Download this article
 Download this article For screen
For printing
Recent Issues

Volume 24
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Maximal knotless graphs

Lindsay Eakins, Thomas Fleming and Thomas Mattman

Algebraic & Geometric Topology 23 (2023) 1831–1848
Bibliography
1 M Aires, On the number of edges in maximally linkless graphs, J. Graph Theory 98 (2021) 383 MR4371456
2 P Blain, G Bowlin, T Fleming, J Foisy, J Hendricks, J Lacombe, Some results on intrinsically knotted graphs, J. Knot Theory Ramifications 16 (2007) 749 MR2341314
3 J Campbell, T W Mattman, R Ottman, J Pyzer, M Rodrigues, S Williams, Intrinsic knotting and linking of almost complete graphs, Kobe J. Math. 25 (2008) 39 MR2509265
4 H R Dehkordi, G Farr, Non-separating planar graphs, Electron. J. Combin. 28 (2021) MR4245244
5 E Flapan, T W Mattman, B Mellor, R Naimi, R Nikkuni, Recent developments in spatial graph theory, from: "Knots, links, spatial graphs, and algebraic invariants" (editors E Flapan, A Henrich, A Kaestner, S Nelson), Contemp. Math. 689, Amer. Math. Soc. (2017) 81 MR3656324
6 E Flapan, R Naimi, The Y-triangle move does not preserve intrinsic knottedness, Osaka J. Math. 45 (2008) 107 MR2416651
7 N Goldberg, T W Mattman, R Naimi, Many, many more intrinsically knotted graphs, Algebr. Geom. Topol. 14 (2014) 1801 MR3212585
8 R Hanaki, R Nikkuni, K Taniyama, A Yamazaki, On intrinsically knotted or completely 3–linked graphs, Pacific J. Math. 252 (2011) 407 MR2860431
9 B Johnson, M E Kidwell, T S Michael, Intrinsically knotted graphs have at least 21 edges, J. Knot Theory Ramifications 19 (2010) 1423 MR2746195
10 L K Jørgensen, Some maximal graphs that are not contractible to K6, art. id. (1989)
11 T Kohara, S Suzuki, Some remarks on knots and links in spatial graphs, from: "Knots 90" (editor A Kawauchi), de Gruyter (1992) 435 MR1177440
12 W Mader, Homomorphiesätze für Graphen, Math. Ann. 178 (1968) 154 MR229550
13 J Maharry, A splitter for graphs with no Petersen family minor, J. Combin. Theory Ser. B 72 (1998) 136 MR1604709
14 T W Mattman, Graphs of 20 edges are 2–apex, hence unknotted, Algebr. Geom. Topol. 11 (2011) 691 MR2782541
15 T W Mattman, M Pierce, The Kn+5 and K32,1n families and obstructions to n–apex, from: "Knots, links, spatial graphs, and algebraic invariants" (editors E Flapan, A Henrich, A Kaestner, S Nelson), Contemp. Math. 689, Amer. Math. Soc. (2017) 137 MR3656327
16 R Naimi, A Pavelescu, E Pavelescu, New bounds on maximal linkless graphs, preprint (2020) arXiv:2007.10522
17 M Ozawa, Y Tsutsumi, Primitive spatial graphs and graph minors, Rev. Mat. Complut. 20 (2007) 391 MR2351115