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Maximal knotless graphs
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A graph is maximal knotless if it is edge maximal for the property of knotless
embedding in R3. We show that such a graph has at least 7

4
jV j edges, and construct

an infinite family of maximal knotless graphs with jEj< 5
2
jV j. With the exception

of jEj D 22, we show that for any jEj � 20 there exists a maximal knotless graph of
size jEj. We classify the maximal knotless graphs through nine vertices and 20 edges.
We determine which of these maxnik graphs are the clique sum of smaller graphs and
construct an infinite family of maxnik graphs that are not clique sums.

05C10; 57K10, 57M15

1 Introduction

A graph G is maximal planar if it is edge maximal for the property of being a planar
graph. That is, G is either a planar complete graph, or else adding any missing edge
to G results in a nonplanar graph. Maximal planar graphs are triangulations and are
characterized by the number of edges: a planar graph with jV j � 3 is maximal planar
if and only if jEj D 3jV j � 6.

Naturally, planarity is not the only property of graphs that can be studied with respect to
edge maximality. A graph is intrinsically linked if every embedding of the graph in R3

contains a nonsplit link. Some early results on maximal linkless (or maxnil) graphs —
those that are edge maximal for the property of not being intrinsically linked — include
a family of maximal linkless graphs with 3jV j � 3 edges (see Jørgensen [10]), and the
fact that the graph Q.13; 3/ is a splitter for intrinsic linking, a property that implies it
is maximal linkless; see Maharry [13]. Recently there have been several new results
including families of maxnil graphs with 3jV j � 3 edges (rediscovering Jørgensen’s
examples, see Dehkordi and Farr [4]), with 14

5
jV j edges (see Aires [1]) and with 25

12
jV j
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edges (see Naimi, A Pavelescu, and E Pavelescu [16]). Lower bounds for the number of
edges required for a maxnil graph have been established [1], and methods for creating
new maxnil graphs via clique sum have been developed [16].

We extend this work with what appears to be the first study of maximal knotless graphs.
A graph is intrinsically knotted (IK) if every embedding in R3 includes a nontrivially
knotted cycle, and a graph is not IK or nIK if it has a knotless embedding, that is, an
embedding in which every cycle is a trivial knot. We will call a graph that is edge
maximal for the nIK property maximal knotless or maxnik.

In Section 2, we establish a connection between maximal 2–apex graphs and maxnik
graphs, specifically that a 2–apex graph is maxnik if and only if it is maximally 2–apex.
This connection is instrumental in allowing the identification of all maxnik graphs
with nine or fewer vertices, and with 20 or fewer edges. We remark that there is an
analogous connection between maximal apex graphs and maxnil graphs that may be of
independent interest.

We consider clique sums of maxnik graphs in Section 3, and are able to establish
similar, if weaker, results to those of [16]. Most importantly, we show that the edge
sum of two maxnik graphs G1 and G2 on an edge e is maxnik if e is nontriangular (ie
not part of a 3–cycle) in at least one Gi . Similarly, we provide conditions that ensure
that the clique sum over K3 of two maxnik graphs is again maxnik. These results are
used in Section 4 to construct new maxnik graphs from those found in Section 2.

We then turn to studying general properties of maxnik graphs in Section 4. We establish
a lower bound for the number of edges in a maxnik graph of 7

4
jV j, and construct an

infinite family of maxnik graphs with fewer than 5
2
jV j edges. A maximal planar graph

has jEj D 3jV j � 6, and maximal k–apex graphs also have a fixed number of edges
depending on jV j. In contrast, the number of edges in maxnil and maxnik graphs can
vary. We show that, except for jEj D 22, given any jEj � 20, there exists a maxnik
graph of size jEj.

We will call a maxnik graph composite if it is the clique sum of two smaller graphs.
Otherwise we say it is prime. These terms are analogous to knots, where a knot is
composite if is the connected sum of two nontrivial knots, and prime otherwise. The
infinite families of maxnik graphs constructed in Section 4 are all composite, as they
are clique sums of smaller maxnik graphs. In Section 5, we classify the maxnik graphs
found in Section 2 and construct an infinite family of prime maxnik graphs.
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2 Classification through order nine and size 20

For a graph G, let ı.G/ denote the minimal degree, the smallest degree among the
vertices of G. Similarly, �.G/ is the maximal degree.

Theorem 2.1 A maxnik graph is 2–connected. If jV j � 3, then ı.G/� 2. If jV j � 7,
then 20� jEj � 5jV j � 15.

Proof Suppose G is maxnik. If G is not connected, then, in a knotless embedding,
add an edge e to connect two components. This is a knotless embedding of G C e,
contradicting G being maximal knotless.

Suppose G has connectivity one with cut vertex v. Label the two components of G n v
as A and B . Let a be a neighbor of v in A and b be a neighbor of v in B . These must
exist as G is connected. We will argue that GC ab is also nIK, a contradiction.

Let A0 denote the subgraph induced by A and the vertex v and similarly define B 0.
Since G is maxnik, the subgraphs A0 and B 0 are both nIK. Embed A0 and B 0 so that
they are knotless and disjoint with a plane separating them. Isotope the edges va and
vb to lie on the plane so that the two copies of the vertex v are identified. In this way,
we obtain an embedding of G with A0 on one side of the separating plane and B 0 on
the other side of the plane so that v, a, and b are the only vertices on the separating
plane and va and vb the only edges. Next add edge ab so that the triangle abv bounds
a disk.

Any cycle contained in A (or in B) is an unknot. Any cycle c that uses vertices from
both A and B must use at least two vertices in the triangle abv. Since abv bounds a
disk, this means the cycle c is a connected sum of a cycle in A and a cycle in B . Since
those are unknots, c must be as well. This shows GCab is nIK, contradicting G being
maxnik. So a maxnik graph cannot have connectivity one and must be 2–connected.

Suppose G is a maxnik graph with jV j � 3. Since G is connected, ı.G/ > 0. If
v 2 V.G/ has degree one, let u be the neighbor of v. Since G is connected and jV j � 3,
u must have another neighbor w ¤ v. In a knotless embedding of G, we can introduce
the edge vw that closely follows the path vuw. This gives a knotless embedding of
GC vw, contradicting the maximality of G.

Suppose G is maxnik with jV j � 7. The lower bound on size is a consequence of the
observation [9; 14] that an IK graph has at least 21 edges. The upper bound follows, as
a graph with jEj � 5jV j � 14 has a K7 minor and is therefore IK [3; 12].
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In Theorem 4.3 below, we construct an infinite family of maxnik graphs, each with
ı.G/D 2.

We say that a graph is apex if it is planar or it becomes planar on deletion of a single
vertex (the apex). Similarly, a graph is 2–apex if it is apex or becomes apex on deletion
of a single vertex and a maximal 2–apex graph is one that is edge maximal for the
2–apex property.

Theorem 2.2 A 2–apex graph is maxnik if and only if it is maximal 2–apex.

Proof Let G be 2–apex. If G is not maximal 2–apex, then there is an edge e such
that GC e is 2–apex, hence nIK [2; 17]. This shows that G is not maxnik. Conversely,
if G is maximal 2–apex there are two cases, depending on jV j. If nD jV j < 7, then
Kn is 2–apex, so G DKn. But, Kn is also nIK and therefore maxnik. If jV j � 7, then
jEj D 5jV j�15. Since G is 2–apex, it is nIK. Adding any edge e, we have GCe with
5jV j � 14 edges. It follows that G has a K7 minor and is IK [3; 14]. This shows that
G is maxnik.

A similar result, with essentially the same proof, holds for maxnil.

Theorem 2.3 An apex graph is maxnil if and only if it is maximal apex.

Theorem 2.4 For jV j D n� 6, Kn is the only maxnik graph. The only maxnik graphs
for nD 7 and 8 are the three 2–apex graphs derived from triangulations on five and six
vertices.

Proof In [14, Proposition 1.4] it’s shown that every nIK graph of order eight or less
is 2–apex. So, the maxnik graphs are the maximal 2–apex graphs. For n � 6, all
graphs are 2–apex, so Kn is the only maximal knotless graph. For nD 7, the maximal
2–apex graph is K�7 , formed by adding two vertices to the unique graph with a planar
triangulation on five vertices, K�5 . The two maximal planar graphs on eight vertices are
formed by adding two vertices to the two triangulations on six vertices, the octahedron
and a graph whose complement is a 3–path. We will call these graphs K8�3 disjoint
edges and K8�P3.

Let E9 (called N9 in [8]) be the nIK nine vertex graph in the Heawood family. Figure 2
in Section 4 below shows a knotless [14] embedding of E9.

Theorem 2.5 The graph E9 is maxnik.
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Figure 1: A knotless embedding of G9;29.

Proof That E9 is nIK is established in [14]. Up to symmetry, there are two types of
edges that may be added. One type yields the graph E9C e, shown to be IK (in fact
minor minimal IK or MMIK) in [7]. The other possible addition yields a graph that
has as a subgraph F9 in the Heawood family. Kohara and Suzuki [11] established that
F9 is MMIK.

Theorem 2.6 There are seven maxnik graphs of order nine.

Proof The seven graphs are the five maximal 2–apex graphs with 30 edges, E9, and
the graphG9;29, shown in Figure 1. Note thatG9;29 is the complement ofK1tK2tC6.
Theorems 2.2 and 2.5 show that six of these seven graphs are maxnik. To see that G9;29

is as well, note that the embedding shown in Figure 1, due to Ramin Naimi (personal
communication, 2011), is knotless. Up to symmetry, there are two ways to add an edge
to the graph. In either case, the new graph has a K7 minor and is IK.

It remains to argue that no other graphs of order nine are maxnik. We know that
order nine graphs with size 21 or less are either IK, the graph E9, or else 2–apex;
see [14, Propositions 1.6 and 1.7]. Using Theorem 2.2, this completes the argument
for graphs with jEj � 21. Suppose G is maxnik of order nine with jEj � 22. By
Theorem 2.1, we can assume jEj � 30. If G is 2–apex, by Theorem 2.2, it is one of the
five maximal 2–apex graphs. So, we can assume G is not 2–apex. The minor minimal
not 2–apex (MMN2A) graphs through order nine are classified in [15]. With a few
exceptions these graphs are also MMIK. If G has an IK minor (including an MMIK
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minor) it is IK and not maxnik. So, we can assume G has as a minor a graph that is
MMN2A, but not MMIK. There are three such graphs. One is E9, the other two, G26

and G27, have 26 and 27 edges. In Theorem 2.5, we showed that E9 is maxnik. The
other two are subgraphs of G9;29. To complete the proof, we observe that any order
nine graph that contains G26 is either a subgraph of G9;29 or else IK and similarly
for G27. In fact, for those that are IK, we can verify this by finding an MMIK minor,
either in the K7 or K3;3;1;1 family, or else the graph G9;28 described in [7].

Theorem 2.7 The only maxnik graph of size 20 is K�7 . There are seven maxnik
graphs with at most 20 edges.

Proof Work above establishes this through order nine. The seven maxnik graphs with
at most 20 edges are the seven on seven or fewer vertices. Suppose G of order ten or
more and size 20 is maxnik. By [14, Theorem 2.1], G is 2–apex and therefore maximal
2–apex. But this means jEj D 5jV j � 15� 35, a contradiction.

Remark 2.8 A computer search suggests that E9 is the only maxnik graph of size 21.
The search makes use of the 92 known MMIK graphs of size 22; see [5].

3 Clique sums of maxnik graphs

Clique sums of maxnil graphs were studied in [16], and we will show similar, if weaker,
versions in the case of maxnik graphs. These results are used in Section 4. A clique in a
graph is a complete subgraph. When graphs G and H both contain the same clique Kn,
we can form a new graph G [Kn

H , called the clique sum, from the disjoint union by
identifying the vertices in the two copies of Kn.

Lemma 3.1 For t � 2, the clique sum over Kt of nIK graphs is nIK.

Proof Let G1 and G2 be nIK graphs, and let �.G/ denote the set of all cycles in G.
Let G be the clique sum of Gi over a clique of size t . Let fi be an embedding of Gi

that contains no nontrivial knot.

Suppose t D 1. We may extend the fi to an embedding of G by embedding f1.G1/

in 3–space with z > 0, and f2.G2/ with z < 0. G D G1 [v G2, so by isotoping
vertex v from each Gi to the plane z D 0 and identifying them there, we have an
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embedding f .G/. A closed cycle in G must be contained in a single Gi , and hence
given c 2 �.G/, then c 2 �.Gi / for some i . As the embeddings fi .Gi / contain no
nontrivial knot, c must be the unknot, and hence G is nIK.

Suppose t D 2. We may extend the fi to an embedding of G by embedding f1.G1/ in
3–space with z > 0, and f2.G2/ with z < 0. G DG1[e G2, so by shrinking the edge
e in each Gi and then isotoping them to the plane z D 0 and identifying them there,
we have an embedding f .G/. A closed cycle c 2 �.G/ must either be an element
of �.Gi /, or c D c1 # c2, with ci 2 �.Gi /. As the embeddings fi .Gi / contain no
nontrivial knot, in the first case c is the unknot, and in the second it is the connected
sum of unknots and hence unknotted. Thus, G is nIK.

For H1;H2; : : : ;Hk subgraphs of graph G, let hH1;H2; : : : ;HkiG denote the sub-
graph induced by the vertices of the subgraphs.

Lemma 3.2 Let G be a maxnik graph with a vertex cut set S D fx; yg, and let
G1; G2; : : : ; Gr denote the connected components of G n S . Then xy 2 E.G/ and
hGi ; SiG is maxnik for all 1� i � r .

Proof As G is 2–connected by Theorem 2.1, each of x and y has at least one neighbor
in each Gi . Suppose xy …G. Form G0 DGCxy and let G0i D hGi ; SiG0 . For each i ,
edge xy is in G0i . But G0i is a minor of G, as there exists Gj with i ¤ j since S is
separating, and there exists a path from x to y in Gj as Gj is connected. Thus in
hGi ; Gj ; SiG , we may contract Gj to x to obtain a graph isomorphic to G0i . Thus, G0i
is nIK. So, by Lemma 3.1, G0 DG01[xy G

0
2[xy � � � [xy G

0
r is nIK. This contradicts

the fact that G is maxnik, and hence xy 2E.G/.

Suppose that one or more of the Gi are not maxnik. Then add edges as needed to each
Gi to form graphsHi that are maxnik. Then the graphH DH1[xyH2[xy � � �[xyHr

is nIK by Lemma 3.1 and contains G as a subgraph. As G is maxnik, G D H and
hence Gi DHi for all i , so every Gi is maxnik as well.

We say that an edge in a graph is triangular if it is part of a triangle or 3–cycle. Similarly,
the edge is nontriangular if it is part of no 3–cycle in the graph.

Lemma 3.3 Let G1 and G2 be maxnik graphs. Pick an edge in each Gi and label it e.
Then G DG1[e G2 is maxnik if e is nontriangular in at least one Gi .
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Proof Suppose that e is nontriangular in G1 and has endpoints x and y. Add an edge
ab to the graph G. The graph G is nIK by Lemma 3.1. If both a; b 2Gi for some i ,
then GC ab is IK, as the Gi are each maxnik. Thus, we may assume that a 2G1 and
b 2G2. The edge e is nontriangular in G1, so vertex a is not adjacent to both endpoints
of e. We may assume that a is not adjacent to x. As G2 is connected, we construct a
minor G0 of GC ab by contracting the whole of G2 to vertex x. Note that as b 2G2,
we have the edge ax in G0, and in fact G0 DG1C ax. As G1 is maxnik, G0 is IK and
so is GC ab. Thus, G is maxnik.

Lemma 3.4 For i D 1; 2, let Gi be maxnik , containing a 3–cycle Ci , and admitting a
knotless embedding such that Ci bounds a disk whose interior is disjoint from the graph.
Then the clique sum G over K3 formed by identifying C1 and C2 is nIK. Moreover ,
G is maxnik if Ci is not part of a K4 in at least one Gi .

Proof Let fi be the knotless embedding of Gi . Embed the fi .Gi / so that they are
separated by a plane. We may then extend this to an embedding f .G/ by isotoping the
Ci to the separating plane and identifying them there.

Let �.G/ denote the set of all cycles in G. As the cycles Ci bound a disk in f .G/, if
a closed cycle c 2 �.G/ is not contained in one of the fi .Gi /, then c D c1 # c2, with
ci 2 �.Gi /. As the embeddings fi .Gi / contain no nontrivial knot, in the first case c is
the unknot, and in the second, it is the connected sum of unknots and hence unknotted.
Thus, G is nIK.

Suppose C1 is not contained in a 4–clique in G1. We will show G C ab is IK, and
hence G is maxnik. As the Gi are maxnik, we may assume that a 2G1 and b 2G2,
as otherwise GC ab is IK. As C1 is not contained in a 4–clique in G1, there exists
a vertex x in C1 that is not adjacent to a. As G2 is connected, there is a path from b

to x. Contract G2 to x. This graph contains G1C ax as a minor, and hence is IK, as
G1 is maxnik and does not contain edge ax. Thus, G is maxnik.

4 Bounds on maximal knotless graphs

We now consider maximal knotless graphs in general and establish bounds on the
possible number of edges, and the maximal and minimal degrees. We first show a
lemma that will be useful for establishing a lower bound. A similar result holds for
maximal linkless graphs as well.
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Lemma 4.1 Suppose G is maxnik and contains a vertex v of degree three. Then all
neighbors of v are adjacent to each other.

Proof Label the neighbors of v as x1, x2, and x3. Let Ev D fx1x2; x1x3; x2x3g and
E DE.G/. Delete the edges in E \Ev to form GY DG n .E \Ev/. Then add back
all the edges of Ev to form G0 DGY CEv. We will show G DG0.

As G is maxnik, GY has an embedding f with no nontrivial knot. We may extend
f to an embedding of G0 by embedding each edge xixj so that the 3–cycle xivxj

bounds a disk.

Let �.G/ denote the set of all cycles in the graph G. Suppose c is a cycle in �.G0/.
If c does not contain one or more edges xixj , then c 2 �.GY /, and hence is a trivial
cycle in f .G0/. Suppose that c does contain one or more edges xixj . There are three
possibilities: c is a 3–cycle xivxj and bounds a disk, c includes a path of the form
xixj vxk with fi; j; kg D f1; 2; 3g, or c does not include the vertex v. In the first case c
is trivial as it bounds a disk. If c does not contain v, then, since the cycles xivxj bound
disks, c is isotopic to c0 2 �.GY / and hence trivial. Similarly, if c includes a path
xixj vxk , using the disk xivxj we can isotope the path to xivxk to make c isotopic to
c0 2 �.GY / and hence trivial.

Thus, G0 has an embedding with no nontrivial knot. As G is maxnik, G cannot be a
proper subgraph of G0, and hence G DG0.

Theorem 4.2 If G is maxnik with jV j � 5, then jEj � 7
4
jV j.

Proof By Theorem 2.4, K5 is the only maxnik graph with order five and it satisfies
the conclusion of the theorem.

SupposeH has the least number of vertices among counterexamples to the theorem. We
will consider a vertex v of minimal degree in H . If deg.v/� 4, then H has jEj � 2jV j
and hence is not a counterexample, so deg.v/� 3. By Theorem 2.1, deg.v/� 2, so we
need only consider v of degree two or three.

Suppose deg.v/D 2. We will argue that H 0DH nv is also maxnik with jE 0j< 7
4
jV 0j,

contradicting our assumption thatH was a minimal counterexample. LetN.v/Dfw; xg
and note that wx 2E.H/. Otherwise, in an unknotted embedding of H , we could add
the edge wx so that the 3–cycle vwx bounds a disk. This will not introduce a knot
into the embedding and contradicts the maximality of H .
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As a subgraph of H , H 0 is nIK. Suppose it is not maxnik because there is an edge
ab such that H 0 C ab remains nIK. In a knotless embedding of H 0 C ab, we can
add the vertex v and its two edges so the 3–cycle vwx bounds a disk. This will not
introduce a knot into the embedding and shows that H C ab is also nIK, contradicting
the maximality of H . Thus, no such graph H with a vertex of degree two can exist.

So we may assume that deg.v/D 3. Here we cannot apply the techniques of [1], as Yr
moves do not preserve intrinsic knotting [6]. However, Lemma 4.1 allows us to show
the average degree of H is actually at least 3.5, and hence H is not a counterexample.

Divide the vertices of H into three sets: A D fvertices of degree 3g, B D fvertices
of degree > 3 that are neighbors of vertices in Ag, and C D fall other vertices of H g.
Form the graphH 0DH nC . All vertices in C have degree four or greater, so it suffices
to show that the vertices in each connected component of H 0 have average degree 3.5
or higher.

A vertex ai1 of degree three has three neighbors, label them bi1, bi2, and ai2, where
ai2 is a neighbor of minimal degree. By Lemma 4.1, the neighbors of ai1 are mutually
adjacent. If deg.ai2/D 3, we continue. If not, delete all edges incident on ai2 except
those between ai2 and fai1; bi1; bi2g. This creates a subgraph of H 0 with strictly fewer
edges; we will abuse notation and continue to call it H 0. Vertex ai2 now has degree
three in H 0, and we move it to set A.

If ai2 had degree greater than three in H , then, since it has the minimal degree among
the neighbors of ai1, deg.bij /� 4 and bi1; bi2 2B . If deg.ai2/D 3 in H , vertices aij

are adjacent only to each other and the bij . If either of the bij have degree three in H ,
then H can be disconnected by deleting the other bij . This is a contradiction as H is
maxnik and must be 2–connected by Theorem 2.1. Thus, the bij are in B .

Consider the connected component of v in H 0, call it H 01. We will calculate the total
degree of the vertices in H 01 and divide by the number of vertices. Suppose there are
n vertices from set A and m vertices from set B in H 01 for a total of nCm vertices.
Each vertex from set A has degree three, so the contribution to total degree from set
A is 3n. Each vertex in A is adjacent to exactly two of the bij , so the total degree
contribution for set B is at least 2n from edges to set A. Further, H 01 is connected.
As aij is only adjacent to bi 0j 0 if i D i 0, there must be at least m� 1 edges between
the bij , which adds 2.m � 1/ to the total degree. This gives an average degree of
.5nC 2m� 2/=.nCm/ in H 01. However, H is 2–connected by Theorem 2.1, so there
must be at least two edges from H 01 to its complement in H . So within H , these
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jV j 1 2 3 4 5 6 7 8 9

min.jEj=jV j/ 0 1
2

1 3
2

2 5
2

20
7

25
8

21
9

Table 1: The least ratios of size to order for maxnik graphs through order nine.

vertices must have average degree greater than or equal to .5nC 2m/=.nCm/. Note
that 2�m� n, and .5nC 2m/=.nCm/ attains its minimum at mD n. The minimum
is 7

2
, and hence H must have jEj � 7

4
jV j.

Theorem 4.3 There exist maxnik graphs with jEj < 5
2
jV j edges for arbitrarily

large jV j.

Proof Let e be an edge of E9 connecting a degree four vertex to one of degree five.
Edge e is nontriangular and there are five other edges symmetric to it. Using Lemma 3.3,
take k copies of E9 glued along edge e. The resulting graph has 7kC 2 vertices and
20kC 1 edges. Gluing on five K3 graphs in each E9 on the other nontriangular edges
gives an additional 5k vertices and 10k edges. So, for each k � 1, we have a graph G
with nD12kC2 vertices andmD30kC1 edges. ThenmD30.n�2/ 1

12
C1D 5

2
n�5.

These two theorems suggest the following question. In Table 1 we give the least ratios
through order nine.

Question 4.4 What is the minimal number of edges for a maxnik graph of n vertices?

For maximal planar graphs, jEj D 3jV j � 6. Similarly, maximal k–apex graphs have a
fixed number of edges depending on jV j. In contrast, as with maximal linkless graphs,
the number of edges in a maxnik graph can vary. In fact, with the exception of jEjD 22,
for any jEj � 20, there exists a maxnik graph of that size.

Theorem 4.5 Let n� 20 and n¤ 22. Then there exists a maxnik graph with jEj D n.

Proof The graph K�7 is maxnik of size 20 by Theorem 2.4. The graph E9 has a
knotless embedding where the 3–cycle abc bounds a disk [14], shown in Figure 2. As
no vertex in E9 is adjacent to all three of these vertices, we may use Lemma 3.4 to
construct a maxnik graph of size 24 by taking a clique sum over K3 of E9 and K4. So,
we may assume n� 21 and n … f22; 24g.

The graph E9 has size 21 and six nontriangular edges. Let Gi denote the maxnik graph
obtained from i copies of E9 by gluing along nontriangular edges.
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ab

c

Figure 2: A knotless embedding of E9.

Note that jE.GiC1/j � jE.Gi /j D 20, and that Gi contains at least six nontriangular
edges for any i . We will now work by induction. Suppose that maxnik graphs exist for
size n< jE.Gi /j and for size jE.Gi /jC1 and size jE.Gi /jC3. Then it suffices to show
that there exist maxnik graphs of size jE.Gi /jCk for 4� k � 19 and k 2 f0; 2; 21; 23g.

Clearly a maxnik graph of size jE.Gi /jC0 exists, asGi is maxnik. We may form a new
maxnik graph from Gi by gluing a copy of Km (for 3�m� 6) along a nontriangular
edge of Gi by Lemma 3.3. As Gi has at least six nontriangular edges, we can glue on
up to six such graphs, each adding

�
m
2

�
� 1 edges. Thus, to prove the result we need

only to be able to form the desired values of k using six or fewer addends from the set
f2; 5; 9; 14g. This is clearly possible.

In the base case i D 1, we have a maxnik graph of size jE.G1/j D 21, and we excluded
graphs of size 22 and 24 (jE.G1/j C 1 and jE.G1/j C 3) above. Thus we may form
maxnik graphs of size jE.G1/jC k for the k of interest as before.

Remark 4.6 A computer search shows there are no size 22 maxnik graphs. Our
strategy is based on the classification through size 22 of the obstructions to 2–apex
in [15]. Let’s call such graphs MMN2A (minor minimal not 2–apex). All but eight of
the graphs in the classification are MMIK. Two exceptions are 4–regular of order 11,
the other six are in the Heawood family.
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A maximal 2–apex graph has 5n� 15 edges where n is the number of vertices. By
Theorem 2.2 a maxnik graph G of size 22 is not 2–apex and therefore has an MMN2A
minor. Since G is nIK, it must have one of the eight exceptions as a minor. Using a
computer, we verified that no size 22 expansion of any of these eight graphs is maxnik.

Theorem 4.5 implies that there are maxnik graphs of nearly every size. Note that there
are maxnik graphs of any order, as there exist maximal 2–apex graphs of any order and
by Theorem 2.2 these graphs are maxnik.

We have considered the minimal number and the possible number of edges in a maxnik
graph. We now consider other aspects of maxnik graphs’ structure, in particular, the
maximal and minimal degree. Since �.G/D jV j�1 for maximal 2–apex graphs, there
are maxnik graphs with arbitrarily large �.G/.

Proposition 4.7 The complete graph K3 is the only maxnik graph with maximal
degree two.

Proof Suppose G is maxnik with �.G/ D 2. Then jGj � 3 and, by Theorem 2.1,
ı.G/D 2 and G is connected. So G is a cycle. Now, a cycle is planar, hence 2–apex,
and by Theorem 2.2 G is maximal 2–apex. However, a cycle is not maximal 2–apex
unless it is K3.

Note that Lemma 4.1 has the following two immediate corollaries:

Corollary 4.8 If a graph G is maxnik and has �.G/D 3, then G is 3–regular.

Corollary 4.9 If a graph G is maxnik and 3–regular , then G DK4.

These results motivate the following question:

Question 4.10 Do there exist regular maxnik graphs other than Kn with n < 7?

A maximal 2–apex graph will have �.G/D jV j � 1 and ı.G/� 7, so if there is such
a regular maxnik graph with jV j � 7 it is not 2–apex. However, through order nine,
our two examples of maxnik non-2–apex graphs are both close to regular, having
�.G/� ı.G/� 2. This suggests the answer to our question is likely yes.

For ı.G/, Theorem 2.1 gives a lower bound of two that is realized by the infinite family
of Theorem 4.3. On the other hand, by starting with a planar triangulation of minimum
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jV j 1 2 3 4 5 6 7 8 9
ı.G/ 0 1 2 3 4 5 5 5 or 6 4 to 7
�.G/ 0 1 2 3 4 5 6 7 5 to 8

Table 2: Maximal and minimal degrees of maxnik graphs through order nine.

degree five, we can construct graphs with ı.G/ D 7 that are maximal 2–apex, and
hence maxnik. At the same time, since a graph with jEj � 5jV j � 14 has a K7 minor
and is IK [3; 12], a maxnik graph must have ı.G/� 9. It seems likely that there are
examples that realize this upper bound on ı.G/. Table 2 records the range of degrees
for maxnik graphs through order nine.

5 Prime and composite maxnik graphs

We will call a graph composite if it is the clique sum of two graphs. Otherwise it
is prime. These terms are analogous to knots, where a knot is composite if is the
connected sum of two nontrivial knots, and prime otherwise. In this section, we classify
the maxnik graphs described earlier in this paper as prime and composite. We remark
that it may be of interest to study other instances of prime graphs, for example, prime
maximal planar or prime maxnil.

The infinite families of maxnik graphs constructed in Section 4 are all composite, as
they are clique sums of smaller maxnik graphs.

Note that Kn is prime, so all maxnik graphs of order six or less are prime.

Proposition 5.1 The following maxnik graphs are composite: K�7 , K8�P3, and four
of the five maximal 2–apex graphs on nine vertices , specifically big-Y , long-Y , hat
and house.

Proof The graph K�7 is formed from two copies of K6 summed over a 5–clique.

The graph K8 � P3 is formed from K�7 clique sum K6 over a 5–clique, where the
5–clique contains exactly one endpoint of the missing edge.

Big-Y is formed from K8 �P3 clique sum K6 over a 5–clique, where the 5–clique
contains both of the terminal vertices of the 3–path.

Long-Y is formed from K8� 3 disjoint edges clique sum K6 over a 5–clique.
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Figure 3: Complements of the maximal 2–apex graphs of order nine. Top
row, left to right: big-Y, long-Y, and hat. Bottom row: pentagon–bar and
house.

Hat is formed fromK8�P3 clique sumK6 over a 5–clique, where the 5–clique contains
one terminal vertex and one (nonadjacent) interior vertex of the 3–path.

House is formed from K8 �P3 clique sum K6 over a 5–clique, where the 5–clique
contains one interior vertex of the 3–path.

Lemma 5.2 If Gc is of the form K2qH , then either G is prime , or G is the clique
sum of two copies of Kn over an n� 1 clique.

Proof Call the two vertices of the K2 in Gc v1 and v2. Suppose that G is a clique
sum of G1 and G2 over a clique C . We cannot have both v1 and v2 in C , as edge
v1v2 is in Gc . Without loss of generality, we may assume that v1 is in G1 nC . So,
in Gc , v1 must be adjacent to every vertex of G2 nC . Thus G2 nC is v2. As the only
neighbor of v1 in Gc is v2, v1 is adjacent to every vertex in C . Similarly for v2. Thus
if G is composite, it is the clique sum of Kn and Kn over an n� 1 clique.

Corollary 5.3 The following maxnik graphs are prime: pentagon–bar , G9;29 and
K8� 3 disjoint edges.

Proof Each of these graphs has a complement of the form K2qH . As these graphs
are not of the form Kn� a single edge, they are prime by Lemma 5.2.

Note that if G is a clique sum over a t–clique, it is not .tC1/–connected.
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Proposition 5.4 The maxnik graph E9 is prime.

Proof The largest clique in E9 is a 3–clique, but E9 is 4–connected and hence must
be prime.

Lemma 5.5 If G DH �K2, and G is 2–apex, then G is prime maxnik if and only if
H is prime maximal planar.

Proof As G is 2–apex, it is maxnik if and only if it is maximal 2–apex, and G is
maximal 2–apex if and only if H is maximal planar.

If H is composite, then H is the clique sum of H1 and H2 over a t–clique. So G is the
clique sum of H1 �K2 and H2 �K2 over a .tC2/–clique, and hence G is composite.

As G is maxnik, it must be 2–connected. Hence if G is composite, it must be G1 clique
sum G2 over a t–clique C , with t � 2. Label two of the vertices in C as v1 and v2.
Then H is the clique sum of G1 n fv1; v2g and G2 n fv1; v2g over C n fv1; v2g, and
thus composite.

Corollary 5.6 There exist prime maxnik graphs of arbitrarily large size , and of any
order � 8.

Proof The octahedron graph is maximal planar and 4–connected. The largest clique it
contains is a 3–clique, so it is prime. New triangulations formed by repeated subdivision
of a single edge are 4–connected and maximal planar, but have no 4–clique, hence
are prime as well. Thus all of these graphs give prime maxnik examples when joined
with K2.

We remark that the construction of this family of graphs is similar to the maxnil families
with 3n� 3 edges due to Jørgensen [10] and 3n� 5 edges due to Naimi, Pavelescu,
and Pavelescu [16].
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