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A concave holomorphic filling of an
overtwisted contact 3–sphere
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DANIELE ZUDDAS

We prove that the closed 4–ball admits non-Kähler complex structures with strongly
pseudoconcave boundary. Moreover, the induced contact structure on the boundary
3–sphere is overtwisted.

32V40; 32Q55, 57R17

1 Introduction

In [4], Antonio J Di Scala and the authors constructed a family of pairwise inequivalent
complex surfaces E D E.�1; �2/ together with a holomorphic map f W E ! CP1

admitting compact fibers (the parameters �1 and �2 are such that 1 < �2 < ��11 ). A
relevant property of E is that it is diffeomorphic to R4, giving an extension to real
dimension four of a result of Calabi and Eckmann [2].

The compact fibers of f were shown to be smooth elliptic curves and a singular rational
curve with one node, and these are the only compact complex curves of E. The
existence of embedded compact holomorphic curves implies the nonexistence of a
compatible symplectic structure on E. Thus, the complex surface E is non-Kähler.

Further, in [5] we proved that E cannot be realized as a complex domain in any smooth
compact complex surface.

In the present paper, we study the structure of E away from a compact subset by
providing an exhausting family of embedded strongly pseudoconcave 3–spheres; see
Proposition 4.1. From this we derive our main theorem. In order to state our results, we
recall the notion of Calabi–Eckmann type complex manifold introduced in [4], which
was inspired by the results of [2].
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2142 Naohiko Kasuya and Daniele Zuddas

Definition 1.1 A complex manifold W is said to be of Calabi–Eckmann type if
there exists a compact complex manifold X of positive dimension, and a holomorphic
immersion k WX !W which is nullhomotopic as a continuous map.

We also recall the definition of strong pseudoconvexity and pseudoconcavity. Let
.W; J / be a complex manifold with complex structure J and complex dimension � 2,
and let M �W be a smooth real oriented hypersurface. Then, near every point p 2M
we can consider a local defining function for M , namely a smooth function u W U !R

defined in a certain open neighborhood U of p in W , such that u has no critical points
and M \U D u�1.0/ is the oriented boundary of the sublevel u�1.�1; 0�. Moreover,
M carries the complex tangencies distribution � D TM \J.TM/, which we assume
to be endowed with the canonical complex orientation induced by J .

Definition 1.2 We say that a real oriented hypersurface M �W is strongly pseudo-
convex in W if there exists a strictly plurisubharmonic local defining function for M
near every point p 2M , namely a defining function u whose complex Hessian Hu is
positive definite. The oriented hypersurface M is said to be strongly pseudoconcave if
it becomes strongly pseudoconvex by reversing its orientation.

In particular, we can consider complex manifolds with strongly pseudoconvex or
pseudoconcave boundary. It is a standard fact that when dimC W is even, an oriented
real hypersurfaceM �W is strongly pseudoconvex (resp. pseudoconcave) if and only if
the complex tangencies distribution onM is a positive (resp. negative) contact structure.
Since we consider real 3–manifolds embedded in complex surfaces, we mainly refer to
strong pseudoconvexity or pseudoconcavity by means of this characterizing property.

Main Theorem The closed ball B4 admits a Calabi–Eckmann type complex structure
J with strongly pseudoconcave boundary. Moreover , the .negative/ contact structure �
determined on @B4 D S3 by the complex tangencies is overtwisted and homotopic as a
plane field to the standard positive tight contact structure on S3.

In other words, .B4; J / is a concave holomorphic filling of the overtwisted contact
sphere .S3; �/. As far as the authors know, this is the first example of this sort in the
literature.

This 4–ball arises as a smooth submanifold of E containing certain compact fibers of
the map f WE!CP1, and so it is evidently of Calabi–Eckmann type.
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Our strategy for proving the theorem relies on finding a closed piecewise smooth 3–
manifoldM �E supporting an open book decomposition whose pages are holomorphic
annuli and whose monodromy is a left-handed (negative) Dehn twist about the core of
the annulus; hence the underlying manifold M is homeomorphic to S3.

Moreover, we prove that M can be approximated by a 1–parameter family of strongly
pseudoconcave smoothly embedded 3–spheres M� � E, for a suitable parameter
� 2 .0; 1/. Namely, the complex domain outside the embedded 4–ball with corners
D �E bounded by M is foliated by strongly pseudoconcave 3–spheres. This implies
the existence of a strictly plurisubharmonic function on E �D.

As a consequence, the open book decomposition of M is compatible with the contact
structure of M� given by complex tangencies, which is then overtwisted. For the basics
of the three-dimensional contact topology we use throughout the paper, the reader is
referred, for example, to the book of Ozbagci and Stipsicz [15, Chapters 4 and 9].

Remark By Eliashberg’s classification of overtwisted contact structures on closed
oriented 3–manifolds [7], the negative contact structure in the main theorem is uniquely
determined up to isotopy.

We point out that in all (odd) dimensions greater than three, a closed co-oriented
overtwisted contact manifold (see Borman, Eliashberg and Murphy [1] for the definition)
cannot be the strongly pseudoconcave boundary of a complex manifold. Indeed, such a
holomorphic filling would give a strongly pseudoconvex CR structure on the contact
manifold with reversed orientation. Thus, it can be filled by a Stein space — Rossi’s
theorem [17] — and therefore it can be filled by a Kähler manifold — Hironaka’s
theorem [9; 10] — which is impossible for an overtwisted contact manifold. In this
sense, our result is particular to dimension three.

Lisca and Matić [13, Theorem 3.2] proved that any Stein filling W of a contact 3–
manifold can be realized as a domain in a smooth complex projective surface S . Hence
S � IntW is a concave holomorphic filling of a Stein fillable contact 3–manifold.

On the other hand, Eliashberg in [6] proved that for any closed contact 3–manifold
.N; �/, the 4–manifold N � Œ0; 1� admits a complex structure such that the height
function is strictly plurisubharmonic, providing a holomorphic cobordism of .N; �/
with itself. However, its proof is not constructive.

Our result gives a rather explicit complex cobordism of an overtwisted contact 3–sphere
with itself, by taking

S
�2Œ1=3; 1=2�M� Š S

3 � Œ0; 1� as a complex domain in E.
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Remark In [11] the authors prove that every closed contact 3–manifold can be filled as
the strongly pseudoconcave boundary of a compact complex surface of Calabi–Eckmann
type. We point out that this generalization depends on our main theorem.

The paper is organized as follows. In Section 2, we recall the construction of the
complex surface E given in [4] and present a holomorphic model of the complement
C D E � IntD, which will be helpful for the proof of the main theorem, with D
the 4–ball mentioned above. In Section 3, we construct a holomorphic open book
decomposition embedded in E. Finally, in Section 4, we prove the main theorem by
showing the existence of a strictly plurisubharmonic function near the embedded open
book decomposition based on contact topology.

2 The complex surface E

In this section, we recall the construction of E, by sketching the original one in [4].
This will be helpful for the proof of our main theorem.

Throughout this paper we make use of the following notation:

�.a; b/D fz 2C j a < jzj< bg;

�Œa; b�D fz 2C j a � jzj � bg;

�.a/D fz 2C j jzj< ag;

and similarly with mixed brackets. We also denote the closed disk and the circle of
radius a in C by B2.a/ and S1.a/, respectively. When a D 1, we drop it from the
notation.

According to [4], the construction of EDE.�1; �2/ proceeds as follows. Let �1 and �2
be positive numbers such that 1 < �2 < ��11 , and choose �0 such that �1��12 < �0 < �1.

We want to realize E as the union of two pieces. One of them is the product

V D�.1; �2/��.�
�1
0 /;

and the other one is the total space W of a genus-1 holomorphic Lefschetz fibration
h WW !�.�1/ with only one singular fiber †.

In order to define the analytical gluing between V andW , we make use of the following
Kodaira model [12]. Consider the elliptic fibration

.C� ��.0; �1//=Z!�.0; �1/;
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defined by the canonical projection on the quotient space of C� � �.0; �1/ with
respect to the Z–action given by n � .w1; w2/ D .w1w

n
2 ; w2/. Then, it canonically

extends to a singular elliptic fibration h WW !�.�1/, and so we have an identification
W �† D .C� ��.0; �1//=Z. The critical point of h is nondegenerate, namely the
complex Hessian is of maximal rank, and so h is a genus-1 holomorphic Lefschetz
fibration. In what follows, we shall keep the convention of denoting by .w1; w2/ the
usual complex coordinates of C� ��.�1/�C2 when referring to W (up to the above
identification), and by .z1; z2/ the usual coordinates of C2 when referring to V �C2.

Now, let us consider the multivalued holomorphic function ' W�.0; �1/!C� defined
by

'.w/D exp
�
1

4�i
.logw/2� 1

2
logw

�
:

We denote by ˆ W U !W the holomorphic map defined by

ˆ.z1; z2/D Œ.z1'.z
�1
2 /; z�12 /�;

where U � C� ��.��11 ; ��10 / is a certain open subset that will be specified later.
Notice that ˆ is single-valued. This depends on the fact that any two branches '1
and '2 of ' are related by the formula '2.w/ D wk'1.w/ for some k 2 Z, which
is compatible with the above Z–action. For the purpose of this section, we take
U D�.1; �2/��.�

�1
1 ; ��10 /� V.

It follows that ˆ is a biholomorphism between U � V and ˆ.U /�W.

We are now ready to holomorphically glue V and W by identifying the open subsets
U � V and ˆ.U /�W by means of ˆ. That is, we define the complex surface

E DE.�1; �2/D V [ˆW:

We consider V and W as open subsets of E via the quotient map.

By construction, there is a holomorphic map f WE!CP1 defined by the canonical
projection onto the second factor on V and by the elliptic fibration h on W , where
CP1 is regarded as the result of gluing the disks �.��10 / and �.�1/ by identify-
ing �.��11 ; ��10 / � �.��10 / with �.�0; �1/ � �.�1/ by means of the inversion map
z 7! z�1.

Notice that the resulting complex surface E does not depend on �0, since this parameter
determines only the size of the gluing region.

Remark By taking �01 and �02 such that �2 < �02 < .�
0
1/
�1 < ��11 , our construction

yields an obvious holomorphic embedding of E in E 0 D E.�01; �
0
2/ as a relatively
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compact complex domain. The closure yE D ClE in E 0 has Levi flat piecewise smooth
boundary, and @ yE is homeomorphic to S3. This agrees with the interpretation of the
map f WE!CP1 given in [4] as the restriction of the Matsumoto–Fukaya fibration
S4 ! S2 [14] to the complement of a neighborhood of the negative critical point
in S4. This also relates to the embedded open book decomposition that we construct
in Proposition 3.1.

Let V 0 D�.1; s/��.��11 ; ��10 /, where the additional parameter s is chosen so that
��10 <s<��11 �2. LetU 0 be the subset of V 0 defined byU 0Df.z1; z2/2V 0 j jz2j< jz1jg.
We put V 00 D V [V 0 � C2 and identify a point .z1; z2/ 2 U 0 with  .z1; z2/, where
 W U 0! V 0 is the holomorphic embedding defined by  .z1; z2/D .z1z�12 ; z2/. Let
Y D V 00=� be the quotient.

Proposition 2.1 The manifold Y D V 00=� is biholomorphic to the preimage of the
disk �.��10 /�CP1 by the holomorphic fibration f WE!CP1.

Proof The preimage f �1.�.��10 // is described as follows. Let W.�0; �1/ be the
subset of W given, in the Kodaira model above, by

W.�0; �1/D .C
�
��.�0; �1//=ZD f

�1.�.�0; �1//;

being f D h in W.�0; �1/. Then, we have U 0 �W.�0; �1/, and so

f �1.�.��10 //D V [U�U 0 W.�0; �1/:

Now, we define a map ‰ W Y ! f �1.�.��10 // by putting ‰.Œ.z1; z2/�/D .z1; z2/ on
V=� and ‰.Œ.z1; z2/�/Dˆ.z1; z2/ on V 0=�. It is easy to check that ‰ is well defined
and is a biholomorphism.

In order to obtain the complement C �E of a 4–ball D containing the singular fiber
of f , we remove from Y the subset

Z D f.z1; z2/ j c1 < jz1j< c2g � V;

where s�1 < c1 < c2 < �2. Then, by Proposition 2.1, it is enough to set C D Y �Z.

3 The holomorphic open book decomposition

We briefly recall the notion of open book decomposition of a 3–manifold. For a more
thorough treatment, the reader is referred to Ozbagci and Stipsicz [15, Chapter 9] and
to Rolfsen [16, Chapter 10K].

Algebraic & Geometric Topology, Volume 23 (2023)



A concave holomorphic filling of an overtwisted contact 3–sphere 2147

By an open book decomposition of a closed, connected, oriented, manifold M of real
dimension three, we mean a smooth map f WM ! B2 such that

(1) the restriction f jCl.f �1.IntB2// WCl.f �1.IntB2//!B2 is a (trivial) fiber bundle
with fiber a link LD f �1.0/, called the binding of the open book;

(2) the map ' W M � L ! S1 D @B2 defined by '.x/ D f .x/=jf .x/j is a fiber
bundle.

The closure of every fiber F� D Cl.'�1.�//, for � 2 S1, is a compact surface in M ,
called a page of the open book, and @F� DL. By a little abuse of terminology, we also
call the surfaces f �1.�/, for all � 2 S1 D @B2, pages of f . The two kinds of pages
are ambient isotopic in M to each other.

Given an open book decomposition f WM ! B2, the orientations of M and of B2

induce an orientation on the pages, and hence on the binding LD @F� .

For an open book decomposition f W M ! B2, there is an associated monodromy
!f of the bundle ', which is a diffeomorphism of a page F� that fixes the boundary
pointwise, and it is well defined up to isotopy fixing the boundary.

On the other hand, given an element ! of the mapping class group Modg;b of a compact,
connected, oriented surface Fg;b of genus g � 0 and with b � 1 boundary components,
there is an open book decomposition f! WM! ! B2 with monodromy ! and page
F DFg;b , and this is uniquely determined up to orientation-preserving diffeomorphisms.
The construction goes as follows. Take a representative  W F ! F of the isotopy
class ! and consider the mapping torus T! D .F � R/=Z, where the Z–action is
generated by the diffeomorphism � WF �R!F �R defined by �.x; t/D . .x/; t�1/.

Let M! be the result of gluing @F �B2 to T! along the boundary, by means of the
obvious identifications @.@F �B2/Š @F �S1 Š @F � .R=Z/Š @T! , where the last
identification comes from the fact that  is the identity on @F . Then, let f WM!!B2

be the canonical projection @F �B2!B2 on @F �B2�M! , while it is the projection
T!!R=ZŠ @B2 on T! �M! .

Consider an oriented surface F and let 
 � IntF be a connected simple closed curve.
A Dehn twist ı
 W F ! F about the curve 
 is a diffeomorphism of F such that away
from a tubular neighborhood T of 
 in F , ı
 is the identity, while in T Š S1 � Œ0; 1�
the diffeomorphism ı
 either corresponds to the map ı� W S1 � Œ0; 1�! S1 � Œ0; 1�

defined by
ı�.z; t/D .ze

�2�it ; t /;
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or to the map ıC D ı�1� , where S1� Œ0; 1� is endowed with the product orientation and
its identification with T � F is orientation-preserving. In the former case, ı
 is called
a left-handed (or negative) Dehn twist, while in the latter it is called a right-handed (or
positive) Dehn twist. By changing the orientation of F , the two types of Dehn twists
are swapped.

The 3–sphere admits an open book decomposition h� W S3 ! B2 with binding the
negative Hopf link H�, and with page the annulus S1 � Œ0; 1�. The monodromy is the
left-handed Dehn twist about the core circle 
 D S1�

˚
1
2

	
of the annulus (there is also

the positive version hC W S3! B2 of this). This is the well-known realization of the
(negative) Hopf link in S3 as a fibered link, with page the Hopf band [8].

The following proposition will be helpful in the proof of the main theorem. We keep
the notation of Section 2.

Proposition 3.1 There is a piecewise smooth embedded 3–sphere M �E such that
the restriction f jM WM !B2 of the holomorphic map f WE!CP1, is diffeomorphic
to the open book decomposition h� of S3 described above , with B2 a suitable closed
disk in�.��10 /�CP1. Every page of f jM is a holomorphic annulus in an elliptic fiber
of f . Moreover , M is not globally smooth , since it has corners along the two linked
tori given by @f j�1M .@B2/, on the complement of which M is foliated by holomorphic
curves. Thus , M is Levi flat in E.

We endow M with the orientation determined by the open book decomposition, where
the pages are oriented by the induced complex structure, and the base disk B2 takes the
orientation from CP1. By construction, this disk is in the part of CP1 that corresponds,
via the map f , to the Stein open subset V �E, with the boundary in the gluing region.

Fix two numbers c and � such that �0 < c < �1 and

0 < � < 1
2

min.�1� �0; �0� �1��12 /:

We put a D �2 � � and b D c�1C �, and let AD �Œa; b�. It is then straightforward
to check that .�kA/ \ A D ∅ for all � 2 �Œc; �1� and for all k 2 Z � f0g, with
�kAD�Œ j�jka; j�jkb �. Moreover, by taking into account the inequalities among the
�i ’s at the beginning of Section 2, we can easily obtain

(1) bc < 1C
c.�1� �0/

�0�1
< �2:

Proof Consider the set

G D f �1.S1.c//�ˆ.�.bc; a/�S1.c�1//�E;
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with S1.c/ � �.�1/ � CP1. The map fG D f jG W G ! S1.c/ Š S1 is a compact
annulus bundle over the circle S1.c/��.�1/�CP1 of radius c. Here S1.c/ has the
clockwise orientation in the disk �.�1/, namely it is oriented as the boundary of the
disk it bounds in �.��10 /�CP1. This choice depends on the inversion in the map ˆ0

below.

This bundle is trivial, and a trivialization is provided by the map ˆ0 W A � S1 ! G

defined by

ˆ0.w1; w2/Dˆ.w1; c
�1w2/D Œ.w1'.cw

�1
2 /; cw�12 /�:

Notice that ˆ0 is holomorphic on every fiber.

Now, we construct an open book decomposition of S3 embedded in E. We begin with
an abstract description of this open book, and then we see how it is embedded in E.

Let  1 be the identity map of S1.a/�S1, and let

 2 W S
1.b/�S1! S1.b/�S1

be defined by  2.w1; w2/D .w1w2; w2/.

We use the diffeomorphism  D  1[ 2 W @.@A�B
2/! @.A�S1/ to construct the

oriented 3–manifold
M D .@A�B2/[ .A�S

1/

obtained by gluing @A�B2 to A�S1 along the boundary (these two pieces are oriented
in the canonical way).

Let p WM ! B2 be defined by p.w1; w2/D w2, for .w1; w2/ in @A�B2 or A�S1.
It is clear that .M; p/ is an open book decomposition of M with binding

LD @A� f0g � @A�B2 �M

and the annulus A as the page.

Now, we show that the monodromy of p is the diffeomorphism ı W A! A defined by

ı.z/D ze2�i�.jzj/;

where � W Œa; b�! Œ0; 1� is an increasing diffeomorphism (for example, the affine one).
Thus, ı is the identity on @A. Let

T .ı/D
A� Œ0; 1�

.z; 1/� .ı.z/; 0/
be the mapping torus of ı.
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The open book decomposition with page A and monodromy ı represents a 3–manifold
B.ı/ obtained by capping off T .ı/ with @A �B2 glued along the boundary by the
identity, up to the obvious identification @B2 D S1 Š Œ0; 1�=.0� 1/.

Define the map k W T .ı/! A�S1 by setting

k.Œ.z; t/�/D .ze2�i�.jzj/.t�1/; e2�it /:

Then, k is an orientation-preserving fibered diffeomorphism.

The gluing maps  1 and  2 used for building M correspond, by means of k, to the
identity of @.T .ı//D @A�S1. This implies that there is a diffeomorphism M ŠB.ı/,
with respect to which the open book p corresponds to that of B.ı/, and so ı is the
monodromy of p.

In order to understand ı, we consider the diffeomorphism q W A! S1 � Œ0; 1� defined
by

q.z/D
�
Nz

jzj
; �.jzj/

�
:

This is orientation-preserving, as it can be easily shown by writing q in polar coordinates.
Moreover, q�1.w; t/D ��1.t/ xw.

It is now straightforward to prove the identity ı� D q ı ı ı q�1, where ı� is the
left-handed Dehn twist defined above. Therefore, ı is a left-handed Dehn twist of A
about the curve 
 � A of equation �.jzj/D 1

2
(that is, the core of A). It follows that

p WM ! B2 is equivalent to the open book h� of S3, and in particular M Š S3.

Next, we define an embedding g WM !E by

g.z1; z2/D

8<:
ˆ0.z1; z2/ for .z1; z2/ 2 A�S1;
j.z1; c

�1z2/ for .z1; z2/ 2 S1.a/�B2;
j.cz1; c

�1z2/ for .z1; z2/ 2 S1.b/�B2;

where j W V ,!E is the inclusion map.

We show that g is well defined. For .z1; z2/ 2 S1.a/�S1,

g.z1; z2/D j.z1; c
�1z2/Dˆ.z1; c

�1z2/D Œ.z1'.cz
�1
2 /; cz�12 /�D .ˆ0 ı 1/.z1; z2/:

Finally, we check consistency at .z1; z2/ 2 S1.b/�S1. First, .z1; z2/ 2 S1.b/�B2

implies .cz1; c�1z2/ 2 V by inequality (1) above, so we can compute j.cz1; c�1z2/.

Algebraic & Geometric Topology, Volume 23 (2023)
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We have
g.z1; z2/D j.cz1; c

�1z2/

Dˆ.cz1; c
�1z2/

D Œ.cz1'.cz
�1
2 /; cz�12 /�

D Œ.z1z2'.cz
�1
2 /; cz�12 /�

D .ˆ0 ı 2/.z1; z2/;

where we are using the Z–action considered in Section 2.

By abusing notation, we still denote by M � E the image of g. Therefore, M is a
piecewise smooth embedded submanifold of E, although it is not globally smooth.
Indeed, the two codimension-0 submanifolds of E ŠR4 bounded by M have corners
along @A�S1�M . Away from the corners, M is foliated by holomorphic curves, and
hence it is Levi flat. These holomorphic curves are the images of the disks fz1g �B2

and the images of the annuli A�fz2g by the embedding g, with .z1; z2/ 2 @A�S1.

Let D �E be the compact submanifold bounded by M , and let C be the noncompact
one. Hence, E DD[M C .

The argument based on Kirby calculus in [4] proves the following proposition.

Proposition 3.2 Up to smoothing the corners , D is diffeomorphic to B4 and C is
diffeomorphic to S3 � .0; 1�.

The same conclusion follows from the existence of a proper continuous function
u W C ! .0; 1�, which is smooth, regular (namely, with no critical points) and strictly
plurisubharmonic in IntC . In the next section, we show the existence of such a function
to prove our main theorem.

4 The proof of the main theorem

In this section we prove the following proposition and then prove our main theorem.

Proposition 4.1 There exists a smooth 3–sphere M1 �E such that

(1) the noncompact submanifold C1 � E Š R4 bounded by M1 admits a proper
smooth regular strictly plurisubharmonic function u W C1! .0; 1�;

(2) the complement D1 DE � IntC1 is of Calabi–Eckmann type;

(3) M1 is piecewise smoothly isotopic to M in E.
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Remark Property (3) of the above proposition and Proposition 3.2 imply that M1 is
smoothly standard in E, meaning that there exists a diffeomorphism E!R4 mapping
M1 to the standard unit sphere S3. Thus, C1Š S3� .0; 1� and D1DE� IntC1ŠB4.

Proposition 4.1 follows from the construction of C in Section 2 and the following
well-known facts.

Lemma 4.2 Let U �C be a nonempty open subset , and let  W U !R be a smooth
function. Let �D f.z1; z2/ 2U �C j jz2j � exp.� .z1//g �C2. Then the following
two conditions are equivalent :

(1) @� is strongly pseudoconvex (resp. pseudoconcave);

(2)  (resp. � ) is a strictly subharmonic function.

Lemma 4.3 Let c be a smooth regular curve in R2. Then the hypersurface

Mc D f.z1; z2/ j .log jz1j; log jz2j/ 2 cg � .C�/2

is strongly pseudoconvex if and only if the plane curve c is strictly convex.

Now we construct a strongly pseudoconcave hypersurface M1 which is a perturbation
of the holomorphic open book M . We make use of Proposition 2.1 and of the notation
established in Section 2.

Proof of Proposition 4.1 We construct a family fMtgt2.0;1� of smooth closed hy-
persurfaces in C as follows. First, for any t 2 .0; 1� and a sufficiently small positive
number ı, we take the two functions ft ; gt W Œ0; ��11 �! .1; �2/ given by

ft .x/D log aC tı.1C x2/; gt .x/D log.bc/� tı.1C x2/:

Recall that .z1; z2/ are the coordinates on V D�.1; �2/��.��10 /�C2. We then define
the hypersurfaces Qt and Rt in V by jz1j D exp.ft .jz2j// and jz1j D exp.gt .jz2j//,
respectively. By orienting Qt and Rt as the boundary components of the manifold

f.z1; z2/ 2 V j exp.gt .jz2j//� jz1j � exp.ft .jz2j//g;

it turns out that they are both strongly pseudoconcave by Lemma 4.2. Now we retake
the coordinates .w1; w2/ on V 0 so that .w1; w2/ D .z1; z

�1
2 /. Then, near Qt , the

coordinate transformation between V and V 0 is .w1; w2/ D .z1; z�12 /, and near Rt ,
it is .w1; w2/ D .z1z2; z

�1
2 /, by taking the embedding  W U 0 ! V 0 into account;
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see Section 2. Putting uj D log jzj j and vj D log jwj j for j D 1; 2, the coordinate
transformation is given by�

v1
v2

�
D

�
1 0

0 �1

��
u1
u2

�
near Qt ;

�
v1
v2

�
D

�
1 1

0 �1

��
u1
u2

�
near Rt :

Then the defining equations of Qt and Rt are

u1Dft .e
u2/ for u2��log �1 () v1D log aCtı.1Ce�2v2/ for v2� log �1;

u1Dgt .e
u2/ for u2��log �1 () v1D log.bc/�v2�tı.1Ce�2v2/ for v2� log �1;

respectively. Hence, they give plane curves in the .v1v2/–plane, say cQt
and cRt

. Then
there exists a smooth family of strictly convex curves ct satisfying:

(a) each curve ct is contained in the trapezoid

f.v1; v2/ j v1 > log a; log c < v2 < log �1; v1C v2 < log.bc/gI

(b) ct , cQt
and cRt

are smoothly connected to be a regular curve;

(c) the family of curves foliates a subdomain of the trapezoid;

(d) as t goes to 0, the curve ct piecewise smoothly converges to the polygonal line

f.log a; v2/ j log c < v2 < log �1g[ f.v1; log c/ j log a � v1 � log bg

[ f.v1; v2/ j v1C v2 D log.bc/; log c < v2 < log �1g:

Now we define the hypersurface St � V 0 by St D f.w1; w2/ j .v1; v2/ 2 ctg. Then
it is strongly pseudoconvex with one orientation by Lemma 4.3, but with the natural
orientation respecting those of Qt and Rt , it is strongly pseudoconcave. Hence, the
three pieces Qt , Rt and St form a smooth closed strongly pseudoconcave hypersurface
in Y , which we denote by Mt . Strictly speaking, Rt and the union Ht D Qt [ St

are hypersurfaces in V 00 D V [ V 0. In the quotient Y D V 00=�, they are glued
together to form a smooth closed hypersurface Mt in Y . Since each piece is strongly
pseudoconcave, so is Mt . Thus, Mt is a smooth closed strongly pseudoconcave
hypersurface in Y . The equations defining Qt and Rt above and condition (d) of ct
imply that Mt piecewise smoothly converges to M when t goes to 0. In particular,
M1 is a smooth strongly pseudoconcave 3–sphere and satisfies condition (3) of the
statement.

Moreover, the smooth 3–sphere M1 divides the complex manifold E into the two
submanifolds, the compact one D1, which is a closed 4–ball, and the noncompact

Algebraic & Geometric Topology, Volume 23 (2023)



2154 Naohiko Kasuya and Daniele Zuddas

one C1. Then condition (2) is automatically fulfilled because D1 is contractible and
contains the singular rational curve of E.

By a similar construction as that of the family fMtgt2.0;1�, we can easily prove that
IntC1 is foliated by a family of strongly pseudoconcave 3–spheres fMtgt2.1;2/. There-
fore, the following lemma, which proves the existence of a strictly plurisubharmonic
function, concludes the proof.

Lemma 4.4 Let 
 W X ! R be a proper smooth regular function on a complex
manifold X such that the complex tangencies define a contact structure on the level sets

�1.c/ for all c 2 
.X/. Then there exists a smooth convex and increasing function
g W 
.X/!R such that g ı 
 is strictly plurisubharmonic on X .

Proof See for example [3, Lemma 2.7].

Proof of Main Theorem Endow B4 with the complex structure J induced by an
orientation-preserving diffeomorphism B4 Š D1, the 4–ball in E bounded by M1.
Then .B4; J / is of Calabi–Eckmann type and with strongly pseudoconcave boundary
.S3; �/, where � is the induced contact structure.

Since J is homotopic, through almost complex structures, to the standard complex
structure of B4 �C2, the boundary contact structure � is homotopic as a plane field to
the standard positive tight contact structure of S3.

We are left to show the compatibility of the contact structure on M1 Š S
3 with the

open book decomposition inherited from M by a suitable diffeomorphism ' WM !M1

compatible with the splitting M D .@A�B2/[ .A�S1/ of the definition of M in
Section 3, and the splitting M1DQ1[R1[S1 above; that is, '.@A�B2/DQ1[R1
and '.A � S1/ D S1. We want to prove that the contact form ˛ is positive on the
binding (oriented as the boundary of a page) and that d˛ is a volume form on the
pages (oriented as holomorphic curves of E) of the open book decomposition; see [15,
Section 9.2].

Since u is strictly plurisubharmonic on C1, the 1–form ˛ D�dCu is a contact form
on each level set of u, and the 2–form d˛ defines a symplectic structure compatible
with the complex structure J . The contactness of M1 is equivalent to the fact that
the restriction .˛ ^ d˛/jTM1

is a volume form. On the other hand, the open book
decomposition of M1 is given by the function

' WM1�L! S1; '.z1; z2/D
z2

jz2j
;
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where L � M1 is the link of equation z2 D 0. The vector @=@�1 is tangent to the
binding and the tangent space of the page is spanned by @=@�1 and V , where V is the
tangent vector of the curve f.ev1 ; ev2/ j .v1; v2/ 2 c1g. Notice that the binding consists
of two components L1 D f.z1; z2/ 2Q1 j z2 D 0g and L2 D f.z1; z2/ 2R1 j z2 D 0g,
which are naturally oriented by �@=@�1 and @=@�1, respectively.

Now, we check the compatibility. Since the partial derivative @u=@r1 is negative
near L1 and positive near L2,

˛
�
�
@

@�1

�
r1Dd1;z2D0

D dCu
�
@

@�1

�
r1Dd1;z2D0

D� r1

�
@u

@r1

�
r1Dd1;z2D0

> 0;

˛
�
@

@�1

�
r1Dd2;z2D0

D� dCu
�
@

@�1

�
r1Dd2;z2D0

D r1

�
@u

@r1

�
r1Dd2;z2D0

> 0;

which imply the positivity of ˛ along the binding.

In order to see that d˛ is a volume form on the pages, it is enough to show that the
vectors @=@�1, V and R span the tangent space of M1, where

RD J

�
ru

kruk

�
is the Reeb vector field of the contact form ˛jTM1

. Since the r2 component of the
gradient vector is positive except on the binding, so is the �2 component ofR. Therefore,
the three vectors indeed span the tangent space except on the binding.
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