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A quantum invariant of links in T 2� I with
volume conjecture behavior

JOE BONINGER

We define a polynomial invariant J T
n of links in the thickened torus. We call J T

n

the nth toroidal colored Jones polynomial, and show it satisfies many properties
of the original colored Jones polynomial. Most significantly, J T

n exhibits volume
conjecture behavior. We prove the volume conjecture for the two-by-two square weave,
and provide computational evidence for other links. We also give two equivalent
constructions of J T

n , one as a generalized operator invariant we call a pseudo-operator
invariant, and another using the Kauffman bracket skein module of the torus. Finally,
we show J T

n produces invariants of biperiodic and virtual links. To our knowledge, J T
n

gives the first example of volume conjecture behavior in a virtual (nonclassical) link.

57K14, 81R50

1 Introduction

A growing body of evidence supports the idea that the asymptotic growth rate of
quantum invariants of links and 3–manifolds encodes geometric information. This
hypothesis was initiated by the well-known volume conjecture of Kashaev, Murakami
and Murakami.

Conjecture 1.1 [12; 24] For a knot K � S3, let Jn.KI e
2�i=n/ be the nth colored

Jones polynomial of K evaluated at e2� i=n. Then

lim
n!1

2�

n
log jJn.KI e

2�i=n/j D Vol.S3
nK/:

Here Vol indicates simplicial volume, which we define to be the sum of the hyperbolic
volumes of the hyperbolic pieces in the Jaco–Shalen–Johannson decomposition of
S3 n K; see Soma [29]. We say a quantum invariant exhibits volume conjecture
behavior if theoretical or computational evidence supports a conjectured limit as above.
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1892 Joe Boninger

Figure 1: The two-by-two square weave (opposite sides of the diagram are identified).

Conjecture 1.1 has been generalized to other 3–manifolds in several ways. In [6],
Costantino extended the colored Jones polynomial to links in #k.S

2 � S1/ using
Turaev’s theory of shadows and proved the volume conjecture for an infinite family
of hyperbolic links. More recently, Chen and Yang [5] discovered volume conjecture
behavior exhibited by the Witten–Reshetikhin–Turaev and Turaev–Viro invariants of
3–manifolds, two quantum invariants closely related to the colored Jones polynomial.
These conjectures have been verified in many cases; see Detcherry, Kalfagianni and
Yang [7] and Ohtsuki [26].

We define a polynomial invariant J T
n , for n2N, of oriented links in the thickened torus,

T 2�I . We call J T
n the nth toroidal colored Jones polynomial, and show it satisfies many

properties of the colored Jones polynomial for links in S3. For example, we give one
construction of J T

n using the theory of operator invariants, and another using the Kauff-
man bracket skein module of T 2 � I . Significantly, J T

n is the first example of volume
conjecture behavior in the Kauffman bracket skein module of a manifold other than S3.

We state the volume conjecture for J T
n precisely as follows.

Conjecture 1.2 For any link L� T 2 � I such that .T 2 � I/ nL is hyperbolic ,

lim
n!1

2�

n
log jJ T

n .LI e
2�i=n/j D Vol..T 2

� I/ nL/:

Here the simplicial volume Vol is simply the hyperbolic volume of .T 2 � I/ nL. We
prove Conjecture 1.2 for the two-by-two square weave W � T 2�I shown in Figure 1.

Theorem 6.2 We have

lim
n!1

2�

n
log jJ T

n .W I e
2�i=n/j D 4voct D Vol..T 2

� I/ nW /;

where voct � 3:6638 is the volume of the regular ideal hyperbolic octahedron.
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.2�=n/ � log jJ T
n .LI e

2� i=n/j at nD

link 10 20 30 50 75 100 Vol

2.1 5.4685 5.5004 5.4843 5.4548 5.4309 5.4215 5.3335

3.2 7.5047 7.6976 7.7393 7.7566 7.7564 7.7528 7.7069

3.5 5.9817 6.2649 6.3345 6.3733 6.3836 6.3852 6.3545

3.7 9.0885 9.3732 9.4523 9.5017 9.5182 9.5231 9.5034

B 7.1834 7.3637 7.3903 7.3953 7.3891 7.3825 2voct � 7:3278

` 9.5569 9.9321 10.0405 10.1130 10.1411 10.1519 10vtet � 10:149

Table 1: Computational evidence for Conjecture 1.2.

In addition to Theorem 6.2, the computations in Table 1 support our volume conjecture.
Each row gives the normalized logarithm of the modulus of the toroidal colored Jones
polynomial of a certain link, at the relevant root of unity, for different values of n.
The first four rows are genus one virtual knots in Green’s table [10] — each of these
corresponds to a knot in T 2�I (see Kuperberg [20]) with volume computed by Adams,
Eisenberg, Greenberg, Kapoor, Liang, O’Connor, Pacheco-Tallaj and Wang in [1]. In
the fifth and sixth rows, B and ` refer respectively to the virtual 2–braid and triaxial
weave shown in Figure 2. (The geometry of ` is discussed by Champanerkar, Kofman
and Purcell in [4].) Finally, vtet � 1:0149 is the volume of the regular ideal hyperbolic
tetrahedron.

Pseudo-operator invariant

Volume conjecture behavior is not the only interesting feature of J T
n . Like the original

colored Jones polynomial, J T
n is defined using the theory of operator invariants and

The virtual 2–braid B. The triaxial weave `.

Figure 2
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the quantum group AD Uq.sl.2;C//, the quantized universal enveloping algebra of
sl.2;C/ specialized to a root of unity q. Briefly, given a link L� T 2�I with diagram
D � T 2, we use the flat geometry of T 2 to label certain points of D as critical points.
We then assign A–linear operators to each critical point of D and use these local
assignments to compute J T

n as a state sum. This is similar to the construction of the
colored Jones polynomial of links in S3, with a key conceptual difference: in S3,
the local assignments of A–linear operators to critical points (crossings and local
extrema) extend to a global assignment of a single A–linear operator to the entire link.
With J T

n no global assignment is possible, and for this reason we refer to J T
n as a

pseudo-operator invariant. The theory of pseudo-operator invariants, which generalizes
the theory of operator invariants, may have applications beyond the invariant J T

n . In
Section 3, we develop this theory in detail and in the process construct another invariant
OJ T
n;q of framed, unoriented links in T 2 � I . The invariant OJ T

n;q is analogous to the
invariant JL;n of Kirby and Melvin [17], where n D .n1; : : : ; nk/ is a multi-integer
indicating an integer ni assigned to each component of L.

Skein module invariant

We also consider an SU.2/ toroidal colored Jones polynomial obtained by specializing
to the quantum group SU.2/q . We show that if C � T 2 is a contractible, simple closed
curve, the level two SU.2/ invariant OJ T

2;q
D OJ T

.2;:::;2/;q
satisfies

OJ T
2;q.C /D�q1=2

� q�1=2:

If C � T 2 is a simple closed curve which is not contractible,

OJ T
2;q.C /D 2:

Additionally, we prove OJ T
2;q

satisfies the Kauffman bracket skein relation. These
observations motivate the following definition and theorem, which characterize OJ T

2;q

skein-theoretically.

Definition 5.2 Define a Kauffman-type bracket h�i� 2 ZŒA˙1; z� on link diagrams in
T 2 (and framed links in T 2 � I ) by the relations:

(a) h¿i� D 1.

(b) Let C � T 2 be a simple closed curve disjoint from a diagram D � T 2.
(i) If C is contractible, hC tDi� D .�A2�A�2/hDi� .

(ii) If C is not contractible, hC tDi� D zhDi� .

(c) h i� DAh i� CA�1h i� .

Algebraic & Geometric Topology, Volume 23 (2023)
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Here A and z are indeterminates.

Theorem 5.3 For any framed link L� T 2 � I ,

OJ T
2;q.L/D hLi� jA4Dq;zD2:

As a corollary, for any oriented , unframed link L� T 2 � I with diagram D � T 2,

J T
2 .LI q/D Œ�A�3w.D/

hDi� �jA4Dq;zD2:

This gives a skein-theoretic construction of the toroidal Jones polynomial generalizing
that of the usual Jones polynomial. In fact, our Theorem 5.4 and Corollary 5.6 prove
much stronger statements defining OJ T

n;q and J T
n skein-theoretically for all n and n; to

accomplish this we use the Kauffman bracket skein module of the thickened torus.

Why zD 2?

Relations (a), (b) and (c) in Definition 5.2 are identical to the relations defining the
standard Kauffman bracket [14], with the additional stipulation in (b)(ii) that essential,
simple closed curves can be removed from a diagram by multiplying by z. (A somewhat
similar bracket is defined by Krushkal in [19].) To obtain Theorem 5.3, and for a
geometrically motivated theory, it is necessary to fix z D 2. Indeed, only when z D 2

do we obtain an R–matrix, allowing us to do calculations as in Table 1. Proposition 3.8
below shows any pseudo-operator invariant takes the value 2 on essential, simple closed
curves in T 2, if those curves have been colored by a 2–dimensional representation of a
quantum group. In the appendix we examine this property further using rotation number
and Lin and Wang’s definition of the usual Jones polynomial [21] — see Proposition A.1
and the following discussion.

Comparison with Jn

For any link L in T 2�I , there exists a link OL� S3 such that .T 2�I/nL and S3 n OL

are homeomorphic: OL has a Hopf sublink H whose components are the cores of the
tori which make up S3 n .T 2 � I/; see Figure 3. We show J T

n .L/ and Jn. OL/ are
fundamentally distinct invariants.

A key difference between the two is that J T
n is unchanged by orientation-preserving

homeomorphisms of the torus:

Proposition 4.5 If the link diagram D0 � T 2 is obtained from a diagram D � T 2

by an orientation-preserving homeomorphism of T 2, then for the corresponding links
L0;L� T 2 � I , we have J T

n .L
0I q/D J T

n .LI q/ for all n.

Algebraic & Geometric Topology, Volume 23 (2023)
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Figure 3: Nonisotopic links with homeomorphic complements in T 2 � I and S3.

Using this proposition, we can construct infinite families of nonisotopic links in T 2�I

with identical toroidal colored Jones polynomials, whose corresponding links in S3 all
have distinct colored Jones polynomials. See Figure 3 for a simple example, where the
links on the left in T 2 � I have the same toroidal colored Jones polynomials, but the
corresponding links on the right in S3 have different colored Jones polynomials.

While this makes J T
n a less sensitive invariant than Jn, it also makes J T

n applicable in
a wider range of contexts. In Section 8, for example, we show J T

n gives invariants of
virtual links and biperiodic links. To our knowledge, J T

n is the first invariant of virtual
links to exhibit volume conjecture behavior in a nonclassical setting.

Finally, while J T
n .LI q/ and Jn. OLI q/ are different invariants, there is an important

special case when the toroidal colored Jones polynomial and usual colored Jones
polynomial completely determine each other (see Figure 12):

Theorem 7.3 Let L0 be a link in S3, and consider an inclusion of L0 in an embedded
2–sphere in T 2�I . Let K � T 2�I be a knot projecting to an essential , simple closed
curve in T 2 � f0g, and let L be a connect sum LDL0 # K. Then

J T
n .LI q/D n �Jn.L

0
I q/

for all n.

An immediate corollary of Theorem 7.3 is that, for L and L0 as in the theorem,

lim
n!1

2�

n
log jJ T

n .LI e
2� i=n/j D lim

n!1

2�

n
log jJn.L

0
I e2� i=n/j:

In Section 7, we use this fact to prove that a suitable generalization of our volume
conjecture, Conjecture 1.2, implies the original volume conjecture, Conjecture 1.1 — see

Algebraic & Geometric Topology, Volume 23 (2023)
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Conjecture 7.1 and Corollary 7.5 below. It is not clear whether the reverse implication
is true.

Outline

In Section 2, we review Kauffman bracket skein modules and operator invariants. In
Section 3 we define a general pseudo-operator invariant ˆ of framed links in T 2 � I ,
and in Section 4 we specialize ˆ to Uq.sl.2;C// to obtain J T

n and OJ T
n;q . In Section 5

we define these invariants skein-theoretically. In Section 6 we prove Theorem 6.2, and
in Section 7 we discuss generalizations of Conjecture 1.2. In particular, we consider the
case of nonhyperbolic links in T 2�I and show that a generalization of Conjecture 1.2
implies the original volume conjecture. In Section 8 we discuss J T

n as an invariant
of biperiodic and virtual links. Finally, in the appendix, we study the behavior of J T

2

through the lens of Lin and Wang’s formulation of the Jones polynomial [21].
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2 Background

2.1 Kauffman bracket skein modules

For a 3–manifold M and indeterminate A, let L.M / be the free ZŒA˙1�–module
generated by regular isotopy classes of framed links in M . The Kauffman bracket skein
module of M [27; 30], S.M /, is the quotient of L.M / by the submodule generated
by the relations

(i) tLD .�A2�A�2/L,

(ii) DA CA�1 .

The links in each expression above are identical except in a ball where they look as
shown, and all diagrams are assumed to have blackboard framing. Each link L�M is
represented in S.M / by hLi, called the Kauffman bracket of L. If M D†� I , † an
orientable surface, we also denote the skein module of M by S.†/. In this case, gluing
two copies of †� I together along a boundary component gives S.†/ the structure of
a ZŒA˙1�–algebra.

Algebraic & Geometric Topology, Volume 23 (2023)
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As an algebra, the skein module S.A/ of the thickened annulus A� I is generated by
a copy of its core with framing parallel to A� f0g. Sending this core to z gives an
algebra isomorphism S.A/Š ZŒA˙1�Œz�, so that the set f1; z; z2; z3; : : : g is a basis of
S.A/ as a ZŒA˙1�–module. An alternate basis for S.A/ is given by the Chebyshev
polynomials Sj .z/, j � 0, defined recursively by

(1) S0.z/D 1; S1.z/D z; SjC1.z/D zSj �Sj�1:

If L is a link in M with k components, we can construct a multilinear map

(2) h� � � iL W S.A/˝k
! S.M /;

called the Kauffman multibracket, as follows. For zij 2 ZŒA˙1�Œz�Š S.A/, ij � 0, let
Li1;:::;ik be the framed link in M obtained by cabling the j th component of L by ij

parallel copies of itself. Define

hzi1 ; : : : ; zik iL D hL
i1;:::;ik i

and extend ZŒA˙1�–multilinearly to all of S.A/.

Sending the empty link to 1 gives an isomorphism from S.S3/ to ZŒA˙1�. Thus, for a
link L 2 S3 with k components, the Kauffman multibracket is a map

h� � � iL W S.A/˝k
! ZŒA˙1�:

Let L be an oriented, unframed link in S3 with k components and D a diagram for L

with writhe w.D/. The nth colored Jones polynomial of L, Jn.LI q/, is defined by

(3) Jn.LI q/D

�
..�1/n�1An2�1/�w.D/

�A2�A�2
hSn�1.z/; : : : ;Sn�1.z/iD

�ˇ̌̌̌
A4Dq

:

In Section 5 we study the Kauffman bracket skein module S.T 2/ of the thickened
torus T 2 � I and its associated Kauffman multibracket. S.T 2/ is generated as an
algebra by isotopy classes of simple closed curves in T 2, which are in bijection with
the set of tuples .a; b/ 2 Z2 such that either a D b D 0, or a and b are coprime,
modulo the relation .a; b/� .�a;�b/. We think of .a; b/ as the curve homotopic to
a times a meridian plus b times a longitude, and write .a; b/m to indicate m parallel
copies of such a curve. Additionally, to avoid ambiguity, we denote the image of a
link L � T 2 � I in S.T 2/ by hLiT and use h� � � iT;L to mean the multibracket map
determined by L,

(4) h� � � iT;L W S.A/˝k
! S.T 2/:

Algebraic & Geometric Topology, Volume 23 (2023)
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I R L \ [

Figure 4: Elementary diagrams.

2.2 Tangle operators

An alternate definition of the colored Jones polynomial comes from the theory of tangle
operators. The exposition here follows [17, Section 3].

Recall that a tangle T is a 1–manifold properly embedded (up to isotopy) in the
unit cube I3 � R3 with @T �

˚
1
2

	
� I � @I , and define @�T D T \ .I2 � f0g/ and

@CT D T \ .I2 � f1g/. Choosing a regular projection onto f0g � I2 gives a tangle
diagram of T .

For two tangles S and T , denote by S ˝ T the tangle formed by placing S and T

side by side so the boundary I � f1g � I of S equals the boundary I � f0g � I of T .
Similarly, by S ı T we mean the tangle formed by stacking S and T vertically so
@CT D @�S ; this operation can be performed only if j@CT j D j@�S j. With these
operations, the set of all tangle diagrams is generated by the five elementary diagrams
I , R, L, \ (called a cap), and [ (called a cup) shown in Figure 4. Below, we assume
tangles are equipped with orientations and framings.

Fix a quasitriangular Hopf algebra .A; MR/ with R–matrix MRD
P
˛i ˝ ˇi 2 A˝A

and define a V –coloring of a tangle T (or one of its diagrams) to be an assignment of
an A–module to each component of T . This induces a coloring of @T as follows: If C

is a component of color V , we assign V to each endpoint of C where C is oriented
downward and the dual module V � to each endpoint where C is oriented upward.
Tensoring from left to right gives boundary A–modules T˙ assigned to @˙T with the
empty tensor product defined to be C.

Suppose A contains a unit � with the properties

(i) �˛��1 D S2.˛/ for all ˛ 2A, where S is the antipode of A,

(ii)
P
˛i�
�1ˇi D

P
ˇi�˛i .

We call such a unit a good unit of A. In this case, by the following fundamental result,
any tangle T gives an A–linear map T�! TC.

Algebraic & Geometric Topology, Volume 23 (2023)
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Theorem 2.1 [17; 28] There exist unique A–linear operators

FT D FA; MR;�
T

W T�! TC

assigned to each colored framed tangle T which satisfy

FT ıT 0 D FT ıFT 0 ; FT˝T 0 D FT ˝FT 0 ;

and for the tangles given by the elementary diagrams with blackboard framing ,

FI D Id;

FR DR and FL DR�1;

FÕ DE and FÔ DE�;

F ÔDN and F ÕDN��1 ;

where RD�ı MR, � the transposition map ˛˝ˇ 7!ˇ˝˛. Additionally E.f˝x/Df .x/,
E�.x ˝ f / D f .�x/, N.1/ D

P
ei ˝ ei and N��1.1/ D

P
ei ˝ .��1ei/ for any

basis ei .

The map R is also called an R–matrix, and the map FT is called the operator invariant
of T .

Remark 2.2 The quasitriangular Hopf algebra in this construction can be replaced
more generally with a ribbon category [32].

We set ADAq D Uq.sl.2;C//, the quantized universal enveloping algebra of sl.2;C/
specialized to q D e2� i=r (see [13]), and fix a certain good unit �. We also limit
tangle colorings to a distinguished set of A–modules fV 1; : : : ;V r g, V n coming from
the unique n–dimensional irreducible representation of sl.2;C/ [28]. If L� I2 is a
k–component link and n D .n1; : : : ; nk/ a multi-integer, let L.n/ be the A–colored
link L with j th component colored V nj . With this setup, the colored Jones polynomial
is defined to be

(5) Jn.LI q/D .q
.n2�1/=4/�w.D/

f1g

fng
FAq

L.n;:::;n/
D .q.n

2�1/=4/�w.D/
1

Œn�
FAq

L.n;:::;n/
;

where q D e2� i=r , r 2 N, and w.D/ is the writhe of the tangle diagram of L. The
terms fmg and Œm� are the quantum integers defined by

fmg D fmgq D qm=2
� q�m=2; Œm�D Œm�q D

fmg

f1g
:

The boundary A–modules of any colored link L.n/ are both C, so FAq

L.n/
is a linear

map from C to C — a scalar. This scalar is a Laurent polynomial in q.

Algebraic & Geometric Topology, Volume 23 (2023)



A quantum invariant of links in T 2 � I with volume conjecture behavior 1901

In fact, the invariant Jn as defined in (5) is not strictly equal to Jn as defined in (3) — for
example, the two definitions differ by a sign on the two-component unlink. Achieving
precise equality requires a normalization of (5) equivalent to specializing F to the
quantum group SU.2/q rather than Uq.sl.2;C// [17; 22]. For this reason, we refer to
the invariant (3) as the SU.2/ colored Jones polynomial.

In the following section we generalize the theory of tangle operators to links in T 2�I ,
leading in Section 4 to the definition of the toroidal colored Jones polynomial.

3 Pseudo-operator invariants

For a link L in the thickened torus T 2 � I , we take a regular projection to T 2 �f0g to
obtain a link diagram D � T 2. Let � WR2! T 2 be a smooth, orientation-preserving
covering map with fundamental domain the unit square I2 �R2 and deck transforma-
tions generated by horizontal and vertical unit shifts of R2. Let zD D ��1.D/. Define
p 2D to be a local extremum of D, so that a small neighborhood of p is a cap or cup,
if p has a lift Qp which is a local extremum of zD with respect to the height function
.x;y/ 7! y on R2.

Definition 3.1 A point p 2 D is a critical point of D if it is a local extremum or
crossing point. A torus diagram D � T 2 is a regular projection of a smooth link
L� T 2 � I onto T 2 � f0g such that critical points are isolated.

Below, all diagrams in T 2 are assumed to be torus diagrams.

Fix a quasitriangular Hopf algebra .A;R/ and good unit � 2A. As in Section 2.2, a
V –coloring (or simply coloring) of D is an assignment of an A–module to each link
component.

We now define an invariant ˆ� Dˆ
A;R;�
� of oriented V –colored link diagrams in T 2

with framing parallel to T 2 � f0g. Let D � T 2 be such a diagram and P the set of
critical points of D. For each p 2 P , there exists a small rectangular neighborhood
T .p/ of p and a local section  of � ,  W T .p/! R2, giving T .p/ the structure of
an oriented, blackboard-framed, elementary tangle diagram. In this way Theorem 2.1
assigns an A–linear operator FT .p/ to each T .p/, for p2P , with boundary A–modules
T .p/˙. We cannot generally extend these local assignments to a global assignment of
an A–linear operator to D, as Theorem 2.1 does for tangle diagrams in I2. However,
the local assignments of operators to each critical point still allow us to give D a value
in C using the state sum formulation of the theory, as explained below.

Algebraic & Geometric Topology, Volume 23 (2023)



1902 Joe Boninger

V V

i j

k l

Figure 5: A V –colored tangle T .p/ near a crossing point p, labeled by a state � .

For each A–module V , fix a basis BV of V as a C–vector space. Removing the set of
critical points P from D breaks it into components, each colored by some V and each
oriented upward or downward when lifted to R2. A state � is an assignment of a label
�.S/ to each component S of D nP as follows: If S is colored by the module V and
oriented downward, �.S/ is an element of BV . If S is oriented upward, �.S/ is an
element of the dual basis BV � .

A state � determines a weight !p.�/ of each critical point. For each p 2 P , taking
tensor products of the labels �.S/ of the strands above and below p gives basis elements
�.p/˙ of the modules T .p/˙. Define the weight !p.�/ 2C to be the coefficient of
�.p/C in FT .p/.�.p/�/, and define the weight of the state � by

(6) !.�/D
Y

p2P

!p.�/;

where the empty product (if D contains no critical points) is defined to be 1. Finally,
set

(7) ˆ�.D/D
X
�

!.�/;

where the sum is over all states of D.

For an example computation of the weight of a critical point, let p be the crossing
point with neighborhood T .p/ shown in Figure 5. Viewing T .p/ as a tangle diagram,
both tangle components of T .p/ are colored by the same A–module V , so

T .p/� D T .p/C D V ˝V:

Additionally, since T .p/ is a positive crossing, FT .p/ D R, viewed as a map from
V ˝V to itself. In the given state � , the diagram components of T .p/np are assigned
basis elements ei ; ej ; ek ; el 2 V as shown, where fe0; e1; : : : ; en�1g is a basis for V .
We have �.p/� D ek ˝ el , �.p/C D ei ˝ ej , and if R satisfies

R.ek ˝ el/DR
0;0
kl
.e0˝ e0/C � � �CR

ij

kl
.ei ˝ ej /C � � �CR

n�1;n�1
kl

.en�1˝ en�1/;

where the Rst
kl
2C are scalars, 0� s; t � n� 1, then !p.�/DR

ij

kl
.

Algebraic & Geometric Topology, Volume 23 (2023)
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Figure 6: Constructing a virtual tangle diagram from a torus diagram.

Lemma 3.2 The value ˆ�.D/ does not depend on the choice of bases of the colors V .

Proof To prove the lemma we give an alternate construction of ˆ� . Recall I2 is a
fundamental domain for the covering map � WR2! T 2; adjusting D if necessary, we
assume no critical points of zDD ��1.D/ occur in @I2. Shift zD\ .f1g�I/, the points
of zD intersecting the right side of I2, slightly upward by an isotopy of I2 which is
the identity on f0g � I and does not change the set of critical points of zD. Because
the left and right sides of I2 are identified in the torus, each point q 2 zD\ .f0g � I/

has a corresponding point q0 2 zD\ .f1g � I/, slightly higher than q as a result of the
isotopy. As a final step of the construction, connect each q and q0 by a curve cq W I! I2

which satisfies cq.0/D q, cq.1/D q0, and is monotonically increasing in height. This
produces a virtual tangle diagram D0 D .I2\ zD/[q2D\.f0g�I / cq.I/ whose classical
(ie nonvirtual) critical points are the same as the critical points of D and whose virtual
crossings are any point where some cq.I/, for q 2 zD \ .f0g � I/, intersects another
point of D0. See Figure 6 for an example, where the virtual crossing on the right is
circled. We assume virtual crossings are isolated from other critical points.

The coloring of D induces a coloring of D0 in an obvious way. As before, let P be
the set of (classical and virtual) critical points of D0 with T .p/ a small rectangular
neighborhood of p 2 P . If p 2 P is a classical critical point, the functor F of
Theorem 2.1 associates an A–linear operator FT .p/ to T .p/ which agrees with the
operator assigned to T .p/ in the construction of ˆ� . If p 2 P is a virtual crossing,
define FT .p/ to be the transposition map � W ˛ ˝ ˇ 7! ˇ ˝ ˛ as in [15]. (This is
a C–linear map but not generally an A–linear one.) Because @�D0 and @CD0 are
identified in the torus, D0� DD0C D V for some A–module V . Thus, extending the
local operator assignments FT .p/, for p 2 P , as in Theorem 2.1 associates D0 with a
C–linear map � W V ! V . Define ˆ0�.D

0/D Tr.�/; we claim ˆ0�.D
0/Dˆ�.D/.
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i j

k l

Figure 7: A state assignment near a virtual crossing.

Computing ˆ0�.D
0/ as a state sum, as in [15; 17; 25], shows the two invariants agree.

Fix a basis for each A–module. As in the construction of ˆ� , a state is an assignment
of basis elements to components of D0 nP and the weight of a state is the product of
the weights of the critical points. Taking the trace of � ensures identified strands of
D0� and D0C are assigned the same basis element in any state with nonzero weight. If
the strands near a virtual crossing p are assigned basis elements ei , ej , ek and el , as
in Figure 7, the weight of p is ıl

i ı
k
j , where ı is the Kronecker delta. This ensures the

identified strands on either side of p have the same state, in which case p has weight 1.

If we compute ˆ�.D/ using the same bases, we have

ˆ�.D/D
X
�

!.�/D Tr.�/Dˆ0�.D
0/:

This shows the definition of ˆ0�.D
0/ does not depend on the choice of curves cq , for

q 2D\ .f0g�I/. Since ˆ0� does not depend on a choice of basis, neither does ˆ� .

We write ˆ rather than ˆ� in the next definition because we will ultimately show ˆ

does not depend on the choice of covering map � . Before proving this, however, we
give the main result of the section.

Definition 3.3 Let L � T 2 � I be a framed, oriented, V –colored link and D a
diagram for L with framing parallel to T 2. Define the pseudo-operator invariant of L,
depending on .A;R/ and �, by

ˆ.L/DˆA;R;�.L/DˆA;R;�
� .D/:

Theorem 3.4 ˆ is an invariant of framed , oriented , V –colored links in T 2 � I . That
is , if D1 and D2 are two diagrams of a framed , oriented , V –colored link L� T 2 � I

with each having framing parallel to T 2 � f0g, then ˆ.D1/Dˆ.D2/.

Proof Consider the lift zDi of Di to R2 for i D 1; 2. By construction, zDi is the diagram
of a biperiodic link QL�R2 � I such that the critical points of zDi are lifts of critical
points of Di . Let ft .x/ W I � .T

2 � I/! T 2 � I be an ambient isotopy carrying D1

to D2, such that f0 � Id and f1.D1/DD2. Then ft lifts to a biperiodic isotopy Qft of
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(a) (b) (c)

(d) (e)

Figure 8: Local tangle moves.

R2 � I taking zD1 to zD2. Because zD1 and zD2 are locally blackboard-framed tangle
diagrams, a well-known theorem [8; 28] asserts that Qft decomposes into a sequence Qgt

of diagram-preserving isotopies and the moves shown in Figure 8 (with all possible
orientations). We assume the isotopies and moves are biperiodic, ie applied to each
lifted copy of a region of D1 simultaneously.

Because Qgt is biperiodic, it descends to a sequence gt of the same moves on T 2

carrying D1 to D2. Hence it suffices to check invariance of ˆ under each local
move, which follows from properties of A, R and �. For example, the equation
R�1 ıRD IdDR ıR�1 implies invariance under move (a). Move (b) follows from
the fact that R satisfies the Yang–Baxter equation [31], and moves (c)–(e) also follow
from properties of R and �— see [17, Theorem 3.6] for details.

Remark 3.5 The construction of ˆ� given in the proof of Lemma 3.2 is similar
to Kauffman’s quantum invariant for virtual links [15], in that virtual crossings are
associated with the transposition map � . However, the two invariants have significant
differences. We can think of the virtual diagram D0 in the proof of Lemma 3.2 as the
diagram of a tangle on a cylinder S1� I : the original diagram D sits on the “front” of
the cylinder, while the added curves cq circle around the “back”. This is one difference
between our invariant and Kauffman’s — the use of a cylinder to create the virtual
diagram rather than a torus. Another difference is that Kauffman’s invariant is defined
in the context of rotational virtual knot theory (see [16]) — it is not invariant under
virtual Reidemeister I-moves. We achieve invariance under virtual I–moves by placing
all classical critical points on the front of the cylinder, where the orientation of the
cylinder matches the orientation of the virtual diagram. If a critical point were moved
to the back of the cylinder, that point’s orientation on the cylinder would not match its
orientation in the virtual diagram, and the two local operator assignments in the two
constructions of ˆ� would disagree.
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We use the phrase “pseudo-operator invariant” because, as remarked above, a torus
diagram D � T 2 cannot generally be associated with an A–linear operator using our
construction. It is interesting that the local assignments of A–linear operators to critical
points of D still allow us to defineˆ.D/, which seems to encode geometric information
about the link L. For an example of computing ˆ with a specific A, see Section 6.

The fact thatˆ.D/Dˆ�.D/ does not depend on � follows from the proposition below,
which shows ˆ� is invariant under orientation-preserving homeomorphisms of T 2.

Proposition 3.6 Let D;D0 � T 2 be oriented , V –colored link diagrams with black-
board framing. If f is an orientation-preserving homeomorphism of T 2 satisfying
f .D/DD0, then ˆ�.D/Dˆ�.D0/.

Proof Since ˆ� is an isotopy invariant, it suffices to prove the theorem for a set
of homeomorphisms generating the mapping class group Mod.T 2/. To this end, we
consider two Dehn twists, about two curves in T 2 which lift via � to horizontal and
vertical lines in R2. Let l � T 2 be a simple closed curve lifting to a vertical line in R2

such that l contains no critical points of D, and choose a bicollar neighborhood N.l/

of l satisfying that

(i) no critical points of D occur within N.l/,

(ii) each connected component of D\N.l/ intersects l only once, transversely.

Now suppose f W T 2! T 2 is an upward twist (from left to right) about l which is
the identity outside of N.l/. See Figure 9 for an example. Let c be a component of
D\N.l/— then c is a curve which increases or decreases monotonically as it travels
across N.l/ from left to right. If c is increasing, f .c/ is also monotonically increasing
and contains no critical points. If c is decreasing, f .c/ contains a minimum to the left
of l and a maximum to the right of l and no critical points other than these; see Figure 9.
The cases of twisting downward and twisting about horizontal lines are similar. Finally,
because f is injective, the crossing points of D0 are the same as those of D.

It follows that the only critical points of f .D/ D D0 which do not occur in D are
max–min pairs formed as above. When ˆ�.D0/ is computed as a state sum, the
weights of these max–min pairs cancel as in identity (c) of Figure 8. We conclude
ˆ�.D/Dˆ�.D

0/.

Corollary 3.7 The value ˆ�.D/ does not depend on the choice of covering map
� WR2! T 2.
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Figure 9: Twisting a diagram.

Proof Let �1; �2 W R
2! T 2 be two smooth, orientation-preserving covering maps

with fundamental domain I2. The uniqueness property of covering spaces gives an
orientation-preserving homeomorphism Qf W R2 ! R2 which satisfies �2 ı

Qf D �1,
and since �1 and �2 have the same fundamental domain and deck transformations, Qf
descends to an orientation-preserving homeomorphism f of T 2 satisfying f ı�1D�2.
By Proposition 3.6, and noting the value ˆ�i

.D/ is completely determined by the lift
�i
�1.D/,

ˆ�1
.D/Dˆ�1

.f .D//D f̂ ı�1
.D/Dˆ�2

.D/:

We conclude the section with a general property of pseudo-operator invariants. Though
the proposition is a simple observation, it motivates the skein theory to come in Section 5.

Proposition 3.8 Let K � T 2 � I be a knot projecting to an essential , simple closed
curve in T 2�I with framing parallel to T 2�f0g. If K is colored by an n–dimensional
A–module V ,

ˆ.K/D n:

Proof Applying Proposition 3.6, we may assume without loss of generality that K

lifts to a vertical line in R2. Then the proof of Lemma 3.2 shows ˆ.K/ is the trace of
the identity map of V , so ˆ.K/D dim.V /D n.

4 Quantum invariants for sl.2 ; C/ and the toroidal colored
Jones polynomial

4.1 An invariant of framed, unoriented links in T 2 � I

As with the colored Jones polynomial, we now specialize to ADAq D Uq.sl.2;C//,
for q D e2�i=r , and limit A–modules to the set fV 1; : : : ;V r g as in Section 2.2.
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For a link L � T 2 � I with k components and multi-integer n D .n1; : : : ; nk/, let
L.n/DL.n1; : : : ; nk/ be the V –colored link L with j th component colored by V nj .
By 1� n� r in the definition below we mean that 1� nj � r for all nj .

Definition 4.1 Given a framed, unoriented link L� T 2 � I with k components, fix
an orientation of each component. For q D e2�i=r , 1� n� r , define OJ T

n;q.L/ by

OJ T
n;q.L/Dˆ

Aq ;R;�.L.n//:

Theorem 4.2 OJ T
n;q.L/ is an invariant of framed , unoriented links in T 2 � I . That is ,

OJ T
n;q.L/ does not depend on the orientation chosen for each component of L.

Proof Let D;D0�T 2 be oriented diagrams of L.n/ with framing parallel to T 2�f0g

and D0 obtained from D by changing the orientation of a link component C . It suffices
to show

ˆAq ;R;�.D/DˆAq ;R;�.D0/:

Suppose C is colored by V n and let C 0 be the corresponding component of D0, also
colored by V n. Let p 2C be a critical point, p0 the same point of C 0, and T .p/, T .p0/

small rectangular neighborhoods of each. Then each copy of V n coming from C in
T .p/˙ corresponds to a copy of .V n/� in T .p0/˙ and vice versa. V n is self-dual as
an A–module via a canonical isomorphism ' W .V n/�! V n, and we use ' to identify
the modules T .p/˙ and T .p0/˙.

We apply Lemma 3.18 and Remark 3.26 of [17], which state that if n is odd, FT .p/ D

FT .p0/ as maps from T .p/� to T .p/C for all p. Thus ˆ.D/ D ˆ.D0/ if n is odd.
Suppose n is even. If p is a crossing then FT .p/DFT .p0/, and if p is an extreme point
then FT .p/ D�FT .p0/. Self-duality of V n induces a bijection between the states of D

and the states of D0, and it follows that if � is a state of D and � 0 the corresponding state
of D0, !.�/D .�1/j!.� 0/, where j is the total number of extreme points of C . Since
C � T 2 is a closed curve, j is even and !.�/D !.� 0/. We conclude ˆ.D/Dˆ.D0/
if n is even.

The invariant OJ T
n;q should be thought of as a toroidal analogue of the invariant JL;k

of [17]. One might also be reminded of the Kauffman bracket skein module, another
invariant of framed, unoriented links — this comparison will be made precise in the
next section. Like the invariant JL;k of [17] or the Kauffman bracket skein module
of S3, OJ T

n;q can be normalized to obtain an invariant of oriented, unframed links in

Algebraic & Geometric Topology, Volume 23 (2023)



A quantum invariant of links in T 2 � I with volume conjecture behavior 1909

T 2 � I analogous to the colored Jones polynomial.

4.2 The toroidal colored Jones polynomial

To create an invariant of unframed links, we use the fact that as an endomorphism of
V n˝V n, 0� n� r , the R–matrix R satisfies [17; 30]

.Id˝E�/.R
˙1
˝ Id/.Id˝N /D q˙.n

2�1/=4 Id;

where N W C ! V n ˝ .V n/� and E� W V n ˝ .V n/� ! C are the maps given in
Theorem 2.1. Pictorially, this is equivalent to the two equations

(8) OJ T
n;q

� �
D q.n

2�1/=4
� OJ T

n;q

� �
; OJ T

n;q

� �
D q�.n

2�1/=4
� OJ T

n;q

� �
;

where the diagrams represent oriented, unframed links and the component shown is
colored by V n.

If L � T 2 � I is oriented and unframed, any two diagrams of L are related by a
sequence of the moves in Figure 8 and additions or removals of curls,

(9) $ $ :

This fact, combined with (8), motivates Definition 4.3. Similar to above, given a
diagram D � T 2 of a k–component link and multi-integer nD .n1; : : : ; nk/, let D.n/

indicate D with j th component colored by V nj . Define OJ T
n;q.D/ WDˆ

Aq ;R;�.D.n//.

Definition 4.3 Let L � T 2 � I be an oriented, unframed link with k components,
D � T 2 a diagram of L, and C1; : : : ;Ck the link components of D. Define J T

n;q.L/

by
J T

n;q.L/D q˛=4 OJ T
n;q.D/;

where ˛ D�
Pk

jD1w.Cj / � .nj
2� 1/ and w.Cj / is the writhe of Cj , ie the sum of the

signs of its self-crossings.

It follows from (8) and the proof of Theorem 3.4 that J T
n;q.L/ is an invariant of oriented,

unframed links in T 2 � I .

If all components of L are given the same color, ie if nD .n; : : : ; n/ for some n 2N,
we can define a similar invariant which agrees with J T

n;q if L is a knot. This next
definition is our analogue of the colored Jones polynomial.
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Definition 4.4 For an oriented, unframed link L� T 2�I with diagram D and n 2N,
define the nth toroidal colored Jones polynomial J T

n .LI q/ of L by

J T
n .LI q/D .q

.n2�1/=4/�w.D/ OJ T
.n;:::;n/;q.D/;

where w.D/ is the writhe of D.

Compare Definition 4.4 with (5) — the definitions are analogous except for a factor
of 1=Œn�. This factor may be included in the definition of Jn because Jn is always
divisible by Œn� as a Laurent polynomial in q; this follows from the A–linearity of the
operator in Theorem 2.1. Because there is no guarantee of global A–linearity in the
construction of J T

n , we cannot divide by Œn�. In particular, if q D e2� i=n,

(10) Œn�D
e�i � e��i

f1g
D 0:

Additionally, the root of unity q may be replaced by an indeterminate in the definition
of J T

n .LI q/ without affecting calculations — see, for example, [25]. This justifies
thinking of J T

n .LI q/ as a Laurent polynomial in q and accounts for our slight change
in notation. We prefer J T

n to J T
n;q for simplicity in calculations, and don’t make use of

J T
n;q outside of this section. We also remark that, because Dehn twists do not affect the

signs of crossings in a diagram, Proposition 3.6 extends to J T
n and J T

n;q:

Proposition 4.5 Let L;L0 � T 2 � I be oriented links with respective diagrams
D;D0 � T 2. If f is an orientation-preserving homeomorphism of T 2 satisfying
f .D/DD0, then J T

n .LI q/D J T
n .L

0I q/ and J T
n;q.L/D J T

n;q.L
0/ for all n and n.

As a final result of the subsection, we give a cabling formula for OJ T
n;q analogous to the

cabling formula for the invariant JL;k; see [17, Theorem 4.15]. For a framed, unoriented
link L�T 2�I , this expresses the value OJ T

n;q.L/ in terms of OJ T
2;q
D OJ T

.2;:::;2/;q
evaluated

on certain cablings of L. This will allow us to develop OJ T
n;q from a skein-theoretic

viewpoint in the next section.

Let L be a k–component link and nD .n1; : : : ; nk/ a multi-integer. As in Section 2.1,
denote by Ln the cabling of L which replaces the j th component of L by nj parallel
pushoffs of itself, oriented compatibly if the link is oriented, with associated diagram Dn.
Below, the sum is over all i D .i1; : : : ; ik/ with 1� ij �

1
2
.nj � 1/, and

.�1/i
�

n�1�i

i

�
D

kY
jD1

.�1/ij
�nj�1�ij

ij

�
:
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Theorem 4.6 (cabling formula) Let L� .T 2 � I/ be a framed , unoriented link , n a
coloring of L, and D a torus diagram for L with framing parallel to T 2 � f0g. Then

OJ T
n;q.L/D

.n�1/=2X
iD0

.�1/i
�

n�1�i

i

�
OJ T
2;q.L

n�1�2i /

D

.n�1/=2X
iD0

.�1/i
�

n�1�i

i

�
q3w.Dn�1�2i /=4J T

2 .L
n�1�2i

I q/:

We sketch the proof, following closely the proof of Theorem 4.15 in [17]. We first
require a lemma — cf [17, Lemma 3.10] — which gives useful properties of pseudo-
operator invariants.

Lemma 4.7 Let .A;R/ be a quasitriangular Hopf algebra with good unit �. Let
D � T 2 � I be a colored torus diagram and C a link component of D colored by V .

(a) If V D X ˚ Y , or more generally V is an extension of Y by X (ie there is a
short exact sequence 0!X ! V ! Y ! 0 of A–modules), then

ˆ.D/Dˆ.DX /Cˆ.DY /;

where DZ denotes the torus diagram obtained by changing the color of C to Z.

(b) If V DX ˝Y , then
ˆ.D/Dˆ.DX Y /;

where DX Y is the diagram obtained by replacing C by two parallel pushoffs of
itself (using the framing) colored by X and Y , respectively.

Proof To prove (a), fix bases BV , BX and BY so that BX � BV (viewing X as a
subspace of V ) and BY is the projection of zBY DBV �BX . We call state labels from
BX or BX � X –labels, whereas those from zBY or zBY � are Y –labels.

If � is a state of D with nonzero weight, then the corresponding labels on the arcs of C

must be either all X –labels (written � jC �X ) or all Y –labels (written � jC � Y ). This
follows from the A–invariance of X � V (and dually of Y � � V �) — if the component
of C on one side of a critical point has an X –label and the component on the other
side has a Y –label, the weight of the critical point in that state will be zero. From this,
we see

ˆ.D/D
X

!.�/D
X

� jC�X

!.�/C
X

� jC�Y

!.�/Dˆ.DX /Cˆ.DY /;

as desired.
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Statement (b) is a fundamental property of operator invariants — see [32, Chapter 1] or
[17, Lemma 3.10]. As with statement (a), we extend to the case of pseudo-operator
invariants by considering each critical point individually.

Proof of Theorem 4.6 It is a classical result — see [17, Corollary 2.15] — that, for
0� n< r , the equality

(11) V nC1
D

n=2X
jD0

.�1/j
�n�j

j

�
.V 2/n�2j

holds in the representation ring of Aq , where q D e2�i=r and the sum is over all j

with 0� 2j � n. Here V n refers to the Aq–module V n, while .V n/j indicates the j th

tensor product of V n with itself. The proof of (11) uses the fact that the modules V n

satisfy the recurrence relation V nC1 D V 2V n �V n�1, the same recurrence relation
defining the Chebyshev polynomials in (1).

The first equality of Theorem 4.6 now follows from combining Lemma 4.7 and (11),
and the second equality comes from Definition 4.4.

Remark 4.8 Toroidal analogues of other link invariants can be constructed by consid-
ering quantum groups other than Uq.sl.2;C//. For example, letting ADUq.sl.m;C//
for general m gives a toroidal analogue of the specialization PL.q

m; q� q�1/, where
PL is the two-variable HOMFLY polynomial of a link L. Letting A D UqG, where
G D so.m/ or sp.2m/, leads to a toroidal analogue of a certain specialization of the
two-variable Kauffman polynomial, depending on the choice of G; see [28, Section 6.1].
In Section 5, we’ll construct a toroidal analogue of the SU.2/ colored Jones polynomial
by setting AD SU.2/q .

5 The toroidal colored Jones polynomial and skein theory

In this section only, we consider the invariant defined by specializing ˆ to the quantum
group SU.2/q rather than Uq.sl.2;C//. This constitutes a certain normalization of the
sl.2;C/ invariant and we denote the SU.2/ version by the same notation, OJ T

n;q . This is
consistent with literature on the colored Jones polynomial and the operators involved
are discussed, for example, in [18; 22].

The goal of the section is to develop the SU.2/ toroidal colored Jones polynomial skein-
theoretically. This begins with an observation about the level two framed invariant OJ2;q .
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Lemma 5.1 The level two SU.2/ invariant OJ T
2;q

has the following properties:

(a) OJ T
2;q
.¿/D 1.

(b) Let C � T 2 be a simple closed curve disjoint from a diagram D � T 2.

(i) If C is contractible , OJ T
2;q
.CtD/D .�q1=2�q�1=2/ OJ T

2;q
.D/D�Œ2� OJ T

2;q
.D/.

(ii) If C is not contractible , OJ T
2;q
.C tD/D 2 OJ T

2;q
.D/.

(c) OJ T
2;q
. /D q1=4 OJ T

2;q
. /C q�1=4 OJ T

2;q
. /.

Proof Properties (a), (b)(i) and (c) are identical to the relations defining the usual
Kauffman bracket. Because they are local properties — (b)(i) is local in the sense that
we can assume C exists in a coordinate neighborhood of T 2 — the proofs are the same
as for the usual SU.2/ Jones polynomial; see [22, Theorem 4.1]. Each property reduces
to an algebraic statement about the quantum group SU.2/q .

To prove property (b)(ii) holds for OJ T
2;q

, suppose C � T 2 is a simple, closed essential
curve. Then OJ T

2;q
.C /D 2 by Proposition 3.8. The general statement follows from the

multiplicativity of OJn;q on disjoint diagrams; that is,

OJ T
2;q.U tD/D OJ T

2;q.U / �
OJ T
2;q.D/D 2 OJ T

2;q.D/:

Lemma 5.1 leads to the following definition and theorem:

Definition 5.2 Define a Kauffman-type bracket h�i� 2 ZŒA˙1; z� on link diagrams in
T 2 (and framed links in T 2 � I ) by the relations:

(a) h¿i� D 1.

(b) Let C � T 2 be a simple closed curve disjoint from a diagram D � T 2.

(i) If C is contractible, hC tDi� D .�A2�A�2/hDi� .

(ii) If C is not contractible, hC tDi� D z � hDi� .

(c) h i� DAh i� CA�1h i� .

Theorem 5.3 For any framed link L� T 2 � I ,

OJ T
2;q.L/D hLi� jA4Dq;zD2:

To extend Theorem 5.3 to all values of n for OJn;q , we consider the skein module
of the thickened torus, S.T 2/. As Section 2.1 discusses, a basis for S.T 2/ as a
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ZŒA˙1�–module is given by positive powers of the tuples .a; b/ such that either aD

b D 0 or a and b are coprime. Let p2 W S.T
2/! ZŒA˙1� be the ZŒA˙1�–linear map

defined by

p2..a; b/
m/D

�
1 if aD b D 0;

2m otherwise:

Then it’s clear that, for any framed link L� T 2 � I ,

hLi� jzD2 D p2.hLiT /;

where hLiT is the class of L in S.T 2/.

We can now state the full result using S.T 2/.

Theorem 5.4 For any oriented , unframed link L� T 2 � I with diagram D � T 2,

OJ T
n;q.L/D p2.hSn1�1.z/; : : : ;Snk�1.z/iT;D/jA4Dq;

where OJ T
n;q is the SU.2/ invariant and h�iT;D W S.A/˝k ! S.T 2/ is the multibracket

of (4).

Proof A closed formula for the nth Chebyshev polynomial, as defined in (1), is given
by

(12) Sn.z/D

n=2X
jD0

.�1/j
�n�j

j

�
zn�2j

where the sum is over all integers j with 0 � 2j � n. Let L � T 2 � I be a k–
component link and nD .n1; : : : ; nk/ a multi-integer. Applying the above formula and
the multilinearity of p2 and the Kauffman multibracket, we have

p2.hSn1
.z/; : : : ;Snk

.z/iT;D/D

n=2X
jD0

.�1/j
�

n�j

j

�
p2.hL

n�2j
iT /

D

n=2X
jD0

.�1/j
�

n�j

j

�
OJ T
2;q.L

n�2j /

D OJ T
n�1;q.L/:

The second equality is Theorem 5.3. The third comes from Theorem 4.6, which applies
in the SU.2/ theory since the same relation V jC1 D V 2V j � V j�1 holds in the
representation ring.
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Having constructed the SU.2/ OJn;q skein-theoretically, we can define a skein-theoretic
toroidal colored Jones polynomial. The SU.2/ version of OJ T

n;q satisfies [23]

OJ T
n;q

� �
D .�1/n�1q.n

2�1/=4
� OJ T

n;q

� �
;

OJ T
n;q

� �
D .�1/n�1q�.n

2�1/=4
� OJ T

n;q

� �
;

where the strand shown in the diagram is colored by V n. Subsequently:

Definition 5.5 The SU.2/ toroidal colored Jones polynomial J T
n of an oriented,

unframed link L� T 2 � I with diagram D is defined by

J T
n .LI q/D ..�1/n�1q.n

2�1/=4/�w.D/ OJ T
.n;:::;n/;q.D/:

We immediately have:

Corollary 5.6 The SU.2/ toroidal colored Jones polynomial is skein-theoretically
defined by

J T
n .LI q/D

�
..�1/n�1An2�1/�w.D/p2.hSn�1.z/; : : : ;Sn�1.z/iD/

�ˇ̌
A4Dq

:

Compare the right side of Theorem 5.4 with (3) — the missing factor of 1=.�A2�A�2/

is analogous to the missing 1=Œn� factor in the Uq.sl.2;C// case.

The skein theoretic definitions of Theorem 5.4 and Corollary 5.6 let us extend the
SU.2/ invariants OJ T

n;q and J T
n to links in orientable manifolds other than T 2�I , using

the bracket h�i� of Definition 5.2 (with z D 2) as a generalized Kauffman bracket. In
S3 the bracket h�i� coincides with the usual Kauffman bracket, and thus the invariant
OJ T
n;q defined in S3 is exactly the invariant JL of [22]. The SU.2/ toroidal colored

Jones polynomial, defined skein-theoretically in S3, satisfies

J T
n .LI q/D .�A2

�A�2/jA4Dq �Jn.LI q/;

where Jn is the SU.2/ colored Jones polynomial of (3).

6 The volume conjecture for the two-by-two square weave

We now prove the volume conjecture for the two-by-two square weave W � T 2 � I ,
the link shown in Figure 1. More generally, a diagram for the 2k-by-2l square weave
W2k;2l , for k; l 2N, is made by tiling W to form a rectangular grid with 2k rows and
2l columns of crossings. We consider only even dimensions to ensure the diagram is
alternating on the torus.
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The complement of W2k;2l in T 2�I is geometrically simple — Champanerkar, Kofman
and Purcell [3] describe a complete hyperbolic structure for .T 2�I/nW2k;2l consisting
of 4kl regular ideal hyperbolic octahedra, one for each crossing. Thus,

(13) Vol.W2k;2l/D 4kl � voct:

Separately, we have the following proposition.

Proposition 6.1 Let qD e2�i=n. If L�T 2�I is an oriented link which has a diagram
D � T 2 with c crossings ,

lim
n!1

2�

n
log jJ T

n .LI q/j � c � voct:

Proof The result follows from work of Garoufalidis and Lê [9, Corollary 8.10 and The-
orem 1.13]. Recall the definition of J T

n as a state sum (Definition 4.4 and equations (6)
and (7)),

J T
n .LI q/D .q

.n2�1/=4/�w.D/
X
�

Y
p2P

!p.�/;

where P is the set of critical points of D and � is a state of D. Since q is a root of
unity, jJ T

n j D
ˇ̌P

�

Q
p2P !p.�/

ˇ̌
.

Let m be the number of connected components of D nP ; then D has nm states. If � 0

is a state with maximum modulus weight, then

(14) log jJ T
n j D log

ˇ̌̌̌X
�

Y
p2P

!p.�/

ˇ̌̌̌

� log
ˇ̌̌̌
nm

Y
p2P

!p.�
0/

ˇ̌̌̌
Dm log nC

X
p2P

log j!p.�
0/j:

Fix the standard basis for V n Š Cn. In this basis, if p 2 P is an extremum then
j!p.�

0/j D 1. If p is a crossing then !p.�
0/ is an element of the R–matrix of Aq in

the given basis, and Garoufalidis and Lê proved

(15) 2�

n
lim

n!1
log j!p.�

0/j � voct:

Considering limn!1
2�
n

log jJ T
n j, the summands log j!p.�

0/j with p a crossing are
the only summands of (14) which don’t vanish asymptotically. Thus, applying (15),

lim
n!1

2�

n
log jJ T

n j � c � voct:

Equation (13) and Proposition 6.1 together give

(16) lim
n!1

2�

n
log jJ T

n .W2k;2l I e
2�i=n/j � 4kl � voct D Vol..T 2

� I/ nW2k;2l/:
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In other words, for the rectangular weave W2k;2l , the asymptotic growth of the toroidal
colored Jones polynomial is bounded above by the volume of the complement. This
makes the 2k-by-2l rectangular weave a natural object of study for our volume conjec-
ture, Conjecture 1.2 — to prove the conjecture for a link in this family, we need only
show the upper bound in (16) is achieved.

Before proving Theorem 6.2, we give a formula for J T
n .W I q/D J T

n .W2;2I q/. As an
isomorphism of V n˝V n the R–matrix R of Aq is defined by weights R

ij

kl
2C,

R.ek ˝ el/D

n�1X
i;jD0

R
ij

kl
ei ˝ ej ;

where fe0; : : : ; en�1g is a preferred basis of V n. We have

(17) R
ij

kl
D

min.n�1�i;j/X
mD0

ıl
iCmı

k
j�m � q

˛
�
flg!fn� 1� kg!

fig!fmg!fn� 1� j g!
;

where
˛ D

�
i � 1

2
.n� 1/

��
j � 1

2
.n� 1/

�
�

1
2
m.i � j /� 1

4
m.mC 1/;

ı is the Kronecker delta, and fmg!D fmgfm� 1g � � � f2gf1g. Similarly,

R�1
W V n
˝V n

! V n
˝V n

is defined by the scalars

(18) .R�1/
ij

kl
D

min.n�1�i;j/X
mD0

ıl
i�mı

k
jCm � .�1/m � qˇ �

fkg!fn� 1� lg!

fj g!fmg!fn� 1� ig!
;

where

ˇ D�
�
i � 1

2
.n� 1/

��
j � 1

2
.n� 1/

�
�

1
2
m.i � j /C 1

4
m.mC 1/:

Let D be the diagram for W in Figure 10, left, with components labeled by basis
elements as shown — implicitly we’ve chosen a covering map where crossings are
oriented downward and there are no maxima or minima. We have

J T
n .W I q/D

n�1X
a;b;:::;g;hD0

.R�1/
fa

gb
Rbe

cfR
dg

ah
.R�1/hc

ed :

The index m in (17) and (18) is sometimes thought of as the “label” of the associated
crossing [9], with the corresponding summand its “weight”. In this way a state of D

becomes a labeling of both strands and crossings with integers between 0 and n� 1,
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a

b

c

de

f

g

ha

d e

f

a

b

c

dcCm

bCm

aCm

d Cm
a

d cCm

bCm

m

m

mm

Each crossing is labeled m.

Figure 10: States of D.

and the Kronecker deltas in (17) and (18) imply we need only consider states whose
crossing labels are as shown in Figure 11.

Assigning labels to strands and crossings of D according to these rules gives the
diagram in Figure 10, right — the structure of W forces each crossing to have the same
label in any nonzero state. We obtain the formula

J T
n .W I q/

D

n�1X
mD0

n�m�1X
a;b;c;dD0

.R�1/
bCm;a
aCm;b

R
b;cCm
c;bCm

R
d;aCm
a;dCm

.R�1/
dCm;c
cCm;d

D

n�1X
mD0

n�m�1X
a;b;c;dD0

q.a�c/.d�b/ faCmg!fn� 1� ag!

fag!fmg!fn� 1� a�mg!
�
fbCmg!fn� 1� bg!

fbg!fmg!fn� 1� b�mg!

�
fcCmg!fn� 1� cg!

fcg!fmg!fn� 1� c �mg!
�
fd Cmg!fn� 1� dg!

fdg!fmg!fn� 1� d �mg!
:

i j

j �m i Cm
m

i j

j Cm i �m
m

Figure 11: States of crossings with nonzero weights.
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For the remainder of the section, fix q D e2� i=n. This allows us to apply the identity
[9, equation 38]

fkg!D .
p
�1/n�1 n

fn� 1� kg!
;

where k 2N and 0� k � n� 1, and the formula above becomes

(19) J T
n .W I q/

D

n�1X
mD0

n�m�1X
a;b;c;dD0

q.a�c/.d�b/ 1

.fmg!/4
�

�
faCmg!fbCmg!fcCmg!fdCmg!

fag!fbg!fcg!fdg!

�2

:

Theorem 6.2 lim
n!1

2�

n
log jJ T

n .W I e
2� i=n/j D 4voct D Vol..T 2

� I/ nW /.

Proof By (16), we need only show

(20) lim
n!1

2�

n
log jJ T

n .W I e
2�i=n/j � 4voct D Vol..T 2

� I/ nW /:

Let �.a; b; c; d/D q.a�c/.d�b/ and

�.a; b; c; d;m/D
1

.fmg!/4
�

�
faCmg!fbCmg!fcCmg!fd Cmg!

fag!fbg!fcg!fdg!

�2

:

Then (19) becomes

(21) J T
n .W I q/D

n�1X
mD0

n�m�1X
a;b;c;dD0

�.a; b; c; d/ � �.a; b; c; d;m/:

For k 2Z with 0� k � n�1, fkg D 2i sin.k�=n/D ix where x is a nonnegative real
number. Thus .fmg!/4 is a nonnegative real number for all values of m. Furthermore,
since

faCmg!fbCmg!fcCmg!fd Cmg!

fag!fbg!fcg!fdg!

D

mY
kD1

faC kgfbC kgfcC kgfd C kg

D 16

mY
kD1

sin �.aCk/

n
sin �.bCk/

n
sin �.cCk/

n
sin �.dCk/

n
;

�.a; b; c; d;m/ is a nonnegative real number for all relevant values of a, b, c, d , and m.
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If a D c then �.a; b; c; d/ D 1 and �.a; b; c; d/ � �.a; b; c; d;m/ is a real number. If
a¤ c, since �.a; b; c; d;m/D �.a; c; b; d;m/ and �.a; b; c; d/D �.a; c; b; d/�1,

�.a; b; c; d/�.a; b; c; d;m/C �.a; c; b; d/�.a; c; b; d;m/

D .�.a; b; c; d/C �.a; b; c; d/�1/ � �.a; b; c; d;m/

D 2 cos
�

2�.a�c/.d�b/

n

�
� �.a; b; c; d;m/ 2R:

Pairing up the summands of (21) this way we see J T
n .W I q/ is a real number; in fact

(22) J T
n .W I q/D Re.J T

n .W I q//

D

n�1X
kD0

n�k�1X
a;b;c;dD0

cos
�

2�.a�c/.d�b/

n

�
�j�.a; b; c; d;m/j:

Using the identity cos.˛�ˇ/D cos.˛/ cos.ˇ/C sin.˛/ sin.ˇ/, we rewrite (22) as

(23) J T
n .W I q/

D

n�1X
mD0

n�m�1X
a;b;c;dD0

cos
�

2�.a�c/.d�b/

n

�ˇ̌̌̌
faCmg!fbCmg!fcCmg!fdCmg!

fag!fbg!fcg!fdg!

ˇ̌̌̌2 ˇ̌̌̌
1

fmg!

ˇ̌̌̌4

D

n�1X
mD0

n�m�1X
b;dD0

ˇ̌̌̌
1

fmg!

ˇ̌̌̌4 ˇ̌̌̌
fbCmg!fdCmg!

fbg!fdg!

ˇ̌̌̌2
��.b; d;m/;

where

�.b; d;m/D

n�m�1X
a;cD0

cos
�

2�a.d�b/

n
�

2�c.d�b/

n

�ˇ̌̌̌
faCmg!fcCmg!

fag!fmg!

ˇ̌̌̌2

D

n�m�1X
a;cD0

cos
�

2�a.d�b/

n

�
cos
�

2�c.d�b/

n

�ˇ̌̌̌
faCmg!fcCmg!

fag!fmg!

ˇ̌̌̌2

C

n�m�1X
a;cD0

sin
�

2�a.d�b/

n

�
sin
�

2�c.d�b/

n

�ˇ̌̌̌
faCmg!fcCmg!

fag!fmg!

ˇ̌̌̌2

D

�n�m�1X
aD0

cos
�

2�a.d�b/

n

�ˇ̌̌̌
faCmg!

fag!

ˇ̌̌̌2�2

C

�n�m�1X
aD0

sin
�

2�a.d�b/

n

�ˇ̌̌̌
faCmg!

fag!

ˇ̌̌̌2�2

:

In particular, �.b; d;m/ is a nonnegative real number for all values of b,d , and m.

Because each summand of (23) is nonnegative and real, J T
n .W I q/ is bounded below

for all n by the summand of (23) with mD bn=2c and b D d D bn=4c. Additionally,
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�.bn=4c; bn=4c; bn=2c/ is bounded below by the summand of the equation above with
aD bn=4c. We have

(24) J T
n .W I q/�

ˇ̌̌̌
1

fbn=2cg!

ˇ̌̌̌4 ˇ̌̌̌
fbn=4cCbn=2cg!fbn=4cCbn=2cg!

fbn=4cg!fbn=4cg!

ˇ̌̌̌2
�
�j

n

4

k
;
j

n

4

k
;
j

n

2

k�
�

ˇ̌̌̌
1

fbn=2cg!

ˇ̌̌̌4 ˇ̌̌̌
fbn=4cCbn=2cg!

fbn=4cg!

ˇ̌̌̌8
�min

�ˇ̌̌̌
1

fbn=2cg!

ˇ̌̌̌4 ˇ̌̌̌
fb3n=4cg!

fbn=4cg!

ˇ̌̌̌8
;

ˇ̌̌̌
1

fbn=2cg!

ˇ̌̌̌4 ˇ̌̌̌
fb3n=4�1cg!

fbn=4cg!

ˇ̌̌̌8�
:

Garoufalidis and Lê [9] proved that, for ˛ 2 .0; n/,

log jfb˛cg!j D � n

�
ƒ
�
�
˛

n

�
CO.log n/:

Here ƒ is the Lobachevsky function ƒ.z/ D �
R z

0 log j2 sin �j d� and O.log n/ is an
expression bounded by C log n for a constant C independent of n. Applying this to (24)
gives

lim
n!1

2�

n
log jJ T

n .W I q/j

� lim
n!1

8ƒ
�
�

2

�
C 16ƒ

�
�

4

�
� 16 �min

�
ƒ
�

3�

4

�
; ƒ
�
.3n�4/�

4n

��
C

O log.n/
n

D 4
�
2ƒ
�
�

2

�
C 4ƒ

�
�

4

�
� 4ƒ

�
3�

4

��
D 4voct;

proving the theorem.

7 Generalizing the volume conjecture for links in T 2� I

7.1 Simplicial volume

With the original volume conjecture, Conjecture 1.1, in mind, we generalize our
Conjecture 1.2 to links which may not be hyperbolic.

Conjecture 7.1 For any link L� T 2 � I such that .T 2 � I/ nL is irreducible ,

(25) lim
n!1

2�

n
log jJ T

n .LI e
2� i=n/j D Vol..T 2

� I/ nL/;

where n> 0 runs over all odd integers.

As in Conjecture 1.1, Vol refers to simplicial volume — the sum of the volumes of
the hyperbolic pieces in the JSJ decomposition of .T 2 � I/ nL. By irreducible, we
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mean that every smooth embedded 2–sphere in .T 2 � I/ nL bounds a 3–ball. The
irreducibility condition and the restriction to odd n are, in fact, necessary if one wishes
to generalize the original volume conjecture, Conjecture 1.1, from knots to links. For a
link L� S3, S3 nL being irreducible is equivalent to L not being a split link, a class
of links for which the colored Jones polynomial is known to vanish [24]. Separately,
van der Veen has constructed a class of nonsplit links called Whitehead chains for which
the colored Jones polynomial vanishes at even values of n [33]. Before discussing the
necessity of these two conditions in Conjecture 7.1, we give some positive results.

Call L0 � S3 a VC–verified link if Conjecture 1.1 is known to hold for L0. That is, L0

is VC–verified if
lim

n!1

2�

n
log jJn.L

0
I e2�i=n/j D Vol.S3

nL0/;

where the limit runs over odd n > 0. VC–verified links include the figure eight
knot, the Borromean rings, and others — see [25, Chapter 3] for a somewhat recent,
comprehensive list.

Theorem 7.2 Let L0 � S3 be a VC–verified link , and consider an inclusion of L0

in an embedded 2–sphere in T 2 � I . Let K � T 2 � I be a knot projecting to an
essential , simple closed curve in T 2 � f0g, and let L be a connect sum L D L0 # K.
Then Conjecture 7.1 holds for L.

See Figure 12 for an example where L0 is the figure eight knot and K is a meridian.
The main ingredient in the proof of Theorem 7.2 is the following relationship between
J T

n and Jn.

Theorem 7.3 Let L0 be a link in S3, and consider an inclusion of L0 in an embedded
2–sphere in T 2�I . Let K � T 2�I be a knot projecting to an essential , simple closed
curve in T 2 � f0g, and let L be a connect sum LDL0 # K. Then

J T
n .LI q/D n �Jn.L

0
I q/:

Proof Using Proposition 4.5, we assume K is a meridian. Then we can choose a
diagram D�T 2 for L and a lift, zD, of D to R2 such that D0D zD\I2 is a diagram of
L0 as a .1; 1/–tangle. (See Figure 12, where L0 is the figure eight knot.) Coloring D0

by V n, Theorem 2.1 associates an A–linear map � W V n! V n to D0. The irreducibility
of V n implies � is a scalar multiple of the identity, and, after accounting for writhe,
this scalar is Jn.L

0I q/— see [17, Lemma 3.9] and [9; 25].
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Figure 12: Composing the figure eight knot with a meridian in T 2 � I .

On the other hand, by the proof of Lemma 3.2, J T
n .L; q/ is the trace of � (corrected

for writhe). We conclude

J T
n .LI q/D n �Jn.L

0
I q/:

Theorem 7.2 follows.

Proof of Theorem 7.2 By Theorem 7.3, J T
n .LI q/D n �Jn.L

0I q/. Therefore

(26) lim
n!1

2�

n
log jJ T

n .LI e
2� i=n/j D lim

n!1

2�

n
log jJn.L

0
I e2� i=n/j:

The complement .T 2 � I/ nK is homeomorphic to S3 nH 0, where H 0 is the link
shown in Figure 13, left. This implies .T 2�I/nL is homeomorphic to S3 n .L0 #H 0/,
where the composition is formed as in Figure 13, right. By [29],

Vol..T 2
�I/nL/DVol.S3

n.L0#H 0//DVol.S3
nL0/CVol.S3

nH 0/DVol.S3
nL0/;

and combining this with (26) gives

lim
n!1

2�

n
log jJ T

n .LI e
2�i=n/j D lim

n!1

2�

n
log jJn.L

0
I e2�i=n/j

D Vol.S3
nL0/D Vol..T 2

� I/ nL/:

Figure 13: The links H 0 and L0 # H 0 in S3, from the proof of Theorem 7.2,
with L0 the figure eight knot.
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We’ve shown any positive result for the original Conjecture 1.1 gives a positive result
for Conjecture 7.1. The proof also shows why restricting to odd n is necessary — if
we let L0 � S3 be a Whitehead chain, as in [33], the link L0 # K � T 2 � I (defined
as above) will satisfy Conjecture 7.1 but the toroidal colored Jones polynomial will
vanish for even n.

Using the nice behavior of simplicial volume and the toroidal colored Jones polynomial
under split unions of links, we can push the result of Theorem 7.2 further. We define a
split union LDL1 tL2 of links L1;L2 � T 2� I to be a union such that L admits a
torus diagram which is a disjoint union of diagrams of L1 and L2. Additionally, define
a torus link to be a link in T 2� I with a diagram consisting of a set of disjoint, simple
closed curves in T 2.

Corollary 7.4 Let L0
1
;L0

2
; : : : ;L0m � S3 be VC–verified links , and define K as in

Theorem 7.2. Let Li D L0i # K for i D 1; : : : ;m. Then Conjecture 7.1 holds for the
split union LDL1 tL2 t � � � tLm. In particular , Conjecture 7.1 holds for all torus
links with no nullhomotopic components.

Proof The result follows just as in Theorem 7.2 after checking that

J T
n .L/D J T

n .L1/ �J
T
n .L2/ � � �J

T
n .Lm/

and
Vol.L/D Vol.L1/CVol.L2/C � � �CVol.Lm/:

To prove the second statement, let L0i be the unknot for all i — every torus link with
no nullhomotopic components can be obtained this way. Alternatively, one could use
Proposition 3.8 and a direct computation. The result also holds for torus links with
nullhomotopic components (see Proposition 7.6 below), but the complement of such a
link in T 2 � I is not irreducible.

If we view links in the thickened torus as generalizations of .1; 1/–tangles, as the proof
of Theorem 7.3 suggests, and think of the colored Jones polynomial as an invariant of
.1; 1/–tangles, the toroidal colored Jones polynomial becomes a generalization of the
colored Jones polynomial rather than a toroidal analogue. This view is supported by
Corollary 7.5 below, which shows Conjecture 7.1 implies Conjecture 1.1.

Corollary 7.5 For knots , Conjecture 7.1 implies Conjecture 1.1.
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Figure 14: A nullhomotopic inclusion of the figure eight knot in T 2 � I .

Proof Given a knot K0�S3, let LDK0#K with K defined as above. Then, assuming
Conjecture 7.1,

lim
n!1

2�

n
log jJn.K

0
I e2� i=n/j D lim

n!1

2�

n
log jJ T

n .LI e
2�i=n/j

D Vol..T 2
� I/ nL/D Vol.S3

nK0/:

In this sense, Conjecture 7.1 generalizes Conjecture 1.1. It is interesting to note that
Conjecture 1.1 does not seem to imply Conjecture 7.1.

As we noted earlier, just as Conjecture 1.1 fails for split links [24], Conjecture 7.1 fails
for links in T 2 � I which have one or more nullhomotopic split components. By a
nullhomotopic split component of a link L� T 2 � I , we mean a sublink L0 �L such
that L0 is contained in an embedded 2–sphere in .T 2 � I/ nL, and no proper sublink
of L0 is contained in such a sphere. This is implied by the following:

Proposition 7.6 If L � T 2 � I is a link with a nullhomotopic split component ,
J T

n .LI e
2�i=n/D 0 for all n. In particular , if L is nullhomotopic , J T

n .LI e
2�i=n/D 0

for all n.

Proof Let L � T 2 � I be a link with nullhomotopic split component L1, and
let L2 D L nL1. Then J T

n .LI q/ D J T
n .L1I q/ � J

T
n .L2I q/, so it suffices to show

J T
n .L1; e

2�i=n/D 0.

Since L1 is nullhomotopic, it has a torus diagram D which lifts to a diagram zD �R2

such that zD\ I2 is a diagram for L1 as a link in S3. See Figure 14, where L1 is the
figure eight knot. A direct computation shows J T

n .L1I q/D Œn�Jn.L1I q/, and Œn�D 0

when q D e2�i=n.
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Remark 7.7 In [34], van der Veen noted that Conjecture 1.1 can be changed to account
for split links by choosing a different normalization of the colored Jones polynomial.
Essentially, each split component adds a factor of Œn� to Jn — if a link L has s split
components, we can divide by Œn�s to obtain a nonzero value at the root q D e2�i=n.

Analogously, if L� T 2�I has s nullhomotopic split components, we can ask whether

lim
n!1

2�

n
log

ˇ̌̌̌
1

Œn�s
J T

n .LI e
2�i=n/

ˇ̌̌̌
D Vol..T 2

� I/ nL/:

Replacing (25) in Conjecture 7.1 with the above equation, we can remove the hypothesis
that .T 2 � I/ nL be irreducible.

7.2 Higher-genus surfaces

Taking a different direction, one could attempt to generalize Conjecture 1.2 to links in
thickened surfaces of genus greater than one. As we noted earlier, while there is no ob-
vious way to define pseudo-operator invariants for links in these surfaces, Corollary 5.6
lets us define the SU.2/ toroidal colored Jones polynomial skein-theoretically in any
orientable manifold.

As defined, volume conjecture behavior is unlikely to occur in thickened surfaces of
genus greater than one. To see why, let †� I be such a thickened surface containing a
link L. Since †� I has boundary components which are not spheres or tori, there is
not a unique way to assign a complete hyperbolic structure to the complement of L.
One way to resolve this ambiguity, as in [1], is to choose the hyperbolic structure on
.†�I/nL which has totally geodesic boundary. If such a structure exists, .†�I/nL

is called tg–hyperbolic and it has a finite tg–hyperbolic volume.

Proposition 6.1 says that, in the case of a link L in the thickened torus with crossing
number c,

(27) lim
n!1

2�

n
log jJ T

n .LI e
2�i=n/j � c � voct:

A similar bound exists for links in S3 — see [9, Theorem 1.13] — and we conjecture
that (27) holds for J T

n for links in any genus thickened surface. In surfaces with
genus greater than one, however, there are many links whose tg–hyperbolic volume
exceeds this bound. Consider, for example, the virtual link 3.1 of [10] viewed as a
link in the thickened orientable surface of genus two: its crossing number is three
and its tg–hyperbolic volume is � 18:75 > 3voct [1]. Thus, volume convergence as
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defined above is not possible if (27) holds for genus two surfaces and we choose the
tg–hyperbolic structure on the complement of L.

This does not mean no volume conjecture can exist for links in higher genus surfaces —
just that any such conjecture would need to look different from Conjecture 1.1 and
Conjecture 1.2. It may be interesting to examine what kind of relationship can exist
between the SU.2/ toroidal colored Jones polynomial of a link in a higher-genus surface
and its tg–hyperbolic volume.

8 The toroidal colored Jones polynomial as an invariant of
biperiodic and virtual links

Beyond its volume conjecture behavior, the toroidal colored Jones polynomial may be
useful as an invariant of biperiodic and virtual links. A biperiodic link is a properly
embedded 1–manifold QL � R2 � I , such that QL is invariant under translations by a
2–dimensional latticeƒ and LD QL=ƒ is a link in T 2�I ; see [4]. We callƒ maximal if
it is not properly contained in another invariant lattice for QL, in which case the resulting
link L� T 2 is a minimal representative of QL. For a given biperiodic link QL, there are
many possible choices of minimal representative. However, if L1;L2�T 2�I are two
minimal representatives of QL�R2 � I with respective diagrams D1;D2 � T 2, then
there exists an orientation-preserving homeomorphism f of T 2 such that f .D1/DD2;
see [11, Proposition 2.1]. Hence, Proposition 4.5 gives the following:

Theorem 8.1 If QL � R2 � I is a biperiodic link and L � T 2 � I is a minimal
representative of QL, define J T

n .
QL/ D J T

n .L/. Then J T
n is an invariant of biperiodic

links in R2 � I .

Another nonclassical type of link, virtual links, are an area of extensive study — see [15]
for an introduction. By [2; 20], any virtual link L0 is represented uniquely by a link L

in a minimal-genus thickened surface, up to an orientation-preserving homeomorphism
of the surface. The Uq.sl.2;C// toroidal colored Jones polynomial is defined only
for links in T 2 � I , but the SU.2/ toroidal colored Jones polynomial can be defined
skein-theoretically for links in any thickened surface. Similar to above, we have:

Theorem 8.2 If L0 is a virtual link and L�†� I is a minimal representative of L0,
define J T

n .L
0/D J T

n .L/. Then J T
n is an invariant of virtual links.
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Here † is a closed, orientable surface and J T
n is the SU.2/ toroidal colored Jones

polynomial, defined skein-theoretically as in Corollary 5.6. To prove Theorem 8.2,
we need only show the skein-theoretic J T

n is preserved by orientation-preserving
homeomorphisms of surfaces. This is done in the lemma below.

Lemma 8.3 Let L and L0 be links in † � I with respective diagrams D;D0 � †,
† a closed , orientable surface. If f is an orientation-preserving homeomorphism of
† satisfying f .D/D D0, then J T

n .LI q/D J T
n .L

0I q/ for all n 2 N. Here J T
n is the

SU.2/ toroidal Jones polynomial , defined skein-theoretically.

Proof Because f preserves orientation, D and D0 have the same writhe. Thus it
suffices to prove the result for OJ T

n;q , which follows from the case of OJ T
2;q

. Equivalently,
we show the bracket h�i� defined in Section 5 is invariant under orientation-preserving
homeomorphisms of †.

The claim follows by induction on crossing number, noting f induces a bijection on
the crossings of D and D0. If D has no crossings, hDi� is determined by whether or
not D is contractible, which is preserved by f . For an arbitrary diagram D, we can
“resolve” a crossing using the relation (c) of Definition 5.2. Since f commutes with
both types of crossing resolution in relation (c), the claim follows inductively.

As Remark 3.5 discusses, J T
n is distinct from existing quantum invariants of virtual links.

To our knowledge, it is the first invariant of virtual links to exhibit volume conjecture
behavior for genus one virtual links, ie links in the thickened torus. Continuing our
discussion from Section 7.2, it is interesting to ask what kind of volume conjecture
behavior emerges in higher-genus virtual links.

Appendix The toroidal colored Jones polynomial and rotation
number

The following generalization of property (b) of Lemma 5.1 is not hard to prove, using
Proposition 3.8 and a direct computation.

Proposition A.1 Let K � T 2 � I be a knot projecting to a simple closed curve in T 2.

(a) If K is nullhomotopic , the SU.2/ toroidal colored Jones polynomial J T
n satisfies

J T
n .KI q/D�Œn�;
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and the Uq.sl.2;C// toroidal colored Jones polynomial J T
n satisfies

J T
n .KI q/D Œn�:

(b) If K is not nullhomotopic , the SU.2/ and Uq.sl.2;C// toroidal colored Jones
polynomials both satisfy

J T
n .KI q/D n:

Proposition A.1 says, in a sense, that contractible, simple closed curves in T 2 are
“quantized” by the toroidal colored Jones polynomial while essential, simple closed
curves are not. We would like to motivate geometrically why this striking phenomenon
occurs.

To accomplish this, we recall Lin and Wang’s definition of the Jones polynomial [21],
adapted from work in [31]. As we will see, their construction extends in a natural way
to define J T

2
and, by cabling, J T

n for all n > 2. Its use of rotation number provides
insight into Proposition A.1, at least for nD 2.

We briefly recall Lin and Wang’s definition. First, fix the preferred basis fe0; e1g of V 2

we used in Section 7. In this basis the R–matrix coefficients are

R
0;0
0;0
DR

1;1
1;1
D q1=4; R

1;0
0;1
DR

0;1
1;0
D q�1=4;

R
0;1
0;1
D q1=4

� q�3=4; .R�1/
0;0
0;0
D .R�1/

1;1
1;1
D q�1=4;

.R�1/
1;0
0;1
D .R�1/

0;1
1;0
D q1=4; .R�1/

1;0
1;0
D q�1=4

� q3=4;

and all other entries of R and R�1 are zero.

Given a diagram D of an oriented link L�S3, let Pc be the set a crossing points of D.
In this context, a state s of D is an assignment of 0 or 1 to each component of D nPc .
(States are defined differently here than in Section 3 — we ignore local extrema and
do not make use of .V 2/�.) If a state s labels a neighborhood of a positive crossing
p with i; j ; k; l 2 f0; 1g as in Figure 5, the weight of the crossing is !p.s/ D R

ij

kl
.

If s labels a neighborhood of a negative crossing the same way, the weight of p is
!p.s/D .R

�1/
ij

kl
.

Similar to (6), we define the total weight of a state s to be

!c.s/D
Y

p2Pc

!p.s/:

A state s is called admissible if !c.s/¤ 0. Examining the coefficients of R and R�1,
we see s is admissible if and only if each crossing of D has one of the patterns of
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Figure 15: Admissible states near crossings.

labels shown in Figure 15, where dashed and solid lines indicate 0– and 1–labels,
respectively. If either of the two rightmost cases in Figure 15 occurs in D, we resolve
the given crossing into two vertical lines. This decomposes D into a set of closed
curves, each labeled entirely by 0 or entirely by 1 in s. Define roti.D; s/ to be the sum
of the rotation numbers (the degree of the Gauss map) of all i–labeled curves of D

after these resolutions take place. Then:

Proposition A.2 [21] We have

J2.LI q/D
1

Œn�
.q3=4/�w.D/

X
s2Admc.D/

q.rot1.D;s/�rot0.D;s//=2 �!c.s/;

where Admc.D/ is the set of admissible states of D.

Removing the factor of 1=Œn�, this definition extends to a torus with no trouble. It
agrees with our definition of J T

2
.

Theorem A.3 Let L� T 2 � I be an oriented link with diagram D � T 2. Then

(28) J T
2 .LI q/D .q

3=4/�w.D/
X

s2Admc.D/

q.rot1.D;s/�rot0.D;s//=2 �!c.s/;

where all terms are defined as in Proposition A.2.

Proof We sketch the proof. Let P denote the set of crossing points and local extrema
of D, as in Section 3, and use � to denote a state of D in the pseudo-operator invariant
context (see (6) and the preceding discussion). Call a state � admissible if !.�/¤ 0,
and let Adm.D/ be the set of admissible states of D in this context.

In the given basis for V 2, the operator � W V 2! V 2 is defined by

(29) �0
0 D q�1=2; �1

1 D q1=2;

and all other coefficients are zero [17]. Thus, a state � is admissible only if both sides of
every extreme point of D are assigned the same number, either 0 or 1. (Here i 2 f0; 1g

might refer to the basis element ei or the dual element ei .) It follows that Adm.D/ is
in bijection with Admc.D/. Furthermore, if � 2 Adm.D/, we can perform crossing
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Figure 16: An isotopy which reorients a crossing downward.

resolutions like those preceding Proposition A.2 to decompose D into a set of closed
curves, each of which is labeled entirely by 0 or entirely by 1. Therefore it makes sense
to write roti.D; �/ for an admissible state � .

Finally, we may assume all crossings of D have both strands oriented downward —
otherwise, we can apply an isotopy as in Figure 16. This isotopy does not change the
value of (28), since it does not change the diagram or any rotation numbers. With this
assumption, if p 2D is a crossing point, !p.�/D !p.s/ for any state � 2 Adm.D/
with corresponding state s 2 Admc.D/.

We now compute

J T
2 .LI q/D .q

3=4/�w.D/
X

�2Adm.D/

Y
p2P

!p.�/

D .q3=4/�w.D/
X

�2Adm.D/

Y
p2.PnPc/

!p.�/
Y

p2Pc

!p.�/

D .q3=4/�w.D/
X

�2Adm.D/

.�0
0/

rot0.D;�/.�1
1/

rot1.D;�/!c.�/

D .q3=4/�w.D/
X

s2Admc.D/

q.rot1.D;s/�rot0.D;s//=2 �!c.s/:

The key observation of the third equality is that � counts rotation numbers. Examining
Theorem 2.1, we see that a weight of �i

i is assigned to each left-oriented, i–colored
cap and a weight of .��1/ii D .�

i
i/
�1 is assigned to each left-oriented, i–colored cup.

Thus, if C is a curve of D (after crossing resolution) labeled entirely by i , the exponent
of the product of the �i

i’s gives the rotation number of C . (See Figure 17.)

Having defined J T
2

as in Theorem A.3, the higher invariants J T
n , for n > 2, can be

recovered using the cabling formula, Theorem 4.6.

As promised, we only needed to normalize the formula in Proposition A.2 to define
J T

2
as in Theorem A.3. From this perspective, Jn and J T

n become two instances of the
same formula, and the definition of the latter is forced by the definition of the former. In
other words, from this point of view, there is no other way we could have defined J T

n .

Algebraic & Geometric Topology, Volume 23 (2023)



1932 Joe Boninger

�

�

��1

Figure 17: The exponent of the product of the �’s is the rotation number of
the curve (in this case 1).

Additionally, (28) provides insight into Proposition A.1. Let K � T 2 � I be a knot
which projects to a simple, closed curve C � T 2. Then C has no crossings, and only
two state assignments as defined in (28). If C is contractible, it has rotation number
˙1 and

J T
2 .KI q/D q1=2

C q�1=2
D Œ2�:

If C is not contractible, it has rotation number 0 and

J T
2 .KI q/D q0

C q0
D 2:

While we cannot fully explain why the toroidal colored Jones polynomial “quantizes”
contractible curves and not essential ones, this discussion suggests a relationship with
the curvature of a link.

Remark A.4 The exact R–matrix used here is slightly different than the one used
in [21, Section 2.3]. To recover that matrix from ours, first multiply R by q1=4 (and
multiply R�1 by q�1=4), then make the variable substitution q0 D�q1=2. We also use
downward-oriented crossings rather than upward-oriented ones — these two convention
changes result in a slightly different formula for J2.
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