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that a0C b0 D c0C t0n. Assume that c0; : : : ; ci�1 and t0; : : : ; ti�1 have been defined,
and let

ci D ai C bi C ti�1 mod n and ti D

�
ai C bi C ti�1

n

�
;

so that ai C bi D ci C tin.

The product ab is the n–adic number d D
P1
iDo din

i defined inductively as follows.
Let d0 D a0b0 mod n, and let s0 D ba0b0=nc, so that a0b0 D d0C s0n. Assume that
d1; : : : ; di�1 and s1; : : : ; si�1 have been defined, and let

di D

iX
jD0

aj bi�j C si�1 mod n and si D

�
1

n

iX
jD0

aj bn�j C si�1

�
;

so that
Pi
jD0 aj bn�j C si�1 D di C sin.

In the above operations, we think of ti and si as the amounts that are “carried” at each
step, analogous to how we carry digits when adding and multiplying in base 10. An
element a D : : : a2a1a0 of the ring Zn is a unit if and only if a0 is relatively prime
to n.

Let

(2) 'l W Zn! Z=nlZ

be the ring homomorphism which identifies an element of Zn with its l th partial sum,

'l.a/D 'l

� 1X
iD0

ain
i

�
D

l�1X
iD0

ain
i :

These homomorphisms are compatible in the following sense. For any k � l , let the
map

nT
l
k W Z=n

lZ! Z=nkZ

be reduction modulo nk . Then for any a 2 Zn, we have nT
l
k
.'l.a//D 'k.a/.

In fact, any infinite sequence .ai / of elements ai 2 Z=niZ satisfying nT
l
k
.al/D ak

defines an element a 2Zn. Namely, identify al with the unique representative bl of its
congruence class in the set f0; 1; : : : ; nl � 1g. We may write bl D

Pl�1
iD0 b

l
i n
i . Then

for any i � 0 and l; k > i we have bli D b
k
i , and hence we may write

a0 D b
1
0 D b

2
0 D � � � ; a1 D b

2
1 D b

3
1 D � � � ; etc.

Algebraic & Geometric Topology, Volume 23 (2023)
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Writing

aD

1X
iD0

ain
i

we have 'i .a/ D ai for all i . In particular, this shows that Zn is isomorphic to the
inverse limit lim

 ��
Z=niZ.

There is a metric d on Zn, called the n–adic metric, defined by d.x; y/D n�q if q is
maximal such that nq divides x � y, ie if the first q digits of x � y are zero and the
.qC 1/st digit is nonzero.

Lemma 2.9 With the topology coming from the n–adic metric , Zn is a compact space.

Proof Suppose we have an infinite sequence fxigi2Z>0
such that for each i , we have

xi D : : : xi3x
i
2x
i
1x
i
0. By the pigeon-hole principle, there is some y0 2 f0; : : : ; n� 1g

such that xi0D y0 for infinitely many i . The collection of these xi forms a subsequence
fxi0;j gj2Z>0

. Repeating this construction iteratively, we have a sequence of sub-
sequences ffxik;j gj gk and a number yD : : : y3y2y1y0 2Zn such that for each k every
element of fxik;j gj agrees with y in its first kC 1 digits. Moreover, fxikC1;j gj is a
subsequence of fxik;j gj . Thus the diagonal subsequence fxik;kgk of fxigi converges
to y. Consequently, Zn is sequentially compact. Since Zn is a metric space, it is also
compact.

We now consider the ring structure of Zn.

Lemma 2.10 Let nD pn1

1 p
n2

2 � � �p
nk

k
. There is an isomorphism

(3) Zn Š Z
p

n1
1

� � � � �Z
p

nk
k

:

Let us give a description of this isomorphism. First, suppose nD n1n2, where n1 and
n2 are relatively prime. To define a map on Zn, we use the identification of an element
of a 2 Zm with the sequence .'l.a// 2 lim

 ��
Z=mlZ. Let

f W Zn! Zn1
�Zn2

be defined by

f .a/D .xl ; yl/D .'l.a/ mod nl1; 'l.a/ mod nl2/:

The sequence .xl/ (resp. .yl/) satisfies n1
T l
k
.xl/ D xk (resp. n2

T l
k
.yl/ D yk) for

any k � l , and so .xl/ (resp. .yl/) determines a unique point in Zn1
(resp. Zn2

).
The fact that f is an isomorphism follows from the Chinese remainder theorem. The
isomorphism (3) now follows by repeatedly applying f to distinct pairs of prime factors.
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Moreover, there is an isomorphism g WZpj !Zp defined as follows. The number g.a/
is a with each coefficient expanded to ai D ai;j�1pj�1C � � � C ai;1pC ai;0, where
ai;k 2 f0; : : : ; p�1g. Composing g with the isomorphism (3) shows that, in fact, there
is an isomorphism Zn! Zp1

� � � � �Zpk
.

We use the isomorphism g solely to describe the ideals of Zpj . The nonzero ideals of Zp
are exactly piZp D

˚P1
jDi ajp

j j aj 2 f0; : : : ; p�1g
	
. Using the above isomorphism,

it is clear that the nonzero ideals of Zpj are exactly g�1.piZp/D piZpj .

We now give a technical description of when elements of Zpj and, more generally,
Zn are contained in a particular ideal. On a first reading the reader may want to skip
Lemmas 2.11 and 2.13 and simply read Example 2.12 and Remark 2.14 instead.

The following lemma describes when an element a 2 Zpj is contained in an ideal
piZpj . By the above discussion, this occurs when the image of the element under the
isomorphism g is contained in g.piZpj /D piZp. An element x 2 Zp is in the ideal
piZp exactly when 'i .x/� 0 mod pi�1. Since g expands the coefficients of a, the
definition of L in the statement of the lemma is simply the smallest positive integer such
that the expansion of 'L.a/ contains 'i .g.a//. Equivalently, it is the smallest positive
integer such that the expansion of the p.L�1/j term in a contains pi�1, which is the
largest power of p appearing in 'i .g.a//. The largest power of p in the expansion of
the p.L�1/j term of a is p.L�1/jCj�1 D pLj�1, and thus L is the smallest positive
integer such that Lj � 1� i � 1.

Lemma 2.11 For any a 2 Zpj ,

a 2 piZpj () 'L.a/� 0 mod pi ;

where LD di=j e. Moreover ,

a 2 .0/ () aD 0 () 's.a/D 0

for all s.

Proof For the first statement, notice that a 2 piZpj if and only if g.a/ 2 piZp if and
only if 'i .g.a//� 0 mod pi if and only if 'L.a/� 0 mod pi . The first two “if and
only if” statements are clear, while the last follows from the calculation

'L.a/D aL�1p
.L�1/j

C� � �Ca1p
j
Ca0

D aL�1;j�1p
Lj�1

C� � �CaL�1;kp
i�1
C� � �CaL�1;0p

.L�1/j

CaL�2;j�1p
.L�1/j�1

C� � �Ca0;1pCa0;0

D aL�1;j�1p
Lj�1

C� � �CaL�1;kC1p
i
C'i .g.a//;
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where k 2f0; : : : ; j�1g is such that .L�1/jCkD i�1. Now, if 'i .g.a//�0 mod pi ,
then it is clear that 'L.a/ � 0 mod pi . Similarly, if 'L.a/ � 0 mod pi , then since
aL�1;j�1p

.L�1/j C� � �CaL�1;kp
i � 0 mod pi , we must have 'i .g.a//� 0 mod pi .

The second statement is just the definition of the zero ideal.

Example 2.12 We give explicit descriptions of two ideals in Z23 .

(a) First consider the ideal 2Z23 . Then

aD : : : a2a1a0 2 2Z23 () g.a/ 2 2Z2 D

� 1X
iD1

bi2
i
ˇ̌̌
bi 2 f0; : : : ; p� 1g

�
:

Therefore, the only restriction on the partial sums of a is that

'1.a/D a0 D a0;22
2
C a0;12C 0;

ie a0 � 0 mod 2.

(b) Next, consider the ideal 213Z23 . Then

aD : : : a2a1a0 2 2
13Z23 () g.a/ 2 213Z2 D

� 1X
iD13

bi2
i
ˇ̌̌
bi 2 f0; : : : ; p� 1g

�
:

In this case, we must have

'5.a/D a42
12
C a32

9
C a22

6
C a12

3
C a0

D a4;2 � 2
14
C a4;1 � 2

13
C 0 � 212C 0 � 211C 0 � 210C � � �C 0 � 2C 0;

ie '5.a/� 0 mod 213. Note that this also shows that 'i .a/� 0 mod 23i�1 for all i � 4
(for example, '2.a/D a123Ca0D 0 �25C0 �24C0 �23C0 �22C0 �2C0� 0 mod 25).

Using the isomorphism in (3), any ideal a of Zn can be written as

aD a1 � � � � � ak;

where aiDp
ai

i Zpni
i

for some ai or aiD .0/. The next lemma gives a precise description
of when an element a 2 Zn is contained in an ideal aD a1 � � � � � ak . The conditions
are similar to those in Lemma 2.11. For each i such that ai D p

ai

i Zpni
i

, we have a
constant Li D dai=nie as in Lemma 2.11, and one needs only check a condition on a
single partial sum, namely that 'Li

.a/� 0 mod pai

i . On the other hand, for each i such
that ai D .0/, one needs to check that every partial sum of a satisfies an appropriate
condition.
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Lemma 2.13 Let aD a1 � � � � � ak , where for each i , ai D p
ai

i Zpni
i

or ai D .0/. For
each i , let Li D dai=nie. Then for any aD : : : a3a2a1a0 2 Zn, a 2 a if and only if

� 's.a/� 0 mod psni

i for all s and all i such that ai D .0/; and

� 's.a/� 0 mod pai

i for any s such that s D Li for some i .

Proof For any i such that ai D p
ai

i Zpni
i

, this follows immediately from the definition
of the isomorphism

Zn! Z
p

n1
1

� � � � �Z
p

nk
k

and Lemma 2.11. Fix i such that ai D .0/. Then, by the isomorphism in (3), we
have that any a 2 Zn can be written as aD .a1; : : : ; ak/ where, considering Zn and
Zpni

i
as lim
 ��

Z=nlZ and lim
 ��

Z=plni

i Z respectively, each ai is given by the sequence
.'s.a/ mod psni

i /1sD1. Now, ai 2 .0/� Zpni
i

if and only if g.ai / 2 .0/� Zpi
. Recall

that g.ai / is ai with each coefficient expanded so that

's.a/ modpsni

i �as�1;ni�1p
sni�1
i Cas�1;ni�2p

sni�2
i C� � �Ca0;1piCa0;0 modpsni

i :

From this we see that g.ai / 2 .0/ � Zpi
if and only if 's.a/ � 0 mod pki for all

1� k � sni if and only if 's.a/� 0 mod psni

i for all s.

Remark 2.14 We point out one particular case of this lemma which will be important
in later sections: if some ai D .0/, then '1.a/D a0 � 0 mod pni

i .

We now describe a partial order on the set of ideals of Zn.

Definition 2.15 Define a relation � on ideals of Zn by a� b if nka� b for some k.
Define an equivalence a� b if a� b and b� a.

Definition 2.16 An ideal aD a1 � � � � � ak is full if aj is either .0/ or Zpnj
j

for every
j D 1; : : : ; k.

Lemma 2.17 For any n, there is a unique full ideal in each equivalence class of ideals
of Zn.

Proof Let aDa1�� � ��ak be an ideal of Zn, and consider the full ideal bDb1�� � ��bk
where bi D .0/ if and only if ai D .0/. Recall that if bi ¤ .0/, then bi D Zpni

i
. We

claim that a� b. It is clear that a� b, and thus a� b. For any i such that ai ¤ .0/, let
ai D p

ai Z
p

ni
i

, and let ADmaxifaig. We will show that nAb� a. We have

nAbD nAb1 � � � � �n
Abk;
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and, for each i ,
nAbi D p

An1

1 � � �p
Ank

k
Z
p

ni
i

:

For all j ¤ i , the element pAnj

j is a unit in Z
p

ni
i

, and thus pnj

j Z
p

ni
i

DZ
p

ni
i

. Therefore,

nAbi D p
Ani

i Z
p

ni
i

;

and since A� ai by definition, it follows that

nAbi D p
Ani

i Z
p

ni
i

� p
ai

i Z
p

ni
i

D ai :

Consequently,
nAb� a;

which implies that b� a. Therefore, a� b.

Suppose next that there are two distinct full ideals, bD b1�� � ��bk and cD c1�� � ��ck
with b � a � c. Then b � c, which immediately implies that bi D .0/ if and only if
ci D .0/. Indeed, if there is an i such that (without loss of generality) bi D .0/ but
ci ¤ .0/, then there is no power C of n such that pCi ci � bi , and so b 6� c, which is a
contradiction. Thus by the definition of full ideals, we conclude that bD c.

While we mostly work with n–adic integers in this paper, we will occasionally need
the notion of an n–adic number as well.

Definition 2.18 An n–adic number is an infinite series
1X
iDm

ain
i

where ai 2 f0; 1; : : : ; n� 1g and m 2 Z can be positive, negative, or zero. If m � 0,
then such an element is an n–adic integer. If mD�` for `2Z>0, then such an element
can also be written in its base n expansion as

: : : a3a2a1a0:a�1 : : : a�`:

We denote the set of n–adic numbers by Qn.

Letting S D fn; n2; n3; : : : g, we see that Qn D S
�1Zn is the localization of Zn at S .

In particular, Qn is a ring. If n D pk is a power of a prime, then Zn is an integral
domain and Qn is its field of fractions. If n is not a power of a prime, however, then
Zn is not an integral domain and Qn will not be a field.

The only property of n–adic numbers we will need is that one can define an n–adic
absolute value on Qn.
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Definition 2.19 Given q D
P1
iDm ain

i 2 Qn with am ¤ 0, we define the n–adic
absolute value of q to be

kqkn D n
�m:

In particular, q D
P1
iDm ain

i 2 Zn if and only if m� 0 if and only if kqkn � 1.

2.5 BS.1; n/

Fix nD pn1

1 p
n2

2 : : : p
nk

k
, and recall that BS.1; n/D ha; t j tat�1 D ani. Let

� W BS.1; n/! Z

be the homomorphism defined by a 7! 0 and t 7! 1. Then there is a short exact sequence

0!H ! BS.1; n/ �
�! Z! 0;

where H WD ker.�/Š Z
�
1
n

�
. This gives rise to an isomorphism

BS.1; n/Š Z
�
1
n

�
Ì˛ Z;

where ˛.x/D n �x for x 2Z
�
1
n

�
. For the rest of this paper we will make the identifica-

tions

H D Z
�
1
n

�
and BS.1; n/DH Ì˛ ZD hH; t j txt�1 D ˛.x/ for x 2H i:

In addition to the standard representation of elements of H as Laurent polynomials
in n, we also represent elements by their n–ary expansion; eg 1

n
D 0:1 while

nC
1

n
C
1

n4
D 10:1001:

We switch between these representations interchangeably.

Given an element xD˙xkxk�1 � � � x2x1x0:x�1x�2 � � � x�m 2H , we have 0� xi < n
for all �m� i � k. We call �m the leading negative place of x, which we denote by

p.x/D�m:

We call x�m the leading negative term of x, which we denote by

c.x/D x�m:

The automorphism ˛ acts on H by multiplication by n, which has the effect of adding
one to each index, so the i th term of the image of x is the .i C 1/st term of ˛.x/. For
example, ˛.21:021311/D 210:21311 (here we are assuming that n� 4).
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Lemma 2.20 Let K be a group of the form

K DK 0 Ì˛ ZD hK 0; s j sxs�1 D ˛.x/ for x 2K 0i:

SupposeQ�K 0 is a subset such thatQ[fs˙1g is a generating set ofK and ˛.Q/�Q.
Then any element w 2K can be written as

w D s�rx1 : : : xms
`

where r; ` � 0, xi 2Q for all i , and r C `CmD kwkQ[fs˙1g
. Moreover , if w 2K 0

then r D `.

Proof Write w as a reduced word in Q[fs˙1g. By using the relations sx D ˛.x/s
and xs�1 D s�1˛.x/ for x 2Q, we may move all copies of s in w to the right and all
copies of s�1 to the left without increasing the word length of w in Q[fs˙1g. The
result is an expression of w as a reduced word,

w D s�rx1 : : : xms
`

where r; `� 0 and xi 2Q for all i . Since the word length of w has not changed, we
have r C `CmD kwkQ[fs˙1g

. The second statement is clear.

3 Confining subsets ofH

We first describe two particular subsets ofH DZ
�
1
n

�
which are strictly confining under

the action of ˛ and ˛�1, respectively.

Lemma 3.1 The subset

(4) QC D fx 2H j x D˙xkxk�1 : : : x2x1x0 for some k 2Ng D Z�H

is strictly confining under the action of ˛. The subset

(5) Q� D fx 2H j x D˙0:x�1x�2 : : : x�m for some m 2Ng �H

is strictly confining under the action of ˛�1.

Proof We will verify that Definition 2.3 holds for Q�; the proof for QC is analogous.
We have

˛�1.Q�/D fx 2H j x D˙0:0x�1x�2 : : : x�m for some m 2 Z>0g:

Thus ˛�1.Q�/ � Q�, so (a) holds. Moreover, it is clear that
S
n�0 ˛

n.Q�/ D H .
Indeed, let

x D˙xkxk�1 : : : x0:x�1x�2 : : : x�m
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be any element of H . Since ˛�.kC1/.x/ 2 Q�, it follows that x 2 ˛kC1.Q�/, and
thus (b) holds. Finally, let x; y 2Q�. Then

xCy D˙z0:z�1 : : : z�m

where each zi 2 f0; : : : ; n� 1g. Hence ˛�1.xC y/ 2Q� and (c) holds with k0 D 1.
Thus Q� is confining under the action of ˛�1. To see that Q� is strictly confining,
note that 0:1 2Q n˛�1.Q/.

The following lemma appears as [3, Lemma 4.9 and Corollary 4.10]; we include a
proof here for completeness. Recall that given two (possibly infinite) generating sets S
and T of a group G, we say ŒS�D ŒT � if supg2S kgkT <1 and suph2T khkS <1.

Lemma 3.2 Suppose Q is a symmetric subset of H which is confining under the
action of ˛. Let S be a symmetric subset of H such that there exists K 2 Z�0 with
˛K.g/ 2Q for all g 2 S . Then

QDQ[
[
i�0

˛i .S/

is confining under the action of ˛ and

ŒQ[ft˙1g�D ŒQ[ft˙1g�:

We note that this lemma applies, for example, to all finite symmetric subsets S of H .

Proof First we prove that Q is confining under the action of ˛.

Conditions (a) and (b) of Definition 2.3 are clear (using that Q �Q for condition (b)).
To see that condition (c) holds, note that for any i � 0, and any g 2 S ,

˛K.˛i .g//D ˛i .˛K.g// 2 ˛i .Q/�Q:

We also have ˛K.g/ 2Q for any g 2Q. Hence, if g; h 2Q we have ˛K.g/ 2Q and
˛K.h/ 2Q, and therefore

˛KCk0.gC h/D ˛k0.˛K.g/C˛K.h// 2 ˛k0.QCQ/�Q �Q;

where k0 is large enough that ˛k0.QCQ/ �Q. Therefore (c) holds with constant
KC k0.

To see that ŒQ[ft˙1g�D ŒQ[ft˙1g�, note first of all that ŒQ[ft˙1g�4 ŒQ[ft˙1g�.
On the other hand, by our above observation, Q is really just a finite union,

QDQ[

K�1[
iD0

˛i .S/:
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For each i between 0 and K � 1 and each g 2 S ,

˛i .g/D ˛�.K�i/.˛K.g//D t�.K�i/˛K.g/t .K�i/

and ˛K.g/ 2Q. Hence

k˛i .g/kQ[ft˙1g
� 2.K � i/C 1� 2KC 1:

In other words, any element of Q[ft˙1g has word length at most 2KC1 with respect
to Q[ft˙1g, so ŒQ[ft˙1g�4 ŒQ[ft˙1g�.

Lemma 3.3 For any Q � H which is confining under the action of ˛, we have
ŒQ[ft˙1g�4 ŒQC[ft˙1g�.

Proof We show that every element of QC DZ has bounded word length with respect
to Q[ft˙1g. First, we apply Lemma 3.2 with S D f˙1g to pass to Q �Q such that
f˙1g �Q and ŒQ[ft˙1g�D ŒQ[ft˙1g�.

We begin by showing that every element of Z>0D f1; 2; : : :g has bounded word length
with respect toQ[ft˙1g. Choose k1 such that ˛k1.QCQ/�Q. We actually initially
prove that every element of ˛k1.Z>0/ D fnk1 ; 2nk1 ; 3nk1 ; : : :g has bounded word
length with respect to Q[ft˙1g. If every such element has word length at most L then
every element of Z>0 has word length less than LC nk1 with respect to Q[ ft˙1g
because such an element can be written as

ank1 C 1C � � �C 1„ ƒ‚ …
<nk1 times

; where a 2 Z>0

and 1 2Q.

The proof of this weaker statement is by induction. First, note that ˛k1.1/D nk1 2Q.
Hence every element of the set

fnk1 ; 2nk1 ; 3nk1 ; : : : ; n2k1 D nk1 �nk1g

has word length at most nk1 with respect to Q[ ft˙1g. Suppose for induction that
every element of

fn.l�1/k1 ; n.l�1/k1 Cnk1 ; n.l�1/k1 C 2nk1 ; : : : ; nlk1g

D fank1 j a 2 Z>0g\ Œn
.l�1/k1 ; nlk1 �

has word length at most nk1 with respect to Q[ ft˙1g. Enumerate the elements of
this set as

x0 D n
.l�1/k1 ; x1 D n

.l�1/k1 Cnk1 ; : : : ; xs D n
lk1 :
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Consider an element

y2fnlk1 ; nlk1Cnk1 ; nlk1C2nk1 ; : : : ; n.lC1/k1gDfank1 ja2Z>0g\Œn
lk1 ; n.lC1/k1 �:

Such an element y satisfies

nk1xj � y � n
k1xjC1 D n

k1.xj Cn
k1/D nk1xj Cn

2k1

for some j . Hence

(6) y D nk1xj C an
k1 ;

where 0� a � nk1 . Since xj has word length at most nk1 , we may write

xj D g1C � � �Cgnk1

where all gi 2Q and gi D 0 for all i > kxj kQ[ft˙1g
. Thus we can rewrite (6) as

y D nk1.g1C: : :Cgnk1 /Cn
k1.1C� � �C1„ ƒ‚ …

a�nk1 times

/

D nk1.g1C1/Cn
k1.g2C1/C� � �Cn

k1.gaC1/Cn
k1.gaC1/C� � �Cn

k1.gnk1 /:

In this last sum, every term is an element of Q, and there are nk1 terms. Thus
kykQ[ft˙1g

� nk1 . This completes the induction.

We have shown so far that every element of Z>0 has bounded word length with respect
to Q. A completely analogous argument using multiples of �nk1 proves that every
element of Z<0 D f�1;�2; : : :g has bounded word length with respect to Q. Hence
we have shown

ŒQ[ft˙1g�D ŒQ[ft˙1g�4 ŒZ[ft˙1g�D ŒQC[ft˙1g�:

3.1 Subsets confining under the action of ˛ and ideals of Zn

In this subsection, we describe the connections between subsets of H which are
confining under the action of ˛ and ideals of Zn.

3.1.1 From confining subsets to ideals We begin by describing a way to associate
an ideal of Zn to a symmetric subset Q of H which is confining under the action of ˛.
We define

(7) I.Q/D
�
: : : x2x1x02Zn

ˇ̌̌ for any t � 0; 9 a 2Q with aD ar : : : a0:xt : : : x0
for some ar ; : : : ; a0 2 f0; : : : ; n� 1g

�
:
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That is, an element : : : x2x1x0 is in I.Q/ if for any t , there exists a positive element
of Q whose fractional part is 0:xt : : : x0. Note in particular that I.Q/ is nonempty
for any Q as above. To see this, first notice that Q always contains a positive integer
aD ar : : : a0. We may equivalently write

aD ar : : : a0: 0 : : : 0„ƒ‚…
t times

and since t is arbitrary, this shows that 0 (D : : : 000/ is in I.Q/.

Lemma 3.4 The set I.Q/� Zn is closed.

Proof Let x 2 I.Q/ and write x D : : : x2x1x0. Then for any t � 0, there exists
y 2 I.Q/ with y D : : : y2y1y0 and yi D xi for i � t . By the definition of I.Q/
there exists a 2 Q with a D ar : : : a0:yt : : : y0. But then of course we also have
aD ar : : : a0:xt : : : x0. Since t is arbitrary, this implies that x 2 I.Q/.

Lemma 3.5 In the notation above , I.Q/ is an ideal of Zn.

Proof First we show that I.Q/ is closed under addition. Let

x D : : : x2x1x0; y D : : : y1y1y0 2 I.Q/
and

: : : x2 x1 x0
C : : : y2 y1 y0

: : : z2 z1 z0:

Let k0 be large enough that ˛k0.QCQ/�Q. By definition of I.Q/, for any t � 0
there exist (positive numbers)

aD ar : : : a0:xtCk0
xtCk0�1 : : : x0;

b D bs : : : b0:ytCk0
ytCk0�1 : : : y0

in Q. We see immediately that aC b is given by

cu : : : c0:ztCk0
ztCk0�1 : : : z0

for some cu; : : : ; c0 2 f0; : : : ; n� 1g. This implies that

˛k0.aC b/D cu : : : c0ztCk0
ztCk0�1 : : : ztC1:zt : : : z0 2Q:

Since t is arbitrary, this implies that z 2 I.Q/.
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Now we show that I.Q/ is closed under multiplication by elements of Zn. Let

x 2 I.Q/ and p D : : : p2p1p0 2 Zn:

For every t � 0,
pt : : : p1p0 � x D xC � � �C x„ ƒ‚ …

pt ���p1p0 times

2 I.Q/

by the above paragraph. Note that p � x is the limit of the sequence

fpt : : : p0 � xg
1
tD0 � I.Q/:

But by Lemma 3.4, I.Q/ is closed, so this implies that p � x 2 I.Q/ as well.

3.1.2 From ideals to confining subsets We next describe how to associate a subset
of H which is confining under the action of ˛ to an ideal of Zn. For any ideal b of Zn,
let

(8) C.b/D

(
.�1/ıxr : : : x0:x�1 : : : x�s 2H

ˇ̌̌̌ ı 2 f0; 1g and 9 b 2 b with
b D : : : c2c1x�1 : : : x�s for
some c1; c2; : : : 2 f0; : : : ; n� 1g

)
:

Thus C.b/ is the set of elements of H whose fractional parts appear as the tail end of
digits of some element of the ideal b.

Remark 3.6 Since 0 2 b for any ideal b, it follows that C.b/ must contain Z.

Lemma 3.7 In the notation above , C.b/ is confining under the action of ˛.

Proof We will check the conditions of Definition 2.3.

Let
x D xs : : : x1x0:x�1x�2 : : : xp.x/ 2 C.b/:

By definition of C.b/, there is an element

b D : : : c2c1x�1x�2 : : : xp.x/ 2 b;

and so
˛.x/D xs : : : x0x�1:x�2 : : : xp.x/ 2 C.b/:

Thus ˛.C.b//� C.b/, and Definition 2.3(a) holds.

Since Z� C.b/ by Remark 3.6, we have
S1
iD0 ˛

�i .C.b//DH , and so Definition 2.3(b)
holds.
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Let x; y 2 C.b/. We first deal with the case that x and y are both positive. We want to
show that xCy2C.b/. Let xDxr : : : x0:x�1 : : : xp.x/, and yDys : : : y0:y�1 : : : yp.y/.
By adding initial zeros, we may take r D s. We also assume without loss of generality
that p.x/� p.y/. Then xCy D z, where z is given by

xr : : : x0 :x�1 x�2 : : : xp.y/ : : : : : : : : : xp.x/
C yr : : : y0 :y�1 y�2 : : : yp.y/ 0 : : : 0 0

zt : : : : : : z0 :z�1 z�2 : : : zp.y/ : : : : : : : : : zp.x/

where here we’ve assumed without loss of generality that r � s (the same argument
works if r < s).

By the definition of C.b/, there exist a; b 2 b with a D : : : x�1x�2 : : : xp.x/ and
b D : : : y�1y�2 : : : yp.y/. Since b is an ideal,

np.y/�p.x/b D : : : y�1y�2 : : : yp.y/ 0 : : : : : : : : : 0„ ƒ‚ …
p.y/�p.x/ times

2 b

and

aCnp.y/�p.x/b 2 b;

where aCnp.y/�p.x/b is given by

: : : x�1 x�2 : : : xp.y/ : : : : : : xp.x/
C : : : y�1 y�2 : : : yp.y/ 0 : : : 0

: : : z�1 z�2 : : : zp.y/ : : : : : : zp.x/:

Therefore, z D xCy 2 C.b/ by the definition of C.b/.

If x; y 2 C.b/ are both negative, then we show in a completely analogous way that
xCy 2 C.b/.

We now consider the case that one of x and y is positive and the other is negative.
By possibly multiplying x C y by �1, we assume without loss of generality that
x D xr : : : x0:x�1 : : : xp.x/ and y D�ys : : : y0:y�1 : : : yp.y/ with x � jyj so that also
r � s. Then xCy D z, where z is given by

xr : : : xt : : : xs : : : x0 :x�1 x�2 : : : xp.y/ : : : : : : xp.x/
� ys : : : y0 :y�1 y�2 : : : yp.y/ 0 : : : 0

zt : : : zs : : : z0 :z�1 z�2 : : : zp.y/ : : : : : : zp.x/

(here we are assuming p.x/�p.y/, but the argument is easily modified if p.x/>p.y/).
By definition of C.b/, there exist elements c; d 2 b with c D : : : c2c1x�1 : : : xp.x/ and
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d D : : : d2d1y�1 : : : yp.y/. Then c �np.y/�p.x/d 2 b is given by

: : : c1 x�1 : : : xp.y/ : : : : : : xp.x/
� : : : d1 y�1 : : : yp.y/ 0 : : : 0

: : : : : : z�1 : : : zp.y/ : : : : : : zp.x/:

Hence we see that z 2 C.b/, as desired.

By the above discussion, Definition 2.3(c) holds with k0D 0. We conclude that C.b/ is
confining under the action of ˛.

Lemma 3.8 Let Q �H be confining under the action of ˛. Then there exists K > 0

such that ˛K.Z/�Q.

Proof By Lemma 3.3, every element of ZDQC has uniformly bounded word length
with respect to the generating set Q[ ft˙1g of H . Consider an element w 2 Z. By
Lemma 2.20 we may write w as a reduced word

w D t�rx1 : : : xmt
r ;

where r � 0 and xi 2Q for all i . This gives us

w D ˛�r.x1/C � � �C˛
�r.xm/:

Since kwkQ[ft˙1g
is uniformly bounded, we have both r andm are uniformly bounded,

say r;m�R. Hence

˛R.w/D ˛R�r.x1/C � � �C˛
R�r.xm/;

and ˛R�r.xi / 2Q for each i . Thus, ˛R.w/ 2QR, where QR represents the words
of length at most R in Q. Consequently, ˛Rk0.˛R.w// 2 ˛Rk0.QR/ � Q where
the last inclusion follows by Definition 2.3(c). Thus we see that ˛K.Z/�Q, where
K DRk0CR.

Lemma 3.9 Let Q �H be confining under the action of ˛. Then there exists M > 0

such that C.I.Q//� ˛�M .Q/.

Proof Let a 2 C.I.Q//. Since Q and C.I.Q// are symmetric, we may suppose that
aD ar : : : a0:a�1 : : : a�s is positive. By definition of C.I.Q// there exists an element

x D : : : x2x1a�1 : : : a�s 2 I.Q/:

Then by definition of I.Q/, there exists an element

b D bt : : : b0:a�1 : : : a�s 2Q:
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We may add an integer c to b to obtain

cC b D ar : : : a0:a�1 : : : a�s D a;

and by Lemma 3.8, we have ˛K.c/ 2Q. Thus,

˛K.a/D ˛K.cC b/D ˛K.c/C˛K.b/ 2QCQ:

Let k0 be large enough that ˛k0.QCQ/�Q. Then ˛KCk0.a/D ˛k0.˛K.a// 2Q

so the result holds with M DKC k0.

Recall that two ideals a and b in Zn are equivalent (written a � b) if there exists a
constant k such that nka� b and nkb� a; see Definition 2.15.

Lemma 3.10 Let a and b be ideals of Zn such that a� b. Then C.a/D C.b/.

Proof By definition, the ideal b determines only the fractional parts of the elements
in C.b/, and if b D : : : b2b1b0 2 b, then there are elements of C.b/ with fractional part
0:bk : : : b0 for each k � 1 and arbitrary integral part. From this description, it is clear
that for any k, the elements

b D : : : b2b1b0 and nkb D : : : b2b1b0 0 : : : 0„ƒ‚…
k times

define the same set of fractional parts of elements in C.b/. Since there exists k such
that nkb � a, we see that C.b/ � C.a/. By a symmetric argument, we also have
C.a/� C.b/.

Lemma 3.11 For any ideal a� Zn, the confining subset C.a/ is a subring of H .

Proof It follows from the proof of Lemma 3.7 that C.a/ is closed under addition.
Moreover, by definition it is closed under additive inverses, and so C.a/ is an additive
subgroup of H . It also contains the multiplicative identity 1 by definition. It remains
to be shown that it is closed under multiplication.

For this purpose it will be helpful to write elements of Z
�
1
n

�
in a slightly different form

than their base n expansions. Given any element of Z
�
1
n

�
we may write it, for any

sufficiently large k, as .�1/ı.an�kC x/ where x 2 Z, ı 2 f˙1g, and

aD a0C a1nC � � �C ak�1n
k�1

with each ai 2 f0; : : : ; n� 1g. That is, x is the integer part and an�k is the fractional
part.
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In particular, if u; v 2 C.a/ then we may write

uD .�1/ı.an�kC x/ and v D .�1/�.bn�kCy/;

where ı; � 2 f0; 1g, x; y 2 Z,

aD a0C a1nC : : :C ak�1n
k�1; b D b0C b1nC : : :C bk�1n

k�1;

and the digits ai agree with the first k digits of an element of a and similarly for the bi .
This is to say that there are elements

aC znk; bCwnk 2 a where z; w 2 Zn:

We aim to show that uv 2 C.a/. We have

uv D .�1/ıC�.abC aynkC bxnk/n�2kC xy:

Thus the fractional part of uv agrees with the first 2k digits of the integer

abC aynkC bxnk

(note that this integer may have arbitrarily many digits in base n). To show that
uv 2 C.a/, it suffices to show that the first 2k digits of abC aynkC bxnk agree with
the first 2k digits of some element of a.

To show this last fact we consider the elements aC znk; bCwnk 2 a. Since a is an
ideal it contains the element

.aCznk/.bCwnk/�.aCznk/wnk�.bCwnk/znkC.aCznk/ynkC.bCwnk/xnk :

Expanding this expression and canceling we have that

abC aynkC bxnk � zwn2kC zyn2kCwxn2k 2 a:

The first 2k digits of this element agree with the first 2k digits of abC aynkC bxnk .
Thus uv 2 C.a/ and the proof is complete.

We now give a more concrete description of the subring C.a/, which will be useful
in the following subsection. By Lemma 2.17, there is a full ideal b of Zn with a� b,
and by Lemma 3.10 we have C.a/D C.b/. Hence to describe C.a/ explicitly we may
assume that a itself is full. For ease of notation we may suppose that

aD Z
p

n1
1

� � � � �Zpnr
r
� 0� � � � � 0:

Set l D pn1

1 p
n2

2 � � �p
nr
r if r > 0 and l D 1 if r D 0.
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Proposition 3.12 We have C.a/D Z
�
1
l

�
as a subring of Z

�
1
n

�
.

Proof First we show that Z
�
1
l

�
� C.a/. Since C.a/ is a subring which contains Z, it

suffices to show that 1
l
2 C.a/. Set q D pnrC1

rC1 � � �p
nk

k
so that l D n

q
. Thus we need to

show that 1
l
D

q
n
2 C.a/. From this equality we see that 1

l
is 0:q in base n. Hence it

suffices to show that a contains an element of Zn whose ones digit is q when written
in base n.

We have the commutative diagram

x .q; : : : ; q; 0; : : : ; 0/

Zn Z
p

n1
1

� � � � �Z
p

nk
k

Z=nZ Z=pn1

1 Z� � � � �Z=pnk

k
Z

Œx�n .Œq�
p

n1
1

; : : : ; Œq�pnr
r
; 0; : : : ; 0/

2 2

'

'1 '1�����'1

'

2 2

where the horizontal maps are isomorphisms, the vertical map '1 WZn!Z=nZ on the
left is the “reduction mod n” map defined in (2) which sends aD : : : a2a1a0 2 Zn to
Œa�n D a0 2 Z=nZ, and the vertical map on the right is the product of the “reduction
mod pni

i ” maps '1 W Zpni
i
! Z=pni

i Z. Consider the unique element x of Zn whose
image in Zpn1

1
�� � ��Zpnk

k
is .q; : : : ; q; 0; : : : ; 0/, with exactly r nonzero entries. Note

that x is necessarily an element of a; we will show that the ones digit of x is q. Applying
'1 we obtain the element Œx�n 2 Z=nZ, and applying the product of the maps '1 to
.q; : : : ; q; 0; : : : ; 0/ yields the element .Œq�pn1

1
; : : : ; Œq�pnr

r
; 0; : : : ; 0/. Since the diagram

commutes, Œx�n must be the unique element of Z=nZ which maps to this element. As
it is clear that Œq�n 2Z=nZ also maps to this element, we must have Œx�n D Œq�n. Thus
the ones digit of x is q, as desired.

Now we show that C.a/�Z
�
1
l

�
. Consider an element .�1/ıxr : : : x0:as : : : a1a02C.a/,

where ı 2 f˙1g. By definition of C.a/ there is an element a D : : : as : : : a1a0 2 a.
Recall that a is identified with Zpn1

1
� � � � � Zpnr

r
� 0 � � � � � 0. We consider the

analogous commutative diagram as above, but with vertical maps given by (products
of) 'sC1. Since a 2 a, the Z=pni .sC1/

i Z–component of the image of 'sC1.a/ in
Z=pn1.sC1/

1 Z� � � � �Z=pnk.sC1/

k
Z is 0 for each i > r . Note that

'sC1.a/D 'sC1.as : : : a1a0/:
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Thus, as : : : a0 is divisible by pni .sC1/
i for each i > r and therefore it is also divisible

by pnrC1.sC1/
rC1 � � �p

nk.sC1/

k
D qsC1. Write as : : : a0 D qsC1y for some y 2 Z. We

therefore have that

.�1/ıxr : : : x0:as : : : a0 D .�1/
ı

�
xr : : : x0C

qsC1y

nsC1

�
D .�1/ı

�
xr : : : x0C

y

lsC1

�
;

and so this element lies in Z
�
1
l

�
. Since the element of C.a/we started with was arbitrary,

this shows that C.a/� Z
�
1
l

�
as claimed.

3.1.3 Actions on Bass–Serre trees In this subsection, we give an explicit geometric
description of the action of BS.1; n/ on the Cayley graph �.BS.1; n/; C.a/[ ft˙1g/
for any ideal a� Zn. We begin by considering a particular ascending HNN extension
of C.a/,

G.a/D hC.a/; s j sxs�1 D ˛.x/ for x 2 C.˛/i:

Lemma 3.13 For any ideal a� Zn,

BS.1; n/ŠG.a/:

Proof By Remark 3.6, Z � C.a/. There is a homomorphism f W G.a/! BS.1; n/
defined by

x 7! x for x 2 C.a/; s 7! t;

which is surjective because BS.1; n/ is generated by Z � C.a/ and t . We now show
that f is injective. Let g 2 ker.f /. By Lemma 2.20 we can find an expression of g as
a minimal length word in the generating set C.a/[fs˙1g of the form

g D s�i .x1C � � �C xw/s
j ;

where i; j � 0 and xi 2 C.a/. By Lemma 3.11 we may write x1C� � �Cxw D x 2 C.a/,
and the result is that g D s�ixsj . As g is in the kernel of f ,

1D f .g/D t�ixtj D ˛�i .x/tj�i :

Since ˛�i .x/ 2H , we obtain a contradiction unless j D i . In this case we have

f .g/D ˛�i .x/D 0

in H , and since ˛ is an automorphism, x D 0. But then

g D s�i0si D ˛�i .0/D 0

in G.a/.

Hence we have a description of BS.1; n/ as an HNN extension over the additive
subgroup C.a/�H , and therefore an action of BS.1; n/ on the standard Bass–Serre
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tree associated to this HNN extension. Denote this tree by T .a/. For the statement of
the next two results recall that equivalence of hyperbolic actions means equivalence up
to coarsely equivariant quasi-isometry.

Proposition 3.14 Let G be a group which may be expressed as an ascending HNN
extension

A�A D hA; s j sas
�1
D '.a/ for all a 2 Ai;

where A is a group and ' is an endomorphism of A. Then the action of G on
the Bass–Serre tree associated to this HNN extension is equivalent to its action on
�.G;A[fs˙1g/.

Before turning to the proof, we note one immediate corollary.

Corollary 3.15 The action of BS.1; n/ on �.BS.1; n/; C.a/[ft˙1g/ is equivalent to
the action of BS.1; n/ on T .a/.

Proof of Proposition 3.14 We apply the standard Schwarz–Milnor lemma; see eg [1,
Lemma 3.11].

Denote by T the Bass–Serre tree associated to this HNN extension, which may be
described as follows. The vertices of T are the left cosets of A in G, and two cosets
gA and hA are joined by an edge if

gAD hxsA or gAD hxs�1A for some x 2 A:

Consider the vertex v D A and the edge E D ŒA; sA� containing v. Clearly we haveS
g2G gE D T . Hence by the Schwarz–Milnor lemma, the action of G on T is

equivalent to the action of G on �.G; S/ where S D fg 2G j d.v; gv/� 3g. Note that
A� S since it fixes the vertex v, and thus ŒS [ fs˙1g� 4 ŒA[ fs˙1g�. We will show
that also ŒA[fs˙1g�4 ŒS [fs˙1g�, which will prove the proposition.

By the description of the vertices of T as cosets of A, any vertex in the radius 3
neighborhood of v has one of the following forms:

� xsıv where x 2 A and ı 2 f˙1g;

� x1s
ı1x2s

ı2v where xi 2 A and ıi 2 f˙1g for i D 1; 2; or

� x1s
ı1x2s

ı2x3s
ı3v where xi 2 A and ıi 2 f˙1g for i D 1; 2; 3.

If g 2 S , it therefore sends v to a vertex of one of the above three forms. We deal with
the last case explicitly, showing that g has bounded word length in the generating set
A[fs˙1g. The other two cases are entirely analogous.
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If gv D x1sı1x2s
ı2x3s

ı3v then

.x1s
ı1x2s

ı2x3s
ı3/�1g 2 StabG.v/D A:

Hence
g D x1s

ı1x2s
ı2x3s

ı3y

for some y 2 A, and this shows that g has word length at most 7 in the generating set
A[fs˙1g.

As in the previous subsection, we may assume that a is a full ideal, and for ease of
notation we may suppose that

aD Z
p

n1
1

� � � � �Zpnr
r
� 0� � � � � 0:

We again set l D pn1

1 p
n2

2 � � �p
nr
r and q D n

l
D p

nrC1

rC1 � � �p
nk

k
. By Proposition 3.12, we

have that C.a/ D Z
�
1
l

�
as a subring of Z

�
1
n

�
. Thus the Bass–Serre tree T .a/ is the

Bass–Serre tree of the ascending HNN extension of Z
�
1
l

�
, where one map from the

edge group to the vertex group is the identity and the other is multiplication by n. Our
final goal is to give a concrete geometric description of this tree and the associated
action of BS.1; n/.

We first describe an explicit action BS.1; n/ on a tree T 0.a/ below. We will then show
that T .a/ and T 0.a/ are BS.1; n/–equivariantly isomorphic.

Definition 3.16 Let T 0.a/ be the tree with the following vertices and edges.

� The vertices of T 0.a/ are identified with Qq �Z up to an equivalence relation �.

� For pairs .x; h/ and .x0; h0/ in Qq �Z, we have .x; h/� .x0; h0/ if and only if
h D h0 and kx � x0kq � q�h, where k � kq denotes the q–adic absolute value
on Qq; see Definition 2.19.

� A vertex represented by .x; h/ 2 Qq � Z is joined by an edge to the vertex
represented by .x; hC 1/.

We define an action of BS.1; n/ on T 0.a/ as follows:

� If a denotes the normal generator 1 of Z
�
1
n

�
� BS.1; n/, then the action of a on

the vertices of T 0.a/ is given by

a W .x; h/ 7! .xC 1; h/:

� The generator t acts on the vertices of T 0.a/ by

t W .x; h/ 7! .nx; hC 1/:
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101:1

11:1
111:1

Figure 3: The actions BS.1; 2/Õ T 0.0/, left, and BS.1; 6/Õ T 0.Z2 � 0/, right.

Here h is meant to indicate a “height” and the equivalence relation reflects the fact that
the tree distinguishes between more q–adic numbers, the larger the parameter h is. The
reader may check that the graph described above is indeed a tree and that the actions
of a and t do indeed define an action of BS.1; n/. In fact, T 0.a/ is just the regular
.qC1/–valent tree. Before explaining why T 0.a/ is equivariantly isomorphic to T .a/,
we present two examples that the reader may find illustrative.

Example 3.17 First consider the group BS.1; 2/. The ring Z2 has two full ideals: .0/
and Z2. If aD Z2, then l D 2 and q D 1, so the vertices of T 0.Z2/ are identified with
f0g�Z. Hence the action BS.1; 2/Õ T 0.Z2/ is simply the standard action of BS.1; 2/
on the line by translations. If aD .0/, then l D 1 and q D 2, so the vertices of T .0/
are identified with Q2 �Z up to the equivalence relation �. This results in the main
Bass–Serre tree of BS.1; 2/ with the standard action, as shown in Figure 3, left. In the
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figure, vertices are labeled by 2–adic numbers. Heights are implicit in the figure, with
vertices at the same height in the figure having the same height in Z. The height hD 0
is illustrated with a dotted line. The generator t acts loxodromically, shifting each
vertex directly upward in the figure. For example, consider the vertex .1:1; 1/ 2 T 0.0/.
We have t .1:1; 1/D .2 � 1:1; 1C 1/D .11; 2/. The generator a acts elliptically, where
the action is via a 2–adic odometer x 7! xC 1 on Q2.

Example 3.18 Now consider the group BS.1; 6/. The ring Z6 has four full ideals:
.0/, Z2 � .0/, .0/ � Z3, and Z2 � Z3. The trees T 0.0/ and T 0.Z2 � Z3/ are the
main Bass–Serre tree and the standard action on the line, respectively, as in the pre-
vious example. We will describe the action BS.1; 6/ Õ T 0..0/ � Z3/. The action
BS.1; 6/Õ T 0.Z2 � .0// may be described in a similar way.

If aD .0/�Z3, then l D 3 and q D 2; hence the vertex set of the tree T 0..0/�Z3/ is
identified with Q2�Z up to the equivalence relation �. In particular, the tree T 0..0/�
Z3/ for BS.1; 6/ is isomorphic to the main Bass–Serre tree for BS.1; 2/. However, the
action is different. The generator a is still elliptic, acting as a 2–adic odometer on Q2,
just as it did for BS.1; 2/. The generator t is also still loxodromic. However, t has a more
complicated action than simply “shifting vertices directly upward”. This is because
t now acts as multiplication by 6 on Q2 while simultaneously increasing heights by
1, while in the previous example it acted as multiplication by 2 on Q2 while increasing
heights by 1. For example, consider the same vertex .1:1; 1/ as in the previous example,
but now as a vertex of T 0..0/�Z3/. Recall that in the previous example, applying
t 2 BS.1; 2/ sent .1:1; 1/ to .11; 2/. Here, applying t 2 BS.1; 6/ yields

t .1:1; 1/D .6 � 1:1; 1C 1/D .1001; 2/� .1; 2/:

The action of t on certain vertices of the tree is illustrated via arrows in Figure 3.

Proposition 3.19 The trees T .a/ and T 0.a/ are BS.1; n/–equivariantly isomorphic.

Proof This is a standard exercise in Bass–Serre theory. The group BS.1; n/ acts on
T 0.a/ with a single orbit of vertices and a single orbit of edges. Note that the stabilizer
of any vertex is contained in Z

�
1
n

�
E BS.1; n/ since t acts loxodromically. Moreover,

Z
�
1
n

�
permutes the vertices at any given height in the tree. For y 2Z

�
1
n

�
the action on

vertices at height h is given explicitly by .x; h/ 7! .xCy; h/. Hence y 2 Z
�
1
n

�
fixes

(the equivalence class of) the vertex .x; h/ if and only if kykq � q�h. The additive
subgroup of Z

�
1
n

�
consisting of elements of q–adic absolute value at most q�h is

given exactly by qhZ
�
1
l

�
D nhZ

�
1
l

�
. Choosing a vertex at height 0 and an adjacent
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vertex at height 1, the vertex stabilizers are Z
�
1
l

�
and nZ

�
1
l

�
, respectively. Thus, the

quotient graph of groups for BS.1; n/ has a single vertex group Z
�
1
l

�
. The edge group

embeds isomorphically into Z
�
1
l

�
on one end and embeds as the subgroup nZ

�
1
l

�
on

the other end. This is the same as the graph of groups defining T .a/, so the two trees
are equivariantly isomorphic.

3.2 Subsets confining under the action of ˛�1

Let Q� be the subset defined in (5).

Lemma 3.20 Let Q �H be confining under the action of ˛�1. Then ˛�k.Q�/�Q
for some k � 0.

Proof Let k0 2 Z�0 be large enough that ˛�k0.QCQ/ � Q. We may suppose
that k0 > 0, for otherwise Q is a subgroup of H and it is easy to check that in
fact Q DH . Since H D

S
k2Z�0

˛k.Q/, we may also choose k1 large enough that
˛�k1.a/D an�k1 2Q for any a 2 f0; : : : ; n� 1g.

We claim that any number of the form
rX
iD0

ain
�k1�.iC1/k0 with ai 2 f0; : : : ; n� 1g for all 0� i � r

(for any r � 0) lies in Q. In other words, any number

0: 0 : : : : : : : : : 0„ ƒ‚ …
k1Ck0�1 times

a0 0 : : : : : : 0„ ƒ‚ …
k0�1 times

a1 0 : : : : : : 0„ ƒ‚ …
k0�1 times

a2 0 : : : : : : 0„ ƒ‚ …
k0�1 times

: : : ar

between 0 and 1 which may be written in base n with

� k1C k0� 1 zeros after the decimal point, and then

� k0� 1 zeros between any consecutive potentially nonzero digits

lies inQ. We will prove this by induction on r . The base case, when rD0, follows since
a0n
�k1 2Q for any a0 2f0; : : : ; n�1g and therefore ˛�k0.a0n

�k1/Da0n
�k1�k0 2Q

because Q is closed under the action of ˛�1. Suppose that the claim is true for all
r < s. Consider a number xD

Ps
iD0 ain

�k1�.iC1/k0 with ai 2 f0; : : : ; n�1g for all i .
We may write

x D a0n
�k1�k0 C

sX
iD1

ain
�k1�.iC1/k0 :

We have that a0n�k1 2Q and by induction,
sX
iD1

ain
�k1�ik0 D

s�1X
iD0

aiC1n
�k1�.iC1/k0 2Q:
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Hence,

x D a0n
�k1�k0 C

sX
iD1

ain
�k1�.iC1/k0 D ˛�k0

�
a0n
�k1 C

sX
iD1

ain
�k1�ik0

�
2Q:

This proves the claim.

Now consider a number of the form x D
Pr
iD0 ain

�k1�k0�i . In other words,

x D 0: 0 : : : : : : : : : 0„ ƒ‚ …
k1Ck0�1 times

a0a1 � � � ar :

We may write

x D

k0�1X
jD0

X
i2Z�0

jCik0�r

ajCik0
n�.k1C.iC1/k0Cj / D

k0�1X
jD0

xj ;

where
xj D

X
i2Z�0

jCik0�r

ajCik0
n�.k1C.iC1/k0Cj /:

In other words, we are writing

x D 0:0 : : :0a000: : :00ak0
00 : : :

C 0:0 : : :00a10: : :000a1Ck0
0 : : :

C 0:0 : : :000a2: : :0000a2Ck0
: : :

:::

C 0:0 : : :0000 : : :0ak0�1000 : : :

with the summands being x0; x1; x2; : : : ; xk0�1, respectively. Notice that

xj D
X
i2Z�0

jCik0�r

ajCik0
n�.k1C.iC1/k0Cj /

D ˛�j
� X
i2Z�0

jCik0�r

ajCik0
n�.k1C.iC1/k0/

�
D ˛�j .yj /;

where
yj D

X
i2Z�0

jCik0�r

ajCik0
n�.k1C.iC1/k0/

and, by our claim, yj 2 Q for each j 2 f0; : : : ; k0 � 1g. Since Q is closed under
the action of ˛�1, we have xj 2 Q for each j . Therefore x 2 Qk0 . Using that
˛�k0.QCQ/�Q, we have ˛�k

2
0 .x/D ˛�k0�k0.x/ 2Q.
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Finally, for any positive number y D
Pr
iD0 ain

�i�1 2Q�,

˛�k1�k0C1.y/D

rX
iD0

ain
�k1�k0�i :

By our work in the last paragraph, this proves that

˛�k
2
0 .˛�k1�k0C1.y// 2Q:

In other words, ˛�k
2
0�k0�k1C1.y/ 2Q.

We have shown that ˛�k.y/ 2Q for any positive y 2Q� where kD k20Ck0Ck1�1.
Since Q� and Q are symmetric, this proves that for any negative y 2Q� we have
˛�k.y/D�˛�k.�y/ 2Q. That is, ˛�k.Q�/�Q where k D k20 C k0C k1� 1.

Proposition 3.21 Let Q � H be strictly confining under the action of ˛�1. Then
ŒQ[ft˙1g�D ŒQ�[ft˙1g�.

Proof Lemma 3.20, we have ŒQ[ft˙1g�4 ŒQ�[ft˙1g�. Suppose that the inequality
is strict. We will show then that ŒQ[ ft˙1g�D ŒH [ ft˙1g� and this will contradict
that Q is strictly confining.

By Lemmas 3.20 and 3.2, we may suppose that Q��Q. If there exists k large enough
that ˛�k.x/2Q� for all x 2Q, then we have ŒQ[ft˙1g�D ŒQ�[ft˙1g�, as desired.

Otherwise, there exist numbers x D ar : : : a0:a�1 : : : ap.x/ 2Q with r arbitrarily large
and ar ¤ 0. We will prove in this case that nt 2 Q for t arbitrarily large. This
will complete the proof, for in this case, for any a 2 f0; : : : ; n � 1g we will also
have ant 2Q for any t , by the standard arguments. Hence given a positive number
y D

Pq
iD�p ain

i 2H , we have
Pq
iD�p ain

iCk0.pCqC1/ 2QpCqC1 and therefore

˛�.pCqC1/k0

� qX
iD�p

ain
iCk0.pCqC1/

�
D y 2Q:

Since Q is symmetric, this will prove that H �Q.

Consider a number x D ar : : : a0:a�1 : : : ap.x/ 2 Q with r � 0 (how large will be
determined later in the proof). We clearly have nr � x < nrC1. For any s > 0,

nsx D ar : : : a0 : : : a�s:a�s�1 : : : ap.x/ � n
rCs
D 1 0 : : : : : : 0„ ƒ‚ …

rCs times
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(with the decimal point to the right of ap.x/ if s > p.x/). We claim that there exists
c 2 f0; 1; : : : ; nsg such that

cx D 1 0 : : : : : : 0„ ƒ‚ …
s�2 times

brbr�1 : : : b0:b�1 : : : bp.cx/:

If this is not the case, then since nsx � nrCs there exists some c 2 f0; : : : ; nsg with

cx < 1 0 : : : : : : : : : 0„ ƒ‚ …
rCs�1 times

but .cC 1/x � 1 0 : : : : : : 0„ ƒ‚ …
s�3 times

1 0 : : : : : : 0„ ƒ‚ …
rC1 times

:

From these inequalities we see that

x D .cC 1/x� cx � 1 0 : : : : : : 0„ ƒ‚ …
rC1 times

D nrC1;

which is a contradiction.

So choose c 2 f0; 1; : : : ; nsg with

cx D 1 0 : : : : : : 0„ ƒ‚ …
s�2 times

brbr�1 : : : b0:b�1 : : : bp.cx/:

Assuming that r > nsk0,

˛�ck0.cx/D 1 0 : : : : : : 0„ ƒ‚ …
s�2 times

brbr�1 : : : bck0
:bck0�1 : : : b0b�1 : : : bp.cx/ 2Q:

Since Q is closed under the action of ˛�1, we then also have

1 0 : : : : : : 0„ ƒ‚ …
s�2 times

:brbr�1 : : : bp.cx/ 2Q:

Since Q� �Q, we then have

10 : : : 0D ns�2 2QCQ

and therefore ns�2�k0 2Q. But since s is arbitrarily large, we then have nt 2Q for t
arbitrarily large.

3.2.1 The action on H2 There is a well-known action of BS.1; n/ on H2 defined
via the representation

BS.1; n/! PSL.2;R/;
where

a 7!

�
1 1

0 1

�
; t 7!

�
n1=2 0

0 n�1=2

�
:

The restriction of this representation to H D htkat�k j k 2 Zi is given by

r 7!

�
1 r

0 1

�
where we identify H as a subset of R in the usual way.
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Proposition 3.22 The action of BS.1; n/ on H2 is equivalent to the action of BS.1; n/
on �.BS.1; n/;Q�[ft˙1g/.

Proof We will apply the Schwarz–Milnor lemma; see eg [1, Lemma 3.11].

We consider the upper half-plane model of H2. We show first that the orbit of i under
BS.1; n/ is .log.n/C1/–dense in H2. For this, note first that the orbit of i under hai is
1–dense in the horocycle fz 2H2 j =.z/D 1g. This follows easily from the fact that
d.i; ai/Dd.i; 1Ci/<1. Now, for any k2Z, tk takes the horocycle fz2H2 j=.z/D1g

isometrically to the horocycle fz 2H2 j =.z/D nkg. Hence the orbit of i is 1–dense
in the horocycle fz 2H2 j =.z/D nkg for any k 2 Z. Moreover, for any k 2 Z, the
distance between the horocycles fz 2H2 j =.z/D nkg and fz 2H2 j =.z/D nkC1g

is exactly log.n/. Hence, any z 2 H2 has distance at most log.n/ from a horocycle
fz 2 H2 j =.z/ D nkg for some k 2 Z. By the triangle inequality, z has distance at
most log.n/C 1 from some point in the orbit of i .

This proves that
S
g2BS.1;n/ gBlog.n/C1.i/DH2. Therefore by [1, Lemma 3.11], the

action BS.1; n/ÕH2 is equivalent to the action BS.1; n/Õ �.BS.1; n/; S/ where

S D fg 2 BS.1; n/ j dH2.i; gi/� 2 log.n/C 3g:

We will prove that ŒS [ft˙1g�D ŒQ�[ft˙1g�, which will finish the proof.

Let g 2 S . We may write g D rtk where r 2H and k 2 Z. Observe that

d.i; gi/� jkj log.n/:
Since g 2 S ,

jkj log.n/� 2 log.n/C 3;
and hence

jkj �
2 log.n/C 3

log.n/
�
2 log.2/C 3

log.2/
< 7:

We have gi D nki C r , and hence

d.i; gi/D 2 arcsinh
�
1

2

r
r2C .nk � 1/2

nk

�
� 2 arcsinh

�
1

2

r
r2

n7

�
:

This defines an upper bound on jr j, and hence there exists a uniform l > 0 (that is,
independent of r) such that j˛�l.r/j< 1. For such an l , we have ˛�l.r/ 2Q�.

To summarize, we have g D rtk , where jkj < 7 and ˛�l.r/ 2 Q�. In other words,
there exists s 2Q� such that

g D ˛l.s/tk D t lst�l tk :
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This proves that kgkQ�[ft˙1g
� 2l CjkjC 1 < 2l C 8. Thus,

ŒQ�[ft˙1g�4 ŒS [ft˙1g�:

On the other hand, any element s 2 Q� has d.i; si/ < 1 < 2 log.n/ C 3, so we
automatically have s 2 S . So Q�[ft˙1g � S [ft˙1g and this proves

ŒS [ft˙1g�4 ŒQ�[ft˙1g�:

4 Hyperbolic structures of BS.1; n/

4.1 Quasiparabolic structures

Lemma 4.1 The commutator subgroup of BS.1; n/ has index n� 1 in H .

Proof The abelianization of BS.1; n/ is given by the obvious homomorphism

BS.1; n/D ha; t j tat�1 D ani ! ha; t j Œa; t �D 1; aD ani D Z˚Z=..n� 1/Z/:

The kernel of this homomorphism is ŒBS.1; n/;BS.1; n/�, whereas H is the kernel of
the composition

BS.1; n/! Z˚Z=..n� 1/Z/! Z:

The lemma follows easily from this.

The proof of Proposition 2.6 is a modification to the proofs of [3, Theorems 4.4 and 4.5]
and [4, Proposition 4.5]. We recall the statement for the reader’s convenience:

Proposition 2.6 A hyperbolic structure ŒT � is an element of Hqp.BS.1; n// if and only
if there exists a symmetric subsetQ�Z

�
1
n

�
which is strictly confining under the action

of ˛ or ˛�1 such that ŒT �D ŒQ[ft˙1g�.

Proof Given a strictly confining subset Q, a quasiparabolic structure is constructed in
[4, Proposition 4.6].

It remains to prove the forward direction. Let ŒT � 2 Hqp.BS.1; n//. Fix a sequence
xD .xn/ in �.G; T /, let qx WG!R be the associated quasicharacter, and let � WG!R

be the Busemann pseudocharacter — see Section 2.2 for definitions. Since BS.1; n/ is
amenable, � is a homomorphism, and �.h/D 0 for all h2H by Lemma 4.1. Moreover,
we must have �.t/¤ 0, or else �.g/D 0 for all g 2 BS.1; n/.
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Claim 4.2 There exist constants r0; n0 � 0 such that QD
Sn0�1
iD1 ˛i .B.1; r0/\H/

is confining under the action of ˛ or ˛�1.

Proof of claim As ŒT � 2 Hqp.BS.1; n//, the group BS.1; n/ fixes a single point
� 2 @�.BS.1; n/; T /. As �.t/ ¤ 0, t acts as a hyperbolic isometry of �.G; T /, and
thus either t or t�1 has � as its repelling point. Assume without loss of generality that
it is t ; we will show that Q is strictly confining under the action of ˛. On the other
hand, if we assume that t�1 has � as its repelling point, then an analogous proof will
show that Q is strictly confining under the action of ˛�1.

First note that the sequence .1; t�1; t�2; : : : / defines aK–quasigeodesic ray in �.G; T /
for some K, and thus so does the sequence .g; gt�1; gt�2; : : : / for any g 2 BS.1; n/.
Recall that there is a constant r0, depending only on the hyperbolicity constant of
�.G; T / and K such that any two K–quasigeodesic rays with the same endpoint on
@�.G; T / are eventually r0–close to each other. In particular, if �.g/� C , then there
is a constant n0 D n0.dT .1; g// such that

(9) dT .t
�n; gt�n/� r0CC

for all n� n0.

Fix n0 D n0.r0/, and define

QD

n0�1[
iD0

˛i .B.1; r0/\H/:

Choose r1 such that Q � B.1; r1/. Note that such an r1 exists since for any i and any
h 2 B.1; r0/\H ,

k˛i .h/kT D kt
iht�ikT � r0C 2iktkT :

Let n1 D n0.2r1/.

For any h 2B.1; r0/\H , we have dT .1; h/� r0 and �.h/D 0, and so it follows from
(9) that for all n� n0,

dT .˛
n.h/; 1/D dT .t

nht�n; 1/D dT .ht
�n; t�n/� r0:

Therefore, ˛n.h/ 2 B.1; r0/\H , and thus, for all n� n0,

˛n.B.1; r0/\H/� B.1; r0/\H:

We now check the conditions of Definition 2.3. Let h2Q, so that h2˛i .B.1; r0/\H/
for some 0 � i � n0 � 1. If i < n0 � 1, then ˛.h/ 2 ˛iC1.B.1; r0/\H/ � Q. On
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the other hand, if i D n0 � 1, then ˛.h/ 2 ˛n0.B.1; r0/\H/ � B.1; r0/\H � Q.
Therefore condition (a) holds.

For any h 2H , there is a constant nh D n0.dT .1; h// such that

˛nh.h/ 2 B.1; r0/\H �Q:

Therefore H D
S1
iD0 ˛

�i .Q/ and (b) holds.

Finally, QCQ � B.1; 2r1/, and so ˛n1.QCQ/� B.1; r0/\H �Q, and (c) holds
with constant n1.

Therefore, Q is confining under the action of ˛, concluding the proof of the claim.

Let S DQ[ft˙1g. We will show that the map � W .BS.1; n/; dS /! .BS.1; n/; dT / is a
quasi-isometry. Since sups2S dT .1; s/ <1, the map � is Lipschitz. Thus it suffices to
show that for any bounded subset B � �.BS.1; n/; T /, we have supb2B dS .1; b/ <1.
Fix any M > 0 and let B � �.BS.1; n/; T / be such that dT .1; b/�M for all b 2 B .
For each b 2 B , we have b D htk for some h 2H and some k.

By the definition of qx (see (1)), we have qx.g/� dT .1; g/, and since there exists a
constant D (the defect of qx) such that j�.g/� qx.g/j �D,

�dT .1; g/�D � �.g/� dT .1; g/CD:

Consequently � maps bounded subsets of �.G; T / to bounded subsets of R. Since
�.htn/ D �.h/C n�.t/ D n�.t/, for all n, it follows that there is a constant K such
that for any b with dT .1; b/D dT .1; htk/�M we have k �K. This implies that

dT .1; h/� dT .1; ht
k/C kdT .1; t/�M CKdT .1; t/:

Hence, by (9), there is a uniform N such that ˛N .h/ 2Q and thus dS .1; h/� 2N C1.
Therefore,

dS .1; b/D dS .1; ht
k/� dS .1; h/C k � 2N C 1CK:

Since the map � is the identity map on vertices, it is clearly surjective, and therefore it
is a quasi-isometry.

Finally, Q is strictly confining under the action of ˛. Indeed, if Q is confining but not
strictly confining under the action of ˛, then ŒQ[ft˙1g�D ŒT � 2H`.BS.1; n//, which
is a contradiction.
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Recall that given an ideal a of Zn, there is an associated subset C.a/�H defined in (8)
which is confining under the action of ˛. Recall also that aD a1 � � � � � ak is full if aj
is either .0/ or Zpj

for every j D 1; : : : ; k; see Definition 2.16.

Lemma 4.3 Let a and b be full ideals of Zn such that a 6� b and b 6� a. Then
ŒC.a/[ft˙1g� and ŒC.b/[ft˙1g� are incomparable.

Proof Since aD a1 � � � � � ak and bD b1 � � � � � bk are full ideals of Zn, there exist
1� i; j � k such that ai D .0/, aj D Z

p
nj

j

, bi D Z
p

ni
i

, and bj D .0/.

Consider C.a/ and C.b/. For any x D˙xr : : : x0:x�1 : : : xp.x/ 2 C.a/, there is an ele-
ment aD : : : x�1 : : : xp.x/ 2 a. Similarly, for any yD˙ym : : : y0:y�1 : : : yp.y/ 2 C.b/,
there is an element b D : : : y�1 : : : yp.y/ 2 b. Since ai D .0/,

xp.x/ � 0 mod pni

i ;

and, since bj D .0/,
yp.y/ � 0 mod pnj

j

by Lemma 2.13.

For any K � 0, choose x 2 C.a/ such that p.x/D�K and c.x/ 6� 0 mod pnj

j , which
is possible since aj D Zpnj

j
. By Lemma 2.20 we can find an expression of x as a

minimal length word in the generating set C.b/[ft˙1g of the form

x D t�u.g1C � � �Cgw/t
u:

By Lemma 3.11 we may write g1 C � � � C gw D g 2 C.b/, and the result is that
x D ˛�u.g/. Now, since g 2 C.b/ and bj D .0/, it follows that if p.g/ < 0, then
c.g/ � 0 mod pnj

j . But this implies that c.x/ D c.˛�u.g// � 0 mod pnj

j , which is
a contradiction. Consequently, we must have p.g/ � 0, which implies that u � K.
Therefore

kxkC.b/[ft˙1g
� 2KC 1:

Since K was arbitrary, it follows that

sup
x2C.a/[ft˙1g

kxkC.b/[ft˙1g
D1;

and thus
ŒC.a/[ft˙1g� 64 ŒC.b/[ft˙1g�:

A similar argument shows that

ŒC.a/[ft˙1g� 6< ŒC.b/[ft˙1g�:
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Lemma 4.4 Let a and b be full ideals of Zn, and suppose aŒ b. Then

ŒC.a/[ft˙1g�‘ ŒC.b/[ft˙1g�:

Proof Since a Œ b, and aD a1 � � � � � ak and bD b1 � � � � � bk are both full ideals
of Zn, we have a¨ b. Therefore, there exists some 1� i � k such that ai D .0/ while
bi D Z

p
ni
i

. Consequently, for all a D : : : a2a1a0 2 a, we have a0 � 0 mod pni

i by
Lemma 2.13.

We first show that C.a/� C.b/. Let xD˙xr : : : x1x0:x�1 : : : xp.x/ 2 C.a/. Then there
exists some a 2 a such that aD : : : x�1 : : : xp.x/. Since a� b, we have a 2 b, and so by
the definition of C.b/, it follows that x 2 C.b/. Therefore C.a/[ft˙1g � C.b/[ft˙1g,
and

ŒC.a/[ft˙1g�< ŒC.b/[ft˙1g�:

Finally, an argument analogous to the proof of Lemma 4.3 shows that

ŒC.a/[ft˙1g�¤ ŒC.b/[ft˙1g�:

Recall that given a subset Q �H which is confining under the action of ˛, there is an
associated ideal I.Q/ of Zn defined by (7).

Lemma 4.5 For any confining subset Q under the action of ˛,

ŒQ[ft˙1g�D ŒC.I.Q//[ft˙1g�:

Proof By Lemma 3.9, we have that C.I.Q//� ˛�M .Q/ for some M . Note that this
implies that

ŒQ[ft˙1g�4 ŒC.I.Q//[ft˙1g�:

We will show that ŒC.I.Q//[ft˙1g�4 ŒQ[ft˙1g�. Suppose this is not the case. Then
Q 6� ˛�k.C.I.Q/// for any k and hence there exist elements

aD ar : : : a0:a�1 : : : a�s 2Q

with
inffk j ˛k.a/ 2 C.I.Q//g

arbitrarily large. Let a be an element as above, let

`D inffk j ˛k.a/ 2 C.I.Q//g;
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and assume ` > k0, where k0 is large enough that ˛k0.QCQ/ � Q. Let t � s be
largest with the property that there does not exist an element of the form

: : : a�t : : : a�s 2 I.Q/:

Note that t > `, for otherwise we would have

˛`�1.a/D ar : : : a0a�1 : : : a�`C1:a�` : : : a�s 2 C.I.Q//;

contradicting the definition of ` as an infimum. We consider two cases:

(1) If t D s, then by definition there does not exist an element of I.Q/ with one’s
digit a�s . In other words, there does not exist an element of the form : : : a�s in I.Q/.

(2) On the other hand suppose that t < s. Then by definition of t , there exists an
element

x D : : : x2x1x0a�t�1 : : : a�s 2 I.Q/:

Let y D : : : y2y1y0 2 I.Q/ be the additive inverse of x. That is,

: : : x0 a�t�1 : : : a�s
C : : : ys�t ys�t�1 : : : y0

: : : 0 0 : : : 0

By definition of I.Q/, there exists an element

b D bu : : : b0:ys�1ys�2 : : : y0 2Q:

We have c D aC b 2QCQ, where c D cv : : : c0:c�1 : : : c�t is given by

ar : : : a0: a�1 : : : a�t a�t�1 : : : a�s
C bu : : : br : : : b0: ys�1 : : : ys�t ys�t�1 : : : y0

cv : : : cu : : : cr : : : c0: c�1 : : : c�t 0 : : : 0

(note, we are assuming in the above expression that u � r , but the case u < r is
identical). Therefore

˛k0.c/D cv : : : c0c�1 : : : c�k0
:c�k0�1 : : : c�t 2Q:

Note that there does not exist an element of I.Q/ whose one’s digit is c�t . For suppose
that z D : : : z2z1z0c�t is such an element. Then we also have

ns�tz D : : : z2z1z0c�t 0 : : : : : : 0„ ƒ‚ …
s�t times

2 I.Q/
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and hence ns�tz�y 2 I.Q/ is given by

: : : c�t 0 : : : 0

� : : : ys�t ys�t�1 : : : y0

: : : a�t a�t�1 : : : a�s

contradicting the definition of t .

Taking d D a in case (1) above or d D ˛k0.c/D cv : : : c�k0
:c�k0�1 : : : c�t in case (2)

above, we have shown so far that there are elements dw : : : d0:d�1 : : : d�u 2Q with
u arbitrarily large (at least `� k0) and with the property that there is no element of
the form : : : d�u in I.Q/. That is, there exists a sequence ui !1 and a sequence
fd ig1iD1 �Q with p.d i /D�ui , and c.d i /D d i�ui

with the property that there is no
element of the form : : : d i�ui

in I.Q/. Writing d i D d iwi
: : : d i0:d

i
�1 : : : d

i
�ui

we may
pass to a subsequence to assume that the sequence of integers d i

�1 : : : d
i
�ui
2 Z� Zn

converges to a number : : : e2e1e0 2 Zn.

We claim that : : : e2e1e0 2 I.Q/. To prove the claim, note that given any t � 0 and all
large enough i , the number d i

�1 : : : d
i
�ui

has

d i�ui
D e0; d i�uiC1

D e1; : : : ; d i�uiCt
D et :

We have

˛ui�t�1.d i /D d iwi
: : : d i0d

i
�1 : : : d

i
�uiCtC1

:d i�uiCt
d i�uiCt�1

: : : d i�ui

D d iwi
: : : d i�uiCtC1

:etet�1 : : : e0

for all such i . Since ˛ui�t�1.d i /2Q and t is arbitrary, this proves the claim. However,
this is a contradiction, as we have d i�ui

D e0 for all large enough i , while there does not
exist an element of the form : : : d i�ui

in I.Q/ for any i . This completes the proof.

Define Jn to be the poset 2f1;:::;kgnff1; : : : ; kggwith the partial order given by inclusion.
Recall that Kn is the poset 2f1;:::;kgnf∅g. We have that Kn is isomorphic to the opposite
poset of Jn.

We now define a map
ˆ W Jn!Hqp.BS.1; n//

as follows. Given A 2 Jn, let a D a1 � � � � � ak be the full ideal of Zn defined by
ai D .0/ if and only if i 2 A, and let

(10) ˆ.A/D ŒC.a/[ft˙1g�:
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Proposition 4.6 The mapˆ WJn!Hqp.BS.1; n// defined in (10) is an order-reversing
injective map. Hence ˆ induces an injective homomorphism of posets

Kn!Hqp.BS.1; n//:

Moreover , Hqp.BS.1; n// contains exactly one additional structure which is incompara-
ble to every ŒY � 2ˆ.Jn/.

Proof Lemmas 4.3 and 4.4 show that the map ˆ is an injective order-reversing map
of posets.

By Proposition 2.6, if ŒS� 2Hqp.BS.1; n//, then there exists a Q�H which is strictly
confining under the action of ˛ or ˛�1 and such that ŒS�D ŒQ[ft˙1g�.

Fix ŒS�2Hqp.BS.1; n// such that the corresponding subsetQ is strictly confining under
the action of ˛, and consider the ideal I.Q/. By Lemma 4.5, ŒS�D ŒC.I.Q//[ft˙1g�.
Moreover, by Lemma 2.17, there is a proper full ideal a� I.Q/, and C.I.Q//D C.a/
by Lemma 3.10. Thus ŒS� D ŒC.a/[ ft˙1g�. Let A D f1 � i � k j ai D .0/g � Jn.
Then ŒS� D ˆ.A/, and so every quasiparabolic structure whose associated subset is
strictly confining under the action of ˛ is in the image of ˆ.

By Proposition 3.21, Hqp.BS.1; n// has a single additional element, ŒQ� [ ft˙1g�,
where Q�, defined in (5), is strictly confining under the action of ˛�1. It remains to
show that ŒQ�[ft˙1g� is incomparable to all ŒS� 2Hqp.BS.1; n// n fŒQ�[ft˙1g�g.

To see this last fact, note that the action BS.1; n/ Õ �.BS.1; n/;Q� [ ft˙1g/ is
equivalent to the action BS.1; n/ÕH2 by Proposition 3.22. Hence in this action, the
common fixed point of all elements of BS.1; n/ is the attracting fixed point of t . On
the other hand, for ŒS� 2Hqp.BS.1; n// n fŒQ�[ft˙1g�g, BS.1; n/Õ �.BS.1; n/; S/
is equivalent to the action of BS.1; n/ on one of the Bass–Serre trees described in
Section 3.1.3. Hence in the action BS.1; n/Õ �.BS.1; n/; S/, the common fixed point
of all elements of BS.1; n/ is the repelling fixed point of t . If we had, for example,
ŒQ�[ft˙1g�4 ŒS� then this would imply that every element of BS.1; n/ would fix the
repelling fixed point of t in @�.BS.1; n/;Q�[ft˙1g/ as well as the attracting fixed
point of t . This would imply that the action BS.1; n/Õ �.BS.1; n/;Q�[ft˙1g/ is
lineal, which is a contradiction.

4.2 Proof of Theorem 1.1

Proposition 4.6 gives a complete description of Hqp.BS.1; n//. We now turn our
attention to other hyperbolic structures.
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We first show that for any n� 2, jHl.BS.1; n//j D 1. Consider an action BS.1; n/ÕX

with X hyperbolic. Then every element of H must act elliptically or parabolically. For
if g2H then tgt�1 and g have the same stable translation length. However, tgt�1Dgn

has stable translation length equal to n times the stable translation length of g. This
is only possible if the stable translation length of g is 0. Hence the induced action of
H on X is either elliptic or parabolic. Since H E BS.1; n/, if H Õ X is parabolic,
then every element of BS.1; n/ must fix the unique point in @X which is fixed by H ;
hence BS.1; n/Õ X is parabolic or quasiparabolic. In particular, if BS.1; n/Õ X

is a lineal action then H ÕX is elliptic. This shows that if ŒS� 2Hl.BS.1; n// then
ŒS� 4 ŒH [ ft˙1g�. But by [1, Theorem 4.22], if ŒA� 4 ŒB� and both structures are
lineal, then ŒA�D ŒB�. Therefore ŒS�D ŒH [ft˙1g�.

Every quasiparabolic structure dominates the lineal structure defined by its Buse-
mann quasimorphism. Since jHl.BS.1; n//j D 1, it follows that every element of
Hqp.BS.1; n// dominates this single lineal structure.

For any n � 2, BS.1; n/ is solvable, and so contains no free subgroups. Thus by the
ping-pong lemma, Hgt.BS.1; n//D∅.

Finally, for any group G, He.G/ has a single element which is the smallest element in
H.G/, completing the proof of Theorem 1.1.

5 Generating confining subsets

Consider a group G D H ÌZ where Z D hti acts by tht�1 D ˛.h/ for any h 2 H ,
where ˛ 2Aut.H/. In this section, we give a general method for constructing confining
subsets of such groups.

Let S be a symmetric subset of H with the properties

(i) ˛.S/� S ,

(ii)
S
n�0 ˛

�n.S/ generates H .

Define a subset Qi �H by

Qi DQi0[Q
i
1[Q

i
2[ � � �

where Qi0 D S and
QinC1 DQ

i
n[˛

i .Qin �Q
i
n/

for all n� 0. In other words, Qi is the smallest subset of H containing S and with the
property that ˛i .Qi �Qi /�Qi .
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Proposition 5.1 Qi is a confining subset of H under the action of ˛.

Proof First, we prove by induction that ˛.Qin/�Q
i
n for all n. The base case nD 0

holds by point (i). Suppose for induction that ˛.Qin/ �Q
i
n. Now if x 2QinC1 then

x 2Qin or x 2 ˛i .Qin �Q
i
n/. In the first case we have ˛.x/ 2Qin �Q

i
nC1. Otherwise,

we may write x D ˛i .yz/ where y; z 2Qin. Then we have

˛.x/D ˛i .˛.y/˛.z//

and since ˛.y/; ˛.z/ 2Qin we have ˛.x/ 2 ˛i .Qin �Q
i
n/�Q

i
nC1.

Since ˛.Qin/�Q
i
n for all n, we have ˛.Qi /�Qi .

Now to see that ˛i .Qi �Qi /�Qi simply use the fact that ˛i .Qin �Q
i
n/�Q

i
nC1 and

Qi is the union of the sets Qin for n� 0.

Finally, we prove that H D
S
n�0 ˛

�n.Qi /. We use fact (ii) above and induction on
the word length of an element h 2H in the semigroup generating set

S
n�0 ˛

�n.S/.
If h has word length one with respect to this generating set then hD ˛�n.s/ for some
s 2 S . Hence, ˛n.h/ D s 2 Qi0. Suppose for induction that if h has word length at
most k, then ˛n.h/ 2Qi for some n� 0. Let h have word length kC1. Then we may
write hD ˛�n.s/h0 where s 2Qi and h0 has word length k. By induction there exists
m such that ˛m.h0/ 2Qi . We have

˛mCn.h/D ˛m.s/˛mCn.h0/:

Since ˛.Qi /�Qi and ˛m.h0/ 2Qi , we have ˛mCn.h0/ 2Qi . Similarly ˛m.s/ 2Qi .
Choose r large enough such that ˛m.s/; ˛mCn.h0/ 2Qir . Then we have

˛mCnCi .h/D ˛i .˛m.s/˛mCn.h0// 2 ˛i .Qir �Q
i
r/�Q

i
rC1:

This completes the induction.

By [4, Proposition 4.6], ŒQi [ft˙1g� 2Hqp.G/[H`.G/ for all i . Clearly we have

(11) ŒQ1[ft˙1g�4 ŒQ2[ft˙1g�4 ŒQ3[ft˙1g�4 � � � :

In general, there is no reason that any of these inequalities need be strict. However, for
certain groups they are all strict. In the following proposition, we apply Proposition 5.1
to the lamplighter group Z oZ' Z

�
x; 1
x

�
ÌZ to demonstrate this phenomenon.
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Proposition 5.2 Let H D Z
�
x; 1
x

�
(the additive group of the Laurent polynomial ring

over Z) where t acts onH by tp.x/t�1D xp.x/. Set S Df˙1;˙x;˙x2; : : :g. Define
Qi using S as above. Then we have ŒQi [ft˙1g�¤ ŒQj [ft˙1g� for i < j . Moreover ,
ŒQi [ft˙1g� 2Hqp.H ÌZ/ for each i .

Before turning to the proof, we note that the existence of a countable chain of quasi-
parabolic structures for this group follows from [3, Theorem 1.4], which also gives
additional information about the structure of Hqp.Z oZ/, though it does not give a
complete description. In fact, one can see that such a chain exists by fixing anym2Z>0
and considering the sequence of quotients

Z oZ� � � �� .Z=m3Z/ oZ� .Z=m2Z/ oZ� .Z=mZ/ oZ:

By expressing each .Z=mnZ/ oZ as an HNN extension, we obtain a quasiparabolic
action of .Z=mnZ/ oZ on the associated Bass–Serre tree. Since Z oZ surjects onto
.Z=mnZ/ oZ, we see that Z oZ acts on this Bass–Serre tree as well. From the sequence
of quotients, it is clear that the collection of such actions will form a countable chain in
Hqp.Z oZ/. This countable chain is equivalent to one constructed by Balasubramanya
in [3, Theorem 1.4] associated to the nested subgroups

� � � �mnZ�mn�1Z� � � � �mZ� Z:

In contrast, we do not expect that the countable chain described in Proposition 5.2
corresponds to any chain constructed in [3].

Proof of Proposition 5.2 Note the following, which can be proven inductively:

(i) Qir consists of polynomials in x (with no terms of negative degree).

(ii) If p.x/ 2Qir nQ
i
r�1 then every term of p.x/ has degree at least ri .

(iii) The largest coefficient of a term of p.x/ 2Qir is 2r .

Hence we have the following table:

monomial 1 x x2 : : : xi�1 xi xiC1 : : : x2i�1 x2i x2iC1 : : : xri�1 xri xriC1 : : :

largest coeff. 1 1 1 : : : 1 2 2 : : : 2 4 4 : : : 2r�1 2r 2r : : :

Here the entry under xk denotes the largest absolute value of the coefficient of the
degree k term of any polynomial p.x/2Qi . A similar table holds forQj . In particular,
we see that if p.x/ 2Qj and p.x/ contains a term of degree k, then the absolute value
of the coefficient of xk is at most 2bk=j c.
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Note, in particular, that the sequence

1; 2xi D ˛i .1C 1/; 4x2i D ˛i .2xi C 2xi /; 8x3i D ˛i .4x2i C 4x2i /; : : :

is contained in Qi . Hence all have word length 1 in the generating set Qi [ftg. We
claim that the word length of 2rxri in the generating set Qj [ftg goes to infinity as
r!1. Let k � kj denote word length with respect to the generating set Qj [ft˙1g.

To prove the claim, write
2rxri D g1 : : : gn

where g1 : : : gn is a word in Qj [ft˙1g of minimal length nD k2rxrikj representing
2rxri . Each gi is either t , t�1, or a polynomial p.x/ 2Qj . By Lemma 2.20, we may
rewrite 2rxri as a word of length n of the form

2rxri D t�k.p1.x/C � � �Cpm.x//t
l :

Since the word on the right represents a polynomial, we must in fact have k D l and
we have

2rxri D ˛�k.p1.x/C � � �Cpm.x//;

and therefore
p1.x/C � � �Cpm.x/D 2

rxriCk :

It follows that nD 2kCm. Since each p�.x/ contains xriCk as a term with coefficient
at most 2b.riCk/=j c, we must have

m�
2r

2b.riCk/=j c
D 2r�b.riCk/=j c � 2r�.riCk/=j D 2.1�i=j /r�k=j :

So to bound n from below, it suffices to minimize 2kCm subject to the condition

mD 2.1�i=j /r�k=j :

Rewriting 2kCm in terms of k yields

2kC 2.1�i=j /r�k=j :

Defining a function f .k/D 2kC 2.1�i=j /r�k=j , we see that f has a unique minimum
at the unique zero of its derivative. The derivative with respect to k is

f 0.k/D 2�
1

j
ln.2/2.1�i=j /r�k=j :

Solving the equation f 0.k/D 0 for k yields

k D .j � i/r � j log2

�
j

ln.2/

�
� j:
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Since j � i > 0 we must have k!1 as r!1 and, in particular, n!1 as r!1.
In other words, k2rxrikj !1 as r!1.

For the final sentence, simply note that each Qi is strictly confining since 1 … ˛.Qi /
for any i .

The argument in the proof of Proposition 5.2 does not work for the wreath product
Z=nZ oZŠZ=nZ

�
x; 1
x

�
ÌZ since the generator of Z=nZ doesn’t have infinite order.

Balasubramanya shows that Z=nZ oZ has only finitely many quasiparabolic structures
[3, Theorem 1.4]; hence only finitely many of the inequalities in (11) can be strict.
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