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The Hurewicz theorem in homotopy type theory

J DANIEL CHRISTENSEN

LUIS SCOCCOLA

We prove the Hurewicz theorem in homotopy type theory, ie that for X a pointed,
.n�1/–connected type, with n � 1, and A an abelian group, there is a natural
isomorphism �n.X/

ab˝AŠ zHn.X IA/ relating the abelianization of the homotopy
groups with the homology. We also compute the connectivity of a smash product of
types and express the lowest nontrivial homotopy group as a tensor product. Along
the way, we study magmas, loop spaces, connected covers and prespectra, and we
use 1–coherent categories to express naturality and for the Yoneda lemma.

As homotopy type theory has models in all1–toposes, our results can be viewed as
extending known results about spaces to all other1–toposes.

55Q99; 03B38, 18N60, 55N99

1 Introduction

Homotopy type theory is a formal system which has models in all1–toposes [2; 3; 11;
15; 19].1 As such, it provides a convenient way to prove theorems for all1–toposes.
In addition, homotopy type theory is well suited to being formalized in a proof assistant
[1; 8].

Working in homotopy type theory as described in the book [16], we prove the Hurewicz
theorem:

Theorem H (Theorem 3.12) For n� 1, X a pointed , .n�1/–connected type , and A
an abelian group , there is a natural isomorphism

�n.X/
ab
˝AŠ zHn.X IA/;
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1The initiality and semantics of higher inductive types still need to be fully worked out.
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where on the left-hand side we take the abelianization (which only matters when
n D 1). In particular , when A is the integers , this specializes to an isomorphism
�n.X/

ab Š zHn.X/.

As mentioned above, this holds in any 1–topos, and so is more general than the
well-known Hurewicz theorem in topology. Interpreting the statement in an1–topos
is somewhat subtle. The groups that appear in the statement are internal group objects
whose underlying object is 0–truncated (a “set”, internally). The quantification over n
means that there is a map h WH !N in the1–topos representing a family of objects
over the natural numbers object, and that this map has a section. In particular, since
each ordinary natural number gives a global element of N, it follows that the fibre of h
over that element must itself have a global element. Continuing in this way, we deduce
that for given objects X and A as in the statement, the two internal group objects shown
are equivalent as group objects. For more on the interpretation of type theory, see
Shulman [18, Section 4.2; 19] for the interpretation in arbitrary1–topoi, and Kapulkin
and Lumsdaine [12] for a more explicit interpretation in simplicial sets.

Since we prove this theorem for an arbitrary 1–topos, we must be careful to use
arguments that apply in this generality. For example, it is not true in every1–topos
that a surjective map of sets has a section, so we cannot use the axiom of choice.
Similarly, the law of excluded middle and Whitehead’s theorem can both fail, so we
must not use these results either. Because of this, our proof is different from other
known proofs.

Before giving more details, we give some motivation for the interest in this result, for
those less familiar with traditional homotopy theory.

Motivation

In topology, homotopy groups are in a certain sense the strongest invariants of a
topological space, and so their computation is an important tool when trying to classify
spaces up to homotopy. In homotopy type theory, homotopy groups play a fundamental
role in that they capture information about iterated identity types. Unfortunately, even
in classical topology, the computation of homotopy groups is a notoriously difficult
problem. Nevertheless, topologists have come up with a variety of powerful tools for
attacking this problem, and one of the most basic tools is the Hurewicz theorem. In
most cases, it is much easier to compute homology groups than homotopy groups, and
so one can use the isomorphism from right to left (with A taken to be the integers) to
compute certain homotopy groups. Moreover, one can apply the theorem even when X
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is not .n�1/–connected using the following technique. Let Xhn� 1i denote the fibre
of the truncation map X !kXkn�1 over the image of the basepoint. Then Xhn� 1i
is .n�1/–connected and �n.Xhn� 1i/Š �n.X/, so �n.X/ab Š zHn.Xhn� 1i/. The
Serre spectral sequence can often be used to compute the required homology group.

Techniques and main results

We first recall that for n � 1, the nth homology group zHn.X IA/ of a type X with
coefficients in an abelian group A is defined to be the colimit of a certain sequential
diagram,

(1-1) �nC1.X^K.A; 1//�!�nC2.X^K.A; 2//�!�nC3.X^K.A; 3//�! � � � :

Here ^ denotes the smash product and K.A;m/ is the Eilenberg–Mac Lane space
constructed by Licata and Finster in [13], which is an m–truncated, .m�1/–connected,
pointed type with a canonical isomorphism �m.K.A;m//Š A.

We now state one of our main results, which is used to prove the Hurewicz theorem,
and also has other consequences:

Theorem S (Corollary 2.32 and Theorem 2.38) If X is a pointed , .n�1/–connected
type with n� 1 and Y is a pointed , .m�1/–connected type with m� 1, then X ^Y is
.nCm�1/–connected and �nCm.X^Y / is the tensor product of �n.X/ab and �m.Y /ab

in a natural way.

Taking Y to be K.A;m/ in this result shows that the groups appearing in the sequential
diagram (1-1) are tensor products of �n.X/ab and A. The proof of the Hurewicz
theorem follows from showing that the induced maps are isomorphisms, which we do
in Lemma 3.11. With this ingredient, we prove the Hurewicz theorem as Theorem 3.12.

In order to define the isomorphism appearing in Theorem S, we must give a bilinear
map �n.X/!Grp �m.Y /!Grp �nCm.X ^Y /. To do so, we define and study a more
general natural map

smashing W .X !� Y !� Z/ �!
�
�n.X/!Grp �m.Y /!Grp �nCm.Z/

�
for any pointed types X , Y and Z and any n;m� 1. The map we require is obtained
by applying smashing to the natural map X !� Y !� X ^Y .

Constructing the map smashing requires some work. While it lands in group homo-
morphisms between (0–truncated) groups, in order to construct it, we pass through
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magmas. A magma is a (not necessarily truncated) type M with a binary operation
� WM �M !M , with no conditions or coherence laws. As a technical trick which
simplifies the formalization, we work with weak magma morphisms. A weak magma
morphism from a magma M to a magma N is a map f WM !N which merely has
the property that it respects the operations. This is sufficient for our purposes, because
when M and N are groups, it reproduces the notion of group homomorphism. All
loop spaces are magmas under path concatenation, and many natural maps involving
loop spaces are weak magma morphisms. By working with magmas, we can factor the
map smashing into simpler pieces, and still land in group homomorphisms at the end,
without keeping track of higher coherences.

Proving the rest of Theorem S requires a number of results that build on work of
Buchholtz, van Doorn and Rijke [4]. For example, Lemma 2.15 and Theorem 2.19
are results of [4], which we use to prove Proposition 2.23: for n � 1, X a pointed,
.n�1/–connected type, and Y a pointed, n–truncated type, the map

�n W .X !� Y /! .�nX !Mgm �
nY /

is an equivalence. In order to prove this, we prove results about connected covers in
Section 2.3.

We go on to define a natural Hurewicz homomorphism hn W �n.X/
ab˝A! zHn.X IA/,

without assuming any connectivity hypothesis on X , and show that it is unique up to
a sign among such natural transformations that give isomorphisms for X � Sn and
A� Z (Theorem 3.16).

Homology

The theory of homology in homotopy type theory is currently limited by the absence
of some important tools and facts that would make it easier to compute. For example,
we don’t have complete proofs that homology satisfies the Eilenberg–Steenrod axioms,
although partial work was done by Graham [9]. The Serre spectral sequence for
homology has not been formalized, but high level arguments can be found in [8] and
it is expected that techniques similar to those used for cohomology will go through.
We are also missing the fact that the homology of a cellular space can be computed
cellularly (which is done for cohomology in [5]), the universal coefficient theorem,
and the relationship between homology and localization (developed in homotopy type
theory in [7; 17]).
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Structure of the paper

Section 2 contains our work on smash products and tensor products. After listing
our conventions in Section 2.1, we give the basic theory of 1–coherent categories in
Section 2.2. We use this theory to express and reason about natural transformations, and
we make use of the Yoneda lemma in this setting. In Section 2.3 we study connected
covers. Section 2.4 introduces magmas and weak magma morphisms, and proves a
variety of results about loop spaces, including Proposition 2.23, mentioned above.
We also define the map smashing in this section. We introduce smash products in
Section 2.5 and prove the connectivity part of Theorem S here. Section 2.6 is a short
section that defines abelianization and gives a particularly efficient construction of the
abelianization of a group as a higher inductive type. In Section 2.7, we define tensor
products of abelian groups and prove the second part of Theorem S. Section 2.8 proves
results about smash products, truncation and suspension that are needed in Section 3.

Section 3 applies the results of Section 2 to homology, leading up to the Hurewicz
theorem and its consequences. In Section 3.1, we define prespectra and their stable
homotopy groups, and use this to define homology. The Hurewicz theorem is proved
in Section 3.2, and we describe the Hurewicz homomorphism and its uniqueness up to
sign in Section 3.3. In Section 3.4, we give some applications of our main results.

Formalization

Formalization of these results is in progress, with help from Ali Caglayan, using the
Coq HoTT library [10]. The current status can be seen at [6], where the README.md
file explains where results from the paper can be found. Currently, we have formalized
much of Section 2 but none of Section 3. In Section 2, the only substantial result that
is missing is Theorem 2.38. Also missing are Theorem 2.28 and the naturality of many
of the maps defined in this section. In our formalization, we take as axioms several
results that have been formalized in other proof assistants.

2 Smash products and tensor products

In this section, we give a variety of results about loop spaces, magmas, smash products
and tensor products, including the proof of Theorem S. None of the results in this
section depend on the definition of homology, but these results are used in the next
section to prove the Hurewicz theorem.
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2.1 Background and conventions

We follow the conventions and notation used in [16]. We assume we have a univalent
universe U closed under higher inductive types (HITs) and contained in another uni-
verse U 0. In fact, the higher inductive types we use can all be described using pushouts
and truncations. By convention, all types live in the lower universe U , unless explicitly
stated. We implicitly use function extensionality for U throughout.

A pointed type is a type X and a choice of x0 W X , and the type of pointed types is
denoted by U� W�

P
.X W U/X . We often keep the choice of basepoint implicit. A pointed

map between pointed types X and Y is a map f WX ! Y and a path p W f .x0/D y0.
The type of pointed maps is denoted by X !� Y W�

P
.f WX!Y /f .x0/D y0.

We frequently make use of functions of type X ! Y !Z, and remind the reader that
this associates as X ! .Y !Z/, which is the curried form of a function X �Y !Z.

In the paper, we define the sum mCn of natural numbers by induction on n, so that
mC 1 is the successor of m. In the HoTT library, the other convention is used, so to
translate between the paper and the formalization, one must change mCn to nCm
everywhere.

2.2 1–coherent categories

In this section, we briefly discuss the notion of a 1–coherent category, which we use
to express that various constructions are natural. The definitions generalize those of
[8, Section 4.3.1], which deals with the 1–coherent category of pointed types, except
that our hom types are unpointed. A more general notion of wild category has been
formalized in the HoTT library [10] by Ali Caglayan, tslil clingman, Floris van Doorn,
Morgan Opie, Mike Shulman and Emily Riehl.

Recall that U 0 is a universe such that U W U 0.

Definition 2.1 A 1–coherent category C consists of a type C0 W U 0, a map

homC W C0! C0! U ;
maps

id W
Y
aWC0

homC .a; a/;

�ı�W

Y
a;b;cWC0

homC .b; c/! homC .a; b/! homC .a; c/;
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and equalities

unitl W
Y
a;bWC0

Y
f WhomC .a;b/

idb ıf D f;

unitr W
Y
a;bWC0

Y
f WhomC .a;b/

f ı ida D f;

assoc W
Y

a;b;c;d WC0

Y
f WhomC .a;b/

Y
gWhomC .b;c/

Y
hWhomC .c;d/

.h ıg/ ıf D h ı .g ıf /;

witnessing left and right unitality and associativity, respectively. We do not assume
coherence laws or that any of the types are truncated.

If C is a 1–coherent category, the elements of C0 are called objects and, for objects
a; b W C0, the elements of homC .a; b/ are called morphisms from a to b.

The wild 1–categories considered in [10] allow 2–cells to be specified, which are then
used in place of the identity types in the above equalities. For simplicity, we use the
identity types.

Example 2.2 There is a 1–coherent category U of types, with U0 W� U and

homU.X; Y / W�X ! Y

for every pair of types X; Y W U . Identity morphisms, composition, unitalities, and
associativity all work in the expected way.

Example 2.3 There is a 1–coherent category Grp of groups whose objects are the set-
level groups, that is, 0–truncated types equipped with an associative binary operation,
a unit and inverses. The morphisms are standard group homomorphisms.

Similarly, there is 1–coherent category Ab of abelian groups.

Example 2.4 Any precategory in the sense of [16, Definition 9.1.1] gives rise to a
1–coherent category, simply by forgetting that its hom types are sets. Moreover, the
notions of isomorphism, functor, and natural transformation given in [16, Section 9]
are equivalent to the notions we give in this section, in the case of precategories.

Many constructions one can carry out with categories are easy to extend to 1–coherent
categories. We mention two that are particularly important for us. Given a 1–coherent
category C , we can form the opposite 1–coherent category C op by letting the type of
objects of C op be C0, and homC op.a; b/ W� homC .b; a/ for all a; b W C0. The rest of
the structure is straightforward to define.
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Given 1–coherent categories C and D, one can form a product 1–coherent cate-
gory, denoted by C �D. The underlying type of C �D is simply C0 �D0, and
homC�D..c; d/; .c0; d 0// W� homC .c; c0/� homD.d; d 0/. The rest of the structure is
again straightforward to define.

Definition 2.5 Let C be a 1–coherent category, a; b W C0, and f W homC .a; b/. An
isomorphism structure for f is given by morphisms g; h W homC .b; a/ together with
paths l W g ıf D ida and r W f ı hD idb .

In many cases, such as in the 1–coherent category U, being an isomorphism is a mere
property of a morphism. The wild 1–categories considered in [10] allow biinvertibility
to be replaced by more general notions of isomorphism.

Definition 2.6 A 1–coherent functor F between 1–coherent categories C and D,
usually denoted by F W C !D, consists of a map F0 W C0!D0, a map

F1 W
Y
a;bWC0

homC .a; b/! homD.F0.a/; F0.b//;

and equalities
Fid W

Y
aWC0

F.ida/D idF.a/;

Fı W
Y

a;b;cWC0

Y
f WhomC .a;b/

Y
gWhomC .b;c/

F1.g/ ıF1.f /D F.g ıf /;

witnessing the functoriality of F .

Example 2.7 For a 1–coherent category C and an object a W C0, we can define a
1–coherent corepresentable functor Ya W C ! U. On objects, Ya0 .b/ W� homC .a; b/.
The action on morphisms is defined as Ya1 .f / W��g:f ıg W homC .a; b/! homC .a; c/
for f W homC .b; c/. The witnesses of functoriality, that is Y aid and Y aı , are defined
using the equalities unitl and assoc of C , respectively.

Definition 2.8 Let C and D be 1–coherent categories and let F;G W C ! D be
1–coherent functors. A 1–coherent natural transformation ˛ from F to G, usually
denoted by ˛ W F !G, consists of a map

˛0 W
Y
aWC0

homD.F.a/;G.a//;

and equalities

˛1 W
Y
a;bWC0

Y
f WhomC .a;b/

˛0.b/ ıF1.f /DG1.f / ı˛0.a/:
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Definition 2.9 Let ˛ W F ! G be a 1–coherent natural transformation between 1–
coherent functors F;G WC !D, for C and D 1–coherent categories. An isomorphism
structure for ˛ is given by an isomorphism structure for each of its components. A
natural isomorphism is given by a natural transformation together with an isomorphism
structure.

The following lemma is straightforward.

Lemma 2.10 Let C and D be 1–coherent categories , F;G;H W C !D 1–coherent
functors , and ˛ W F ! G and ˇ W G ! H 1–coherent natural transformations. Then ,
by defining .ˇ ı ˛/.c/ W� ˇ.c/ ı ˛.c/ and the naturality squares by composing the
naturality squares of ˛ and ˇ, one obtains a natural transformation ˇ ı ˛ W F ! H .
Moreover , if both ˛ and ˇ are natural isomorphisms , so is ˇ ı˛.

The following is a 1–coherent version of the fact that the Yoneda functor is an embed-
ding.

Proposition 2.11 [10] Let C be a 1–coherent category and let a; b W C0. Assume
given a 1–coherent natural isomorphism ˛ WY b!Y a. Then i W�˛0.b/.idb/WhomC .a; b/
is part of an isomorphism between a and b, and it satisfies , for every c W C0,

˛0.c/D �g:g ı i

as maps homC .b; c/! homC .a; c/.

The proof is the same as the usual proof, and has been formalized in the HoTT
library [10]. Note that we are not claiming that the naturality proofs for ˛ can be
recovered using the associativity of composition.

2.3 Connected covers

In order to generalize a result of Buchholtz, van Doorn and Rijke (see Theorem 2.19)
to the case where Y has no connectivity assumption, we prove some results about
connected covers. In this section, we fix n� �1.

Definition 2.12 A type X is n–connected if kXkn is contractible.

For X pointed, it is equivalent to require that �i .X/ be trivial for all i � n. Every
pointed type is .�1/–connected.

Definition 2.13 LetX be a pointed type. The n–connected cover Xhni ofX is defined
to be the fibre of the pointed map X !� kXkn.
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Note that Xhni is indeed n–connected and that we have a canonical pointed map
i W Xhni !� X which induces an equivalence on the homotopy groups �k for k > n.
In fact, this map has a stronger universal property:

Definition 2.14 A pointed map f WX !� Y is an hni–equivalence if for any pointed,
n–connected type Z, postcomposition by f gives an equivalence

.Z!� X/
��! .Z!� Y /:

Lemma 2.15 [4, Lemma 6.2] Let X be a pointed type. Then the map i WXhni !� X
is an hni–equivalence.

It follows that the operation sending X to Xhni is functorial in a unique way making
i WXhni !� X natural, and that a map f is an hni–equivalence if and only if f hni is
an equivalence.

Note that there is a 1–coherent category with objects all pointed types and morphisms
given by pointed functions. We denote this 1–coherent category by U�. There are
1–coherent functors †;� W U�! U� forming a 1–coherent adjunction, in the following
sense.

Lemma 2.16 [16, Lemma 6.5.4] Let X and Y be pointed types. There is an equiva-
lence

.†X !� Y /' .X !� �Y /;

natural in X and Y . Here , we are interpreting .†.�/!� �/ and .� !� �.�// as
1–coherent functors Uop

�
�U�! U.

The naturality is not proven in [16], but is proven in the HoTT library [10].

The following two facts will be used in Proposition 2.23.

Proposition 2.17 Let f WX !� Y be a pointed map. If f is an hnC1i–equivalence ,
then �f is an hni–equivalence.

Proof Let A be an n–connected, pointed type. By naturality of the adjunction between
suspension and loops (Lemma 2.16), we have a commutative square

.†A!� X/ .†A!� Y /

.A!� �X/ .A!� �Y /

�

f ı�

�

�f ı�
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in which the vertical maps are equivalences. Since the suspension of an n–connected
type is .nC1/–connected, the top map is also an equivalence. Therefore, the bottom
map is an equivalence, as required.

Proposition 2.18 Let f WX!� Y be a pointed map. If f is a h�1i–equivalence , then
f is an equivalence.

Proof Since S0 is .�1/–connected, we know that f induces an equivalence

.S0!� X/!� .S
0
!� Y /:

Moreover, .S0!� Z/ is equivalent to Z for any pointed type Z, and this equivalence
is natural. It follows that f is an equivalence.

This also follows from the facts that Zh�1i!� Z is an equivalence for any pointed Z,
and that f h�1i is an equivalence.

2.4 Loop spaces and magmas

In this section, we study loop spaces and the natural magma structures that they carry
and define the map smashing that plays an important role in this paper. We begin by
generalizing the following result of Buchholtz, van Doorn and Rijke.

Theorem 2.19 [4, Theorem 5.1] Let n� 1. For X and Y pointed , .n�1/–connected ,
n–truncated types , the map

�n W .X !� Y / �!� .�
nX !Grp �

nY /:

is an equivalence.

In order to state our generalization, we introduce the notion of magma.

Definition 2.20 A magma is given by a type X together with an operation

�X WX �X !X:

A map of magmas is given by a map f W X ! Y between the underlying types that
merely respects the operations. More formally, we define

X !Mgm Y WD
X

.f WX!Y /

 Y
.x;x0WX/

f .x �X x
0/D f .x/ �Y f .x

0/


�1

:

An equivalence of magmas is a map of magmas whose underlying map is an equivalence.
We write X 'Mgm Y for the type of magma equivalences from X to Y . Magmas form
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a 1–coherent category that we denote by Mgm. We will omit the subscript on the
operation � when it is clear from context.

The propositional truncation in the definition of magma map is a technical trick to
simplify the formalization. With our definition, the type of equalities between magma
maps is equivalent to the type of equalities between the underlying maps. All of our
results should go through without the truncation, but omitting it leads to path algebra
that is not needed in order to get our later results. The maps we are considering should
be called “weak magma maps”, but since they are the only maps we use, we simply
call them “magma maps” in this paper.

Definition 2.21 A pointed magma is a magma X with a chosen point x0 WX and an
equality x0 � x0 D x0. A map of pointed magmas is a pointed map f WX !� Y whose
underlying map f WX! Y is a map of magmas. We write X!Mgm� Y for the type of
pointed magma maps. An equivalence of pointed magmas is a map of pointed magmas
whose underlying map is an equivalence. We write X 'Mgm� Y for the type of pointed
magma equivalences. Pointed magmas form a 1–coherent category, which we denote
by Mgm�.

There are no propositional truncations in the above definition, except for the one in the
definition of magma map.

Remark 2.22 The loop space �X is a pointed magma for any pointed type X ,
with path concatenation as the operation, reflexivity as the basepoint, and a higher
reflexivity as the proof that the basepoint is idempotent. There is a natural map
� W .X !� Y / !� .�X !Mgm� �Y /, which can be iterated. Any magma map
�X !Mgm �Y induces a group homomorphism �1.X/!Grp �1.Y /. Also note that
for groups G and H , .G!Grp H/' .G!Mgm H/, where we write G!Grp H for
the type of group homomorphisms. (We assume that all groups have an underlying
type that is a set, which means that the propositional truncation can be removed.)

When X is a pointed magma and G is a group, every magma map X !Mgm G can be
made pointed in a unique way, so the forgetful map .X!Mgm� G/! .X!Mgm G/ is
an equivalence.

When A is a pointed type and X is a pointed magma, the type A!� X of pointed
maps is a pointed magma under the pointwise operation. The requirement that the
basepoint x0 WX be idempotent ensures that for f; g W A!� X , f �g is again pointed:
.f �g/.a0/� f .a0/ �g.a0/D x0 � x0 D x0.
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Similarly, when Y is a pointed magma andZ is a pointed type, the type Y !Mgm� �
2Z

of pointed magma maps and the type Y !Mgm �
2Z of all magma maps are pointed

magmas under the pointwise operation. This uses that path composition in the double
loop space is commutative (by Eckmann–Hilton) and associative. (More precisely, we
only use that the operation is merely commutative and merely associative, which will
be convenient in Definition 2.26.)

With this background, we can now state our first generalization of Theorem 2.19.

Proposition 2.23 Let n� 1, let X be a pointed , .n�1/–connected type , and let Y be
a pointed , n–truncated type. Then the map

�n W .X !� Y /
��! .�nX !Mgm �

nY /

is an equivalence , natural in X and Y . Similarly,

�n W .X !� Y /
��! .�nX !Mgm� �

nY /

is a natural equivalence.

Proof Since �nY is a group, the second equivalence follows from the first, using
Remark 2.22, so we focus on the first one. By the functoriality of �n, the diagram

.X !� Y / .�nX !Mgm �
nY /

.kXkn!� Y / .�n.kXkn/!Mgm �
nY /

.kXkn!� Y hn� 1i/ .�n.kXkn/!Mgm �
n.Y hn� 1i//

commutes, where the vertical maps are induced by the maps j�jn W X !� kXkn and
i W Y hn� 1i !� Y . The vertical maps on the left are equivalences by the universal
properties of truncations and of connected covers.

To see that the upper vertical map on the right is an equivalence, let f denote the map
�n.j�jn/ W�

nX !� �
n.kXkn/. This map is 0–connected, since j�jn is n–connected

and � decreases connectivity. Since �nY is a set, it follows that f induces an
equivalence .�n.kXkn/!�nY /! .�n.X/!�nY /. Given g W�n.kXkn/!�nY ,
we need to show that g merely preserves the magma structures if and only if g ı f
merely preserves the magma structures. The map f induces an equivalence� Y
a;bW�n.kXkn/

g.a�b/Dg.a/�g.b/

�
'

� Y
a;bW�n.X/

g.f .a/�f .b//Dg.f .a//�g.f .b//

�
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since f is 0–connected and the identity types are sets (in fact, propositions). Note
that f , being defined using the functoriality of �, preserves the concatenation oper-
ation (without any propositional truncation). It follows that the type on the right is
equivalent to the type of proofs that g ıf preserves the magma structure. Therefore,
the propositional truncations are also equivalent, so f induces an equivalence on the
types of magma maps.

The lower vertical map on the right is an equivalence since �n.i/ is an equivalence of
magmas: it is certainly a map of magmas, and the fact that it is an equivalence follows
from Propositions 2.17 and 2.18.

The bottom horizontal map is an equivalence by Theorem 2.19, and so the top horizontal
map is an equivalence, as required.

The fact that �n is natural in X and Y follows from the functoriality of �n as an
operation from pointed maps to magma maps, which is straightforward to check.

Our next goal is to define the map smashing, using the following lemmas.

Lemma 2.24 Let n�1 and let Y and Z be pointed types. Then there is an equivalence
of pointed magmas

�n.Y !� Z/'Mgm� .Y !� �
nZ/;

natural in Y and Z. Here we are regarding �n.� !� �/ and � !� �n.�/ as
1–coherent functors U� �U�!Mgm�.

On the right-hand side, we are using the pointwise magma structure described in
Remark 2.22.

Proof We prove this for nD 1, and then iterate, using that the functor � sends pointed
equivalences to equivalences of pointed magmas.

In order to prove that our equivalence respects the magma structures, it is best to
generalize: for f; g W Y !� Z we define an equivalence

' W .f D g/ ��!
X

KWf�g

K.y0/D f0 �g
�1
0 :

Here K is a homotopy, y0 is the basepoint of Y , and f0 and g0 are the paths witnessing
that f and g are pointed. This equivalence is a variant of the standard result that
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equalities of pointed maps are equivalent to pointed homotopies; the particular choice
of the right-hand side means that when f and g are the constant map Y !� Z pointed
by refl, we obtain a pointed equivalence

�.Y !� Z/'� .Y !� �Z/:

Our pointed homotopies can be composed, and we show that ' sends composition of
paths to composition of homotopies by first doing induction on the paths to reduce the
goal to

'.refl/D '.refl/ �'.refl/

and then using path induction to assume that f0 is refl. We conclude that

�.Y !� Z/'Mgm� .Y !� �Z/:

To prove naturality in Y , consider a pointed map h W Y !� Y 0. We must show that the
following square commutes:

�.Y 0!� Z/ �.Y !� Z/

.Y 0!� �Z/ .Y !� �Z/

'

�.�ıh/

'

�ıh

By path induction, we can assume that h is strictly pointed, ie that the given path
h0 W h.y0/D y

0
0 is reflexivity. In this case, writing c W Y !� Z and c0 W Y 0!� Z for

the constant maps, we have that c0 ıh and c are definitionally equal as pointed maps.
Therefore, the corners and vertical maps in the required square are definitionally equal
to those in the square

c0 D c0 c0 ı hD c0 ı h

c0 �� c
0 c0 ı h�� c

0 ı h

'

ap�ıh

'

whh

where �� denotes the type of pointed homotopies defined above, and whh denotes
prewhiskering with h. One can check that the horizontal arrows are homotopic to those
in the required square, so it remains to show that the new square commutes. To show
this, one generalizes from c0 D c0 to f D g, in which case the commutativity follows
by path induction.

The proof of naturality inZ is very similar. Since both naturalities have been formalized,
we give no further details.
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Lemma 2.25 Let n;m� 1 and let Y and Z be pointed types. The action of �m on
maps gives a pointed magma map

.Y !� �
nZ/ �!Mgm� .�

mY !Mgm� �
m�nZ/:

Moreover , the forgetful maps

.�mY !Mgm� �
m�nZ/ �!Mgm� .�

mY !Mgm �
m�nZ/

and
.�mY !Mgm� �

m�nZ/ �!Mgm� .�
mY !� �

m�nZ/

are also pointed magma maps. In all cases , we are using the pointwise magma structure
described in Remark 2.22. These maps are all natural.

Proof That the forgetful maps are natural pointed magma maps is straightforward, so
we focus on the first map. By replacing Z with �n�1Z, we can assume that nD 1.
To prove that �m is a natural pointed magma map, we induct on m. For the inductive
step, we define �mC1 to be the composite

.Y !� �Z/
�m

�! .�mY !Mgm� �
m�Z/

�! .�mY !� �
m�Z/ �

�! .�mC1Y !Mgm� �
mC1�Z/

so that the claim follows from the inductive hypothesis, the fact that the middle forgetful
map is a natural pointed magma map, and the mD 1 case.

It remains to prove the m D 1 case. It is easy to see that for f W Y !� �Z, �f is
a pointed magma map. Next we must show that given f; g W Y !� �Z, �.f � g/
and .�f / � .�g/ are equal as pointed magma maps, where � denotes the pointwise
operations. Because we are using weak magma maps, it is equivalent to show that
these two maps are equal as pointed maps, or in other words that there is a pointed
homotopy �.f � g/ �� .�f / � .�g/. The underlying homotopy involves some path
algebra, and ultimately follows from the fact that horizontal and vertical composition
agree in the codomain, which is a double-loop space. The pointedness of the homotopy
follows by a simple path induction on the paths f .y0/D refl and g.y0/D refl, after
generalizing f .y0/ and g.y0/ to arbitrary loops. The argument in this paragraph has
been formalized.

The naturality of � follows from the fact that for pointed maps h and k,

�.h ı k/D�.h/ ı�.k/

as pointed maps, where again we are taking advantage of the fact that we are using
weak magma maps.
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Definition 2.26 For pointed types X , Y , and Z and natural numbers n;m � 1, we
have maps

(2-1) .X !� Y !� Z/ �! .�nX !Mgm �
n.Y !� Z//

��! .�nX !Mgm .Y !� �
nZ//

�! .�nX !Mgm .�
mY !Mgm� �

m�nZ//

��! .�nX !Mgm .�
mY !Mgm� �

nCmZ//

�! .�n.X/!Grp �m.Y /!Grp �nCm.Z//:

These maps are natural in X , Y , and Z. The first and third arrows apply �n and �m to
morphisms, using Lemma 2.25. The second arrow is an equivalence by Lemma 2.24. To
understand the fourth arrow, writemD kC1 for some k WN. Then�k�nZD�nCkZ
as pointed types. Applying � on the outside, we see that �m�nZ D �nCmZ as
magmas. Since the magma structure on the set of magma maps only uses that the
iterated loop space is merely commutative and merely associative, we can conclude
that .�mY !Mgm� �

m�nZ/D .�mY !Mgm� �
nCmZ/ as magmas. From this we

deduce the required equivalence. The fifth arrow applies 0–truncation on the inside
and then on the outside. Let

smashing W .X !� Y !� Z/ �! .�n.X/!Grp �m.Y /!Grp �nCm.Z//

denote the composite.

The map smashing corresponds to the following construction in topology, which uses the
smash product from the next section. Given a map f WX !� Y !� Z and homotopy
classes ˛ W �n.X/ and ˇ W �m.Y /, one can smash representatives of the homotopy
classes together to get an element ˛ ^ ˇ W �nCm.X ^ Y /. The adjoint X ^ Y !� Z
of f then induces a map taking this to an element of �nCm.Z/ which (up to sign) is
smashing.f; ˛; ˇ/. This correspondence motivates the name.

Since we’ll use it several times, we quote the following result from [4].

Lemma 2.27 [4, Corollary 4.3] Let m � 0 and n � �1. If Y is a pointed , .m�1/–
connected type and Z is a pointed , .nCm/–truncated type , then the type Y !� Z is
n–truncated.

The last result in this section plays an important role in our proof, and can be thought
of as a generalization of Theorem 2.19 to functions with two arguments.
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Theorem 2.28 Let n;m� 1. If X is a pointed .n�1/–connected type , Y is a pointed
.m�1/–connected type , and Z is a pointed .nCm/–truncated type , then the map
smashing is an equivalence.

Proof The first arrow in (2-1) is an equivalence by Lemma 2.27 and Proposition 2.23.
The third arrow is an equivalence by Proposition 2.23. To show that the fifth arrow is
an equivalence, one uses the same methods as in the proof of Proposition 2.23, using
that �nCmZ is a set.

2.5 The connectivity of smash products

We recall some basic facts about smash products, and then prove a result about their
connectivity.

Definition 2.29 For pointed types X and Y , the smash product X ^Y is defined to
be the higher inductive type with constructors:

� sm WX �Y !X ^Y ,

� auxl WX ^Y ,

� auxr WX ^Y ,

� gluel W
Q
.yWY /sm.x0; y/D auxl,

� gluer W
Q
.xWX/sm.x; y0/D auxr.

The smash product is pointed by sm.x0; y0/. It has the expected induction principle.

It is straightforward to see that the smash product is a functor. That is, given pointed
maps f W X !� X 0 and g W Y !� Y 0 between pointed types, there is a pointed map
f ^g WX ^Y !� X

0 ^Y 0 defined by induction on the smash product in the evident
way, and this operation respects identity maps and composition.

Given pointed types X and Y , the constructors of the smash product X ^Y combine
to give a map X !� .Y !� X ^Y /, which we now describe.

Definition 2.30 Let X; Y W U�. Currying the constructor sm, we get a map

X ! .Y !X ^Y /:

Using the constructor gluer twice, this map lifts to a mapX! .Y !�X^Y /. Similarly,
using gluel, this last map lifts to a map sm� WX !� .Y !� X ^Y /.
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The following adjunction between pointed maps and smash products is fundamental to
our work.

Lemma 2.31 [8, Theorem 4.3.28] Let X , Y , and Z be pointed types. The map

.X ^Y !� Z/ �!� .X !� .Y !� Z//

induced by precomposition with sm� is a pointed equivalence , natural in X , Y , and Z.
Here , we are interpreting .�^�!� �/ and .�!� .�!� �// as 1–coherent functors
Uop
�
�Uop

�
�U�! U�.

Note that, by construction, sm� WX !� Y !� X ^Y is the adjunct of the identity map
X ^Y !� X ^Y .

In the form stated here, Lemma 2.31 has been formalized [8]. A stronger statement,
which roughly involves regarding the category U� as being enriched over U�, has not
yet been proven, but we do not use this stronger form.

We now give a bound on the connectivity of smash products, proving the first part of
Theorem S from the introduction.

Corollary 2.32 Let n;m� 0, let X be a pointed , .n�1/–connected type , and let Y
be a pointed , .m�1/–connected type. Then X ^Y is .nCm�1/–connected.

Proof It is enough to show that the truncation map X ^ Y ! kX ^ Y knCm�1 is
nullhomotopic. Since the truncation map is pointed, this follows from the following
more general fact: for any pointed, .nCm�1/–truncated type Z, the type X ^Y !� Z
is contractible. Indeed, by Lemma 2.31, we have .X ^Y !� Z/' .X !� Y !� Z/.
By Lemma 2.27, the type Y !� Z is .n�1/–truncated. Therefore, using Lemma 2.27
again, we see that the type X !� Y !� Z is .�1/–truncated, and thus contractible,
since any pointed mapping space is inhabited.

2.6 Abelianization

In this section, we introduce the notion of abelianization, and give an efficient construc-
tion of the abelianization of a group.

Definition 2.33 Given a group G, an abelianization of G consists of an abelian
group A together with a homomorphism � WG!Grp A, initial among homomorphisms
to abelian groups. In other words, for each abelian group B and homomorphism
h WG!Grp B , the type

P
.f WA!B/hD f ı � is contractible.
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Since the type of abelianizations of a given group is a mere proposition, we abuse
notation and denote any such abelianization by G!Gab.

Remark 2.34 The existence of abelianizations can be proved in several different ways.
One could mimic the classical definition, describing Gab as the quotient of G by the
subgroup generated by commutators, but this is awkward to work with constructively.

A second method that clearly works is to define Gab as a higher inductive type with a
point constructor � WG!Gab, a point constructor giving Gab an identity element, recur-
sive point constructors giving addition and inverses in Gab, recursive path constructors
showing that the group laws hold and that the operation is abelian, a path constructor
showing that � is a homomorphism, and a recursive path constructor forcing Gab to
be a set. While there is no doubt that this will work, it is difficult to use in practice
because of the number of constructors and the fact that many of them are recursive.

A much simpler construction is as the higher inductive type with the constructors

� � WG!Gab,

� comm W
Q
a;b;cWG �.a � .b � c//D �.a � .c � b//,

� isset W
Q
x;yWGab

Q
p;qWxDy p D q.

Equivalently, this is the 0–truncation of the coequalizer of the two obvious maps
G �G �G!G. Using either description, it is straightforward to show that Gab has a
unique group structure making � a group homomorphism, that this group structure is
abelian, and that � satisfies the universal property. We don’t give further details here,
since this has been formalized by Ali Caglayan in the HoTT library [10].

Given a group homomorphism f WG!Grp H , there is a unique group homomorphism
f ab WGab!Grp H

ab making the square

G H

Gab H ab

�

f

�

f ab

commute. This makes abelianization into a functor and � into a natural transformation.

2.7 Tensor products

In this section, we define tensor products and use them to complete the proof of
Theorem S.
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Recall that for a group G and an abelian group H , the set G !Grp H is an abelian
group. The group operation is given by .'C /.g/ W� '.g/C .g/, and the inverse
by .� /.g/ W� � .g/, along with the natural proofs that these are homomorphisms.

Definition 2.35 Given abelian groups A and B , a tensor product of A and B consists
of an abelian group T together with a map t W A!Grp B !Grp T such that for any
abelian group C the map

t� W .T !Grp C/ �! .A!Grp B!Grp C/

given by composition with t is an equivalence.

One can show in a straightforward way that tensor products exist, although we don’t
need this, and in fact the existence follows from Theorem 2.38. Moreover, the type of
tensor products of a given pair of abelian groups is a mere proposition. We denote any
such tensor product by A˝B . Given a W A, and b W B , we form the elementary tensor
a˝ b W A˝B as a˝ b W� t .a; b/.

Example 2.36 Let A W Ab. Then A ' A ˝ Z, and the isomorphism is given by
mapping a W A to a˝ 1. This follows from the fact that Z represents the identity; that
is, .Z!Grp C/'Grp C for any C W Ab, where the isomorphism is given by mapping
f W Z!Grp C to f .1/.

Lemma 2.37 Let A;B;C W Ab, and '; WA˝B!Grp C . If for every a WA and b WB
we have '.a˝ b/D  .a˝ b/, then ' D  .

Proof By construction, we have '.a˝b/D t�.'/.a; b/ and  .a˝b/D t�. /.a; b/.
By assumption and function extensionality, we have t�.'/D t�. /, and since t� is an
equivalence, we deduce that ' D  .

A key step towards proving the Hurewicz theorem is constructing a map

�n.X/
ab
˝�m.Y /

ab
!Grp �nCm.X ^Y /

natural in the pointed types X and Y , and proving that this map is an equivalence
under connectivity assumptions on X and Y . Equivalently, we are looking for a map
�n.X/

ab !Grp �m.Y /
ab !Grp �nCm.X ^ Y / that is a tensor product under these

assumptions.
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In order to do this, observe that, for G and H groups and A an abelian group, we have
an equivalence

.Gab
!Grp H

ab
!Grp A/

��! .G!Grp H !Grp A/;

given by precomposition with the corresponding abelianization maps. Applying the
smashing map from Definition 2.26 to the map sm� W X !� Y !� X ^ Y from
Definition 2.30 and using the above observation, we get a natural map

tX;Y W �n.X/
ab
!Grp �m.Y /

ab
!Grp �nCm.X ^Y /:

Theorem 2.38 Let n;m� 1, let X be a pointed , .n�1/–connected type , and let Y be
a pointed , .m�1/–connected type. Then the map tX;Y exhibits �nCm.X ^ Y / as the
tensor product of �n.X/ab and �m.Y /ab.

This implies in particular that tensor products of abelian groups exist.

Proof Given an abelian group C , we must show that the map

t�X;Y W .�nCm.X ^Y /!Grp C/ �! .�n.X/
ab
!Grp �m.Y /

ab
!Grp C/:

is an equivalence. The following diagram will let us show that t�X;Y is homotopic to
a map that is easily proven to be an equivalence. Let h W �nCm.X ^Y /!Grp C and
consider the diagram

.�nCm.X^Y /!Grp C/

.X^Y !�X^Y / .X^Y !�K.C; nCm//

.X!� Y !�X^Y / .X!� Y !�K.C; nCm//

.�n.X/!Grp �m.Y /!Grp �nCm.X^Y // .�n.X/!Grp �m.Y /!Grp C/

.�n.X/
ab!Grp �m.Y /

ab!Grp �nCm.X^Y // .�n.X/
ab!Grp �m.Y /

ab!Grp C/

h0�

�

�nCm�

�

smashing

h0�

smashing�

h�

h�

� �

We explain the diagram. The right-hand vertical arrow at the top is an equivalence by
Corollary 2.32 and Proposition 2.23, and also implicitly uses a chosen equivalence
e W �nCm.K.C; nCm//' C . The unlabeled vertical arrows bordering the first square
are the adjunction from Lemma 2.31. The vertical arrows labelled smashing are from
Definition 2.26; the right-hand one uses e and is an equivalence by Theorem 2.28. The
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unlabeled vertical arrows at the bottom are from the universal property of abelianization.
The horizontal maps labelled h� are postcomposition by h. The horizontal maps labelled
h0� are postcomposition with the map h0 WX ^Y !� K.C; nCm/ which corresponds
to h under the displayed equivalence �nCm. It is straightforward to check that the three
squares commute.

The right-hand column is an equivalence which we will show is homotopic to t�X;Y .
Consider the identity map idX^Y at the top of the left-hand side. Its image in the
bottom left corner is tX;Y , and the image of tX;Y under h� is equal to the image of h
under t�X;Y . By definition of h0, the image of idX^Y in the top-right corner is h. So the
right-hand column sends h to t�X;Y .h/. That is, the composite vertical equivalence is
homotopic to t�X;Y .

2.8 Smash products, truncation, and suspension

The goal of this section is to prove a result about the interaction of smash products and
truncation, and a result about the interaction of smash products and suspension. Both
results make use of the symmetry of the smash product, so we begin with that.

Definition 2.39 Given pointed types X and Y , there is a pointed map

� WX ^Y !� Y ^X

defined by induction on the smash product in the following way:

� �.sm.x; y// W� sm.y; x/,
� �.auxl/ W� auxr,
� �.auxr/ W� auxl,
� ap� .gluely/ WD gluer y,
� ap� .gluer x/ WD gluel x.

It is pointed by reflsm.y0;x0/.

Lemma 2.40 For pointed types X and Y , the composite � ı � WX ^Y !� X ^Y is
pointed homotopic to the identity. In particular , the map � is an equivalence.

Proof We first show that for every z WX ^Y , �.�.z//D z. We prove this using the
induction principle for smash products. For the three point-constructors, this holds
definitionally. The two 1–dimensional constructors are similar, so we only consider the
first one. We must show that for each y W Y ,

transportz 7!�.�.z//Dz.gluel y; reflsm.x0;y//D reflauxl:
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By a calculation similar to those in [16, Section 2.11], the left-hand side is equal to

ap� .ap� .gluel y//
�1
� reflsm.x0;y/ � gluel y:

By the definition of � in Definition 2.39, this is equal to

.gluel y/�1 � reflsm.x0;y/ � gluel y;

which is equal to reflauxl, as required.

We must also show that this homotopy is pointed. Up to definitional equality, this
amounts to showing that reflsm.x0;y0/ D reflsm.x0;y0/, which is true by reflexivity.

Next we show that the map � is natural.

Lemma 2.41 Given pointed maps f W X !� X 0 and g W Y !� Y 0 between pointed
types , the following square of pointed maps commutes:

X ^Y X 0 ^Y 0

Y ^X Y 0 ^X 0

f ^g

� �

g^f

Proof By path induction we can reduce to the case that f .x0/� x00 and g.y0/� y00.
Next we use the induction principle for X ^Y . The square commutes definitionally on
the three point constructors of X ^Y , but requires some straightforward path algebra in
the remaining two cases. Since the proof has been formalized, we omit the details.

Lemma 2.42 Let m� �1, let n� 0, let Y be a pointed type , and let X be a pointed ,
.n�1/–connected type. Then the map

kj�jm ^ idXknCm W kY ^XknCm!
kY km ^XnCm

is an equivalence.

Proof Since the map in the statement is pointed, it is enough to show that for ev-
ery pointed, .nCm/–truncated type T , precomposition with j�jm ^ idY induces an
equivalence

.kY km ^X !� T / �! .Y ^X !� T /:

By the naturality in the first variable of the adjunction from Lemma 2.31, it is enough
to show that precomposition with j�jm induces an equivalence

.kY km!� X !� T / �! .Y !� X !� T /;

and this follows from the fact that the type X !� T is m–truncated (Lemma 2.27).
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Corollary 2.43 Let m � �1, let n � 0, let X be a pointed , .n�1/–connected type ,
and let Y be a pointed type. Then the map

kidX ^ j�jmknCm W kX ^Y knCm!kX ^kY kmknCm

is an equivalence.

Proof The square
X ^Y X ^kY km

Y ^X kY km ^X

idX^j�jm

� �

j�jm^idX

commutes by Lemma 2.41. The vertical maps are equivalences by Lemma 2.40. By
Lemma 2.42, the bottom map is an equivalence after .nCm/–truncation, so the top
map must also be an equivalence after truncating.

We conclude this section with a result letting us commute suspension and smash
products.

Lemma 2.44 Given pointed types X and Y , there is a pointed equivalence

c† W†.X ^Y /'� X ^†Y;

natural in both X and Y .

Proof By Definition 2.39 and Lemmas 2.40 and 2.41, it is enough construct a natural
equivalence †.X ^ Y /'� †X ^ Y . In order to do this, it suffices to show that, for
every pointed type Z, there is an equivalence .†.X ^Y /!� Z/' .†X ^Y !� Z/
natural in X , Y , and Z, by the Yoneda lemma (Proposition 2.11). Given a pointed
type Z, we define the equivalence as the composite of natural equivalences,

.†.X ^Y /!� Z/' .X ^Y !� �Z/

' .X !� Y !� �Z/

' .X !� �.Y !� Z//

' .†X !� Y !� Z/

' .†X ^Y !� Z/:

The first and fourth equivalences follow from the adjunction between suspension and
loops (Lemma 2.16). The second and fifth equivalences use Lemma 2.31. The third
equivalence follows from Lemma 2.24. This concludes the proof.
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This result was formalized in the spectral repository [8], but the proof of naturality is
not complete.

3 Homology and the Hurewicz theorem

In this section, we begin by defining homology and proving the Hurewicz theorem.
Then we define the Hurewicz homomorphism and prove that it is unique up to sign.
We conclude by giving some applications about the interaction between homology,
connectedness, and truncation.

3.1 Prespectra and homology

In this section, we introduce prespectra as a tool for defining the homology groups of a
type.

Definition 3.1 A prespectrum .Y; s/ is a family of pointed types Y WN! U� and a
family of pointed structure maps s W

Q
.nWN/Yn!� �YnC1. When the structure maps

of Y are clear from the context, we will denote the prespectrum simply by Y .

Definition 3.2 A map of prespectra f W .T; s/! .T 0; s0/ consists of a family of pointed
maps f W

Q
.nWN/Yn!� Y

0
n, and a family of pointed homotopiesY
.nWN/

�s0n ıfn �� �fnC1 ı sn:

Note that a prespectrum can be equivalently defined by giving a family of pointed types
Y WN! U� and a family of pointed maps †Yn!� YnC1. This is the way that we will
specify prespectra.

Example 3.3 Eilenberg–Mac Lane spaces are defined in homotopy type theory in [13].
Given an abelian group A, the Eilenberg–Mac Lane prespectrum HA of type A is given
by the family �n:K.A; n/ of pointed types, where we let K.A; 0/ W� A, pointed at 0.
For n� 1, the structure map is

j�jnC1 W†K.A; n/!k†K.A; n/knC1 �K.A; nC 1/:

When n� 0, we define †K.A; 0/!K.A; 1/ by induction on suspension, by mapping
the north and south poles of †K.A; 0/ to the base point of K.A; 1/, and merid.a/ to
the loop of K.A; 1/ represented by a.
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Definition 3.4 Given a pointed typeX and a prespectrum .Y; s/, we form a prespectrum
X ^Y , called the smash product of X and Y , as follows. The type family is given by
.X ^Y /n �X ^Yn. The structure maps are given by the composite

(3-1) †.X ^Yn/
c†
�!� X ^†Yn

idX^Nsn
����!� X ^YnC1;

where Nsn W†Yn!� YnC1 corresponds to sn W Yn!� �YnC1.

Note that, by the naturality of Lemma 2.44 and the functoriality of the smash product
on pointed types, the smash product of a pointed type and a prespectrum is functorial.

Definition 3.5 The type of sequential diagrams of groups is the type

GrpN
W�

X
AWN!Grp

Y
nWN

An!Grp AnC1:

Analogously, we define the type of sequential diagrams of abelian groups, which we
denote by AbN .

The most important example in this paper is given by sequential diagrams of groups
that come from prespectra.

Example 3.6 Let .Y; s/ be a prespectrum and let n; k WN. The map sk WYk!��YkC1
induces a morphism �n.sk/ W �n.Yk/!Grp �n.�YkC1/' �nC1.YkC1/. Iterating this
process, we get a sequential diagram of groups �i:�nCi .YkCi / WN! Grp. We denote
this diagram by Sn

k
.Y /. This construction is natural in Y .

Note that, if n� 2, the diagram Sn
k
.Y / is a sequential diagram of abelian groups.

Definition 3.7 Let .A; '/ W UN be a sequential diagram of types. We define the
sequential colimit of .A; '/, denoted by colimA W U , as the higher inductive type
generated by the constructors � W

Q
nWN An! colimA and

glue W
Y
nWN

Y
aWAn

�n.a/D �nC1.'n.a//:

Lemma 3.8 Let .A; '/ W AbN be a sequential diagram of abelian groups. Then the
sequential colimit colimA of the underlying sets is a set , and it has a canonical abelian
group structure such that all of the induced maps in WAn! colimA are homomorphisms.
Moreover , the abelian group colimA has the universal property of the colimit in the
category of abelian groups.
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Proof The main difficulty is to show that colimA is 0–truncated. For this, we use
[20, Corollary 7.7(1)], which says that a sequential colimit of n–truncated types is
n–truncated.

To show that colimA has an abelian group structure we start by using induction
to define the operation C on colimA. In the case of point constructors, we define
�l.a/C �n.b/ W� �m.'

m
l
.a/C'mn .b//, where m � max.l; n/ and 'm

l
W Al ! Am and

'mn W An! Am are defined by iterating '. The case of a path constructor glue and a
point constructor is straightforward, and the case of two path constructors is immediate,
since colimA is a set. The fact that, with these operation, colimA is an abelian group
is clear.

The map �n W An ! colimA is a group morphism for every n by construction, and
the fact that colimA satisfies the universal property of the colimit follows from the
induction principle of colimA.

Definition 3.9 Let Y be a prespectrum, let n WZ, and let j �max.0; 2�n/. We define
the nth stable homotopy group of Y as

�sn.Y / W� colimSnCjj .Y /:

Note that the stable homotopy groups of a prespectrum are defined for any integer n, and
not only for natural numbers. Moreover, by construction, the sequential diagram in the
definition of �sn.Y / is a sequential diagram of abelian groups, so stable homotopy groups
are always abelian. As an aside, one can show that any SnCjj .Y /with j �max.0; 2�n/
will have an isomorphic colimit. Finally, since the construction Sn

k
.Y / is functorial

in Y , stable homotopy groups are functorial in the prespectrum.

Definition 3.10 We define the nth reduced homology of X with coefficients in Y as

zHn.X IY / W� �
s
n.X ^Y /:

We define the nth (ordinary) reduced homology of X with coefficients in an abelian
group A by

zHn.X IA/ W� zHn.X IHA/:

Notice that these types carry an abelian group structure, given by the group structure
of stable homotopy groups (Definition 3.9).
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3.2 The Hurewicz theorem

In this section, we prove our main result, Theorem H. To do so, we first show that
when X is sufficiently connected, we can compute zHn.X IA/ without taking a colimit.

Lemma 3.11 Let n � 1, let A W Ab, and let X be a pointed , .n�1/–connected type.
Then the natural homomorphism �nC1.X ^K.A; 1//! zHn.X IA/ is an equivalence.

Proof Recall that

zHn.X IA/� �
s
n.X ^HA/� colimSnCjj .X ^HA/;

for j D max.0; 2� n/. Since n � 1, we must consider two cases, n D 1 and n � 2.
When nD 1, we have j D 1, and the sequential diagram that defines zHn.X IA/ starts
as

�nC1.X ^K.A; 1//! �nC2.X ^K.A; 2//! � � � :

When n� 2, we have j D 0, and the sequential diagram that defines zHn.X IA/ starts
as

�n.X ^K.A; 0//! �nC1.X ^K.A; 1// �! �nC2.X ^K.A; 2//! � � � :

It suffices to show that in either case the morphism

�nCi .X ^K.A; i//! �nCiC1.X ^K.A; i C 1//

is an equivalence for i � 1. To prove this, we use (3-1) to factor the map as

�nCi .X ^K.A; i//! �nCiC1.X ^†K.A; i//! �nCiC1.X ^K.A; i C 1//:

Now, the first of these two maps is induced by the Freundenthal map

X ^K.A; i/!�†.X ^K.A; i//

composed with the equivalence †.X ^K.A; i//' .X ^†K.A; i//. Notice that, by
Corollary 2.32, X ^K.A; i/ is .nCi�1/–connected. If i � 1, we have that nC i � 2,
and thus .nC i � 1/C 1 � 2.nC i � 1/, so the Freudenthal suspension theorem [16,
Theorem 8.6.4] implies that the map �nCi .X ^K.A; i//! �nCiC1.X ^†K.A; i//

is an equivalence.

The second map is an equivalence by Corollary 2.43, sinceK.A;iC1/�k†K.A; i/kiC1
by definition.
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Theorem 3.12 (Hurewicz theorem) Given an abelian group A, a natural number
n� 1, and a pointed , .n�1/–connected type X , we have an isomorphism

�n.X/
ab
˝A'Grp

zHn.X IA/;

natural in X and A.

By naturality in X , we mean naturality with respect to pointed maps between .n�1/–
connected types.

Proof By Lemma 3.11, it is enough to show that we have a natural isomorphism
�nC1.X^K.A; 1//'Grp �n.X/

ab˝A, and this follows directly from Theorem 2.38.

3.3 The Hurewicz homomorphism

In this section we give a construction of the Hurewicz homomorphism and prove that
it is unique up to sign.

Let X be a pointed type, A an abelian group, and n � 1. Applying zHn.�IA/ to the
.n�1/–connected cover map Xhn� 1i !� X we obtain a morphism

zHn.Xhn� 1iIA/!Grp
zHn.X IA/;

natural in X and A. By Theorem 3.12, there is a natural isomorphism

�n.Xhn� 1i/
ab
˝A'Grp

zHn.Xhn� 1iIA/:

Since �n.Xhn� 1i/!Grp �n.X/ is also a natural isomorphism, we can compose with
the abelianization of its inverse to obtain a morphism �n.X/

ab˝A!Grp
zHn.X IA/.

Definition 3.13 For every X W U�, A W Ab, and n� 1, the morphism

hn W �n.X/
ab
˝A! zHn.X IA/

described above is the nth Hurewicz homomorphism.

By construction, when X is .n�1/–connected, hn is an isomorphism.

Definition 3.14 Let n � 1. A morphism of n–Hurewicz type is given by a group
homomorphism �n.X/

ab ˝ A !Grp
zHn.X IA/ for each X W U� and A W Ab, that is

natural in both A and X , and that is an isomorphism when X � Sn and A� Z. Here
we are regarding �n.�/ab˝� and zHn.�I�/ as 1–coherent functors U� �Ab! Ab.
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Example 3.15 For any n� 1, the nth Hurewicz homomorphism (Definition 3.13) is a
morphism of n–Hurewicz type.

Theorem 3.16 Let n WN and let F and G be morphisms of n–Hurewicz type. Then
either F.X;A/ D G.X;A/ or F.X;A/ D �G.X;A/ for every pointed type X and
abelian group A. The choice of sign is independent of X and A.

Proof The morphisms F.Sn;Z/ and G.Sn;Z/ give us two isomorphisms between
�n.S

n/˝Z and zHn.SnIZ/. We now show that there are exactly two possible isomor-
phisms between �n.Sn/˝Z and zHn.SnIZ/, and that these differ by a sign. On the
one hand, by [14] (see also [16, Section 8.1]), we know �n.S

n/ ' Z. On the other
hand, we have Z˝Z ' Z (Example 2.36). So it is enough to show that there are
exactly two isomorphisms between Z and Z, and that they differ by a sign. This is
straightforward, using the fact that if two integers n and m satisfy n�m D 1, then
nDmD 1 or nDmD�1, which follows from the fact that Z has decidable equality.

There are then two cases, F.Sn;Z/ D G.Sn;Z/ and F.Sn;Z/ D �G.Sn;Z/. We
consider only the first case, the second one being analogous. We thus assume that
F.Sn;Z/DG.Sn;Z/ and we want to show that for every pointed type X and every
abelian group A we have F.X;A/DG.X;A/.

By Lemma 2.37, it is enough to check that F.X;A/ D G.X;A/ when evaluated on
elementary tensors. Since the abelianization map is surjective and we are proving a
proposition, it is enough to check this on elementary tensors .�˛/˝ˇ for ˛ W�n.X/ and
ˇ W A. Since we are proving a mere proposition, we can assume that we have a pointed
map N̨ W Sn!� X representing ˛. Define Ň W Z! A by sending 1 to ˇ. Consider the
following diagram, which commutes by the naturality assumption:

�n.S
n/ab˝Z zHn.S

nIZ/

�n.X/
ab˝A zHn.X IA/

F.Sn;Z/

�n. N̨ /
ab˝ Ň zHn. N̨ ; Ň/

F .X;A/

The commutativity of the diagram implies that

F.X;A/..�˛/˝ˇ/D zHn. N̨ ; Ň/.F.S
n;Z/.� ˝ 1//;

where � W �n.Sn/ is represented by the identity map Sn!� Sn. Similarly, we get that
G.X;A/..�˛/˝ˇ/D zHn. N̨ ; Ň/.G.S

n;Z/.� ˝ 1//, and since F.Sn;Z/DG.Sn;Z/,
we conclude that F.X;A/.˛˝ˇ/DG.X;A/.˛˝ˇ/.
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3.4 Applications

In this section, we give some consequences of the main results in the paper. We start
with two immediate applications of the Hurewicz theorem.

Proposition 3.17 Let n�1, let X be a pointed , n–connected type , and letA WAb. Then
zHi .X IA/D 0 for all i � n. Conversely , if X is a pointed , connected type with abelian

fundamental group such that zHi .X IZ/D 0 for all i � n, then X is n–connected.

Proposition 3.18 Let n� 1 and let A;B W Ab. Then zHn.K.A; n/IB/' A˝B , and ,
in particular , zHn.K.A; n/IZ/' A.

The following result says that truncation does not affect low-dimensional homology.

Proposition 3.19 Let X be a pointed type and let m � n be natural numbers. For
every abelian group A W Ab, the truncation map X !kXkm induces an isomorphism
zHn.X IA/

��! zHn.kXkmIA/.

Proof The objects in the sequential diagram that defines zHn.X IA/ have the form
�nCi .X^K.A; i// for i�min.0; 2�n/, and the morphism zHn.X IA/! zHn.kXkmIA/
is induced by levelwise morphisms �nCi .X ^K.A; i//! �nCi .kXkm ^K.A; i//

given by the functoriality of �nCi and the smash product. We will show that these
levelwise morphisms are isomorphisms, which implies that the induced map is an
isomorphism.

Consider the commutative square

�nCi .X ^K.A; i// �nCi .kXkm ^K.A; i//

�nCi
�
kX ^K.A; i/kiCm

�
�nCi

�kXkm ^K.A; i/iCm�
given by functoriality of .iCm/–truncation and �nCi . It suffices to show that the
bottom map and the vertical maps in the square are isomorphisms. The vertical maps
are isomorphisms since nC i � i Cm, and the bottom map is an isomorphism by
Lemma 2.42.

We conclude by showing that1–connected maps induce an isomorphism in all homol-
ogy groups.
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Corollary 3.20 Let f WX !� Y be a pointed map between pointed types that induces
an isomorphism in �0 and an isomorphism in �n for n� 1 and all choices of basepoint
x0 W X . Then f induces an isomorphism in all homology groups for all choices of
coefficients.

Proof Let A W Ab and let n� 0. We have a commutative square

zHn.X IA/ zHn.Y IA/

zHn.kXknIA/ zHn.kY knIA/

where the vertical maps are isomorphisms, by Proposition 3.19. The bottom map is
induced by kf kn W kXkn!kY kn, which is an equivalence, by the truncated Whitehead
theorem [16, Theorem 8.8.3]. It follows that the top map is an isomorphism, concluding
the proof.
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