
ATG

Algebraic & Geometric
Topology

msp

Volume 23 (2023)

On the cohomology ring of symplectic fillings

ZHENGYI ZHOU



msp
Algebraic & Geometric Topology 23:4 (2023) 1693–1724

DOI: 10.2140/agt.2023.23.1693
Published: 14 June 2023

On the cohomology ring of symplectic fillings

ZHENGYI ZHOU

We consider symplectic cohomology twisted by sphere bundles, which can be viewed
as an analogue of symplectic cohomology with local systems. Using the associated
Gysin exact sequence, we prove the uniqueness of part of the ring structure on
cohomology of fillings for those asymptotically dynamically convex manifolds with
vanishing property considered by Zhou (Int. Math. Res. Not. 2020 (2020) 9717–9729
and J. Topol. 14 (2021) 112–182). In particular, for any simply connected 4nC1–
dimensional flexibly fillable contact manifold Y , we show that the real cohomology
H�.W / is unique as a ring for any Liouville filling W of Y as long as c1.W /D 0.
Uniqueness of real homotopy type of Liouville fillings is also obtained for a class of
flexibly fillable contact manifolds.

53D40; 57R17

1 Introduction

It is conjectured that Liouville fillings of certain contact manifolds are unique. The
first result along this line is that Liouville fillings of the standard contact 3–sphere are
unique; see Gromov [13]. The dimension 4 case is special because of the intersection
theory of J –holomorphic curves. For higher-dimensional cases only weaker assertions
can be made so far. Eliashberg, Floer and McDuff [21] proved that any symplectically
aspherical filling of the standard contact sphere of dimension � 5 is diffeomorphic to a
ball. Oancea and Viterbo [22] showed that H�.Y IZ/!H�.W IZ/ is surjective for
a simply connected subcritically fillable contact manifold Y and any symplectically
aspherical W . Barth, Geiges and Zehmisch [4] generalized the Eliashberg–Floer–
McDuff theorem to the subcritically fillable case assuming Y is simply connected and
of dimension � 5. Roughly speaking, the method used to obtain the above results is
finding a “homological foliation”, which is hinted at by the splitting result of Cieliebak
[8, Theorem 14.16] for subcritical domains.

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution
License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://dx.doi.org/10.2140/agt.2023.23.1693
http://dx.doi.org/10.1093/imrn/rny270
http://dx.doi.org/10.1112/topo.12177
http://www.ams.org/mathscinet/search/mscdoc.html?code=53D40, 57R17
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


1694 Zhengyi Zhou

On the other hand, contact manifolds considered above are asymptotically dynamically
convex (ADC) in the sense of Lazarev [18], which is a much larger class of contact
manifolds. Those contact manifolds admit only the trivial (contact DGA) augmentation
due to degree reasons, hence one may expect that the filling is rigid in some sense.
In [29; 30; 31], we studied fillings of such manifolds using Floer theories. Roughly
speaking, a contact manifold is ADC if and only if the symplectic field theory (SFT)
grading is positive (asymptotically). By the neck-stretching argument, such a condition
is sufficient to prove invariance of many structures in [30; 31]. However, in many cases,
the SFT gradings are greater than some positive integer k, which provides more room
in the neck-stretching argument. The goal of this paper is trying to make use of this
extra room and getting more information. In particular, we will study the ring structure
of symplectic fillings. Throughout this paper, the default coefficient is R. Our main
theorem is the following, where we call a Liouville filling W of Y topologically simple
if and only if c1.W /D 0 and �1.Y /! �1.W / is injective:

Theorem 1.1 Let Y be a k–ADC contact manifold (Definition 2.2) with a topologi-
cally simple Liouville fillingW1 and SH�.W1/D 0. Then for any topologically simple
Liouville filling W2, there is a linear isomorphism � WH�.W1/!H�.W2/ preserving
grading such that �.˛^ˇ/D �.˛/^�.ˇ/ for all ˛ 2H 2m.W1/ with 2m� kC 1.

The main example where Theorem 1.1 can be applied is a flexibly fillable contact
manifold Y 2n�1, which is .n�3/–ADC by Lazarev [18]. In particular, combining with
[30, Corollary B], we have:

Corollary 1.2 Let Y be a simply connected 4nC1–dimensional flexibly fillable
contact manifold with c1.Y /D 0. Then the real cohomology ring of Liouville fillings
of Y with vanishing first Chern class is unique.

Remark 1.3 By [30, Corollary B], manifolds considered in Theorem 1.1 have the
property thatH�.W IZ/!H�.Y IZ/ is independent of topologically simple Liouville
fillings. Therefore on the degree region where the restriction map is injective, we can
infer the ring structure of the filling from the boundary. However, such a method cannot
yield information when the product lands in a degree region where the restriction is not
injective, for example, the middle degree for flexibly fillable manifolds. The method
used in this paper asserts the uniqueness of product structure in those ambiguous regions.

There are also non-Weinstein examples to which Theorem 1.1 can be applied; see
Section 2. If Y is subcritically fillable, then the �1–injective condition can be dropped
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because Reeb orbits can be assumed to be contractible [18]. However, this case is
covered by both [30, Corollary B] and [4, Theorem 1.2] along with the universal
coefficient theorem.

In some cases, the knowledge of the cohomology ring is enough to determine the real
homotopy type. In particular:

Corollary 1.4 Let M be the product of CPn, HPn, S2n and at most one copy of
S2nC1 for n� 1, and let Y denote the contact boundary of the flexible cotangent bundle
of M . Then the real homotopy type of a Liouville filling of Y is unique , as long as the
Liouville filling has vanishing first Chern class.

The method used in this paper is very different from the method used in [4; 20; 22],
where they studied the moduli spaces of J –holomorphic curves in a partial compacti-
fication of W . The essential property needed for the partial compactification is that
W splits as V �C with V Weinstein. However, for many flexible critical Weinstein
domains, such a splitting does not exist even in the topology category, eg flexible
cotangent bundles T �S2n cannot be written as a complex line bundle over a manifold
for n>1.1 Our method is based on symplectic cohomology and uses the index property
of the contact boundary, hence we need to assume c1 D 0. The strategy of the proof is
to represent the cup product as a multiplication with an Euler class of a sphere bundle.
Therefore we consider symplectic cohomology twisted by sphere bundles, which leads
to Gysin exact sequences. The Gysin exact sequence associated to a k–sphere bundle
uses moduli spaces of dimension up to k. We show that the Gysin exact sequence for a
k–sphere bundle on the positive symplectic cohomology is independent of the filling
by a neck-stretching argument, if the boundary is k–ADC. Then we can relate it to the
regular Gysin sequence of the filling by the vanishing result in [29].

Remark 1.5 The reason for restricting to real coefficients is twofold. Firstly, it is not
true that every class in H 2k.M IZ/ can be represented as the Euler class of an oriented
vector bundle (see Walschap [25]) unless multiplied by a large integer (see Guijarro,
Schick and Walschap [14]), which only depends on the degree and dimension. Secondly,
the Gysin exact sequence is derived from the Morse–Bott framework developed in
Zhou [28], which is defined over R. In our case, one can get Gysin exact sequences in

1Assume otherwise. Then T �S2n can be written as a complex line bundle over some manifold V with
boundary, and since H2.V IZ/D 0 when n > 1, the complex line bundle is necessarily trivial. Therefore
T �S2n D V �D, where D is the unit disk in C. On the other hand, H�.T �S2nIZ/!H�.@T �S2nIZ/
is not injective (in degree 2n) butH�.V �DIZ/!H�.@.V �D/IZ/ is always injective, hence we arrive
at a contradiction.
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1696 Zhengyi Zhou

Z–coefficient, since our moduli spaces do not have isotropy or weight. For example,
one can generalize the Morse–Bott construction in Hutchings and Nelson [17] to sphere
bundles to prove a Z–coefficient Gysin exact sequence.

Remark 1.6 By symplectic cohomology we mean the symplectic cohomology gen-
erated by contractible orbits. The role of topological simplicity of the filling is to
guarantee that the symplectic cohomology of the filling is canonically graded by Z

using any trivialization of det � on Y . From the SFT perspective, it is related to the fact
that the augmentation from the filling is (canonically) graded by Z. Since the ADC
condition only asserts unique contact DGA augmentation with a Z grading, we can
only hope for uniqueness for topologically simple fillings using the ADC condition;
see also [30, Remark 3.6].

Organization of the paper

Section 2 reviews the contact geometry background and provides a list of examples
where Theorem 1.1 applies. In Section 3, we define the symplectic cohomology of
sphere bundles and prove the independence result when the boundary is k–ADC. We
finish the proof of Theorem 1.1, its corollaries and applications in Section 4.
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2 Asymptotically dynamically convex manifolds

Let ˛ be a contact form of .Y 2n�1; �/ and D>0. We use P<D.Y; ˛/ to denote the set
of contractible Reeb orbits of ˛ with period smaller than D. Letting ˛1 and ˛2 be two
contact forms of .Y; �/, we write ˛1 � ˛2 if ˛1D f ˛2 for f � 1. For a nondegenerate
Reeb orbit  , the degree is defined to be �CZ./Cn�3, which is canonically defined
in Z if c1.�/D 0 and  is contractible.

Definition 2.1 [18, Definition 3.6] A contact manifold .Y; �/ with c1.�/ D 0 is
asymptotically dynamically convex (ADC) if there exists a nonincreasing sequence of
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contact forms ˛1 � ˛2 � ˛3 � � � � for � and positive numbers D1 <D2 <D3 < � � �
going to infinity such that all elements of P<Di .Y; ˛i / are nondegenerate and have
positive degree.

One important consequence of ADC is that the positive symplectic cohomology is
independent of the filling W whenever c1.W /D 0 and �1.Y /! �1.W / is injective
[18, Proposition 3.8]. Moreover, many Floer theoretic properties of the filling are
independent of fillings [30; 31]. Roughly speaking, ADC guarantees the 0–dimensional
moduli spaces used in the definition of the positive symplectic cohomology are com-
pletely contained in the cylindrical end of the completion yW , hence are independent of
the filling. We consider sphere bundles over (positive) symplectic cohomology. The
information for k–sphere bundles is encoded in moduli spaces with dimension up to k.
In particular, the associated Gysin exact sequence depends on moduli spaces with
dimension up to k. Therefore we need more positivity in the degree of Reeb orbits, so
the following finer dynamical convexity is needed:

Definition 2.2 A contact manifold .Y; �/ with c1.�/ D 0 is k–ADC if there exists
a nonincreasing sequence of contact forms ˛1 � ˛2 � ˛3 � � � � for � and positive
numbers D1 <D2 <D3 < � � � going to infinity such that all elements of P<Di .Y; ˛i /
are nondegenerate and have degree greater than k.

Similarly, we say a Liouville domain .W; �/ with c1.W /D 0 is k–ADC if and only if
there exist positive functions f1 � f2 � � � � and positive numbers D1 <D2 <D3 < � � �
going to infinity such that all contractible (in W ) orbits of .@W; fi�/ of period up to
Di are nondegenerate and have degree greater than k.

In particular, .kC1/–ADC implies k–ADC, and 0–ADC is the usual ADC condition
in [18]. The basic example of a k–ADC manifold is the standard contact sphere S2n�1,
which is .2n�3/–ADC. From this basic example, the following propositions yield
many k–ADC manifolds.

Proposition 2.3 [18, Theorems 3.15, 3.17, and 3.18] Let Y be a .2n�3�k/–ADC
contact manifold. Then the attachment of an index k ¤ 2 subcritical or flexible handle
to Y 2n�1 preserves the .2n�3�k/–ADC property. When k D 2, the same holds if the
conditions in [18, Theorem 3.17] are met.

Let V be a manifold with boundary. We define the Morse dimension dimM V to be
the minimal value of the maximal index of an exhausting Morse function on V .

Algebraic & Geometric Topology, Volume 23 (2023)
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Proposition 2.4 [30, Theorem 6.3] Let V 2n be a Liouville domain with c1.V /D 0.
Then @.V �C/ is .2n�1� dimM V /–ADC.

Proposition 2.5 [30, Theorem 6.19] Let V and W be p– and q–ADC domains ,
respectively. Then @.V �W / is k–ADC , where

k DminfpC qC 4; pC dimW � dimM W; qC dimV � dimM V g:

Example 2.6 Using the above three propositions, we can apply Theorem 1.1 to classes
of contact manifolds:

(i) By Proposition 2.3, for n� 3, any 2n�1–dimensional flexibly fillable contact
manifold Y with c1.Y /D 0 is .n�3/–ADC.

(ii) By Proposition 2.4, if V is the 2n–dimensional Liouville but not Weinstein
domain constructed in [19], then @.V �Ck/ is .2k�2/–ADC.

(iii) By Proposition 2.5, products of any k–ADC domain for k > 0 with an example
from the above two classes are m–ADC for a suitable m> 0. We can also attach
a flexible handle afterwards.

In general, there are many more k–ADC contact manifolds of interest, eg cotangent
bundles and links of terminal singularities. For certain cotangent bundles, symplectic
cohomology is zero with an appropriate local system [2]. In general, symplectic
cohomology in these cases is not zero, hence they are beyond our scope.

3 Symplectic cohomology and fiber bundles

In this section, we review some basic properties of symplectic cohomology associated
to a Liouville domain [9; 23; 24]. Then we introduce the symplectic cohomology of
sphere bundles and the associated Gysin exact sequences using the abstract Morse–Bott
framework developed in [28].

3.1 Symplectic cohomology

3.1.1 Floer cochain complexes To a Liouville filling .W; �/ of the contact manifold
.Y; �/, one can associate the completion . yW ; d O�/D .W [Y Œ1;1/r �Y; d O�/, where
O�D � on W and O�D r.�jY / on Œ1;1/r �Y . Let H W S1� yW !R be a Hamiltonian.
Our convention for the Hamiltonian vector field is

!. � ; XH /D dH:
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Then symplectic cohomology is defined as the “Morse cohomology” of the symplectic
action functional

(1) AH .x/ WD �
Z
x� O�C

Z
H ı x.t/ dt;

for a Hamiltonian H D r2 for r� 0 [23; 24]. Equivalently, one may define symplectic
cohomology as the direct limit of the Hamiltonian Floer cohomology of H DDr for
r � 0 as D goes to infinity. For simplicity, we will use the former construction and a
special class of Hamiltonian in this paper. Let ˛ be a nondegenerate contact form of
the contact manifold .Y; �/ and R˛ its associated Reeb vector field. Then we define

S.Y; ˛/ WD
nZ

˛
ˇ̌
 is the periodic orbit of R˛

o
:

Following [7], we can choose a smooth family of time-dependent Hamiltonians HR
for R 2 Œ0; 1� as a careful perturbation of an autonomous Hamiltonian, such that the
following hold:

(i) HRjW is time independent C 2–small Morse for R¤ 0, and H0jW D 0.

(ii) There exists a sequence of nonempty open intervals .a0; b0/; .a1; b1/; : : : with
ai and bi converging to infinity and a0 D 1 such that HRjY�.ai ;bi / D fi;R.r/
with f 00i;R > 0 and f 0i;R … S.Y; ˛/, and limi minf 0i;R D1.

(iii) HR outside r D b0 does not depend on R.

(iv) For R¤ 0, the periodic orbits of XHR are nondegenerate, and are either critical
points of HRjW or nonconstant orbits in @W � Œbi ; aiC1�.

(v) There exist 0 < D0 < D1 < � � � ! 1 such that all periodic orbits of XHR of
action greater than �Di are contained in W i WD fr < aig.

(vi) @RHR � 0.

We use C.HR/ to denote the set of critical points of HR on W and P�.H/ to denote
the set of nonconstant contractible orbits of XHR outside W , which does not depend
on R.

Remark 3.1 A few remarks regarding our choice of Hamiltonian are in order.

(i) We do not define symplectic cohomology of sphere bundles as an invariant, but
rather use one model to infer topological information. Therefore we choose to work
with one specific Hamiltonian.

Algebraic & Geometric Topology, Volume 23 (2023)
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H0
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W @W � .1;1/

Figure 1: Graphs of HR.

(ii) The requirement of HR on interval .ai ; bi / is for the purpose of the integrated
maximum principle [1; 9]. In particular, with an admissible almost complex structure
in Definition 3.2, any Floer cylinder asymptotic to orbits in W i will be completely
contained in W i .

(iii) Ideally, we would like to work with H0, where the neck-stretching argument will
be cleaner. H0 can be viewed as a “Morse–Bott” situation, which is used in [30]. We
will use the nondegenerate Hamiltonian HR for R > 0 to approximate H0, because
the relevant polyfolds are easier to construct and partially exist in the literature; see
Remark 3.5.

(iv) The requirement @RHR � 0 ensures that the continuation map fromHRC toHR�
respects the action filtration for RC >R�. The independence of HR outside r D b0
simplifies the continuation map for the positive symplectic cohomology to the identity
map for different R.

For an admissible Hamiltonian HR, there are infinitely many periodic orbits and they
are not bounded in the r–coordinate. To guarantee the compactness of moduli spaces,
we need to use the following almost complex structure so that the integrated maximum
principle [1] can be applied.

Definition 3.2 An S1–dependent almost complex structure Jt is admissible if the
following hold:

(i) Jt is compatible with d O� on yW .

Algebraic & Geometric Topology, Volume 23 (2023)
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(ii) Jt is cylindrical convex on @W � .ai ; bi /, that is, O� ıJt D dr .

(iii) Jt is only required to be S1–independent on W . We will often abbreviate Jt by
J for simplicity.

The set of admissible almost complex structures is denoted by J .W /.

Let x; y 2 C.HR/[P�.H/ for R>0 and J be an admissible almost complex structure.
We use Mx;y;HR to denote the compactified moduli space of solutions to the following
equation modulo the R–translation:

(2) @suCJ.@tu�XHR/D 0; lim
s!1

uD x; lim
s!�1

uD y:

We will suppressHR when there is no confusion. Then we have the following regularity
result:

Proposition 3.3 For any R > 0, there exists a subset JR.W / � J .W / of second
Baire category such that the following hold :

(i) For all x; y 2 C.HR/[P�.H/ the manifold Mx;y is compact and smooth with
boundary and corners.

(ii) @Mx;z D
S
yMx;y �My;z .

(iii) Mx;z can be oriented so that the induced orientation of @Mx;z on Mx;y�My;z

is given by the product orientation twisted by .�1/dimMx;y .

(iv) If x 2 C.HR/ and y 2 P�.H/, then Mx;y D∅.

This proposition is folklore, although it is usually stated and proven for moduli spaces
Mx;y with virtual dimensional smaller than or equal to 1. Since yW is exact and J
can depend on t 2 S1, we have transversality for unbroken Floer trajectories. A more
classical treatment to prove the first two claims is constructing compatible gluing
maps for families of Floer trajectories. In the case of Lagrangian Floer theory, such
a construction can be found in [3]. In the case of Morse theory, a more elementary
approach can be used to give the compactified moduli spaces structures of manifolds
with boundary and corners; see [27]. Another method is adopting the polyfold theory
developed in [16]. In view of this, we make the following assumption.

Assumption 3.4 For any admissible almost complex structure J , there exists an M-
polyfold construction for the symplectic cohomology moduli spaces. More precisely, for
every x; y2C.HR/[P�.H/, there exists a strong tame M-polyfold bundle Ex;y!Bx;y
along with an oriented proper sc-Fredholm section sx;y W Bx;y ! Ex;y such that the
following hold:

Algebraic & Geometric Topology, Volume 23 (2023)
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(i) s�1x;y.0/DMx;y , where Mx;y is the compact moduli space using J .

(ii) Classical transversality implies that sx;y is transverse and in general position.

(iii) The boundary of Bx;z is the union of products Bx;y�By;z , over which the bundle
and section have the same splitting.

Remark 3.5 Giving a detailed proof of Assumption 3.4 is not our goal. Symplectic
cohomology is a special case of Hamiltonian Floer cohomology, whose polyfold
construction was sketched in [26]. An alternative approach is using the full SFT
polyfolds [12] as in [11]. In those constructions, the linearization in the polyfold and
the linearization of the Floer equation modulo an R–translation are the same. Then we
have that classical transversality implies polyfold transversality, ie Assumption 3.4(ii)
holds. We only use Assumption 3.4 to prove Proposition 3.3. In particular, we will not
use any polyfold perturbation scheme but only the existence of polyfolds.

Proof of Proposition 3.3 To obtain the compactness of moduli spaces, in addition to
including Floer breakings, we also need to rule out the possibility of a curve escaping
to infinity. To this end, since we choose J to be cylindrical convex on @W � .ai ; bi /
where HR D fi;R.r/, we can apply the integrated maximum principle of Abouzaid
and Seidel [1] to any r 2 .ai ; bi /; see also [9, Lemma 2.2] for the specific version
of the integrated maximum principle we need here. We pick an admissible almost
complex structure such that moduli spaces of unbroken Floer trajectories of any virtual
dimension are cut out transversely. By Assumption 3.4, we have the M-polyfolds
description of compactified moduli spaces as zero sets of sc-Fredholm sections. By
Assumption 3.4(ii), those sc-Fredholm sections are cut out transversely. Then the
M-polyfold implicit function theorem [16, Theorem 3.15]2 endows the compactified
moduli spaces smooth structures of manifolds with boundary and corners. It is worth
noting that we only need the existence of M-polyfolds with sc-Fredholm sections
without evoking any abstract perturbation scheme. In particular, the first two claims
hold. The claim on orientations follows from [28, Section 5.1.1]. If Mx;y ¤∅, then
for energy reasons we have AHR.y/�AHR.x/� 0. Then the last claim follows from
property (v) of HR.

The Hamiltonian Floer cochain complex is defined by counting the zero-dimensional
moduli spaces Mx;y . However, since we need to consider sphere bundles over the

2This theorem is stated for sections in good position. To obtain a decomposition of the boundary in the
form of Proposition 3.3(ii) for sections in general position, one also needs [16, Theorem 4.3].
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moduli spaces later, which is naturally a Morse–Bott situation, we need to introduce
the Morse–Bott framework developed in [28]. To this purpose, we recall the concept
of a flow category, which was first introduced in [10].

Definition 3.6 [28, Definition 2.9] A flow category is a small category C with:

(i) The object space ObjC D
F
i2Z Ci is a disjoint union of closed manifolds Ci . The

morphism space MorC DM is a manifold with boundary and corners. The source and
target maps s; t WM! C are smooth.

(ii) Let Mi;j denote .s � t /�1.Ci � Cj /. Then Mi;i D Ci , corresponding to the
identity morphisms, and s and t restricted to Mi;i are identities. Mi;j D∅ for j < i ,
and Mi;j is a compact manifold with boundary and corners for j > i .

(iii) Let si;j and ti;j denote sjMi;j
and t jMi;j

. For every strictly increasing sequence
i0 < i1 < � � �< ik ,

ti0;i1 � si1;i2 � ti1;i2 � � � � � sik�1;ik WMi0;i1 �Mi1;i2 � � � � �Mik�1;ik

! Ci1 �Ci1 �Ci2 �Ci2 � � � � �Cik�1 �Cik�1

is transverse to the submanifold�i1�� � ���ik�1 , where�ij is the diagonal in Cij �Cij .
Therefore the fiber product

Mi0;i1 �i1 Mi1;i2 �i2 � � � �ik�1 Mik�1;ik

WD .ti0;i1 � si1;i2 � ti1;i2 � � � � � sik�1;ik /
�1.�i1 ��i2 � � � � ��ik�1/

�Mi0;i1 �Mi1;i2 � � � � �Mik�1;ik

is a submanifold.

(iv) The composition m WMi;j �j Mj;k!Mi;k is a smooth map such that

m W
G

i<j<k

Mi;j �j Mj;k! @Mi;k

is a diffeomorphism up to zero-measure, ie m is a diffeomorphism from a full measure
open subset to a full measure open subset.

In the case of Floer theory considered here, the object space is the set of critical
points and the morphism space is the union of all compactified moduli spaces of Floer
trajectories in addition to the identity morphisms. The source and target maps are
evaluation maps at two ends and the composition is the concatenation of trajectories.
The fiber product transversality is tautological, as both source and target maps map

Algebraic & Geometric Topology, Volume 23 (2023)



1704 Zhengyi Zhou

to 0–dimensional manifolds. If we label periodic orbits C.HR/[P�.H/ by integers
so that AHR.xi /�AHR.xj / if and only if i � j , then we have Mxi ;xj D∅ if i > j .
Moreover, we can require that xi is a critical point of HRjW if and only if i � 0. With
such labels, Proposition 3.3 gives flow categories CR;J , CR;J0 and CR;J

C
:

Obj.CR;J / WD fxig; Mor.CR;J / WD fMi;j WDMxi ;xj gI

Obj.CR;J0 / WD fxigi�0; Mor.CR;J0 / WD fMi;j WDMxi ;xj gi;j�0I

Obj.CR;J
C

/ WD fxigi<0; Mor.CR;J
C

/ WD fMi;j WDMxi ;xj gi;j<0:

Moreover, CR;J0 is a subflow category of CR;J with quotient flow category CR;J
C

in the
sense of [28, Proposition 3.38]. By considering only periodic orbits of action greater
than �Di , ie those contained inW i , we have two subflow categories, CR;J

�i � CR;J and
CR;J
C;�i � CR;J

C
. In particular CR;J

�0 D CR;J0 . The orientation property of Proposition 3.3
implies that CR;J , CR;J0 and CR;J

C
, and the truncated versions CR;J

�i and CR;J
C;�i are

oriented flow categories [28, Definition 2.15]. The main theorem of [28] is that for
every oriented flow category CD fCi ;Mi;j g, one can associate to it a cochain complex
C �.C/ over R generated by H�.Ci IR/, whose homotopy type is well defined. The
one feature of the construction in [28] that we will use is the following.

Proposition 3.7 [28, Corollary 3.13] Let CDfCi ;Mi;j g be an oriented flow category.
Assume dimCi � k for all i . Then the cochain complex C �.C/ only depends on Ci
and those Mi;j with dimMi;j � 2k.

Remark 3.8 Roughly speaking, the part of the differential D from H�.Ci / to
H�.CiCk/ is defined by the composition t� ı s� through Ci

s
 � Mi;iCk

t
�! CiCk .

However, since Mi;iCk is not closed, t� ı s� is not well defined on cohomology. In
fact, after choosing representatives of H�.Ci / in ��.Ci / (eg harmonic forms), the
differential D for a Morse–Bott flow category is given by t� ıs� on Mi;iCk , plus many
correction terms from possible breakings of Mi;iCk . ThusZ

CiCk
D˛^ D

Ż
Mi;iCk

s�˛^t�(3)

C lim
n!1

X
0<j<k

Ż
Mi;iCj�MiCj;iCk

s�˛^.t�s/�f niCj^t
�C� � �;

where ˛ and  are the chosen differential form representatives of elements in H�.Ci /
and H�.CiCk/, and f niCj is a dimCiCj�1–form on CiCj �CiCj . The suppressed
terms are integrations on products Mi;��� � ��M�;iCk with more f n� inserted; see [28]
for details. It is clear that Proposition 3.7 follows from (3). Although (3) only depends
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on Mi;j with dimMi;j � 2k, the proof that D2 D 0 requires the existence of higher-
dimensional (dim� 4kC 1) moduli spaces.

We call a flow category Morse if and only if dimCi D 0 for all i , and Morse–Bott
otherwise. In the Morse case considered in Proposition 3.3, since f ni has degree �1
(f ni D 0), the cochain complex associated to CR;J is the usual Floer cochain complex
generated by C.HR/[P�.H/ with differential solely contributed by zero-dimensional
moduli spaces

Dxi WD
X
j

�Z
Mxi ;xj

1
�
xj ;

that is, we count those moduli spaces Mxi ;xj of dimension 0. Similarly, we have
cochain complexes C �.CR;J0 / and C �.CR;J

C
/, and a tautological short exact sequence

of cochain complexes

(4) 0! C �.CR;J0 /! C �.CR;J /! C �.CR;J
C

/! 0;

as well as the truncated versions. Moreover, we have

C �.CR;J /D lim
��!
i

C �.CR;J
�i / and C �.CR;J

C
/D lim
��!
i

C �.CR;J
C;�i /:

Since J is time-independent on W , the cochain complex C �.CR;J0 / is the Morse
cochain complex of W for the Morse–Smale pair .HR; g WD !. � ; J � //. Hence
we have H�.C �.CR;J0 // D H�.W /. Moreover, H�.C �.CR;J // is the symplectic
cohomology SH�.W /, and H�.C �.CR;J

C
// is the positive symplectic cohomology

SH�
C
.W /; see [9; 23; 24] for a more detailed discussion on those invariants. Then (4)

gives rise to the tautological long exact sequence

� � � !H�.W /! SH�.W /! SH�C.W /!H�C1.W /! � � � :

Remark 3.9 Since we only consider contractible orbits in domains with vanishing
first Chern class, the Conley–Zehnder index is well defined in Z independent of all
choices. Our grading convention follows [23]: jxi j WD n��CZ.xi /, where �CZ is
the Conley–Zehnder index. Such convention implies that if xi is a critical point of the
C 2–small Morse function HRjW , then jxi j equals the Morse index. The convention
here differs from [24] by n.

3.2 Continuation maps

We will only consider a special class of continuation maps, namely homotopies of
almost complex structures and homotopies of Hamiltonians betweenHR for differentR.
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Let �.s/ be a smooth nondecreasing function such that �.s/ D 0 for s � 0, and
�.s/D 1 for s� 0. Given 0 < R� �RC � 1, we have a homotopy of Hamiltonians
HRC;R� WD H�.s/RCC.1��.s//R� W Rs � S

1 � yW ! R. Then we have the following
properties for HRC;R� :

(i) HRC;R� DHR� for s� 0 and HRC;R� DHRC for s� 0.

(ii) @sHRC;R� � 0.

(iii) HRC;R� outside r D b0 does not depend on s.

Then for x 2 C.HRC/[P�.H/ and y 2 C.HR�/[P�.H/, let Js be a homotopy of
admissible almost complex structures. We use Hx;y to denote the compactified moduli
space of solutions to

@suCJs.u�XHRC;R� /D 0; lim
s!1

uD x; lim
s!�1

uD y:

Then for generic choice of Js , Hx;y is a manifold with boundary and corners by an
analogue of Proposition 3.3. They give rise to a flow morphism in the following sense.

Definition 3.10 [28, Definition 3.18] An oriented flow morphism H W C)D between
oriented flow categories C WD fCi ;MC

i;j g and D WD fDi ;MD
i;j g is a family of compact

oriented manifolds with boundary and corners fHi;j gi;j2Z such that the following hold:

(i) There exists N 2 Z such that when i � j > N , we have Hi;j D∅.

(ii) There are two smooth maps s WHi;j ! Ci and t WHi;j !Dj .

(iii) For every i0 < i1 < � � � < ik and j0 < � � � < jm�1 < jm, the fiber product
MC
i0;i1
�i1 � � � �ik Hik ;j0 �j0 � � � �jm�1 MD

jm�1;jm
is cut out transversely.

(iv) There are smooth mapsmL WMC
i;j�jHj;k!Hi;k andmR WHi;j�jMD

j;k
!Hi;k

such that
s ımL.a; b/D s

C .a/; t ımL.a; b/D t .b/;

s ımR.a; b/D s.a/; t ımR.a; b/D t
D.b/;

where map sC is the source map for flow category C and map tD is the target
map for flow category D.

(v) The map mL[mR W
S
j .M

C
i;j �j Hj;k[Hi;j �j M

D
j;k
/! @Hi;k is a diffeomor-

phism up to zero measure.

(vi) The orientations of the Hi;j are compatible with orientations of Ci , Di , MC
i;j

and MD
i;j in the sense of [28, Definition 3.18(6)].

Therefore fHx;yg defines an oriented flow morphism HRC;R� from CRC;JC to CR�;J� .
By [28, Theorem 3.21], flow morphisms induce cochain maps between the cochain
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complexes of the flow categories according to a formula similar to (3). Hence in our
situation, HRC;R� is the geometric data required to define the continuation map. In the
Morse case, the cochain map is defined by counting zero-dimensional moduli spaces in
fHx;yg, which is indeed the classical continuation map. Since we have @sHRC;R� � 0,
then if Hx;y ¤∅, we have AHR� .y/�AHRC .x/� 0. Therefore the flow morphism
HRC;R� preserves the action filtration, and in particular, the filtration induced by W i .
Hence we have the flow morphisms

H
RC;R�
0 W CRC;JC0 ) CR�;J�0 ; H

RC;R�
C

W CRC;JC
C

) CR�;J�
C

;

H
RC;R�
�i W CRC;JC

�i ) CR�;J�
�i ; H

RC;R�
C;�i W C

RC;JC
C;�i ) CR�;J�

C;�i :

3.3 Sphere bundles and Gysin exact sequences

For any oriented k–sphere bundle � WE!W with k odd, there is an associated Gysin
exact sequence

(5) !H i .W /
��
��!H i .E/

��
��!H i�k.W /

^.�e/
����!H iC1.W /!

Here �� is integration along the fiber using the convention in [5, Section 6] and e is
the Euler class of � ; the extra sign is for consistency with [28, Proposition 6.24]. In
this subsection, we consider sphere bundles over symplectic cohomology and deduce
the associated Gysin exact sequences. This construction can be viewed as a higher-
dimensional analogue of Floer cohomology with local systems. Gysin exact sequences
in Floer theory were first considered by Bourgeois and Oancea [6], where the exact
sequence arises from an S1–bundle in the construction of S1–equivariant symplectic
homology. Fiber bundles over Floer theory were considered by Barraud and Cornea [3],
where they considered the path–loop fibration. The smooth fiber bundles we consider
are technically easier to deal with. The construction in [28] works as long as the moduli
spaces support integration [15]. We first recall the concept of sphere bundles over flow
categories:

Definition 3.11 [28, Definition 6.17] Let CDfCi ;MC
i;j g be an oriented flow category.

An oriented k–sphere bundle over C is a flow category E D fEi ;ME
i;j g with functor

� W E! C such that the following hold:

(i) � maps Ei to Ci and ME
i;j to MC

i;j .

(ii) The maps � WEi ! Ci and � WME
i;j !MC

i;j are oriented sphere bundles such
that both bundle maps sEi;j and tEi;j preserve the orientation.
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By [28, Proposition 6.18], an oriented k–sphere bundle E over an oriented flow category
is an oriented flow category. The construction [28, Definition 3.8] assigns E to a cochain
complex, and we have:

Proposition 3.12 [28, Theorem 6.19] Let E be an oriented k–sphere bundle over an
oriented flow category C. Then we have a short exact sequence of cochain complexes3

0! C �.C/ �
�

��! C �.E/ ����! C��k.C/! 0:

It induces the Gysin exact sequence

(6) � � � !H�.C/!H�.E/!H��k.C/!H�C1.C/! � � � :

Remark 3.13 Both �� and �� are induced by oriented flow morphisms, which are
completely determined by E . Here we give an explanation in the special case when
E! C is an actual sphere bundle. The compact manifold C can be understood as a
flow category whose object space is diffeomorphic to C and morphism space consists
of only identity morphisms. Then E can be understood as a sphere bundle over the
flow category C , �� is given by the flow morphism C

sD�
 ���E

tDid
���!E and �� is given

by the flow morphism E
sDid
 ���E

tD�
���! C . In particular, �� is the composition t� ı s�

from C
sD�
 ��� E

tDid
���! E, which is indeed the pullback �� on cohomology, and ��

is the composition t� ı s� from E
sDid
 ��� E

tD�
���! C , which is the pushforward �� on

cohomology. In general, the underlying flow morphisms of �� and �� are induced
from the identity flow morphism of E [28, Definition 3.23].

Remark 3.14 [28, Corollary 6.23] Assume CD fCi ;Mi;j g is a Morse flow category,
ie dimCi D 0. Then H�.E/ and the Gysin exact sequence only depend on ME

i;j with
dimME

i;j � 2k. In particular, we only use moduli spaces Mi;j of dimension up to k.
The nontriviality of higher-dimensional moduli spaces Mi;j is the foundation of the
existence of interesting sphere bundles. Although the formula only requires ME

i;j of
dimension up to 2k, we need a priori the existence of the full flow category to guarantee
the existence of Gysin sequences.

Remark 3.15 The Gysin exact sequence considered in [28] works for any Morse–Bott
flow category C. In the case considered here (C is Morse) it is possible to generalize
the construction in [17] to the Sk case to get a Z–coefficient Gysin exact sequence.

3To be more precise, we have a short exact sequence using certain choices in the construction. However, in
the special case that C is Morse, the minimal construction in [28, Theorem 3.10], ie the one in Remark 3.8,
gives the short exact sequence.
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We call a Gysin exact sequence (6) trivial when the Euler part H�.C/!H�CkC1.C/
is zero. In the case we consider, a sphere bundle over the Liouville domain will induce
a sphere bundle over the symplectic flow category.

Proposition 3.16 Let W be a Liouville domain and J 2 JR.W /. Let � W E ! W

be an oriented k–sphere bundle and P the parallel transport along path  for a fixed
connection on E. Then we have oriented k–sphere bundles ER;J , ER;J0 , ER;J

C
, ER;J
�i

and ER;J
C;�i over CR;J , CR;J0 , CR;J

C
, CR;J
�i and CR;J

C;�i , respectively.

Proof If C D fxi ;Mi;j g, then we define Ei WDExi .0/ ' S
k and ME

i;j WDMi;j �Ei .
The structure maps are

sE WMi;j �Ei !Ei given by .u; v/ 7! v;

tE WMi;j �Ei !Ej given by .u; v/ 7! Pu.� � ;0/v;

m W .Mi;j �Ei /�Ej .Mj;k �Ej /!Mi;k �Ei

given by .u1; v; u2; Pu1.� � ;0/v/ 7! .u1; u2; v/:

It is direct to check that they form a category. The fiber product transversality follows
since sE and tE are submersive. BecauseE!W is an oriented sphere bundle, we have
thatEiDExi .0/ is oriented andP preserves the orientation. Hence ER;J DfEi ;ME

i;j g

is an oriented k–sphere bundle over CR;J . Similarly for other flow categories.

Example 3.17 To further explain Remark 3.14, we can look at two flow categories:
ObjC1 is set of two points fx0; x1g with M0;1 D ∅, and ObjC2 D fx0; x1g while
M0;1 D S

1. C2 can be viewed the flow category associated to the Morse theory of the
height function on S2. Then C1 does not admit any nontrivial Sn bundle; in particular,
the associated Euler part is always trivial. Even though C1 and C2 have the same
cohomology of rank 2, C2 admits a nontrivial S1 bundle E2DfS10 ; S

1
1 ;M

E
0;1DS

1�S1g,
where ME

0;1 is viewed as an S1 bundle over the second factor S1, which is viewed
as M0;1. The structural maps are defined as sE W .�; t/ 7! � and tE W .�; t/ 7! � C t .
One may check the induced Gysin exact sequence has nontrivial Euler part. Indeed, E2
is the S1 bundle induced from the Hopf fibration over S2 using an appropriate parallel
transport. This example shows that higher-dimensional moduli spaces are foundations
for interesting fibrations.

Similarly, there is a notion of oriented sphere bundles over flow morphisms. Given
two oriented k–sphere bundles E! C and F ! D, let H W C) D be an oriented flow
morphism. Then a k–sphere bundle P over H is defined as follows:
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(i) PD fPi;j g is a flow morphism from E to F .

(ii) � W Pi;j ! Hi;j is a k–sphere bundle such that sP and tP are bundles maps
covering sH and tH .

(iii) � W Pi;j !Hi;j is an oriented bundle, and sP and tP preserve the orientation.

Given a sphere bundle E!W with a parallel transport, let H, H0, HC, H�i and HC;�i
be the flow morphisms constructed from HRC;R� . Then by the same construction
as in Proposition 3.16, there are induced oriented sphere bundles P, P0, PC, P�i
and PC;�i over them. Moreover, the parallel transport at two ends can be different.
In this case, we need to fix a smooth family of connections f�sg such that �s is the
connection for the negative end for s� 0 and �s is the connection for the positive end
for s� 0. Then given a Floer solution u.s; t/ in the flow morphism for continuation
maps, the structure maps for the sphere bundle are defined using the parallel transport
with respect to xis over u.s; 0/.

By [28, Proposition 6.27], sphere bundles over flow morphisms induce morphisms of
Gysin sequences. We define JR

�i to be the set of almost complex structures such that the
flow category CR;J

�i is defined. Given a sequence of real numbers 1>R1>R2> � � �>0
and a sequences of almost complex structures Ji such that Ji 2 JRi�i .W /, if we fix any
oriented Sk bundle E!W along with a connection, then Proposition 3.12 induces
the commutative diagram of exact sequences

�� �� �� ��

// lim
��!i

H�Ck.ERi ;Ji0 / //

��

lim
��!i

H�.CRi ;Ji0 / //

��

lim
��!i

H�CkC1.CRi ;Ji0 / //

��

lim
��!i

H�CkC1.ERi ;Ji0 / //

��
// lim
��!i

H�Ck.ERi ;Ji / //

��

lim
��!i

H�.CRi ;Ji / //

��

lim
��!i

H�CkC1.CRi ;Ji / //

��

lim
��!i

H�CkC1.ERi ;Ji / //

��

// lim
��!i

H�Ck.ERi ;JiC / //

��

lim
��!i

H�.CRi ;JiC / //

��

lim
��!i

H�CkC1.CRi ;JiC / //

��

lim
��!i

H�CkC1.ERi ;JiC / //

��

Note that
lim
��!
i

H�.CRi ;Ji0 /DH�.W /; lim
��!
i

H�.CRi ;Ji /D SH�.W /;

lim
��!
i

H�.CRi ;Ji
C

/D SH�C.W /:

We expect lim
��!i

H�.ERi ;Ji / and lim
��!i

H�.ERi ;Ji
C

/ are also well-defined objects, but
this requires proving invariance under changing various defining data like HR, Ri , Ji
and the parallel transport P . In the Morse–Bott situation considered here, we need
to use the flow-homotopy introduced in [28, Definition 3.29] to prove the invariance.
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However, for the purpose of this paper, we do not need a well-defined Floer theory for
the sphere bundle and are only interested in the Euler part. We will proceed with this
version involving all specific choices. We will suppress the choice of parallel transport
for simplicity, and only specify our choice when it matters.

Since the constant orbits part corresponds to the Morse theory on W , there the Gysin
sequence should be the regular Gysin sequence.

Proposition 3.18 [28, Theorem 8.14] The Gysin sequence

! lim
��!
i

H�Ck.ERi ;Ji0 /! lim
��!
i

H�.CRi ;Ji0 /! lim
��!
i

H�CkC1.CRi ;Ji0 /

! lim
��!
i

H�CkC1.ERi ;Ji0 /!

is the classical Gysin exact sequence (5) for � WE!W .

By the Gysin exact sequence for symplectic cohomology SH�.W /, we have the
following vanishing result:

Proposition 3.19 If SH�.W / D 0 and E is an oriented sphere bundle over the
Liouville domain W , then lim

��!i
H�.ERi ;Ji /D 0 for any defining data.

3.4 Naturality

In the neck-stretching argument, we need to compare moduli spaces of two fillings,
hence naturality is important. Moreover, we can only get the moduli spaces appearing
in the counting matched up for two fillings, ie moduli spaces of dimension up to k. But
to apply Proposition 3.12 we need the full flow category. In particular, it is possible that
the higher-dimensional moduli spaces are not cut out transversely in the neck-stretching.
In the following, we discuss those aspects in a similar way to [30].

Definition 3.20 JR;�k.W /�J .W / is the set of admissible almost complex structures
such that moduli spaces of HR up to dimension k are cut out transversely. JR;�k

C
.W /

stands for the positive version, and JR;�k
�i .W / and JR;�k

C;�i .W / are the truncated
versions.

All above sets are of second Baire category. Moreover, as a consequence of compactness,
JR;�k
.C/;�i

is open and dense. The following is a standard result in Floer theory:

Proposition 3.21 Let J0 2 JR0;�0
C;�i .W / and J1 2 JR1;�0

C;�iC1.W / for R0 > R1. Then
H�.CR0;J0

C;�i /!H�.CR1;J1
C;�iC1/, the continuation map , is independent of the homotopy

of almost complex structures.
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We also recall the following result from [30]:

Proposition 3.22 [30, Lemma 2.15] Let Js; s 2 Œ0; 1� be a smooth path in J .W /
and Rs be a nonincreasing function in .0; 1� such that Js 2 JRs ;�0

C;�i .W /. Then the
continuation map C �.CR0;J0

C;�i /! C �.CR1;J1
C;�i / is homotopic to the identity.4

Note that we assume HR stays the same outside r D b0 for any R, meaning the
generators for positive symplectic cohomology stay the same. The same argument
of [30, Lemma 2.15] can be applied here for positive symplectic cohomology, even
though we assume H D 0 on W in [30, Lemma 2.15].

Although the full flow category requires transversality for all moduli spaces, the Gysin
sequence is well defined for almost complex structure of low regularity:

Proposition 3.23 Let E!W be a k–sphere bundle. Then the Euler part of the Gysin
exact sequence

! lim
��!
i

H�Ck.ERi ;Ji
C;�i /! lim

��!
i

H�.CRi ;Ji
C;�i /! lim

��!
i

H�CkC1.CRi ;Ji
C;�i /

! lim
��!
i

H�CkC1.ERi ;Ji
C;�i /!

is well defined for Ji 2 JRi ;�kC;�i .W /.

Proof We first prove the truncated Gysin sequence

!H�Ck.ERi ;Ji
C;�i /!H�.CRi ;Ji

C;�i /!H�CkC1.CRi ;Ji
C;�i /!H�CkC1.ERi ;Ji

C;�i /!

is defined. Since we can find an open neighborhood U � JRi ;�k
C;�i .W / of Ji , we have a

universal moduli space
S
J2U Mx;y;J , where Mx;y;J is the moduli space of unbroken

Floer trajectories using J in (2) for the positive symplectic cohomology for x; y �W i .
The universal moduli space is a Banach manifold and its projection to U is regular.
For each J 2 U \ JRi

C;�i .W /, we have a flow category with sphere bundle. We use
dJ to denote the differential on the cochain complex of the sphere bundle. Moreover,
dJ is well defined by (3) for J 2 U , even though d2J may not be zero a priori unless
J 2 U \ JRi

C;�i .W / since the integration (3) only depends on the full measure set
Mx;y;J . We have that dJ varies continuously5 over U . Since U \JRi

C;�i .W / is dense
in U , we have d2J D 0 for every J 2 U . As a consequence, the Gysin sequence is

4Note that generators are the same for .HR0 ; J0/ and .HR1 ; J1/, hence the identity map makes sense.
5The compactification Mx;y also varies continuously for J 2 U � JR;�k

C;�i when dimMx;y � k.
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defined for every J 2 U , in particular for Ji . Then by a similar argument, by finding
Ji;iC1 2 JRi ;RiC1;�k

C;�i .W / we have a commutative diagram of the truncated Gysin
sequence. This yields a Gysin sequence of the direct limit. Since we only need the well-
definedness of the Euler part, the continuation map H�.CRi ;Ji

C;�i /!H�.CRiC1;JiC1
C;�iC1 / is

independent of the choice of Ji;iC1 by Proposition 3.21.

Corollary 3.24 Let E!W be a k–sphere bundle. Assume Js; s 2 Œ0; 1� is a smooth
path in J .W / and Rs is a nonincreasing smooth function taking values in .0; 1�
such that Js 2 JRs ;�k

C;�i .W /. Then the Euler parts of the Gysin exact sequences are
commutative:

(7)

H�.CR0;J0
C;�i /

//

��

H�CkC1.CR0;J0
C;�i /

��

H�.CR1;J1
C;�i /

// H�CkC1.CR1;J1
C;�i /

Here the vertical arrows are the continuation maps , which are homotopic to the identity
by Proposition 3.22.

Proof Assume in addition that J0 2 JR0
C;�i and J1 2 JR1

C;�i . Then we can find a
regular enough homotopy from J0 to J1 such that we have a flow morphism between
the associated flow categories. The induced continuation map induces an isomorphism
on the Euler parts of the Gysin exact sequences. By Proposition 3.22, the continuation
map H�.CR0;J0

C;�i / ! H�.CR1;J1
C;�i / is the identity. Therefore the Euler parts of the

Gysin sequences are the same for J0 and J1, since JR�;�k
C;�i .W / is open and contains

JR�
C;�i .W / as a dense set. Then the argument in Proposition 3.23 shows that the Euler

part varies continuously with respect to J .

Proposition 3.25 For Ji 2JRi ;�kC;�i .W /we have the well-defined commutative diagram

lim
��!i

H�.CRi ;Ji
C;�i /

//

��

lim
��!i

H�CkC1.CRi ;Ji
C;�i /

��

H�C1.W /
^.�e.E//

// H�CkC2.W /

where the horizontal map is the Euler part , and the vertical map is the connecting map
from the positive symplectic cohomology to the cohomology of the filling.

Proof Since JRi ;�k
C;�i .W / is open, we can choose J 0i in a connected neighborhood

of Ji in JRi ;�k
C;�i .W / such that J 0i 2 JRi

�i .W /. Then by Corollary 3.24 we have the
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commutative diagram

lim
��!i

H�.CRi ;Ji
C;�i /

// lim
��!i

H�CkC1.CRi ;Ji
C;�i /

lim
��!i

H�.CRi ;J
0
i

C;�i /
//

��

lim
��!i

H�CkC1.CRi ;J
0
i

C;�i /

��

H�C1.W /
^.�e.E//

// H�CkC2.W /

By [30, Proposition 2.17], the vertical arrows in the bottom square do not depend on
the choice of J 0i .

3.5 Neck-stretching and independence of the positive Gysin sequence

Let .Y; ˛/ be a k–ADC contact manifold with two topologically simple fillings W1
and W2. Note that yW1 and yW2 both contain the symplectization .Y � .0;1/r ; d.r˛//.
Since Y is k–ADC, there exist nested contact type surfaces Yi � Y � .0; 1/ such that
Yi lies outside of YiC1 and contractible Reeb orbits of contact form r˛jYi have the
property that the degree is greater than k if the period is smaller than Di .

We now define neck-stretching near Yi . Assume domains of the form Yi�Œ1��i ; 1C�i �ri
are disjoint for some small �i , where ri is the coordinate determined by the Liouville
vector field near Yi such that ri jYi D 1. Assume J jYi�Œ1��i ;1C�i �ri D J0 where J0
is independent of S1 and ri , and J0.ri@ri /DRi and J0�i D �i where �i D ker r˛jYi
and Ri is the associated Reeb vector field. Then we pick a family of diffeomorphisms
�R W Œ.1��i /e

1�1=R; .1C�i /e
1=R�1�! Œ1��i ; 1C�i � for R 2 .0; 1� such that �1D id

and �R near the boundary is linear with slope 1. Then the stretched almost complex

YiYiC1 Y

Y � .0; 1/

Figure 2: Yi � yW�.

Algebraic & Geometric Topology, Volume 23 (2023)



On the cohomology ring of symplectic fillings 1715

structure NSi;R.J / is defined to be J outside Yi� Œ1��i ; 1C�i � and is .�R� id/�J0 on
Yi � Œ1��i ; 1C�i �. Then NSi;1.J /D J and NSi;0.J / gives almost complex structures
on the completions of the cobordism Xi between Y and Yi , the filling of Yi , and the
symplectization Yi �RC.

Since we need to stretch along different contact surfaces, we assume the NSi;R.J /
have the property that NSi;R.J / will modify the almost complex structure near YiC1 to
a cylindrical almost complex structure for R from 1 to 1

2
, and for R � 1

2
we only keep

stretching along Yi . We use J�kreg;SFT;�i .H0/ to denote the set of admissible regular J ,
ie almost complex structures satisfying Definition 3.2 on the completion of W outside
Yi and asymptotic (in a prescribed way as in the stretching process) to J0 on the
negative cylindrical end such that the following moduli space up to dimension k is cut
out transversely:8̂̂̂̂

ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:
u WR�S1nZ! yXi

@suCJ.@tu�XH0/D 0;

lim
s!1

uD x; lim
s!1

uD y;

AH0.x/;AH0.y/ > �Di ;

Z D fz1; : : : ; zI g;

lim
z!zj

uD j � f�1g;81� j � I;

9>>>>>>>>=>>>>>>>>;
=R:

Here j is a Reeb orbit on Yi and we write limz!zj uD j �f�1g if u is asymptotic to
j near the negative puncture zj 2R�S1. Then J�kreg;SFT;�i .H0/ is an open dense subset
of all admissible almost complex structures on yXi . To compare moduli spaces for two
Liouville fillings W1 and W2 we can assume that HR outside Yi is the same for W1
and W2 whenever R � 1

i
. The following is simply a variant of [30, Proposition 3.12]:

Proposition 3.26 With the setup above there exist admissible J 1� and J 2� on yW� for
� D 1; 2, and positive real numbers �1; �2; : : :� 1 and ı1; ı2; : : :� 1 with ıi � 1

i
such

that the following hold :

(i) For R < �i and any R0 2 Œ0; 1�,

NSi;R.J i�/ 2 J
Rıi ;�k
C;�i .W�/ and NSiC1;R0.NSi;R.J i�// 2 J

R0Rıi ;�k
C;�i .W�/:

Moreover , all moduli spaces Mx;y of dimension up to k are the same for both
W1 and W2, and contained outside Yi for x; y 2P�.H/ with action at least �Di .

(ii) J iC1� D NSi;�i=2.J
i
�/ on W i

� and ıiC1 D 1
2
�iıi .

Proof We prove the proposition by induction. Firstly, we set ı1D 1. We then choose a
J 1 such that NS1;0.J 1/ 2 J�kreg;SFT;�1.H0/. We will apply neck-stretching to J 1 at Y1.
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x

y

1 2
Yi � f0g

Figure 3: Moduli spaces for the definition of J �kreg;SFT;�i .H0/.

Note that we need to arrange the Hamiltonian converging to a constant near Yi . We
consider moduli space Mx;y;HR with expected dimension at most k for NS1;R.J 1/.
Assume Mx;y;HR is not contained outside Y1 in the stretching process. Then a limit
curve u outside Y1 has one component by [9, Lemma 2.4].6 Moreover, by the argument
in [9, Lemma 2.4], u can only be asymptotic to Reeb orbits figi2I that are contractible
in W� on Y1 with period smaller than D1. Since W� is topological simple, figi2I are
contractible in Y1. In particular, they all have well-defined Z–valued Conley–Zehnder
indices with SFT degree greater than k. The expected dimension of the moduli spaces of
such u is ind.u/�1Djyj�jxj�

P
i2I .�CZ.i /Cn�3/�1< jyj�jxj�1�k<0. Since

NS1;0.J 1/ 2 J�kreg;SFT;�1.H0/, we have that such a u is cut transversely. In particular,
there is no such u as the expected dimension is negative. Then for R� 1, we have
that Mx;y;HR using NS1;R.J 1/ is contained outside Y1 whenever dimMx;y;HR � k.
Then NS1;0.J 1/ 2 J�kreg;SFT;�1.H0/ also implies that NS1;R.J 1/ 2 JR;�kC;�1 .W�/ by the
openness of transversality.

Next we will apply neck-stretching both at Y1 and Y2. By the same argument as above,
for every R0 2 Œ0; 1�, we can find �R0 > 0 and ıR0 > 0 such that for � < �R0 and
jı�R0j< ıR0 ,

(i) NS2;ı.NS1;�.J 1// 2 J ı�;�kC;�1 .W�/, and

(ii) Mx;y;H�ı is contained outside Y1 if the expected dimension is at most k.

Then compactness of Œ0; 1�R0 implies that there exists �1>0 such that, forR<�i and any
R02 Œ0; 1�, we have NS1;R.J i�/2J

R;�k
C;�1 .W�/ and NS2;R0.NS1;R.J 1� //2J

R0R;�k
C;�1 .W�/.

6Note that our symplectic action has the opposite sign compared to [9, Proposition 9.17].
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Moreover, the moduli space Mx;y;HR0R for NS2;R0.NS1;R.J 1� // is contained outside Y1.
We can certainly arrange �1 small enough so that ı2D 1

2
�1ı1D

1
2
�1 �

1
2

. Since moduli
spaces in Figure 3 for NS2;0.NS1;R.J 1� // must be contained outside Y1 for x and y
with action at least �D1 when R� 0 by the same neck-stretching argument along Y1,
we may assume NS2;0.NS1;�1=2.J

1// 2 J�kreg;SFT;�1.H0/. Therefore we can perturb
NS1;�1=2.J

1/ 2 J �1=2;�k
C;�1 .W�/ outside W 1

� near orbits in W 2
� to obtain J 2� such that

NS2;0.J 2/ 2 J�kreg;SFT;�2.H0/. This will not influence the previous regularity property
for periodic orbits with action down to �D1 by the integrated maximum principle.
Then we can apply neck-stretching to J 2� at Y2 to obtain �2 with the desired properties
and keep the induction going.

Since we require that HR outside Yi is the same for W1 and W2 whenever R � 1
i

and
ıi �

1
i
, it is clear that Mx;y;HR0Rıi

using NSiC1;R0.NSi;R.J i�// can be identified for
R<�i whenever the dimension is at most k and the action of x and y is greater than�Di .
This is because it is contained outside Yi where all the geometric data are the same.

Proposition 3.27 Let Y be a k–ADC contact manifold with two topologically simple
Liouville fillings W1 and W2. Then for � D 1; 2, there exists a sequence of almost
complex structures zJ 1� ; zJ

2
� ; : : : and positive numbers 1 > R1 > R2 > � � � > 0 such

that for any oriented k–sphere bundles E� over W� with E1jY D E2jY , we have an
isomorphism ˆ W lim

��!i
H.CRi ; zJ

i
1

C / ' SH�
C
.W1/! SH�

C
.W2/ ' lim

��!i
H.CRi ; zJ

i
2

C / such
that the following Euler part of the Gysin exact sequence commutes:

lim
��!i

H�.CRi ;
zJ i1

C;�i /
//

ˆ
��

lim
��!i

H�CkC1.CRi ;
zJ i1

C;�i /

ˆ
��

lim
��!i

H�.CRi ;
zJ i2

C;�i /
// lim
��!i

H�CkC1.CRi ;
zJ i2

C;�i /

Proof Using the almost complex structures from Proposition 3.26, we define zJ i� to be
NSi;�i=2.J

i
�/ for �D 1; 2. By Proposition 3.26, zJ i� 2J

�iıi=2;�k
C;�i .W�/DJ ıiC1;�k

C;�i .W�/.
Therefore by Proposition 3.23, the direct limit of the following commutative sequence
computes the Euler part of the Gysin exact sequence:

H�.Cı2;
zJ 1�

C;�1 /
//

��

H�.Cı3;
zJ 2�

C;�2 /
//

��

� � �

H�CkC1.Cı2;
zJ 1�

C;�1 /
// H�CkC1.Cı3;

zJ 2�
C;�2 /

// � � �
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We first show that the continuation map H�.CıiC1;
zJ i�

C;�i /!H�.CıiC2;
zJ
iC1
�

C;�iC1 / is naturally
identified for �D 1; 2. Note that the continuation map is decomposed into continuation
maps

„ WH�.CıiC1;
zJ i�

C;�i /!H�.C
ıiC2;NSiC1;�iC1=2.

zJ i�/

C;�i /

and
‰ WH�.C

ıiC2;NSiC1;�iC1=2.
zJ i�/

C;�i /!H�.CıiC2;
zJ
iC1
�

C;�iC1 /:

Then „ is the identity by Proposition 3.22 using the regular homotopy NSiC1;s. zJ i�/ for
s 2

�
1
2
�iC1; 1

�
. Since J iC1� is the same as zJ i� inside W i , NSiC1;�iC1=2. zJ

i
�/ is zJ iC1�

inside W i . Then the integrated maximum principle implies that ‰ is the composition

H�.C
ıiC2;NSiC1;�iC1=2.

zJ i�/

C;�i /
D
�!H�.CıiC2;

zJ
iC1
�

C;�i /
�
�!H�.CıiC2;

zJ
iC1
�

C;�iC1 /;

which is the same for � D 1; 2. Therefore all the horizontal arrows in the diagram
can be identified for both W1 and W2. We still need to identify the vertical arrow, ie
the Euler part of Gysin sequence. For CıiC1;

zJ i�
C;�i , we pick the parallel transport outside

Yi such that they are identified for � D 1; 2, which is possible since Ej@W1 DEj@W2 .
Since the Euler part only requires Mx;y with dimMx;y � k and parallel transport over
them, Proposition 3.26(i) implies that whole diagram can be identified for � D 1; 2.
Then Proposition 3.23 completes the proof

Remark 3.28 Using that the almost complex structure satisfies the condition here and
is close to the condition in [30, Theorem A], the isomorphism in Proposition 3.27 also
yields the identification of the map ı@ W SH �C.W�/!H �C1.Y / for � D 1; 2.

4 Proof of the main theorem and applications

Our method of proving Theorem 1.1 is to represent even degree cohomology classes
as Euler classes of sphere bundles. The following result explains which class can be
realized as the Euler class of a sphere bundle.

Theorem 4.1 [14, Theorem 4.1] Given k;m 2N, let K.Z; 2k/m be the m–skeleton
of the Eilenberg–Mac Lane spaceK.Z; 2k/, with inclusion i WK.Z; 2k/m ,!K.Z; 2k/.
Then there is an integer N.k;m/ > 0 and an oriented 2k–dimensional vector bundle
�k;m over K.Z; 2k/m with e.�k;m/ D N.k;m/ � i�u, where u is the generator of
H 2k.K.Z; 2k/IZ/.
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As a corollary of Theorem 4.1, letW be a manifold of dimension 2n and ˛2H 2k.W IZ/.
Then ˛ is uniquely represented by the homotopy class of a map f˛ WM!K.Z; 2k/2nC1,
so the Euler class of f �˛ �k;2nC1 is N.k; 2nC 1/ � ˛. We first obtain the following
proposition, which may have some independent interest:

Proposition 4.2 Let Y be a k–ADC manifold with a topologically simple Liouville
filling W1 such that SH�.W1/D 0. Then for any other topologically simple Liouville
filling W2, we have that H 2m.W2/!H 2m.Y / is injective for 2m� kC 1.

Proof Note that the abelian group H 2m.W2IZ/ has a noncanonical decomposition
into free and torsion parts H 2m.W2IZ/DH 2m

free .W2IZ/˚H
2m
tor .W2IZ/. To prove the

injectivity of H 2m.W2/!H 2m.Y / for real cohomology, it suffices to show that for
any decompositionH 2m

free .W2IZ/!H 2m.Y IZ/ is an injection for 2m�kC1. Assume
otherwise, so there is an element ˛ 2H 2m

free .W2IZ/�H
2m.W2IZ/ such that ˛jY D 0

in H 2m.Y IZ/. By Theorem 4.1, there exist N 2N, a 2m–dimensional vector bundle
�m;2nC1 over the 2nC1–skeleton K.Z; 2m/2nC1 of the Eilenberg–Mac Lane space
K.Z; 2m/, and f˛ WW2!K.Z; 2m/2nC1 such that the Euler class ofE2 WDf �˛ �m;2nC1
is N˛. Since ˛jY D 0 in H 2m.Y IZ/, we have that f˛jY W Y ! K.Z; 2m/2nC1 is
contractible. Hence E2jY is a trivial bundle. Let E1!W1 be the trivial sphere bundle.
Therefore by Proposition 3.27, there exist almost complex structures J 1� ; J

2
� ; : : : and

1 > R1 >R2 > � � �> 0 such the Euler part for the positive symplectic cohomology for
E1!W1 andE2!W2 can be identified. By [30, Corollary B], we have SH�.W2/D0.
Then Proposition 3.25 implies the commutative diagram

H�C1.W1/
0

// H�CkC2.W1/

lim
��!

H�.CRi ;J
i
1

C;�i /
//

'
��

'

OO

H�CkC1.CRi ;J
i
1

C;�i /

'
��

'

OO

lim
��!

H�.CRi ;J
i
2

C;�i /
//

'

��

H�CkC1.CRi ;J
i
2

C;�i /

'

��

H�C1.W2/
^.�N˛/

// H�CkC2.W2/

We arrive at a contradiction, since N˛ ¤ 0.
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Proposition 4.2 says that if we have extra room in the positivity of the SFT degree and
also the vanishing of symplectic cohomology, then H�.W /!H�.Y / is necessarily
injective for low even degrees. For example, if Y 2n�1 is a flexibly fillable contact
manifold, then Y is .n�3/–ADC [18]. In this case, we have that H�.W /!H�.Y /

is always injective for even degree with � � n� 2. Note that such a property also
follows from [30, Corollary B]: H�.W /!H�.Y / is independent of fillings and for
� < n� 2 we have that H�.W /!H�.Y / is an isomorphism for Weinstein fillings.
However, Proposition 4.2 holds for very different reasons. Note that we do not assume
H 2m.W1/!H 2m.Y / is injective in Proposition 4.2.

Proof of Theorem 1.1 By Proposition 3.27, we can pick 1 > R1 >R2 > � � �> 0 and
J 1� ; J

2
� ; : : : such that the Euler part of the positive symplectic cohomology for W1 and

W2 can be identified as long as E1jY DE2jY . Since

SH�.W1/D SH
�.W2/D 0;

we can define � to be the composition

H�.W1/
'
�! lim
��!
i

H��1.CRi ;J
i
1

C;�i /
'
�! lim
��!
i

H��1.CRi ;J
i
2

C;�i /
'
�!H�.W2/:

In other words, � is the identification in [30, Corollary B] such that

(8)
H�.W1/

�
//

&&

H�.W2/

xx

H�.Y /

is commutative. In particular, �.1/D 17 and � is actually induced from an isomorphism
�Z for Z–coefficient cohomology. We pick an element ˛1 ¤ 0 2 H 2k.W1IZ/ for
2k � n� 2. By [30, Corollary B], let ˛2 D �Z.˛1/ 2 H

2k.W2IZ/. Then we have
˛2jY D ˛1jY 2H

�.Y IZ/ by the Z–coefficient version of (8), [30, Corollary B]. By
Theorem 4.1, there exist N 2 N and a bundle �k;2nC1 such that E� WD f �˛��k;2nC1
is a vector bundle over W� with Euler class N˛� for � D 1; 2, and where the map
f˛� WW�!K.Z; 2k/2nC1 represents ˛�. Since ˛2jY D˛1jY 2H�.Y IZ/, we have that
f˛1 jY is homotopic to f˛2 jY . As a consequence, we haveE1jY DE2jY , e.E1/DN˛1
and e.E2/ D N˛2. Then by the same argument as in Proposition 4.2, we have the

7Without [30, Corollary B], �.1/D˙1 can already be obtained by grading.
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commutative diagram

H�C1.W1/
^.�N˛1/

//

�

##

H�CkC2.W1/

�

{{

lim
��!

H�.CRi ;J
i
1

C;�i /
//

'
��

'

OO

H�CkC1.CRi ;J
i
1

C;�i /

'
��

'

OO

lim
��!

H�.CRi ;J
i
2

C;�i /
//

'

��

H�CkC1.CRi ;J
i
2

C;�i /

'

��

H�C1.W2/
^.�N˛2/

// H�CkC2.W2/

So �.N˛1 ^ˇ/D N˛2 ^ �.ˇ/. Since �.1/D 1, it follows that �.N˛1/D N˛2 and
�.N˛1 ^ˇ/DN˛2 ^�.ˇ/D �.N˛1/^�.ˇ/.

Remark 4.3 Combining the argument in this paper with [30], one can prove that the
following commutative diagram for a k sphere bundle E is independent of fillings and
extensions of EjY to W as long as Y is k–ADC:

SH�
C
.W /

ı@
//

e.E/
��

H�C1.Y /

e.E/
��

SH�CkC1
C

.W /
ı@
// H�CkC2.Y /

As a corollary, im ı@ is closed under multiplication by the Euler class e.EjY /. Then
the argument of Theorem 1.1 implies that im ı@ is closed under multiplication by even
elements of degree at most kC 1 in im ı@. Note that im ı@ is an interesting invariant of
ADC manifolds and can be used to define obstructions to Weinstein fillability.

Theorem 1.1 can be applied to examples listed in Example 2.6; the major class would
be flexibly fillable contact manifolds. In the following, we list several cases where
the whole real cohomology ring is unique. For simplicity, we only consider simply
connected contact manifolds. Note that the following corollary includes Corollary 1.2:

Corollary 4.4 Let Y be a simply connected flexibly fillable contact manifold satisfying
one the following conditions:

(i) Y is 4nC1–dimensional for n� 1.
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(ii) Y is 4nC3–dimensional for n � 1, and the flexible filling W has the property
that for every ˛^ˇ 2H 2nC2.W / with deg.˛/ and deg.ˇ/ odd , then ˛ or ˇ can
be decomposed into a nontrivial product.

Then H�.W / as a ring is unique for any Liouville filling W with c1.W /D 0.

Proof By Theorem 1.1 and [30, Corollary B], the ring structure onH�.W / is unique if
one of the factors is of even degree at most 1

2
dimW �2, or if the degree of the product

is at most 1
2

dimW �1. When dimY D 4nC1, if the degree of the product is in the un-
determined region, ie 1

2
dimW D 2nC1, then one of the factors must be of even degree.

If Y is simply connected thenH 1.W / is 0 by [30, Corollary B]. As a consequence, the
other odd degree factor must have degree at least 3. Therefore the even degree factor
has degree at most 1

2
dimW � 3. In particular, all products fall in the above two cases.

Therefore the ring structure is unique. In case (ii), the undetermined case is when the
product has degree 2nC2. If the product is from two classes of even degree, then we can
apply Theorem 1.1. If the product is from two classes of odd degree, then by assumption
one of them can be reduced to a nontrivial product. Since the ring structure in that
degree is unique, the decomposition exists for any other filling. Therefore the product
can be rewritten as a product of two even elements. Hence the ring structure is unique.

Proof of Corollary 1.4 By Corollary 4.4, the real cohomology ring of the filling is
unique. Moreover, it is straightforward to verify that the cohomology ring of products
of CPn, HPn, S2n and at most one copy of S2nC1 for n � 1 have unique minimal
models. By [30, Theorem E], any exact filling of @.Flex.T �M// with vanishing first
Chern class is necessarily simply connected, in which case the real homotopy type is
determined by the minimal model by [5, Section 19].

Theorem 1.1 can only be applied when there is one filling with vanishing symplectic
cohomology. In some cases, symplectic cohomology vanishes with nontrivial local
systems [2]. Here we only give one special example in such a case.

Proposition 4.5 Assume W is a Liouville filling of Y WD @T �CPn for n � 3 odd ,
which is .2n�4/–ADC. If c1.W /D 0 and H 2.W IZ/!H 2.Y IZ/ is not zero , then
the real cohomology ring H�.W / is isomorphic to H�.T �CPn/.

Proof Since CPn is spin for n odd, by [30, Theorem D] there is a local system on
both W and T �CPn such that they are the same on Y and the twisted symplectic
cohomology vanishes for both W and TCPn. Then we can apply the same argument
of Theorem 1.1 to the case with local systems to finish the proof.
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