Download this article
 Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Maximal knotless graphs

Lindsay Eakins, Thomas Fleming and Thomas Mattman

Algebraic & Geometric Topology 23 (2023) 1831–1848
Bibliography
1 M Aires, On the number of edges in maximally linkless graphs, J. Graph Theory 98 (2021) 383 MR4371456
2 P Blain, G Bowlin, T Fleming, J Foisy, J Hendricks, J Lacombe, Some results on intrinsically knotted graphs, J. Knot Theory Ramifications 16 (2007) 749 MR2341314
3 J Campbell, T W Mattman, R Ottman, J Pyzer, M Rodrigues, S Williams, Intrinsic knotting and linking of almost complete graphs, Kobe J. Math. 25 (2008) 39 MR2509265
4 H R Dehkordi, G Farr, Non-separating planar graphs, Electron. J. Combin. 28 (2021) MR4245244
5 E Flapan, T W Mattman, B Mellor, R Naimi, R Nikkuni, Recent developments in spatial graph theory, from: "Knots, links, spatial graphs, and algebraic invariants" (editors E Flapan, A Henrich, A Kaestner, S Nelson), Contemp. Math. 689, Amer. Math. Soc. (2017) 81 MR3656324
6 E Flapan, R Naimi, The Y-triangle move does not preserve intrinsic knottedness, Osaka J. Math. 45 (2008) 107 MR2416651
7 N Goldberg, T W Mattman, R Naimi, Many, many more intrinsically knotted graphs, Algebr. Geom. Topol. 14 (2014) 1801 MR3212585
8 R Hanaki, R Nikkuni, K Taniyama, A Yamazaki, On intrinsically knotted or completely 3–linked graphs, Pacific J. Math. 252 (2011) 407 MR2860431
9 B Johnson, M E Kidwell, T S Michael, Intrinsically knotted graphs have at least 21 edges, J. Knot Theory Ramifications 19 (2010) 1423 MR2746195
10 L K Jørgensen, Some maximal graphs that are not contractible to K6, art. id. (1989)
11 T Kohara, S Suzuki, Some remarks on knots and links in spatial graphs, from: "Knots 90" (editor A Kawauchi), de Gruyter (1992) 435 MR1177440
12 W Mader, Homomorphiesätze für Graphen, Math. Ann. 178 (1968) 154 MR229550
13 J Maharry, A splitter for graphs with no Petersen family minor, J. Combin. Theory Ser. B 72 (1998) 136 MR1604709
14 T W Mattman, Graphs of 20 edges are 2–apex, hence unknotted, Algebr. Geom. Topol. 11 (2011) 691 MR2782541
15 T W Mattman, M Pierce, The Kn+5 and K32,1n families and obstructions to n–apex, from: "Knots, links, spatial graphs, and algebraic invariants" (editors E Flapan, A Henrich, A Kaestner, S Nelson), Contemp. Math. 689, Amer. Math. Soc. (2017) 137 MR3656327
16 R Naimi, A Pavelescu, E Pavelescu, New bounds on maximal linkless graphs, preprint (2020) arXiv:2007.10522
17 M Ozawa, Y Tsutsumi, Primitive spatial graphs and graph minors, Rev. Mat. Complut. 20 (2007) 391 MR2351115