Download this article
 Download this article For screen
For printing
Recent Issues

Volume 25
Issue 6, 3145–3787
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
Loop homotopy of $6$–manifolds over $4$–manifolds

Ruizhi Huang

Algebraic & Geometric Topology 23 (2023) 2369–2388
Bibliography
1 J Amorós, I Biswas, Compact Kähler manifolds with elliptic homotopy type, Adv. Math. 224 (2010) 1167 MR2628808
2 D Barden, Simply connected five-manifolds, Ann. of Math. (2) 82 (1965) 365 MR184241
3 S Basu, The homotopy type of the loops on (n1)–connected (2n+1)–manifolds, from: "Algebraic topology and related topics" (editors M Singh, Y Song, J Wu), Springer (2019) 1 MR3991174
4 S Basu, S Basu, Homotopy groups of highly connected manifolds, Adv. Math. 337 (2018) 363 MR3853054
5 H J Baues, The degree of maps between certain 6–manifolds, Compositio Math. 110 (1998) 51 MR1601662
6 P Beben, S Theriault, The loop space homotopy type of simply-connected four-manifolds and their generalizations, Adv. Math. 262 (2014) 213 MR3228428
7 P Beben, S Theriault, Homotopy groups of highly connected Poincaré duality complexes, Doc. Math. 27 (2022) 183 MR4398609
8 P Beben, J Wu, The homotopy type of a Poincaré duality complex after looping, Proc. Edinb. Math. Soc. 58 (2015) 581 MR3391363
9 A Berglund, Koszul spaces, Trans. Amer. Math. Soc. 366 (2014) 4551 MR3217692
10 G Boyde, p–hyperbolicity of homotopy groups via K–theory, Math. Z. 301 (2022) 977 MR4405674
11 F R Cohen, Applications of loop spaces to some problems in topology, from: "Advances in homotopy theory" (editors S M Salamon, B Steer, W A Sutherland), London Math. Soc. Lecture Note Ser. 139, Cambridge Univ. Press (1989) 11 MR1055864
12 F R Cohen, J C Moore, J A Neisendorfer, The double suspension and exponents of the homotopy groups of spheres, Ann. of Math. (2) 110 (1979) 549 MR554384
13 F R Cohen, J C Moore, J A Neisendorfer, Torsion in homotopy groups, Ann. of Math. (2) 109 (1979) 121 MR519355
14 D Crowley, C M Escher, A classification of S3–bundles over S4, Differential Geom. Appl. 18 (2003) 363 MR1975035
15 D Crowley, J Nordström, The classification of 2–connected 7–manifolds, Proc. Lond. Math. Soc. 119 (2019) 1 MR3957830
16 H Duan, C Liang, Circle bundles over 4–manifolds, Arch. Math. (Basel) 85 (2005) 278 MR2172386
17 Y Félix, S Halperin, J C Thomas, Rational homotopy theory, 205, Springer (2001) MR1802847
18 F Hirzebruch, T Berger, R Jung, Manifolds and modular forms, 20, Vieweg (1992) MR1189136
19 R Huang, Suspension homotopy of 6–manifolds, Algebr. Geom. Topol. 23 (2023) 439 MR4568008
20 R Huang, S Theriault, Loop space decompositions of (2n2)–connected (4n1)–dimensional Poincaré duality complexes, Res. Math. Sci. 9 (2022) 53 MR4462879
21 I M James, On the suspension sequence, Ann. of Math. (2) 65 (1957) 74 MR83124
22 Y Jiang, Regular circle actions on 2–connected 7–manifolds, J. Lond. Math. Soc. 90 (2014) 373 MR3263956
23 P E Jupp, Classification of certain 6–manifolds, Proc. Cambridge Philos. Soc. 73 (1973) 293 MR314074
24 M Kreck, On the classification of 1–connected 7–manifolds with torsion free second homology, J. Topol. 11 (2018) 720 MR3830881
25 M Kreck, Y Su, On 5–manifolds with free fundamental group and simple boundary links in S5, Geom. Topol. 21 (2017) 2989 MR3687112
26 J Neisendorfer, Algebraic methods in unstable homotopy theory, 12, Cambridge Univ. Press (2010) MR2604913
27 J Neisendorfer, T Miller, Formal and coformal spaces, Illinois J. Math. 22 (1978) 565 MR500938
28 J A Neisendorfer, P S Selick, Some examples of spaces with or without exponents, from: "Current trends in algebraic topology, I" (editors R M Kane, S O Kochman, P S Selick, V P Snaith), CMS Conf. Proc. 2, Amer. Math. Soc. (1982) 343 MR686124
29 S Oka, review of Yam (1982)
30 S Sasao, On homotopy type of certain complexes, Topology 3 (1965) 97 MR171281
31 T So, S Theriault, The suspension of a 4–manifold and its applications, preprint (2019) arXiv:1909.11129
32 H Toda, Composition methods in homotopy groups of spheres, 49, Princeton Univ. Press (1962) MR0143217
33 C T C Wall, Classification of (n1)–connected 2n–manifolds, Ann. of Math. (2) 75 (1962) 163 MR145540
34 C T C Wall, Classification problems in differential topology, V : On certain 6–manifolds, Invent. Math. 1 (1966) 355 MR215313
35 C T C Wall, Classification problems in differential topology, VI : Classification of (s1)–connected (2s+1)–manifolds, Topology 6 (1967) 273 MR216510
36 K Yamaguchi, On the homotopy type of CW complexes with the form S2 e4 e6, Kodai Math. J. 5 (1982) 303 MR672527
37 A V Zhubr, Classification of simply connected six-dimensional spinor manifolds, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975) 839 MR0385879
38 A V Zhubr, Closed simply connected six-dimensional manifolds: proofs of classification theorems, Algebra i Analiz 12 (2000) 126 MR1793619