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Distinguishing Legendrian knots
with trivial orientation-preserving symmetry group

IVAN DYNNIKOV

VLADIMIR SHASTIN

Recent work of I Dynnikov and M Prasolov proposes a new method of comparing
Legendrian knots. In general, to apply the method requires a lot of technical work. In
particular, one needs to search all rectangular diagrams of surfaces realizing certain
dividing configurations. We show that in the case when the orientation-preserving
symmetry group of the knot is trivial, this exhaustive search is not needed, which
simplifies the procedure considerably. This allows one to distinguish Legendrian
knots in certain cases when the computation of the known algebraic invariants is
infeasible or not informative. In particular, we disprove that when A � R3 is an
annulus tangent to the standard contact structure along @A, then the two components
of @A are always equivalent Legendrian knots. A candidate counterexample was
proposed recently by Dynnikov and Prasolov, but the proof of the fact that the two
components of @A are not Legendrian equivalent was not given. Now this work is
accomplished. It is also shown here that the problem of comparing two Legendrian
knots having the same topological type is algorithmically solvable provided that the
orientation-preserving symmetry group of these knots is trivial.

57K10, 57K33

Introduction

Deciding whether or knot two Legendrian knots in S3 having the same classical
invariants (see definitions below) are Legendrian isotopic is not an easy task in general.
There are two major tools used for classification of Legendrian knots of a fixed topo-
logical type: Legendrian knot invariants having algebraic nature (see Chekanov [3],
Eliashberg [13], Fuchs [20], Ng [35; 36], Ozsváth, Szabó and Thurston [37] and Pushkar’
and Chekanov [38]), and Giroux’s convex surfaces endowed with the characteristic
foliation (see Eliashberg and Fraser [14; 15], Etnyre and Honda [16], Etnyre, LaFountain
and Tosun [17], Etnyre, Ng and Vértesi [18] and Etnyre and Vértesi [19]).
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The Legendrian knot atlas by W Chongchitmate and L Ng [4] summarizes the clas-
sification results for Legendrian knots having arc index at most 9. As one can see
from [4] there are still many gaps in the classification even for knots with a small arc
index/crossing number. Namely, there are many pairs of Legendrian knot types which
are conjectured to be distinct, but are not distinguished by means of the existing methods.

The works [9; 10] by Dynnikov and Prasolov propose a new combinatorial technique for
dealing with Giroux’s convex surfaces. This includes a combinatorial presentation of
convex surfaces in S3 and a method that allows one, in certain cases, to decide whether
or not a convex surface with a prescribed topological structure of the dividing set exists.

The method of [9; 10] is useful for distinguishing Legendrian knots, but it requires, in
each individual case, a substantial amount of technical work and a smart choice of a
Giroux convex surface whose boundary contains one of the knots under examination.

In the present paper we show that there is a way to make this smart choice in the case
when the examined knots have no topological (orientation-preserving) symmetries, so
that the remaining technical work described in [10] becomes unnecessary, as the result
is known in advance. This makes the procedure completely algorithmic and allows us,
in particular, to distinguish two specific Legendrian knots for which computation of
the known algebraic invariants is infeasible due to the large complexity of the knot
presentations.

The two knots in question are of interest due to the fact that they cobound an annulus em-
bedded in S3 and have zero relative Thurston–Bennequin and rotation invariants. They
were proposed in [9] as a candidate counterexample to the claim of Gospodinov [27]
that the two boundary components of such an annulus must be Legendrian isotopic.

The main technical result of this paper was announced by us in [11] without complete
proof. In Dynnikov [7] the method of this paper is used to show that one can compare
transverse link types in a similar fashion provided that the orientation-preserving
symmetry group of the links is trivial. In a forthcoming paper by Dynnikov and
Prasolov it will be shown how to drop the no-symmetry assumption and to produce
algorithms for comparing Legendrian and transverse link types in the general case.

The paper is organized as follows. In Section 1 we recall the definition of a Legendrian
knot, and introduce the basic notation. In Section 2 we discuss annuli with Legendrian
boundary whose components have zero relative Thurston–Bennequin number. In
Section 3 we define the orientation-preserving symmetry group of a knot and introduce
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some S3–related notation. In Section 4 we recall the definition of a rectangular diagram
of a knot and discuss the relation of rectangular diagrams to Legendrian knots. Section 5
discusses rectangular diagrams of surfaces. Here we describe the smart choice of a
surface mentioned above (Lemma 5.4). In Section 6 we prove the triviality of the
orientation-preserving symmetry group of the concrete knots that are discussed in the
paper (modulo the proof of hyperbolicity of the two complicated knots cobounding an
annulus but not Legendrian equivalent, which is postponed till Section 7). In Section 7
we prove a number of statements about the nonequivalence of the considered Legendrian
knots.

Acknowledgement The work is supported by the Russian Science Foundation under
grant 19-11-00151.

1 Legendrian knots

All general statements about knots in this paper can be extended to many-component
links. To simplify the exposition, we omit the corresponding formulations, which are
pretty obvious but sometimes slightly more complicated.

All knots in this paper are assumed to be oriented. The knot obtained from a knot K
by reversing the orientation is denoted by �K.

Definition 1.1 Let � be a contact structure in the three-space R3, that is, a smooth
2–plane distribution that locally has the form ker˛, where ˛ is a differential 1–form
such that ˛^d˛ does not vanish. A smooth curve 
 in R3 is called �–Legendrian if it
is tangent to � at every point p 2 
 .

A �–Legendrian knot is a knot in R3 which is a �–Legendrian curve. Two �–Legendrian
knots K and K 0 are said to be equivalent if there is a diffeomorphism ' W R3! R3

preserving � such that '.K/DK 0— this is equivalent to saying that there is an isotopy
from K to K 0 through Legendrian knots.

The contact structure �C D ker.x dyC dz/, where x; y; z are the coordinates in R3,
will be referred to as the standard contact structure. If � D �C we often abbreviate
“�–Legendrian” to “Legendrian”.

In this paper we also deal with the contact structure

�� D ker.x dy � dz/;

which is a mirror image of �C.

Algebraic & Geometric Topology, Volume 23 (2023)
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Figure 1: Front projection of a Legendrian knot.

We denote by r�; rÍ W R3! R3 the orthogonal reflections in the xy– and xz–planes,
respectively,

r�.x; y; z/D .x; y;�z/; rÍ.x; y; z/D .x;�y; z/:

Clearly, if K is a �C–Legendrian knot, then r�.K/ and rÍ.K/ are ��–Legendrian knots,
and vice versa. It is also clear that the contact structures �C and �� are invariant under
the transformation r� ı rÍ W .x; y; z/ 7! .x;�y;�z/ (however, if the contact structures
are endowed with an orientation, then the latter is flipped).

It is well known that a Legendrian knot in R3 is uniquely recovered from its front
projection, which is defined as the projection to the yz–plane along the x–axis, provided
that this projection is generic — a projection is generic if it has only finitely many cusps
and only double self-intersections, which are also required to be disjoint from cusps.
Note that a front projection always has cusps, since the tangent line to the projection
cannot be parallel to the z–axis. Note also that at every double point of the projection,
the arc having smaller slope dz=dy is overpassing.

An example of a generic front projection is shown in Figure 1.

There are two well-known integer invariants of Legendrian knots called the Thurston–
Bennequin number and the rotation number. We recall their definitions.

Definition 1.2 The Thurston–Bennequin number tb.K/ of a Legendrian knotK having
generic front projection is defined as

tb.K/D w.K/� 1
2
c.K/;

where w.K/ is the writhe of the projection (that is, the algebraic number of double
points), and c.K/ is the total number of cusps of the projection.

Algebraic & Geometric Topology, Volume 23 (2023)
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oriented up

oriented down

Figure 2: Cusps oriented up and down.

Definition 1.3 A cusp of a front projection is said to be oriented up if the outgoing
arc appears above the incoming one, and oriented down otherwise; see Figure 2.

The rotation number r.K/ of a Legendrian knot K having generic front projection is
defined as

r.K/D 1
2
.cdown.K/� cup.K//;

where cdown.K/ (resp. cup.K/) is the number of cusps of the front projection of K
oriented down (resp. up).

For instance, if K is the Legendrian knot shown in Figure 1, then tb.K/D�10 and
r.K/D 1.

The topological meaning of tb and r is as follows. Let v be a normal vector field to � .
Then tb.K/ is the linking number lk.K;K 0/, where K 0 is obtained from K by a small
shift along v. The rotation number r.K/ is equal to the degree of the map K! S1

defined in a local parametrization .x.t/; y.t/; z.t// of K by

.x; y; z/ 7!
. Px; Py/p
Px2C Py2

:

If K is a Legendrian knot, then by the classical invariants of K one means the topolog-
ical type of K together with tb.K/ and r.K/.

Sometimes the classical invariants determine the equivalence class of a Legendrian
knot completely, in which case the knot is said to be Legendrian simple. This occurs,
for instance, when K is an unknot [14; 15], a figure eight knot, or a torus knot [16].
But many examples of Legendrian nonsimple knots are known.

Algebraic & Geometric Topology, Volume 23 (2023)
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Figure 3: Stabilizations and destabilizations of Legendrian knots: positive,
left, and negative, right.

Definition 1.4 Let K and K 0 be Legendrian knots. We say that K 0 is obtained from K

by a positive stabilization (resp. negative stabilization), and K is obtained from K 0

by a positive destabilization (resp. negative destabilization), if there are Legendrian
knots K 00 and K 000 equivalent to K and K 0, resp. such that the front projection of K 000

is obtained from the front projection of K 00 by a local modification shown in Figure 3,
left (resp. right).

A positive (resp. negative) stabilization shifts the .tb; r/ pair of the Legendrian knot
by .�1; 1/ (resp. by .�1;�1/), so stabilizations and destabilizations always change the
equivalence class of a Legendrian knot. IfK is a Legendrian knot we denote by SC.K/
(resp. S�.K/) the result of a positive (resp. negative) stabilization applied to K.

One can see that the equivalence class of the Legendrian knot SC.K/ is well defined.
If L is an equivalence class of Legendrian knots, then by SC.L / (resp. S�.L /) we
denote the class fSC.K/ WK 2L g (resp. fS�.K/ WK 2L g).

Remark 1.5 In the case of links having more than one component, the result of a
stabilization, viewed up to Legendrian equivalence, depends on which component of
the link the modification shown in Figure 3 is applied to, so the notation should be
refined accordingly.

As shown in [21], any two Legendrian knots that have the same topological type can
be obtained from one another by a sequence of stabilizations and destabilizations.

Definition 1.6 If K is a �C–Legendrian or ��–Legendrian knot then the image of K
under the transformation r� ı rÍ is called the Legendrian mirror of K and denoted
by �.K/.

Note that in terms of the respective front projections Legendrian mirroring is just a
rotation by � around the origin. It preserves the Thurston–Bennequin number of the
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knot and reverses the sign of its rotation number. Thus, if K is a Legendrian knot
with r.K/ D 0, then K and �.K/ have the same classical invariants. However, it
happens pretty often in this case that �.K/ and K are not equivalent Legendrian knots;
see examples in Section 7.

Similarly, if K is a Legendrian knot whose topological type is invertible, then ��.K/
and K have the same classical invariants, but may not be equivalent Legendrian knots.

Definition 1.7 If K is a ��–Legendrian knot, the Thurston–Bennequin and rotation
numbers of K, as well as positive and negative stabilizations, are defined by using the
mirror image rÍ.K/ as follows:

tb.K/D tb.rÍ.K//; r.K/D r.rÍ.K//;

SC.K/D rÍ
�
SC.rÍ.K//

�
; S�.K/D rÍ

�
S�.rÍ.K//

�
:

2 Annuli

Definition 2.1 Let K be a Legendrian knot, and let F be an oriented compact surface
embedded in R3 such that K � @F and the orientation of K agrees with the induced
orientation of @F . Let also v be a normal vector field to �C. The Thurston–Bennequin
number of K relative to F , denoted by tb.KIF /, is the intersection index of F with a
knot obtained from K by a small shift along v.

If F is an arbitrary compact surface embedded in R3 such that K � @F , then tb.KIF /
is defined as tb.KIF 0/, where F 0 is the appropriately oriented intersection of a small
tubular neighborhood U of K with F (the shift of K along v should then be chosen so
small that the shifted knot does not escape from U ).

Let K be a Legendrian knot, and let F �R3 be a compact surface such that K � @F .
It is elementary to see that the following three conditions are equivalent:

(i) tb.KIF /D 0.

(ii) F is isotopic relative to K to a surface F 0 such that F 0 is tangent to �C along K.

(iii) F is isotopic relative to K to a surface F 0 such that F 0 is transverse to �C
along K.

Algebraic & Geometric Topology, Volume 23 (2023)
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In 3–dimensional contact topology, Giroux’s convex surfaces play a fundamental
role [24; 25; 26]. Especially important are convex annuli with Legendrian boundary
and relative Thurston–Bennequin numbers of both boundary component equal to zero,
since, vaguely speaking, any closed convex surface, viewed up to isotopy in the class of
convex surfaces, can be built up from such annuli by gluing along a Legendrian graph.

LetA�R3 be an annulus with boundary consisting of two Legendrian knotsK1 andK2
such that tb.K1IA/D tb.K2IA/D0 and @ADK1[.�K2/. Then the knotsK1 andK2
have the same classical invariants, and it is natural to ask whether they must always be
equivalent as Legendrian knots.

A quick look at this problem reveals no obvious reason why K1 and K2 must be
equivalent, but constructing a counterexample appears to be tricky.

Theorem 8.1 of [27], which is given without a complete proof, implies that K1 and K2
are always equivalent Legendrian knots even in a more general situation in which R3

is replaced by an arbitrary tight contact 3–manifold.

However, counterexamples to this more general claim appeared earlier in a work of
P Ghiggini [23] (without a special emphasis on the phenomenon), the simplest of which
is as follows. Endow the three-dimensional torus T3 D .R=Z/3 with the contact struc-
ture � D ker.sin.2�z/ dxC cos.2�z/ dy/, and take the annulus .R=Z/� f0g �

�
0I 1
2

�
for A. This annulus is clearly tangent to � along @A, but the boundary components are
not Legendrian isotopic according to [23, Proposition 7.1]. (The fact that .T3; �/ is a
tight contact manifold was established earlier by E Giroux.)

In this example, and in similar ones from [23], any connected component of @A can be
taken to the other by a contactomorphism of .T3; �/. So, it is important here that the
group of contactomorphisms of .T3; �/ is disconnected, which is not the case for the
standard contact structure on R3. Another feature of this example is that the boundary
components of A are not nullhomologous.

The following statement shows that the assertion of [27, Theorem 8.1] is false in the
case of R3, too.

Theorem 2.2 There is an oriented annulus A�R3 with boundary @ADK1[ .�K2/
such that K1 and K2 are nonequivalent Legendrian knots having zero Thurston–
Bennequin number relative to A.

Algebraic & Geometric Topology, Volume 23 (2023)
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K1

K2

Figure 4: Nonequivalent Legendrian knots K1 and K2 cobounding an annu-
lus A such that tb.K1IA/D tb.K2IA/D 0 and @ADK1[ .�K2/.

The proof is by producing an explicit example, and the example we use here is proposed
by Dynnikov and Prasolov in [9]. Front projections of the Legendrian knots from this
example are shown in Figure 4. It is shown in [9] that they cobound an embedded
annulus such that

tb.K1IA/D tb.K2IA/D 0;

and it has remained unproved that K1 and K2 are not Legendrian equivalent.

The proof of Theorem 2.2 is given in Section 7.

Algebraic & Geometric Topology, Volume 23 (2023)



1858 Ivan Dynnikov and Vladimir Shastin

3 S3 settings: the orientation-preserving symmetry group

By S3 we denote the unit 3–sphere in R4, which we identify with the group SU.2/ in
the standard way. We use the parametrization

.�; '; �/ 7!

�
cos
�
1
2
��
�
ei' sin

�
1
2
��
�
ei�

�sin
�
1
2
��
�
e�i� cos

�
1
2
��
�
e�i'

�
;

where .�; '; �/ 2 .R=.2�Z//� .R=.2�Z//� Œ0I 1�. The coordinate system .�; '; �/

can also be viewed as the one coming from the join construction S3 Š S1 � S1,
with � the coordinate on S1�D1, and ' on S1�D0. Let ˛C be the right-invariant 1–form
on S3 Š SU.2/ given by

˛C.X/D
1
2

tr
�
X�1

�
i 0

0 �i

�
dX

�
D sin2

�
1
2
��
�
d� C cos2

�
1
2
��
�
d':

It is known [22] that, for any point p 2 S3, there is a diffeomorphism � from R3

to S3 n fpg that takes the contact structure �C to the one defined by ˛C, that is, to
ker˛C. For this reason, the latter is denoted by �C, too. Two Legendrian knots in R3

are equivalent if and only if so are their images under � in S3. We will switch between
the R3 and S3 settings depending on which is more suitable in the current context.
The R3 settings are usually more visual, but sometimes are not appropriate. In particular,
the definition of the knot symmetry group given below requires the S3 settings.

Definition 3.1 Let K be a smooth knot in S3. Denote by Diff�.S3IK/ the group of
diffeomorphisms of S3 preserving the orientation of S3 and the orientation of K, and
by Diff�0.S

3IK/ the connected component of this group containing the identity. The
group Diff�.S3IK/=Diff�0.S

3IK/ is called the orientation-preserving symmetry group
of K and denoted by Sym�.K/.

Clearly the group Sym�.K/ depends only on the topological type of K. In this paper
we are dealing with knots K for which Sym�.K/ is a trivial group.

In the S3 settings, we also define the mirror image �� of �C as

�� D ker
�
sin2

�
1
2
��
�
d� � cos2

�
1
2
��
�
d'
�
:

4 Rectangular diagrams of knots

We denote by T2 the two-dimensional torus S1 � S1, and by � and ' the angular
coordinates on the first and the second S1 factor, respectively.
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Definition 4.1 An oriented rectangular diagram of a link is a finite subsetR�T2 with
an assignment C or � to every point in R such that every meridian f�g�S1 and every
longitude S1 � f'g contains either no point or exactly two points from R, and in the
latter case one of the points is assigned C and the other �. The points in R are called
vertices of R, and the pairs fu; vg �R satisfying �.u/D �.v/ (resp. '.u/D '.v/) are
called vertical edges (resp. horizontal edges) of R.

A rectangular diagram of a link is defined similarly, without assignment C or � to
vertices.

An (oriented) rectangular diagram R of a link is called an (oriented) rectangular
diagram of a knot if it is connected in the sense that, for any two vertices v; v0 2 R,
there exists a sequence v0 D v, v1, v2; : : : , vk D v0 of vertices of R such that any
pair vi�1; vi of successive elements in it is an edge of R.

From the combinatorial point of view, oriented rectangular diagrams of links are the
same thing as grid diagrams [32] viewed up to cyclic permutations of rows and columns.
They are also nearly the same thing as arc-presentations; see [6].

Convention In this paper we mostly work with oriented knots and knot diagrams. For
brevity, unless a rectangular diagram is explicitly specified as unoriented, it is assumed
to be oriented.

With every rectangular diagram of a knot R one associates a knot, denoted by yR,
in S3 as follows. For a vertex v 2 R, denote by yv the image of the arc v � Œ0I 1�
in S3Š S1 �S1D .T2� Œ0I 1�/=� oriented from 0 to 1 if v is assigned C, and from 1

to 0 otherwise. The knot yR is by definition
S
v2V yv.

To get a planar diagram of a knot in R3 equivalent to yR, one can proceed as follows.
Cut the torus T2 along a meridian and a longitude not passing through a vertex of R
to get a square. For every edge fu; vg of R join u and v by a straight line segment, and
let vertical segments overpass horizontal ones at every crossing point. Vertical edges
are oriented from C to �, and the horizontal ones from � to C; see Figure 5. One can
show (see [6]) that the obtained planar diagram represents a knot equivalent to yR.

For two distinct points x; y 2 S1, we denote by ŒxIy� the arc of S1 such that, with
respect to the standard orientation of S1, it has the starting point at x, and the endpoint
at y.
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Figure 5: A rectangular diagram of a knot and the corresponding planar diagram.

Definition 4.2 Let R1 and R2 be rectangular diagrams of a knot such that, for
some �1; �2; '1; '2 2 S1, we have:

(1) �1 ¤ �2, '1 ¤ '2.

(2) The symmetric difference R14R2 is f�1; �2g � f'1; '2g.

(3) R14R2 contains an edge of one of the diagrams R1, R2.

(4) None of R1 and R2 is a subset of the other.

(5) The intersection of the rectangle Œ�1I �2�� Œ'1I'2� with R1[R2 consists of its
vertices, that is, f�1; �2g � f'1; '2g.

(6) Each v 2R1\R2 is assigned the same sign in R1 as in R2.

Then we say that the passage R1 7!R2 is an elementary move.

An elementary move R1 7!R2 is called

� an exchange move if jR1j D jR2j,

� a stabilization move if jR2j D jR1jC 2, and

� a destabilization move if jR2j D jR1j � 2,

where jRj denotes the number of vertices of R.

We distinguish two types and four oriented types of stabilizations and destabilizations
as follows.

Algebraic & Geometric Topology, Volume 23 (2023)
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Definition 4.3 Let R1 7! R2 be a stabilization, and let �1; �2 and '1; '2 be as in
Definition 4.2. Denote by V the set of vertices of the rectangle Œ�1I �2�� Œ'1I'2�. We
say that the stabilization R1 7! R2 and the destabilization R2 7! R1 are of type I
(resp. of type II) if R1\V 2 f.�1; '1/; .�2; '2/g (resp. R1\V 2 f.�1; '2/; .�2; '1/g).

Let '0 2 f'1; '2g be such that f�1; �2g�f'0g�R2. The stabilization R1 7!R2 and the
destabilization R2 7!R1 are of oriented type EI (resp. of oriented type EII) if they are of
type I (resp. of type II) and .�2; '0/ is a positive vertex ofR2. The stabilizationR1 7!R2

and the destabilization R2 7!R1 are of oriented type EI (resp. of oriented type EII) if they
are of type I (resp. of type II) and .�2; '0/ is a negative vertex of R2.

Our notation for stabilization types follows [8]. The correspondence with the notation
of [37] is as follows:

notation of [8] EI EI EII EII

notation of [37] X:NE, O:SW X:SW, O:NE X:SE, O:NW X:NW, O:SE

With every rectangular diagram of a knot R we associate an equivalence class LC.R/

of �C–Legendrian knots and an equivalence class L�.R/ of ��–Legendrian knots
as follows. The front projection of a representative of LC.R/ (resp. of L�.R/) is
obtained from R in the following three steps:

(1) Produce a conventional planar diagram from R as described above.

(2) Rotate it counterclockwise (resp. clockwise) by any angle between 0 and �=2.

(3) Smooth out.

See Figure 6 for an example.

Theorem 4.4 [37] Let R1 and R2 be rectangular diagrams of a knot. The classes
LC.R1/ and LC.R2/ (resp. L�.R1/ and L�.R2/) coincide if and only if the dia-
grams R1 and R2 are related by a finite sequence of elementary moves in which all
stabilizations and destabilizations are of type I (resp. of type II ).

Moreover , if R1 7!R2 is a stabilization of oriented type T, then

L�.R2/D

�
S�.L�.R1// if T D EI;
SC.L�.R1// if T DEI;

LC.R2/D

�
SC.LC.R1// if T D EII;
S�.LC.R1// if T D EII:

Algebraic & Geometric Topology, Volume 23 (2023)
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Figure 6: Legendrian knots associated with a rectangular diagram of a knot.
Left: a representative of LC.R/. Center: R. Right: a representative of L�.R/.

The following is the key result of the present work.

Theorem 4.5 Let K be a knot with trivial orientation-preserving symmetry group ,
and let R1 and R2 be rectangular diagrams of knots isotopic to K. Then the following
two conditions are equivalent :

(i) We have LC.R1/DLC.R2/ and L�.R1/DL�.R2/.

(ii) The diagram R2 can be obtained from R1 by a sequence of exchange moves.

The proof is given in the next section.

5 Rectangular diagrams of surfaces

Here we recall some definitions from [9; 10].

By a rectangle we mean a subset r �T2 of the form Œ�1I �2�� Œ'1I'2�. Two rectangles
r1 and r2 are said to be compatible if their intersection satisfies one of the following:

(1) r1\ r2 is empty.

(2) r1\ r2 is a subset of vertices of r1 (equivalently, of r2).

(3) r1\ r2 is a rectangle disjoint from the vertices of both rectangles r1 and r2.

Definition 5.1 A rectangular diagram of a surface is a collection …D fr1; : : : ; rkg
of pairwise compatible rectangles in T2 such that every meridian f�g �S1 and every
longitude S1 � f'g of the torus contains at most two free vertices, where by a free
vertex we mean a point that is a vertex of exactly one rectangle in ….

The set of all free vertices of … is called the boundary of … and denoted by @….
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One can see that the boundary of a rectangular diagram of a surface is an unoriented
rectangular diagram of a link. In particular, for any rectangle r , the boundary of frg is
the set of vertices of r , and b@frg is an unknot.

To every rectangular diagram of a surface… we associate a C 1–smooth surface b…� S3

with piecewise smooth boundary, as we now describe.

By the torus projection we mean the map t W S3 n
�
S1�D1 [ S1�D0

�
! T2 defined

by .�; '; �/ 7! .�; '/. With every rectangle r � T2 one can associate a disc yr � S3

having the form of a curved quadrilateral contained in t�1.r/ and spanning the loop b@frg
so that the following conditions hold:

(1) For each rectangle r , the restriction of t to the interior of yr is a one-to-one map
onto the interior of r .

(2) If r1 and r2 are compatible rectangles, then the interiors of yr1 and yr2 are disjoint.

(3) If r D Œ�1I �2�� Œ'1I'2�, then yr is tangent to �C along the sides 2.�1; '2/ and
2.�2; '1/, and to �� along the sides 2.�1; '1/ and 2.�2; '2/.

An explicit way to define the discs yr , which are referred to as tiles, is given in
[9, Section 2.3].

The surface b… associated with a rectangular diagram of a surface … is then defined as

b…D [
r2…

yr:

One can show that we have @b…D c@… and, for any connected component R of @…, the
relative Thurston–Bennequin number tbC. yRI b…/ (resp. tb�. yRI b…/) equals minus half
the number of vertices of R which are bottom-right or top-left (resp. bottom-left or
top-right) vertices of some rectangles of ….

On every rectangular diagram of a surface… we introduce two binary relations, �� and �� ,
which keep the information about which vertices are shared between two rectangles
from …. Namely, given r1; r2 2…, then r1 �� r2 means that r1 and r2 have the form

r1 D Œ�1I �2�� Œ'1I'2� and r2 D Œ�2I �3�� Œ'2I'3�;

and r1�� r2 means that r1 and r2 have the form

r1 D Œ�1I �2�� Œ'2I'3� and r2 D Œ�2I �3�� Œ'1I'2�:
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Proposition 5.2 Let R1 and R2 be rectangular diagrams of a knot such that the
knots yR1 and yR2 are topologically equivalent and have trivial orientation-preserving
symmetry group. Suppose that LC.R1/DLC.R2/ and L�.R1/DL�.R2/.

Then , for any rectangular diagram of a surface …D fr1; : : : ; rmg such that R1 � @…,
there exists a rectangular diagram of a surface …0 D fr 01; : : : ; r

0
mg and a rectangular

diagram of a knot R02 such that

(1) R2 and R02 are related by a sequence of exchange moves;

(2) there exists an orientation-preserving self-homeomorphism of S3 that takes yR1
to yR02 and yri to yr 0i for i D 1; : : : ; m;

(3) ri �� rj () r 0i �� r
0
j and ri �� rj () r 0i

�� r 0j .

Proof This statement is a consequence of the results of [10, Section 2], namely, of
Theorems 2.1 and 2.2, as we will now see. The reader is referred to [10, Section 2] for
the terminology that we use here.

Denote by D D .ıC; ı�/ a canonical dividing configuration of b…. By hypothesis
we have tbC.R1/D tbC.R2/ and tb�.R1/D tb�.R2/, which implies that b… is both
C–compatible and �–compatible with R2. By [10, Theorem 2.1], there exist a proper
C–realization .…C; �C/ of ıC and a proper �–realization .…�; ��/ of ı� at R2.

Since the orientation-preserving symmetry group of yR2 is trivial, there is an isotopy
from �C to �� preserving yR2. One can clearly find a �–realization .…�; �0�/ at R2 of
an abstract dividing set equivalent to ı� such that there be an isotopy from �C to �0�
that fixes bR2 pointwise.

By [10, Theorem 2.2] this implies the existence of a proper realization .…0; �/ of D
and a rectangular diagram of a knot R02 obtained from R2 by a sequence of exchange
moves, and such that �. yR1/D yR02, which is just a reformulation of the assertion of
Proposition 5.2.

Definition 5.3 Two rectangular diagrams of a surface (or of a knot) are said to
be combinatorially equivalent if one can be taken to the other by a homeomor-
phism T2!T2ŠS1�S1 of the form f �g, where f and g are orientation-preserving
homeomorphisms of the circle S1.

Let … be a rectangular diagram of a surface. The relations �� and �� on … defined above
constitute what is called in [10] the (equivalence class of a) dividing code of …. In
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other words, two diagrams …1 and …2 have equivalent dividing codes if there is a
bijection …1!…2 that preserves the relations �� and �� . In general, this does not imply
that the diagrams …1 and …2 are combinatorially equivalent; see [10, Figure 2.2] for
an example.

Lemma 5.4 For any rectangular diagram of a linkR, there exists a rectangular diagram
of a surface … such that

(1) R � @…,

(2) whenever a rectangular diagram of a surface …0 has the same dividing code
as … has , the diagrams … and …0 are combinatorially equivalent.

Proof For simplicity we assume that R is connected. In the case of a many-component
link the proof is essentially the same, but a cosmetic change of notation is needed.

Let
.�1; '1/; .�1; '2/; .�2; '2/; : : : ; .�n�1; 'n/; .�n; 'n/; .�n; '1/

be the vertices of R. We put �0 D �n and '0 D 'n.

Pick an " > 0 not larger than the length of any of the intervals Œ�i I �j � and Œ'i I'j � with
i ¤ j . For i 2 f1; 2; : : : ; ng and j 2 f0; 1; 2; 3; 4; 5g write

�i;j D �i C
1
6
j" and 'i;j D 'i C

1
6
j":

The sought-for diagram … is constructed in the following four steps, illustrated in
Figure 7.

Step 1 Put

…1 D fŒ�i;0I �i;3�� Œ'i;3I'iC1;0�; Œ�i;3I �iC1;0�� Œ'iC1;0I'iC1;3�giD0;1;:::;n:

Step 2 A rectangular diagram of a surface is uniquely defined by the union of its
rectangles. Define …2 so that[

r2…2

r D
[
r2…1

r n
[

r;r 02…1I r¤r 0

.r \ r 0/:

Step 3 Define …3 by

[
r2…3

r D
[
r2…2

r 4

n[
iD1

�
.Œ�i;1I �i;2�[ Œ�i;4I �i;5�/�S1

�
:
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R …1 …2

…3 …

Figure 7: Constructing the diagram … in the proof of Lemma 5.4.

Step 4 Finally, … is defined by

[
r2…

r D
[
r2…3

r4

n[
iD1

�
S1 � .Œ'i;1I'i;2�[ Œ'i;4I'i;5�/

�
:

One can see that R� @…1D @…2D @…3D @…. We claim that the combinatorial type
of … is uniquely recovered from the dividing code of ….

Indeed, suppose we have forgotten the values of �i;j and 'i;j , and keep only the
information about which pairs .�i;j ; 'i 0;j 0/ are vertices of which rectangles in … (this
information is extracted from the dividing code).
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For any i 2 f1; 2; : : : ; ng and j 2 f1; 2; 4; 5g, the point .�i;j ; '1;1/ is a vertex of
some rectangle in …. Hence the cyclic order on f�i;j gi2f1;2;:::;ngI j2f1;2;4;5g � S1 is
prescribed by the dividing code.

For each i 2 f1; 2; : : : ; ng, let i� denote the unique element of f1; 2; : : : ; ng such that
.�i� I �i /�S1 does not contain vertices of R. One can see that for any i 2 f1; 2; : : : ; ng
there exist j and j 0 in f1; 2; : : : ; ng such that .�i�;5; 'j;1/, .�i;0; 'j;1/, .�i;1; 'j;1/,
.�i;2; 'j 0;1/, .�i;3; 'j 0;1/, .�i;4; 'j 0;1/ are vertices of some rectangles in …. This pre-
scribes the cyclic order on f�i�;5; �i;0; �i;1g and f�i;2; �i;3; �i;4g for any i . Therefore,
the cyclic order on f�i;j gi2f1;2;:::;ngI j2f0;1;2;3;4;5g is completely determined by the
dividing code.

Similarly, the cyclic order on f'i;j gi2f1;2;:::;ngI j2f0;1;2;3;4;5g is completely determined
by the dividing code, and hence so is the combinatorial type of ….

Proof of Theorem 4.5 By Lemma 5.4 we can find a rectangular diagram of a surface…
such that R1 � @… and the combinatorial type of … is determined by the dividing
code of …. We pick such a … and apply Proposition 5.2. Since the combinatorial type
of … is determined by the dividing code of …, we may strengthen the assertion of
Proposition 5.2 in this case by claiming additionally that …0D… and R02DR1, which
implies the assertion of the theorem.

6 Triviality of the orientation-preserving symmetry groups of
some knots

We use Rolfsen’s knot notation [39]. Knots with crossing number 6 10 are well-studied
(see [29; 30]), and the existing results about them imply the following.

Proposition 6.1 The orientation-preserving symmetry group of each of the knots 942,
943, 944, 945, 10128 and 10160 is trivial.

The concrete sources for this statement are as follows. All knots listed in Proposition 6.1
are known to be invertible (this can be seen from their pictures in [39]), so the assertion
is equivalent to saying that the symmetry group of each of the knots is Z2.

The knots 942, 943, 944, 945 and 10128 are Montesinos knots (introduced in [33]):

942 DK
�
2
5
; 1
3
;�1

2

�
; 943 DK

�
3
5
; 1
3
;�1

2

�
;

944 DK
�
2
5
; 2
3
;�1

2

�
; 945 DK

�
3
5
; 2
3
;�1

2

�
;

10128 DK
�
3
7
; 1
3
;�1

2

�
:
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The knots 942, 943, 944, 945 are elliptic Montesinos knots, for which the symmetry
group was computed by M Sakuma [40]. The symmetry group of the knot 10128
was computed by M Boileau and B Zimmermann [1]. Both works are based on the
technique which is due to F Bonahon and L Siebenmann [2].

The fact that the knot 10160 is not periodic was established by U Lüdicke [31], and
that it is not freely periodic was shown by R Hartley [28].

Proposition 6.2 The orientation-preserving symmetry group of the (topologically
equivalent) knots K1 and K2 in Figure 4 is trivial.

Proof We use the classical methods of the above-mentioned works with some technical
improvements needed for reducing the amount of computation. “A direct check” below
refers to a computation that requires only a few minutes of a modern computer’s
processor time and standard well-known algorithms.

The first direct check is to see that the Alexander polynomial of K1 and K2 is

(1) �.t/D t20� t19C t18�3 t17C3 t16�5 t15C10 t14�5 t13C6 t12�14 t11

C 15 t10� 14 t9C 6 t8� 5 t7C 10 t6� 5 t5C 3 t4� 3 t3C t2� t C 1:

According to Murasugi [34], if a knot has period p with p prime, then the Alexander
polynomial of this knot reduced modulo p is either the pth power of a polynomial
with coefficients in Zp or has a factor of the form .1C t C � � �C td /p�1, where d > 1.
It is a direct check that neither of these occurs in the case of the polynomial (1) for
prime p 6 19, and for p > 19 the corresponding verification is trivial.

By Hartley [28], to prove that our knot has not a free period equal to p it suffices to
ensure that �.tp/ does not have a self-reciprocal factor of degree deg�.t/D 20. For
prime p < 100, it can be checked directly that �.tp/ is irreducible.

Suppose, for some prime p > 100, we have a factorization �.tp/D f .t/ � g.t/ with
self-reciprocal f .t/; g.t/2ZŒt � such that degf D 20. Since �.0/D 1 we may assume
that f .0/D 1 without loss of generality. For a self-reciprocal polynomial q.t/ of even
degree, we denote by zq.t/ the Laurent polynomial t�.degq/=2q.t/.

For any ˛ 2 f1; e�i=3; i; e2�i=3;�1g, we have

(i) ˛p 2 f˛; x̨g,

(ii) z�.˛/D z�.x̨/ and zf .˛/D zf .x̨/,

(iii) �.˛/; f .˛/; g.˛/ 2 Z.
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For a D .a1; a2; a3; a4; a5/, let `a.t/ 2 RŒt � be a self-reciprocal polynomial of even
degree not exceeding 8 such that z̀a.t/ takes the values a1; a2; a3; a4; a5 at the points
t D 1; e�i=3; i; e2�i=3;�1, respectively. This polynomial is clearly unique.

Now let a 2 Z5 be the list of values of zf at the points 1; e�i=3; i; e2�i=3;�1. Then the
polynomial t10. zf .t/� z̀.t// is divisible by .t6� 1/.t2C 1/. Since this polynomial is
also self-reciprocal, it is actually divisible by .t6� 1/.t2C 1/.t � 1/. Thus, we have

(2) f .t/D t10 z̀a.t/C .t
6
� 1/.t2C 1/.t � 1/

�
�
t11C b1t

10
C b2t

9
C b3t

8
C b4t

7
C b5t

6
C b5t

5

C b4t
4
C b3t

3
C b2t

2
C b1t C 1

�
:

Since z̀a may have nonzero coefficients only in front of tk with k 2 Œ�4I 4�, we see
that f .t/ 2 ZŒt � implies bi 2 Z for i D 1; : : : ; 5, and `a.t/ 2 ZŒt �.

One easily finds that the values of z�.t/ at the points t D 1; e�i=3; i; e2�i=3;�1 are 1;�7,
17; 13; 113, respectively. Therefore, a1; a2; a3; a4; a5 must be divisors of 1;�7; 13; 13,
113, respectively. Together with the condition `a.t/ 2 ZŒt � this leaves us only the 32
options for a listed in Table 1.

It is another direct check that all roots of� are located inside the circle
˚
z 2C W jzj< 3

2

	
.

Therefore, the roots of f are contained in the circle
˚
z 2C W jzj<

�
3
2

�1=p	.
For k 2N, denote by pk the kth Newton sum of f , that is, the sum of the kth powers
of the roots. They must be integers, and their absolute values are estimated by

(3) jpkj< 20 �
�
3
2

�k=p
:

Since p > 100, this implies, in particular, that

(4) jpkj6 20 for k D 1; 2; 3; 4; 5:

Let ck , k D 1; 2; : : : ; 19, denote the coefficients of f , so

f D 1C c1t C c2t
2
C � � �Cc19t

19
C t20 with ci D c20�i :

The first (equivalently, the last) five of them are related with pi by Newton’s identities

�p1 D c1;

�p2 D c1p1C 2c2;

�p3 D c1p2C c2p1C 3c3;

�p4 D c1p3C c2p2C c3p1C 4c4;

�p5 D c1p4C c2p3C c3p2C c4p1C 5c5:

Algebraic & Geometric Topology, Volume 23 (2023)



1870 Ivan Dynnikov and Vladimir Shastin

a la.t/

˙.1; 1; 1; 1; 1/ ˙1

˙.1; 1; 1; 13; 1/ ˙.�2t8C 2t7� 2t5C 5t4� 2t3C 2t � 2/

˙.1; 1; 17; 1; 1/ ˙.4t8� 4t6C t4� 4t2C 4/

˙.1; 1; 17; 13; 1/ ˙.2t8C 2t7� 4t6� 2t5C 5t4� 2t3� 4t2C 2t C 2/

˙.1;�1; 1; 1; 113/ ˙.5t8� 9t7C 14t6� 19t5C 19t4� 19t3C 14t2� 9t C 5/

˙.1;�1; 1; 13; 113/ ˙.3t8� 7t7C 14t6� 21t5C 23t4� 21t3C 14t2� 7t C 3/

˙.1;�1; 17; 1; 113/ ˙.9t8� 9t7C 10t6� 19t5C 19t4� 19t3C 10t2� 9t C 9/

˙.1;�1; 17; 13; 113/ ˙.7t8� 7t7C 10t6� 21t5C 23t4� 21t3C 10t2� 7t C 7/

˙.1; 7; 1; 1; 1/ ˙.�t8� t7C t5C 3t4C t3� t � 1/

˙.1; 7; 1; 13; 1/ ˙.�3t8C t7� t5C 7t4� t3C t � 3/

˙.1; 7; 17; 1; 1/ ˙.3t8� t7� 4t6C t5C 3t4C t3� 4t2� t C 3/

˙.1; 7; 17; 13; 1/ ˙.t8C t7� 4t6� t5C 7t4� t3� 4t2C t C 1/

˙.1;�7; 1; 1; 113/ ˙.6t8� 8t7C 14t6� 20t5C 17t4� 20t3C 14t2� 8t C 6/

˙.1;�7; 1; 13; 113/ ˙.4t8� 6t7C 14t6� 22t5C 21t4� 22t3C 14t2� 6t C 4/

˙.1;�7; 17; 1; 113/ ˙.10t8� 8t7C 10t6� 20t5C 17t4� 20t3C 10t2� 8t C 10/

˙.1;�7; 17; 13; 113/ ˙.8t8� 6t7C 10t6� 22t5C 21t4� 22t3C 10t2� 6t C 8/

Table 1

This Diophantine system has exactly 971 865 solutions satisfying (4), which can be
searched (another direct check). The coefficients b1; b2; b3; b4; b5 in (2) can obviously
be expressed through c1; c2; c3; c4; c5. Thus, we get only 32 � 971865 D 31 099 680
possible candidates for f , and it is the last direct check that the kth Newton sum of
each of the obtained polynomials violates (3) for some k 6 31 with any p > 100;
a contradiction.

We have thus established that the orientation-preserving symmetry group of the knotsK1
andK2 has no finite-order elements. It remains to ensure that these knots are not satellite
knots; that is, they are hyperbolic. A way to verify this is explained in the appendix.

Proposition 6.2 is also directly confirmed by the SnapPy program [5]. For the reader’s
convenience, we provide here a Dowker–Thistlethwaite code of the diagram of K1
shown in Figure 4 (the numeration of the crossings starts from the arrowhead):

�462,�346, �76,�218, 156, 472, 356, 66, 208, 126,�324, 444, 132, 202,
60, 362, 180,�478,�338,�284,�452, 246, 302, 188,�460, 400,�296, �492,

�450,�286,�230, �88,�172,�122,�418, 352, 468, 160,�276, 220, 154, 474,
334, 384, 412, 502,�442, �24, 134, 200, 58, 40, 146,�366,�184, �222,
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�80, 8, 314, 264, 380, 416, 506,�168, �92,�234,�290,�446, 196, 54,
456,�488, �46,�282,�340,�480,�430,�272,�116,�424,�372,�256, 508, 20,
504, 414, 382, 266, �84,�226, 36, 150, 278, 344,�396,�458, �52, �294,
�494,�448,�288,�232, �90,�170,�124, 68, 354, 470, 158,�274,�428, 152,
476, 336, 386, 410, 500, 94, �22, 136, 198, 56, 42,�392,�140, 192,
50, 2, 320,�350, �72,�214, �12,�332, 176, 312, 114, 426,�482, �342,
106, 304, 388, 408, 498, �96,�238, 402, 250,�142,�394,�104,�364, �182,
�224, �82, �10,�216, �74,�348,�464, 166, 128, 206, 64, 358,�268, �434,
�32, 306, 108, 368,�484, 162, 466,�376,�420,�120,�174, �86,�228, 38,
148, 280,�186, 4, 318, 260, �70,�212, �14,�330,�436, �30,�102, �244,
454, 144, 486,�252, 194,�138,�242,�100, �28,�438,�328, �16,�210, 378,
262, 316, 6, �78, 112, 310, 178, 360, 62, 204, 130,�236, 292, 496,
406, 390, �44,�490,�298, 398, 254, 164,�258,�374,�422,�118,�270, �432,
�34, 308, 110, 370, �48, 190, 300, 248, 404,�240, �98, �26,�440, �326,
�18,�322.

7 Applications

Theorem 7.1 There exists an algorithm that decides in finite time whether or not
two given Legendrian knots , L1 and L2, say , are equivalent , provided that they are
topologically equivalent and have trivial orientation-preserving symmetry group.

Proof It is understood that L1 and L2 are presented in a combinatorial way that allows
one to recover actual curves in R3. Whichever presentation is chosen, it can always be
converted into rectangular diagrams. So, we assume that we are given two rectangular
diagrams of a knot, R1 and R2, say, such that LC.R1/ 3 L1 and LC.R2/ 3 L2.

By [8, Theorem 7] there exists a rectangular diagram of a knot R3 such that LC.R3/D

LC.R1/ and L�.R3/ D L�.R2/. By Theorem 4.4 this is equivalent to saying that
there exists a sequence of elementary moves transforming R1 to R3 (resp. R3 to R2)
including only exchange moves and type I (resp. type II) stabilizations and destabiliza-
tions. Therefore, such an R3 can be found by an exhaustive search of sequences of
elementary moves starting at R1 in which all type I stabilizations and destabilizations
occur before all type II ones. Indeed, the combinatorial types of such sequences are
enumerable.The search terminates once a sequence with the above properties arriving
at R2 is encountered. By [8, Theorem 7] this must eventually happen.

Once R3 is found we check whether or not it is related to R2 by a sequence of exchange
moves. The latter can produce only finitely many combinatorial types of diagrams from
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the given one, so this process is finite. According to Theorem 4.5, the diagrams R2
and R3 are related by a sequence of exchange moves if and only if LC.R2/DLC.R3/,
which is equivalent to LC.R1/DLC.R2/.

Now we use Theorem 4.5 to establish some facts that are left in [4] as conjectures.
These involve knots with trivial orientation-preserving symmetry group, which are
listed in Proposition 6.1 above.

For a rectangular diagram of a knot R, the set of all rectangular diagrams obtained
from R by a sequence of exchange moves is called the exchange class of R.

In what follows we use the following notation system. �C–Legendrian classes of knots
having topological type mn are denoted by mkCn , k D 1; 2; : : : , or simply mCn if we
need to consider only one Legendrian class and its images under � and orientation
reversal. Similarly, for ��–Legendrian classes we use notation of the form mk�n or m�n ,
and for exchange classes mkR

n or mR
n.

The �˙–Legendrian classes and exchange classes of interest to us are defined by
specifying a representative. In order to help the reader to see the correspondence with
the notation of [4], we define the ��–Legendrian classes via their mirror images, which
are �C–Legendrian classes.

We use the same notation for natural operations on (exchange classes of) rectangu-
lar diagrams as for Legendrian knots: � for orientation reversal, rÍ and r� for the
horizontal and the vertical flip, respectively, and � for rÍ ı r�. One can see that
if X is an exchange class, then L˙.�X/D�L˙.X/, L˙.�.X//D �.L˙.X// and
L˙.rÍ.X//D rÍ.L�.X//.

Proposition 7.2 For the classes 9C42 and 9�42, whose representatives are shown in
Figure 8, we have 9C42 D�9

C
42 ¤ �.9

C
42/ and 9�42 ¤�9

�
42 D �.9

�
42/.

Proof We use the exchange class 9R
42 of the diagram shown in Figure 8 on the right.

Black vertices are positive, and white ones are negative.

It is an easy check that the diagram representing the class 9R
42 in Figure 8 admits no

nontrivial (that is, changing the combinatorial type) exchange move, and its combinato-
rial type changes under reversing the orientation and under its composition with the
rotation �. We conclude from this that

(5) 9R
42 ¤�9

R
42 and � 9R

42 ¤ �.9
R
42/:
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9C42 rÍ.9
�
42/

9R
42

Figure 8: Legendrian knots in Proposition 7.2 and an exchange class repre-
senting both.

Now we verify directly that SEI.9
R
42/D SEI.�9

R
42/:

! ! ! ! ! ! ! !

#

       

And SEII.�9
R
42/D SEII.�.9

R
42//:

! ! ! !

#

    

By Theorem 4.4 this implies

(6) LC.9
R
42/DLC.�9

R
42/ and L�.�9

R
42/DL�.�.9

R
42//:

From Proposition 6.1 and Theorem 4.5 we conclude that

(5) and (6) D) L�.9
R
42/¤L�.�9

R
42/ and LC.�9

R
42/¤LC.�.9

R
42//:
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9R
42

9�42 �

9C42

�9R
42 �

�9�42

�
�
9R
42

�
�
�
9C42
�EI EI EII EII

Figure 9: Proof of Proposition 7.2.

The front projections in Figure 8 are obtained as described in Section 4 (see Figure 6)
from rectangular diagrams that can be easily guessed from the pictures. We find using
Theorem 4.4 that 9C42 DLC.9

R
42/:

! ! ! ! ! ! !

#

       

And 9�42 DL�.9
R
42/:

! ! ! ! ! ! ! !

This completes the proof.

The proof of Proposition 7.2 is summarized in Figure 9. In what follows we present
the proofs by similar schemes, omitting the verbal description. For a routine check
of all equalities and inequalities of exchange classes used in the proofs, the reader is
referred to [12].

In the proofs of Propositions 7.4, 7.6 and 7.8, we may also silently use symmetries:
an inequality X ¤ Y , where X and Y are some Legendrian or exchange classes, is
equivalent to either of �X ¤�Y and �.X/¤ �.Y /. Another use of symmetries is as
follows. If X and Y are Legendrian classes such that X D�X and Y ¤�Y (similarly
for � or �� in place of �), then we immediately know thatX … fY;�Y;�.Y /;��.Y /g.

Proposition 7.3 For the �˙–Legendrian classes whose representatives are shown in
Figure 10, we have 9C43 ¤�9

C
43 and 9�43 ¤��.9

�
43/.

The proof is presented in Figure 11.
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9C43 rÍ.9
�
43/

Figure 10: Legendrian knots in Proposition 7.3.

Proposition 7.4 For the �˙–Legendrian classes whose representatives are shown in
Figure 12, the following statements hold :

(i) The �C–Legendrian classes 91C44 , 92C44 , 93C44 , ��.91C44 /, ��.9
2C
44 / and ��.93C44 /

are pairwise distinct.

(ii) For k 2 f1; 2; 3; 4g the �C–Legendrian classes Sk
C
.91C44 /, S

k
C
.92C44 / and Sk

C
.93C44 /

are pairwise distinct.

(iii) The ��–Legendrian classes 9�44 and �9�44 are distinct.

Proof Representatives of the exchange classes involved in the proof are shown in
Figure 13. It is established in [4] that 91C44 ;��.9

1C
44 / … f9

2C
44 ; 9

3C
44 g and Sk

C
.91C44 / …

fSk
C
.92C44 /; S

k
C
.93C44 /g for any k 2N. The proof of the remaining claims is presented

in Figure 14 (where some of the known facts are also reproved).

Remark 7.5 It is conjectured in [4] that the �C–Legendrian classes Sk
C
.92C44 / and

Sk
C
.93C44 / are distinct for any k 2N, not only k6 4. The method of this paper allows us,

91R
43 92R

43

�91R
43

� 92R
43

�

��
�
9�43
�

91R
43

�

�9C43

��
�
91R
43

�
9C43

9�43
EI EI EII EII EI EI

Figure 11: Proof of Proposition 7.3.
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91C44 92C44

93C44 rÍ.9
�
44/

Figure 12: The knots in Proposition 7.4.

in principle, to test the claim for any fixed k, and this has been done by the authors
for k 6 4. (For larger k, the simple — and far from being optimized — exhaustive
search, which we used to test diagrams for exchange-equivalence, takes too much time.)

Proving the claim for all k is equivalent to distinguishing certain transverse knots. The
present technique has been upgraded in [7] to an algorithmic solution of this problem
(in the case of knots with trivial orientation-preserving symmetry group). This reduces
the task of verifying the inequality Sk

C
.92C44 / ¤ Sk

C
.93C44 / for all k 2 N to a finite

exhaustive search, which is still to be done.

91R
44 92R

44 93R
44

94R
44 95R

44

Figure 13: Exchange classes used in the proof of Proposition 7.4.
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��.91R
44/ 95R

44
� 92R

44 ��.93R
44/

�
�94R

44
�

91R
44 94R

44
� 93R

44 ��.92R
44/

�

�

�

�

��.91C44 /
�

�

�

�

91C44

92C44

93C44

��.92C44 /

��.93C44 /

9�44

�9�44

EII
EII

EII
EII

EI EI

EI EI

EII

EII
EII

EII

EII

EII EII

EII

EII

EII

EII EII

EII

EII

EII

Figure 14: Proof of Proposition 7.4.

A similar remark applies to part (iii) of Proposition 7.6 and parts (ii) of Propositions 7.7
and 7.8. In the last two cases the required exhaustive search appears to be trivial, so
the question for the knots 10128 and 10160 is settled in [7] completely.

Proposition 7.6 For the �˙–Legendrian classes whose representatives are shown in
Figure 15 the following statements hold :

(i) 91C45 , 92C45 , 93C45 , ��.91C45 / and ��.93C45 / are pairwise distinct.

(ii) 91�45 , �91�45 , �.91�45 /, ��.9
1�
45 /, 9

2�
45 and �.92�45 / are pairwise distinct.

(iii) For k 2 f1; 2; 3g the ��–Legendrian classes Sk
C
.92�45 / and Sk

C
.��.92�45 // are

distinct.

Proof Representatives of the exchange classes involved in the proof are shown in
Figure 16. It is established in [4] that 92C45 D ��.9

2C
45 /. So, to prove part (i) of the
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91C45 92C45

93C45 rÍ.9
1�
45 /

rÍ.9
2�
45 /

Figure 15: The knots in Proposition 7.6.

proposition, it suffices to show that 91C45 , 93C45 , ��.91C45 /, and ��.93C45 / are pairwise
distinct. The proof of this and of part (iii) is presented in Figure 17.

It is established in [4] that 92�45 D�9
2�
45 … f9

1�
45 ;�9

1�
45 ; �.9

1�
45 /;��.9

1�
45 /; �.9

2�
45 /g, so

it remains to show that 91�45 , �91�45 , �.91�45 / and ��.91�45 / are pairwise distinct. To this
end, it suffices to show that some three of these four classes are pairwise distinct. This
is done in Figure 18.

91R
45 92R

45 93R
45

94R
45 95R

45 96R
45

Figure 16: Exchange classes used in the proof of Proposition 7.6.
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91R
45 94R

45

�92�45

92R
45 93R

45

�

�

�

�

��.93C45 /

� �

��.91C45 /

� ��.91R
45/

��.92R
45/

�

�

�

91C45

93C45

��.92�45 /

EII EII

EII EII

EI EI EI EI

EI

EI

EI

EI EI

EI

EI

EI

Figure 17: Proof of parts (i) and (iii) of Proposition 7.6.

Proposition 7.7 For the Legendrian classes whose representatives are shown in
Figure 19, the following statements hold :

(i) The Legendrian classes 101C128, 102C128, ��.101C128/ and ��.102C128/ are pairwise
distinct.

(ii) For any k 2 f1; 2; 3; 4g, the Legendrian classes Sk�.10
1C
128/ D Sk�.10

2C
128/ and

Sk�.��.10
1C
128//D S

k
�.��.10

2C
128// are distinct.

96R
45 �

91�45

95R
45 �

�.96R
45/

�.91�45 /

� � �96R
45

�91�45

EII EII EI EI EI EI

EI

Figure 18: Proof of part (ii) of Proposition 7.6.
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101C128 102C128

Figure 19: Knots in Proposition 7.7.

Proof The proof is presented in Figure 20.

Proposition 7.8 For the Legendrian classes whose representatives are shown in
Figure 21, the following statements hold :

(i) The Legendrian classes 101C160 D �10
1C
160, �.101C160/, 10

2C
160, �102C160, �.102C160/

and ��.102C160/ are pairwise distinct.

(ii) For any k 2 f1; 2; 3; 4g, the Legendrian classes Sk�.10
2C
160/ and Sk�.�10

2C
160/ are

distinct.

Proof The proof is presented in Figure 22. (The ��–Legendrian class 10�160 can be
guessed from the scheme. We don’t provide a picture as this class is not involved in
any of our statements.)

101R
128 102R

128

101R
128

101C128

�

�

�

�

102R
128

102C128

� ��.101R
128/

��.101C128/

�

�

�

�

��.102R
128/

��.102C128/

EII EII EII EII EII EII

EII

EII

EII

EII

EII

EII

Figure 20: Proof of Proposition 7.7.
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101C160 102C160

Figure 21: Knots in Proposition 7.8.

Remark 7.9 The fact that 101C160 … f10
2C
160;�10

2C
160; �.10

2C
160/;��.10

2C
160/g and that

101C160 D�10
1C
160 is established already in [4].

Proof of Theorem 2.2 The front projections of K1 and K2 shown in Figure 4 are
produced from two rectangular diagrams R1 and R2, respectively, via the procedure
described in Section 4 and illustrated in Figure 6. Thus, Ki 2LC.Ri / for i D 1; 2.

Now we recall the origin of R1 and R2. Shown in [9, Figure 35] is a rectangular
diagram … of a surface such that

(i) the associated surface b… is an annulus,

(ii) the relative Thurston–Bennequin numbers tb.bRi I b…/, i D 1; 2, vanish,

101R
160 102R

160 103R
160

101R
160101C160 �

10�160

�

��.102R
160/��.102C160/

102R
160

�

��.101R
160/�

�

102C160

103R
160

� �.102R
160/ �.102C160/

� � �

�

� �.101R
160/

�.101C160/
jj

��.101C160/

� �102R
160

�

�102C160

�

� �

�.10�160/

EII

EII

EII

EII

EII

EII

EII EII

EI EI

EI EI

EII

EII
EII EII

EII

EII EII

EII
EII

EII

EII

EII EII

Figure 22: Proof of Proposition 7.8.

Algebraic & Geometric Topology, Volume 23 (2023)



1882 Ivan Dynnikov and Vladimir Shastin

(iii) b… can be endowed with an orientation so that @b…D yR1[ .� yR2/,
(iv) … has the form frigiD1;2;:::;74, where, for each i D 1; : : : ; 74, the intersection

ri�1\ ri is the bottom left vertex of ri (we put r0 D r74).

The last condition in this list means that there are �0; �1; : : : ; �74 D �0 2 S1 and
'0; '1; : : : ; '74 D '0 2 S1 such that ri D Œ�i�1I �i � � Œ'i�1I'i � and R1 [ R2 D
f.�i�1; 'i /; .�i ; 'i�1/giD1;:::;74. Moreover, the signs of the vertices .�i�1; 'i / and
.�i ; 'i�1/ in R1[R2 are opposite.

We now show that a sequence of elementary moves including a type II stabilization,
exchange moves, and a type II destabilization transforms R1[R2 to a rectangular dia-
gram of a link in which the connected components become combinatorially equivalent.
To this end, pick an " > 0 smaller than one half of the length of any interval Œ�i I �j �
and Œ'i I'j � with i ¤ j , and make the following replacements in R1[R2:

.�1; '0/ .�0� "; '0/; .�0� "; '1� "/; .�1; '1� "/ (type II stabilization);

.�1; '1� "/; .�1; '2/ .�2� "; '1� "/; .�2� "; '2/ (exchange);

.�2� "; '2/; .�3; '2/ .�2� "; '3� "/; .�3; '3� "/ (exchange);

.�3; '3� "/; .�3; '4/ .�4� "; '3� "/; .�4� "; '4/ (exchange);
:::

.�72� "; '72/; .�73; '72/ .�72� "; '73� "/; .�73; '73� "/ (exchange);

.�73; '73� "/; .�73; '0/; .�0C "; '0/ .�0� "; '73� "/ (type II destabilization):

This sequence of moves is illustrated in Figure 23.

This proves that L�.R1/DL�.R2/. The diagrams R1 and R2 are not combinatorially
equivalent and do not admit any nontrivial exchange move. The knots represented
by R1 and R2 have trivial orientation-preserving symmetry group by Proposition 6.2.
Therefore, by Theorem 4.5, LC.R1/¤LC.R2/.

Appendix K1 and K2 are not satellite knots

Here we explain how to verify, with very little computation, that the complement of K1
(and K2) contains no incompressible nonboundary-parallel torus. To do so we use a
method that can be viewed as a modification of Haken’s method of normal surfaces,
which allows one, in general, to find all incompressible surfaces of minimal genus.
Haken’s algorithm in general has very high computational complexity, which makes
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r3

r2

r1

�!

r3

r2

r1

�!

r3

r2

r1

�!

r3

r2

r1

�! � � �

� � � �!

r73

r74

r1

�!

r73

r74

r1

Figure 23: Transforming one of R1 and R2 to the other by elementary moves.

it infeasible to implement in most cases. However, in certain cases, including our
particular one, a modified version of Haken’s method can be efficiently used to search
all incompressible surfaces of nonnegative Euler characteristic.

First we describe the general idea for the reader well familiar with the difficulties in
using Haken’s method in practice. Haken’s normal surfaces are encoded by certain
normal coordinates x1; : : : ; xN , which take integer values. To determine a normal
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surface they must satisfy a bunch of conditions that are naturally partitioned into the
following three groups:

(i) Nonnegativity conditions, which are the inequalities xi > 0, i D 1; : : : ; N .

(ii) Matching conditions, which are linear equations with integer coefficients.

(iii) Compatibility conditions, which are equations of the form xixj D 0 for some
set of pairs .i; j /.

The Euler characteristic of a normal surface F can be expressed as a linear combination
of the normal coordinates of F in numerous ways, and some of these expressions have
only nonpositive coefficients. If we are looking for normal surfaces of nonnegative
Euler characteristic, for any such expression

P
i aixi with nonpositive coefficients ai ,

we may add the inequality
P
i aixi > 0 to the system. Together with the nonnegativity

conditions, this implies xi D 0 whenever ai < 0. This reduces the number of variables
in the system, and chances are that, after the reduction, the space of solutions of the
system of matching equations alone has very small dimension.

Now we turn to our concrete case. The idea explained above will be realized in quite
different terms. The reduction of variables will occur in Lemma A.2.

The rectangular diagrams from which the Legendrian knots K1 and K2 shown in
Figure 4 are produced have 37 edges of each direction. For this reason we rescale the
coordinates �; ' on T2 so that they take values in R=.37 �Z/, and the vertices of the
diagrams will form a subset of Z37 �Z37.

We will work with the knot K1. The corresponding rectangular diagram of a knot,
which we denote by R, has the following list of vertices:

.0; 13/, .0; 28/, .1; 14/, .1; 35/, .2; 15/, .2; 36/, .3; 0/, .3; 19/, .4; 1/, .4; 22/,
.5; 6/, .5; 23/, .6; 7/, .6; 24/, .7; 9/, .7; 25/, .8; 10/, .8; 26/, .9; 11/, .9; 27/,

.10; 12/, .10; 29/, .11; 13/, .11; 34/, .12; 20/, .12; 35/, .13; 21/, .13; 36/, .14; 8/, .14; 22/,
.15; 9/, .15; 31/, .16; 10/, .16; 32/, .17; 11/, .17; 33/, .18; 18/, .18; 34/, .19; 4/, .19; 19/,
.20; 5/, .20; 20/, .21; 6/, .21; 21/, .22; 7/, .22; 23/, .23; 8/, .23; 30/, .24; 12/, .24; 31/,
.25; 16/, .25; 32/, .26; 17/, .26; 33/, .27; 2/, .27; 18/, .28; 3/, .28; 24/, .29; 4/, .29; 28/,
.30; 14/, .30; 29/, .31; 15/, .31; 30/, .32; 0/, .32; 16/, .33; 1/, .33; 17/, .34; 2/, .34; 25/,
.35; 3/, .35; 26/, .36; 5/, .36; 27/.

According to [9, Theorem 1], any incompressible torus in the complement of yR is
isotopic to a surface of the form b…, where … is a rectangular diagram of a surface.
Let such a diagram … be chosen so that the number of rectangles in … is as minimal
as possible (which is equivalent to requesting that b… has minimal possible number of
intersections with S1�D0[S1�D1). We fix it from now on.
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To any rectangle r D Œ� 0I � 00�� Œ'0I'00� with f� 0; � 00; '0; '00g\Z37 D¿, we associate
a type, which is a 4–tuple .i; j; k; l/ 2 .Z37/4 defined by the conditions

� 0 2 .i I i C 1/; '0 2 .j I j C 1/; � 00 2 .kI kC 1/; '00 2 .l I l C 1/:

Since @b…D¿, we have f� 0; � 00; '0; '00g\Z37D¿, so every rectangle in … has a type.

Recall from [10] that by an occupied level of… we mean any meridianm�0
Df�0g�S1

or any longitude `'0
D S1 � f'0g that contains a vertex of some rectangle in ….

Lemma A.1 There are no rectangles in … of type .i; j; k; l/ with i D k or j D l .

Proof Let rD Œ� 0I � 00��Œ'0I'00� be a rectangle of… such that the annulus .� 0I � 00/�S1

contains no occupied level of …. Then the interval .� 0I � 00/ contains at least one point
from Z37 since otherwise the number of intersections of b… with S1�D1 could be reduced
by an isotopy.

This implies that for any rectangle r D Œ� 0I � 00� � Œ'0I'00� of …, the intersection
.� 0I � 00/\Z37 is nonempty. Indeed, if there is an occupied level of … contained
in .� 0I � 00/�S1, then there is a rectangle Œ� 000I � 0000�� Œ'000I'0000� in … with Œ� 000I � 0000��
.� 0I � 00/. By taking the narrowest such rectangle we will have that .� 000I � 0000/ � S1

contains no occupied level of …, and hence .� 000I � 0000/ has a nonempty intersection
with Z37. Similarly, .'0I'00/\Z37 ¤¿ for any rectangle of ….

Now let .i; j; k; l/ be the type of some rectangle r D Œ� 0I � 00� � Œ'0I'00� 2 …. The
equality i D k would mean that

.� 0I � 00/� .i I i C 1/ or .� 00I � 0/� .i I i C 1/:

The former case is impossible as we have just seen. In the latter case, we must
have .'0I'00/� .j I j C 1/ as otherwise r would contain a vertex of R. Therefore, this
case also does not occur, and we have i ¤ k.

The inequality j ¤ l is established similarly.

The type .i; j; k; l/ of a rectangle r is said to be admissible if r \R D ¿. It is said
to be maximal if it is admissible, and none of the types .i � 1; j; k; l/, .i; j � 1; k; l/,
.i; j; kC 1; l/ and .i; j; k; l C 1/ is admissible.

Lemma A.2 The type of any rectangle in … is maximal.

Proof Here we will use the fact that the diagram R is rigid, which means that it
admits no nontrivial exchange move. In other words, for any two neighboring edges
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f.i; j1/; .i; j2/g, f.i C 1; j3/; .i C 1; j4/g or f.j1; i/; .j2; i/g, f.j3; i C 1/; .j4; i C 1/g
of R, exactly one of j3; j4 lies in .j1I j2/, and the other lies in .j2I j1/.

Let f.i; j1/; .i; j2/g and f.i C 1; j3/; .i C 1; j4/g be two neighboring vertical edges
of R, and let m�0

with �0 2 .i I i C 1/ be an occupied level of …. Since the surface b…
is closed, the whole meridian m�0

is covered by the vertical sides of rectangles in ….
Therefore, there are rectangles r1; r2; : : : ; r2p 2… of the form

r2k�1 D Œ�2k�1I �0�� Œ'2k�1I'2k�; r2k D Œ�0I �2k�� Œ'2kI'2kC1�;

where k D 1; : : : ; p and '2pC1 D '1.

We claim that each interval Œ'kI'kC1�, k D 1; : : : ; 2p, contains at most one of j1,
j2, j3, j4. Indeed, let k be odd. Then rk has the form Œ�kI �0�� Œ'kI'kC1�. Since
it is disjoint from R � f.i; j1/; .i; j2/g, we must have either Œ'kI'kC1� � .j1I j2/
or Œ'kI'kC1�� .j2I j1/. Due to rigidity ofR, each of the intervals .j1I j2/ and .j2I j1/
contains exactly one of j3; j4, hence the claim. In the case when k is even, the proof
is similar, with the roles of fj1; j2g and fj3; j4g exchanged.

Thus, p is at least 2. We now claim that p is exactly 2. Indeed, the number of tiles
of b… attached to the vertex corresponding to m�0

is equal to 2p, and we have just seen
that 2p > 4. The same applies similarly to any other vertex of the tiling. Since every
tile is a 4–gon and the surface b… is a torus, every vertex of the tiling must be adjacent
to exactly four tiles.

The equality p D 2 implies that every interval .'kI'kC1/, k D 1; 2; 3; 4, contains
exactly one of j1; j2; j3; j4, which means that the rectangles

Œ�1I �0C 1�� Œ'1I'2�; Œ�0� 1I �2�� Œ'2I'3�;

Œ�3I �0C 1�� Œ'3I'4�; Œ�0� 1I �4�� Œ'4I'1�;

are not of an admissible type. In other words, whenever … contains a rectangle of
type .i; j; k; l/ (resp. of type .k; l; i; j /), the type .i�1; j; k; l/ (resp. .k; l; i C 1; j /) is
not admissible. Since i 2Z37 was chosen arbitrarily, we can put it another way: when-
ever… contains a rectangle of type .i; j; k; l/, the types .i�1; j; k; l/ and .i; j; kC 1; l/
are not admissible.

Similar reasoning applied to a horizontal occupied level `'0
of … instead of m�0

shows that whenever … contains a rectangle of type .i; j; k; l/, the types .i; j �1; k; l/
and .i; j; k; l C 1/ are not admissible. Therefore, every rectangle in … is of a maximal
type.
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A simple exhaustive search shows that there are exactly 623 maximal types of rectangles
forR. For every maximal type .i; j; k; l/, we denote by xi;j;k;l the number of rectangles
of type .i; j; k; l/ in …. From the fact that every vertex of a rectangle in … is shared by
exactly two rectangles, which are disjoint otherwise, we get the matching conditions

(7)
X

k;l2Z37

xi;j;k;l D
X

k;l2Z37

xk;l;i;j ; .i; j / 2 .Z37/
2;

where we put xi;j;k;l D 0 unless .i; j; k; l/ is a maximal type. For a complete list of
maximal types and matching conditions the reader is referred to [12].

It is now a direct check that the system (7) is of rank 621, and thus has two-dimensional
solution space. It is another direct check that only one solution in this space, up to
positive scale, satisfies the nonnegativity conditions xi;j;k;l > 0. Therefore, there exists
at most one isotopy class of incompressible tori in the complement of K1, which
implies that every incompressible torus is boundary-parallel.
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