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An algorithmic definition of Gabai width

RICKY LEE

We define the Wirtinger width of a knot and prove that this equals its Gabai width.
This leads to an efficient technique for establishing upper bounds on Gabai width.
We demonstrate an application of this technique by calculating the Gabai width of
54 756 tabulated prime 4–bridge knots. This is done by writing code for a special
category of prime 4–bridge tabulated knots to get upper bounds on Gabai width
via the Wirtinger width, then comparing with the theoretical lower bound on Gabai
width for prime 4–bridge knots. We also provide results showing the advantages our
methods have over the obvious method of obtaining upper bounds on Gabai width
via planar projections.

57M25, 57M27

1 Introduction

Gabai width is a geometric invariant of knots that was first used by Gabai in his proof
of the property R conjecture [6]. Since then, the notion of Gabai width has played
central roles in many important results in 3–manifold topology. Some examples are the
resolution of the knot complement problem by Gordon and Luecke [8], the recognition
problem for S3 by Thompson [12], and the leveling of unknotting tunnels by Goda,
Scharlemann and Thompson [7]. The importance of Gabai width is largely due to its
deep connections with the topology of the knot exterior. For example, Gabai width can
often be used to find incompressible surfaces; see Thompson [13] and Wu [15].

The bridge number of a knot is a closely related geometric invariant, defined as the
minimal number of local maxima needed to construct an embedding of the knot.
Roughly speaking, Gabai width depends on the number of critical points of a projection
as well as their relative heights. Like most geometric invariants, both bridge number
and Gabai width are notoriously difficult to calculate. However, there has been recent
progress on finding algorithmically accessible definitions of bridge number. Blair,
Kjuchukova, Velazquez and Villanueva [4] defined the Wirtinger number of a link and
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2416 Ricky Lee

showed that it is equal to the bridge number. The Wirtinger number is calculated using
a combinatorial coloring algorithm applied to a link diagram. Using ideas inspired by
the Wirtinger number, we define the Wirtinger width of a knot and show it is equal to
the Gabai width of a knot.

We now briefly summarize our procedure. The formal definition of Wirtinger width is
given in Section 3. The Wirtinger width is also computed by coloring knot diagrams.
Let D be a knot diagram. View D as the image of the knot K �R3 under the standard
projection onto the xy–plane. Our goal, given the diagram D, is to obtain a knot K 0

in the same ambient isotopy class of K, but embedded so that K 0 realizes the Gabai
width. Our coloring procedure allows us to obtain a knot yK from D such that yK is
ambient isotopic to K, and the relative heights of the critical points of yK are controlled
by combinatorial data attached to our coloring.

The coloring proceeds as follows. Suppose the knot diagram D has J strands. Then
there are J C 1 stages in the procedure. The knot diagram D begins uncolored at
stage 0. To transition from one stage to the next, one can either add a new color to an
uncolored strand, or extend an existing color to include another uncolored strand. The
procedure terminates once all strands of D are colored.

In general, there are many different ways to color a knot diagram. Not all colorings
will give data which corresponds to a thin position embedding of the knot. We assign a
natural number to each coloring of a knot diagram, then let the Wirtinger width of the
diagram D, denoted by W .D/, be the minimum of these numbers over all colorings
of D. Finally, for any ambient isotopy class of knots K, we define the Wirtinger width
of K, denoted by W .K/, to be the minimum of W .D/ over all diagrams of knots in
the ambient isotopy class K. Letting w.K/ be the Gabai width of K, we can state our
main theorem as follows:

Theorem 1.1 If K is an ambient isotopy class of knots , then W .K/D w.K/.

The coloring can be viewed as an attempt to discretize the following process. Suppose
now K � R3 is a knot in thin position with respect to the standard height function
h.x; y; z/ WD z. Let h�1.r/ be a level surface above K. The Gabai width of K is
calculated by analyzing the intersection setK\h�1.r/ as r!�1 and h�1.r/ sweeps
across the maxima and minima of K. The addition of a new color to D represents
h�1.r/ sweeping across a maximum of K. The occurrence of a multicolored crossing
(crossings where the over-strand is colored and both under-strands are assigned different
colors) represents h�1.r/ sweeping across a minimum of K. The order in which new
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An algorithmic definition of Gabai width 2417

colors and multicolored crossings appear in our coloring procedure dictates the ordering
of the maxima and minima of yK by height.

There is an easy method of obtaining upper bounds on Gabai width. One can take a
knot diagram, perform some planar isotopies if necessary, and use the original Gabai
definition of width to obtain an upper bound in the obvious way. While our coloring
procedure is less straightforward, it is more computationally accessible and enjoys the
following advantage over any potential algorithm written to calculate upper bounds on
Gabai width utilizing only planar isotopies on a knot diagram. Let wp.D/ denote the
planar width of a knot diagram D. A formal definition of planar width will be given
in Section 2, but, roughly speaking, wp.D/ is the upper bound on width one would
get by applying the original Gabai definition to calculate width on D, after minimizing
over all planar isotopies of D. We will prove:

Theorem 1.2 For any ambient isotopy class K of knots and any positive integer n,
there exist infinitely many diagrams D of knots in K such that W .D/ D w.K/ but
wp.D/�W .D/Cn.

Colloquially, Theorem 1.2 states that, if a planar isotopy algorithm were to be im-
plemented, there would still be an infinite number of cases where Wirtinger width
performs better.

Since there are many different ways to completely color a knot diagram, the problem of
finding a coloring which corresponds to a calculation of Gabai width is subtle. However,
one can modify the Wirtinger number algorithm of Villanueva [14] to exhaust all
possible colorings of a given diagram. This is possible because the rules for extending a
coloring in the Wirtinger width procedure are the same as those for extending a coloring
in the Wirtinger number procedure. We illustrate these ideas in Section 8, where we
describe an algorithm that we implemented in Python [10] and used to calculate the
Gabai width of 54 756 prime 4–bridge knots.

Our algorithm runs fast in practice, but depends on knowing beforehand that the inputted
Gauss codes are of prime knots with bridge number 4 and such that the code from [14]
can actually detect bridge number 4. The algorithm takes as input such a Gauss code,
and outputs upper bounds on Wirtinger width. By Theorem 1.1, this gives upper bounds
on Gabai width. It is known, and explained in Section 8, that the Gabai width of a
prime 4–bridge knot must be 32 or 28. Of 86 981 knots tested, our code gave an upper
bound of 28 on Wirtinger width for 54 756 knots. Since our upper bound equals the

Algebraic & Geometric Topology, Volume 23 (2023)



2418 Ricky Lee

theoretical lower bound on Gabai width for such prime 4–bridge knots, this means we
got the exact Gabai width in this case.

Structure of the paper In Section 2, we give preliminary definitions. In Section 3,
we give the formal definition of Wirtinger width via a coloring procedure similar to the
coloring algorithm of Wirtinger number in [4]. Section 4 contains results showing how
Wirtinger number is related to Wirtinger width. In Section 5, we describe a specific
coloring sequence, which, when performed on a projection of a knot in thin position,
shows that W .K/ � w.K/. In Section 6, we show how to use our coloring data to
obtain Morse embeddings of knots from a colored knot diagram. This is used to show
W .K/ � w.K/. In Section 7, we use the results of the previous sections to prove
Theorems 1.1 and 1.2. Many technical lemmas and results from Sections 4, 5 and 6 do
not apply to diagrams of the unknot, so Section 7 handles this special case separately.
In Section 8, we explain how we used Wirtinger width to write an algorithm in Python
that obtained our numerical results, and present some open questions.

Acknowledgments The author would like to thank Ryan Blair for introducing this
topic and for many helpful discussions, especially about Theorem 1.2. We also thank
the referee for a close reading of our initial drafts, leading to many corrections and a
great improvement to our exposition.

2 Preliminaries

Let K denote an ambient isotopy class of knots in R3. As stated in the introduction, let
h W R3! R defined by h.x; y; z/ WD z be the standard height function. Let K � R3

denote a knot in the ambient isotopy class K. We will always assume that the embedding
of K is such that hjK is a Morse function.

Let p W R3! R2 defined by p.x; y; z/ WD .y; z/ be the projection map onto the yz–
plane. We will always assume K is embedded so that pjK is a regular projection. Then
p.K/ is a finite four-valent graph in the yz–plane. We say that D is a knot diagram of
K resulting from the projection p if D is the graph p.K/ together with labels at each
vertex to indicate which edges are over and which are under. By convention, these
labels take the form of deleting parts of the under-arc at every crossing. Thus, we
can view D as a disjoint union of closed arcs in the plane. Let ˛1; : : : ; ˛J denote the
connected components of D. For each ˛i , we let si denote the union of all edges in
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An algorithmic definition of Gabai width 2419

Figure 1: The unique knot diagram containing a strand adjacent to itself.

p.K/ whose interiors have nonempty intersection with ˛i . We refer to each si as a
strand and let s.D/ denote the set of strands of D. We refer to the vertices of p.K/ as
crossings and denote the set of vertices by v.D/.

If s 2 s.D/, then the two endpoints of s will be referred to as the crossings incident
to s. If sp and sq are the under-strands of the same crossing x 2 v.D/, then we say sp
and sq are adjacent at x, or just adjacent. We say the subset A� s.D/ is connected if
there exists a reordering of the strands si1

; si2
; : : : ; sijAj in A such that sij is adjacent to

sijC1
for all 1� j � jAj. Note that there is a unique knot diagram up to planar isotopy

for which there exists a strand adjacent to itself (see Figure 1). In all cases considered,
we assume that adjacent strands are distinct. We say a knot diagram is trivial if it is a
diagram of the unknot.

For s 2 s.D/, we define h.s/ WD maxy2s h.y/ and refer to h.s/ as the height of the
strand s. For a crossing x 2 v.D/, we refer to h.x/ as the height of the crossing x.

Note we do not consider the labels of the knot diagram when we calculate the height
of a strand. It is therefore possible that a strand and a crossing have equal heights. In
fact, if a strand is monotonic with respect to h, then it must have height equal to one of
its incident crossings.

By critical points ofD we will always be referring to images of the critical points of hjK
under the projection p. We say that D is in general position with respect to h if all the
critical points and crossings of D have distinct heights with respect to h, hjK is Morse,
and p.K/ is a regular projection. Observe that, if the knot diagram D is in general
position with respect to h, then all the strands must have different heights. See Figure 2.

s

x

Figure 2: The strand s and the incident crossing x have equal heights (h.s/D h.x/).

Algebraic & Geometric Topology, Volume 23 (2023)



2420 Ricky Lee

Now we recall the definition of bridge number. We let ˇ.K/ denote the number of
maxima of hjK . Then the bridge number ˇ.K/ is defined as minK02K ˇ.K/, where the
minimum is taken over all Morse embeddings of knots in the equivalence class K.

We now recall the definition of Gabai width. Order the critical values of hjK by
c1 > � � � > cN . Let ri 2 .ciC1; ci / denote arbitrarily chosen regular values of hjK
for 1 � i � N � 1. For any y 2 R, define w.y/ WD jK \ h�1.y/j. Define w.K/ WDPN�1

iD1 w.ri /. The Gabai width of K is defined as minK02Kw.K
0/, where the minimum

is taken over all Morse embeddings of knots in the equivalence class K. If K 0 is such
that w.K 0/D w.K/, then we say K 0 is in thin position.

Finally, we give our formal definition of planar width. For any knot diagram D in the
yz–plane that is in general position with respect to h, let KD � R3 be any knot in
the ambient isotopy class K such that p.KD/DD. We define the planar width of D,
denoted by wp.D/, as

wp.D/ WDminw.KD/;

where the minimum is taken over all planar isotopies of D.

3 The coloring rules

In this section, we define Wirtinger width via a combinatorial method for coloring knot
diagrams. Let D be a knot diagram. Let s.D/D fs1; : : : ; sJ g denote the set of strands
of D.

Definition 3.1 A partial coloring is a tuple .A; f /, where A is a subset of s.D/ and
f W A!Z is a function with Z � Z.

Remark Set A0 WD∅, Z0 WD∅, and let f0 be the empty function. Then .A0; f0/ is
a partial coloring. We fix .A0; f0/ to denote this vacuous partial coloring.

We define two rules for extending partial colorings. Let .At�1; ft�1/ denote a partial
coloring, where t 2N and f W At�1!Zt�1. See Figure 3 for examples of each rule.

Seed addition We say the partial coloring .At ; ft / is the result of a seed addition to
.At�1; ft�1/, denoted by .At�1; ft�1/! .At ; ft /, if:

� At�1 � At and At nAt�1 D fsig for some strand si 2 s.D/ nAt�1.

� Zt WDZt�1[ftg.

� ft W At !Zt is defined by ft jAt�1
D ft�1 and ft .si / WD t .

Algebraic & Geometric Topology, Volume 23 (2023)



An algorithmic definition of Gabai width 2421

Figure 3: The first two transitions depict seed additions, the first adding
the color red the second adding the color blue. The last transition depicts a
coloring move extending the color red.

Coloring move We say .At ; ft / is the result of a coloring move on .At�1; ft�1/,
denoted by .At�1; ft�1/! .At ; ft /, if:

� At�1 � At and At nAt�1 D fsqg for some strand sq 2 s.D/ nAt�1.

� sq is adjacent to sp at some crossing x 2 v.D/ and sp 2 At�1.

� The over-strand sv of x is an element of At�1.

� Zt WDZt�1.

� ft W At !Zt is defined by ft jAt�1
WD ft�1 and ft .sq/ WD ft�1.sp/.

There are two ways we refer to a coloring move. We say that sq inherits its color
from sp, or that the coloring move was performed over the crossing x.

Remark We can always perform a seed addition to any uncolored strand. This allows
us to use seed additions to extend the vacuous partial coloring .A0; f0/.

Definition 3.2 If .A0; f0/! � � �! .At ; ft / is a sequence of coloring moves and seed
additions on D, then we say the sequence is a partial coloring sequence. If we have a
partial coloring sequence .A0; f0/! � � � ! .AJ ; fJ / such that s.D/D AJ , then we
say the sequence is a completed coloring sequence. If t is an index of a partial coloring
.At ; ft / in a specified coloring sequence, then we will refer to t as a stage.

Note that we can define a completed coloring sequence for any knot diagram since we
can perform a seed addition to any strand.

Algebraic & Geometric Topology, Volume 23 (2023)
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Definition 3.3 If .At ; ft / is the result of a seed addition to .At�1; ft�1/ with fsig D
At nAt�1, then we call si a seed strand.

Definition 3.4 Let .A0; f0/! � � � ! .AJ ; fJ / be a completed coloring sequence
on the knot diagram D. Let x 2 v.D/. Denote the over-strand of x by sv and the
under-strands of x by sp and sq . If there exists a stage t such that sp; sq; sv 2 At and
ft .sp/¤ ft .sq/, then we say x is a multicolored crossing. The smallest stage at which
all previously stated conditions are satisfied will be referred to as the stage at which
the crossing x becomes multicolored.

Completed coloring sequences allow us to extract geometric information from knot
diagrams. To do this, we first record the order in which strands become colored, and
crossings become multicolored.

Definition 3.5 Let .A0; f0/! � � � ! .AJ ; fJ / be a completed coloring sequence
with multicolored crossing set C. Let Ct denote the set of crossings that become
multicolored at stage t . A �–ordering is an enumeration of the elements in s.D/[ C,
� WD .di /

js.D/jCjCj
iD1 , satisfying the following conditions:

(1) For all 0� t < u� J, all elements colored (or multicolored) at stage t are listed
before any element colored (or multicolored) at stage u.

(2) For each stage 0 � t � J, the element in At nAt�1 is listed, followed by all
elements in Ct (if Ct ¤∅). That is, if at stage t a strand receives its color and a
subset of crossings become multicolored, then we list the strand first, followed
by all crossings that become multicolored at stage t .

Later, we use �–orderings to reconstruct an embedding of our knot in R3 from a
colored knot diagram. Each seed strand will induce a single maximum and each
multicolored crossing will induce a single minimum in our reconstructed embedding.
The ordering of the critical points, by decreasing height with respect to h, is reflected
in our �–ordering. We now show how to elevate this relationship into a calculation of
Gabai width.

Definition 3.6 Let .A0; f0/!� � �! .AJ ; fJ / be a completed coloring sequence. Let
S� s.D/, C� v.D/ and� be the seed strands, multicolored crossings and�–ordering,
respectively, of our completed coloring sequence. Let �0 WD .dij /

jSjCjCj
jD1 denote the

subsequence of � formed by restricting our �–ordering to the set S [ C. We define
the attached sequence .ai /

j�0j
iD0 to be the sequence created via the following rule:

Algebraic & Geometric Topology, Volume 23 (2023)
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� Set a0 WD 0.

� If dij 2�
0 is a seed strand, then set aj WD aj�1C 2.

� If dij 2�
0 is a multicolored crossing, then set aj WD aj�1� 2.

If the first t stages of the completed coloring involve jS j total seed additions, and
jC j total crossings become multicolored by stage t , then we say the partial coloring
sequence .A0; f0/! � � � ! .At ; ft / induces the first jS jC jC j terms of the attached
sequence .ai /

j�0j
iD0.

Definition 3.7 Define W .D/ WD min
PN

iD0 ai , where the minimum is taken over
all possible completed coloring sequences defined for the diagram D. Let W .K/ WD
min W .D/, where the minimum is taken over all possible knot diagrams of knots in
the isotopy class K. We define W .K/ to be the Wirtinger width of K.

Remark The �–ordering resulting from a completed coloring sequence need not be
unique. For example, if at some stage in a coloring sequence the strand s becomes
colored and the crossings xi and xj both become multicolored, then both

�1 WD f : : : ; s; xi ; xj ; : : : g and �2 WD f : : : ; s; xj ; xi ; : : : g

are�–orderings resulting from the same coloring. In the ultimate calculation of W .D/,
such nuances do not matter as both�1 and�2 would induce the same attached sequence
.ai /

�0

iD0. This is because, in each possible �–ordering, the crossings that become
multicolored at the same stage must always be listed consecutively by the second
condition in Definition 3.5.

In order to prove statements about Wirtinger width, one often needs to specify a
�–ordering to work with. The following definition allows us to do this:

Definition 3.8 Let �D fdig
js.D/jCjCj
iD1 be a �–ordering resulting from a completed

coloring sequence on the knot diagram D. We define the height function ho W�! Z

associated to � by ho.dt / WD �t .

The function ho retrieves the negative of the position of dt in the �–ordering. We
introduce a negative sign to allow us to focus on maxima instead of minima in later
constructions. The main use of ho in later proofs will be to compare the relative
positions of strands and multicolored crossings in a �–ordering. If di and dj represent
strands of a knot diagram, then the inequality ho.di / > ho.dj / should be interpreted
as “di is colored before dj ”.

Algebraic & Geometric Topology, Volume 23 (2023)
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Remark The name Wirtinger width comes from the fact, proved in [4], that the
minimum number of seed additions necessary to obtain a completed coloring sequence
on the knot diagram D is equal to the minimum number of meridional generators
needed in a Wirtinger presentation of the knot group from a diagram.

4 Connections to the Wirtinger number

In this section, we prove some preliminary results that will be needed for our proof of
Theorem 1.1. These results are the Wirtinger width analogues of [4, Proposition 2.2].
Let s.D/D fs1; : : : ; sJ g denote the strands of the knot diagram D.

Definition 4.1 Let A WD fs1; : : : ; sng be a connected subset of s.D/, ordered by
adjacency. Let g W A! Z. We say g has a local maximum at sj if n > 1 and

g.sj / >

8<:
maxfg.sj�1/; g.sjC1/g if 1 < j < n;
g.s2/ if j D 1;
g.sn�1/ if j D n:

If nD 1, then g has a maximum at s1.

The following is an equivalent reformulation of being k–meridionally colorable, and
the main theorem, from [4]:

Definition 4.2 D is k–meridionally colorable if there exists a completed coloring
sequence .A0; f0/! � � � ! .AJ ; fJ / containing only k seed additions.

Theorem 4.3 Let �.K/ denote the minimal k such that there exists a knot diagram D

of a knot in the ambient isotopy class K which is k–meridionally colorable. Recall
ˇ.K/ denotes the bridge number of K. Then �.K/D ˇ.K/.

Proposition 4.4 Let .A0; f0/! � � � ! .AJ ; fJ / be a completed coloring sequence
on a knot diagram D. Let � WD .di /

M
iD1 be a �–ordering on s.D/ [ C induced by

the completed coloring sequence on D. Let ho W�! Z be the height function on �
defined by ho.dt / WD �t . Let x 2 v.D/ be a crossing with under-strands sp and sq and
over-strand sv. Let sp and sr be the strands adjacent to sq .

(1) For all u 2 f0; 1; : : : ; J g and y 2 fu.Au/, f �1
u .y/ is connected.

(2) For all y 2 fJ .AJ /, ho has a unique local maximum on f �1
J .y/ when the set

f �1
J .y/ is ordered sequentially by adjacency. The local maximum is the unique

seed strand contained in f �1
J .y/.
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(3) Suppose nowD is a nontrivial knot diagram and fJ .sp/D fJ .sq/D fJ .sr/D y.
If k is such that fsqg D Ak nAk�1, then we cannot have fsp; srg � Ak�1.

(4) If D is a nontrivial knot diagram and x … C, then ho.sv/ >minfho.sp/; ho.sq/g.

(5) If D is any knot diagram and x 2 C, then ho.x/ <minfho.sp/; ho.sq/; ho.sv/g.

Proof (1) This result is a reformulation of [4, Proposition 2.2(1)] in our notation.
We induct on the stage u. Recall A0 D∅ and f0 is the empty function, so the claim is
vacuously true for f0.

Suppose for induction that f �1
u .y/ is connected for all u < t and y 2 fu.Au/. We

will show that f �1
t .y/ is connected for all y 2 ft .At /. Say fsig D At nAt�1 and

ft .si /D r . We consider two cases.

First suppose .At ; ft / is the result of a seed addition to .At�1; ft�1/. By our definition
of seed addition, f �1

t .r/ D fsig and f �1
t .y/ D f �1

t�1.y/ for all y 2 ft .At / n frg.
Since f �1

t .r/ is a singleton, it is connected. By our induction hypothesis, f �1
t�1.y/ is

connected for all y ¤ r .

Now suppose .At ; ft / is the result of a coloring move on .At�1; ft�1/. By our
definition of coloring move, f �1

t .r/ D f �1
t�1.r/[ fsig and si must be adjacent to a

strand in f �1
t�1.r/. Our induction hypothesis implies f �1

t�1.r/ is connected. Therefore,
f �1

t .r/ must also be connected. For all y 2 ft .At /nfrg, we have f �1
t .y/D f �1

t�1.y/.
Therefore, our induction hypothesis also implies f �1

t .y/ is connected for all y 2ft .At /.
This completes the induction.

(2) This result is a reformulation of [4, Proposition 2.2(2)] in our notation. The
assertion comes from the following observation. For every color y 2 fJ .AJ / used in
the coloring of D, the set f �1

J .y/ contains a single seed strand se, which is the first
strand assigned the color y. All other strands sj 2 f �1

J .y/ assigned the color y occur
after se in the sequence �.

We induct on the stage u. By definition, A1 is a singleton and f1 W A1! f1g. Thus ho

trivially attains a unique local maximum on the set A1 D f
�1.1/, which contains only

a seed strand.

Suppose for induction that, for all u< t and all y 2 fu.Au/, the seed strand of f �1
u .y/

is the unique local maximum of ho on the set f �1
u .y/ when ordered sequentially by

adjacency. We claim the same holds for ft . Say fsig D At nAt�1 and ft .si /D r . We
consider two cases.
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First suppose .At ; ft / is the result of a seed addition to .At�1; ft�1/. By our definition
of seed addition, f �1

t .r/ D fsig, so ho trivially attains a unique local maximum on
this set. For all y 2 ft .At / n frg, we have f �1

t .y/D f �1
t�1.y/, so our claim follows

from the induction hypothesis.

Now suppose .At ; ft / is the result of a coloring move on .At�1; ft�1/. Then there
exists a strand sl 2At�1 such that ft .sl/D r and sl is adjacent to si . By our definition of
coloring move and ho, since sl is adjacent to si but colored before si , ho.si / < ho.sl/.
Thus si is not a local maximum in f �1

t .r/. Since f �1
t .r/ D f �1

t�1.r/ [ fsig and
f �1

t .y/ D f �1
t�1.y/ for all y 2 ft .At / n frg, our claim follows from the induction

hypothesis. This completes the induction.

(3) Colloquially, our assertion is that, if D is not a diagram of the unknot, then at
no stage in the coloring process can we have an uncolored strand sq adjacent to two
strands sp and sr that were assigned the same color. Suppose for contradiction that
sp; sr 2 Ak�1. By assumption, sq … Ak�1. By part (1) of this proposition, f �1

k�1
.y/

is connected. Since fJ .sp/D fJ .sr/, we have fsp; srg � f �1
k�1

.y/. Since D is a knot
diagram, the connectivity of f �1

k�1
.y/ and the inclusion fsp; srg � f �1

k�1
.y/ implies

s.D/nfsqgD f
�1

k�1
.y/. Thus s.D/D f �1

J .y/ and so our completed coloring sequence
has a single seed strand. By Theorem 4.3, this implies D is a diagram of a knot with
bridge number 1. But the unknot is the only knot with bridge number 1. This contradicts
the nontriviality of D.

(4) Colloquially, the claim states that, if D is nontrivial and x is not multicolored,
then the over-strand of x is colored before one of its under-strands. Hence, the x comes
earlier in the sequence � than at least one of sp or sq .

Assume for contradiction that ho.sv/ <minfho.sp/; ho.sq/g. That is, the over-strand
of x is colored after both under-strands sp and sq have been colored. Since D is a
nontrivial knot diagram, the adjacent strands sp and sq are distinct. Without loss of
generality, say sp is colored before sq . Let k be the stage that sq receives its color, so
fsqg D Ak nAk�1.

Since ho.sv/ <minfho.sp/; ho.sq/g and k is the stage at which sq receives its color,
sv has not been colored by stage k. Therefore, no coloring move was performed over x
in the completed coloring sequence.

Let sp and sr be the strands adjacent to sq . By assumption, x … C. That is, x is not
multicolored, so sp and sq have been assigned the same color. Since sp and sq have
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been assigned the same color and are adjacent at x, but no coloring move was performed
at x, sq must have inherited its color from sr via a coloring move. But sp was colored
before sq . Therefore, fsp; srg � Ak�1.

Since sp and sq were assigned the same color and sq inherited its color from sr , we
have fJ .sp/ D fJ .sq/ D fJ .sr/. But we have also showed fsqg D Ak nAk�1 and
fsp; srg �Ak�1. Since D is a nontrivial knot diagram, we get the desired contradiction
by part (3) of this proposition.

(5) The inequality is a reformulation of condition (2) in Definition 3.5 in terms of the
height function ho. In words, it states that, in the definition of sequence�, at each stage,
the strand is listed before any crossings that become multicolored, as such a crossing
does not become multicolored at stage t unless all of sp, sq , and sv are in At .

5 Coloring by height

In this section we describe a specific procedure for coloring diagrams of knots in thin
position. It will be used to establish the inequality W .K/ � w.K/. Our goal is to
obtain a coloring sequence that induces a �–ordering which respects the ordering of
the critical points of hjD by height.

For the rest of this section, let K be an embedding of the knot K in R3 that is in
thin position with respect to h. Furthermore, let K be such that the knot diagram
D � fyz–planeg, resulting from the projection p into the yz–plane is in general
position with respect to h. Let c1 > c2 > � � �> cN be the critical values of hjK ordered
by decreasing height with respect to h. We also assume that K is not the ambient
isotopy class of the unknot, so that D is a nontrivial diagram.

Definition 5.1 Let L be any knot diagram embedded in the yz–plane that is in general
position with respect to h. Let x 2 v.L/. Denote the under-strands of x by sf and sr .
If hjsf

has a local maximum at x, then we say sf is the falling strand of x. If hjsr
has

a local minimum at x, then we say sr is the rising strand of x.

sr

sf

Figure 4: The rising strand and falling strand of the pictured crossing are
denoted by sf and sr .

Algebraic & Geometric Topology, Volume 23 (2023)



2428 Ricky Lee

Recall that, for a strand s, we have defined the height of the strand to be h.s/ D
maxy2s h.y/. The assumption that D is in general position with respect to h means
that all strands have distinct heights. This enables the following definition:

Definition 5.2 We say that we color D by height if we obtain a completed coloring
sequence .A0; f0/! � � � ! .AJ ; fJ / by the following procedure:

Step 1 Write s.D/D fs1; : : : ; sjs.D/jg, where h.s1/ > � � �> h.sjs.D/j/.

Step 2 Let .A1; f1/ be the result of a seed addition to .A0; f0/ such that fs1gDA1nA0.

Step 3 Suppose we have a partial coloring sequence .A0; f0/! � � � ! .An�1; fn�1/

defined, where An�1 D fs1; : : : ; sn�1g. Let xi and xj be the crossings incident to sn.
Say h.xi / < h.xj /. We consider two cases:

Case 1 Suppose hjsn
is maximized in int.sn/. Then we let .An; fn/ be the result of

a seed addition to .An�1; fn�1/ such that fsng D An nAn�1.

Case 2 Suppose hjsn
is maximized in @sn (so sn is the falling strand of xj ). Then

we let .An; fn/ be the result of a coloring move over xj .

Remark When a coloring move is performed over a crossing x during the color by
height process, colors must extend from the rising strand of x to the falling strand of x.
Recall that, since D is assumed to be a nontrivial knot diagram, adjacent strands are
distinct, so the rising and falling strands of x will always be distinct.

We first verify that knot diagrams in general position can always be colored by height.

Proposition 5.3 If D is a knot diagram in general position with respect to h, then D
can be colored by height.

Proof We verify that each step of the color by height procedure can always be
performed on D. Since D is in general position with respect to h, all strands have
distinct heights. Thus, they can be ordered by decreasing height. By definition, we can
always perform seed addition moves at any stage. What remains to be verified is that
we can perform the coloring move stated in Step 3, Case 2 of Definition 5.2.

Let .An; fn/, sn, xi and xj be as stated in Step 3, Case 2 of Definition 5.2. Let sv and
sr denote the over-strand and rising strand of the crossing xj , respectively. Since hjsn

is maximized in @sn, we have h.sn/D h.xj /. By assumption, D is in general position
with respect to h. Therefore, h.sn/ D h.xj / < minfh.sv/; h.sr/g. Since the strands
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Figure 5: It will be shown that, sinceK is in thin position andD is in general
position with respect to h, the strands of D can have at most two critical
points. Moreover, if a strand has two critical points, then one must be a
maximum and the other must be a minimum. This figure illustrates the stated
possibilities.

were ordered by decreasing height, this implies fsv; srg � An�1, so we can perform
the desired coloring move.

Our goal now is to show that, when we color D by height, we will get W .D/�w.K/.
The idea behind the upcoming technical results is that, since K is in thin position
and the resulting diagram D is in general position with respect to h, the strands of D
can be classified by how many critical points they contain. Figure 5 illustrates the
classification, which will be used to show that the number of seed additions that occur
when we color by height is equal to the number of maxima in K. Moreover, the number
of multicolored crossings that occur is equal to the number of minima in K.

Lemma 5.4 If s 2 s.D/ and r 2R is a regular value of hjD , then js\ h�1.r/j � 2.

Proof Suppose for contradiction we have a strand s 2 s.D/ and a regular value r 2R

of hjD such that js\ h�1.r/j � 3. (See eg Figure 6.)

Recall that c1 > c2 > � � � > cN are the critical values of hjK , and say r 2 .cjC1; cj /.
Choose regular values ri 2 .ciC1; ci / for 1 � i � N � 1 with rj D r . Recall K is in
thin position, so w.K/D w.K/. To obtain our desired contradiction, we will exhibit
an isotopy on K to produce another embedding of K with strictly lower width.

Take three points a, b and c in s\h�1.r/ that are consecutive in the strand s with respect
to some orientation on s. Let sa;b denote the subarc of s in the yz–plane with boundary

sq

level surface

Figure 6: An example of a violation of Lemma 5.4.
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a ac cbb
˛a;c

˛b;c ˛b;c

sa;b
sa;b

sb;csb;c

˛a;b

Figure 7: The setup for Cases 1 and 2 in the proof of Lemma 5.4 are on the
left and right, respectively.

set fa; bg. Define sa;c and sb;c similarly. Let ˛a;b be the arc in yz–plane\ h�1.r/

with boundary set fa; bg. Define ˛a;c and ˛b;c similarly.

Before describing the isotopy, we must consider cases based on the order of the points
fa; b; cg in yz–plane\h�1.r/. The ordering is by the y–coordinates of the points. Up
to symmetry, there are two cases to consider, as depicted in Figure 7.

Case 1 Suppose a < c < b. Let Da;c be the disk cobounded by sa;c and ˛a;c in the
yz–plane. We now define the steps of the isotopy. Let Osa;c be the arc component of
K \p�1.sa;c/.

Step 1 Perform an isotopy on K that fixes the y– and z–coordinates of all points
on K, and arranges that Osa;c D p.Osa;c/D sa;c and all points in K n Osa;c have
negative x–coordinate. Note now Osa;c cobounds the disk Da;c with ˛a;c in
the yz–plane.

Step 2 Perform an isotopy on Osa;c that fixes a and c and pushes Osa;c across Da;c

onto ˛a;c .

Step 3 After performing the isotopy, perturb the portion of K in a neighborhood
of ˛a;c so that hjK is Morse and has two fewer critical points than it had
originally.

Let s0a;c and K 0 denote the image of sa;c and K, respectively, after the isotopy and
perturbation. Let D0 denote the diagram of K 0 given by projection into the yz–plane.
Let s0a;c denote the image of Osa;c in D0.

Case 2 Suppose a < b < c. Then sa;b and sb;c cobound disks with ˛a;b and ˛b;c ,
respectively, in the yz–plane. We obtain s0a;c , K 0 and D0 from a procedure analogous
to that in Case 1. The only modification is that, in Step 2, we push across two disks
instead of one.
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We now claim w.K 0/ < w.K/. By construction,

js0a;c \ h
�1.rj /j< jOsa;c \ h

�1.rj /j:

Our procedure fixed the height of all points in K outside of a small neighborhood
of Osa;c and did not introduce any new critical points. Therefore,

N�1X
iD1

jK 0\ h�1.ri /j<

N�1X
iD1

jK \ h�1.ri /j D w.K/:

The above inequality showsw.K 0/<w.K/. SinceK was assumed to be in thin position,
we get our desired contradiction.

Proposition 5.5 Let .A0; f0/! � � � ! .AJ ; fJ / be a completed coloring sequence
obtained from coloring D by height.

(1) A seed addition is performed on the strand s if and only if hjs is maximized in
the interior of s.

(2) Let xi be a crossing with falling strand sq , where xi and xj are the crossings
incident to sq . Then xi is multicolored if and only if hjsq

is minimized in the
interior of sq and h.xi / < h.xj /.

Proof (1) By Definition 5.2, a seed addition is performed on a strand if and only if
that strand has a maximum in its interior.

(2) Let t be the stage at which sq receives its color, so fsqg D At nAt�1.

Suppose xi is a multicolored crossing. Then hjsq
must be minimized in the interior

of sq , for otherwise, as sq is the falling strand of xi , it would be minimized at xj .
But, if sq is the falling strand of xi and hjsq

is minimized at xj , then hjsq
would

also have to be maximized at xi , for otherwise we could find a regular value r such
that jsq \ h�1.r/j � 3, which would violate Lemma 5.4. In other words, sq would
be monotonic with respect to h. But this would mean .At ; ft / was the result of a
coloring move on .At�1; ft�1/ over xi , which is impossible because xi is assumed to
be multicolored.

In addition, if h.xi / > h.xj /, then sq would have been colored via a seed addition,
because the assumption that xi is multicolored forbids any coloring move from being
performed over xi . The inequality h.xi / > h.xj / would mean no coloring move was
performed over xj because we are coloring by height. By part (1) of this proposition,
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sl

sp
xi

sq

sr

xj

Figure 8: The setup for the proof of Proposition 5.5(2), where we want to
show xi is multicolored. It is assumed that sq has a minimum in its interior
and xi is the lower incident crossing of sq . The strands adjacent to sq are sp
and sr . The strands adjacent to sp are sl and sq .

hjsq
would be maximized in the interior of sq . But it was shown that hjsq

is also
minimized in the interior of sq . Since sq is the falling strand of xi and contains both a
maximum and a minimum of hjsq

in its interior, the inequality h.xi / > h.xj / would
imply the existence of a regular value r such that jsq \ h�1.r/j � 3, which would
violate Lemma 5.4. We conclude h.xi / < h.xj /.

Conversely, suppose that hjsq
is minimized in the interior of sq and h.xi / < h.xj /. We

will show xi is a multicolored crossing. Let sp and sr be the strands adjacent to sq at
the crossings xi and xj , respectively. Let sl be the other strand adjacent to sp. See
Figure 8 for a diagram of this setup. Let u be the stage at which sp is colored, so that
fspg D Au nAu�1.

Suppose for contradiction that xi is not multicolored. Observe that, since h.xi /<h.xj /

and sq is the falling strand of xi , no coloring move could have been performed at xi

when we color D by height. We consider two cases.

Recall fsqg D At nAt�1. First suppose .At ; ft / was the result of a seed addition to
.At�1; ft�1/. By assumption, xi … C, so fJ .sp/ D fJ .sq/. Thus sp cannot also be
a seed strand. Hence, sp must have inherited its color from sl because no coloring
move could have been performed over xi when we colored D by height. But this
means fJ .sl/ D fJ .sp/ D fJ .sq/ and fsl ; sqg � Au�1 must hold. This contradicts
Proposition 4.4(3).

Now suppose .At ; ft / was the result of a coloring move on .At�1; ft�1/. No coloring
move could have been performed over xi when we colored D by height, so sq must
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have inherited its color from sr . But xi … C. Therefore, fJ .sp/D fJ .sq/D fJ .sr/.
If u < t (that is, if sp was colored before sq), then fsp; srg � At�1 and we have a
contradiction to Proposition 4.4(3).

Now say t < u (that is, sq was colored before sp). We still have fJ .sp/D fJ .sq/, so
sp cannot be a seed strand under the current assumptions. Thus sp must have inherited
its color from sl since no coloring move could have been performed over xi when
we colored D by height. This forces fJ .sl/D fJ .sp/D fJ .sq/ and fsl ; sqg � Au�1,
contradicting Proposition 4.4(3).

We conclude xi is multicolored.

Recall thatK is in thin position andD, which is the diagram ofK obtained by projection
into the yz–plane, has N critical points.

Corollary 5.6 If S and C are the sets of seed strands and multicolored crossings
resulting from a coloring of D by height , then jSjC jCj DN.

Proof Proposition 5.5 implies that S and C are in bijective correspondence with the
set of local maxima and the set of local minima of hjK , respectively. This follows
because K is assumed to be such that D is in general position with respect to h.

Theorem 5.7 If K is an ambient isotopy class of knots that does not contain the
unknot , then W .K/� w.K/.

Proof Since D is a diagram of the knot K in K, it suffices to show W .D/� w.K/.
Let .A0; f0/! � � �! .AJ ; fJ / be a completed coloring sequence on D obtained from
coloring D by height. Let .ai /

N
iD0 be the attached sequence of the coloring. We claimPN

iD0 ai � w.K/.

Note that Corollary 5.6 verifies that the number of critical points of K is equal to N,
where the attached sequence .ai /

N
iD0 resulting from coloring D by height contains

N C 1 terms. Let rn 2 .cnC1; cn/ denote a regular value of hjD . It suffices to show
an � w.rn/ for 1� n�N. Recall that we always have a0 D 0 by definition. Fix one
such n.

First we fix some notation. For all critical values ci , let i be the unique strand at which
h�1.ci / fails to intersect D transversely. Set w.r0/ WD 0 for notational convenience.
Write

an D

nX
iD1

ai � ai�1; w.rn/D

nX
iD1

w.ri /�w.ri�1/;
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so that our goal is to show

(1)
nX

iD1

ai � ai�1 �

nX
iD1

w.ri /�w.ri�1/:

Observe that ai � ai�1 2 f�2; 2g and w.ri /�w.ri�1/ 2 f�2; 2g for each i . Thus, it
suffices to show that the number of positive terms in the left sum is bounded above by
the number of positive terms in the right sum in equation (1).

Let t be the stage such that s 2 At if and only if rn < h.s/. That is, a strand is colored
by stage t if and only if its height is greater than rn. We can acquire such a t because
our completed coloring sequence was obtained from coloring D by height. To count
the number of positive terms in the sums for equation (1), define

Sn WD fi j ai � ai�1 D 2; 1� i � ng; Mn WD fi j w.ri /�w.ri�1/D 2; 1� i � ng:

The value jMnj is the number of maxima above rn. The value jSnj is related to the
number of seed additions that have been performed by stage t . When coloring by height,
it is possible that the lower incident crossing corresponding to a minimum below rn

becomes multicolored by stage t . Therefore, we cannot guarantee the equality of jSnj

and jMnj. However, we have the following claim, which suffices for our desired result:

Claim jSnj � jMnj:

Proof By Proposition 5.5(1), each strand containing a maximum with height above rn
must have been colored via a seed addition by stage t . Since D is in general position
with respect to h, for all cj above rn corresponding to a minimum of a strand j , the
over- and under-strands of the lower incident crossing of j have height greater then cj ,
and hence rn. Therefore, by Proposition 5.5(2), each minimum above rn corresponds
to a crossing that becomes multicolored by stage t . Since there are n critical points
above rn, we conclude that .A0; f0/! � � � ! .At ; ft / induces at least the first nC 1
terms .ai /

n
iD0 in the attached sequence .ai /

N
iD0.

By Definition 5.2, of coloring by height, jMnj is the number of seed additions in the
partial coloring sequence .A0; f0/! � � �! .At ; ft /. Since .A0; f0/! � � �! .At ; ft /

induces at least the first nC 1 terms .ai /
n
iD0 in the attached sequence .ai /

N
iD0, jSnj is

bounded above by the number of seed additions in .A0; f0/!� � �! .At ; ft /. Therefore,
jSnj � jMnj, as desired.

This claim shows that the number of positive terms in
Pn

iD1 ai � ai�1 is bounded
above by the number of positive terms in

Pn
iD1w.ri /�w.ri�1/, which verifies the

inequality in equation (1).
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6 Lifting a colored diagram

In this section we give a method for obtaining a Morse embedding of a knot from
a colored knot diagram such that the ordering of the maxima and minima by height
matches the �–ordering of seed strands and multicolored crossings. Then we use this
method to show W .K/� w.K/.

For the rest of this section, let D be a diagram of a knot in the ambient isotopy class K
such that W .D/DW .K/. Assume K is not the ambient isotopy class of the unknot,
so that D is a nontrivial diagram. Let .A0; f0/! � � � ! .AJ ; fJ / be a completed
coloring sequence on D with attached sequence .ai /

N
iD0. Let S, C and �D fdig

M
iD1

denote the set of seed strands, multicolored crossings and the �–ordering on s.D/[ C
induced by our completed coloring sequence, respectively. Let �0 WD fdij g

N
jD1 be the

subsequence of � formed by restricting our �–ordering to S [ C. Let ho W�! Z be
the height function associated to �, defined by ho.dt / WD �t .

In this section, we embed our diagram into the plane z D �M � 1. Recall that D
is defined as a four-valent graph with labels at each vertex containing over/under
information. The labels take the form of deleting parts of the edges in the graph
corresponding to under-strands. We now want to view D as a disjoint union of arcs in
the plane. To this end, for all di 2� representing a strand, let d�i be the strand di with
neighborhoods of the boundary of di removed, as dictated by the labels on the vertices
of D. For each di 2� representing a multicolored crossing, let d�i WD di . This switch
in perspective on knot diagrams, from a four-valent graph to a disjoint union of arcs in
the plane, is necessary to adapt the proof of the main theorem in [4] to our situation.

Theorem 6.1 There exists a knot yK in the ambient isotopy class K embedded so that
hj yK has N critical values c1 > c2 > � � �> cN . For all critical values , cj is a maximum
if and only if dij is a seed strand. In addition , cj is a minimum if and only if dij is a
multicolored crossing.

Proof For all dt 2�, let Odt denote the copy of d�t embedded in the plane z D ho.dt /

so that the orthogonal projection of Odt onto the plane z D�M � 1 is d�t . Recall that
the crossings of a knot diagram are by definition just points on the plane, so, if dt is a
crossing, then d�t is the point in the plane z D h0.dt / projecting orthogonally onto dt .
We call Odt the lift of dt .

In what follows, we show that the lifts Odt can be connected in such a way that the
resulting knot has D as the diagram of its projection onto the plane z D�M � 1. Let
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Odq

Odv

Odp

Odi

dq

dp

dv

Figure 9: The construction of spq (the black dashed line) at the multicolored
crossing di .

dp and dq be strands adjacent at the crossing x. Let dv be the over-strand of x. Let
� > 0 be such that the ball, denoted by B.x; �/, in the plane zD�M �1 has nonempty
connected intersection with the strands dp, dq and dv and empty intersection with all
other strands. Then the cylinder B.x; �/�R (where R denotes the z–direction) has
nonempty connected intersection with Odp, Odq , and Odv. The cylinder B.x; �/�R is
disjoint from all other lifts. At the crossing x, we embed an arc connecting the lifts Odp

and Odq , denoted by spq , via the following rule based on whether or not x is multicolored:

Connection case 1 Suppose x is a multicolored crossing. Say xD di . By Proposition
4.4(5), ho.di / < minfho.dp/; ho.dq/; ho.dv/g. This means the plane z D ho.di / is
below the planes containing the lifted under- and over-strands of x. Therefore, we
can let spq be the union of two smooth monotone arcs connecting the endpoints of Odp

and Odq in B.x; �/�R to the point Odi . This means Odi is the unique minimum of hjspq
.

Moreover, we can choose spq such that it is contained in B.x; �/�R, disjoint from
int. Odv/, and such that the orthogonal projection of

. Odp [ spq [
Odq [

Odv [
Odi /\ .B.x; �/�R/
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Odq

Odv

Odp

dq

dp

dv

Figure 10: The construction of spq (the black dashed line) at crossings that
are not multicolored.

onto the plane z D�M � 1 is B.x; �/\D, where spq projects to the deleted portions
of the under-strands of x in D. See Figure 9 for a diagram of this construction.

Connection case 2 Suppose x is not a multicolored crossing. By Proposition 4.4(4),
ho.sv/ >minfho.sp/; ho.sq/g. This means the plane z D ho.dv/ containing the lifted
over-strand of x is above at least one of the planes containing the lifted under-strands
of x. Therefore, we can let spq be a smooth monotone arc that connects the endpoints
of Odp and Odq that intersect B.x; �/�R. Moreover, we can choose spq such that it is con-
tained in B.x; �/�R, disjoint from int. Odv/, and such that the orthogonal projection of

. Odp [ spq [
Odq [

Odv/\ .B.x; �/�R/

onto the plane z D�M � 1 is B.x; �/\D, where spq projects to the deleted portions
of the under-strand of x in D. See Figure 10 for a diagram of this construction.

Performing the above procedure at each crossing of D to connect all the lifts gives us a
knot. Let zK WD

˚S
t
Odt

	
[
˚S

p;q spq

	
. Since we respected the crossings under projec-

tion when defining each spq , D is a diagram of zK under orthogonal projection onto the
plane z D�M � 1. Hence, zK is in the ambient isotopy class K. However, zK does not
have the desired local extrema because the lifted strands are parallel to the xy–plane.
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Odq

Odp

Odr

ypq

yqr
Odq

Odp

Odr

ypq

yqr

Figure 11: The setup of perturbation case 1, divided into subcases based
on whether ypq does (right) or does not (left) orthogonally project onto a
multicolored crossing. Here dq is not a seed strand. The idea is to perturb
Œypq; yqr �, the subarc from ypq to yqr containing Odq , into a monotonic arc
with endpoints ypq and yqr .

We now show how to perturb the lifted strands contained in zK so that we have the
desired local extrema. For all spq , let ypq denote the point in @spq that orthogonally
projects to the corresponding crossing. Let dp and dr be the strands adjacent to dq .
Let Œypq; yqr � denote the subarc of spq [

Odq [ sqr from ypq to yqr . We consider cases
based on whether dq is a seed strand.

Perturbation case 1 Suppose dq is not a seed strand. See Figure 11 for diagrams of
what the lifts and Œypq; yqr � could look like in this case. By Proposition 4.4(2), dq is
not the local maximum of ho on f �1

J .fJ .dq//.

Claim minfypq; yqrg< ho.dq/ <maxfypq; yqrg:

Proof We consider cases based on whether the points ypq and yqr orthogonally
project onto multicolored crossings. First suppose neither ypq nor yqr orthogonally
projects onto multicolored crossings. Then dp, dq and dr have all been assigned the
same color. That is, dp; dq; dr 2 f

�1
J .fJ .dq//. Since D is assumed to be nontrivial,

if k denotes the stage at which dq receives its color, then Proposition 4.4(3) asserts
that fdp; drg š Ak�1. That is, either dp or dr is uncolored at stage k. This implies
minfho.dp/; ho.dr/g < ho.dq/. But dq is not the local maximum of ho. Therefore,
ho.dq/ <maxfho.dp/; ho.dr/g. By the proof of connection case 2 of this theorem, the
strands spq and sqr are monotonic, so

minfho.dp/; ho.dr/g<minfypq; yqrg< ho.dq/ <maxfypq; yqrg

<maxfho.dp/; ho.dr/g;

which gives the claim in this case.

Now say ypq orthogonally projects onto a multicolored crossing. Then there ex-
ists some di such that Odi D ypq and ho.di / D ypq . Proposition 4.4(5) implies
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Odq

Odp

Odrypq

yqr

Odq

Odp
Odr

ypq

yqr

Figure 12: The setup of perturbation case 2, divided into subcases based
on whether ypq does (right) or does not (left) orthogonally project onto a
multicolored crossing. Here dq is a seed strand. The idea is to perturb
Œypq; yqr �, the subarc from ypq to yqr containing Odq , into an arc with a single
maximum at the midpoint of Œypq; yqr �.

ypq D ho.di / < ho.dq/. Since f �1
J .fJ .dq// is connected by Proposition 4.4(1)

and dq is not a seed strand, yqr does not orthogonally project onto a multicolored
crossing. Therefore, dp must have inherited its color from dr via a coloring move, so
ho.dq/ < ho.dr/. Since ho.dq/ < yqr < ho.dr/, we get the claim in this case. The
argument for if yqr orthogonally projects onto a multicolored crossing is similar.

By the above claim, we can let the subarc Œypq; yqr �
0 be an arbitrarily small perturbation

of Œypq; yqr � into a smooth monotonic arc, strictly increasing or decreasing as dictated
by the values of ho.dp/ and ho.dr/. The perturbation is assumed to fix ypq , yqr and
the projection to the plane z D�M � 1.

Perturbation case 2 Suppose dq is a seed strand. See Figure 12 for diagrams of what
the lifts and Œypq; yqr � could look like in this case. By Proposition 4.4(2), dq is the
unique local maximum of ho on f �1

J .fJ .dq//.

Claim maxfypq; yqrg< ho.dq/:

Proof If ypq orthogonally projects onto a multicolored crossing, then ypq <ho.dq/ by
the same reasoning as in the proof of the claim for perturbation case 1. So suppose ypq

does not orthogonally project onto a multicolored crossing. Then dp and dq received the
same color. That is, dp 2 f

�1
J .fJ .dq//. Since dq is the unique local maximum of ho

on f �1
J .fJ .dq//, the plane zD ho.dp/ containing Odp lies below the plane zD ho.dq/

containing Odq . Hence, ypq < ho.dq/. We have yqr < ho.dq/ by similar reasoning.

Let mq be the midpoint of Odq . By the previous claim, we can let Œypq; yqr �
0 be an

arbitrarily small perturbation of Œypq; yqr � that fixes ypq , mq and yqr . In addition, we
arrange Œypq; yqr �

0 so that hjŒypq ;yqr �0 strictly increases from ypq to mq and strictly
decreases from mq to yqr while fixing the projection to the plane z D�M � 1.
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Perform a perturbation on the set of subarcs fŒypq; yqr �g of zK as dictated above. Let
yK denote the resulting knot. Note yK is ambient isotopic to zK. Recall �0 WD fdij g is

the restriction of our �–ordering to S [ C.

By perturbation case 2, each lifted seed strand Odij results in a maximum of yK. The
critical point corresponding to this maximum is the midpoint mij of Odij . Therefore,
yK has a single maximum for every seed strand dij with height ho.dij /. By perturbation

case 1, all other lifted strands become monotonic after perturbation.

By connection case 1, each multicolored crossing results in a minimum of yK. The critical
point corresponding to this minimum is the lifted multicolored crossing. Therefore,
yK has a single minimum for every multicolored crossing dij with height ho.dij /.

Since the monotonicity of the subarcs of spq from ypq to @ Odq is preserved by our
perturbation, yK has only jS [ Cj D N local extrema. Ordering the critical values
c1 > c2 > � � �> cN of hj yK by decreasing height for each j between 1 and N, cj is a
maximum if and only if dij is a seed strand and cj is a minimum if and only if dij is
a multicolored crossing, as desired.

Corollary 6.2 If K is an ambient isotopy class of knots that does not contain the
unknot , then W .K/� w.K/

Proof LetD be a diagram of a knot in the ambient isotopy class K such that W .D/D

W .K/. Then there exists a completed coloring sequence on D with attached sequence
.ai /

N
iD0 such that

PN
iD0 ai D W .K/. Let �0 D fdij g

N
jD1 denote the �–ordering

resulting from this coloring, restricted to the resulting seed strands and multicolored
crossings. By Theorem 6.1, there exists a knot yK in the ambient isotopy class K
with N local extrema that satisfy the following property: if c1 > c2 > � � � > cN are
the critical values of hj yK ordered by decreasing height, then cj is a maximum if and
only if dij is a seed strand and cj is a minimum if an only if dij is a multicolored
crossing. This property ensures that, if ri 2 .ciC1; ci / is a regular value of hj yK , then
ai D j yK \ h

�1.ri /j. Therefore,

W .K/DW .D/D w. yK/� w.K/:

7 Proof of the main theorems

In this section we summarize previous results to prove our main theorems. Note that
most results of Sections 5 and 6 do not apply to the unknot, so we must handle that
case separately.
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Before proving Theorem 1.1, we need one more technical lemma. Colloquially, it
states that, at any stage of a coloring sequence, the number of multicolored crossings
that have occurred is bounded above by the number of colors (seed strands) that have
appeared.

Lemma 7.1 Let .A0; f0/! � � � ! .At ; ft / be a partial coloring sequence on the knot
diagram D. Let C WD fx1; : : : ; xmg � v.D/ be the set of crossings of D that have
become multicolored by stage t . Then jC j � jft .At /j.

Proof We define a graph associated to the partial coloring sequence. Let V WD
fv1; : : : ; vmg be the vertex set, where we have one vertex for every multicolored
crossing. Recall from Proposition 4.4(1) that, for all y 2 ft .At /, the set f �1

t .y/ is
connected. This means that, for all y 2 ft .At /, there are at most two multicolored
crossings with under-strands assigned the color y. That is, the set f �1

t .y/ contains
the under-strands of at most two multicolored crossings. For each y 2 ft .At / where
f �1

t .y/ contains the under-strands of two distinct multicolored crossings xi ; xj 2 C

(so i ¤ j ), let eij be an edge that joins the vertices vi and vj . For each y 2 ft .At /

where f �1
t .y/ contains the under-strand of a single multicolored crossing xi 2 C, let

ei i be a loop based at the vertex vi . That is, ei i is an edge with both endpoints at vi .
Let E be the set of all edges obtained by this procedure.

Let G WD .V;E/ denote the resulting graph. From the definition of G, it is clear that
jEj � jft .At /j and jC j D jV j. Let deg.v/ denote the number of edges incident to v,
where any loop based at v is counted twice. The handshaking lemma, which is a
standard result in graph theory, states thatX

v2V

deg.v/D 2jEj:

The under-strands of each multicolored crossing must be assigned different colors, and
loops based at v are counted twice in the definition of deg.v/, so 2� deg.v/� 4 for
all v 2 V. Therefore,

2jV j �
X
v2V

deg.v/:

But jC j D jV j and jEj � jft .At /j. Therefore,

2jC j D 2jV j �
X
v2V

deg.v/D 2jEj � 2jft .At /j;

which gives the desired inequality.
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We now restate and prove our main theorems.

Theorem 1.1 If K is an ambient isotopy class of knots , then W .K/D w.K/.

Proof We begin with the case where K is not the ambient isotopy class of the unknot.
Theorem 5.7 gives W .K/� w.K/. Corollary 6.2 gives w.K/�W .K/, so we get the
desired equality.

Now suppose that K is the ambient isotopy class of the unknot. Thenw.K/D 2. We can
obtain a completed coloring sequence on the standard diagram of the unknot, with no
crossings, by performing a single seed addition. This shows W .K/� 2. We now verify
that W .K/� 2. Let U be a diagram of the unknot. Let .A0; f0/! � � � ! .AJ ; fJ / be
a completed coloring sequence on U with attached sequence .ai /

N
iD0.

Let an WDminfaig
N
iD0. Then there exists a stage t such that the partial coloring sequence

.A0; f0/! � � � ! .At ; ft / induces the first n terms, .ai /
n
iD0, in our attached sequence.

Write

(2) an D

nX
iD1

ai � ai�1:

Define

S WD fi j ai � ai�1 D 2; 1� i � ng; C WD fi j ai � ai�1 D�2; 1� i � ng:

The quantity jS j is equal to the number of seed additions that have been performed
by stage t . Thus, jS j D jft .At /j. The quantity jC j is the number of crossings that
have become multicolored by stage t , because an D minfaig

N
iD0. By Lemma 7.1,

jC j � jft .At /j D jS j. We have ai �ai�1 2 f�2; 2g for all i between 1 and n, so jS j is
also the number of positive terms in equation (2), and jC j is also the number of negative
terms in equation (2). Therefore, Lemma 7.1 implies that the number of negative terms
is bounded above by the number of positive terms in equation (2). We conclude an � 0.

Since an Dminfaig
N
iD0, all terms in the attached sequence are nonnegative. Any com-

pleted coloring sequence on a knot diagram must start with a seed addition. Therefore,
a0D 0 and a1D 2. Hence, our conclusion verifies that W .U /� 2. But U was arbitrary,
so W .K/� 2. Therefore, W .K/D 2D w.K/.

Theorem 1.2 For any ambient isotopy class K of knots and any positive integer n,
there exist infinitely many diagrams D of knots in K such that W .D/ D w.K/ but
wp.D/�W .D/Cn.
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Figure 13: The diagram of the unknot U with a highlighted crossing.

Proof Let U be the diagram of the unknot depicted in Figure 13, contained in the
yz–plane. Let E be the diagram obtained by performing a crossing change to the
highlighted crossing in Figure 13. See Figure 14. Let E denote the ambient isotopy
class of the figure 8 knot and KE denote a knot in E such that p.KE /D E. (Recall
p WR3!R2 is the standard projection into the yz–plane.)

By Theorem 1.1, there exists a diagramD0 of a knotKD0 in K such that W .D0/Dw.K/.
Let

D DD0 #U # � � � #U;

where there are m terms in the connected sum, and the connected sum is performed as
shown in Figure 15.

We take the strand of D0 on which we surger to form D to be a seed strand of a
completed coloring sequence on D0 which realizes the equality W .D0/Dw.K/. After
performing a seed addition to the strand ofD labeled s in Figure 15, we can use coloring
moves to extend the color to all other strands of D which correspond to components
of U. Since D was formed by surgering the aforementioned seed strand of D0, it is
easy to see W .D/DW .D0/D w.K/. These equalities are independent of m.

By performing a crossing change at each crossing of D highlighted in Figure 15, we
get a diagram of the knot KD0 #KE # � � � #KE . See Figure 16.

Without loss of generality, we can perform an arbitrarily small perturbation on the knot
KD0 #KE # � � � #KE , which descends to a planar isotopy on D0 #E # � � � #E, such that

!

Figure 14: The crossing change performed on U (left) at the highlighted
crossing to obtain E (right).
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D0 � � �

� � �
D0

s

Figure 15: Top: D0 with m copies of U. The rectangles along which we
surger to form D are in red. Our calculations of width are independent of the
orientations of the diagrams, so we assume each diagram is oriented to make
the depicted connected sum well defined. Bottom: D with some crossings
highlighted and a strand labeled s.

hjKD0#KE#���#KE
is Morse. Since planar width is unaffected by crossing changes, we get

wp.D/D wp.D
0 #E # � � � #E/� w.KD0 #KE # � � � #KE /:

Recall Schubert’s theorem on the additivity of bridge number (see [11, Theorem 1]),
which states that, for any two ambient isotopy classes of knots K1 and K2,

ˇ.K1 #K2/D ˇ.K1/Cˇ.K2/� 1:

For any ambient isotopy class of knots, bridge number is a lower bound on Gabai width.
By inductively applying Schubert’s theorem with this observation, and the fact that
ˇ.E/D 2 (recall E is the ambient isotopy class of the figure 8 knot), we get

w.KD0 #KE # � � �#KE /� ˇ.KD0 #KE # � � �#KE /� ˇ.K/Cmˇ.E/�mD ˇ.K/Cm;

where we got the second inequality becausem is just the number of copies of E that we
used in the connected sum to form D. Since the equalities W .D/DW .D0/D w.K/
are independent of m, we can take m arbitrary large. Taking mDW .D/Cn�ˇ.K/
in particular gives wp.D/�W .D/Cn.

D0 � � �

Figure 16: The resulting diagram of the knot KD0 # KE # � � � # KE after
performing a crossing change at each highlighted crossing in Figure 15.
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8 Applications and further questions

In this section, we demonstrate how Theorem 1.1 can be used to write algorithms for
calculating Gabai width. We will describe an algorithm we wrote that calculated the
Gabai width of a large subset of tabulated knots from [9]. The data and code for our
calculation are available at [10].

Our strategy was to modify the code in [14], which is the original algorithm for
calculating Wirtinger number developed by the authors in [4], so that, given a Gauss
code, it will output a completed coloring sequence for Wirtinger width. The modification
is easy because the coloring moves for Wirtinger number and Wirtinger width are the
same. Our modifications were motivated by the following lemma:

Lemma 8.1 If K � S3 is a 4–bridge prime knot in thin position , and thin position for
K is not bridge position , then K has Gabai width 28.

Proof Consider R3 now as in S3 D R3 [ f1g, with h the same height function as
before. A thin position embedding of a 4–bridge knot must have four maxima and
four minima. Since K is prime, S3 n �.K/ does not contain any essential 2–punctured
spheres, where �.K/ is a tubular neighborhood of K. Wu [15] showed that the thinnest
thin level of a knot that is in thin position but not bridge position is an essential surface
in S3 n �.K/. Therefore, jK \ h�1.r/j ¤ 2 for any regular value r of hjK . For any
regular value r of hjK at the thinnest level, the number of maxima above h�1.r/ must
be greater than or equal to the number of minima above h�1.r/. These facts mean that
the only possible orderings of the critical points of a prime 4–bridge knot are

M >M >M >M >m>m>m>m and M >M >M >m>M >m>m>m;

where the M ’s represent maxima and m’s represent minima. The first ordering corre-
sponds to a Gabai width of 32 while the second corresponds to a Gabai width of 28.
However, the first ordering also corresponds to a bridge position embedding of a 4–
bridge knot. Since bridge position of K is not thin position, the ordering of the critical
points of K must be as in the second ordering above, so K has Gabai width 28.

We focused on a subset of tabulated knots from [9] that are known to be prime with
bridge number 4, with Gauss codes such that the code in [14] can actually detect bridge
number 4. A prime knot with bridge number 4 such that thin position is bridge position
must have Gabai width 32. Therefore, given a Gauss code representing a prime knot
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with bridge number 4, Lemma 8.1 implies that such a knot must have Gabai width 32
or 28. By Theorem 1.1, such a knot must have Wirtinger width 32 or 28. So every time
we can find a completed coloring sequence on such a Gauss code giving Wirtinger
width 28, we know the Gauss code represents a knot with Gabai width 28. Whenever
our algorithm outputs an upper bound of 32 on the Wirtinger width for a given Gauss
code, we unfortunately do not get any new information about Gabai width for the
corresponding knot.

In light of these observations, we modified the code in [14] to search for a completed
coloring sequence that starts with three seed additions, followed by coloring moves
until we get a multicolored crossing, then finishes coloring the diagram with a seed
addition that comes before three more multicolored crossings appear. Recall that seed
strands correspond to maxima and the multicolored crossings correspond to minima, so
such a coloring sequence corresponds to an embedding of the knot with Gabai width 28.

Our code implemented the above strategy and was able to verify that 54 756 tabulated
knots have Gabai width 28, out of 86 981 knots that were tested. This is the first
time a systematic calculation of Gabai width has been performed on this collection
of Gauss codes. The appendix of [4] states that the code we modified in [14] for our
algorithm runs in factorial time. Our modifications are such that our algorithm also
runs in factorial time. However, our algorithm ran fast in practice since we had such
specific information about the ordering of the seed strands and multicolored crossings
in the completed coloring sequence we desired. In general, whenever bridge number is
much less than the crossing number, the code in [14] runs fast in practice.

We remark that it was important to know the Gauss codes we were working on had
diagrams such that the code in [14] can actually detect Wirtinger number 4 (and hence
bridge number 4). In general, this does not always happen. In [3], the authors give
examples of prime, reduced, alternating diagrams of a knot such that the Wirtinger
number is strictly greater then the bridge number.

We briefly describe how we knew the bridge number. In [1], the authors give a
method of establishing bridge number based on homomorphisms from the knot group
to Coxeter groups. In ongoing work [2], the authors use computational methods to
find homomorphisms as described in [1] to verify that each of the knots tested in our
code [10] have bridge number 4.

Our implementation depended heavily on the Wirtinger number of a knot diagram. In
general, the search for the minimum W .D/ over all possible diagrams D is subtle. We
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took great advantage of the fact that the diagrams we worked on actually realized the
Wirtinger number �.D/. In order to find a more robust implementation of our notions,
it is important to understand how Wirtinger number and Wirtinger width interact. This
leads to the following natural questions:

Question How can we determine whether or not a diagram D realizes the minimal
W .D/ without knowing beforehand that it realizes the minimal �.D/, the Wirtinger
number?

Question If the knot diagram D realizes the Wirtinger number, then does D also
realize the Wirtinger width?

One expects the answer to the second question to be no, since in [5] the authors exhibit
a knot K such that the thin position embedding has more that ˇ.K/ many maxima.
However, finding a knot diagram which disproves our question seems difficult. An
obvious first step is to check our knot data for a knot such that our algorithm outputs
an upper bound of 32 for Gabai width, and try to show that the Gabai width of such a
knot is actually 28.
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Classification of torus bundles that
bound rational homology circles

JONATHAN SIMONE

We completely classify orientable torus bundles over the circle that bound smooth
4–manifolds with the rational homology of the circle. Along the way, we classify
certain integral surgeries along chain links that bound rational homology 4–balls
and explore a connection to 3–braid closures whose double branched covers bound
rational homology 4–balls.
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1 Introduction

In [13], we showed that two infinite families of T 2–bundles over S1 bound (smooth)
rational homology circles (QS1 � B3’s). As an application, the QS1 � B3’s were
used to construct infinite families of rational homology 3–spheres (QS3’s) that bound
rational homology 4–balls (QB4’s). The main purpose of this article is to show that
the two families of torus bundles used in [13] are the only torus bundles that bound
smooth QS1 �B3’s.
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After endowing T 2 � Œ0; 1� D R2=Z2 � Œ0; 1� with the coordinates .x; t / D .x; y; t/,
any orientable torus bundle over S1 is of the form T 2 � Œ0; 1�=.x; 1/ � .˙Ax; 0/,
where A 2 SL.2;Z/. The matrix A is called the monodromy of the torus bundle and is
defined up to conjugation. Throughout, we will express the monodromy in terms of the
generators T D

�
1 1
0 1

�
and S D

�
0 1
�1 0

�
. A torus bundle is called elliptic if jtrAj < 2,

parabolic if jtrAj D 2, and hyperbolic if jtrAj> 2. Moreover, a torus bundle is called
positive if trA>0 and negative if trA<0. Torus bundles naturally arise as the boundaries
of plumbings of D2–bundles over S2 (see Neumann [11, Section 6] for details). Using
these plumbing descriptions, it is easy to draw surgery diagrams for torus bundles.
Table 1 gives a complete list of torus bundles over S1, along with their monodromies
(up to conjugation) and surgery diagrams. To simplify notation, T˙A.a/ will always
denote the hyperbolic torus bundle with monodromy ˙A.a/ D ˙T �a1S � � �T �anS,
where aD .a1; : : : ; an/, a1 � 3, and ai � 2 for all i .

Theorem 1.1 A torus bundle over S1 bounds a QS1 �B3 if and only if

� it is negative parabolic , or

� it is positive hyperbolic of the form TA.a/, where

aD .3Cx1; 2
Œx2�; : : : ; 3Cx2mC1; 2

Œx1�; 3Cx2; 2
Œx3�; : : : ; 3Cx2m; 2

Œx2mC1�/;

m� 0, and xi � 0 for all i .

Elliptic torus bundles and parabolic torus bundles that bound QS1 �B3’s are rather
simple to classify. Classifying hyperbolic torus bundles, which make up the “generic”
class of torus bundles, is much more involved and includes the bulk of the techni-
cal work. In [13], it is shown that TA.a/ indeed bounds a QS1 � B3 when a D

.3Cx1; 2
Œx2�; : : : ; 3Cx2mC1; 2

Œx1�; 3Cx2; 2
Œx3�; : : : ; 3Cx2m; 2

Œx2mC1�/. To obstruct
all other hyperbolic torus bundles from bounding QS1 � B3’s, we first consider a
related class of QS3’s.

Let Ltn denote the n–component link shown in Figure 1, where t denotes the number
of half-twists. We call Ltn the n–component, t–half-twisted chain link. If t D 0, we
call the chain link untwisted. Consider the surgery diagram for the hyperbolic torus
bundle T˙A.a/ given in Table 1. Now perform m–surgery along a meridian of the
0–framed unknot as in the left side of each of the four diagrams in Figure 2. Next,
slide the unknot with framing �a1 (or �a1˙ 2) twice over the blue m–framed unknot
so that it no longer passes through the 0–framed unknot. Then cancel the 0–framed
and m–framed unknots. When n � 2, the resulting 3–manifolds are obtained by
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elliptic torus bundles

monodromy surgery diagram monodromy surgery diagram

S 0

2

�S 0

�2

T �1S 0

1

�T �1S 0

�3

.T �1S/2 0

3

�.T �1S/2 0

�1

parabolic torus bundles

monodromy surgery diagram monodromy surgery diagram

T n

.n 2 Z/ 0

n 0
�T n

.n 2 Z/ 0

�n 0

hyperbolic torus bundles T˙A.a1;:::;an/

monodromy surgery diagram

n > 1 nD 1

T �a1S � � �T �anS
.a1 � 3; ai � 2 for all i/ 0

�a1

�a2

�an

0

�a1C 2

�T �a1S � � �T �anS
.a1 � 3; ai � 2 for all i/ 0

�a1

�a2

�an

0

�a1� 2

Table 1: Monodromy and surgery diagrams of parabolic, elliptic and hyperbolic
T 2–bundles over S1.
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t

Figure 1: The n–component, t–half-twisted chain link, Ltn. The box labeled t
denotes t half-twists.

m

�a1� 2

2m� 1

�a1� 2

D

D

D

D

m

�a1

�a2

�an

0 2m� 1

�a1

�a2

�an

m

�a1C 2

2m

�a1C 2

m

�a1

�a2

�an

0 2m

�a1

�a2

�an

Figure 2: Surgering the hyperbolic torus bundle T˙A.a/, where a D

.a1; : : : ; an/, to obtain the rational homology sphere Y ta . The blue boxes
labeled 2m and 2m� 1 indicate the number of half-twists.
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.�a1; : : : ;�an/–surgery along the chain link Ltn, where t D 2m or 2m�1. We denote
these 3–manifolds by Y ta D S

3
.�a1;:::;�an/

.Ltn/, where aD .a1; : : : ; an/, a1 � 3, and
ai � 2 for all i . Note that, by cyclically reordering or reversing the surgery coefficients,
we obtain the same 3–manifold. When nD 1, the resulting 3–manifolds are obtained by
�.a1˙2/–surgery along Lt1, where t D 2mC .1˙ 1/; we denote them by Y ta D Y

t
.a1/

.
Note that Y t

.a1/
D S3

�a1C2
.Lt1/ when t is even, and Y t

.a1/
D S3

�a1�2
.Lt1/ when t is

odd. Finally note that Y ta is a QS3 for all a and t ; this follows from the fact that
jH1.Y

t
a /j D jTor.H1.T˙A.a///j is finite (see Lemma A.1).

Lemma 1.2 [13] Let Y be a QS1 � S2 that bounds a QS1 �B3 and let K be a
knot in Y such that ŒK� has infinite order in H1.Y IZ/. Then any integer surgery on Y
along K yields a QS3 that bounds a QB4.

By Lemma 1.2, if TA.a/ bounds a QS1 �B3, then Y ta bounds a QB4 for all even t ,
and if T�A.a/ bounds a QS1 � B3, then Y ta bounds a QB4 for all odd t . Thus, if
Y ta does not bound a QB4 for some even (or odd) t , then TA.a/ (or T�A.a/) does not
bound a QS1 �B3. Using this fact, we will obstruct most hyperbolic torus bundles
from bounding QS1 �B3’s by identifying the strings a for which Y 0a and Y �1a do
not bound QB4’s. Before writing down the result, we first recall and introduce some
useful terminology.

Let .b1; : : : ; bk/ be a string of integers such that bi � 2 for all i . If bj � 3 for some
j, then we can write this string in the form .2Œm1�; 3C n1; : : : ; 2

Œmj �; 2C nj /, where
mi ; ni � 0 for all i and 2Œt� denotes a string 2; : : : ; 2 of t 2’s. The string .c1; : : : ; cl/D
.2Cm1; 2

Œn1�; 3Cm2; : : : ; 3Cmj ; 2
Œnj �/ is called the linear-dual string of .b1; : : : ; bk/.

If bi D 2 for all 1� i � k, then we define its linear-dual string to be .kC1/. Linear-dual
strings have a topological interpretation. If Y is obtained by .�b1; : : : ;�bk/–surgery
along a linear chain of unknots, then the reversed-orientation manifold Y can be
obtained by .�c1; : : : ;�cl/–surgery along a linear chain of unknots (see Neumann [11,
Theorem 7.3]). Finally, we define the linear-dual string of .1/ to be the empty string.

Suppose a D .a1; : : : ; an/ is of the form .2Œm1�; 3C n1; : : : ; 2
Œmj �; 3C nj /, where

mi ; ni � 0 for all i ; we define its cyclic-dual to be the string d D .d1; : : : ; dm/ D

.3Cm1; 2
Œn1�; : : : ; 3Cmj ; 2

Œnj �/. In particular, a string of the form .x/ with x � 3
has cyclic-dual .2Œx�3�; 3/. Notice that this definition only slightly differs from the
definition of the linear-dual string. As a topological interpretation of cyclic-dual strings,
the reversed-orientation of T˙A.a/ is given by T˙A.a/ D T˙A.d/ (see Neumann [11,
Theorem 7.3]). Finally, .an; : : : ; a1/ is called the reverse of .a1; : : : ; an/.

Algebraic & Geometric Topology, Volume 23 (2023)
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Example 1.3 Consider the strings in Theorem 1.7,

aD .3C x1; 2
Œx2�; : : : ; 3C x2mC1; 2

Œx1�; 3C x2; 2
Œx3�; : : : ; 3C x2m; 2

Œx2mC1�/:

It is easy to see that the cyclic-dual of a is simply a. Moreover, a is of the above form if
and only if it can be expressed in the form aD .b1C1;b2; : : : ; bk�1; bkC1;c1; : : : ; cl/ if
k�2, where .b1; : : : ;bk/ and .c1; : : : ; cl/ are linear-dual strings, or aD .b1C2;2

Œb1�1�/

if k D 1.

To remove the necessity of multiple cases, from now on, if a contains a substring of the
form .b1C 1; b2; : : : ; bk�1; bkC 1/ and k D 1, then we will understand this substring
to simply be .b1C 2/, as in Example 1.3.

Definition 1.4 Two strings are considered to be equivalent if one is a cyclic reordering
and/or reverse of the other. Each string in the following sets is defined up to this
equivalence. Moreover, strings of the form .b1; : : : ; bk/ and .c1; : : : ; cl/ are assumed
to be linear-dual. We define

S1aDf.b1; : : : ; bk; 2; cl ; : : : ; c1; 2/ jkCl�3g;

S1bDf.b1; : : : ; bk; 2; cl ; : : : ; c1; 5/ jkCl�2g;

S1cDf.b1; : : : ; bk; 3; cl ; : : : ; c1; 3/ jkCl�2g;

S1dDf.2; b1C1; b2; : : : ; bk�1; bkC1; 2; 2; clC1; cl�1; : : : ; c2; c1C1; 2/ jkCl�2g;

S1eDf.2; 3Cx; 2; 3; 3; 2Œx�1�; 3; 3/ jx�0 and .3; 2Œ�1�; 3/ WD.4/g;

S2aDf.b1C3; b2; : : : ; bk; 2; cl ; : : : ; c1/g;

S2bDf.3Cx; b1; : : : ; bk�1; bkC1; 2Œx�; clC1; cl�1; : : : ; c1/ jx�0 and kCl�2g;

S2cDf.b1C1; b2; : : : ; bk�1; bkC1; c1; : : : ; cl/ jkCl�2g;

S2dDf.2; 2Cx; 2; 3; 2Œx�1�; 3; 4/ jx�0 and .3; 2Œ�1�; 3/ WD.4/g;

S2eDf.2; b1C1; b2; : : : ; bk; 2; cl ; : : : ; c2; c1C1; 2/; .2; 2; 2; 3/ jkCl�2g;

ODf.6; 2; 2; 2; 6; 2; 2; 2/; .4; 2; 4; 2; 4; 2; 4; 2/; .3; 3; 3; 3; 3; 3/g;

S1DS1a[S1b[S1c[S1d[S1e;

S2DS2a[S2b[S2c[S2d[S2e;

SDS1[S2:

Definition 1.5 Let a D .a1; : : : ; an/, where ai � 2 for all i . Define I.a/ to be the
integer I.a/D

Pn
iD1.ai � 3/.

Algebraic & Geometric Topology, Volume 23 (2023)
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Remark 1.6 If b and c are linear-dual strings, it is easy to see that I.b/C I.c/D�2.
Using this observation, it easy to check that, if a 2 S1, then �4 � I.a/ � �1, and if
a 2 S2, then �3� I.a/� 0. In the same vein, if a and d are cyclic-dual strings, then
I.a/C I.d/D 0. Consequently, if a;d 2 S, then I.a/D I.d/D 0. Moreover, a 2 S
and I.a/D 0 if and only if a 2 S2a [S2b [S2c .

Theorem 1.7 Let a D .a1; : : : ; an/, where n � 1, ai � 2 for all i , and aj � 3 for
some j, and let d be the cyclic-dual of a.

(1) Suppose d … S1a [ O. Then Y �1a bounds a QB4 if and only if a 2 S1 or
d 2 S1b [S1c [S1d [S1e.

(2) Suppose a … S1a [ O. Then Y 1a bounds a QB4 if and only if d 2 S1 or
a 2 S1b [S1c [S1d [S1e.

(3) Y 0a bounds a QB4 if and only if a 2 S2 or d 2 S2.

Remark 1.8 The hypothesis “aj � 3 for some j ” in Theorem 1.7 ensures that T˙A.a/

is a hyperbolic torus bundle. If we remove this condition from the theorem, then we
would have an additional case: ai D 2 for all i . In this case, Y �1a bounds a QB4 and
Y 0a does not bound a QB4. This follows from Lemma 1.2 and Theorem 1.1 and the
fact that the corresponding torus bundles are the parabolic torus bundles with respective
monodromies �T n and T n (see [13]).

Remark 1.9 We will see in Lemma 4.2 that, for certain strings d that are the cyclic-
duals of .b1; : : : ; bk; 2; cl ; : : : ; c1; 2/, Y �1d

does not bound a QB4 (see Theorem 1.7(1)).
However, we are unable to prove this fact for all such strings. Moreover, for each a2O,
we are unable to obstruct Y ˙1a from bounding a QB4 or show that it indeed bounds
a QB4. These strings are outliers that are unobstructed by the analysis we present here.

Combined with Lemma 1.2, Theorem 1.7 obstructs most hyperbolic torus bundles
from bounding QS1 �B3’s. In Section 3, we will obstruct the rest by considering
certain cyclic covers of QS1 �B3’s. The proof of Theorem 1.7 relies on Donaldson’s
diagonalization theorem [6] and lattice analysis. From this analysis, it follows that,
if a … S1 [O, then Y ta does not bound a QB4 for all odd t , and if a … S2, then Y ta
does not bound a QB4 for all even t . Moreover, by Lemma 1.2 and Theorem 1.1, if
a 2 S2c , then Y ta bounds a QB4 for all even t . This leads to the following question:

Question 1.10 For what values of t and for which strings a 2 S nS2c does Y ta bound
a QB4?

Algebraic & Geometric Topology, Volume 23 (2023)
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1.1 Connection to 3–braids

There is an intimate connection between the rational homology 3–spheres Y ta and
3–braid closures; we will show that Y ta is the double cover of S3 branched over the link
given by the closure of the 3–braid word .�1�2/3t�1�

�.a1�2/
2 � � � �1�

�.an�2/
2 , where

�1 and �2 are the standard generators of the braid group on three strands.

Let aD .a1; : : : ; an/ and consider Y �1a and Y 0a , as shown in the top of Figure 3. Using
the techniques of Akbulut and Kirby [2], it is clear that Y �1a and Y 0a are the double
covers of S3 branched over the links shown in the middle of Figure 3. The Z2–action
inducing these covers are the 180ı rotations shown in Figure 3. By isotoping these

=

=

Y �1a
�a1

�a2

�an

180ı

2 W 1

�a1

�a2 �a3 �an

if t D 0

t
1
�.a1� 2/

1
�.a2� 2/

1
�.an� 2/

if t D�1

Y 0a
�a1

�a2

�an

180ı

2 W 1

�a1

�a2 �a3 �an

Figure 3: Y �1a and Y 0a are the double covers of S3 branched over the closure
of the 3–braid word .�1�2/3t�1�

�.a1�2/
2 � � � �1�

�.an�2/
2 , where t D�1 and

t D 0, respectively. The blue box labeled t indicates the number of full-twists,
while all other boxes in all other diagrams indicated the number of half-twists.
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links, we obtain the closures of the 3–braid words .�1�2/�3�1�
�.a1�2/
2 � � � �1�

�.an�2/
2

and �1�
�.a1�2/
2 � � � �1�

�.an�2/
2 , respectively, as shown in Figure 3. Note that, in the

figure, the blue box labeled t indicates the number of full-twists, while all other boxes
indicate the number of half-twists.

Using Kirby calculus, we can argue that, for any t , Y ta is the double cover of S3

branched over the closure of the 3–braid word .�1�2/3t�1�
�.a1�2/
2 � � � �1�

�.an�2/
2 .

Notice that, if t D 2m� 1 � �1 is odd, then Y ta can be realized as .�1Œm�/–surgery
along a link in Y �1a , as shown in the top left of Figure 4, top, and if t D 2m� 0 is even,
then Y ta can be realized as .�1Œm�/–surgery along a link in Y 0a , as shown in the top left
of Figure 4, bottom. Under the Z2–action, each of these surgery curves double covers
a curve isotopic to the braid axis of the 3–braid. Thus each �1–surgery curve maps to
a �1

2
–surgery curve isotopic to the braid axis, as shown in the intermediate stages in

Figure 4. By blowing down these curves, we obtain the desired 3–braid closures at the
bottom of the figures. Note that the same argument can be used when t < �1; the only
difference is that the surgery curves would all have positive coefficients.

Coupling this characterization with Theorems 1.7 and 1.1 and Lemma 1.2, we can
classify certain families of 3–braid closures admitting double branched covers bounding
QB4’s.

Corollary 1.11 Let aD .a1; : : : ; an/, where n � 1, ai � 2 for all i , and aj � 3 for
some j, and let d be the cyclic-dual of a.

� Suppose d … S1a [O. Then the double cover of S3 branched over the closure
of the 3–braid word .�1�2/�3�1�

�.a1�2/
2 � � � �1�

�.an�2/
2 bounds a QB4 if and

only if a 2 S1 or d 2 S1b [S1c [S1d [S1e.
� Suppose a … S1a[O. Then the double cover of S3 branched over the closure of

the 3–braid word .�1�2/3�1�
�.a1�2/
2 � � � �1�

�.an�2/
2 bounds a QB4 if and only

if d 2 S1 or a 2 S1b [S1c [S1d [S1e.
� The double cover of S3 branched over the closure of the 3–braid word

�1�
�.a1�2/
2 � � � �1�

�.an�2/
2

bounds a QB4 if and only if a 2 S2.
� If a 2 S2c , then the double cover of S3 branched over the closure of the 3–braid

word .�1�2/3t�1�
�.a1�2/
2 � � � �1�

�.an�2/
2 bounds a QB4 for all even t .

The 3–braid knots corresponding to strings in S1a[S2a[S2b[S2c (and their mirrors)
were shown by Lisca [10] to be 3–braid knots of finite concordance order. Moreover,

Algebraic & Geometric Topology, Volume 23 (2023)
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m
�1

�1

�a1

�a2

�an

Y 2m�1a 2 W 1

m

�
1
2
�
1
2

�1 1
�.a1� 2/

1
�.an� 2/

blow down

2m� 1 1
�.a1� 2/

1
�.an� 2/

m
�1

�1

�a1

�a2

�an

Y 2ma 2 W 1

m

�
1
2
�
1
2

1
�.a1� 2/

1
�.an� 2/

blow down

2m 1
�.a1� 2/

1
�.an� 2/

Figure 4: When t � �1, Y ta is the double cover of S3 branched over the
closure of the 3–braid word .�1�2/3t�1�

�.a1�2/
2 � � � �1�

�.an�2/
2 . The same

is true when t < �1.
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some of them were shown be slice knots and so for these the corresponding double
branched covers are already known to bound QB4’s. Furthermore, by the classification
in [10], many of the remaining strings in S correspond to infinite concordance order
3–braid knots. Thus, these give examples of infinite concordance order knots whose
double branched covers bound QB4’s. Rewording Question 1.10 in terms of 3–braids,
a natural question is the following:

Question 1.12 Which other 3–braid closures admit double branched covers bounding
QB4’s?

Organization

In Section 2, we will highlight some simple obstructions to QS1 � S2’s bounding
QS1 �B3’s, recall Heegaard Floer homology calculations of 3–braid closures due
to Baldwin, and use these calculations to explore the orientation reversal of the 3–
manifold Y ta . These obstructions and calculations will be used in Sections 3 and 4.
In particular, in Section 3, we will use the obstructions and other techniques to prove
Theorem 1.1, and in Section 4, we will show that the QS3’s of Theorem 1.7 do
indeed bound QB4’s by explicitly constructing them. In Sections 5–7, we will use
lattice analysis to prove that the QS3’s of Theorem 1.7 are the only such QS3’s that
bound QB4’s. Finally, the appendix provides some continued fraction calculations that
are used in Sections 2 and 4.

Acknowledgements

Thanks to Vitalijs Brejevs for pointing out a missing case in Lemma 6.1 and thanks
to the referee for carefully reading through the technical aspects of the paper and
suggesting ways to greatly improve the flow of the paper.

2 Obstructions

In this section, we highlight some simple ways to obstruct a QS1 �S2 from bounding
a QS1 �B3, recall Baldwin’s calculations of the Heegaard Floer homology of double
covers of S3 branched over certain 3–braid closures [3] (ie the rational homology 3–
spheres Y ta ), and show that reversing the orientation of the rational homology sphere Y ta
yields Y �t

d
, where d is the cyclic-dual of a. The first obstruction is a consequence of

[5, Proposition 1.5 and Corollary 1.6].
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Lemma 2.1 [5] If K � S3 is an alternating knot and S30 .K/ bounds a QS1 �B3,
then �.K/D 0.

The next obstruction is akin to a well-known homology obstruction of QS3’s bounding
QB4’s [4, Lemma 3].

Lemma 2.2 If Y bounds a QS1 � B3, then the torsion part of H1.Y / has square
order.

Proof It is well known that, if a QS3 bounds a QB4, then its first homology group
has square order [4, Lemma 3]. A similar but more complicated argument will prove
the lemma.

Let A D Tor.H1.Y //. We aim to show that jAj is a perfect square. Let W be a
QS1 �B3 bounded by Y. Then

Hi .W /Š

8<:
T2 if i D 2;
Z˚T1 if i D 1;
Z if i D 0;

where T1 and T2 are torsion groups. By duality and the universal coefficient theorem,

Hi .W; Y /Š

8<:
Z if i D 3;
T1 if i D 2;
T2 if i D 1:

Consider the long exact sequence

H3.W; Y / H2.Y / H2.W / H2.W; Y / H1.Y / H1.W / H1.W; Y /

Z Z T2 T1 Z˚A Z˚T1 T2

f g h

Š Š Š Š Š Š Š

Since H3.W / and H1.W; Y / are torsion groups, and H3.W; Y / Š H0.Y / Š Z, the
maps H3.W /! H3.W; Y / and H1.W; Y /! H0.Y / in the long exact sequence of
the pair .W; Y / are trivial; hence, f is injective and g is surjective. Express the
map g as g D g1C g2, where g1 W Z! Z˚ T1 and g2 W A! f0g ˚ T1. Notice that
ImgŠ Img1˚Img2 and g1 is injective. Thus Img2 can be identified with a subgroup
of cokerg1 and T2Š cokergŠ cokerg1=Img2. Moreover, it follows from duality that,
if f is given by multiplication by n, then g1 is of the form g1.x/D˙nzC

P
�ibi ,

where x is a generator of the domain of g1 and fz; big is a basis for Z˚T1 such that z
is an infinite order element and the bi are torsion elements. Thus jcokerg1j D njT1j D
jcokerf jjT1j.
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By exactness, we can reduce the above sequence to the short exact sequence

0! T1=.T2=cokerf / i
�! Z˚A

g
�! Img! 0;

where we identify cokerf with its image in T2 and T2=cokerf with its image in T1.
Since g1 W Z! Img1 is an isomorphism, we have the short exact sequence of finite
groups

0! T1=.T2=cokerf / i
�! A

g2
�! Img2! 0:

Consequently, jAj D jT1=.T2=cokerf /j � jImg2j.

Moreover, ˇ̌̌̌
T1

T2=cokerf

ˇ̌̌̌
D
jT1jjcokerf j
jT2j

D
jcokerg1j

jcokerg1j=jImg2j
D jImg2j:

Thus, jAj D jImg2j
2 is a square.

2.1 Heegaard Floer homology calculations

Let aD .a1; : : : ; an/, where ai �2 for all 1� i�n and aj �3 for some j. As mentioned
in Section 1.1, the rational sphere Y ta is the double cover of S3 branched over the
closure of the 3–braid represented by the word .�1�2/3t�1�

�.a1�2/
2 � � � �1�

�.an�2/
2 .

In [3], Baldwin calculated the Heegaard Floer homology of these 3–manifolds equipped
with a canonical spinc structure s0. In particular, he showed that

HFC.Y 2ma ; s0/D

�
.T C0 ˚Zm0 /

˚
1
4

�
3n�

P
ai
�	

if m� 0;

.T C0 ˚Z�m
�1 /

˚
1
4

�
3n�

P
ai
�	

if m< 0;

HFC.Y 2mC1a ; s0/D

(
.T C0 ˚Zm

�1/
˚
1
4

�
3nC 4�

P
ai
�	

if m� 0;

.T C
�2˚Z�.mC1/

�2 /
˚
1
4

�
3nC 4�

P
ai
�	

if m< 0;
and

fd.Y ta ; s/ j s¤ s0g D fd.Y
s
a ; s/ j s¤ s0g for all s; t 2 Z:

2.2 Reversing orientation

Let aD .a1; : : : ; an/, where ai �2 for all 1� i �n and aj �3 for some j. As discussed
in the introduction, reversing the orientation of the hyperbolic torus bundle T˙A.a/

yields the hyperbolic torus bundle T˙A.a/ D T˙A.d/, where d D .d1; : : : ; dm/ is the
cyclic-dual of a [11]. Therefore, by construction, reversing the orientation on Y ta yields
Y ta D Y

s
d

for some integer s. The following lemma shows that s D�t :

Lemma 2.3 Let a D .a1; : : : ; an/ and d D .d1; : : : ; dm/ be cyclic-dual. Then
Y ta D Y

�t
d

.
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t

�a1

�a2

�an

perform
C1–blowup

t

�.a1� 1/

C1

�.a2� 1/

�an

perform blowups and
blowdowns until all
surgery coefficients

are positive

t

d1

d2

dm

reflect diagram
through
the page

�t

�d1

�d2

�dm

Figure 5: Proving that Y ta D Y
�t

d
, where .d1; : : : ; dm/ is the cyclic-dual of

aD .a1; : : : ; an/ and n > 1.

Proof This is an exercise in Kirby calculus. We will focus on the case n> 1. The case
nD 1 is similar, but much simpler. Start with the surgery diagram of Y ta that is made up
of a t–half-twisted chain link with surgery coefficients .�a1; : : : ;�an/, as in the top
left of Figure 5. We will produce a different surgery diagram for Y ta using blowups and
blowdowns. Without loss of generality, assume that a1 � 3. Let i > 1 be the smallest
integer such that ai � 3 and let Ki denote the unknot with surgery coefficient �ai . If
ai D 2 for all 2 � i � n, then set i D nC 1, with the understanding that anC1 D a1
and KnC1 DK1. We will prove the lemma in the case i � n. The case of i D nC 1
is similar and requires fewer steps. Blow up the linking of the �a1– and �a2–framed
unknots with a C1–framed unknot to obtain the second diagram in Figure 5. We can
now perform i � 2 successive blowdowns of �1–framed unknots (with i � 2 D 0 a
possibility). Next, perform ai � 2 successive C1–blowups of the linking between
Ki and the adjacent positively framed unknot; the resulting framing on Ki is �1.
Continue to perform blowdowns and blowups in this way until every surgery coefficient
is a positive number; we obtain the surgery diagram for Y ta made up of a chain link
with positive surgery coefficients .d1; : : : ; dm/, as in the third diagram of Figure 5,
where d D .d1; : : : ; dm/ is the cyclic-dual of a. Now we can change the orientation
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of Y ta by reflecting this new surgery diagram through the page. This yields a surgery
diagram of Y ta that is made up of a �t–half-twisted chain link with surgery coefficients
.�d1; : : : ;�dn/, as shown in the final diagram of Figure 5. Thus Y ta D Y

�t
d

.

3 Torus bundles over S 1 that bound rational homology circles

In this section, we will prove Theorem 1.1. By considering the obvious handlebody
diagrams of the plumbings shown in Table 1, it is rather straightforward to classify
elliptic and parabolic torus bundles over S1 that bound QS1 �B3’s. In fact, through
Kirby calculus, we will explicitly construct QS1�B3’s bounded by negative parabolic
torus bundles and use the obstructions in Section 2 to obstruct positive parabolic torus
bundles and elliptic torus bundles from bounding QS1 �B3’s.

Proposition 3.1 No elliptic torus bundle bounds a QS1 �B3.

Proof According to Table 1, there are only six elliptic torus bundles; they have
monodromies ˙S, ˙T �1S, and ˙.T �1S/2. By Lemma 2.2, if one of these torus
bundles bounds a QB4, then the torsion part of its first homology group must be
a square. By considering the surgery diagrams in Table 1, it is easy to see that
the only elliptic torus bundles that have the correct first homology are those with
monodromy T �1S or �.T �1S/2. Moreover, note that, by reversing the orientation on
the torus bundle with monodromy T �1S, we obtain the torus bundle with monodromy
�.T �1S/2. Thus we need only show that one of these torus bundles does not bound
a QS1 �B3. Consider the leftmost surgery diagram of the elliptic torus bundle with
monodromy T �1S in Figure 6. By blowing down the 1–framed unknot, we obtain
0–surgery on the right-handed trefoil. Since the signature of the right-handed trefoil
is 2, by Lemma 2.1, the elliptic torus bundle does not bound a QS1 �B3.

=0

1

1

0
blow
down

0

Figure 6: The elliptic torus bundle with monodromy T �1S does not bound a
rational homology circle.
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n

Figure 7: A QS1 �B3 bounded by the negative parabolic torus bundle with
monodromy �T n.

Proposition 3.2 Every negative parabolic torus bundle bounds a QS1 � B3. No
positive parabolic torus bundle bounds a QS1 �B3.

Proof By considering the surgery diagrams of the parabolic torus bundles in Table 1,
it is easy to see that positive parabolic torus bundles, which have monodromy T n,
satisfy b1 D 2. Thus, by the homology long exact sequence of the pair, it is easy to
see that no such torus bundle can bound a QS1 �B3. On the other hand, the negative
parabolic torus bundles with monodromy �T n bound obvious QS1 �B3’s, as shown
in Figure 7.

Classifying hyperbolic torus bundles that bound QS1 �B3’s is not as simple as the
elliptic and parabolic cases. The hyperbolic torus bundles listed in Theorem 1.1 were
shown to bound QS1 �B3’s in [13].

Proposition 3.3 [13] Let

aD .3Cx1; 2
Œx2�; : : : ; 3Cx2mC1; 2

Œx1�; 3Cx2; 2
Œx3�; : : : ; 3Cx2m; 2

Œx2mC1�/ 2 S2c ;

where m� 0 and xi � 0 for all i . Then TA.a/ bounds a QS1 �B3.

It remains to obstruct all other hyperbolic torus bundles from bounding QS1 �B3’s.
A major ingredient towards proving this fact is Theorem 1.7, which we assume to
be true throughout the remainder of this section. The proof of Theorem 1.7 will be
covered in Sections 4–7. Note that “most” hyperbolic torus bundles are obstructed by
Theorem 1.7. In particular, by Theorem 1.7, if a;d … S1 [O, then T�A.a/ does not
bound a QS1�B3, and if a;d … S2, then TA.a/ does not bound a QS1�B3 (where d

is the cyclic-dual of a). Thus, it remains to prove that, if a or d 2 S1[O, then T�A.a/

does not bound a QS1 �B3, and if a or d 2 S2 n S2c , then TA.a/ does not bound a
QS1 �B3 (recall that a 2 S2c if and only if d 2 S2c by Example 1.3). We will prove
this by considering cyclic covers of these torus bundles. But first we need to better
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understand the set S. In the upcoming subsection, we will round up some necessary
technical results regarding S, and in the subsequent subsection, we will explore cyclic
covers and finish the proof of Theorem 1.1.

3.1 Analyzing S

The first technical lemma shows that the sets S1 and S2 are disjoint.

Lemma 3.4 For a fixed string a, Y 0a and Y �1a do not both bound QB4’s (and conse-
quently TA.a/ and T�A.a/ do not both bound QS1�B3’s). It follows that S1\S2D∅.

Proof By construction,

jH1.Y
0
a /j D jTor.H1.TA.a///j and jH1.Y

�1
a /j D jTor.H1.T�A.a///j:

By Lemma A.1, jTor.H1.TA.a///j D jTor.H1.T�A.a///j � 4. Thus jH1.Y 0a /j and
jH1.Y

�1
a /j cannot simultaneously be squares and so, by [4, Lemma 3], Y 0a and Y �1a

do not both bound QB4’s. Now suppose a 2 S1 \ S2. Then, by Theorem 1.7, Y �1a

and Y 0a both bound QB4’s, which is not possible. Therefore, S1\S2 D∅.

Recall from Example 1.3 that a string a 2 S2c can be expressed in two different, but
equivalent, ways, namely

aD .3C x1; 2
Œx2�; : : : ; 3C x2mC1; 2

Œx1�; 3C x2; 2
Œx3�; : : : ; 3C x2m; 2

Œx2mC1�/;(1)

aD .b1C 1; b2; : : : ; bk�1; bkC 1; c1; : : : ; cl/;(2)

where m� 0, xi � 0 for all i , and .b1; : : : ; bk/ and .c1; : : : ; cl/ are linear-dual strings
with kC l � 2. This relationship is easy to see:

.b1C 1; b2; : : : ; bk�1; bkC 1/D .3C x1; 2
Œx2�; : : : ; 3C x2mC1/;

.c1; : : : ; cl/D .2
Œx1�; 3C x2; 2

Œx3�; : : : ; 3C x2m; 2
Œx2mC1�/:

Also recall that S is defined up to cyclic reordering and reversing strings. Thus a string
aD .a1; : : : ; an/ 2 S2c may not be of the form (1) written above. However, by a cyclic
reordering of a, we can put a in the form (1), which is equivalent to (2). Moreover, it is
clear that, if a1 � 3, then a is already in the form (1) and thus already in the form (2).
This simple observation will be used throughout the rest of this subsection.

Definition 3.5 Let a and b be strings. Then ab denotes the string obtained by con-
catenating a and b, and ap denotes the string obtained by concatenating a with itself
p times.
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The next lemma follows directly from the definitions of linear-dual and cyclic-dual
strings. We leave the proof to the reader.

Lemma 3.6 (a) Suppose a has linear-dual x D .x1; : : : ; xp/ and b has linear-dual
y D .y1; : : : ; yq/. Then

(i) ab has linear-dual .x1; : : : ; xp�1; xp � 1Cy1; y2; : : : ; yq/, and

(ii) ab has cyclic-dual .x2; : : : ; xp�1; xp � 1Cy1; y2; : : : ; yq�1; yq � 1C x1/
(up to cyclic reordering).

(b) If a has cyclic-dual d , then ap has cyclic-dual dp.

Definition 3.7 We call a string .a1; : : : ; an/ a palindrome if ai D an�.i�1/ for all
1� i � n.

Lemma 3.8 Consider the strings a D .b1 C 3; b2; : : : ; bk; 2; cl ; : : : ; c1/ 2 S2a and
bD .3C x; b1; : : : ; bk�1; bkC 1; 2

Œx�; cl C 1; cl�1; : : : ; c1/ 2 S2b .

(a) a 2 S2c if and only if .b1C 1; b2; : : : ; bk/ is a palindrome.

(b) b 2 S2c if and only if .b1; : : : ; bk/ is a palindrome.

Proof (a) Since .c1; : : : ; cl/ is the linear-dual of .b1; : : : ; bk/, .2; c1; : : : ; cl/ is the
linear-dual of .b1C1; b2; : : : ; bk/. Consequently, .b1C1; b2; : : : ; bk/ is a palindrome
if and only if .2; c1; : : : ; cl/ is a palindrome if and only if cl D 2 and ci D cl�i for all
1� i � l � 1.

Assume that .b1C 1; b2; : : : ; bk/ is a palindrome. Then bk D b1C 1� 3 and, conse-
quently, clD2. Let d1Db1C2; dkDbk�1, and diDbi for all 2� i�k�1, so that aD

.d1C 1; d2; : : : ; dk�1; dk C 1; 2; cl ; : : : ; c1/. By Lemma 3.6, .2; 2; c1; c2; : : : ; cl�1/
has linear-dual .b1C2; b2; : : : ; bk�1; bk�1/D .d1; : : : ; dk/. On the other hand, since
.2; c1; : : : ; cl/ is a palindrome, .2; 2; c1; c2; : : : ; cl�1/ D .2; cl ; cl�1; cl�2; : : : ; c1/.
Set e1 D e2 D 2 and ei D ci�2 for all 3� i � lC1. Then .d1; : : : ; dk/ has linear-dual
.e1; : : : ; elC1/ and thus

.b1C3; b2; : : : ; bk; 2; cl ; : : : ; c1/D .d1C1; d2; : : : ; dk�1; dkC1; e1; : : : ; elC1/2S2c :

Now assume a 2 S2c . Since b1C 3 > 3, a is of the form

aD .d1C 1; d2; : : : ; dp�1; dpC 1; e1; : : : ; eq/;

where .d1; : : : ; dp/ and .e1; : : : ; eq/ are linear-dual. Thus d1 D b1C 2 and eq D c1.
Note that the length of a is kC lC 1D pC q. We claim that p D k. Indeed, if p > k,
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then .d1; : : : ; dk/ D .b1C 2; b2; : : : ; bk/ has linear-dual .2; 2; c1; : : : ; cl/, implying
that the length of a is greater than kC l C 1, a contradiction; if p < k, we arrive at
a similar contradiction. Therefore p D k and q D l C 1; consequently, e1 D 2 and
ei D cl�iC2 for all 2 � i � l C 1. On the other hand, by Lemma 3.6, the linear-dual
of .d1; : : : ; dp/D .b1C2; b2; : : : ; bk �1/ is .e1; : : : ; eq/D .2; 2; c1; : : : ; cl�1/. Thus
cl D e2 D 2 and ci D cl�i for all 1� i � l � 1. As mentioned above, this implies that
.b1C 1; b2; : : : ; bk/ is a palindrome.

(b) Note that .b1; : : : ; bk/ is a palindrome if and only if .c1; : : : ; cl/ is a palindrome.

Assume .b1; : : : ; bk/ is a palindrome. Let d1 D 2C x and di D bi�1 for all 2 � i �
kC1. By Lemma 3.6, the linear-dual of .d1; : : : ; dkC1/D .2Cx; b1; : : : ; bk�1; bk/ is
.2Œx�; c1C1; c2; : : : ; cl/D .2

Œx�; clC1; cl�1; : : : ; c1/ since .c1; : : : ; cl/ is a palindrome.
Relabel this string as .e1; : : : ; eq/. Then

bD .d1C 1; d2; : : : ; dk; dkC1C 1; e1; : : : ; eq/ 2 S2c :

Now assume b 2 S2c . Since 3C x � 3, b is of the form

bD .d1C 1; d2; : : : ; dp�1; dpC 1; e1; : : : ; eq/;

where .d1; : : : ; dp/ and .e1; : : : ; eq/ are linear-dual. Thus d1C1D 3Cx and eq D c1.
Following as in the proof of the first part, p D kC 1 and q D l C x. Consequently,
exC1D clC1 and exCj D cl�jC1 for all l � j � l . On the other hand, the linear-dual
of .d1; : : : ; dp/D .2Cx; b1; : : : ; bk/ is .e1; : : : ; eq/D .2Œx�; c1C1; c2; : : : ; cl/. Thus
c1 D exC1 � 1D cl and cj D exCj D cl�jC1 for all 2 � j � l . That is, .c1; : : : ; cl/
is a palindrome and thus so is .b1; : : : ; bk/.

Lemma 3.9 Let b 2 S2a [ S2b and p � 4. Then there does not exist some proper
substring a of b such that ap D b.

Proof Let bD .3Cx; b1; : : : ; bk�1; bkC1; 2
Œx�; clC1; cl�1; : : : ; c1/2S2b . Suppose

that a is a proper substring of b satisfying ap D b for some p � 4. Then a D

.3Cx; b1; : : : ; bm/ for some m. If mD 0, then aD .3Cx/ and every entry of b equals
3Cx. The only such string satisfies x D 0 and .b1; : : : ; bk/D .2/D .c1; : : : ; cl/; that
is, bD .3; 3; 3/. But then p D 3, a contradiction.

Assume m� 1. Since ap D b, we have that bmC1 D 3C x � 3; consequently, either
m � k or m � kC x. If m � kC x, then m � l . Thus, up to switching the roles of
.b1; : : : ; bk/ and .c1; : : : ; cl/, we may assume without loss of generality that m� k.
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By Lemma 3.6, the linear-dual of .b1; : : : ; bm/ is of the form .c1; : : : ; cn�1; c
0
n/, where

n � l and c0n � cn. We claim that mD n. First suppose m< n. Then, since ap D b,
we have bm D c1; bm�1 D c2; : : : ; b2 D cm�1; b1 D cm; that is, .b1; : : : ; bm/ is a
proper substring of .c1; : : : ; cn�1; c0n/. But then the linear-dual of .b1; : : : ; bm/ (ie
.c1; : : : ; cn�1; c

0
n/) is a proper substring of the linear-dual of .c1; : : : ; cn�1; c0n/ (ie

.b1; : : : ; bm/), which is a contradiction. A similar argument shows that n < m is also
not possible. Thus mD n.

Since mD n and ap D b, we have that bmD c1, bm�1D c2; : : : ; b2D cm�1; b1D cm,
and cmC1 D 3C x � 3. If m D k, then, since cmC1 � 3, we necessarily have that
x D 0 and p D 2, a contradiction. If m D k � 1, then bk C 1 D bmC1 D 3C x

and, by Lemma 3.6, .c1; : : : ; cl/ D .c1; : : : ; c0mC 1; 2
Œx�/; since cmC1 � 3, we once

again have x D 0 and p D 2, a contradiction. Thus either x D 0 or m � k � 2. In
the latter case, since .b1; : : : ; bk/ has linear-dual .c1; : : : ; cm�1; c0m/, by Lemma 3.6,
.b1; : : : ; bm; 3C x; b1/ has linear-dual .c1; : : : ; cm�1; c0mC 1; 2

Œx�; 3; 2Œb1�2�/; since
cmC1D 3Cx� 3, we necessarily have that xD 0. Thus cmC1D bmC1D 3. Moreover,
since .b1; : : : ; bm/ has linear-dual .c1; : : : ; cm�1; c0m/, by Lemma 3.6, .b1; : : : ; bm; 3/
has linear-dual .c1; : : : ; cm�1; c0mC 1; 2/. Therefore, cm D c0mC 1.

Since p� 4, it follows that either 2mC2� k or 2mC2� l . Without loss of generality,
assume 2mC2� k. Then .b1; : : : ; bm; 3; b1; : : : ; bm; 3/ is a substring of .b1; : : : ; bk/
and its linear-dual is a substring of .c1; : : : ; cl/. By Lemma 3.6, .b1; : : : ; bm; 3/ has
linear-dual .c1; : : : ; cm; 2/ and consequently .b1; : : : ; bm; 3; b1; : : : ; bm; 3/ has linear-
dual .c1; : : : ; cm; c1 C 1; c2; : : : ; cm; 2/. But, since ap D b, the latter string is also
of the form .bm; : : : ; b1; 3; bm; : : : ; b2; b1/. Thus c1 D 2 and b1 D 2. But, since
.b1; : : : ; bm/ and .c1; : : : ; c0m/ are linear-dual and c1 D b1 D 2, we necessarily have
.b1; : : : ; bk/D .2/D .c1; : : : ; cl/; therefore, bD .3; 3; 3/ and p D 3, a contradiction.
We have thus shown that there does not exist a proper substring a of b such that bD ap

for some p � 4.

Next suppose bD .b1C3; b2; : : : ; bk; 2; cl ; : : : ; c1/2S2a. Let aD .b1C3; b2; : : : ; bm/

be a substring of b such that ap D b, where p � 4. We first claim that m < k.
Assume otherwise. Then m� l and since ap D b, .b1C3; b2; : : : ; bk/ is a substring of
.c1; : : : ; cl/. Consequently, the linear-dual of .b1C3;b2; : : : ; bk/ (ie .2;2;2;c1; : : : ; cl/)
is a substring of the linear-dual of .c1; : : : ; cl/ (ie .b1; : : : ; bk/), implying that l <k <m,
a contradiction. Thus m � k. If mD k, then bmC1 D b1C 3 � 3; on the other hand,
bmC1D bkC1D 2, a contradiction. Thus k <m. Now, following the same argument as
in the first part of the proof, we see that the linear-dual of .b1C3; b2; : : : ; bm/ is of the
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form .c1; : : : ; c
0
m/, where c0m � cm and m� l . Thus bmC1 D cmC1 D b1C3� 5. But,

by Lemma 3.6, .b1C3;b2; : : : ; bm; bmC1/D .b1C3;b2; : : : ; bm; b1C3/ has linear-dual
.c1; : : : ; cm; 2

Œb1C1�/, implying that cmC1 � 5, which is another contradiction.

Lemma 3.10 Suppose a 2 S2a [S2b [S2c and ap 2 S2c for some p. Then a 2 S2c .

Proof It suffices to show that, if a 2 S2a or a 2 S2b , then a 2 S2c . Let a 2 S2a, so
that ap is of the form

ap D
�
b1C 3; b2; : : : ; bk; 2; cl ; : : : ; c1;

::: l

b1C 3; b2; : : : ; bk; 2; cl ; : : : ; c1;

b1C 3; b2; : : : ; bk; 2; cl ; : : : ; c1;

b1C 3; b2; : : : ; bk; 2; cl ; : : : ; c1;
::: p�l�1

b1C 3; b2; : : : ; bk; 2; cl ; : : : ; c1
�
:

Since ap 2 S2c and b1 C 3 > 3, ap D .d1 C 1; d2; : : : ; dq�1; dq C 1; e1; : : : ; er/,
where .d1; : : : ; dq/ and .e1; : : : ; er/ are linear-dual strings. Following as in the proof
of Lemma 3.8 and appealing to Lemma 3.6, p is odd, l D 1

2
.p � 1/ and q D

1
2
.p � 1/.k C l C 1/C k, which is the length of the blue substring above. Thus,
.e1; : : : ; er/ is the black substring of ap above. Comparing the end of both strings, it is
clear that cl D 2 and ci D cl�i for all 1� i � l�1. As mentioned in the first paragraph
of the proof of Lemma 3.8, this implies that .b1C 1; b2; : : : ; bk/ is a palindrome. By
Lemma 3.8, a 2 S2c .

Now assume a 2 S2b . Then ap is of the form

ap D
�
3C x; b1; : : : ; bk�1; bkC 1; 2

Œx�; cl C 1; cl�1; : : : ; c1;
::: l

3C x; b1; : : : ; bk�1; bkC 1; 2
Œx�; cl C 1; cl�1; : : : ; c1;

3C x; b1; : : : ; bk�1; bkC 1; 2
Œx�; cl C 1; cl�1; : : : ; c1;

3C x; b1; : : : ; bk�1; bkC 1; 2
Œx�; cl C 1; cl�1; : : : ; c1;

::: p�l�1

3C x; b1; : : : ; bk�1; bkC 1; 2
Œx�; cl C 1; cl�1; : : : ; c1

�
:

Since ap 2 S2c , ap D .d1C 1; d2; : : : ; dq�1; dqC 1; e1; : : : ; er/, where .d1; : : : ; dq/
and .e1; : : : ; er/ are linear-dual strings. Following as above, we have that p is odd,

Algebraic & Geometric Topology, Volume 23 (2023)



2470 Jonathan Simone

l D 1
2
.p � 1/ and q D 1

2
.p � 1/.kC l C xC 1/C kC 1, which is the length of the

blue substring above. Thus, on the one hand, .e1; : : : ; er/ is the black substring of ap

above. On the other hand, by computing the linear-dual of .d1; : : : ; dq/ from the blue
string above, .e1; : : : ; er/ ends in the substring .c1C1; : : : ; cl/. Comparing the end of
both strings, it is clear that .c1; : : : ; cl/D .cl ; : : : ; c1/ and thus .b1; : : : ; bk/ is also a
palindrome. By Lemma 3.8, a 2 S2c .

Corollary 3.11 If a; ap 2 S2a [S2b [S2c , where p � 4, then a 2 S2c .

Proof It follows from Lemma 3.9 that ap 2 S2c; thus, ap 2 S2c . By Lemma 3.10,
a 2 S2c .

The final technical lemma shows that the cyclic-duals of strings in S2a[S2b [S2c are
also in S2a[S2b [S2c . Although this result is implicit in the proof of Theorem 1.7, it
is also relatively simple to prove directly, with the help of Lemma 3.6.

Lemma 3.12 Let d be the cyclic-dual of a. If a 2 S2a [ S2b [ S2c , then d 2

S2a [S2b [S2c .

Proof Let a 2 S2c . Using the description of a as in (1) on page 2465, it is easy to
see that d 2 S2c . Next let aD .3Cx; b1; : : : ; bkC1; 2

Œx�; clC1; cl�1; : : : ; c1/ 2 S2b .
Notice that .3 C x; b1; : : : ; bk C 1/ has linear-dual .2ŒxC1�; c1 C 1; : : : ; cl ; 2/ and
.2Œx�; cl C 1; cl�1; : : : ; c1/ has linear-dual .2C x; bk; : : : ; b1/. Thus, by Lemma 3.6,
d D .2Œx�; c1C 1; : : : ; cl ; 3C x; bk; : : : ; b1C 1/ 2 S2b .

Finally, let aD .b1C 3; b2; : : : ; bk; 2; cl ; : : : ; c1/ 2 S2a. If kC l D 1, then aD .4; 2/

and d D .2; 4/ 2 S2a. If kC l D 2, then aD .5; 2; 2/ and d D .2; 2; 5/ 2 S2a. Now
let k C l � 3. Then either bk � 3 and cl D 2 or vice versa. Assume the former.
Since .b1C 3; b2; : : : ; bk/ has linear-dual .2; 2; 2; c1; : : : ; cl/ and .2; cl ; : : : ; c1/ has
linear-dual .bkC 1; bk�1; : : : ; b1/, by Lemma 3.6,

d D .2; 2; c1; : : : ; cl�1; cl C bk; bk�1; : : : ; b2; b1C 1/:

Let d1 D cl C bk � 3, dk D b1C 1, and di D bk�iC1 for all 2 � i � k � 1. Also let
e1 D cl�1, el D 2, and ei D cl�i for all 2� i � l � 1. Then

d D .2; el ; : : : ; e1; d1C 3; d2; : : : ; dk/

and .d1; : : : ; dk/D .bk�1; bk�1; : : : ; b2; b1C1/ and .e1; : : : ; el/D .cl�1; : : : ; c1; 2/
are linear-dual; thus d 2 S2a. Now assume bk D 2 and cl � 3. Set d1 D cl C bk � 3,
dlC1D 2, di D cl�iC1 for all 2� i � l , e1D bk�1, ek�1D b1C1, and ei D bk�i for
all 2� i � k� 2. Proceeding as above, we see that d 2 S2a.
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3.2 Cyclic covers and proving Theorem 1.1

We are now ready to finish the proof of Theorem 1.1. The next two results explore cyclic
covers of QS1�B3’s and cyclic covers of hyperbolic torus bundles over S1. Coupling
these results with the results in Section 3.1, we complete the proof of Theorem 1.1 in
the subsequent corollaries.

Lemma 3.13 Let W be a QS1 �B3 and let �W be a p–fold cyclic cover of W, where
p is prime and not a divisor of jTor.H2.W IZ//j. If @�W is a QS1 �S2, then �W is a
QS1 �B3.

Proof Let Y D @W and zY D @�W. Since W is a QS1 �B3 and H3.W IZ/ has no
torsion, it follows that H3.W IZ/ D 0. Thus, by Poincaré duality and the universal
coefficient theorem, we have the isomorphisms

H1.W; Y IZp/ŠH
3.W IZp/Š Ext.H2.W IZ/;Zp/:

Since p is relatively prime to jTor.H2.W IZ//j, we have

H1.W; Y IZp/Š Ext.H2.W IZ/;Zp/D 0:

By the proof of [7, Theorem 1.2], since p is prime, it follows that H1.�W ; zY IZp/D 0.
Once again applying Poincaré duality and the universal coefficient theorem, we have
the isomorphisms

0DH1.�W ; zY IZp/ŠH 3.�W IZp/Š Hom.H3.�W IZ/;Zp/˚Ext.H2.�W IZ/;Zp/:
ThusH3.�W IZ/ is a torsion group. Thus, if we apply Poincaré duality and the universal
coefficient theorem as above, but with Q–coefficients, we obtain

H1.�W ; zY IQ/ŠH 3.�W IQ/Š Hom.H3.�W IZ/;Q/˚Ext.H2.�W IZ/;Q/D 0:
Thus the map H1. zY IQ/!H1.�W IQ/ induced by inclusion is surjective. Since zY is
a QS1�S2, it follows that rank.H1.�W IQ//� 1. Finally, since �.�W /D p�.W /D 0
and H3.�W IQ/ D 0, we necessarily have that H1.�W IQ/ D Q and H2.�W IQ/ D 0,
proving that �W is indeed a QS1 �B3.

Proposition 3.14 Let T˙A.a/ be a hyperbolic torus bundle that bounds a QS1 �B3,
say W. If p is an odd prime that does not divide jTor.H2.W IZ//j, then T˙A.ap/

bounds a QS1 �B3.
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Figure 8: Surgery diagrams for TA.a/ (top left), T�A.a/ (top right), TA.a3/
(bottom left) and T�A.a3/ (bottom right). T˙A.a3/ is a 3–fold cyclic cover
of T˙A.a/. There is an obvious Z3–action on T˙A.a3/ given by a rotation
of 120ı through the 0–framed unknot. The quotient of T˙A.a3/ by this action
is T˙A.a/.

Proof Let W be a QS1 �B3 bounded by some negative hyperbolic torus bundle
T˙A.a/, where aD .a1; : : : ; an/. Let p be an odd prime number that is not a factor of
jTor.H2.W IZ//j. Consider the obvious surgery diagrams of TA.a/ and T�A.a/ as in
Figure 8, top. In both diagrams, let �i denote the homology class of the meridian of
the �ai–framed surgery curve and let �0 denote the homology class of the meridian
of the 0–framed surgery curve. Then H1.T˙A.a/IZ/ is generated by �0; : : : ; �n.

Consider the torus bundle T�A.ap/, which has monodromy �.T �a1S � � �T �anS/p.
The standard surgery diagram of this torus bundle includes a �1–half-twisted chain
link (as in Table 1). Note that, by sliding the chain link over the 0–framed unknot
1
2
.p� 1/ times, we may arrange that the chain link has �p half-twists, as in Figure 8,

bottom right (for the case p D 3). For the torus bundle TA.ap/, which has monodromy
.T �a1S � � �T �anS/p , consider the standard surgery diagram shown in Figure 8, bottom
left (for the case p D 3). There is an obvious Zp–action on T˙A.ap/ obtained by
rotating the chain link through the 0–framed unknot by an angle of 2�=p, as indicated
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in Figure 8, bottom. The quotient of T˙A.ap/ by this action is clearly T˙A.a/ and
the induced map f WH1.T˙A.a/IZ/! Zp satisfies f .�0/D 1 and f .�i /D 0 for all
1� i � n. Consider the long exact sequence of the pair .W;T˙A.a//,

H1.T˙A.a/IZ/
i�
�!H1.W IZ/!H1.W;T˙A.a/IZ/! 0:

Choose a basis fm0; m1; : : : ; mkg for H1.W IZ/ such that m0 has infinite order and
mi is a torsion element for all 1� i � k. Since H1.W;T˙A.a/IZ/ is a torsion group,
i�.�0/D˛m0C

Pk
iD1 ˇimi for some ˛; ˇi 2Z, where ˛¤ 0. Since p is not relatively

prime to jTor.H2.W IZ//j D jH1.W;T˙A.a/IZ/j and ˛ divides jH1.W;T˙A.a/IZ/j,
it follows that ˛ and p are relatively prime; thus there exists an integer t such that
t˛� 1 mod p. Define a map g WH1.W IZ/!Zp by g.m0/D t and g.mi /D 0 for all
1� i � k. Then g is a surjective homomorphism satisfying f D g ı i�. Let �W be the
p–fold cyclic cover of W induced by g. Then @�W D T˙A.ap/ and, by Lemma 3.13,�W is a QS1 �B3.

The two following corollaries conclude the proof of Theorem 1.1.

Corollary 3.15 No negative hyperbolic torus bundle bounds a QS1 �B3.

Proof Let T�A.a/ be a negative hyperbolic torus bundle that bounds a QS1 �B3,
say W. Let p > 3 be an odd prime number that is not a factor of jTor.H2.W IZ//j. By
Proposition 3.14, T�A.ap/ also bounds a QS1 �B3. Let d be the cyclic-dual of a; by
Lemma 3.6, dp is the linear-dual of ap . By Lemma 1.2, Y �1a and Y �1ap bound QB4’s
and so, by Theorem 1.7, a or d belongs to S1[O and ap or dp belongs to S1[O.

First assume a; ap 2 S1 [ O. By Remark 1.6, �4 � I.a/; I.ap/ � 0. Moreover,
I.ap/ D pI.a/. If I.a/ < 0, then, since p > 3, we have I.ap/ < �4, which is a
contradiction. Thus I.ap/D I.a/D 0. By Remark 1.6, a; ap 2 S2a [S2b [S2c [O.
Since S1\S2 D∅, by Lemma 3.4, we necessarily have that a; ap 2O, which is not
possible since p ¤ 1.

Next assume a;dp 2 S1[O. By Remark 1.6, �4� I.a/; I.dp/� 0. Since I.dp/D
pI.d/D�pI.a/, we necessarily have that I.a/D I.dp/D 0. As above, this implies
that a;dp 2O. But, since a 2O, it is clear that aD d and thus d 2O. As above, it is
clear that d and dp cannot both be contained in O.

Finally, if d ;dp 2 S1 [ O or d ; ap 2 S1 [ O, similar arguments provide similar
contradictions. Therefore, @W cannot be a negative hyperbolic torus bundle.
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Corollary 3.16 If a positive hyperbolic torus bundle TA.a/ bounds a QS1 �B3, then
a 2 S2c .

Proof Let TA.a/ be a positive hyperbolic torus bundle that bounds a QS1 � B3,
say W, and let p > 3 be an odd prime number that is not a factor of jTor.H2.W IZ//j.
Following as in the proof of Corollary 3.15, a or d belongs to S2 and ap or dp

belongs to S2, where d is the cyclic-dual of a. Suppose a; ap 2 S2. As in the proof of
Corollary 3.15, I.a/D I.ap/D 0 and so, by Remark 1.6, a; ap 2 S2a[S2b[S2c . By
Corollary 3.11, a 2 S2c . Next suppose a;dp 2 S2. Once again, following the argument
in Corollary 3.15, I.a/D I.dp/D 0 and so, by Remark 1.6, a;dp 2 S2a[S2b [S2c .
By Lemma 3.12, we necessarily have that ap 2 S2a [S2b [S2c ; proceeding as in the
previous case, we find a 2 S2c . Finally, if d ; ap 2 S2 or d ;dp 2 S2, we can similarly
deduce that a 2 S2c .

4 Surgeries on chain links bounding rational homology
4–balls

In this section, we will prove the necessary conditions of Theorem 1.7. Namely, we
will show that the QS3’s of Theorem 1.7 bound QB4’s by explicitly constructing such
QB4’s via Kirby calculus. Notice that the necessary condition of Theorem 1.7(2) fol-
lows from the necessary condition of Theorem 1.7(1) in light of Lemma 2.3. Therefore,
we need only show the following three cases (where a and d are cyclic-duals):

� If a 2 S1a, then Y �1a bounds a QB4.

� If a 2 S1b [S1c [S1d [S1e, then Y �1a and Y �1
d

bound QB4’s.

� If a 2 S2, then Y 0a and Y 0
d

bound QB4’s.

Figures 9–15 exhibit the Kirby calculus needed to produce these QB4’s. We will
describe in detail the QB4 constructed in Figure 9, top. The constructions in the other
cases are similar. Notice that the top figure of Figure 9, top (without the�1–framed blue
unknot) is a surgery diagram for Y �1a , where aD .b1; : : : ; bk; 2; cl ; : : : ; c1; 2/ 2 S1a.
Thicken Y �1a to the 4–manifold Y �1a � Œ0; 1�. By attaching a �1–framed 2–handle to
Y �1a �f1g along the blue unknot in Figure 9, top, we obtain a 2–handle cobordism from
Y �1a to a new 3–manifold, which we will show is S1�S2. By performing a blowdown,
we obtain the middle surgery diagram. Blowing down a second time, the surgery
curves with framings �b1 and �c1 link each other once and have framings �.b1� 1/
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Figure 9: With Figures 10–12, we show the 3–manifolds in Theorem 1.7(1)–(2)
bound rational balls. Top: if a 2 S1a, then Y �1a bounds a QB4. Bottom: if
a 2 S1b , then Y �1a and Y 1a bound QB4’s.
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Figure 10: If a 2 S1c , then Y �1a and Y 1a bound QB4’s.

and �.c1� 1/, respectively. Since .b1; : : : ; bk/ and .c1; : : : ; cl/ are linear-dual, either
�.b1� 1/ or �.c1� 1/ is equal to �1. We can thus blow down again. Continuing in
this way, we can continue to blow down �1–framed unknots until we obtain 0–surgery
on the unknot, which is shown on the right side of the figure. Thus we have a 2–handle
cobordism from Y �1a to S1 �S2. By gluing this cobordism to S1 �B3, we obtain the
desired QB4 bounded by Y �1a .

Suppose a 2 S1b [S1c [S1d [S1e and let d be its cyclic-dual. Then, by Lemma 2.3,
Y �1

d
D Y 1a . To show that Y �1

d
bounds a QB4, we will show that Y 1a bounds a QB4.
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Figure 11: If a 2 S1d , then Y �1a and Y 1a bound QB4’s.

Figures 9–12 show that, if a 2 S1b [ S1c [ S1d [ S2e, then Y �1a and Y 1a bound
QB4’s. Note that Figure 9, bottom, depicts a cobordism similar to the one constructed
in Figure 9, top, which was described in the previous paragraph. However, the co-
bordisms constructed in Figures 10–12 are slightly different. In Figure 11, we have
a 2–handle cobordism from Y ˙1a to S1 �S2 #L.�4; 1/, which bounds a QS1 �B3,
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Figure 12: If a 2 S1e , then Y �1a and Y 1a bound QB4’s.

since L.�4; 1/ bounds a QB4 [8]. Gluing this QS1 �B3 to the cobordism yields
the desired QB4. The cobordisms depicted in Figures 10 and 12 are built out of two
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Figure 13: With Figures 14–15, we show the 3–manifolds in Theorem 1.7(3)
bound rational balls Top: if a 2 S2a, then Y 0a bounds a QB4. Bottom: if
a 2 S2b , then Y 0a bounds a QB4.

2–handles. These cobordisms are from Y ˙1a to S1 � S2 # S1 � S2. Gluing these
cobordisms to S1 �B3 \ S1 �B3 yields the desired QB4’s.

Lastly, suppose a 2 S2. By Lemma 2.3, Y 0a D Y 0
d

. Thus, once we show that Y 0a
bounds a QB4, it will follow that Y 0

d
also bounds a QB4. Figures 13–15 show that, if

a 2 S2, then Y 0a bounds a QB4. The QB4’s in almost all of the cases are constructed
in very similar ways as in the negative cases. The last case, Y 0

.2;2;2;3/
, is much simpler;

Figure 15, bottom, shows that Y 0
.2;2;2;3/

D L.�4; 1/, which bounds a QB4.
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Y 0a

attach
2–handle

�.3C x1/

�2 �.3C x2kC1/ �2 �2

�2

�1

sequentially blow down
all �1–unknots

and attach
2–handle

�2

�2 �.2C x2kC1/ �.2C x2/ �2

�2

�1

sequentially
blow down all
�1–unknots

0

0

Y 0a

attach
2–handle

�2

�.xC 3/ �2 �4 �3 �2

x

�2 �2

�3

�1

blow down twice
and attach 2–handle

�.xC 2/

�2 �2 �3 �2

x

�2 �2

�2

�1

blow down
xC 4 times

0

0

Figure 14: Top: if a 2 S2c , then Y 0a bounds a QB4. Bottom: if a 2 S2d , then
Y 0a bounds a QB4.
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Y 0a

attach
2–handle

�1

�2

�cl

�c2
�.c1C 1/

�2

�2

�.b1C 1/
�b2

�bk

blow down
l C k times

�2

�2

�2

�2

C1–blowup
between

two unknots

blow down
3 times

0

0

=Y 0a �3

�2

�2

�2

blow up
�2

1
�1

�2

�2

blow down
4 times 4

Figure 15: Top: if a¤ .3; 2; 2; 2/ 2 S2e , then Y 0a bounds a QB4. Bottom: if
aD .3; 2; 2; 2/ 2 S2e , then Y 0a bounds a QB4.

As shown above, if a 2 S1b [S1c [S1d [S1e , then Y �1
d

bounds a QB4. However, as
the next results will show, if a2S1a, then Y �1

d
does not necessarily bound a QB4. The

key is that jH1.Y �1a /j can be either even or odd when a 2 S1a, but, in all other cases,
H1.Y

�1
a / has even order. Recall that Œb1; : : : ; bk� represents the Hirzebruch–Jung

continued fraction (see the appendix for details).

Proposition 4.1 Let a D .b1; : : : ; bk; 2; cl ; : : : ; c1; 2/ 2 S1a, where Œb1; : : : ; bk� D
p=q. Then jH1.Y �1a /j D jTor.H1.T�A.a///j D p2.

Proof See Proposition A.3.
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Lemma 4.2 Let aD .2; b1; : : : ; bk; 2; cl ; : : : ; c1/ 2 S1a, where Œb1; : : : ; bk�D p=q,
and let d D .d1; : : : ; dm/ be the cyclic-dual of a. If p is odd , then Y �1

d
and Y 1a do not

bound QB4’s.

Proof By Lemma 2.3, Y �1
d
DY 1a , so it suffices to show that Y 1a does not bound a QB4.

Since .b1; : : : ; bk/ and .c1; : : : ; cl/ are linear-dual strings, it is clear that 1
4
I.a/D�1

(see Remark 1.6). By the calculations in Section 2.1, d.Y 1a ; s0/D 1�
1
4
I.a/D 2. Since

p is odd, by Proposition 4.1, jH1.Y 1a /j D jH1.Y
�1
a /j has odd order and so s0 extends

over any QB4 bounded by Y 1a . Thus, if Y 1a bounds a QB4, then d.Y 1a ; s0/D 0, which
is not possible.

Remark 4.3 By Lemma 1.2 and Theorem 1.1, we already know that, if a 2 S2c ,
then Y 0a bounds a QB4. However, by [13], the QB4’s constructed via Theorem 1.1
necessarily admit handlebody decompositions with 3–handles. On the other hand, the
QB4’s constructed in this section do not contain 3–handles. Thus Y 0a bounds a QB4

without 3–handles, even though TA.a/ only bounds QS1 �B3’s containing 3–handles.

5 Cyclic subsets

The remainder of the sections are dedicated to proving the sufficient conditions of
Theorem 1.7. In fact, we will prove something more general. We will show that if t is
odd and Y ta bounds a QB4, then a 2 S1 [O or d 2 S1 [O, and if t is even and Y ta
bounds a QB4, then a 2 S2 or d 2 S2. For convenience, we recall the definition of
these sets.

Definition 1.4 Two strings are considered to be equivalent if one is a cyclic reordering
and/or reverse of the other. Each string in the following sets is defined up to this
equivalence. Moreover, strings of the form .b1; : : : ; bk/ and .c1; : : : ; cl/ are assumed
to be linear-dual. We define

S1aDf.b1; : : : ; bk; 2; cl ; : : : ; c1; 2/ jkCl�3g;

S1bDf.b1; : : : ; bk; 2; cl ; : : : ; c1; 5/ jkCl�2g;

S1cDf.b1; : : : ; bk; 3; cl ; : : : ; c1; 3/ jkCl�2g;

S1dDf.2; b1C1; b2; : : : ; bk�1; bkC1; 2; 2; clC1; cl�1; : : : ; c2; c1C1; 2/ jkCl�2g;

S1eDf.2; 3Cx; 2; 3; 3; 2Œx�1�; 3; 3/ jx�0 and .3; 2Œ�1�; 3/ WD.4/g;

S2aDf.b1C3; b2; : : : ; bk; 2; cl ; : : : ; c1/g;

S2bDf.3Cx; b1; : : : ; bk�1; bkC1; 2Œx�; clC1; cl�1; : : : ; c1/ jx�0 and kCl�2g;
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S2cDf.b1C1; b2; : : : ; bk�1; bkC1; c1; : : : ; cl/ jkCl�2g;

S2dDf.2; 2Cx; 2; 3; 2Œx�1�; 3; 4/ jx�0 and .3; 2Œ�1�; 3/ WD.4/g;

S2eDf.2; b1C1; b2; : : : ; bk; 2; cl ; : : : ; c2; c1C1; 2/; .2; 2; 2; 3/ jkCl�2g;

ODf.6; 2; 2; 2; 6; 2; 2; 2/; .4; 2; 4; 2; 4; 2; 4; 2/; .3; 3; 3; 3; 3; 3/g;

S1DS1a[S1b[S1c[S1d[S1e;

S2DS2a[S2b[S2c[S2d[S2e;

SDS1[S2;

Also recall, to remove the necessity of different cases, if a 2 S1d [S2c and kD 1, then
the substring .b1C 1; b2; : : : ; bk�1; bkC 1/ is understood to be the substring .b1C 2/.

First suppose n D 1 and let a D .a1/, where a1 � 3. Then L01 and L�11 are both
the unknot and so Y 0

.a1/
D L.a1 � 2; 1/ and Y �1

.a1/
D L.a1C 2; 1/ (see Figure 2). By

Lisca’s classification of lens spaces that bound QB4’s [8], the only such lens spaces
that bound QB4’s are L.1; 1/D S3 and L.4; 1/. Thus Y �1

.a1/
does not bound a QB4

for all a1 � 3 and Y 0
.a1/

bounds a QB4’s if and only if a1D 3 or a1D 6. In the former
case, aD .3/ 2 S2c , and in the latter case, d D .2; 2; 2; 3/ 2 S2e.

We now assume the length of a is at least 2. Throughout, we will consider the standard
negative definite intersection lattice .Zn;�In/. Let fe1; : : : ; eng be the standard basis
of Zn. Then, with respect to the product � given by �In, we have ei � ej D�ıij for all
i and j. We begin by recalling definitions and results from [8] and introducing new
terminology for our purposes.

We consider two subsets S1; S2 �Zn to be the same if S2 can be obtained by applying
an element of Aut.Zn/ to S1. Let S D fv1; : : : ; vng � Zn be a subset. We call each
element vi 2 S a vector and we call the string of integers .a1; : : : ; an/ defined by
ai D �vi � vi the string associated to S. Two vectors z; w 2 S are called linked if
there exists e 2 Zn such that e � e D �1 and z � e; w � e ¤ 0. A subset S is called
irreducible if, for every pair of vectors v;w 2S, there exists a finite sequence of vectors
v1 D v; v2; : : : ; vk D w 2 S such that vi and viC1 are linked for all 1� i � k� 1.

Definition 5.1 A subset S D fv1; : : : ; vng 2 Zn is

� good if it is irreducible and

vi � vj D

8<:
�ai � �2 if i D j;
0 or 1 if ji � j j D 1;
0 otherwise;
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� standard if

vi � vj D

8<:
�ai � �2 if i D j;
1 if ji � j j D 1;
0 otherwise:

Note that, by definition, standard subsets are good. If S is a good subset, then a vertex
v 2 S is called isolated if v �w D 0 for all w 2 S n fvg, final if there exists exactly one
vertex w 2 S n fvg such that v �w D 1, and internal otherwise. A component of a good
subset G is a subset of G corresponding to a connected component of the intersection
graph of G (which is the graph consisting of vertices v1; : : : ; vn and an edge between
two vertices vi and vj if and only if vi � vj D 1).

Definition 5.2 A subset S D fv1; : : : ; vng 2 Zn is

� negative cyclic if either

(1) nD 2 and
vi � vj D

�
�ai � �2 if i D j;
0 if i ¤ j;

or

(2) n� 3 and there is a cyclic reordering of S such that

vi � vj D

8̂̂̂<̂
ˆ̂:
�ai � �2 if i D j;
1 if ji � j j D 1;
�1 if i ¤ j 2 f1; ng;
0 otherwiseI

� positive cyclic if �ai � �3 for some i and either

(1) nD 2 and
vi � vj D

�
�ai � �2 if i D j;
2 if i ¤ j;

or

(2) n� 3 and there is a cyclic reordering of S such that

vi � vj D

8̂̂̂<̂
ˆ̂:
�ai � �2 if i D j;
1 if ji � j j D 1;
1 if i ¤ j 2 f1; ng;
0 otherwiseI

� cyclic if S is negative or positive cyclic.

If S is cyclic, then the indices of each vertex are understood to be defined modulo n
(eg vnC1 D v1). If vi � viC1 D˙1, then we say that vi and vj have a positive/negative
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intersection. Moreover, if S is cyclic and S 0 is obtained from S by reversal and/or cyclic
reordering, then we consider S and S 0 to be the same subset. In this way, associated
strings of cyclic subsets are well defined up to reversal and cyclic-reordering.

Remark 5.3 By standard linear algebra, it is easy to see that, if S is good, cyclic, or
the union of a good subset and a cyclic subset, then S forms a linearly independent set
in Zn (see [8, Remark 2.1]).

Remark 5.4 Suppose S D fv1; : : : ; vng is a cyclic subset. Then, by replacing vk
with v0

k
D �vk , we obtain a new subset yS D fv1; : : : ; vk�1; v0k; vkC1; : : : ; vng such

that vk�1 � v0k D �vk�1 � vk and v0
k
� vkC1 D �vk � vkC1. Notice that S and yS have

the same associated strings. Thus we can change the number of positive and negative
intersections of S without changing the associated string. Conversely, any subset of
the form S D fv1; : : : ; vng, where n� 3 and

vi � vj D

8̂̂̂<̂
ˆ̂:
�ai � �2 if i D j;
˙1 if ji � j j D 1;
˙1 if i ¤ j 2 f1; ng;
0 otherwise;

can modified into a positive or negative cyclic subset by changing the signs of select
vertices. In particular, for any negative cyclic subset, the negative intersection can be
moved at will by negating select vertices.

Similarly, any irreducible subset of the form G D fv1; : : : ; vng, where

vi � vj D

8<:
�ai � �2 if i D j;
˙1 if ji � j j D 1;
0 otherwise;

can be modified into a good subset by changing the signs of select vertices. In Section 7,
we will often create such subsets and assume that they are good, without specifying
the need to possibly negate select vertices first.

Definition 5.5 Let S D fv1; : : : ; vng � Zn be a subset with vi � vi D�ai . We define

I.S/ WD

nX
iD1

.ai � 3/; ESi WD fj W vj � ei ¤ 0g;

pi .S/ WD
ˇ̌
fj W jESj j D ig

ˇ̌
; V Si WD fj W vi � ej ¤ 0g:

In some cases we will drop the superscript S from the above notation if the subset
being considered is understood.
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t

�a1

�a2

�an

Figure 16: A 4–manifold P t with boundary Y ta .

Remark 5.6 Lisca [8] classified all standard subsets of Zn with I.S/ < 0. The results
in the next three sections rely in part on his classification of standard subsets. We will
review his classification in Section 5.1.

Example 5.7 The subset S D fe1 � e2; e2 � e3; : : : ; en�1 � en; en C e1g � Zn for
n� 2 is a negative cyclic subset with associated string .2Œn�/. Moreover, I.S/D�n,
p2.S/D n, and pj .S/D 0 for all j ¤ 2. When nD 4, there is an alternative subset
with associated string .2; 2; 2; 2/, namely S 0 D fe1 � e2; e2 � e3;�e2 � e1; e1C e4g,
which satisfies p1.S 0/D p3.S 0/D 2. This latter subset will be used to construct the
family strings in S1a.

Let aD .a1; : : : ; an/. The rational sphere Y ta is the boundary of the negative definite
2–handlebody P t whose handlebody diagram is given in Figure 16. LetQP t denote the
intersection form of P t . Note thatQP t depends only on the parity of t . Further suppose
Y ta bounds a rational homology ball B. Then the closed 4–manifold X t D P t [B is
negative definite. By Donaldson’s diagonalization theorem [6], the intersection lattice
.H2.X

t /;QX t / is isomorphic to the standard negative definite lattice .Zn;�In/. Thus
the intersection lattice .H2.P t /;QP t / must embed in .Zn;�In/. The existence of
such an embedding implies the existence of a cyclic subset S � Zn with associated
string .a1; : : : ; an/. Thus our goal is to classify all cyclic subsets of Zn, where n� 2.

Recall that, by reversing the orientation of Y ta , we obtain the Y ta D Y
�t
d

, where d D

.d1; : : : ; dm/ is the cyclic-dual of .a1; : : : ; an/ (Section 2.2). In particular, .a1; : : : ; an/
is of the form .2Œm1�; 3C n1; : : : ; 2

Œmk�; 3C nk/ if and only if .d1; : : : ; dm/ is of the
form .3Cm1; 2

Œn1�; : : : ; 3Cmk; 2
Œnk�/. If S and S denote the cyclic subsets associated

to .a1; : : : ; an/ and .d1; : : : ; dm/, respectively, then I.S/C I.S/D 0. Now, since Y ta
bounds a QB4 if and only if Y �t

d
bounds a QB4, we will focus our attention on subsets

satisfying I.S/� 0. The following theorem is the main result of our lattice analysis:
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Theorem 5.8 Let S be a cyclic subset such that I.S/� 0. Then S is either negative
with associated string in S1 [O [ f.2Œn�/ j n � 2g or positive with associated string
in S2.

Proof The theorem follows from Example 5.7 and Propositions 6.5, 7.5 and 7.14,
which will be proven in Sections 6 and 7.

We can now prove Theorem 1.7, which we recall here for convenience.

Theorem 1.7 Let a D .a1; : : : ; an/, where n � 1, ai � 2 for all i , and aj � 3 for
some j, and let d be the cyclic-dual of a.

(1) Suppose d … S1a [ O. Then Y �1a bounds a QB4 if and only if a 2 S1 or
d 2 S1b [S1c [S1d [S1e.

(2) Suppose a … S1a [ O. Then Y 1a bounds a QB4 if and only if d 2 S1 or
a 2 S1b [S1c [S1d [S1e.

(3) Y 0a bounds a QB4 if and only if a 2 S2 or d 2 S2.

Proof The sufficient conditions of Theorem 1.7 follow from the calculations in
Section 4. The necessary conditions of Theorem 1.7 follow from Theorem 5.8 and the
fact that Y ta bounds a QB4 if and only if Y �t

d
bounds a QB4.

The proof of Theorem 5.8 will span the next three sections. The proof will begin in
earnest in Section 6. The proof applies two strategies. The first will be to reduce certain
cyclic subsets to good subsets and standard subsets and appeal to Lisca’s work [8; 9].
The second will be to reduce certain cyclic subsets (via contractions) to a small list of
base cases. In the upcoming subsection, we will recall Lisca’s classification of standard
subsets. In the subsequent subsection, we will describe how to perform contractions
and list the relevant base cases. In the final subsection, we will prove a few preliminary
lemmas that will be useful going forward.

5.1 Lisca’s standard and good subsets

In Section 7, we will construct good subsets and standard subsets satisfying I < 0 from
cyclic subsets, thus reducing the problem of classifying certain cyclic subsets to Lisca’s
work [8; 9]. In this section, we collect relevant results proved by Lisca. The first two
propositions can be found in [8, Sections 3–7]. In particular, the “moreover” statements
in Proposition 5.10 are obtained by examining the proofs of [8, Lemmas 7.1–7.3].
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Proposition 5.9 Let T D fv1; : : : ; vng be a standard subset with I.T / < 0. Then:

(1) I.T / 2 f�1;�2;�3g.

(2) jvi � ej j � 1 for all i and j .

(3) p1.T /D 1 if and only if I.T /D�3 and , if p1.T /D 0, then p2.T / > 0.

(4) If I.T /D�3, then p1.T /D p2.T /D 1 and p3.T /D n� 2.

(5) If I.T /D�2, then p2.T /D 3, p4.T /D 1, and p3.T /D n� 4.

(6) If I.T /D�1, then p2.T /D 2, p4.T /D 1 and p3.T /D n� 3.

Proposition 5.10 Let T be standard with I.T / < 0. Let x; y � 0.

(1) If I.T /D�3, then , if Ei Dfsg, then vs is internal (ie 1< s <n) and vs �vs D�2;
if jEj j D 2, then Ej D f1; ng; either v1 � v1 D �2 or vn � vn D �2; and v1 � ej D

�vn � ej . Moreover , T has associated string of the form .b1; : : : ; bk; 2; cl ; : : : ; c1/,
where .b1; : : : ; bk/ and .c1; : : : ; cl/ are linear-dual strings.

(2) If I.T /D�2, then (up to reversal ) T has associated string of the form

(a) .2Œx�; 3; 2Cy; 2C x; 3; 2Œy�/,

(b) .2Œx�; 3Cy; 2; 2C x; 3; 2Œy�/, or

(c) .b1; : : : ; bk�1; bkC 1; 2; 2; cl C 1; cl�1; : : : ; c1/, where the strings .b1; : : : ; bk/
and .c1; : : : ; cl/ are linear-dual.

Moreover , up to the action of Aut.Zn/, the corresponding embeddings are of the form

(a)
�
exC4� exC3; exC3� exC2; : : : ; e5� e4; e4� e2� e3;

e2C e1C

xCyC4X
˛DxC5

ei ;�e2� e4�

xC4X
˛D5

ei ; e2� e1� e3; e1� exC5;

exC5� exC6; : : : ; exCyC3� exCyC4

�
;

(b)
�
exC4� exC3; exC3� exC2; : : : ; e5� e4; e4� e2� e3�

xCyC4X
˛DxC5

ei ; e2C e1;

�e2�e4�

xC4X
˛D5

ei ; e2�e1�e3; e3�exC5; exC5�exC6; : : : ; exCyC3�exCyC4

�
;

(c) fu1; : : : ; uk�1; ukCe4�e2�e3; e2Ce1;�e2�e4; e2�e1�e3Cw1;w2; : : : ;wlg;
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where kCl �3, ukD0 orw1D0, jE1jD jE4jD2. Furthermore (up to reversal ), in (c)
we may assume that u21 D�2; consequently, there exist integers j1 and j2 such that
jEj1 j D 2, jEj2 j D 3, u1 �ej2 D�u2 �ej2 D�wl �ej2 D 1, and ju1 �ej2 j D jwl �ej2 j D 1.

(3) If I.T /D�1, then (up to reversal ) T has associated string of the form

(a) .2C x; 2Cy; 3; 2Œx�; 4; 2Œy�/,

(b) .2C x; 2; 3Cy; 2Œx�; 4; 2Œy�/, or

(c) .3C x; 2; 3Cy; 3; 2Œx�; 3; 2Œy�/.

Moreover , up to the action of Aut.Zn/, the corresponding embeddings are of the form

(a)
�
e2C e4C

xC4X
˛D5

e˛; e1� e2C

xCyC4X
˛DxC5

e˛; e2� e3� e4; e4� e5;

e5� e6; : : : ; exC3� exC4; exC4� e1� e2� e3; e1� exC5;

exC5� exC6; : : : ; exCyC3� exCyC4

�
;

(b)
�
e2Ce4C

xC4X
˛D5

e˛; e1�e2; e2�e3�e4�

xCyC4X
˛DxC5

e˛; e4�e5; : : : ; exC3�exC4;

exC4� e1� e2� e3; e3� exC5; exC5� exC6; : : : ; exCyC3� exCyC4

�
;

(c)
�
e1� e2� e5�

xC5X
˛D6

e˛; e2C e3;�e2� e1� e4�

xCyC5X
˛DxC6

e˛;�e5C e2� e3;

e5� e6; e6� e7; : : : ; exC4� exC5; exC5C e1� e4; e4� exC6;

exC6� exC7; : : : ; exCyC4� exCyC5

�
:

The next proposition follows from the first case (S irreducible) of the proof of the main
theorem in [9, page 2160ff] and [8, Lemma 6.2] (see also [1, Lemma 6.6]). See [8,
Definition 4.1] for the definition of bad component.

Proposition 5.11 [9] Let G � Zn be a good subset with two components and
I.G/ � �2. If G has no bad components , then I.G/ D �2 and G has associated
string of the form .b1; : : : ; bk/[ .c1; : : : ; cl/, where .b1; : : : ; bk/ and .c1; : : : ; cl/ are
linear-dual strings. Moreover , if G D fv1; : : : ; vk; vkC1; : : : ; vkClg, where �v2i D bi
for 1� i � k and �v2

kCj
D cj for all 1� j � l , then there exist integers ˛ and ˇ such

that E˛ D f1; kC 1g and Eˇ D fk; kC lg.

Algebraic & Geometric Topology, Volume 23 (2023)



2490 Jonathan Simone

5.2 Contractions, expansions and base cases

In this section, we discuss how to reduce the length of certain cyclic subsets via
contractions.

Definition 5.12 Suppose S D fv1; : : : ; vng with n� 3 is a cyclic subset and suppose
there exist integers i , s and t such that Ei D fs; Qs; tg, where Qs 2 fs˙1g, VQs \Vs D fig,
jvu �ei j D 1 for all u2Ei , and at � 3. After possibly cyclically reordering and reindex-
ing S, we may assume that s … f1; ng. Let S 0 � Zn�1 D he1; : : : ; ei�1; eiC1; : : : ; eni

be the subset defined by

S 0 D .S n fvs; vQs; vtg/[fvsC vQs; �ei .vt /g;

where �ei .vt /D vt C .vt � ei /ei . We say that S 0 is obtained from S by a contraction
and S is obtained from S 0 by an expansion.

Since s … f1; ng and jvQs � ei j D jvs � ei j D 1, we have vs�1 � ei D�vs � ei . Thus

.vsC vQs/ � vu D

8<:
1 if Qs D sC 1 and u 2 fs� 1; sC 2g;
1 if Qs D s� 1 and u 2 fs� 2; sC 1g;
0 otherwise:

Moreover, .�ei .vt //
2 D v2t C 1� �2 and

�ei .vt / � vu D

�
1 if uD t ˙ 1;
0 otherwise:

Therefore, S 0 is a positive/negative cyclic subset if and only if S is positive/negative
cyclic. Moreover, I.S 0/D I.S/, pj .S 0/Dpj .S/ for all j ¤3, and p3.S 0/Dp3.S/�1.

Definition 5.13 Using the notation above, if vt �vs D 1 (so that t D s˙1 if QsD s�1)
and aQs D 2, then we say

� vs is the center of S relative to ei ,

� S 0 is obtained by a contraction of S centered at vs , and

� S is obtained by a �2–expansion of S .

Note that a subset obtained by a contraction of S centered at vs is unique. Indeed,
if Ei D fs � 1; s; sC 1g, as�1 D 2 and asC1 � 3, then Vs�1 \Vs D fig and the only
contraction centered at vs is S n fvs; vs�1; vsC1g[ fvs�1C vs; �ei .vsC1/g. Similarly,
if Ei D fs � 1; s; sC 1g, as�1 D 2 and asC1 � 3, then Vs�1 \Vs D fig and the only

Algebraic & Geometric Topology, Volume 23 (2023)



Classification of torus bundles that bound rational homology circles 2491

contraction centered at vs is S n fvs; vs�1; vsC1g [ fvs C vsC1; �ei .vs�1/g. Now let
S have associated string .a1; : : : ; an/. Then, under the contraction centered at vs , the
associated string changes via

.a1; : : : ; as�2; 2;as; asC1; asC2; : : : ; an/! .a1; : : : ; as�2;as; asC1�1;asC2; : : : ; an/

or

.a1; : : : ; as�2; as�1;as; 2; asC2; : : : ; an/! .a1; : : : ; as�2; as�1�1;as; asC1; : : : ; an/:

Notice that two strings .b1; : : : ; bk/ and .cl ; : : : ; c1/ are reverse linear-dual if and only
if .b1; : : : ; bk�1/ and .cl�1; : : : ; c1/ or .b1; : : : ; bk�1/ and .cl�1; : : : ; c1/ are reverse
linear-dual. Thus the substrings on either side of as in the associated string of S are
reverse linear-dual if and only if the substrings on either side of as in the associated
string of the contraction of S centered at vs are reverse linear-dual.

More generally, let S D fv1; : : : ; vng and consider a sequence of contractions S0 D S,
S1, S2; : : : ; Sm such that Sk is obtained from Sk�1 by performing a contraction
centered at v.k�1/s 2 Sk�1, where v.0/s D vs . We call such a sequence of contractions
the sequence of contractions centered at vs and call the reverse sequence of expansions
a sequence of �2–expansions centered at v.m/s . Notice that, for all 1� k �m, v.k/s D
v
.k�1/
s C v

.k�1/

Qs
, where v.k�1/

Qs
is the unique vertex of Sk�1 adjacent to v.k�1/s with

square �2. We have proven the following:

Lemma 5.14 Let S 0 be obtained from S by a sequence of contractions centered at v
and let v2 D�a. Then S has associated string of the form .b1; : : : ; bk; a; cl ; : : : ; c1/,
where .b1; : : : ; bk/ and .cl ; : : : ; c1/ are reverse linear-dual , if and only if S 0 has
associated string of the form .b01; : : : ; b

0
k0
; a; c0

l 0
; : : : ; c01/, where .b01; : : : ; b

0
k0
/ and

.c0
l 0
; : : : ; c01/ are reverse linear-dual.

When I.S/ � 0 and either p1.S/ > 0 or p1.S/ D p2.S/ D 0, we will be able to
sequentially perform contractions until we arrive at certain base cases. In light of
Example 5.7, we will restrict our attention to cyclic subsets containing at least one
vector with square at most �3. We will now list all such cyclic subsets of length 2
and 3 with I.S/ � 0. It can be concretely checked case by case that the only such
cyclic subsets are positive and (up to the action of Aut.Z2/) are of the form

� f2e1;�e1C e2g, which has associated string .4; 2/ 2 S2a;

� f2e1� e3; e3C e2;�e1� e3g, which has associated string .5; 2; 2/ 2 S2a; and

� fe1�e2�e3; e3�e1�e2; e2�e3�e1g, which has associated string .3; 3; 3/2S2c .
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Notice that the second and third vertices of the subset with associated string .5; 2; 2/
are both centers relative to e3. If we perform a contraction centered at either vertex
relative to e3, we obtain the subset with associated string .4; 2/. Note that, when nD 3,
centers are not unique, but when n� 4, centers are necessarily unique.

Remark 5.15 We will usually denote cyclic subsets by S, standard subsets by T, and
good subsets by G. Moreover, S 0 will be reserved for contractions of S.

5.3 Preliminary lemmas

The following lemmas will be important in future sections. The first follows from the
proof of [8, Lemma 2.5].

Lemma 5.16 [8, Lemma 2.5] If S Dfv1; : : : ; vng�ZnDhe1; : : : ; eni is any subset ,
then

2p1.S/Cp2.S/C I.S/�

nX
jD4

.j � 3/pj .S/;

with equality if and only if jv˛ � eˇ j � 1 for all 1� ˛; ˇ � n.

Lemma 5.17 Let S be cyclic and such that p2.S/ > 0 and jv˛ � eˇ j � 1 for all
1� ˛; ˇ � n. Then

P
i p2i .S/��I.S/ mod 4.

Proof First notice that, since I.S/D
Pn
iD1.ai � 3/, we have

Pn
iD1 ai D 3nC I.S/.

Now

�

� nX
iD1

vi

�2
D

nX
iD1

ai �

n�1X
iD1

2vi � viC1� 2v1 � vn D

�
nC I.S/ if S is positive;
nC 4C I.S/ if S is negative:

On the other hand, set
Pn
iD1 vi D

Pn
iD1 �iei and let k˛ D

ˇ̌
fi W j�i j D 2˛C 1g

ˇ̌
and

xˇ D
ˇ̌
fi W j�i j D 2ˇg

ˇ̌
. Finally, let m 2 Z be the largest integer such that km ¤ 0 and

kt D 0 for all t > m, and let y 2 Z be the largest integer such that xy ¤ 0 and xt D 0
for all t > y. Since jv˛ � eˇ j � 1 for all ˛ and ˇ, we have

P
i p2i .S/D x0C � � �C xy .

Hence,

�

� nX
iD1

vi

�2

D�

nX
iD1

�2i D

�
n�

� mX
˛D1

k˛

�
�

� yX
ˇD0

xˇ

��
C

mX
˛D1

.2˛C 1/2k˛C

yX
ˇD0

.2ˇ/2xˇ
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D nC

mX
˛D1

.4˛2C 4˛/k˛C

yX
ˇD0

.4ˇ2� 1/xˇ

D nC

mX
˛D1

.4˛2C 4˛/k˛C

yX
ˇD0

.4ˇ2/xˇ �

�X
i

p2i .S/

�
:

Thus,
mX
˛D1

.4˛2C 4˛/k˛C

yX
ˇD1

.4ˇ2/xˇ D

�P
i p2i .S/C I.S/ if S is positive;P
i p2i .S/C 4C I.S/ if S is negative:

It follows that
P
i p2i .S/��I.S/ mod 4.

Lemma 5.18 If G D fv1; : : : ; vng � Zn is a good subset with I.G/D 0, p3.G/D n,
and n components , then , up to the action of Aut Zn, negating vertices , and permuting
vertices ,

� G D fe1� e2C e3� e4; e1C e2;�e1C e2C e3� e4; e3C e4g with associated
string .4; 2; 4; 2/, or

� G D fe1 � e2 � e3; e1 C e2 � e4; e2 � e3 C e4; e1 C e3 C e4g with associated
string .3; 3; 3; 3/.

Proof First notice that, by Lemma 5.16, jv˛ � eˇ j � 1 for all ˛ and ˇ. Let i , s, t and u
be integers such that Ei D fs; t; ug. Since every vertex of G is isolated, up to negating
vertices we may assume that vs � ei D vt � ei D vu � ei D�1.

First suppose as D 2 and let vs D ei C ej . Then, since vs � vt D vs � vu D 0, we
have vt D ei � ej C a and vu D ei � ej C b. Since vt � vu D 0, there are integers
k; l 2 Vt \Vu such that vt D ei � ej C ek � el Ca0 and vu D ei � ej � ekC el Cb0. If
.a0/2 ¤ 0, then let RD fv01; : : : ; v

0
s�1; v

0
sC1; : : : ; v

0
ng �Zn�2 D he1; : : : ; eni=hei ; ej i,

where v0t D �ej .�ei .vt //, v
0
u D �ej .�ei .vu//, and v0x WD vx for all x … ft; ug. Then

.v0t /
2 ��3, v0t �v

0
u D 2, and v0t �vx D v

0
u �v
0
x D 0 for all x … ft; ug. Consequently, R is

the union of a positive cyclic subset fv0t ; v
0
ug and a good subset R n fv0t ; v

0
ug. Thus,

by Remark 5.3, R is a linearly independent set of n� 1 vectors in Zn�2, which is
impossible. Thus .a0/2D 0 and, similarly, .b0/2D 0; hence, vt D ei �ej Cek�el and
vu D ei � ej � ekC el . Now, since jEkj D jEl j D 3, there exists an integer z such that
k; l 2 Vz and, since vz � vt D 0, we may assume that vz D ek C el C c. By a similar
argument as above, c2 D 0 and so vz D ekC el . Since G is irreducible, it follows that
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n D 4 and so G has associated string of the form .4; 2; 4; 2/. Setting i D 3, j D 4,
k D 1 and l D 2, we have the subset listed in the statement of the lemma.

Next suppose as; at ; au � 3. Assume as > 3. Let RD fv01; : : : ; v
0
s�1; v

0
sC1; : : : ; v

0
ng �

Zn�1 D he1; : : : ; eni=hei i, where v0s D �ei .vs/, v
0
t D �ei .vt /, v

0
u D �ei .vu/, and

v0x WD vx for all x … fs; t; ug. Then .v0s/
2<�2 and v0s �v

0
t D v

0
s �v
0
uD v

0
t �v
0
uD 1; hence,

fv0s; v
0
t ; v
0
ug is a positive cyclic subset. Moreover, v0s � v

0
x D v

0
t � v
0
x D v

0
u � v
0
x D 0 for all

x … fs; t; ug. ThusR is the union of a positive cyclic subset and a good subset and so, by
Remark 5.3,R is a linearly independent set of n�1 vectors in Zn�2, which is impossible.
Thus as D 3; similarly, at D au D 3. Without loss of generality, vs D ei � ej � ek ,
vt D ei C ej � el and vu D ei C ekC el for some integers j, k and l . Since jEj j D 3,
there exists an integer z such that j 2 Vz . Since vz �vs D vz �vt D vz �vuD 0, we have
vz D ej � ek C el C a. If a2 ¤ 0, then we can define a subset R as above and arrive
at a similar contradiction. Thus vz D ej � ek � el . Since G is irreducible, it follows
that nD 4 and so G has associated string of the form .3; 3; 3; 3/. Setting i D 1, j D 2,
k D 3 and l D 4, we have the subset listed in the statement of the lemma.

6 Lattice analysis, case I: p1.S / > 0

Throughout this section, we will assume that S D fv1; : : : ; vng is a cyclic subset with
I.S/� 0 and p1.S/ > 0. Thus there exist integers i and s such that Ei Dfsg. Lemmas
6.1–6.3 will ensure that we can contract such subsets.

Lemma 6.1 Let S be a cyclic subset of length 4 such that I.S/� 0 and Ei D fsg for
some integers i and s. If asC1 � 3 or as�1 � 3, then S is positive and has associated
string of the form .6; 2; 2; 2/ or .5; 2; 2; 3/. If as˙1 D 2, then S is either negative and
has associated string of the form .2; 2; 2; 2/ or .2; 2; 2; 5/, or positive and has associated
string of the form .2; 2; 2; 3/ or .2; 2; 2; 6/.

Proof If jVsjD1, then, sinceEiDfsg, we obtain vs �vsC1D0, which is a contradiction.
Thus jVsj � 2.

Suppose as�1 � 3. If jVsj � 3, then let R � Z3 be the subset obtained by replacing
vs by vs C .vs � ei /ei . Then R is a cyclic subset and, by Remark 5.3, R is made
of four linearly independent vectors in Z3, which is not possible. Thus jVsj D 2.
Let Vs D fi; j g. Then Ej D fs � 1; s; sC 1g, since otherwise we would necessarily
have that jEi j > 1. Moreover, since Vs�1 \ Vs D VsC1 \ Vs D fj g, we necessarily
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have that jvs�1 � ej j D jvs � ej j D jvsC1 � ej j D 1. If S is positive cyclic, then it
is clear that vs�1 � ej D vsC1 � ej D �vs � ej . If S is negative cyclic, then, by
possibly moving the negative intersection (see Remark 5.4), we may assume that
vs�1 � ej D vsC1 � ej D �vs � ej . Thus we may perform a contraction of S centered
at vs relative to ej to obtain a length 3 cyclic subset S 0 with I.S 0/ D I.S/ � 0

and p1.S 0/ > 0. By considering the base cases in Section 5.2, it is clear that S 0 D
f2e1�e3; e3Ce2;�e1�e3g (up to the action of Aut.Z3/), which has associated string
.5; 2; 2/. Thus i D 2, j D 4, and either S Df2e1�e3�e4; e2Ce4;�e4Ce3;�e1�e3g
or S D f2e1 � e3; e3 � e4; e4C e2;�e4 � e1 � e3g. Therefore, S is positive and has
associated string .6; 2; 2; 2/ or .5; 2; 2; 3/.

Now suppose as�1 D asC1 D 2. Without loss of generality, assume s D j D 4.
Let T D fv1; v2; v3g � Z3 D he1; e2; e3i be the length 3 standard subset obtained by
removing vs from S. Then T has associated string of the form .2; a2; 2/. Since I.S/�0,
we must have a2 � 6. It is easy to see that a2 ¤ 6, since otherwise v2 D 2e1� e2� e3
(up to the action of Aut.Z3/), implying that v1 � v2 ¤˙1, which is a contradiction. If
a2D 5, then T is of the form fe1� e2; e2C2e3;�e2� e1g and therefore S must be of
the form fe1� e2; e2C 2e3;�e2� e1; e1C e4g (up to the action of Aut.Z3/). Thus S
is negative with associated string .2; 5; 2; 2/ (equivalently .2; 2; 2; 5/). If a2 � 4, then
I.T / < 0. By Proposition 5.10, the only such length 3 standard subset has associated
string .2; 2; 2/. Moreover, T is of the form T D fe1� e2; e2� e3;�e2C e1g (see [8,
Lemma 2.4]). Since v3 � v4 D˙1, either 1 2 V S4 , 2 2 V S4 , or both. If 1; 2 2 V S4 , then
since v2 � v4 D 0, we must have 3 2 V S4 ; thus jV S4 j D 4. Moreover, since v1 � v4 D˙1,
we must have that v4 � e1 D v4 � e2˙ 1, implying that a4 � 7, which is not possible.
Thus either 1 2 V S4 or 2 2 V S4 , but not both. If 1 2 V S4 , then S is negative and of the
form fe1 � e2; e2 � e3;�e2 � e1; e1C e4g or fe1 � e2; e2 � e3;�e2 � e1; e1C 2e4g,
which have associated strings .2; 2; 2; 2/ and .2; 2; 2; 5/ (note that we found the
latter subset above). If 2 2 V S4 , then 3 2 V S4 and S is positive and of the form
fe1�e2; e2�e3;�e2�e1; e2Ce3Ce4g or fe1�e2; e2�e3;�e2�e1; e2Ce3C2e4g,
which have associated strings .2; 2; 2; 3/ and .2; 2; 2; 6/.

Lemma 6.2 Let S be a cyclic subset of length at least 5 such that Ei D fsg for some
i and s. Then jVsj D 2. Moreover , if Vs D fi; j g, then Ej D fs � 1; s; s C 1g and
vs�1 � ej D vsC1 � ej D�vs � ej D˙1.

Proof First note that, if jVsjD1, then, sinceEi Dfsg, we obtain vs �vsC1D0, which is
a contradiction. Now suppose jVsj � 3. Then, by replacing vs with v0s D vsC.vs �ei /ei
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and relabeling v0u D vu for all u¤ s, we obtain a subset

RD fv01; : : : ; v
0
s�1; v

0
s; v
0
sC1; : : : ; v

0
ng � Zn�1 D he1; : : : ; ei�1; eiC1; : : : ; eni:

Let .a01; : : : ; a
0
n/ be the string associated to R, where �a0s WD v

0
s �v
0
s ��2 and a0j D aj

for all j ¤ i . If S is negative cyclic, then so is R and thus, by Remark 5.3, R is made
of n linearly independent vectors in Zn�1, which is not possible. If S is positive cyclic
and either a0s � 3 or ai � 3 for some i ¤ s, then R is also positive cyclic, and we obtain
a similar contradiction. Now suppose S is positive cyclic, a0s D 2 and a0t D at D 2 for
all t ¤ s. Let T be the subset obtained by removing vs from S. Then T has associated
string .2Œn�1�/ and so I.T /D�.n�1/��4. If jES

k
j � 2 for all k 2 V Ss , where k¤ i ,

then T is a standard subset of Zn�1 with I.T /��4, which contradicts Proposition 5.9.
If jES

k
j D 1 for some k 2 V Ss such that k¤ i , then, by Remark 5.3, T consists of n�1

linearly independent vectors in Zm, where m < n� 1, which is not possible. Thus
jVsj D 2. Let V Ss D fi; j g. Then, as in the proof of Lemma 6.1, Ej D fs� 1; s; sC 1g
and vs�1 � ej D vsC1 � ej D�vs � ej D˙1.

Lemma 6.3 Let S be a cyclic subset of length at least 5 such that I.S/ � 0 and
Ei D fsg for some i and s. Then either as�1 � 3 or asC1 � 3. Moreover , if as˙1 � 3,
then S is positive with associated string .2; 3; 2; 3; 2/ or .2; 3; 5; 3; 2/.

Proof By Lemma 6.2, Vs D fi; j g and Ej D fs � 1; s; sC 1g. Assume that as�1 D
asC1D 2. Then Vs�1Dfj; kg for some k, VsC1Dfj; k0g for some k0, and jvs˙1 �ej jD
jvs�1 � ekj D jvsC1 � ek0 j D 1. Since vs�1 � vsC1 D 0, we must have k D k0. Since
jvs�2 � vs�1j D 1 and j … Vs�2, we must have k 2 Vs�2. But then vs�2 � vsC1 ¤ 0,
which is a contradiction.

Now suppose as�1; asC1 � 3 and let R be the subset obtained by removing vs and
replacing vs˙1 with v0s˙1 D vs˙1 C .vs˙1 � ej / � ej . Note that v0s�1 � v

0
sC1 D ˙1.

As in the proof of Lemma 6.2, either R is cyclic or S is positive cyclic and R has
associated string of the form .2Œn�1�/. In the former case, by Remark 5.3, R �
Zn�2 contains n� 1 linearly independent vectors, which is not possible. In the latter
case, let T � Zn�1 be the standard subset obtained from S by only removing vs .
Then T has associated string .3; 2; : : : ; 2; 3/. By Proposition 5.10, the only such
standard subset is fe4C e3� e2; e2C e1;�e2� e4; e2C e3� e1g (up to the action of
Aut.Z4/), which has associated string .3; 2; 2; 3/. Thus j D 3, jvs � e3j D 1. Since
I.S/� 0, S is of the form f�e2� e4; e2C e3� e1; e5� e3; e4C e3� e2; e2C e1g or
f�e2� e4; e2C e3� e1; 2e5� e3; e4C e3� e2; e2C e1g, which are positive and have
associated strings .2; 3; 2; 3; 2/ and .2; 3; 5; 3; 2/, respectively.
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Let S D fv1; : : : ; vng be a cyclic subset such that n � 6, I.S/ � 0 and ESi D fsg
for some integers i and s. By Lemma 6.2, we may assume that V Ss D fi; j g and
ESj D fs � 1; s; sC 1g for some integer j. Thus vs is the center vertex of S relative
to ej . By Lemma 6.3, we may further assume that asC1 � 3 and as�1 D 2 and so
V Ss�1 D fj; j1g for some integer j1. Let S 0 D fv01; : : : ; v

0
s�2; v

0
s; v
0
sC1; : : : ; v

0
ng be the

contraction of S centered at vs , where v0xDvx for all x…fs�1; s; sC1g, v0sDvs�1Cvs ,
and v0sC1 D �ej .vt /. Since V S

0

s D fi; j1g and ES
0

j1
D fs� 2; s; sC 1g, v0s is the center

vertex of S 0 relative to ej1 and, by Lemma 6.3, either .v0s�2/
2��3 or .v0sC1/

2��3. If
.v0s�2/

2��3 and .v0sC1/
2��3, then, by Lemma 6.3, S 0 is positive and has associated

string of the form .2; 3; 2; 3; 2/ or .2; 3; 5; 3; 2/. If .v0s�2/
2 D �2 or .v0sC1/

2 D �2,
then we can perform the contraction centered at v0s relative to ej1 , as above. Continuing
in this way, we have a sequence of contractions centered at vs , which ends in a subset yS
either of length 4 or of length 5 with associated string .2; 3; 2; 3; 2/ or .2; 3; 5; 3; 2/.
Let Ovs denote the resulting center vertex of yS. Then V ySs D fi; kg for some integer k
and jE yS

k
j D 3.

Suppose that yS has length 4. By considering the length 4 cyclic subsets in the proof of
Lemma 6.1, it is clear that yS is either negative and of the form

� fe1� e2; e2� e3;�e2� e1; e1C e4g with associated string .2; 2; 2; 2/, or

� fe1� e2; e2� e3;�e2� e1; e1C 2e4g with associated string .2; 2; 2; 5/;

or positive and of the form

� SDf2e1�e3�e4; e2Ce4;�e4Ce3;�e1�e3gwith associated string .6; 2; 2; 2/,
or

� S D f2e1�e3; e3�e4; e4Ce2;�e4�e1�e3g with associated string .5; 2; 2; 3/.

Each bold number in the above strings corresponds to a vertex Ovm satisfying E yS˛ Dfmg
for some integers ˛ and m. In particular, one of the bold numbers in each of the above
strings corresponds to Ovs . In the first two cases, notice that the substrings between the
bold numbers (ie .2/ and .2/) are reverse linear-dual. Thus, by Lemma 5.14, S has asso-
ciated string of the form .b1; : : : ; bk; 2; cl ; : : : ; c1; 2/ or .b1; : : : ; bk; 2; cl ; : : : ; c1; 5/,
where .b1; : : : ; bk/ and .cl ; : : : ; c1/ are reverse linear-dual. Similarly, the third and
fourth strings are of the form .b1C 3; b2; : : : ; bk; 2; cl ; : : : ; c1/, where .b1; : : : ; bk/
and .cl ; : : : ; c1/ are reverse linear-dual, and so S has associated string of the same
form. Note that the strings .5; 2; 2/ and .4; 2/ also fall under this family (recall that
the linear-dual of .1/ is the empty string).
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Now suppose yS has length 5. Then, by the proof of Lemma 6.3, yS is positive and of
the form

� f�e2 � e4; e2C e3 � e1; e5 � e3; e4C e3 � e2; e2C e1g with associated string
.2; 3; 2; 3; 2/, or

� f�e2� e4; e2C e3� e1; 2e5� e3; e4C e3� e2; e2C e1g with associated string
.2; 3; 5; 3; 2/.

As above, the bold numbers in these two strings correspond to the vertex Ovs . Notice
that, after performing a �2–expansion centered at Ovs , the first and last entries in each
string remain unchanged. Moreover, the substrings adjacent to the bold numbers are .3/
and .3/; notice .3�1/D .2/ and .3�1/D .2/ are reverse linear-dual strings. Thus, as
above, S has associated string of the form .2; b1C1; b2; : : : ; bk; 2; cl ; : : : ; c2; c1C1; 2/

or .2; b1C 1; b2; : : : ; bk; 5; cl ; : : : ; c2; c1C 1; 2/, where .b1; : : : ; bk/ and .cl ; : : : ; c1/
are reverse linear-dual strings.

Remark 6.4 Consider the length 5 subsets above. We can perform contractions to
obtain the cyclic subsets of Lemma 6.1 with associated strings .2; 2; 2; 3/ and .2; 2; 2; 6/.
However, these do not fall under the general formulas listed above. Moreover, the string
.2; 2; 2; 6/ is also the associated string of a different subset, as seen in Lemma 6.1.
This string already appeared in first set of cases we considered and so we will not count
this string again.

Combining all of these cases, we have proven the following:

Proposition 6.5 Let S be a cyclic subset with I.S/ � 0 and p1.S/ > 0. Then S is
either negative with associated string in S1a [S1b , or positive with associated string in
S2a [S2b [S2e.

7 Lattice analysis, case II: p1.S / D 0

In this section, we will assume that S D fv1; : : : ; vng is cyclic with I.S/ � 0 and
p1.S/ D 0. By Lemma 5.16, p2.S/ �

Pn
jD4.j � 3/pj .S/. If p2.S/ D 0, then the

inequality is necessarily an equality and so pj .S/D 0 for all 4� j � n. Thus, in this
case, I.S/D 0 and p3.S/D n. Therefore, we have two cases to consider: p2.S/D 0
and p2.S/ > 0.
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7.1 Case IIa

Let S be cyclic and p1.S/ D p2.S/ D 0. Then, as shown above, I.S/ D 0 and
p3.S/D n. The next two lemmas provide some general properties of S.

Lemma 7.1 If S is cyclic and p1.S/Dp2.S/D0, then jv˛ �eˇ j�1 for all 1�˛; ˇ�n.

Proof Let vi D
Pn
jD1mij ej for each i , where mij D vi � ej . Then, since I.S/D 0,

we have 3nD�
Pn
iD1 v

2
i D

P
i;j m

2
ij �

P
i;j jmij j � 3n. Thus m2ij D jmij j for all i

and j and so jvi � ej j D jmij j � 1 for all i and j.

Lemma 7.2 If S is cyclic and p1.S/D p2.S/D 0, then S is positive cyclic.

Proof Again, let vi D
Pn
jD1mij ej . By Lemma 7.1, jmij j � 1 for all i and j. LetPn

iD1 vi D
Pn
iD1 �iei . Then, since p3.S/D n, �i 2 f˙1;˙3g for all i . Now, if S is

negative, then�3nD
Pn
iD1 v

2
i D

�Pn
iD1 vi

�2
�2

P
i<j vi �vj D

�
�
Pn
iD1 �

2
i

�
�2.n�2/

or
Pn
iD1 �

2
i D nC 4. Thus there must exist j such that �j D˙3. But then n� 1 �P

i¤j �
2
i D n� 5, which is impossible. Thus S must be positive.

If p3.S/D n, then it is clear that n� 3. If nD 3, then S is the subset with associated
string .3; 3; 3/ 2 S2b \S2c found in Section 5.2. From now on, we will assume that
n� 4.

Lemma 7.3 Let S be cyclic with p1.S/D p2.S/D I.S/D 0. Suppose there exist
integers i and s such that Ei D fs� 1; s; sC 1g. Then S is positive and has associated
string in S2b .

Proof By Lemma 7.2, we know that S is necessarily positive. Now, since Ei D
fs� 1; s; sC 1g, we necessarily have that as � 3; otherwise, if as D 2 and Vs D fi; i 0g,
then jEi 0 j D 1, which is a contradiction. We further claim that as�1 � 3 or asC1 � 3.
Suppose otherwise: as�1 D asC1 D 2. Then Vs�1 D VsC1 D fi; j g for some integer j
and, since jEi j D 3, we necessarily have that j 2 Vs�2 \ VsC2. Since jEj j D 3, we
necessarily have that nD 4. But then there exists an integer k 2 Vs such that either
jEkj D 1 or jEkj D 2, which is a contradiction. Without loss of generality, assume that
as�1 � 3.

First assume that vs�1 � ei D vs � ei (or similarly vsC1 � ei D vs � ei ). Let x � 0 be the
smallest integer such that asCxC1� 3. Since asC1D � � � D asCx D 2, we have VsC˛ D
fi˛�1; i˛g for all 1�˛�x, where i0 WD i and fi0; : : : ; ixg contains xC1 distinct integers.
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Moreover, Ei˛ D fs�1; sC˛; sC˛C1g for all 1� ˛ � x. Since vs�1 �ei D vs �ei , by
Lemmas 7.1 and 7.2, there exist integersm; k 2Vs�1\Vs such that vs�1 �emD�vs �em
and vs�1 �ekD�vs �ek . Thus as�1�xC3. LetRDfv01; : : : ; v

0
s�1; v

0
sCxC1; : : : ; vng�

Zn�x�1Dhe1; : : : ; eni=hei0 ; : : : ; eix i, where v0s�1D�ei0
�
�ei1 . � � � .�eix .vs�1// � � � /

�
,

v0sCxC1 D �eix .vsCxC1/, and v0y D vy for all y … fs � 1; : : : ; s C x C 1g. Then R
is negative cyclic with I.R/ D 1 � as � �2. By Proposition 7.14 in Section 7.2,
R must have associated string in S1c [ S1d [ S1e [O [ f.2Œn�/ j n � 2g and hence
either I.R/ D �.n� x � 1/ or I.R/ D �2. In the former case, we necessarily have
that as�1 D 3C x, as D nC x, and asCxC1 D 3; hence S has associated string of
the form .3C x; nC x; 2Œx�; 3; 2Œn�x�3�/ 2 S2b . In the latter case, as D 3 and so
V Ss \ V

S
s�1 D fi; m; kg. Since v2s D �3, it follows that V Sm D V

S
k
D fs � 1; s; zg for

some integer z … fs � 1; sg. It is easy to see that v2s�1 � �.4C x/ and Qv2z � �3.
Let T D .S n fvz; vs; vs�1g/[ f�ek .vs/; �em.�ek .vs�1//g. Then T is standard with
I.T / � �3 and ETm D fsg. By Proposition 5.9, I.T / D �3 and so v2z D �3; by
Proposition 5.10(1), T has associated string of the form .b1; : : : ; bk; 2; cl ; : : : ; c1/,
where .b1; : : : ; bk/ and .c1; : : : ; cl/ are linear-dual strings and the middle vertex with
square �2 is �ek .vs/. Thus S has associated string .3; b1; : : : ; bk C 2; 3; cl ; : : : ; c1/.
Since .ˇ1; : : : ; ˇ�/D .b1; : : : ; bk C 1/ has linear-dual .1; : : : ; �/D .2; c1; : : : ; cl/
(see Lemma 3.6), we have

.3;b1; : : : ; bkC2;3; cl ; : : : ; c1/D .3;ˇ1; : : : ;ˇ��1;ˇ�C1;�C1;l�1; : : : ; 1/2S2b:

Now assume that vs�1 �ei D�vs �ei DvsC1 �ei . Suppose asC1D2 and set VsC1Dfi; j g.
Note that Ej D fs� 1; sC 1; sC 2g and Vs \VsC1 D fig. Thus vs is the center of S
relative to ei . Perform the contraction of S centered at vs to obtain the positive cyclic
subset S 0Dfv01; : : : ; v

0
s; v
0
sC2; : : : ; v

0
ng, where v0xD vx for all x … fs�1; s; sC1g, v0sD

vsCvsC1, and v0s�1D�ei .vs�1/. Then I.S 0/D0 and p3.S 0/Dn�1. Now the vertices
v0s�1, v0s , and v0sC2 are adjacent in S 0, ES

0

j D fs � 1; s; sC 2g, and .v0s/
2 D v2s � �3.

Thus v0s is the center of S 0 relative to ej . Moreover, v0s�2 � ej D�v
0
s � ej D v

0
sC2 � ej . If

.v0s�2/
2 D�2 or .v0sC1/

2 D�2, then we can contract S 0 centered at v0s . Continuing in
this way, we have a sequence of contractions centered at vs which terminates in a positive
subset zS such that the resulting center vertex Qvs has adjacent vertices whose squares are
both at most�3. Reindex zS chronologically and let uD s under the new indexing. Then
Qv2uDv

2
s ��3, Qv2u˙1��3, and there is an integer l such thatE zS

l
Dfu�1; u; uC1g and

Qvu�1 �el D�Qvu �el D QvuC1 �el . Note that, if asC1� 3, then zS DS. Let C be the subset
obtained from zS by removing Qvu, replacing Qvu˙1 with Qv0u˙1 D �el . Qvu˙1/, and setting
Qv0x D Qvx for all x … fu� 1; u; uC 1g. Then I.C / � �2, p1.C /D 0, p2.C / > 0, and
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Qvu�1 � QvuC1D1. If there exists a vertex of C with square at most�3, then C is a positive
cyclic subset. However, by Proposition 7.14 in Section 7.2, positive cyclic subsets with
p1D0 and p2>0 have associated strings in S2c[S2d and thus have I 2f�1; 0g. Since
I.C /� �2, every vertex of C must have square equal to �2 and so zS has associated
string of the form .3Cx; 3; 2Œx�; 3/, where �. Qvu/2 D 3Cx. Notice that .3� 1/D .2/
and .3�1/D .2/ are reverse linear-dual strings. Thus, by Lemma 5.14, S has associated
string of the form .3Cx; b1; : : : ; bk�1; bkC1; 2

Œx�; clC1; cl�1; : : : ; c1/2 S2b , where
.b1; : : : ; bk/ and .c1; : : : ; cl/ are linear-dual strings.

Lemma 7.4 Let S be a cyclic subset with p1.S/D p2.S/D I.S/D 0. Suppose that ,
for all 1 � i � n, Ei ¤ fs � 1; s; sC 1g for some integer s. Then S is positive with
associated string in S2c .

Proof Let s be an integer such that as � 3. Let i be an integer such that vs � ei D
�vsC1 � ei , which exists by Lemmas 7.1 and 7.2. Finally, let Ei D fs � 1; s; tg. By
assumption, t … fs� 2; sC 1g. Let x � 0 be the smallest integer such that asCxC1 � 3.
Since asC1 D � � � D asCx D 2, we have VsC˛ D fi˛�1; i˛g for all 1 � ˛ � x, where
i0 WD i and fi0; : : : ; ixg contains xC1 distinct integers. Since i 2Vt and vt �vsC˛D0 for
all 1�˛� x�1, we have i0; : : : ; ix�1 2Vt . If t D sCxC1, then it is clear that ix …Vt
and so jEix j D 1, which is a contradiction. Thus vt �vsCx D 0 and so ix 2Vt\VsCxC1,
and at �xC1. Moreover, sinceEix DfsCx; sCxC1; tg, by assumption, t¤ sCxC2.
Now, since vt �vs�1Dvt �vsCxC1D0, there exist integersm12 .Vtnfi0; : : : ; ixg/\Vs�1
and m2 2 .Vt n fi0; : : : ; ixg/\VsCxC1, implying that at � 2C x. If at D 2C x, then
m1Dm2; setm WDm1Dm2. But thenm2Vt˙1, implying that jEmj�5, which is a con-
tradiction. Thus at �3Cx. LetGDfv01; : : : ; v

0
s�1; v

0
sCxC1; : : : ; v

0
t�1; v

0
tC1; : : : ; vng�

Zn�x�1Dhe1; : : : ; eni=hei0 ; : : : ; eix i, where v0s�1D�ei .vs�1/, v
0
sCxC1D�eix .vsCx/,

and v0˛ D v˛ for all ˛ … fs � 1; : : : ; sC xC 1; tg. Then G has two components and
p1.G/D p4.G/D 0 and I.G/� �2.

We first claim thatG is irreducible and thus a good subset. Suppose otherwise. ThenG is
the union of two standard subsets G1 and G2. By Proposition 5.9, I.G1/; I.G2/��3.
Since p1.G/ D p4.G/ D 0, Proposition 5.9 tells us that I.G1/; I.G2/ � 0. Con-
sequently, �2 D I.G/ D I.G1/C I.G2/ � 0, a contradiction. Thus G is a good
subset. Moreover, by the hypothesis, there do not integers l and z such that EG

l
D

fz� 1; z; zC 1g, implying that neither component of G is bad (see [8, Definition 4.1]).
By Proposition 5.11, I.G/ D �2 (so at D 3C x) and G1 and G2 have associated
strings of the form .b1; : : : ; bk/ and .c1; : : : ; cl/, where .b1; : : : ; bk/ and .c1; : : : ; cl/
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are linear-dual strings. Thus G has associated string of the form .b1; : : : ; bk; c1; : : : ; cl/

or .b1; : : : ; bk; cl ; : : : ; c1/.

To determine which string is correct, we first claim that m1 ¤m2. Assume otherwise,
and set m WD m1 D m2. Since at D 3C x, we have V St D fi0; : : : ; ix; m; zg for
some integer z. Since ESm D fs � 1; s C x C 1; tg, we necessarily have that ESz D
ft � 1; t; t C 1g, contradicting the hypothesis of the lemma. Thus m1 ¤m2 and V St D
fi0; : : : ; ix;m1;m2g. Once again by the hypothesis, we may assume thatm1 2V St�1 and
m22V

S
tC1. ThusEGm1Dfs�1; t�1g andEGm2DfsCxC1; tC1g. By Proposition 5.11,

G must have associated string .b1; : : : ; bk; c1; : : : ; cl/. Consequently, S has associated
string of the form .3C x; b1; : : : ; bk�1; bk C 1; 2

Œx�; c1 C 1; c2; : : : ; cl/. Note that,
by Lemma 3.6, .ˇ1; : : : ; ˇ�/ D .2C x; b1; : : : ; bk/ has linear-dual .1; : : : ; �/ D
.2Œx�; c1C 1; c2; : : : ; c1/; hence S has associated string

.ˇ1C 1; ˇ2; : : : ; ˇ��1; ˇ� C 1; 1; : : : ; �/ 2 S2c :

Combining the above two lemmas, we have proven the following:

Proposition 7.5 Let S be a cyclic subset with I.S/ � 0 and p1.S/ D p2.S/ D 0.
Then S is positive with associated string in S2b [S2c .

7.2 Case IIb: p2.S / > 0

Throughout this section, we will consider cyclic subsets satisfying p1.S/ D 0 and
p2.S/ > 0. In light of Example 5.7, we will further restrict ourselves to cyclic subsets
containing at least one vertex with square at most �3. By the discussion in Section 5.2,
there are no such cyclic subsets of length 2 or 3. Thus we assume that n� 4. We start
with some useful notation and some preliminary lemmas.

Definition 7.6 Let S D fv1; : : : ; vng � Zn be any subset. We define the sets

IS D fi jEi D fs; tg and as D 2 or at D 2g; J S D fi jEi D fs; tg and as; at � 3g:

In some cases, we will drop the superscript S from the notation if the subset being
considered is understood. Notice that p2.S/D jIS j [ jJ S j. For each i 2 IS [J S, let
Ei D fs.i/; t.i/g. For each i 2 IS, assume as.i/ D 2.

Lemma 7.7 Let S be cyclic , I.S/ � 0, p1.S/D 0, p2.S/ > 0, and n � 4. If i 2 I,
then at.i/ � 3.
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Proof Set s WD s.i/ and t WD t .i/. Assume at D 2. Suppose vs � vt D 0. Then
Vs D Vt D fi; j g for some j, and Ej � fs� 1; s; sC 1; t � 1; t; t C 1g. If n � 5, then
either vs�1 �vt D0 or vsC1 �vt D0, and so i 2Vs�1 or i 2VsC1, which is a contradiction.
If nD 4, then t ˙ 1D s� 1. Since vt�1 � vtC1 D 0, there exists an integer k such that
k 2 Vt˙1. Moreover, there exists a fourth integer m such that m 2 VtC1 or Vt�1, but
not both, since vt�1 � vtC1 D 0. Thus p1.S/ > 0, contradicting the hypothesis.

Now suppose jvs � vt j D 1 and, without loss of generality, let t D s C 1. Since
as D asC1 D 2, we have Vs D fi; j g and VsC1 D fi; i1g, where i1 ¤ j. Let l � 2 be
the smallest integer such that asCl � 3. Then it is easy to see that VsC˛ D fi˛�1; i˛g
for all 1 � ˛ � l � 1, where i0 WD i , i˛ … fi; j g for all 1 � ˛ � l � 1 and the i˛ are
all distinct. Similarly, let m� 1 be the smallest integer such that as�m � 3. Then, as
above, Vs�ˇ D fjˇ�1; jˇ g for all 1� ˇ �m�1, where j0 WD j and the set fjˇ ; i; i˛g
has m C l distinct elements. Now, since jvsCl�1 � vsCl j D 1, we must have that
VsCl�1\VsCl D fil�1g and jvsCl � eil�1 j D 1. Similarly, Vs�mC1\Vs�m D fjm�1g
and jvs�m �ejm�1 jD 1. Moreover, Ei˛ DfsC˛; sC˛C1g and Ejˇ Dfs�ˇ; s�ˇ�1g
for all ˛ and ˇ.

If vs�mD vsCl D vu, then fil�1; jm�1g � Vu. Since jvu �eil�1 j D jvu �ejm�1 j D 1 and
au � 3, we have jVuj � 3. Thus there is an integer p such that Ep D fug, which contra-
dicts p1.S/D 0. Now suppose vs�m¤ vsCl . Let T D fv01; : : : ; v

0
s�1; v

0
sCl

; : : : ; v0ng �

Zn�.mCl/Dhe1; : : : ; eni=hei0 ; : : : ; eil�1 ; ej0 ; : : : ; ejm�1i, where v0s�mD�ejm�1 .vs�m/
and v0

sCl
D�eil�1

.vsCl/. Since jvsCl �eil�1 j D jvs�m �ejm�1 j D 1 and as�m; asCl � 3,
we have .v0s�m/

2; .v0
sCl

/2 ��2. Thus T is a standard subset made of n� .lCm� 1/
vectors. However, by Remark 5.3, these vectors are linearly independent in Zn�.lCm/,
which is not possible.

Lemma 7.8 Let S be cyclic , I.S/ � 0, p1.S/D 0, p2.S/ > 0, and n � 4. If i 2 I,
then vs.i/ � vt.i/ D 0.

Proof Set s WD s.i/ and t WD t .i/. Let Vs D fi; j g. Then, by Lemma 7.7, at � 3. As-
sume jvs �vt jD 1 and, without loss of generality, assume t D sC1. Then fs�1; sg�Ej .
If there exists an integer u… fs�1; s; sC1g such that u2Ej , then we necessarily have
that i 2 Vu, implying that jEi j � 3, which is not possible. Thus either Ej D fs� 1; sg
or Ej D fs� 1; s; sC 1g.

IfEj Dfs�1; sg, then, by Lemma 7.7, as�1� 3. Moreover, since jvs �ei jD jvs �ej jD 1,
Vs \Vs�1 D fj g and Vs \VsC1 D fig, we have jvsC1 � ei j D jvs�1 � ej j D 1. Let T D
fv01; : : : ; v

0
s�1; v

0
sC1; : : : ; v

0
ng�Zn�2Dhe1; : : : ; eni=hei ; ej i, where v0sC1D�ej .vsC1/,
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v0s�1 D �ej .vs�1/, and v0x D vx for all x … fs� 1; s; sC 1g. Then .v0s˙1/
2 � �2 and

v0s�1 �v
0
sC1D 0. Thus T is standard with final vertices v0s�1 and v0sC1. By Remark 5.3,

T � Zn�2 contains n� 1 linearly independent vectors, which is impossible.

If Ej D fs � 1; s; s C 1g, then, since vs�1 � vsC1 D 0, there exists an integer k …
fi; j g such that k 2 Vs�1 \ VsC1. Moreover, jvs�1 � ej j D 1 and, since VsC1 \ Vs D
fi; j g and jvsC1 � vsj D 1, we have jvsC1 � ei j D x and jvsC1 � ej j D x ˙ 1, where
x; x˙ 1 ¤ 0. Thus asC1 � x2C .x˙ 1/2C 1 � 6. If jvsC1 � ei j D x � 2, let T D
fv01; : : : ; v

0
s�1;v

0
sC1; : : : ; v

0
ng�Zn�1Dhe1; : : : ; eni=hei i, where v0sC1D�ei .vsC1/ and

v0xDvx for all x …fs; sC1g. Then T is standard and 0� I.S/D I.T /Cx2C.as�3/D
I.T /Cx2�1. Thus I.T /� 1�x2<0 and so, by Proposition 5.9, we necessarily have
that I.T /D�3 and p1.T /D 1. But then p1.S/D p1.T /D 1, which contradicts our
assumption that p1.S/D 0. Now suppose jvsC1 �ei j D 1, so that jvsC1 �ej j D 2. Since
jvs�1 � ej j D 1 and jvs�1 � vsC1j D 0, either as�1 � 3 or as�1 D 2 and jvsC1 � ekj D 2.
In the latter case, note that Ek D fs�2; s�1; sC1g and Ej D fs�1; s; sC1g. In this
case, let T 0 D fv01; : : : ; v

0
s�2; v

0
sC1; : : : ; v

0
ng D� Zn�2 D he1; : : : ; eni=hei ; ej i, where

v0sC1 D �ei .�ej .vsC1// and v0x D vx for all x … fs� 1; s; sC 1g. Then T 0 is standard
with p1.T 0/ D 0 and 0 � I.S/ D I.T 0/C 5C .as�1 � 3/C .as � 3/ D I.T 0/C 3,
implying that I.T 0/��3. But, by Proposition 5.9, no such subset exists. In the former
case (as�1� 3), let T 00Dfv01; : : : ; v

0
s�1; v

0
sC2; : : : ; v

0
ng�Zn�2Dhe1; : : : ; eni=hei ; ej i,

where v0s�1D�ej .vs�1/ and v0xD vx for all x … fs�1; s; sC1g. Then T 00 is a standard
subset such that 0 � I.S/ D I.T 00/C 1C .as � 3/C .asC1 � 3/ � I.T 00/C 3. By
Proposition 5.9, we necessarily have that I.T 00/D�3 and p1.T 00/D 1. Thus asC1D 6
and V SsC1 D fi; j; kg. This implies that jET

00

k
j D 1. But k 2 V T

00

s�1 and vs�1 is a final
vertex of T 00. By Proposition 5.10(a), no such standard subset exists.

Lemma 7.9 Let S be cyclic , I.S/� 0, p1.S/D 0, jIj> 0, and n� 4.

(a) If there exist integers i; i 0 2 I such that jvs.i/ � vs.i 0/j D 1, then S is negative and
has associated string in S1d , jJ j D 0, and jv˛ � vˇ j � 1 for all 1� ˛; ˇ � n.

(b) If vs.i/ � vs.i 0/ D 0 for all i; i 0 2 I, then p4.S/� jIj.

Proof Suppose jvs.i/�vs.i 0/jD1 and, without loss of generality, assume s.i 0/D s.i/C1.
Then t .i/ D s.i/ C 2, t .i 0/ D s.i/ � 1, and there exists an integer j such that
Ej D fs.i/�1; s.i/; s.i/C1; s.i/C2g. Set s WD s.i/. By Lemma 7.7, as�1; asC2 � 3;
consequently, n� 5. Without loss of generality, assume vs�1 � vs D vs � vsC1 D 1, so
that vs�1 � ej D�vs � ej D vsC1 � ej 2 f˙1g. Let S 0 D fv01; : : : ; v

0
s�1; v

0
sC1; : : : ; v

0
ng �

Zn�1Dhe1; : : : ; eni=hei i, where v0sC2D�ei .vsC2/, v
0
s�1D�ei0 .vs�1/, and v0x WD vx
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for all x … fs � 1; s; s C 2g. Then S 0 is cyclic with I.S 0/ D I.S/ � 1 < 0 and
p1.S

0/ D 1 (since ES
0

i 0 D fs C 1g). Moreover, v0s�1 � ej D v0sC1 � ej and so S 0

is positive if and only if S is negative. By the proof of Proposition 6.5, the only
cyclic subset with p1 D 1 and I < 0 is positive and has associated string of the form
.2; b1C1; b2; : : : ; bk; 2; cl ; : : : ; c2; c1C1; 2/2S2e . Moreover, the vertex with square 2
in the middle of the string is v0sC1. Thus S is negative and has associated string of
the form .2; b1C1; b2; : : : ; bkC1; 2; 2; cl C1; : : : ; c2; c1C1; 2/ 2 S1d . Furthermore,
by the proof of Proposition 6.5, it is easy to see that jv0˛ � v

0
ˇ
j � 1 for all ˛ and ˇ and

jJ S 0 j D 0; hence jv˛ � vˇ j � 1 for all 1� ˛; ˇ � n and jJ S j D 0.

By Lemma 7.8, for all i 2 IS, there exists an integer j.i/ such that

Ej.i/ D fs.i/� 1; s.i/; s.i/C 1; t.i/g:

If vs.i/�vs.i 0/D0 for some i; i 02IS, it follows that j.i/¤j.i 0/; hence, if vs.i/�vs.i 0/D0
for all i; i 0 2 IS, then p4.S/� jIS j.

Lemma 7.10 Let S be cyclic , I.S/ � 0, p1.S/ D 0, p2.S/ > 0, and n � 4. Then
jv˛ � eˇ j � 1 for all integers ˛ and ˇ.

Proof By Lemma 7.9, we may assume that vs.i/ � vs.i 0/ D 0 for all i; i 0 2 I, so that
p4.S/ � jIj. First suppose that jJ j ¤ 0. Let i 2 J and set s WD s.i/ and t WD t .i/.
Notice that we cannot have jVsj D jVt j D 2. Without loss of generality, assume that
jVsj � 3. Let T D fv01; : : : ; v

0
t�1; v

0
tC1; : : : ; v

0
ng � Zn�1 D he1; : : : ; eni=hei i, where

v0s D �ei .vs/ and v0x D vx for all x … fs; tg. Then .v0s/
2 ��2 and v0t�1 �v

0
tC1D 0, and

so T is standard. Let jvs � ei j D x � 1. Then

0� I.S/D I.T /C x2C .at � 3/� I.T /C x
2
� I.T /C 1:

Thus I.T / � �1 and so, by Proposition 5.9, I.T / 2 f�1;�2;�3g. Thus at � 5
and jvs � ei j D x D 1. Moreover, by Proposition 5.9, jv0˛ � eˇ j � 1 for all ˛ and ˇ.
Thus jv˛ � eˇ j � 1 for all ˛ ¤ t and all ˇ. If jvt � ej j � 2 for some j, then, since
at � 5, we necessarily have Vt D fi; j g and at D 5; consequently, I.T /D�3 and, by
Proposition 5.9, p1.T /D 1. In particular, jETj j D 1 and ESj D fs; tg. If vs � vt D 0,
then vt � vt˙1 D 0, which is a contradiction. If jvs � vt j D 1 and, say, t D sC 1, then
vsC1 � vsC2 D 0, which is a contradiction. Thus jv˛ � eˇ j � 1 for all ˛ and ˇ.

Now suppose jJ j D 0. Then p4.S/ � p2.S/ and so, by Lemma 5.16, I.S/ D 0,
p2.S/D p4.S/ and pj .S/D 0 for all j D 5; : : : ; n. Thus p3.S/D n� 2p2.S/. Let
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mij WD vi � ej . Then

3nD
X

ai D
X
i;j

m2ij �
X
i;j

jmij j �
X

ipi .S/D 2p2.S/C4p2.S/C3.n�2p2.S//

D 3n:

Thus jvi � ej j D jmij j � 1 for all i and j.

In light of Lemma 7.10, it will now be a standing assumption that jv˛ � eˇ j � 1 for all
integers ˛ and ˇ.

Lemma 7.11 Suppose S is cyclic with n� 4 and jJ j ¤ 0. If there exists i 2 J with
as.i/; at.i/ � 4, then S is positive with associated string .4; 4; 2; 2; 2/ 2 S2d .

Proof By cyclically reordering and negating vertices, we may assume s.i/D 1 and
t .i/D k for some integer k. Let RDfv01; : : : ; v

0
ng �Zn�1D he1; : : : ; eni=hei i, where

v01 D �ei .v1/, v
0
k
D �ei .vk/, and v0i WD vi for all i ¤ 1; k.

Case 1 (v1 �vkD0, so k …f2; ng) By Lemma 7.10, �.v01/
2Da1�1, �.v0

k
/2Dak�1,

and v01 � v
0
k
D˙1. Let A be the intersection matrix AD .v0i � v

0
j /. Assume a1; ak � 4.

By Lemma A.4, if S is negative cyclic or S is positive cyclic with v1 � ei D�vk � ei ,
then A is negative definite; in these cases R is a linearly independent set of n vectors
in Zn�1, which is not possible. Thus we may assume that S is positive and v1 � ei D
vk � ei . Again by Lemma A.4, we arrive at another linear independence contradiction
unless a1 D ak D 4 and ax D 2 for all x … f1; kg. Thus I.S/ D �.n � 4/. Let
T D fv02; : : : ; v

0
ng � Zn�1 D he1; : : : ; eni=hei i, where v0

k
D �ei .vk/ and v0x D vx

for all x … f1; kg. Then T is a standard subset and I.T / D I.S/ � 2 D �.n � 2/.
Since I.T /� �3 by Proposition 5.9, it follows that n� 5. If nD 5, then I.S/D�1,
I.T /D�3, and T has length 4. By Proposition 5.10(1), up to reversal, T has associated
string of the form .3; 2; 2; 2/. Since at D 4, this implies that k D 2, a contradiction. If
nD 4, then I.S/D 0, I.T /D�2, and T has length 3. But, by Proposition 5.10(2), no
such standard subset exists.

Case 2 (jv1 � vkj D 1) Without loss of generality, assume k D 2. If v1 � ei D�v2 � ei ,
then v01 �v

0
2D 0; hence R is standard and so, by Remark 5.3, R is a linearly independent

set of n vectors in Zn�1, a contradiction. If v1 �ei D v2 �ei , then v01 �v
0
2D 2; by applying

Lemma A.5 as in Case 1, we obtain a contradiction unless S is positive, a1 D a2 D 4,
and a3 D � � � D an D 2. In this case, I.S/D�.n� 4/. As in Case 1, we necessarily
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have that n� 5. If nD 4, then I.T /D�2 and T has length 3; by Proposition 5.10(2),
no such subset exists. Suppose n D 5, so that I.T / D �3 and T has length 4. By
Proposition 5.10(1), up to reversal, T has associated string of the form .3; 2; 2; 2/.
Hence S is positive and has associated string of the form .4; 4; 2; 2; 2/ 2 S2d .

We are now ready to finish the classification of cyclic subsets with I.S/� 0, p1.S/D 0,
and p2.S/ > 0. We will consider two cases: jJ j ¤ 0 and jJ j D 0. These cases are
handled respectively in the next two propositions.

Proposition 7.12 Let S be cyclic , I.S/ � 0, p1.S/ D 0, p2.S/ > 0, and n � 4.
If jJ j ¤ 0, then S is positive with associated string in S2c [ S2d or negative with
associated string in S1c [S1e [O.

Proof Let i 2J and set s WD s.i/ and t WD t .i/. If as; at � 4, then, by Lemma 7.11, S
is positive with associated string in S2d . Without loss of generality, we may now assume
that as D 3. Moreover, by Lemma 7.9, vs.i1/ � vs.i2/ D 0 for all i1; i2 2 I, implying
that p4.S/� jIj. Let T D fv01; : : : ; v

0
s�1; v

0
sC1; : : : ; v

0
ng � Zn�1 D he1; : : : ; eni=hei i,

where v0t D �ei .vt / and v0x D vx for all x … fs; tg. By Lemma 7.10, .v0t /
2 D v2t C 1

and so T is a standard subset and I.T /D I.S/� 1� �1. By Proposition 5.9, I.T / 2
f�3;�2;�1g. We will work case by case, considering each of the standard subsets
listed in Proposition 5.10.

Case 1 (I.T /D �1) By Proposition 5.9, p1.T /D 0, p2.T /D 2, p4.T /D 1, and
pj .T /D 0 for all j � 5. Thus p2.S/� 3, p4.S/� 3, p5.S/� 1, and pj .S/D 0 for all
j � 6. Note that, since asD 3, if p5.S/D 1, then p4.S/Dp2.S/�2, and if p5.S/D 0,
then p2.S/Dp4.S/. By Lemma 5.17, p2.S/Cp4.S/� 0 mod 4, implying that either
p5.S/ D 1, p2.S/ D 3 and p4.S/ D 1, or p5.S/ D 0 and p2.S/ D p4.S/ D 2. By
Proposition 5.10(3), T is of one of the forms (a)–(c) given there.

Case 1(a) Without loss of generality, we may assume that the listed vertices are
v0sC1; : : : ; v

0
n; v
0
1; : : : ; v

0
s�1. First assume p5.S/ D 1, p2.S/ D 3, and p4.S/ D 1.

Then 2 2 V Ss and 3; xCyC 4 … V Ss (where xCyC 4D 1 if y D 0). If y D 0, then,
since vsC2 �vs D 0 and 1 … V Ss , we have i 2 V SsC2. Since vsC3 �vs D 0 and 2 2 V Ss , we
have 42V Ss and vs �e2Dvs �e4. Since V Ss Dfi; 2; 4g, if x�1, then vsC4 �vs¤0, which
is a contradiction, and if xD0, then vs�1 �vsD0, which is a contradiction. Thus we may
assume y � 1. Since vs �vsC2D vs �vsC3D 0 and as D 3, either i 2 V SsC2 and 4 2 V Ss ,
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or i 2V SsC3 and jf1; xC5; : : : ; xCyC3g\V Ss jD 1. In the former case, V Ss Dfi; 2; 4g
and so jvs � vsC1j ¤ 1, which is a contradiction. In the latter case, if 1 2 V Ss , then
V Ss D fi; 1; 2g and vs � e1 D vs � e2 (since vs � vsC2 D 0); but then jvsCxC4 � vsj D 2,
which is a contradiction. On the other hand, if jfxC 5; : : : ; xC y C 3g \ V Ss j D 1,
then, since vs �vs�˛ D 0 for all 2� ˛ � y, fxC5; : : : ; xCyC3g � V Ss , implying that
y D 1 and 1 2 V Ss , which is again a contradiction.

Now assume p5.S/D0 and p2.S/Dp4.S/D2. Then 2…V Ss and either xCyC42V Ss
or 3 2 V Ss , but not both (where xCyC 4D 1 if y D 0). First assume xCyC 4 2 V Ss .
Since xCyC42V SsC2 and vsC2 �vsD 0, either jf1; xC5; : : : ; xCyC3g\V Ss jD 1 or
i 2 V SsC2. In the former case, y � 1 and, since vs�˛ �vs D 0 for all 2� ˛� y, it follows
that f1; xC5; : : : ; xCyC3g�V Ss , implying that jvs �vs�1j¤1, which is a contradiction.
In the latter case, since jvs � vsC1j D 1, we have jf4; 5; : : : ; xC 4g \V Ss j D 1. Since
vsC˛ �vs D 0 for all 4� ˛� xC4, we have f4; 5; : : : ; xC4g � V Ss , which implies that
x D 0 and V Ss D fi; 4; xCyC 4g; but then jvsC3 � vsj D 1, which is a contradiction.

Now suppose 3 2 V Ss . Since vs � vsC3 D 0 and 3 2 V SsC3, either i 2 V SsC3 or 4 2 V Ss .
In the former case, since jvs � vsC1j D 1, we have jf4; 5; : : : ; xC 4g\V Ss j D 1. As in
the previous case, we see that x D 0 and V Ss D fi; 3; 4g and so vsC3 � vs ¤ 0, which
is a contradiction. In the latter case, since 4 2 V SsC4, we have i 2 V SsC4 and, since
jvs � vs�1j D 1, we necessarily have that y D 0. Consequently, S is of the form�
ei � e4C e3; e2C e4C

xC4X
˛D5

e˛; e1� e2; e2� e3� e4; ei C e4� e5;

e5� e6; : : : ; exC3� exC4; exC4� e1� e2� e3

�
;

which is positive and has associated string .3; 2C x; 2; 3; 3; 2Œx�1�; 4/ 2 S2c .

Case 1(b) As in the previous case, we may label the vertices v0sC1; : : : ;v
0
n;v
0
1; : : : ;v

0
s�1.

Note that, if y D 0, then S is also of the form in Case 1(a), which we already covered.
Thus we may assume y � 1. Consequently, jIT j D 2. If p5.S/D 1, then p2.S/D 3
and so jIS jD 2; but we also have that p4.S/D 1�jIS j, which is a contradiction. Thus
p5.S/D 0 and p2.S/Dp4.S/D 2; hence 2…V Ss and either 12V Ss or xCyC42V Ss ,
but not both. Assume xC yC 4 2 V Ss . Since xC yC 4 2 V SsC3, either i 2 V SsC3 or
jf3; 4; x C 5; : : : ; x C y C 3g \ V Ss j D 1. In the former case, since jvs � vsC1j D 1,
following as in Case 1(a) we see that x D 0 and V Ss D fi; xCyC4; 4g, which implies
that jvs � vsC3j D 1, which is a contradiction. In the latter case, since vs�˛ � vs D 0
for all 2 � ˛ � y, it is clear that 3; xC 5; : : : ; xC yC 3 … V Ss and so 4 2 V Ss . Since
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4; xCyC4 2 V SsC3 and 4 2 V SsC4, we have i 2 V SsC4. Hence, if x � 1, S is of the form�
ei � e4C exCyC4; e2C e4C

xC4X
˛D5

e˛; e1� e2; e2� e3� e4�

xCyC4X
˛DxC5

e˛;

ei C e4� e5; : : : ; exC3� exC4; exC4� e1� e2� e3; e3� exC5;

exC5� exC6; : : : ; exCyC3� exCyC4

�
;

which is positive and has associated string .3; 2C x; 2; 3Cy; 3; 2Œx�1�; 4; 2Œy�/ 2 S2c ,
and if x D 0, then S is of the form�
ei � e4C eyC4; e2C e4; e1� e2; e2� e3� e4�

yC4X
˛D5

e˛; ei C e4� e1� e2� e3;

e3� e5; e6� e7; : : : ; eyC3� eyC4

�
;

which is positive and has associated string .3; 2; 2; 3Cy; 5; 2Œy�/ 2 S2c .

Next assume 32 V Ss . Since vs �vsC3D vs �vsCxC4D 0 and 32 V SsC3\V
S
sCxC4, either

i 2V SsC3 or i 2V SsCxC4. Since y � 1 and jvs�1 �vsj D 1, it follows that xCyC32V Ss
(where xCyC 3D 3 if y D 1). But then vs � vsC1 D 0, which is a contradiction.

Case 1(c) Label the vertices v0sC1; : : : ; v
0
n; v
0
1; : : : ; v

0
s�1. Notice that jIT j D 2 if y � 1.

By the same argument as in Case 1(b), if y � 1, then p5.S/ ¤ 0. Suppose y D 0,
p5.S/ D 1, and p2.S/ D 3. Then 2 2 V Ss and 3; 4 … V Ss . Since 2; 3 2 V SsC2 and
vs � vsC2 D 0, we necessarily have that i 2 V SsC2. Now, since V SsC3 \ V

S
sC4 D f2g, it

follows that either vs � vsC3 ¤ 0 or vs � vsC4 ¤ 0, which is a contradiction. Thus we
may assume that p5.S/D 0 and p2.S/D p4.S/D 2. Thus 2 … V Ss and either 3 2 V Ss
or xCyC 5 2 V Ss , but not both (where xCyC 5D 4 if y D 0). If xCyC 5 2 V SsC3,
then either i 2 V SsC3 or jf1; 4; xC6; : : : ; xCyC3g\V Ss j D 1. In the former case, we
obtain a contradiction as in Cases 1(a) and 1(b). In the latter case, we obtain similar
contradictions unless 1 2 V Ss . In this case, since 1; xCyC 5 2 V SsC3 and 1 2 V SsCxC5,
we have i 2 V SsCxC4. Thus S is of the form�
ei � e1C exCyC5; e1� e2� e5�

xC5X
˛D6

e˛; e2C e3;�e2� e1� e4�

xCyC5X
˛DxC6

e˛;

�e5C e2� e3; e5� e6; : : : ; exC4� exC5;�ei C exC5C e1� e4;

e4� exC6; exC6� exC7 : : : ; exCyC4� exCyC5

�
;

which is positive and has associated string .3; 3C x; 2; 3Cy; 3; 2Œx�; 4; 2Œy�/ 2 S2c .
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Next suppose 3 2 V Ss . Since 2 … V SsC2 and vs � vsC2 D 0, we necessarily have that
i 2 V SsC2. Since vs �vsC4D 0, we have 5 2 V Ss and so V Ss D fi; 3; 5g. Moreover, since
5 2 V SsC5, vs �vsC5 D 0, and jvs �vs�1j D 1, we must have that x D y D 0. Hence S is
of the form

fei � e3C e5; e1� e2� e5; e2C e3C ei ;�e2� e1� e4;�e5C e2� e3; e5C e1� e4g;

which is negative cyclic with associated string .3; 3; 3; 3; 3; 3/ 2O.

Case 2 (I.T / D �2, so that I.S/ D �1) By Proposition 5.10(2), p1.T / D 0,
p2.T /D 3, p4.T /D 1, pj .T /D 0 for all j � 5, and jIT j D 2. Then, since as D 3,
p2.S/ � 4, p4.S/ � 3, and p5.S/ � 1. By Lemma 5.17, p2.S/Cp4.S/D 1 mod 4.
By a similar argument as in Case 1(b), p5.S/D 0 and so p2.S/D 3 and p4.S/D 2.
By Proposition 5.10(2), T is of one of the forms (a)–(c) given there.

Case 2(a) Label the vertices v0sC1; : : : ; v
0
n; v
0
1; : : : ; v

0
s�1. Notice that, if y D 0, then

T is also of the form given in Case 2(b). Moreover, if x D 0, then the reverse of T
is of the form given in Case 2(b). We will assume that x; y � 1 and handle the cases
x D 0 and y D 0 in Case 2(b). Since p5.S/D 0 and p2.S/D 3, we have 2 … V Ss and
jfxC 4; xC y C 4; 3g \ V Ss j D 1. If xC 4 2 V Ss or xC y C 4 2 V Ss , then, arguing
as in Case 1, we arrive at contradictions. Assume 3 2 V Ss . Since 3 2 VsCxC4 and
vs � vsCxC4 D 0, either i 2 V SsCxC4 or 1 2 V Ss , but not both. In the former case, since
jvs � vs˙1j D 1, we have x C 3; x C y C 3 2 V Ss , implying that as � 4, which is a
contradiction. In the latter case, V Ss D fi; 1; 3g, implying that vs � vsC1 D 0, which is a
contradiction.

Case 2(b) Label the vertices v0sC1; : : : ;v
0
n;v
0
1; : : : ;v

0
s�1. Notice that, if xD0, then T is

of the form in Case 2(c). We will assume that x�1 and handle xD0 in Case 2(c). Since
p5.S/D 0 and p2.S/D 3, we have 2…V Ss and jfxC4;xCyC4; 1g\V Ss jD 1 (where
xCyC4D 3 if yD 0). If 12V Ss , then, since vsCxC2 �vsD 0, we necessarily have that
i 2 V SsCxC2. Now, since jvsC1 �vsj D 1, we have xC32 V Ss and so V Ss Dfi; 1; xC3g;
but then jvs �vsC2jD 1, which is a contradiction. If xC42V Ss , then, since vs �vsC˛D 0
for all 2� ˛ � x, it follows that 4; : : : ; xC 3 … V Ss . Since xC 4 2 V SsCxC3, we must
have that i 2 V SsCxC3; consequently, since jvs�1 � vsj D 1, we necessarily have that
y � 1 and xC y C 3 2 V Ss . But then vs�2 � vs ¤ 0, which is a contradiction. Thus
xC yC 4 2 V Ss . As above, it is easy to see that 3; xC 5; : : : ; xC yC 3 … V Ss . Since
xCyC 4 2 V SsCxC1, it follows that either i 2 V SsCxC1 or 4 2 V Ss . In the former case,
since jvs � vsC1j D 1, we have xC 3 2 V Ss , which leads to a contradiction. In the latter
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case, since 4 2 V SsCxC3, we see that i 2 V SsCxC4. Since jvs � vs�1j D 1, it follows that
x D 1. Thus S is of the form�
ei C e4C exCyC4; e5� e4; e4� e2� e3�

xCyC4X
iDxC5

ei ; e2C e1; ei � e2� e4� e5;

e2� e1� e3; e3� exC5; exC5� exC6; : : : ; exCyC3� exCyC4

�
;

which is positive cyclic with associated string .3; 2; 3Cy; 2; 4; 3; 2Œy�/ 2 S2d .

Case 2(c) Label the vertices v0sC1; : : : ; v
0
n; v
0
1; : : : ; v

0
s�1. As usual, since p5.S/D 0,

2…V Ss . Notice 22V S
sCkC1

\V S
sCkC2

. By our standing assumption that vs.i/ �vs.i 0/D 0
for all i; i 0 2 IS , we necessarily have that either 1 2 V Ss or 4 2 V Ss , but not both.
Consequently, since vs � vsCkC1 D vs � vsCkC2 D 0, either i 2 V S

sCkC1
or i 2 V S

sCkC2
.

Moreover, since p2.S/ D 3, j1 … V Ss and so j2 2 V Ss . Now, since j2 2 V SsC2 and
vs � vsC2 D 0, we necessarily have that k D 2 and 4 2 V Ss . Hence V Ss D f4; i; j2g,
i 2 V S

sCkC2
, and T has associated string of the form .2; 3 C x; 2; 2; 3; 2Œx�1�; 3/.

Moreover, vs � ej2 D˙vs�1 � ej2 D�vsC1 � ej2 . Thus S is negative and has associated
string of the form .3; 2; 3C x; 2; 3; 3; 2Œx�1�; 3/ 2 S1e.

Case 3 (I.T /D�3, so that I.S/D�2) By Proposition 5.9, p1.T /D 1, p2.T /D 1,
and pj .T / D 0 for all j � 4. Thus pj .S/ D 0 for all j � 5. Let l be the unique
integer such that jET

l
j D 1 and let u be the integer such that ET

l
D fug, where

u ¤ s˙ 1. Then, since p1.S/ D 0, l 2 V Ss . Since as D 3, we have p2.S/ 2 f2; 3g
and p4.S/D p2.S/� 2. By Lemma 5.17, p2.S/Cp4.S/D 2p2.S/� 2� 2 mod 4,
implying that p2.S/D 2 and p4.S/D 0. By Proposition 5.10(1), there is an integer k
such that ET

k
D fs � 1; sC 1g and vs�1 � ek D�vsC1 � ek . Since p2.S/D 2, k 2 V Ss ,

and so V Ss D fi; l; kg. Since k … V Su , we must have that i 2 V Su . Thus au D 3. Now,
by Proposition 5.10(1), T has associated string .b1; : : : ; bk; 2; cl ; : : : ; c1/, where the
middle entry “2” corresponds to the square of v0u. Now, since vs�1 � ek D�vsC1 � ek ,
we have vs � ek D ˙vs�1 � ek D �vsC1 � ek and so S is negative and has associated
string of the form .3; b1; : : : ; bk; 3; cl ; : : : ; c1/ 2 S1c .

Proposition 7.13 Let S be cyclic , I.S/ � 0, p1.S/ D 0, p2.S/ > 0, and n � 4. If
jJ j D 0, then S is negative and has associated string in S1d [O.

Proof Note that jIj D p2.S/. By Lemma 7.7, at.i/ � 3 for all i 2 I. If there
exist i1; i2 2 I such that vs.i1/ � vs.i2/ ¤ 0, then, by Lemma 7.9, S is negative with
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associated string in S1d . Now assume that vs.i1/ � vs.i2/ D 0 for all i1; i2 2 I. Then, by
Lemmas 5.16 and 7.9, p4.S/D p2.S/, I.S/D 0, and pj .S/D 0 for all j … f2; 3; 4g.
Let G D .S n fvs.i/; vt.i/ j i 2 Ig/[f�ei .vt.i// j i 2 Ig and set v0

t.i/
D �ei .vt.i// for

all i 2 I, v0x WD vx for all x … fs.i/; t.i/ j i 2 Ig, and a0x D �.v
0
x/
2 for all x. Then

p2.G/ D p4.S/ D 0, I.G/ D 0, p3.G/ D n � p2.G/, and, by Lemma 7.9, G has
jIj components. Finally, since, for each i 2 I, there exists an integer j.i/ such that
ES
j.i/
D fs.i/� 1; s.i/; s.i/C 1; t.i/g, G is irreducible and hence a good subset.

Assume C is a component of G of length at least 2. After possibly relabeling, let
C D fv01; : : : ; v

0
mg. Since v01 �v

0
2D 1, by Lemma 7.10, there is an integer k 2 V G1 \V

G
2

such that v01 �ek D�v
0
2 �ek . Since jEG

k
j D 3, there exists an integer z such that k 2 V Gz .

Since v01 is a final vertex, v0z � v
0
1 D 0 and so there exists an integer l 2 V G1 \ V

G
z .

Moreover, since jEG
l
j D 3, we necessarily have that a01 � 3. We claim that, if a0z D 2,

then v0z D v
0
3. If v0z ¤ v

0
3, then it is clear that v0z must be isolated. In this case, since

v0z �v
0
2D 0, we have l 2 V G2 and v01 �el D�v

0
2 �el . Since v01 �v

0
2D 1, there exists another

integer m2 V G1 \V
G
2 and so a01; a

0
2 � 3. Let LD .G nfv01; v

0
2g/[f�ek .v

0
1/; �ek .v

0
2/g;

then L is good and p1.L/D 1. By [8, Corollary 3.5], I.L/D�3; but it is clear that
I.L/D I.G/� 2D�2, which is a contradiction.

Thus, if a0zD2, then v0zDv
0
3 and we can perform a contraction yielding the subsetG0D

Gnfv01; v
0
2; v
0
3g[f�ek .v

0
1/; v

0
2Cv

0
3g. Notice thatG0 is a good subset with I.G0/D0 and

pj .G
0/D0 for all j ¤3; moreover, the componentC 0Df�ek .v

0
1/; v

0
2Cv3; v

0
4; : : : ; v

0
mg

has length one less than the length of C. On the other hand, if a0z � 3, then we can
perform a contraction yielding the subset G00 DG n fv01; v

0
2; v
0
zg[ fv

0
1C v

0
2; �ek .v

0
z/g.

As above, G00 is a good subset with I.G00/D 0 and pj .G00/D 0 for all j ¤ 3, and the
component C 00 resulting from C has length one less than the length of C. We may
continue performing contractions in this way until the component C is reduced to an
isolated vertex. We can similarly perform contractions on all remaining components
until they are all isolated vertices. We obtain a good subsetK that contains only isolated
vertices. By Lemma 5.18, K is of the form

� fe1� e2C e3� e4; e1C e2;�e1C e2C e3� e4; e3C e4g, or

� fe1� e2� e3; e1C e2� e4; e2� e3C e4; e1C e3C e4g.

It is easy to see that no expansion of either subset exists. Thus K DG. Moreover, by
construction, jIj D 4 and we may assume that 1 D j.i1/, 2 D j.i2/, 3 D j.i3/, and
4 D j.i4/, where I D fi1; i2; i3; i4g. Thus (up to the action of Aut Z8), S is of the
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form either˚
e1� e2C e3� e4� ei2 C ei3 ; ei1 � e1; e1C e2;

ei2 � e2;�e1C e2C e3� e4� ei1 � ei4 ; ei3 � e3; e3C e4; ei4 � e4
	

or˚
e1� e2� e3� ei2 ; ei1 � e1; e1C e2� e4� ei4 ; ei2 � e2; e2C e3C e4C ei3 ;

ei4 � e4; e1C e3C e4C ei1 ; ei3 � e3
	
;

So S is negative cyclic with associated string .6;2;2;2;6;2;2;2/ or .4;2;4;2;4;2;4;2/,
both of which are in O.

To summarize, we have proven the following:

Proposition 7.14 Let S be a cyclic subset with p1.S/D 0, p2.S/ > 0 and I.S/� 0.
Then S is positive with associated string in S2c[S2d or negative with associated string
in S1c [S1d [S1e [O[f.2Œn� j n� 2/g.

Appendix

Given a sequence of integers .a1; : : : ; an/ the (Hirzebruch–Jung) continued fraction
expansion is given by

Œa1; : : : ; an�D a1�
1

a2�
1

:::� 1
an

:

If ai � 2 for all 1 � i � n, then this fraction is well defined and the numerator is
greater than the denominator. In fact, for coprime p > q > 0 2Z, there exists a unique
continued fraction expansion Œa1; : : : ; an� D p=q, where ai � 2 for all 1 � i � n.
Moreover, by reversing the order of the continued fraction, Œan; : : : ; a1�D p=q0, where
q0 is the unique integer such that 1� q0 < p and qq0 � 1 mod p.

Lemma A.1 Let p=q D Œa1; : : : ; an�, s=r D Œa1; : : : ; an�1�, and a D .a1; : : : ; an/.
Then jTor.H1.T˙A.a///j D p� .r ˙ 2/.

Proof Let aD .a1; : : : ; an/. By [11, Theorem 6.1], hyperbolic torus bundles are of
the form T˙A.a/ D T

2 � Œ0; 1�=.x; 1/� .˙Ax; 0/, where

AD A.a/D

�
p q

�s �r

�
;

p

q
D Œa1; : : : ; an� and s

r
D Œa1; : : : ; an�1�:
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Note that, since A 2 SL2.Z/, we have qs � pr D 1. Moreover, since T˙A.a/ is
hyperbolic, trA.a/ D p � r > 2. Now, by [12, Lemma 10], jTor.H1.T˙A.a///j D
jtr.˙A.a//� 2j D j˙.p� r/� 2j D j˙.p� .r ˙ 2//j D p� .r ˙ 2/.

Lemma A.2 Let .b1; : : : ; bk/ and .c1; : : : ; cl/ be linear-dual strings , where lCk � 2,
x � 1 be an integer , and Œb1; : : : ; bk� D p=q. Then Œb1; : : : ; bk; xC 1; cl ; : : : ; c1� D
xp2=.xpqC 1/ and Œc1; : : : ; cl ; xC 1; bk; : : : ; b1�D xp2=.xp2� xpqC 1/.

Proof Given the first conclusion, the second follows since .xpqC1/.xp2�xpqC1/D
xp2.xpq � q2 C 1/C 1. We will now prove that Œb1; : : : ; bk; x C 1; cl ; : : : ; c1� D
xp2=.xpqC 1/.

Let n D k C l C 1 be the length of .b1; : : : ; bk; x C 1; cl ; : : : ; c1/. We proceed by
induction on n. If nD 3, then kD 1, l D 1, .b1/D 2

1
, and Œ2; xC1; 2�D 4x=.2xC1/D

x22=.x.2/.1/C 1/. Suppose the lemma is true for all length n� 1 continued fractions
and consider Œb1; : : : ; bk; xC 1; cl ; : : : ; c1�. By definition of linear-dual strings, either
b1 D 2 and c1 � 3 or vice versa.

Assume that b1 D 2. Then the strings .b2; : : : ; bk/ and .c1� 1; : : : ; cl/ are linear-dual
and, by the inductive hypothesis,

Œb2; : : : ; bk; xC 1; cl ; : : : ; c1� 1�D
xm2

xmnC 1
;

Œc1� 1; c2; : : : ; cl ; xC 1; bk; : : : ; b2�D
xm2

xm2� xmnC 1
;

where Œb2; : : : ; bk�Dm=n. Thus,

Œc1; c2; : : : ; cl ; xC 1; bk; : : : ; b2�D 1C
xm2

xm2� xmnC 1
D
2xm2� xmnC 1

xm2� xmnC 1
:

Since .2xmn�xn2C2/.xm2�xmnC1/D .2xm2�xmnC1/.xmn�xn2C1/C1,

Œb2; : : : ; bk; xC 1; cl ; : : : ; c1�D
2xm2� xmnC 1

2xmn� xn2C 2
:

Thus,

Œb1; : : : ; bk; xC 1; cl ; : : : ; c1�D 2�
2xmn� xn2C 2

2xm2� xmnC 1
D

x.2m�n/2

x.2m�n/mC 1
;

Œb1; : : : ; bk�D 2�
n

m
D
2m�n

m
:

Setting p D 2m�n and q Dm yields the result.
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Now suppose c1 D 2. Then .b1� 1; : : : ; bk/ and .c2; : : : ; cl/ are linear-dual and

Œb1� 1; : : : ; bk; xC 1; cl ; : : : ; c2�D
xm2

xmnC 1
;

Œc2; : : : ; cl ; xC 1; bk; : : : ; b1� 1�D
xm2

xm2� xmnC 1
;

where Œb1� 1; : : : ; bk�Dm=n. Thus,

Œc1; : : : ; cl ; xC 1; bk; : : : ; b1� 1�D 2�
xm2� xmnC 1

xm2
D
xm2C xmn� 1

xm2
:

Since .xmnC xn2C 1/xm2 D .xm2C xmn� 1/.xmnC 1/C 1,

Œb1� 1; : : : ; bk; xC 1; cl ; : : : ; c2; c1�D
xm2C xmn� 1

xmnC xn2C 1
:

Thus,

Œb1; : : : ; bk; xC 1; cl ; : : : ; c2; c1�D 1C
xm2C xmn� 1

xmnC xn2C 1
D

x.mCn/2

x.mCn/nC 1
;

Œb1; : : : ; bk�D 1C
m

n
D
mCn

n
:

Setting p DmCn and q D n yields the result.

Proposition A.3 Let Œb1; : : : ; bk� D p=q and let a D .a1; : : : ; an/ 2 S1a. Then
jTor.H1.T�A.a///j D p2.

Proof Let aD .2; b1; : : : ; bk; 2; cl ; : : : ; c1/, where .b1; : : : ; bk/ and .c1; : : : ; cl/ are
linear-dual (up to cyclic reordering). By Lemma A.2, Œb1; : : : ; bk; 2; cl ; : : : ; c1� D
p2=.pqC 1/ and so

Œ2; b1; : : : ; bk; 2; cl ; : : : ; c1�D 2�
pqC 1

p2
D
2p2�pq� 1

p2
:

By Lemma A.1, jTor.H1.T�A.a///j D j2p2 � pq � 1 � .˛ � 2/j, where ˛ is the
denominator of Œ2; b1; : : : ; bk; 2; cl ; : : : ; c2�. By Lemma A.2,

Œc1; : : : ; cl ; 2; bk; : : : ; b1�D
p2

p2�pqC 1

and so
Œc2; : : : ; cl ; 2; bk; : : : ; b1�D

p2�pqC 1

.c1� 1/p2� c1pqC c1
:

Thus,
Œb1; : : : ; bk; 2; cl ; : : : ; c2�D

p2�pqC 1

s
for some s:

Now it is clear that ˛ D p2�pqC 1 and so

jTor.H1.T�A.a///j D j2p
2
�pq� 1� .p2�pqC 1� 2/j D p2:
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Lemma A.4 Let

AD .aij /D

2666666664

�a1 1 .�1/t .�1/r

1 �a2
: : : 1

.�1/t 1 �ak 1

1
: : :

�an�1 1

.�1/r 1 �an

3777777775
:

Suppose ai � 2 for all 1� i � n, a1 � 3, ak � 3, and r; t 2 f0; 1g.

(1) If r D 1 or t D 1, then A is negative definite.

(2) If r D t D 0 and either a1 � 4, ak � 4, or there exists an integer i … f1; kg such
that ai � 3, then A is negative definite.

Proof Let si D
Pn
jD1 aij be the i th row sum of A. Then si � 0 for all i . Moreover,

since either a1 � 4, ak � 4, or there exists an integer i … f1; sg such that ai � 3, there
exists a row sum that is strictly less than 0. Let w 2 Zn. Then

wTAw D
X
i;j

aijwiwj D
1

2

X
i;j

aij .w
2
i Cw

2
j � .wi �wj /

2/

D

X
i;j

aijw
2
i �

X
i<j

aij .wi �wj /
2
D

X
i

siw
2
i �

X
i<j

aij .wi �wj /
2:

First suppose r D t D 0. Then every term in the above expression is at most zero and so
wTAw � 0. Moreover, if either a1 � 4, ak � 4 or there exists an integer i … f1; kg such
that ai � 3, then one of the row sums si is strictly less than 0. In this case, wTAw D 0
if and only if w D 0. Thus A is negative definite. Next suppose r D 1 and t D 0. Then
s1; sn � �2 and so

wTAw D s1w
2
1 C snw

2
nC .w1�wn/

2
C

X
i¤1;n

siw
2
i �

X
i<j

.i;j /¤.1;n/

.wi �wj /
2

� �2w21 � 2w
2
nC .w1�wn/

2
C

X
i¤1;n

siw
2
i �

X
i<j

.i;j /¤.1;n/

.wi �wj /
2

D�.w1Cwn/
2
C

X
i¤1;n

siw
2
i �

X
i<j

.i;j /¤.1;n/

.wi �wj /
2:

Each term in this expression is clearly negative. If wTAw D 0, then, from the first
term, w1 D�wn. From the terms in the last summand, w1 D w2 D � � � D wn. Hence
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wn D�wn, implying that w1 D � � � D wn D 0. Therefore, A is negative definite. We
obtain a similar result if r D 0 and t D 1. Finally assume r D t D 1. Then s1 � �4
and sk; sn � �2. Arguing as above,

wTAw D s1w
2
1 C skw

2
kC snw

2
nC .w1�wn/

2
C .w1�wk/

2

C

X
i¤1;k;n

siw
2
i �

X
i<j

.i;j /¤.1;n/;.1;k/

.wi �wj /
2

� �.w1Cwn/
2
� .w1Cwk/

2
C

X
i¤1;n

siw
2
i �

X
i<j

.i;j /¤.1;n/;.1;k/

.wi �wj /
2:

Once again, we can see that A is necessarily negative definite.

Lemma A.5 Let

AD

26666664

�a1 2 .�1/r

2 �a2 1

1 �a3
: : :

�an�1 1

.�1/r 1 �an

37777775 :

Suppose ai � 2 for all 1� i � n, a1 � 3, a2 � 3, and r 2 f0; 1g.

(a) If r D 1, then A is negative definite.

(b) If r D 0 and either a1 � 4, a2 � 4 or there exists an integer i … f1; kg such that
ai � 3, then A is negative definite.

Proof The proof is similar to the proof of Lemma A.4.
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A mnemonic for the
Lipshitz–Ozsváth–Thurston correspondence

ARTEM KOTELSKIY

LIAM WATSON

CLAUDIUS ZIBROWIUS

When k is a field, type D structures over the algebra kŒu; v�=.uv/ are equivalent to im-
mersed curves decorated with local systems in the twice-punctured disk. Consequently,
knot Floer homology, as a type D structure over kŒu; v�=.uv/, can be viewed as a set of
immersed curves. With this observation as a starting point, given a knot K in S3, we
realize the immersed curve invariant cHF.S3 X V�.K// of Hanselman, Rasmussen and
Watson by converting the twice-punctured disk to a once-punctured torus via a handle
attachment. This recovers a result of Lipshitz, Ozsváth and Thurston calculating the
bordered invariant of S3 X V�.K/ in terms of the knot Floer homology of K.

57K18, 57K31; 57R58

Recent work interprets relative versions of homological invariants in terms of im-
mersed curves, including Heegaard Floer homology for manifolds with torus boundary
(see Hanselman, Rasmussen and Watson [4]) as well as link Floer homology (see
Zibrowius [23]), singular instanton knot homology (see Hedden, Herald and Kirk [7]),
and Khovanov homology (see Kotelskiy, Watson and Zibrowius [12]) for 4–ended
tangles. In particular, Section 5 of [12] classifies type D structures over a quiver
algebra associated with a surface with boundary in terms of immersed curves on this
surface; compare Haiden, Katzarkov and Kontsevich [2] and Hanselman, Rasmussen
and Watson [4]. Denoting a field by k, perhaps the simplest algebra to illustrate
these classification results is RD kŒu; v�=.uv/. This algebra arises as the path algebra
of a quiver that is associated with the decorated surface shown in Figure 1. Work
of Lekili and Polishchuk [13; 14] describes the role of R, and its relationship with
the twice-punctured disk, in the context of homological mirror symmetry; see in
particular [14, Figures 1 and 2]. The algebra R equipped with the Alexander and ı
gradings gr.u/D .�1; 1/ and gr.v/D .1; 1/ plays a central role in knot Floer homology;
see Dai, Hom, Stoffregen and Truong [1], for instance.

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution
License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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v u

a

Figure 1: An arc system associated with the algebra R.

Theorem 1 Every bigraded type D structure over R is equivalent to an immersed
curve (decorated with local systems) in the twice-punctured disk , which is unique up
to regular homotopy (and equivalence of local systems).

As stated, this is a special case of a theorem proved in [12, Section 5] appealing to
techniques from [4] (see also [23]). The observation could alternatively be extracted
from [4, Section 3.4] (see the aside starting on page 2527 below accompanying Figure 8),
and also follows from work of Haiden, Katzarkov and Kontsevich [2]; see Section 1.8
of [12] for more discussion. We will review the algebraic objects in Section 1 and,
without reproducing the proof in full, explain some key steps in this special case in
Section 2. Theorem 1 gives rise to a graphical interpretation  for (a variant of) knot
Floer homology RCFK.Y;K/, which is a bigraded type D structure over R. Our proof
is constructive and, in particular, foregrounds the role of vertically and horizontally
simplified bases that arise in knot Floer homology. An explicit example of a curve  in
the twice-punctured disk is shown in Figure 2, left. This particular curve corresponds
to the type D structure associated with the right-hand trefoil T2;3 in S3:

Œ˛1
u
 � ˛2

v
�! ˛3�D

RCFK.S3;T2;3/:

Note that, while the local system in this example is trivial, these are easy to add to
the picture in general, being equivalent to isomorphism classes of flat vector bundles
over the curves in question. There is an obvious handle attachment, identifying the
two punctures in the disk, which yields a once-punctured torus. Denote this handle
attachment by and consider the curve ./. Note that, given a choice of meridian
on the torus, this operation has an inverse, which we will denote by .

Denote by cHF.M / the immersed curve in the once-punctured torus associated with
a manifold M with torus boundary [4]. This is equivalent to the bordered Heegaard
Floer invariant of M ; see Lipshitz, Ozsváth and Thurston [17]. Here is the mnemonic
we propose:

Algebraic & Geometric Topology, Volume 23 (2023)
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a
a�

aı

Figure 2: Adding a handle to the twice-punctured disk results in the
once-punctured torus. This carries immersed curves to immersed curves;
the immersed curve on the left corresponds to the type D structure
RCFK.S3;T2;3/D Œ˛1

u
 � ˛2

v
�! ˛3�, which is carried to the curve cHF.M /,

where M is the trefoil exterior S3 X V�.K/.

Theorem 2 If  is a curve representing the knot Floer invariant RCFK.S3;K/ over
the two-element field , then ./ is equivalent to cHF.M /, where M is the exterior of
the knot K. Conversely, given a meridian for M DS3X V�.K/, the curve .cHF.M //

represents the knot Floer type D structure for K.

Figure 2 illustrates this theorem for the right-hand trefoil knot; the proof is given in
Section 4.

Remark There is an apparent ambiguity in the statement of Theorem 2, namely
the number of twists (along the belt of the handle ) one adds to the noncompact
component of the curve  . However, recall that the curve cHF.M / � @M is null-
homologous in M [4, Sections 5 and 6]; to resolve the ambiguity it is enough to
identify the once-punctured torus obtained after adding the handle with the boundary
of the knot exterior (minus a small disk). We identify the arc a� from Figure 2 with
the meridian �, and the second arc aı with a longitude � of K. This pair provides a
bordered structure, in the sense of Lipshitz, Ozsváth and Thurston [17]. Concerning the
framing �: On one hand, there is a preferred choice given by the Seifert longitude �0,
and the corresponding identification is depicted in Figure 3, right. On the other hand, it
is often easiest to work with the “blackboard framing”, which simply joins the endpoints
of  without new twisting as they run over the handle, as in Figure 2. In general, the
latter gives the 2�.K/–framed longitude �2� D 2� � �C �0, where the value �.K/
is the Ozsváth–Szabó concordance invariant (we describe how to extract this value
below). This choice of longitude is illustrated in Figure 3, left. These choices differ by
Dehn twists along �; note that in both cases Œ ./�D Œ�0� in homology. Different
choices of twisting precisely correspond to different unstable chains appearing in [17,
Theorem A.11], due to Lipshitz, Ozsváth and Thurston, which Theorem 2 recasts.

Algebraic & Geometric Topology, Volume 23 (2023)
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� �2� �
�0

Figure 3: Choices of framing on the right-hand trefoil invariant: �2� D

2�C�0 (left) and the Seifert longitude �0 (right). The resulting curve  on
the boundary of the trefoil exterior coincides with Figure 9 of Hanselman,
Rasmussen and Watson [5].

This result generalizes to knots in arbitrary three-manifolds; see Section 5 for further
discussion.

A graphical interpretation of the family of concordance homomorphism f�ig due to
Dai, Hom, Stoffregen and Truong [1] is given by Hanselman and the second author [6].
This can be read off the current picture: Denote by 0.K/ � .K/ the noncompact
curve in the twice-punctured disk associated with RCFK.S3;K/. (The curve 0.K/

is a concordance invariant [6, Proposition 2].) Orient 0.K/ so that it leaves from the
v–puncture; this is the left-hand puncture in Figure 1, which records the vi coefficient
maps. Contracting the arc a to a point gives a wedge of annuli Av _ Au, and the
oriented segments of 0.K/ around the v–puncture give a collection of homotopy
classes in �1Av Š hti, where the generator t winds counterclockwise. As a result,
given 0.K/, with our choice of orientation we obtain tn1 tn2 � � � tnk for the k oriented
segments winding around the v–puncture, and

�i.K/D
X

njD˙i

sign.nj /; �.K/D

kX
jD1

nj ;

so that �.K/ is simply the winding number of  around the v–puncture. One can check
that this gives �.T2;3/ D �1.T2;3/ D 1. A more complicated example is shown in
Figure 4. The same construction works with the u–puncture instead of the v–puncture,
due to a symmetry interchanging u and v in knot Floer homology; see Ozsváth and
Szabó [18].

Relevant to concordance is the behaviour under connect sum. Denote by RHFK.S3;K/

the knot Floer invariant obtained as the homology of a complex CFK.S3;K/ freely
generated over R. In Section 6 we prove:
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v v2 v

u

u2

u

Figure 4: The curve associated with RCFK.S3;K/ when K is the .2; 1/–
cable of the right-hand trefoil. The vertical and horizontal complexes are
shown beside the relevant annuli; including the diagonal arrows describes the
invariant over kŒu; v�. Applying Theorem 2 results in the curve invariant in
the torus, which can be compared with [6, Figure 1]. Orientating the curve as
shown, we calculate �1.K/D 0, �2.K/D 1 and �.K/D 2.

Theorem 3 The knot Floer homology over R of a connected sum of two knots is equal
to the wrapped Lagrangian Floer homology of the corresponding curves:

RHFK.S3;mK # K0/Š HF..K/;.K0//:

A proof is given in Section 6. As is the case with Theorem 1, the proof appeals to the
techniques in [12, Section 5].

1 Algebraic objects

Let B be a bigraded unital algebra over a field k, with a subring of idempotents I
being equal to kn. The object of interest is a bigraded chain complex over B: Let V

be a finite-dimensional bigraded left I–module, and suppose further that we have a
morphism of I–modules

d W V ! B˝I V

satisfying the compatibility condition

.�˝ idV / ı .idB˝ d/ ı d D 0;

where � denotes multiplication in B. In our setting the morphism d has bidegree
.a; ı/D .0; 1/, and the pair .V; d/ is a bigraded type D structure over B.

A couple of remarks: We work with left actions for consistency with [17], and our
type D structures will always be reduced, which means that d.x/D

P
i bi˝yi , where
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none of the bi 2 B are invertible. This is justified by the fact that any bigraded type D
structure is homotopy equivalent to a reduced one [12, Lemma 2.16].

Such algebraic structures appear naturally in a variety of settings. For example, given a
knot K in S3, the knot Floer invariant HFK.S3;K/, due to Ozsváth and Szabó [18]
and to Rasmussen [21], can be viewed as a kŒu; v�–module obtained as the homology
of a chain complex CFK.S3;K/ over the ring kŒu; v� [22, Section 3]. This complex is
freely generated as a module over this ring. As such, it is natural to view CFK.S3;K/

as a type D structure over kŒu; v�, which we denote by kŒu;v�CFK.S3;K/.

Given a type D structure over B, a homomorphism of I–algebras B! B0 gives rise to
an induced type D structure over B0. In particular, the quotient kŒu; v�! kŒu; v�=.uv/

defines a truncated version of the knot Floer type D structure,
RCFK.S3;K/D kŒu;v�CFK.S3;K/juvD0:

The associated module object RCFK.S3;K/ (see [17, Lemma 2.20]) is the knot Floer
complex freely generated over R, which is studied in depth by Dai, Hom, Stoffregen
and Truong [1] and Ozsváth and Szabó [19]. A concise formula connecting the
type D structure and the associated module object uses the box tensor product (see [16,
Section 2.3.2 and Proposition 2.3.18], and also the beginning of Section 4 for a similar
construction):

RCFK.S3;K/D RRR � RCFK.S3;K/:

We note that there are two further type D structures obtained from RCFK.S3;K/ by
setting the appropriate variables equal to zero: the horizontal type D structure C h

and the vertical type D structure C v . For instance, in the case of the type D structure
RCFK.S3;T2;3/ (see Figure 2), we have

C h
D Œ˛1

u
 � ˛2 ˛3�; C v

D Œ˛1 ˛2
v
�! ˛3�:

As the type D structures are reduced, the isomorphisms of vector spaces C hjuD0 Š

bHFK.S3;K/Š C v jvD0 induce an isomorphism

' W C h
juD0! C v

jvD0:

We have:

Proposition 4 The data specified by the triple .C h; C v ; '/ is equivalent to the type D
structure RCFK.S3;K/.

Proof This is immediate from the definitions, but also follows from the discussion in
Section 2 outlining the proof of Theorem 1.
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2 Geometric objects

Often, when an invariant of a topological object is a type D structure over an algebra B,
the invariant is only well defined up to homotopy equivalence. As such, it is of
general interest to be able to classify homotopy equivalence classes of type D structures.
Such classification turns out to be possible when the algebra B is isomorphic to
an endomorphism algebra of certain objects in the (wrapped) Fukaya category of a
surface †. In this case, homotopy equivalence classes of type D structures over B
correspond to certain curves (decorated with local systems) immersed in †. This is a
powerful structural result allowing us to translate algebra into geometry, something
not so often encountered in mathematics. The classification result is established in [2]
using representations of nets; an alternative, more geometric approach is given in [4],
which appeals to train tracks in a surface. The simplification algorithm proved in [4]
that is central to the classification is further developed and leveraged in [12; 23], where
train tracks reappear as precurves. We focus on this latter approach.

To provide a useful toy model for the classification result, we restrict to type D structures
over R. The algebra R indeed arises as the endomorphism algebra of an object in the
(wrapped) Fukaya category of a surface. The surface is the oriented, twice-punctured
disk D and the object is an arc connecting the two punctures; see Figure 5. More
explicitly, from this figure we can extract a quiver with a single vertex corresponding
to the object in the Fukaya category, and arrows labelled u and v corresponding to the
two paths around the punctures in D:

v ˛ u

It is useful to view this quiver as a deformation retract of the twice-punctured disk.
The algebra R is the path algebra of this quiver modulo the relations uv D 0D vu. In
terms of Figure 5, these relations have the effect that paths that run along the dashed
arc are zero in R, while paths that only wind around a single puncture are nonzero.

v u

Figure 5: A dual arc system associated with the algebra R.
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To match the setup in [12], a different viewpoint, which is in some sense dual to the
previous one, will be more useful. Namely, choose an arc a that is properly embedded
in .D; @D/ and that divides D into a pair of annuli, as illustrated in Figure 1. From
this, we can also recover the quiver: the vertex corresponds to the arc a and the arrows
correspond to paths on the boundary of D. Again, it is useful to consider the quiver as
a deformation retract that contracts the arc to the quiver vertex. The relations that we
impose on the quiver algebra to obtain R now have a different geometric interpretation:
paths that at an endpoint of the dashed arc continue along the boundary of D are zero
in R, while paths that, at such a point, always choose to follow the dashed arc are
nonzero; see also [12, Section 5.1].

The choice of arc a is an example of an arc system on D, in the sense of Section 5.1
of [12]. In general, an arc system, giving rise to an algebra B, allows for a graphical
representation of type D structures over B as subobjects of the surface. These show
up as train tracks in [4] and precurves in [12]; we describe them explicitly in the
case of R and the twice-punctured disk D. It will be convenient to specify the annuli
D X aDAv tAu; these annuli are called faces.

Let .V; d/ be a type D structure over R. Given a homogeneous basis fx1; : : : ;xng

for V (as a vector space over k, say), we can pick n distinct points on a and label
these with the xi . To describe the morphism d , suppose b˝xj is a summand of d.xi/.
Then, since b is a sum of polynomials, we may assume without loss of generality
that b is �uk or �vk for some � 2 k and k > 0. (The assumption that this power is
nonzero comes from our restriction to reduced type D structures.) There are two cases:
if b D �uk then we connect xi to xj by an oriented arc immersed in Au that winds
algebraically k times in the positive direction; and if bD �vk then we connect xi to xj

by an oriented curve immersed in Av that winds algebraically k times in the positive
direction. In both cases the arc is decorated by the field coefficient �, noting that when
�D 1 our convention is to drop the label. In particular, when k is the two-element field,
only the arcs are needed. Lastly, if an intersection point xi does not have outgoing arcs
in the annulus Au, we connect xi straight to the u–puncture; we do the same for the Av

annulus and the v–puncture. To see that this information, having added all of the arcs
described, can be viewed as an immersed train track in D, we simply require that every
curve is perpendicular to a in a neighbourhood of each xi . An explicit example is given
in Figure 6. Note that in this example there are no arcs going to interior punctures.

These train tracks can be put into a simple form that makes them easier to manage: we
require that they are simply faced in the sense of [12, Definition 5.9]. In the present
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Av Au

�1

Figure 6: A sample train track representation of a type D structure over R.
Note that every curve segment is oriented so that it runs counterclockwise
around a puncture, so this orientation is omitted. Similarly, unlabelled edges
(of which there are all but one in this example) carry the decoration �D 1.

setting, this amounts to expressing

D DAv [a�f1g .a� Œ�1; 1�/[a�f�1gAu

and requiring that the train track restricted to Au and to Av describes a type D structure
over kŒu� and kŒv�, respectively, with the property that each xi connects to at most
one xj . For an illustration, see Figure 7. All of the interesting switching is confined to
the strip a� Œ�1; 1�, which amounts to a graphical interpretation (reading from right
to left) of an isomorphism ' W Vu! Vv, where Vv and Vu are the underlying vector
spaces associated with the type D structure in each face. As such, the general fact that
we can restrict to simply faced train tracks (see [12, Proposition 5.10]) boils down to
the fact that type D structures over R admit vertically and horizontally simplified bases
[17, Definition 11.23] — though not necessarily one that is simultaneously vertically
and horizontally simplified, whence the choice of isomorphism. This last assertion
explains the presence of '; compare Proposition 4. We remark that this is one step in
which the grading plays a key role.

Aside We make a digression to describe that, in order to classify type D structures
in terms of immersed curves, other choices of surface decomposition are possible.
Namely, another option would be to

(1) cut the annuli Au and Av further, as described in Figure 8;

(2) associate with this new geometric picture a different algebra E ;
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a� Œ�1; 1�

‚ …„ ƒ
�

0 0 1
�1 1 0

1 0 0

�

�1 1

Figure 7: Expressing the train track from Figure 6 as a simply faced precurve.
The isomorphism described can be read off the tracks in a� Œ�1; 1� from right
to left; in the present setting the resulting matrix block-decomposes into two
3� 3 parts, of which one is shown and the other is the identity matrix.

(3) interpret the type D structure RV as a type D structure EW over the algebra E ;

(4) apply the methods from [4] to interpret EW as an immersed curve.

To describe this in more detail, let us focus first on the annulus Av in step (2).

Consider Figure 8. Any type D structure kŒv�V˛ may be regarded as a type D structure
V˛˚V�˚Vı over the quiver algebra kŒ� a

�! ˛
b
�! ı� together with an isomorphism

between the vector spaces V� and Vı. To repackage the latter into a type D structure
without extra data, we consider a subalgebra generated by idempotents ��C �ı and �˛

v �˛

a

b

�˛

��

�ı

Figure 8: A quiver associated with the annulus describing the algebra kŒv�,
and a quiver for an algebra associated with an additional cut.
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(because eventually the idempotents �ı and �� are identified). Writing �¯ D ��C �ı, the
subalgebra is equal to

C D kŒ¯
a
�!

b
 � ˛�=.ba/:

The type D structure kŒv�V˛ can now be interpreted as a type D structure C.V˛˚V¯/:
generators ˛ in kŒv�V˛ and C.V˛ ˚ V¯/ are in one-to-one correspondence, while a
differential ˛

vn

�! ˛ in kŒv�V˛ corresponds to the sequence of differentials

˛
b
�!¯

ab
�!¯

ab
�! � � �

ab
�!¯„ ƒ‚ …

n generators

a
�! ˛

in C.V˛˚V¯/. To add the second annulus Au to the picture, given a type D structure RV˛

one translates it into a type D structure EW over the algebra

E D kŒ¯1
a1�!
b1
 � ˛

b2�!
a2
 �¯2�=.b1a1; b2a2; a1b2; a2b2/

via the dictionary

˛
vn

�! ˛ 7�! ˛
b1
�!¯1

a1b1
��!¯1

a1b1
��! � � �

a1b1
��!¯1„ ƒ‚ …

n generators

a1
�! ˛;(1)

˛
un

�! ˛ 7�! ˛
b2
�!¯2

a2b2
��!¯2

a2b2
��! � � �

a2b2
��!¯2„ ƒ‚ …

n generators

a2
�! ˛:(2)

With this type D structure EW in hand, the methods from [4] allow us to interpret EW

as an immersed curve.

A possible difficulty might arise from the following. The passage from RV˛ to EW does
not respect homotopy equivalences: there exist homotopy equivalent type D structures
RV˛ '

RV 0˛ such that the corresponding type D structures EW and EW 0 are not
homotopy equivalent (take for example RV˛D Œ˛

v
 �˛

v
�!˛� and RV 0˛D Œ˛

v
 �˛�˚Œ˛�/.

This problem is mitigated by the fact that the curves associated with EW and EW 0 will
differ only by how many times their ends wrap around the two punctures, and initially
we regard such curves as the same. Another way to mitigate this problem is to find
vertically and horizontally simplified bases f�ig and f�j g for RV˛ at the outset, and apply
the operation (1) to the basis f�ig and the operation (2) to the basis f�ig. This will ensure
that the curve associated with EW will not have extra wrapping around the punctures
(and, of course, there may be nontrivial train tracks in the middle as in Figure 7).

We now return to the main text and make some comments about our conventions,
reviewing [12, Section 5.6]. The object appearing in the strip a� Œ�1; 1� represents an
invertible matrix, where the i th column records the edges leaving the point labelled xi on
a�f�1g (a is oriented from top to bottom in our figures, so that f�1g is the right-most
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�
0 1
1 0

� �
1 �
0 1

� �
� 0
0 1

��

�

� ��

�
1
�

Figure 9: A crossing, a crossover switch, and a passing loop, each with the
elementary matrix they represent by reading paths right to left. To declutter
pictures, we will be using the pictures in the lower row, where the arrows
pointing left to right are dropped.

edge of the strip). Using the row-reduction algorithm, this matrix can be factorized
into elementary matrices corresponding to three geometric subobjects, as shown in
Figure 9. These subobjects differ from the ones in [4], where the coefficients are
restricted to the two-element field. New in the context of general fields are the nonzero
coefficients � 2 k, recorded on the crossover switches (these correspond to crossover
arrows from [4]), as well as the passing loops, which introduce coefficients at various
points. The main point is that, when two coefficients appear consecutively on one edge
connecting the source and the target, the coefficients multiply, while if two edges share
a common source and a common target, the coefficients on those edges add. We note
that the geometric objects contain not only the information encoding ' (reading right
to left) but also the information about the inverse '�1 (reading left to right). As such,
some of the data in the crossover switches and in the passing loops is superfluous. In
particular, to simplify pictures here, we will record only the arrows running right to left.

It is convenient to put the matrix representing ' into a normal form, namely the LPU
normal form: any invertible matrix can be written as a product of a lower triangular
matrix, a permutation matrix (which may be multiplied, additionally, by a diagonal
matrix to change coefficients), and an upper triangular matrix. For example, the matrix�
� 1
1 0

�
may be expressed as�

1 �

0 1

��
0 1

1 0

�
D

�
1 0

��1 1

��
� 0

0 ���1

��
1 ��1

0 1

�
and this identity has the geometric interpretation

D�
1
�

�

�
1
�

1
�
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Figure 10: Arrows running counterclockwise can be removed.

More generally, writing the matrix for ' in LPU normal form corresponds to modifying
the train track in the region a� Œ�1; 1� so that the downward arrows are on the left, the
upward arrows are on the right, and there is a permutation in the middle. A complete list
of geometric moves corresponding to different factorizations into elementary matrices
is given in [12, Figure 23]. As an example, the reader should compare Figures 7 and 11.

The reason this form is useful is that it allows us to remove arrows and simplify. This is
possible in general, by appealing to an algorithm given in [4], and ultimately gives rise
to the proof of Theorem 1; see [12, Section 5] for details. The main point is that arrows
winding counterclockwise around a puncture can be removed. Namely, suppose there
is an arrow near an edge of the strip a� Œ�1; 1� that, when pushed into the relevant
annulus, runs counterclockwise between curve segments with different amounts of
wrapping. Then there is a homotopy equivalence that produces a new train track — with
the counterclockwise arrow removed — representing the same type D structure; see
Figure 10. This is described in detail in [12, Lemma 5.11]. The result of this procedure,
applied to the example described in Figure 11, is shown in Figure 12.

Recall that a local system over an immersed curve is a vector bundle over the curve.
In general, all of our curves carry local systems, but when the associated bundle is
one-dimensional and trivial we drop it from the notation. When working with signs,
one-dimensional local systems are quite common as the coefficients along any given
curve component multiply. Of course, noncompact curves do not carry interesting local
systems since all vector bundles are trivial in this case. On the other hand, for compact
curves it should be clear from the construction described above where a local system
can arise: if two compact curves run parallel, then a crossover switch running between
them cannot be removed by a chain isomorphism of type D structures. In general, local
systems provide a clean way of presenting the relevant invariants, while the formalism
expressing curves with local systems in terms of train tracks gives a concrete means
of working with these objects. An example is shown in Figure 13; notice that, by
replacing ' with '�1 in this example, one can obtain a vertically simplified basis or
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‚ …„ ƒ
�

1 0 0
0 1 0
0 �1 1

��
0 0 1
�1 0 0

0 1 0

��
1 �1 0
0 1 0
0 0 1

�

�1

�1

1
�1

Figure 11: Modifying the train track from Figure 7 according to an LPU
decomposition of the matrix.

.�1/

Figure 12: Modifying the train track from Figure 11 by removing the coun-
terclockwise arrows. This produces an immersed curve — an object that
is equivalent to the train track from Figure 6, and which carries a one-
dimensional local system with automorphism that multiplies by �1.

�
k2;

�
1 0
� 1

��
�

Figure 13: An arrow that cannot be cancelled gives rise to a nontrivial local system.
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a horizontally simplified basis, but not both simultaneously. It appears to still be an
open question if such phenomena arise for invariants associated with knots; see [11,
Remark 2.9].

3 Adding a handle

We now introduce the second algebra: the extended torus algebra zA. This algebra is
introduced in [4], and is also the algebra arising naturally in our setting. By construction,
the map takes the twice-punctured disk to the once-punctured torus T. An arc
system for the latter is shown in Figure 14, from which the associated quiver

� ı
�1

�3

�0

�2

can be extracted — as before, we contract the arcs to the quiver vertices. Consulting
Figure 16, note that a� is identified with the meridian � and aı is identified with the
choice of longitude �. With this arc system we associate an algebra zA. Analogous to
the relation uv D 0 from Figure 1, the algebra zA has relations

�iC1�i D 0

(indices interpreted modulo 4), as explained in Section 2. Note that the products
�i�iC1 D �i.iC1/ are nonzero. For consistency with [4, Section 3.1] we would need
to add an additional relation �0�1�2�3�0 D 0, but this is not necessary in the present
setting.

The arc system associated with zA decomposes the torus into a single disk, so type D
structures associated with compact train tracks will be curved. We fix the curvature

A A

�0 �3

�1 �2

a�

aı

Figure 14: An arc system for the extended algebra zA. The two discs are
identified, producing a handle.
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term c D �0123C�1230C�2301C�3012. Recall that a curved type D structure over zA
satisfies the compatibility condition

.�˝ idV / ı .id zA˝ d/ ı d D c � id zA

and that, in this setting, the underlying k–vector space decomposes so that V DV�˚Vı

as an I–module.

The torus algebra is the quotient AD zA=.�0/. Notice that in this quotient the curvature
vanishes and the compatibility condition for type D structures given in Section 1 is
recovered. This algebra is explored in depth in [17, Section 11; 4].

4 The proof of Theorem 2

To set the stage, we first describe three general constructions. First, given a type D
structure kŒu�N over the polynomial ring kŒu�, there is a natural way to produce a dg
module/chain complex over kŒu�: substitute each generator ˛ in kŒu�N with a copy
of the ring kŒu�, producing a free kŒu�–module, and then endow this module with a
differential by substituting every arrow ˛

`un

��! ˛ in kŒu�N with a map kŒu�
�.`un/
��! kŒu�

(where `2k). We denote the resulting dg module by kŒu��kŒu�N, because it coincides
with the result of box tensoring the type D structure with the module kŒu� viewed as a
bimodule over itself [16, Section 2.3.2]. Note that this operation respects homotopy
equivalences and also can be reversed [16, Proposition 2.3.18], albeit in a less than
straightforward way.

For the second construction, let kŒv� be the graded polynomial ring in one variable
with grading a.v/D 1. (Below, a will be the Alexander grading.) Suppose kŒv�N DL

a2Z
kŒv�N a is a graded type D structure over kŒv� such that the differential preserves

the grading a. We can then produce a complex kŒv�N jvD1 by substituting arrows
˛
`vn

��! ˛ in kŒv�N by arrows ˛
`
�! ˛. Clearly, this amounts to passing to the quotient

kD kŒv�=.v� 1/. However, since a.v/D 1, all the differentials in kŒv�N that involved
vn for n ¤ 0 now change the grading in kŒv�N jvD1 by n. Thus, we can consider
kŒv�N jvD1 as a filtered chain complex, where the filtration levels are Fj D

L
a�j N a.

As a category, type D structures over kŒv� are equivalent to filtered chain complexes via
the construction above. In particular, type D structure homomorphisms and homotopies
between them precisely correspond to filtered chain maps and filtered homotopies
between them.
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The third construction is similar to the second. Given, a graded type D structure kŒv�N

over kŒv� whose differential preserves the grading a, we define a complex kŒv�N jvD0

by removing all arrows ˛
`vn

��! ˛ for n > 0 in kŒv�N. This amounts to passing to the
quotient kD kŒv�=.v/ or, equivalently, to passing to the associated graded complex of
the filtered complex kŒv�N jvD1.

We can now provide a dictionary between the knot Floer structures used here and those
in [17]. In this paper, the most general knot Floer invariant is the type D structure
kŒu;v�CFK.S3;K/. In [17], two kinds of invariants appear. The first is the filtered
chain complex CFK�.S3;K/ over kŒu�, which is a dg module over kŒu� filtered with
respect to the Alexander grading. It is obtained from kŒu;v�CFK.S3;K/ by applying
the first construction to the variable u and the second construction to the variable v:

CFK�.S3;K/D kŒu�� kŒu��kŒu;v�CFK.S3;K/jvD1

�
:

The second invariant used in [17] is gCFK�.S3;K/, the associated graded complex of
CFK�.S3;K/. It is obtained from kŒu;v�CFK.S3;K/ by applying the first construction
to the variable u and the third construction to the variable v:

gCFK�.S3;K/D kŒu�� kŒu��kŒu;v�CFK.S3;K/jvD0

�
:

Example Consider the right-hand trefoil and its knot Floer invariants. The type D
structure invariant is

kŒu;v�CFK.S3;T2;3/D Œ˛
1
1

u
 � ˛0

1
v
�! ˛�1

1 �;

where the superscripts and subscripts indicate the Alexander and ı gradings, respectively.
Recall that the Alexander and ı gradings are gr.u/ D .�1; 1/ and gr.v/ D .1; 1/, so
that the differential in the type D structure is of bidegree .a; ı/D .0; 1/. The filtered
chain complex over kŒu� now becomes

CFK�.S3;K/DkŒu��kŒu��kŒu;v�CFK.S3;K/jvD1

�
D
�
kŒu�11

�u
 �kŒu�01

1
�!kŒu��1

1

�
;

while the associated graded chain complex over kŒu� is equal to

gCFK�.S3;K/DkŒu��kŒu��kŒu;v�CFK.S3;K/jvD0

�
D
�
kŒu�11

�u
 �kŒu�01

�
˚ŒkŒu��1

1 �:

We now proceed to the proof. We start with the knot Floer type D structure

RCFK.S3;K/D F Œu;v�CFK.S3;K/jvuD0;

and then homotope it to a representative (following the steps from Section 2) from
which the curve invariant  can be extracted. With the dictionary above in mind,
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Theorem A.11 of [17] describes in detail how to pass from RCFK.S3;K/ to the type D
structure A bCFD.M /, which then produces a curve cHF.M / in the punctured torus @M.
Our task is to prove that the resulting curve coincides with ./.

We focus on segments of the curve  in each of the annuli Av and Au, and consider
their images under the map . Starting with an illustrative example, the image of a
curve segment corresponding to the arrow ˛

v3

�! ˛ is drawn in thick in Figure 15, left,
relative to the arc system of the algebra zA. Focussing on the first part of this segment,
shown are the two ways in can be retracted to the boundary of the torus union the
two arcs: in one case the homotoped path runs along �1, and in the other case it runs
along �2 then �3 then �0. In the type D structure language, then, according to [4] and
the discussion in Section 2, this part of the curve results in � ı

�1

�230
. Similarly, the

whole thick curve segment depicted in Figure 15, left, corresponds to the following
part of a type D structure over zA:

� ı ı ı �

�1

�230

�01

�23

�01

�23

�0

�123

More generally, the image of a curve segment corresponding to the arrow ˛
vi

�! ˛ is

� ı ı ı ı �

�1

�230

�01

�23

�01

�23

� � �

�0

�123

‚ …„ ƒdim VıDi

Analogously, the image of a curve segment corresponding to the arrow ˛
ui

�! ˛ is

� ı ı ı ı �

�3

�012

�23

�01

�23

�01

� � �

�2

�301

‚ …„ ƒdim VıDi

Passing to the quotient algebra A by setting �0D 0 simplifies the above two images to

� ı ı ı ı �
�1 �23 �23

� � �
�123

‚ …„ ƒdim VıDi

and

� ı ı ı ı �
�3 �23 �23

� � �
�2

‚ …„ ƒdim VıDi

These are precisely the two stable chains appearing in the statement of Theorem A.11
of [17]; according to their result, these are the parts of A bCFD.M / that correspond to
the differentials ˛

vi

�! ˛ and ˛
ui

�! ˛ in RCFK.S3;K/.
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A A

�0 �3

�1 �2

A A

�0 �3

�1 �2

Figure 15: Sample parts of the curve corresponding to a stable chain (left)
and an unstable chain (right) from [17, Theorem A.11].

The main subtlety is the appearance of the unstable chain, which we have already
touched on. Defining in such a way that there is no extra twisting introduced (see
Figure 3, left), the straight segment running over the handle in Figure 15, right, retracts
in the two ways shown, producing the final part of the type D structure, � �

�12
�30

.
Setting �0 D 0 results in � �12

�! �, which is precisely the unstable chain from [17,
Theorem A.11]; according to their result, this is the final piece (in addition to the
stable chains) in A bCFD.M / (computed relative to the parametrization .�; 2�/ of the
torus T 2 D @M ). In [17, Theorem A.11], this final piece connects the distinguished
generators �0 and �0 in the vertically and horizontally simplified bases of CFK�.K/.
It is left to note that the two generators in Figure 15, right, are precisely �0 and �0,
because each is incident to only one arrow vi

�! or uj

�! in the complex RCFK.S3;K/.
We also remark that, while the unstable chain � �12

�! � corresponds to the 2�–framing
of the knot K, there are other type D structure presentations of the unstable chain in
[17, Theorem A.11], and those would correspond to other choices of twisting in .

w

z

�1

�0

�3

�2

v

u

� �

Figure 16: Both algebras R and zA in context.
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The statement about the reverse operation follows from the discussion above. Namely,
its clear that . .// D  , and, since we proved ./ D cHF.M /, we obtain

.cHF.M //D  .

5 Comments on generalizations and related work

Perhaps the most interesting step in this constructive review of the Lipshitz–Ozsváth–
Thurston correspondence comes about when the endpoints of the noncompact compo-
nent 0 �  are identified to give a new compact component in the once-punctured
torus. Note that the output of is always a compact curve, and this is consistent
with the observation that cHF.M / is a compact curve. The latter, in turn, follows from
the fact that bCFD.M / is an extendable type D structure [4, Appendix].

Joining the endpoints of the immersed curve 0 associated with a knot K requires a
choice of automorphism of kn where n is the number of components in 0. Denote
the horizontal homology by H h DH�.C

hjuD1/ and the vertical homology by H v D

H�.C
v jvD1/. Then, in Theorem 2, because the knot is in S3, it follows that nD 1 and

the automorphism is given, tautologically, by

H v.CFK�.S3;K//ŠH h.CFK�.S3;K//Š cHF.S3/Š k;

as explained in [17, Section 11.5]. Thus, the operation is defined over any field
provided that we choose a coefficient a 2 k when we identify the ends of 0 along a
handle. We choose this coefficient to be C1 so that the bordered invariant for the solid
torus is a circle with the trivial local system. We note that bordered Floer homology is
only defined over the two-element field F . As such, the map and Theorem 2 gives
a candidate bordered invariant for the knot exterior when k¤ F .

We now consider the general case of a knot K in Y. Decomposing along spinc–
structures, the same strategy as above works if Y is an L–space [8]. More generally,
however, one needs to know the isomorphism

H v.CFK�.Y;K//ŠH h.CFK�.Y;K//Š cHF.Y /

(which may be block-decomposed according to spinc–structures). This recovers a
generalization of [17, Theorem A.11], which may be found in forthcoming work of
Hockenhull [9] building on his invariant Poly.L; ƒ/ [10]. From our perspective, the
passage from the knot Floer homology of a knot K in Y to the bordered invariants
of Y X V�.K/ requires the isomorphism shown above. As there is a decomposition
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.kn;  /

Figure 17: A sample hypothetical local system, where nD dim cHF.Y /.

according to spinc–structures, there is no loss of generality in considering the case
where Y is an integer homology sphere. When such a Y is not an L–space, we
have that dim cHF.Y / > 1 and, in principle, the automorphism  induced by the
isomorphism between the homologies H h and H v can be interesting. In particular,
while all components of 0.K/ carry trivial local systems, the new compact object

.0.K// obtains an additional local system .kn;  /; see Figure 17. The key point of
difference is that the output will be equivalent to a simply faced precurve (in the torus)
in general, and a further application of the arrow sliding algorithm may be required
to obtain immersed curves. The algebraic side of this story is laid out carefully by
Hockenhull [9; 10].

Finally, Hanselman gives another approach [3]: his construction takes the complex
CFK�.K/ and outputs an immersed curve in the strip covering the twice-punctured
disk D, containing a countable set of pairs of punctures. This cover of the disk is
useful for recording the Alexander grading, and also works with general fields (hence
producing candidate bordered invariants). We advertise that Hanselman’s construction
has a different aim in mind, namely a candidate bordered-minus invariant obtained by
promoting the curves to describe type D structures over kŒu; v�.

6 The proof of Theorem 3

For simplicity we first focus on the case of the two-element field k D F. A few
properties of the invariant RCFK.S3;K/ are needed for the proof. First, given two
type D structures over the polynomial algebra kŒu; v� or its quotient R, their tensor

Algebraic & Geometric Topology, Volume 23 (2023)



2540 Artem Kotelskiy, Liam Watson and Claudius Zibrowius

product is another type D structure

.V; d/˝ .V 0; d 0/D .V ˝k V 0; d ˝ idC id˝ d 0/:

Now, reformulating [18, Theorem 7.1], the behaviour of knot Floer homology under
taking the connected sum can be described as

RCFK.S3;K # K0/' R.RCFK.S3;K/˝RCFK.S3;K0//:

The mirroring operation is also well understood — see [18, Proposition 3.7] —

RCFK.S3;mK/' RCFK.S3;K/;

where the latter is the dual type D structure, equal to the original one but with all
differentials reversed [15, Definition 2.5] (since R is commutative, the fact that dualizing
turns left type D structure to right ones is not a problem). Finally, we need an algebraic
relationship between morphism spaces of type D structures [16, Section 2.2.3] and their
tensor products. Given any two type D structures, the definitions imply the isomorphism
of chain complexes

R� R.RN ˝RN 0/ŠMor.RN;RN 0/:

With the properties above in place, the proof of Theorem 3 is the sequence of isomor-
phisms

RHFK.S3;mK # K0/ŠH�.R� RCFK.S3;mK # K0//

ŠH�
�
R� RŒRCFK.S3;mK/˝RCFK.S3;K0/�

�
ŠH�

�
R� RŒRCFK.S3;K/˝RCFK.S3;K0/�

�
ŠH�

�
Mor.RCFK.S3;K/;RCFK.S3;K0//

�
Š HF..K/;.K0//;

where the final isomorphism follows from the general description of morphism spaces
between type D structures over surface algebras [12, Theorem 1.5].

The recipe for adding signs follows the Koszul sign rule, which is discussed in Section 12
of [20] in detail. We find that the resulting signs are a bit more natural if one considers
right type D structures [12, Example 2.10], rather than left ones [20, Section 12.3],
as then there are no extra signs when box tensoring with �� RRR; this is explained
in [12, page 19]. Now, since the algebra R is commutative, our left type D structures
can be viewed as right type D structures, and after that filling in the signs becomes
straightforward. We refer the reader to [12, Sections 2 and 5].
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.U /

.T2;3/

Figure 18: Illustrating Theorem 3 in the case of the unknot K D U and the
right-hand trefoil K0 D T2;3. The curve .U / is a horizontal arc connecting
the punctures, but because we are in the wrapped setting, one needs to wrap
.U / infinitely many times around the punctures when pairing with another
curve.

To illustrate this gluing result, suppose K D U and K0 D T2;3. Then the knot Floer
homology of the connected sum is equal to

RHFK.S3;T2;3/DH�.R �v
 �R �u

�!R/

D Œ � � � v
 � ˛

v
 � ˛

v
 � ˛

u
�! ˛

v
 � ˛

u
�! ˛

u
�! ˛

u
�! � � � �;

where the arrows indicate the R–action. The corresponding wrapped Lagrangian Floer
homology HF..U /;.T2;3// is illustrated in Figure 18. Note that in this example
the R–action can be seen geometrically by counting Maslov index 2 disks covering the
punctures; one of these is shaded in the picture. The same is true for the kŒH �–action
on Bar-Natan homology, viewed as wrapped Lagrangian Floer homology of immersed
curves in [12, Example 7.7]. In general, to recover these module-structures, only some
of the Maslov index 2 disks should be counted — we will investigate this in future work.
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New bounds on maximal linkless graphs

RAMIN NAIMI

ANDREI PAVELESCU

ELENA PAVELESCU

We construct a family of maximal linklessly embeddable graphs on n vertices and
3n� 5 edges for all n� 10, and another family on n vertices and m< 25

12
n� 1

4
edges

for all n � 13. The latter significantly improves the lowest edge-to-vertex ratio for
any previously known infinite family. We construct a family of graphs showing that
the class of maximal linklessly embeddable graphs differs from the class of graphs
that are maximal without a K6 minor studied by L Jørgensen. We give necessary and
sufficient conditions for when the clique sum of two maximal linklessly embeddable
graphs over K2, K3 or K4 is a maximal linklessly embeddable graph, and use these
results to prove our constructions yield maximal linklessly embeddable graphs.

57M15; 05C10

1 Introduction

All graphs in this paper are finite and simple. A graph is intrinsically linked (IL) if every
embedding of it in R3 (or, equivalently, S3) contains a nontrivial 2–component link. A
graph is linklessly embeddable if it is not intrinsically linked (nIL). A nIL graph G is
maxnil if it is not a proper subgraph of a nIL graph of the same order. The combined
work of Conway and Gordon [2], Sachs [11] and Robertson, Seymour and Thomas [9]
fully characterized IL graphs: a graph is IL if and only if it contains a graph in the
Petersen family as a minor. The Petersen family consists of seven graphs obtained
from K6 by rY –moves and Yr–moves, as described in Figure 1. The rY –move and
the Yr–move preserve the IL property.

The property of being maxnil is, in a way, analogous to the property of being maximal
planar. While it is well known that every maximal planar graph with n vertices has
3n� 6 edges, an analogous statement for maxnil graphs does not exist. For example,

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution
License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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rY

Yr

Figure 1: rY – and Yr–moves.

start with a maximal planar graph G and add one vertex v together with all the edges
from v to the vertices of G. Such a graph is maxnil by [11], and if it has n vertices,
then it has 4n� 10 edges. In fact, 4n� 10 is an upper bound on the number of edges
of a maxnil graph on n vertices. This follows from work of Mader [7], who proved that
having more than 4n� 10 edges implies the existence of a K6 minor, which implies
the graph is IL.

On the other hand, Jørgensen [5] and Dehkordi and Farr [3] constructed maxnil graphs
with n vertices and 3n� 3 edges. Jørgensen’s maxnil graphs are obtained from the
Jørgensen graph in Figure 2, left, by subdividing the highlighted edge incident to the
vertex y and then adding edges that connect every new vertex to u and v. We denote
the graph obtained this way through i subdivisions by Ji for i � 1. See Figure 2, right.

Recently, Aires [1] found a family of graphs with fewer than 3n� 3 edges. For each
value n� 13 with n� 3 (mod 10), he constructed a maxnil graph with 14

5
n� 27

5
edges.

He also proved that, if G is a maxnil graph with n � 5 vertices and m edges, then
m� 2n. This bound is sharp: the maxnil graph Q.13; 3/ described by Maharry [8] has
26 edges and 13 vertices.

In Section 2, we present two constructions of maxnil graphs. The first one is a family
of maxnil graphs with n� 10 vertices and 3n� 5 edges. This construction builds upon
a maxnil graph on 10 vertices and 25 edges and uses edge subdivisions. The second

u

x y

a b

t
z

v

u

x y

a b

t
z

v

Figure 2: Left: the Jørgensen graph. Right: the graph Ji in Jørgensen’s 3n� 3 family.
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construction significantly improves on Aires’ result on the number of edges. Using
clique sums of copies ofQ.13; 3/, we construct examples with a smaller “edge-to-vertex
ratio”, as in the following theorem:

Theorem For each n � 13, there exists a maxnil graph G with n vertices and m <
25
12
n� 1

4
edges.

In Section 3, we study the properties of maxnil graphs under clique sums. Some of
these results are used in the constructions of Section 2. We give sufficient and necessary
conditions for when the clique sum of two maxnil graphs over K2, K3 or K4 is maxnil.
Jørgensen [5] studied clique sums of graphs that are maximal without a K6 minor. We
give examples showing that the class of maxnil graphs and the class of graphs that are
maximal without a K6 minor are distinct.

2 Two families of maxnil graphs

We note that the Jørgensen graph is 2–apex, ie removing the vertices u and v leaves
a planar graph P. Furthermore, the embedding of P in R2 shown in Figure 2, left,
has no separating cycles, ie for every cycle C in P, one of the components of R2 nC

contains no vertices of P. These properties are generalized in the next lemma, which
we use to prove the graphs in the 3n� 5 family are nIL.

Lemma 1 Let G be a graph with two nonadjacent vertices u; v such that there exists
an embedding † of G � fu; vg in R2, where , for every cycle C in †, R2 nC has a
component X such that X [ C separates u and v (ie every path in G from u to v
contains a vertex in X [C ). Then embedding u as .0; 0; 1/ and v as .0; 0;�1/ and
connecting each of them to its neighbors in † with straight edges yields a linkless
embedding of G in R3.

Proof Let � denote the embedding of G as described in the lemma, and let K [K 0

be a 2–component link in �. We consider two cases.

Case 1 (neither K nor K 0 contains both u and v) Then we have three subcases: zero,
one or both of K and K 0 are in †. In each of these three subcases it is easy to see that
K [K 0 is a trivial link. We prove this for one of the three subcases here; the other
two are similar and easier. Suppose K contains u but not v, and K 0 � †. Then K
consists of two edges incident to u and a path P �†. Connecting u with straight line
segments to every point in P gives us a �–panel for K. On the other hand, K 0 bounds
a disk D in R2. We isotop D, while keeping its boundary fixed, by pushing its interior

Algebraic & Geometric Topology, Volume 23 (2023)
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slightly below R2, to make it disjoint from K (since K contains no points below R2).
It follows that K [K 0 is a trivial link.

Case 2 (one of the link’s components, say K, contains both u and v) Then K 0 �†.
So R2 nK 0 has two components such that one of them, X, separates u and v. Therefore
all vertices of K except u and v lie in X. Now, K has exactly two vertices, call them a

and b, that are adjacent to u, and two vertices, c and d , adjacent to v. Note that fa; bg
is not necessarily disjoint, or even distinct, from fc; dg. Furthermore, K \X consists
of two components, P1 and P2, each of which is a path of length zero or greater. We
can assume a; c 2 P1 and b; d 2 P2. We consider three subcases.

Case 2.1 (a D c and b D d ) Join a to b by an arc ˇ � X (not necessarily in †),
and then connect each of u and v by straight line segments to every point in ˇ. See
Figure 3, left. This gives us a disk bounded by K and disjoint from K 0. Similarly to
Case 1 above, K 0 also bounds a disk disjoint from K. Hence K [K 0 is a trivial link.

Case 2.2 (a D c and b ¤ d ) Join a to each of b and d by disjoint arcs ˇ and ı
respectively, both in X, such that ˇ [ ı [P2 is a simple closed curve. See Figure 4,
right. Connect each of u and v by straight line segments to every point in ˇ and ı
respectively. This gives us two disks whose union with the disk bounded by ˇ[ ı[P2

in X is a disk bounded by K and disjoint from K 0. As before, K 0 bounds a disk disjoint
from K. Hence, K [K 0 is a trivial link.

Case 2.3 (a¤ c and b ¤ d ) This case is similar to Case 2.2, except that we join a
to b and c to d by disjoint arcs ˇ and ı in X such that ˇ [ ı [P1 [P2 is a simple
closed curve.

2.1 The 3n � 5 family

We construct a family of graphs with n vertices and 3n� 5 edges for n � 10. This
family is obtained from the graph G pictured in Figure 4, left, through a sequence of
subdivisions and edge additions. The graph G is obtained from the Jørgensen graph
by splitting (the opposite of contracting edges) the vertices a and b into the edges ad
and bc. See Figures 2, left, and 4, left. With the notation in Figure 4, left, construct
the graph G1 by subdividing the edge xy with a new vertex z1, then adding edges z1u

and z1v. Construct graphs Gi for i � 2 as follows: subdivide the edge zi�1y of Gi�1

with a new vertex zi , then add edges ziu and ziv to Gi�1. Notice that Gi has one
more vertex and three more edges than Gi�1. The graph Gi has 10C i vertices and
25C 3i D 3.10C i/� 5 edges. We note that the graphs Gi can also be obtained by
successive splittings of the vertex y into the edge yzi .

Algebraic & Geometric Topology, Volume 23 (2023)
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uD.0; 0; 1/

K

aDc bDd

vD.0; 0;�1/

ˇ
K 0 R2

uD.0; 0; 1/

K

aDc b
d

vD.0; 0;�1/

P2

ˇ

ı

K 0 R2

Figure 3: Left: configuration for Case 2.1. Right: configuration for Case 2.2.

Proposition 2 The graphs G and Gi in Figure 4 are linklessly embeddable.

Proof It is straightforward to check that these graphs satisfy the hypotheses of Lemma 1
and hence are nIL.

Proposition 3 The graph G in Figure 4, left , is maxnil.

Proof Since G is linklessly embeddable, it remains to show that adding any edge to G
gives an IL graph.

Note that both of the minors G=.ab [ cd/ and G=.ad [ bc/ are isomorphic to the
Jørgensen graph. If an edge e other than bd is added to G �fu; vg, then e is an edge

u

x y
a

b

d ct

z

v

u

x z1 z2 z3 zi y

a

b

d c
t z

v

Figure 4: Left: the graph G is maxnil with 10 vertices and 25 edges. Right:
the graph Gi is obtained through i edge subdivisions and edge additions.
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in .GC e/=.ab[ cd/ or .GC e/=.ad [ bc/. Thus GC e contains a minor that itself
contains the Jørgensen graph plus an edge.

Since the Jørgensen graph is maxnil, GC e is IL. The same holds if e D uv is added
to G. If the edge bd is added, then contracting the edges dt , cz, ux and vy creates a
K6 minor of GC bd .

Lastly, suppose an edge e from u or v to G � fu; vg is added; by symmetry, we can
assume that eD ua or eD vb. If eD ua, then contracting the edges cd , dt , by and uz
creates a K6 minor of GCua. If eD vb, then contracting the edges ax, cz, du and dt
creates a K6 minor of GC vb.

Proposition 4 All graphs Gi for i � 1 are maxnil.

Proof Since Gi is linklessly embeddable, it remains to show that adding any edge
to Gi gives an IL graph. Adding any edge e different from xy and disjoint from
fz1; z2; : : : ; zig to Gi gives a graph Gi C e that contains GC e as a minor (obtained
by contracting the path xz1z2 : : : zi ). Since G is maxnil, GC e is IL and so is Gi C e.
Adding an edge e that is either xy or has at least one endpoint in fz1; z2; : : : ; zig to Gi

gives a graph GiCe that contains JiCe as a minor (obtained by contracting the edges
ad and bc). Since Ji is maxnil, Ji C e is IL and so is Gi C e.

2.2 The Q.13; 3/ family

A graph G is called triangular if each edge of G belongs to at least one triangle. In a
nontriangular graph, an edge that is not part of a triangle is a nontriangular edge. In
Section 3, we study the properties of maxnil graphs under the operation of clique sum
(defined in Section 3). For the construction presented in the next theorem we use the
result of Lemma 10 about clique sums of maxnil graphs over K2.

Theorem 5 For each n � 13, there exists a maxnil graph G with n vertices and
m< 25

12
n� 1

4
edges.

Proof The construction is based on the maxnil graph Q13;3 described by Maharry [8].
See Figure 5, left. This graph has 13 vertices and 26 edges, and it is triangle free.

For each n with 13� n� 39, we construct a set of maxnil graphs with n vertices and
2n edges by adding n� 13 new vertices, and then choosing n� 13 edges in Q13;3 and

Algebraic & Geometric Topology, Volume 23 (2023)
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Figure 5: Left: Q13;3 is a maxnil graph with 13 vertices and 26 edges. Right:
a maxnil graph with 17 vertices and 34 edges obtained from Q13;3 by adding
four vertices of degree 2 and eight edges.

connecting the two endpoints of each of them to one of the new vertices. Equivalently,
we are taking the clique sum of Q13;3 with n�13 disjoint triangles over n�13 copies
of K2. See Figure 5, right. By Lemma 10, the resulting graph is maxnil.

The graph on 39 vertices obtained this way is triangular, so the construction cannot
proceed further. To build graphs with a larger number of vertices, we use multiple copies
of Q13;3 joined along an edge (clique sum over K2). Consider k � 1 copies of Q13;3

and choose one edge in each copy. Then join the k graphs together by identifying the
k chosen edges into one edge. This graph, which we denote by Hk , is maxnil (by
repeated application of Lemma 10) and has 11kC 2 vertices and 25kC 1 edges. All
edges of Hk are nontriangular and adding vertices of degree 2 (as above) along any
subset of the edges of Hk gives a maxnil graph.

For n � 13, let k D
˙

1
36
.n� 3/

�
and add n� .11k C 2/ vertices of degree 2 along

any n� .11k C 2/ edges of Hk . With every added vertex of degree 2, the number
of edges is increased by 2. This gives a maxnil graph with n vertices and m D
.25kC 1/C 2Œn� .11kC 2/�D 2nC 3k� 3 edges. Moreover,

mD 2nC 3
˙

1
36
.n� 3/

�
� 3 < 2nC 3

�
1

36
.n� 3/C 1

�
� 3D 25

12
n� 1

4
:

Remark 6 The above shows there exist maxnil graphs of arbitrarily large order n with
an edge-to-vertex ratio of less than 25

12
� 1=.4n/. Whether this edge-to-vertex ratio can

be lowered further is an open question.
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3 Clique sums of maxnil graphs

In this section we study the properties of maxnil graphs under taking clique sums. A
set S � V.G/ is a vertex cut set of a connected graph G if G �S is disconnected. We
say a vertex cut set S � V.G/ is minimal if no proper subset of S is a vertex cut set
of G. A graph G is the clique sum of G1 and G2 over Kt if V.G/D V.G1/[V.G2/,
E.G/D E.G1/[E.G2/ and the subgraphs induced by V.G1/\ V.G2/ in both G1

and G2 are complete of order t . Since the vertices of the clique over which a clique
sum is taken form a vertex cut set in the resulting graph, the vertex connectivity of
a clique sum over Kt is at most t . For a set of vertices fv1; v2; : : : ; vkg � V.G/,
hv1; v2; : : : ; vkiG denotes the subgraph of G induced by this set of vertices. By abuse
of notation, the subgraph induced in G by the union of the vertices of subgraphs
H1;H2; : : : ;Hk is denoted by hH1;H2; : : : ;HkiG .

Holst, Lovász and Schrijver [4, Theorem 2.10] studied the behavior of the Colin de
Verdière �–invariant for graphs under clique sums. Since a graph G is nIL if and only
if �.G/� 4 [6; 10], their theorem implies the following:

Theorem 7 (Holst, Lovász and Schrijver [4]) If G is the clique sum over S of two
nIL graphs , then G is IL if and only if one can contract two or three components of
G �S so that the contracted nodes together with S form a K7 minus a triangle.

Theorem 7 implies that, for t � 3, the clique sum over Kt of nIL graphs is nIL. While
Theorem 7 shows when a clique sum is nIL, it does not establish when a clique sum of
maxnil graphs is maxnil.

Lemma 8 Any maxnil graph is 2–connected.

Proof Let G be a maxnil graph. If G is disconnected, let A and B denote two of its
connected components. Let a 2 V.A/ and b 2 V.B/. Then GCab is a nIL graph, as it
can be obtained by performing two consecutive clique sums over K1 of nIL summands,
namely

GC ab D A[fag ab[fbg .G �A/:

But this contradicts the maximality of G.

If the vertex connectivity of G is one, assume x 2 V.G/ is a cut vertex; that is,
G �fxg D AtB, with A and B nonempty, and no edges between vertices of A and
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vertices of B. Let a 2 V.A/ and b 2 V.B/ be neighbors of x in G. Then GC ab is
nIL, as it can be obtained by performing two consecutive clique sums over K2 of nIL
summands. If � denotes the triangle axb,

GC ab D hA; xiG [ax �[xb hB; xiG :

But this contradicts the maximality of G.

Lemma 9 Let G be a maxnil graph with a vertex cut set S D fx; yg, and let
G1; G2; : : : ; Gr denote the connected components of G � S. Then xy 2 E.G/ and
hGi ; SiG is maxnil for all 1� i � r .

Proof By Lemma 8, x and y are distinct and each of them has at least one neighbor in
eachGi . Suppose xy …E.G/. LetG0DGCxy andG0i DhGi ; SiG0 . Then, for every i ,
G0i is a minor ofG since, if we pick a j ¤ i and in hGi ; Gj ; SiG contractGj to x, we get
a graph isomorphic to G0i . So G0i is nIL. Then, by Theorem 7, G0DG01[xy � � �[xyG

0
r

is nIL, contradicting the assumption that G is maxnil. So xy 2E.G/.

For each i , we repeatedly add new edges to hGi ; SiG , if necessary, to get a maxnil
graph Hi . Then H WD H1 [xy � � � [xy Hr is nIL and contains G as a subgraph, so
H DG and every hGi ; SiG is maxnil.

Lemma 10 Let G1 and G2 be maxnil graphs. Pick an edge in each Gi and label it e.
Then G DG1[e G2 is maxnil if and only if e is nontriangular in at least one Gi .

Proof The graph G is nIL by Theorem 7. Suppose e is nontriangular in at least one
Gi , say G2. Denote the endpoints of e in G by x and y. To prove G is maxnil, it is
enough to show that GC b1b2 is IL for all bi 2 V.Gi / n fx; yg. By Lemma 8, G1 is
2–connected, so each of x and y has at least one neighbor in G1. So, if we contract
G1 to b1 and then contract b1b2 to b2, we obtain a graph G02 that contains G2 as a
proper subgraph, since b2x and b2y are both in G02, while e is nontriangular in G2.
So G02 is IL since G2 is maxnil. But G02 is a minor of G, which is nIL, so we have a
contradiction.

To prove the converse, suppose e is triangular in G1 and G2. Let ti 2V.Gi / be adjacent
to both endpoints of e. Let K be a complete graph on four vertices, with vertices
labeled x, y, t1 and t2. Denote the triangles induced by x, y and ti in K and in Gi

by �i . Then, by Theorem 7, G0 WD G1 [�1
K [�2

G2 is nIL. But G0 is isomorphic
to GC t1t2, so G is not maxnil.

Algebraic & Geometric Topology, Volume 23 (2023)
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Lemma 11 Let G be a maxnil graph with vertex connectivity 3 and a vertex cut set
S D fx; y; zg. Let G1; G2; : : : ; Gr denote the connected components of G �S. Then
hSiG 'K3 and hGi ; SiG is maxnil for all 1� i � r .

Proof Suppose hSiG 6' K3. Let G0 be the graph obtained from G by adding one
or more edges to hSiG so that S induces a triangle T in G0. For 1 � i � r , let
G0i D hGi ; T iG0 . We see that G0i is nIL as follows. Pick any j ¤ i and, in the graph
hGi ; Gj ; SiG , contract Gj to an arbitrary vertex v in Gj . Then v is connected to each
of x, y and z since G is 3–connected and hence each of x, y and z has at least one
neighbor in Gj . The graph Mi obtained this way is a minor of G, and hence is nIL.
Performing a rY –move on T �G0i we obtain a subgraph of Mi . Since Mi is nIL, so
is G0i . By Theorem 7, G0 DG01[T � � � [T G

0
r is nIL, which contradicts the maximality

of G. So T D hSiG 'K3.

To show hGi ; SiG is maxnil, repeatedly add new edges to it, if necessary, to get a
maxnil graph Hi . Then H WDH1[T � � � [T Hr is nIL by Theorem 7 and contains G
as a subgraph, so H DG and every hGi ; SiG is maxnil.

Let G be a graph and let T D hx; y; z; tiG be an induced K4 subgraph (tetrahedral
graph). We say T is strongly separating ifG�T has at least two connected components
C1 and C2 such that every vertex of T has a neighbor in each Ci .

Lemma 12 Let G1 and G2 be maxnil graphs and let G D G1 [4G2 be the clique
sum of G1 and G2 over a K3 subgraph �D hx; y; ziG . Assume � is a minimal vertex
cut set in G. Then G is maxnil if and only if , for some i 2 f1; 2g, every induced K4

subgraph of the form hx; y; z; tiGi
is strongly separating.

Proof By Theorem 7, G WD G1 [�G2 is nIL. Then G is maxnil if and only if, for
every t1 2 V.G1/ nV.�/ and t2 2 V.G2/ nV.�/, the graph G0 WDGC t1t2 is IL.

First, suppose for some i at least one of x, y and z is not connected to ti , say
xt2 … E.G2/. Contracting G1 � fy; zg to x produces G2 C t2x as a minor of G0.
Since G2 is maxnil, this minor is IL, and hence G0 is IL, as desired. So we can assume
hx; y; z; ti iGi

is a tetrahedral graph for both i D 1; 2.

Assume every tetrahedral graph in G2 that contains � is strongly separating. So
G2 � hx; y; z; t2iG2

has at least two connected components each of which, when
contracted to a single vertex, is adjacent to all four vertices x, y, z and t2. In Figure 6,
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x
c2

t1 y
c1

t2

z

Figure 6: A K7 minus a triangle minor of the graph G.

these vertices are denoted by c1 and c2. Now, if the component of G1 � � that
contains t1 is contracted to t1, this vertex too will be adjacent to x, y, z and t2. So
we get a minor of G0 isomorphic to K7 minus a triangle, which is IL since it contains
a Petersen family graph (the one obtained by one rY –move on K6) as a minor. It
follows that G0 is IL, and therefore G is maxnil.

To prove the converse, for i D 1; 2 let ti be a vertex in Gi such that Ti WD hx; y; z; ti iGi

is a tetrahedral graph that is not strongly separating. Let G0 D G C t1t2. Then
G0 DG1[T1

hx; y; z; t1; t2iG0 [T2
G2. Each of these clique sums is over a K4, each

summand is nIL, and each of T1 and T2 is nonstrongly separating; so, by Theorem 7,
G0 is nIL, and hence G is not maxnil.

Unlike the vertex connectivity 2 and 3 cases, it is not true that a minimal vertex cut
set in a 4–connected maxnil graph must be a clique. The four neighbors of b in the
graph depicted in Figure 4, left, form a vertex cut set, but the graph induced by its
vertices has exactly two edges. The four neighbors of any vertex in the graph Q13;3 in
Figure 5, left, form a discrete vertex cut set. However, if a maxnil graph G has vertex
connectivity 4, the following lemma provides some restrictions on the shape of the
subgraph induced by the vertices of any minimal vertex cut set:

Lemma 13 Let G be a maxnil graph and assume fx; y; z; tg is a minimal vertex cut.
Let S D hx; y; z; tiG . Then S is either a clique or a subgraph of a 4–cycle.

Proof Assume that S is neither a clique nor a subgraph of a 4–cycle. This implies
that, if every vertex of S has degree less than 3, then S contains K3 as a subgraph; and

Algebraic & Geometric Topology, Volume 23 (2023)



2556 Ramin Naimi, Andrei Pavelescu and Elena Pavelescu

if S has a vertex of degree at least 3, then it contains K1;3 as a subgraph. Below, we
consider these two cases separately. In both cases, we use the fact that since fx; y; z; tg
is a minimal vertex cut set in G, each of x, y, z and t has at least one neighbor in each
component of G �S.

Case 1 (S has a K3 subgraph) We can assume that x, y and z induce a triangle in G.
If G �S has at least three connected components, contracting each of them to a single
node would produce a minor of G which has a subgraph isomorphic to G7, the graph
in the Petersen family obtained by one rY move on K6. This contradicts the fact that
G is nIL.

It follows that G � S has at most two components, G1 and G2. For each i D 1; 2,
contract hGi ; tiG to t to produce a minor of G, denoted by G0i , which must be nIL.
Then fx; y; z; tg induces a 4–clique K in both G01 and G02. By Theorem 7, the clique
sum G0 DG01[K G

0
2 is nIL since G0�K has only two components and K has only

four vertices. But G0 strictly contains G as a subgraph; this implies G is not maxnil, a
contradiction.

Case 2 (S has a K1;3 subgraph) We can assume that t is adjacent to x, y and z in G.
If G �S has at least three connected components, contracting each of them to a single
node would produce a minor of G containing a subgraph isomorphic to K3;3;1; thus,
G is IL. So G �S DG1 tG2, with G1 and G2 connected. For i D 1; 2, contracting
each of Gi to a single node ti , deleting the edge ti t , deleting any existing edges of
hx; y; ziG , and then performing a Yr–move at ti produces a nIL graph, denoted by G0i .
Let G0 DG01[K4

G02 be the clique sum over the complete graph with vertices x, y, z
and t . By Theorem 7, G0 is nIL since G0�S DG1tG2; but G0 strictly contains G as
a subgraph, a contradiction.

Lemma 14 Let G DG1[S G2 be the clique sum of maxnil graphs G1 and G2 over
S D hx; y; z; tiG 'K4. Assume S is a minimal vertex cut set in G. Then G is maxnil
if and only if , in both G1 and G2, S is not strongly separating.

Proof If S is strongly separating in G1 or G2, then G�S has at least three connected
components and contracting each of them to a single node produces a minor isomorphic
to K7 minus a triangle.

If, in both G1 and G2, S is not strongly separating, then G�S has only two connected
components. Contracting each of the two components to a single node produces K6
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Figure 7: A maxnil graph that is a clique sum over K5.

minus an edge as a minor (not K7 minus a triangle); hence, G is nIL by Theorem 7.
Adding an edge between a vertex in G1 �S and a vertex in G2 �S and contracting
G1�S and G2�S to single nodes produces a K6 minor. It follows that G is maxnil
in this case.

The graph G of Figure 7 is maxnil since G � fug is a maximal planar graph. If
S D hx; y; z; t; ui, G1 D ha; x; y; z; t; ui and G2 D hb; x; y; z; t; ui, then S ' K5,
G1 'G2 'K

�
6 (K6 minus one edge) and G DG1[S G2. This shows it is possible

for the clique sum of two maxnil graphs over S 'K5 to be nIL (and maxnil). However,
no clique S of order 5 can be a minimal vertex cut set in a nIL graph G, since then any
connected component of G�S would form a K6–minor together with S, which would
imply G is IL. For t � 6, any clique sum over Kt is IL since K6 is IL.

Jørgensen studied clique sums of graphs that are maximal without a K6 minor [5].
These are graphs that do not contain a K6 minor and a K6 minor is created by the
addition of any edge. The class of maxnil graphs and the class of graphs that are
maximal without a K6 minor are not the same, as shown in the following proposition:

Proposition 15 The graph in Figure 8 is maxnil , and it is not maximal without a K6

minor.

Proof The graph G in Figure 8 is obtained by adding vertices v and w to the plane
triangulation H : the vertex v connects to all nine vertices of H and the vertex w
connects to the vertices a, b and c of H. The graph H C v is maxnil since it is a cone
over a maximal planar graph [11]. The graph G is the clique sum over K3D ha; b; ciG

of maxnil graphs H C v and K4 D ha; b; c; wiG . The graph ha; b; c; viHCv is the
only induced K4 subgraph in H Cv containing a; b and c and it is strongly separating

Algebraic & Geometric Topology, Volume 23 (2023)
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Figure 8: A maxnil graph G (left) that is not maximal without a K6 minor is
obtained by adding two vertices to a plane triangulation with nine vertices
(right).

in H Cv. So, by Lemma 12, G is maxnil; in particular, it has no K6 minor. The graph
GCvw is a clique sum overK4Dha; b; c; viG of graphsHCv andK5Dha; b; c; v; wi,
both of which are K6 minor free. Hence, by [5], GC vw is K6 minor free, so G is
not maximal without a K6 minor. The graph GC vw has order 11 and size 34, so it is
maximal without a K6 minor by Mader’s result [7], since 34D 4� 11� 10.

Remark 16 Starting with the graph G in Proposition 15, one can construct graphs
Gn with n � 11 vertices that are maxnil but not maximal without a K6 minor. Take
G11DG and constructG11Ck fromG by triangulating the disk bounded by the triangle
efg with k new vertices, and then adding edges between v and these new vertices. The
argument used in the proof of Proposition 15 shows that Gn for n� 11 is maxnil but
not maximal without a K6 minor. Furthermore, nD 11 is the minimal order of a graph
with this property, ie every maxnil graph with n� 10, vertices is maximal without a
K6 minor. We used Mathematica to generate all 136 maxnil graphs of orders between
6 and 10 and we confirmed that all of them are maximal without a K6 minor.
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Legendrian large cables and new phenomenon for
nonuniformly thick knots

ANDREW MCCULLOUGH

We define the notion of a knot type having Legendrian large cables and show that
having this property implies that the knot type is not uniformly thick. We then show
that there exists an infinite family of ribbon knots that have Legendrian large cables.
These knots fail to be uniformly thick in several ways not previously seen. We also
give a general construction of ribbon knots, and show when they give similar such
examples.

57K10, 57K33, 57R65

1 Introduction

The contact width w.K/ of a knot K � .S3; �std/ was defined by Etnyre and Honda
in [4] as follows.1 An embedding � WS1�D2 ,!S3 is said to represent K if the core
curve of �.S1 �D2/ is isotopic to K. (To simplify notation, we will not distinguish
between S1�D2 and its image under �.) Define the slope of homotopically nontrivial
curves on @.S1 �D2/ by identifying @.S1 �D2/'R2=Z2, where the meridian has
slope1 and the longitude (which is well defined since K is inside S3) has slope 0.
Now define the contact width w.K/ as

w.K/D sup slope.�@.S1�D2//

where the supremum is taken over S1 �D2 ,! S3 representing K with @.S1 �D2/

convex.

Etnyre and Honda [4] also defined K to have the uniform thickness property if

(1) any solid torus representing the knot type K can be thickened to a standard
neighborhood of a Legendrian representative of K, and

1These definitions are slightly different than those originally made in [4] since we are using a different
slope convention in this paper; see Remark 1.1.
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License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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(2) w.K/ is equal to the maximal Thurston–Bennequin invariant tb.K/ of Legen-
drian representatives of K.

Here a standard neighborhood N.L/ of a Legendrian knot L is an embedded solid
torus N.L/ representing L with convex boundary @N such that #�@N D 2 and
tb.L/D slope.�@N /. Standard neighborhoods are contact isotopic to any sufficiently
small tubular neighborhood N of L with convex boundary and #�@N D 2.

The usefulness of this property became evident when Etnyre and Honda showed in
the same work that if L� S3 is Legendrian simple and uniformly thick, then cables
of L are Legendrian simple as well. Recall that a knot type is Legendrian simple if
Legendrian knots in this knot type are completely determined (up to Legendrian isotopy)
by their Thurston–Bennequin invariant and rotation number. They also showed that if
the cables are sufficiently negative, then they too satisfy the uniform thickness property.
This allows that certain iterated cables of Legendrian simple knots are Legendrian
simple, for example.

Uniform thickness has become a key hypothesis in work since then. For example,
generalizing the above work on cables, Etnyre and Vértesi [6] showed that given a
companion knot L� S3 which is both Legendrian simple and uniformly thick, and a
pattern P � S1 �D2 satisfying certain symmetry hypothesis, the knots in the satellite
knot type PK may be understood.

Broadly, if one wants to classify Legendrian knots in a satellite knot type with companion
knot K � S3, and a pattern P � S1 �D2, then as a first step one needs to understand

(1) contact structures on the complement of a neighborhood N of K,

(2) contact structures on a neighborhood N of K, and

(3) a classification of Legendrian knots in the knot type of the pattern P in the
possible contact structures on N .

If K is uniformly thick, then N can always be taken to be a standard neighborhood of K

with dividing curves on the boundary of slope tb.K/ (ie maximal Thurston–Bennequin
invariant of K), which reduces the problem to items (1) and (3) above. Moreover, if K

is Legendrian simple and uniformly thick, then (1) is more or less known as well [4].
If K is not uniformly thick, then understanding satellites is much more complicated.

Similarly, uniform thickness can be useful in understanding contact surgery construc-
tions. A typical way to obtain a new contact 3–manifold is by removing a solid torus
in the knot type K, and gluing in some new contact solid torus. To understand the
new manifold, one needs to understand items (1) and (2) above, and the gluing map
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defining the surgery. If K is uniformly thick, then N can always be taken to be a
standard neighborhood of K with dividing curves on the boundary of slope tb.K/,
which simplifies (1) and (2) considerably.

On the other hand, there are knot types that are not uniformly thick. For such knot
types, it is important to understand in what ways they can fail to be uniformly thick.

1.1 New phenomenon for nonuniformly thick knots

Given a knot type K � S3, the contact width of K is

w.K/D supfslope.�@N / jN is a solid torus representing K with convex boundaryg:

We say a solid torus represents K if its core is in the knot type of K. The contact width
satisfies the inequality tb.K/� w.K/� tb.K/C 1; see [4].

Remark 1.1 A word about slope conventions: If � and � are the meridional and
longitudinal curves, respectively, on a torus T then Œ�� and Œ�� form a basis for H1.T /.
A .p; q/ curve, or a curve of slope q=p, will refer to any simple closed curve in T

that is in the homology class of pŒ��C qŒ��, where p; q 2 Z are relatively prime. This
is the opposite convention to the one used in several of the main references in this
paper, which were some of the first works in convex surface theory. However, it is
the convention that is standard in low-dimensional topology. We caution however that,
when the phrase “integer slope” is used, it would correspond to the phrase “one over
integer slope” in Etnyre and Honda [3; 4; 10] among others.

We are now in position to define uniform thickness. We say that a knot type K has the
uniform thickness property or is uniformly thick if

(1) tb.K/D w.K/, and

(2) every solid torus representing K can be thickened to a standard neighborhood of
a maximal tb representative of K.

By a standard neighborhood of a Legendrian knot L, we mean a solid torus neighbor-
hood N of L with convex boundary, and dividing set �@N consisting of two curves
with slope tb.L/.

In past work, it is shown that a knot type K can fail to have the uniform thickness
property in two ways. It can have neighborhoods whose slopes are larger than tb, as is
the case with the unknot U which has tb.U /D�1 and w.U /D 0. It can also happen
that there are neighborhoods with slope strictly less than tb, but that do not thicken.
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The first and only such examples are due to [4] and Etnyre, LaFountain and Tosun [5]
where it is shown that all positive torus knots Tp;q have tori N with slopes satisfying
slope.�@N / < tb.Tp;q/ but that do not thicken. Moreover, the contact structure on all
of these N is universally tight.

In what follows we will denote the set of Legendrian knots, up to isotopy, in the same
topological knot type as K by L.K/. We also use the convention that for a pair of
relatively prime integers p and q, the .p; q/ cable of K, that is, the knot type of a
curve of slope q=p on the boundary of a torus neighborhood of K, is denoted by Kp;q .
Notice that if p D˙1, then Kp;q is a trivial cable in the sense that it is isotopic to the
underlying knot K. The following theorem of Etnyre and Honda motivates us to define
some new terminology.

Theorem 1.2 (Etnyre and Honda [4]) If K � S3 satisfies the uniform thickness
property, then for jpj> 1 and any L 2 L.Kp;q/ we have tb.L/� pq.

We generalize this result in Lemma 3.3 below. Notice that if we have a uniformly thick
knot K and we fix a Legendrian representative L 2L.K/ with tb.L/D k, then there is
an isotopy of K which arranges that L is a trivial cable LDK1;k�1. But then we have
that tb.K1;k�1/D tb.L/D k ” k�1, so the inequality in Theorem 1.2 is not satisfied.

Definition 1.3 Given jpj > 1, we will say that a Legendrian cable L 2 L.Kp;q/ is
large if tb.L/ > pq, and call Kp;q Legendrian large if there exists large L 2 L.Kp;q/.
We will then say that K has Legendrian large cables, or has the Legendrian large cable
(LLC) property, if any of its nontrivial cables are Legendrian large.

Notice the example above indicates that if we allowed trivial cables, the LLC property
would be vacuous. Our main theorem relates the LLC property to uniform thickness.

Theorem 1.4 If K has Legendrian large cables , then there exist solid tori V DS1�D2

representing K such that � jV is virtually overtwisted. Moreover , V cannot be thickened
to a standard neighborhood of a Legendrian knot , and so K is not uniformly thick.

Recall that the term universally tight refers to a contact structure that is tight, and that,
when lifted to the universal cover, remains tight. If the lift becomes overtwisted, then
we will refer to the contact structure as virtually overtwisted.

Theorem 1.5 Given K, if there exists a slope q=p > tb.K/ with jpj > 1 such that
Kp;q is Legendrian large , then w.K/ > tb.K/.

Algebraic & Geometric Topology, Volume 23 (2023)
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m� 1

Figure 1: The ribbon knots Km. There are m� 1 right-handed full twists.

Question 1 Are there knots K and slopes q=p < tb.K/ such that Kp;q is Legendrian
large?

Question 2 If � is a virtually overtwisted contact structure on S DS1�D2, for which
p and q is there a Legendrian .p; q/ knot L in S with tw.L/ > pq?

In [15], Yasui gave some interesting examples of ribbon knots, which we will denote
by Km, shown in Figure 1. Yasui [15] shows that these knots have tb.Km/D�1. In
what follows, we will be concerned with integers m < 0. Building on his work, we
observe that Km

.�n;1/
is Legendrian large whenever m� �5 and 1< n�

�
1
4
.3�m/

˘
.

This leads to the following theorem.

Theorem 1.6 The knots Km in Figure 1, with m � �5, are not uniformly thick in
.S3; �std/. In particular , there are solid tori T representing Km such that

slope.�@T / > tb.Km/

and �jT is tight , but virtually overtwisted.

Remark 1.7 Previously, there were no known examples of K in .S3; �std/ with
w.K/ > tb.K/ except for the unknot. These are also the first examples of solid tori in
.S3; �std/ with virtually overtwisted contact structures.

It would be interesting to know what w.Km/ is, and what the possible nonthickenable
tori in the knot type of Km are. We have the following partial result, following from
Theorem 1.6 and its proof.

Proposition 1.8 For m� �5, the knots Km in Figure 1 have

w.Km/�
�1�

1
4
.3�m/

˘ :
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The origin of the examples in Theorem 1.6 come from an interesting connection between
contact structures and the famous cabling conjecture first observed by Lidman and
Sivek in [12] where it is shown that for a knot K with tb.K/ > 0, Legendrian surgery
on K — ie .tb.K/�1/–surgery — never yields a reducible manifold. They conjectured
that this might be true with no condition on tb.K/. This is equivalent to the following
conjecture for any K in S3.

Conjecture 1.9 For a Legendrian representative in the knot type L 2 L.Kp;q/, we
have tb.L/� pq.

If tb.L/ > pq for such an L, then there exists L0 with tb.L0/DpqC1 (we can always
stabilize to achieve this). Legendrian surgery on this L0 would then yield a reducible
manifold; see Moser [14].

Theorem 1.10 (Yasui [15]) There exist infinitely many Legendrian knots in .S3; �std/

(see Figure 1), each of which yields a reducible 3–manifold by a Legendrian surgery in
the standard tight contact structure. Furthermore , K can be chosen so that the surgery
coefficient is arbitrarily less than tb.K/.

Yasui shows that for infinitely many pairs of integers m; n2Z with m��5, Legendrian
surgery on the cables Km

n;�1
yields a reducible manifold. This shows Lidman and Sivek’s

conjecture to be false, and stands in contrast with Theorem 1.2 of Etnyre and Honda.

We can now easily see that Km — see Figure 1 — does not have the uniform thickness
property. The interesting features of how Km fails to be uniformly thick, given in
Theorem 1.6, require much more work.

In [15], Yasui shows that for integers n� 1
4
.3�m/, the cables Km

n;�1 have the property
that tb.Km

n;�1/D �1. But by Theorem 1.2, if Km is uniformly thick, then we must
have that tb.Km

n;�1
/��n. So, for any m��5 and any 1< n�

�
1
4
.3�m/

˘
, we arrive

at a contradiction. This addresses the first assertion of Theorem 1.6.

Theorem 1.6 can be used to address the following conjecture.

Conjecture 1.11 If K � S3 is fibered , then K is uniformly thick if and only if
�K ¤ �std, where �K is the contact structure induced by an open book decomposition
of K.

Building on our above work, Hyunki Min [13] recognized that the Km are counter-
examples. Min showed that the Km are all fibered. We also know that Km are slice
(since they are ribbon knots) and not strongly quasipositive (since they are obtained
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K

K

Figure 2: An example ribbon knot before running the algorithm in Theorem 1.12
(left), and after running the algorithm (right).

by attaching negative bands to two parallel disks), which implies that �K ¤ �std by a
result of Matthew Hedden [9, Proposition 2.1]. Theorem 1.6 tells us that the Km are
not uniformly thick however, so at least one direction of this conjecture is false. The
other direction remains an interesting open question.

1.2 Ribbon knots and Legendrian large cable examples

Yasui’s examples are all ribbon knots with Legendrian large cables, and can be general-
ized to other families of ribbon knots. We first observe a folk result that any ribbon
knot can be described in a simple way.

Theorem 1.12 Suppose K � S3 is an arbitrary ribbon knot with n 2 N ribbon
singularities. Then there is an algorithm to construct a 2–handlebody for D4 having
n�1 or fewer 1–2–handle-canceling pairs such that there is an unknot U in the boundary
of the 1–subhandlebody which , after attaching the 2–handles , is isotopic to K.

A representation of a ribbon knot K as in Theorem 1.12 will be called a handlebody
picture for K. The proof of Theorem 1.12 will be given in Section 3. Figure 2 gives an
example ribbon knot and its image after running the algorithm.

Theorem 1.13 Given an arbitrary ribbon knot K, we can associate to it a handlebody
picture. If it is possible to Legendrian realize the attaching circles of the 2–handles so
that the handle attachments are Stein (ie framings are all tb� 1), and also Legendrian
realize K so that tb.K/ D �1, then K is a Legendrian ribbon knot that bounds a
Lagrangian disk in .B4; !std/.

Proof Given a handlebody picture for K, there is an unknot U in the boundary of
the 1–subhandlebody which, by hypothesis, can be realized with tb.U /D�1. Such

Algebraic & Geometric Topology, Volume 23 (2023)
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Figure 3: Possible examples of knots with Legendrian large cables. The
ellipses are meant to indicate a finite number of strands bundled as shown,
while T is an arbitrary Legendrian tangle.

an unknot bounds a Lagrangian disk in the 1–subhandlebody. Since the 2–handles are
attached disjointly from this disk, K bounds a Lagrangian disk after they are attached,
that is, K bounds a Lagrangian disk in .B4; !std/.

Conway, Etnyre and Tosun [1] make use of this fact to describe when contact surgery
on a knot in .S3; �std/ preserves symplectic fillability.

Corollary 1.14 Given an arbitrary ribbon knot K, we can associate to it a handlebody
picture. If it is possible to Legendrian realize the attaching circles of the 2–handles so
that the handle attachments are Stein , Legendrian realize K so that tb.K/D�1, and
also arrange the local picture of K to be as in Figure 3, left , then K has Legendrian
large cables.

 

Figure 4: The steps in a Legendrian isotopy to change strands of type S into
strands of type N .
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T
T

Figure 5: A Legendrian isotopy of the tangle T . In this example, strands of
type NE are assumed to have stabilizations.

Proof The proof is exactly the same as that of Yasui’s Theorem 1.3 [15, pages 7–13],
when there are only strands of type N , since everything in the arguments can be done
locally. The rest of the cases follow by Legendrian isotopy of Figure 3, left. For
example, we can change all strands of type S into strands of type N by the Legendrian
isotopy shown in Figure 4. We can also change all strands of types E and W into
strands of type N by even easier isotopies.

Remark 1.15 If the framings of the 2–handles allow stabilizations, then there are
more examples. Given an arbitrary ribbon knot K, we can associate to it a handlebody
picture. If it is possible to Legendrian realize the attaching circles of the 2–handles
so that the handle attachments are Stein, Legendrian realize K so that tb.K/ D �1,
arrange the local picture of K to be as in Figure 3, left, and arrange that there is a
stabilization on each of the strands of at least one group of strands NE , NW , SE ,
or SW , then K has Legendrian large cables. This is true since we can isotope the
stabilizations to have the form of Figure 5, left, Legendrian isotope the tangle T off to
the side as shown in Figure 5, right, and then apply Corollary 1.14.

Acknowledgements The author would like to express profound gratitude to his advisor
John B Etnyre for his patience, encouragement, and many helpful comments and
suggestions, without which this paper would not have been possible. He would also like
to extend thanks to James Conway for making him aware of Conjecture 1.11, and to
Sudipta Kolay, Hyunki Min, Surena Hozoori and Peter Lambert-Cole for many useful
and productive conversations.

2 Background

We will assume that the reader is familiar with Legendrian knots and basic convex
surface theory. Some excellent sources for this material are [3; 7; 10; 11]. We will
need to understand the twisting of a contact structure along a Legendrian curve with
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respect to two different framings. Suppose we are given a solid torus S � .S3; �/ with
convex boundary which represents the knot K. This just means that S D D2 � S1

and K D fptg � S1 for some point in int.D2/. Further suppose that we are given a
Legendrian .p; q/ curve L in S . Since L is null homologous in S3, there is a well
defined framing on L given by any Seifert surface †, and measuring the twisting
of � along L with respect to this framing gives us tw.LI†/ D tb.L/, that is, the
Thurston–Bennequin invariant of L. We can also find a boundary parallel torus T 2�S

containing L, and measure the twisting of � along L with respect to the framing coming
from T 2. We will denote this twisting by tw.LI @S/. The relationship between these
twistings is given by the expression

tw.LI @S/Cpq D tb.L/I
see [4].

Consider a contact structure � on T 2 � I with convex boundary, let T1 and T2 be its
two torus boundary components, and assume without loss of generality that

s1 D slope.�T1
/� slope.�T2

/D s2;

where �S denotes the dividing curves on a convex surface S . Then we will say that
� is minimally twisting if every convex, boundary parallel torus S � T 2 � I has
s1 � slope.�S /� s2. This is the same notion of minimal twisting that Honda defined
in [10]. We will also need to make use of his basic slices to decompose T 2 � I into
layers. Using the same notation as above, we will call .T 2 � I; �/ a basic slice if

(1) � is tight, and minimally twisting;

(2) Ti are convex and #�Ti
D 2;

(3) si form an integral basis for Z2.

Honda showed that, up to isotopy fixing the boundary, there are exactly two tight
contact structures on a basic slice, distinguished by their relative Euler classes in
H 2.T 2 � I; @.T 2 � I/IZ/.

The Farey tessellation, Figure 6, gives a convenient way to describe curves on T 2.

To construct the eastern half of the Farey tessellation, first label the north pole by 0D 0
1

,
the south pole by1D 1

0
, and connect them by an edge (by edge, we mean a hyperbolic

geodesic). Next, label the eastern most point that is midway between 0 and 1 by
1D 1

1
, as shown in Figure 6. Connect 1 by edges to 0 and1. For rational numbers on

the tessellation with the same sign, we can define an addition on the Farey tessellation
by a=bC c=d D .aC c/=.bC d/, locate .aC c/=.bC d/ midway between a=b and
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Figure 6: Farey tessellation.

c=d , and connect .aC c/=.bC d/ by edges with a=b and c=d respectively. Thus we
can fill in the rest of the positive side of the Farey tessellation by iterating this addition.
Notice that, if a=b and c=d are assumed to be an integral basis for Z2, then bothˇ̌̌̌

a aC c

b bC d

ˇ̌̌̌
D ad � bc D

ˇ̌̌̌
a c

b d

ˇ̌̌̌
D˙1

and, similarly, ˇ̌̌̌
aC c c

bC d d

ˇ̌̌̌
D˙1;

so any two points connected by an edge are an integral basis for Z2. Also notice that,
given two positive rational numbers a=b > c=d , there are exactly two other points with
edges to both a=b and c=d , namely .aC c/=.bC d/ and .a� c/=.b� d/.

To construct the western (negative) half of the Farey tessellation, first relabel the north
pole by 0D 0

�1
. Next, label the western most point that is midway between 0 and1

by �1D 1
�1

, as shown in Figure 6. Connect �1 by edges to 0 and1. Now using the
same addition we defined above, we can iteratively build up the negative side of our
Farey tessellation. Notice that the only point which was labeled twice was the north
pole, which is now given by 0

˙1
.

For any two points p1 and p2 on the Farey tessellation, we define the interval Œp1;p2�

to be the set of all points encountered starting from p1 and moving clockwise around
the tessellation until reaching p2. Given a clockwise sequence of three points connected
by edges p1, p2 and p3 on the Farey tessellation, we say that a jump from p2 to p3

is half maximal if p3 is the half way point of the maximum possible clockwise jump
one could make in the interval .p2;p1/. We will consider only clockwise paths in the
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Figure 7: Left: a consistent shortening. Right: a shortening which is not consistent.

Farey tessellation, where a path is a sequence of jumps along edges. We call a path
between two points s1; s2 2Q a continued fraction block if, after the first jump, every
jump is half maximal. Notice that, by construction, a path that is a continued fraction
block cannot be shortened. We will also need to consider decorated paths (ie paths
for which each jump gets a “C” or “�”). We can define an equivalence relation “�”
on decorated paths in the Farey tessellation which says that any two paths with the
same endpoints and which differ only by shuffling of signs within continued fraction
blocks are in the same class. The following result, due to Honda [10], and in a different
terminology Giroux [7], describes a relationship between contact structures on T 2 � I

and minimal decorated paths in the Farey tessellation. Given a manifold M and a
multicurve � in @M , let Tight.M; � / denote the set of isotopy classes of tight contact
structures on M with convex boundary such that � is a set of dividing curves for @M .
Similarly, given T 2 � I with boundary T1 t T2, and two multicurves �i on Ti , let
Tight.T 2 � I;T1[T2/ denote the set of tight, minimally twisting contact structures
on T 2 � I with convex boundary such that �i is a set of dividing curves for Ti .

Theorem 2.1 (Honda [10]) Given T 2�I with boundary T1tT2, and two multicurves
�i on Ti with #�i D 2 such that s1D slope.�1/� slope.�2/D s2, there is a one-to-one
correspondence

Tight.T 2
� I; �1[�2/$ fminimal decorated paths from s1 to s2g=�:

Given T 2 � I with a two-component multicurve on each of its two torus boundary
components, and with boundary slopes s1; s2 2Q, then any decorated path starting
from s1 and ending at s2 describes a contact structure on T 2�I . Each jump in the path
describes a basic slice, and therefore has two possible contact structures distinguished
by the relative Euler class. We then get T 2�I by concatenating these basic slices. For
more details, see [10]. It follows from Theorem 2.1 that within any continued fraction
block, shuffling the signs of the jumps results in isotopic contact structures.
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Suppose we have a decorated path which can be shortened; see Figure 7. It follows
from Honda’s gluing theorem that if the two jumps which are being combined into a
single jump have different signs, then the contact structure on T 2� I described by this
path is overtwisted. If the signs agree, then the contact structure will be tight. For this
reason, we say that a shortening is consistent if the signs of the smaller jumps agree,
and make the following theorem owing to Honda.

Theorem 2.2 Given a decorated path in the Farey tessellation from s1 to s2, the
contact structure on T 2� I with convex boundary T1tT2, #�Ti

D 2, s1 D slope.�T1
/

and slope.�T2
/D s2 described by this path is tight if and only if every shortening is

consistent.

To classify the tight contact structures on solid tori, we will consider a slightly different
type of path. Let a truncated path be a decorated path, as defined above, with the
sign of the first jump omitted from consideration. In other words, the first jump is not
decorated. Suppose we have S1 �D2 with a two-component multicurve on its torus
boundary, and with boundary slope s2 2Q. If the meridian of @.S1 �D2/ has slope
s1 2Q, then we have the following classification. Given S1 �D2 with boundary T ,
and a multicurve � on T , let Tight.S1 �D2; � / denote the set of isotopy classes of
tight, minimally twisting contact structures on S1 �D2 with convex boundary, such
that � is a set of dividing curves for T .

Theorem 2.3 (Honda [10]) Given S1 �D2with boundary T , and a multicurve �
on T with #� D 2 such that s2D slope.� / and s1D slope.�/, where � is a meridional
curve for T ,

Tight.S1
�D2; � /$ fminimal truncated paths from s1 to s2g=�:

Theorem 2.4 (Honda [10]) (1) Given T 2 � I with boundary T1 t T2, and two
multicurves �i on Ti with #�i D 2 such that s1 D slope.�1/ � slope.�2/D s2, there
are exactly two tight contact structures on T 2 � I , and these contact structures are
universally tight. The paths describing these two structures are the same , one decorated
entirely by “C” , and the other decorated entirely by “�”.

(2) Given S1 �D2with boundary T , and a multicurve � on T with #� D 2 such
that s2 D slope.� /, and s1 D slope.�/, where � is a meridional curve for T , then ,
if s1 � s2 ¤ ˙1, there are exactly two tight contact structures on S1 �D2, and these
contact structures are universally tight. The paths describing these two structures are
the same , one decorated entirely by “C” , and the other decorated entirely by “�”. If
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s1 � s2 D ˙1, then there exists a unique tight contact structure on S1 �D2, and this
contact structure is universally tight.

It follows from Theorem 2.4 that if we have a path with a mixture of signs, then the
contact structure described by this path on either T 2 � I , or on S1 �D2, must be
virtually overtwisted.

3 Cables in solid tori

In this section, we will give the proof of Theorems 1.4, 1.5 and 1.6 and Proposition 1.8.
We would like to record and make use of the following result.

Theorem 3.1 (Etnyre and Honda [4]) Any cable in a standard neighborhood of a
Legendrian knot can be put on a convex torus.

Proposition 3.2 If � is a universally tight contact structure on a solid torus S with
convex boundary, then any Legendrian .p; q/ knot L� S has tw.LI @S/� 0.

We delay the proof of Proposition 3.2 to the end of this section, but use it here to give
proofs of our main theorems stated in the introduction.

Proof of Theorem 1.4 If K has Legendrian large cables, then there exists L2L.Kp;q/

such that tb.L/ > pq. Take a solid torus S representing K and containing L as a
.p; q/ curve. Perturb S to have convex boundary. By hypothesis, tw.LI @S/ > 0, so
by Proposition 3.2, �jS must be virtually overtwisted. Suppose that it were possible to
thicken S to a standard neighborhood zS of K. Then slope.�

@ zS / 2 Z, which implies,
by a result of Kanda [11], that �j zS is the unique tight contact structure on zS , and
moreover that �j zS is universally tight. But this is a contradiction since S � zS and �jS
is virtually overtwisted, so no such thickening exists. If K were uniformly thick, then
any neighborhood of K would be thickenable to a slope.tb.K// standard neighborhood
of K, which we have just seen is not possible.

Proof of Theorem 1.5 By assumption, there exists L2L.Kp;q/ such that tb.L/ >pq.
Stabilize L to obtain zL such that tb. zL/Dpq. There is a solid torus S representing K for
which zL� @S , and as discussed at beginning of Section 2, we see that tw. zLI @S/D 0.
We can therefore C 0 perturb a collar neighborhood N of zL in @S to be convex, and
then C1 perturb @S nN to obtain a solid torus zS representing K with convex boundary.
Since tw. zLI @ zS/D 0, and since slope. zL/D q=p, we must have that slope.�

@ zS /D q=p,
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owing to the fact that tw. zLI zS/D�1
2
j zL ��

@ zS j where C1 �C2 denotes the geometric
intersection number of two curves on a torus. But q=p > tb.K/ by assumption, so
w.K/ > tb.K/.

Proof of Theorem 1.6 In [15], Yasui shows that for integers n � 1
4
.3 �m/, the

cables Km
n;�1

have the property that tb.Km
n;�1

/ D �1. So, for any m � �5 and any
1< n�

�
1
4
.3�m/

˘
, we see that Km has Legendrian large cables L2L.Km

n;�1
/. Then,

by Theorem 1.4, Km is not uniformly thick and has virtually overtwisted neighborhoods,
and by Theorem 1.5 we have that w.Km/ > tb.Km/

Proof of Proposition 1.8 The slope of the cable Km
n;�1

is slope.Km
n;�1

/ D �1=n.
Whenever n � 1

4
.3�m/, we know there exist L 2 L.Km

n;�1/ which are Legendrian
large. Stabilize L to obtain zL such that tb. zL/D�n. There is a solid torus S representing
Km for which zL� @S , and we have seen that tw. zLI @S/D 0. Using the strategy of
the proof of Theorem 1.5, we can C 0 perturb a collar neighborhood N of zL in @S to
be convex, and then C1 perturb @S nN to obtain a solid torus zS representing Km

with convex boundary. Since tw. zLI @ zS/ D 0, and since slope. zL/ D �1=n, we must
have slope.�

@ zS /D�1=n, and therefore w.Km/� �1=n.

Now we will give a series of results leading to the proof of Proposition 3.2.

Lemma 3.3 If S is a solid torus with convex boundary , #�@S D 2, and slope.�@S /2Z

with its unique tight contact structure �, then any Legendrian .p; q/ knot L � S has
tw.LI @S/� 0.

Proof Notice that this follows immediately from Theorem 3.1, since S is a stan-
dard neighborhood, and any Legendrian curve L on a convex torus T must have
tw.LIT /D tw.LI @S/� 0. Alternatively, we can reason in the following way. Recall
that Kanda [11] showed that any solid torus with integer slope and two dividing curves
has a unique tight contact structure. Suppose that S is a solid torus with convex
boundary, #�@S D 2, and slope.�@S /D k 2 Z with its unique tight contact structure � ,
and that L � S is a Legendrian .p; q/ knot. Then S is a standard neighborhood of
a Legendrian core curve K. Any two standard neighborhoods are contactomorphic,
so we can find a neighborhood N � .S3; �std/ of a Legendrian unknot U � S3 with
tb.U / D �1, and a contactomorphism ' W S ! N which sends '.K/ D U . This
contactomorphism sends torus knots to torus knots, so our .p; q/ knot L is mapped to a
.p; q�p.kC1// knot '.L/, as one can easily check. But now '.L/ is a torus knot in
.S3; �std/, and Etnyre and Honda [3] have shown that tb.'.L//�p.q�p.kC1//. But
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Figure 8: An arbitrary disk with arcs.

we understand how to switch between the Seifert framing and the framing coming from
the torus @N , that is, tw.'.L/I @N / D tb.'.L//�p.q � .k C 1// � 0. This implies
that tw.LI @S/� 0, since N and S are contactomorphic.

We can strengthen Lemma 3.3 slightly by dropping the assumption that #� D 2.

Lemma 3.4 If S is a solid torus with convex boundary, and slope.�@S / 2 Z with any
tight contact structure �, then any Legendrian .p; q/ knot L� S has tw.LI @S/� 0.

Proof We will show that .S; �/ will embed in a tight contact structure . zS ; Q�/ that
satisfies the hypothesis of Lemma 3.3, and therefore show that tw.LI @S/ � 0. To
this end, we note that we can assume slope.�@S /D 0 by applying a diffeomorphism
to S . Recall from [10], that � is completely determined by the dividing set �D on
a meridional disk D of S . We will build a model situation for S in which we can
construct . zS ; Q�/. Since #�@S > 2 we see that #�D > 1. Suppose that we have a convex
disk D with an arbitrary collection of dividing curves � , as in Figure 8.

Let v be a vector field on D that guides the characteristic foliation. We can label the
regions in D n � as either ˙C or ˙� so that no adjacent pair share the same label.
There exists an area form ! on D which satisfies that ˙div! v > 0 on ˙˙. Assign a
1–form �D �v!; then we know from Giroux [7] that there exists a function u WD!R

Figure 9: An annulus has been attached, and the number of curves has been
reduced by one.
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such that udt C� gives rise to a contact structure � on D �R that is invariant in the
R direction. Moreover, we know from a theorem of Giroux that � is tight, since there
are no homotopically trivial dividing curves. This invariance means that we can mod
out by Z to obtain a tight contact structure on a solid torus .D �R/=Z D D � S1.
The solid torus and contact structure we obtain in this way are contactomorphic to
our original .S; �/, that is, there exist v, ! and u WD!R for which this construction
exactly reproduces .S; �/.

Now suppose that the number of properly embedded arcs is greater than 1. We would
now like to reduce the number of dividing curves by taking a larger disk containing
our original D. So we attach an annulus to D to obtain Dext D D [' .S

1 � Œ0; 1�/,
where ' W S1 � f0g ! @D is the gluing map. Denote the endpoints of the properly
embedded arcs by fx1; : : : ;x2kg. Notice that if we fix a point on p 2 @D and move
counterclockwise from p along @D, then it must happen that we encounter an xi

followed by an xiC1 which are not endpoints of the same curve. If this were not so,
then there could only be one curve, which we have supposed not to be the case. Without
loss of generality, assume that these two points are x1 and x2. Now connect these
points by an arc in S1 � Œ0; 1�. Form arcs from the remaining points fx3; : : : ;x2kg to
@Dext by using fxig � Œ0; 1�, as in Figure 9. Notice that Dext has one fewer embedded
arc than D. So we can iterate this procedure to obtain a disk zD �D which has only 1

properly embedded arc. Call this arc z� . Notice that we can arrange the gluing map '
to be smooth and such that the extension of � to z� is smooth. We can also smoothly
extend ! and v to zD so that the singular foliation on zD guided by v has z� as a dividing
curve. We can now build, just as we did above, a contact structure Q� on zD �S1 D zS

having zD as a convex meridional disk, with convex boundary. Since #� zD D 1, we have
tb.@ zD/D�1, which in turn implies that #�

@ zS D 2. Notice that Q�jS D �. Also notice
that, by construction, the method of reducing the number of dividing curves on @S
yields slope.� /D slope. z� /. Now, by Lemma 3.3, any Legendrian .p; q/ knot L� S

has tw.LI @S/� 0.

Lemma 3.5 If � is a universally tight contact structure on a solid torus S with convex
boundary and #�@S D 2, then any Legendrian .p; q/ knot L� S has tw.LI @S/� 0.

Proof By a diffeomorphism of S , we can assume that slope.�@S / D �r=s where
�1��r=s � �1, and that the meridional slope is �1. Let nD dr=se. Then since
� is universally tight, we know that any path in the Farey tessellation describing our
contact structure has the property that each jump must be decorated with the same
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Figure 10: Farey tessellation picture describing the contact structure on our
solid torus. The original solid torus, S , is shown in blue, while the red
indicates the T 2 � I which is glued on to obtain the larger solid torus zS .

sign by Theorem 2.1. A portion of the Farey tessellation shows this in Figure 10. We
can obtain a larger solid torus zS � S , which is convex, has two dividing curves, and
with slope.�

@ zS / D �nC 1 in the following way. Take a shortest path in the Farey
tessellation from �r=s to �nC 1, and decorate each jump with the sign which appears
in the description of the contact structure on S . This describes a contact structure on
T 2 � I which extends S to zS , and since the signs are all the same we know that zS is
tight by Theorem 2.2. Moreover, we see that zS has integer slope giving it a unique
tight contact structure. Now we have that tw.KI @S/� 0 by Lemma 3.3.

Remark 3.6 In the above proof, we are able to thicken S to a larger solid torus
zS � S with slope.�

@ zS /D�nC 1 because we are thinking of S D S1�D2 abstractly
as a contact 3–manifold with convex boundary, and not embedded in any particular
contact manifold. There is a shortest path in the standard Farey tessellation picture
from any negative rational �r=s to �nC 1 which describes our contact structure. We

S

A A

B

Figure 11: Left: X D T 2 � I . Right: the annulus A and its dividing curves.
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are not claiming that if S is a solid torus representing a knot K � S3 it must always be
thickenable in S3, for example, Etnyre, LaFountain, and Tosun have given examples
of nonthickenable tori in [5].

Proposition 3.2 strengthens Lemma 3.5 slightly by dropping the assumption that #� D2.

Proof of Proposition 3.2 Suppose we are given a solid torus S with convex boundary,
a universally tight contact structure �, and we have a Legendrian .p; q/ knot L in S .
Again, by a diffeomorphism of S , we can assume that slope.�@S / D �r=s, where
�1��r=s � �1, and that the meridional slope is �1. Let nD dr=se. If

#�@S D 2k > 2;

then we can attach a bypass to @S along a Legendrian ruling curve to obtain a smaller
solid torus S 0 � S which has slope.�@S 0/D�r=s and #�@S 0 D 2k � 2. We can repeat
this procedure until we have a solid torus zS � S which has slope.�

@ zS /D �r=s and
#�
@ zS D 2. Notice that the contact structure on zS is just �j zS . If we look at a meridional

disk D�S , we know that along @D there are 2sk intersection points with �@S ; however,
there exists a slope  for which curves on @S of slope  have exactly 2k intersection
points with �@S . For convenience, change coordinates on S so that slope. / 7! �1
and slope.�@S / 7! 0. Notice that we have a T 2 � I layer X D S n zS , and we can find
a convex annulus A in X with Legendrian boundary of slope  . We would like to show
that the contact structure on X is completely determined by the dividing curves on A.
Since #�

@ zS D 2, #�@S D 2k, and slope.�
@ zS / D slope.�@S / D 0, we know that the

dividing curves on A must have the form shown in Figure 11, right, by the green arcs.

We know from Giroux [7] that the contact structure on a neighborhood of A is deter-
mined by its dividing curves. If we cut X along A, and round corners, we obtain a
solid torus Y with convex boundary. Using the edge rounding lemma [10], it is easy
to see that #�@Y D 2 and slope.�@Y / D �1. Notice in Figure 11, left, that we have
a meridional disk B of Y which we have just seen has tw.@B/D�1, and which we
can perturb to be convex. There is a unique choice of dividing curves on such a disk.
Finally, if we cut Y along B and round corners, we obtain a B3 with convex boundary,
which has a unique tight contact structure from work of Eliashberg [2]. So we have
seen that the contact structure of X is determined solely by the dividing curves on A.

Let v be a vector field on A that guides the characteristic foliation. We can label the
regions in A n � as either ˙C or ˙� so that no adjacent pair share the same label.
There exists an area form ! on A which satisfies that ˙div! v > 0 on ˙˙. Assign a
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A A yA

Figure 12: Reducing the number of dividing curves on A by extending with
an annulus yA.

1–form �D �v!; then we know from Giroux [7] that there exists a function u WA!R

such that udt C� gives rise to a contact structure � on A�R that is invariant in the R

direction. Moreover, we know from a theorem of Giroux that � is tight since there are
no homotopically trivial dividing curves. This invariance means that we can mod out
by Z to obtain a tight contact structure on .A�R/=ZD T 2�I . The T 2�I layer and
contact structure we obtain in this way are contactomorphic to our original .X; �/; that
is, there exist v, ! and u WA!R for which this construction exactly reproduces .X; �/.

Now observe that we can smoothly extend A, abstractly, by an annulus yA causing the
number of dividing curves to be reduced to 2, just as we did with the disk in the proof
of Lemma 3.4; see Figure 12.

We can arrange that the extension of �A to �A[ yA is smooth, and we can also smoothly
extend ! and v to a neighborhood of yA so that the singular foliation on yA guided by v
has �A[ yA as a set of dividing curves. We can now build, just as we did above, a contact
structure O� on .A[ yA/�S1D yX with convex boundary. Since #�A[ yAD 2, we see that
tb.@ yA\ @ yX /D �1, which implies that #�

@ yX D 2. Notice that O�jX D �. Also notice
that, by construction, the method of reducing the number of dividing curves on @X
yields slope.�@X /D slope.�

@ yX /. But now we have a minimally twisting T 2 � I layer
yX whose boundary tori each have two dividing curves with slope 0. Honda [10] showed

that there are an integers worth of tight contact structures satisfying these boundary
conditions, and that each one is I–invariant. Adding the I–invariant thickened torus
X [ yX to zS , we get a new solid torus with contact structure contactomorphic to �j zS ,
thus universally tight. Clearly S is contained in this solid torus. Now, by Lemma 3.5,
L has tw.LI @S/D tw.LI @S 0/� 0.
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Dk

ˇ2

ˇ1

˛1

˛2

'

1

2

K � S3

Figure 13: The immersion of a ribbon disk DK .

4 Building ribbon knots from canceling handles

We are concerned here with ribbon knots, which we take to be the following: A knot
K � S3 is a ribbon knot if there is an immersed disk ' WDK ! S3 such that:

(1) @'.DK /DK.

(2) All of the double points of '.DK /D zDK (we will use the symbol � to denote
image under ') occur transversely along arcs i � S3 whose preimage '�1.i/�DK

consists of exactly two arcs. One of these, ˛i , must be contained entirely in the interior,
˛i � int.DK /, and the other, ˇi (meant to suggest boundary), must be a properly
embedded arc in DK (ie @ˇi � @DK and int.ˇi/\ @DK D∅).

An example ribbon disk and its image under ' are shown in Figure 13.

Note that by transversality, the preimages of the i’s are 1–dimensional submanifolds
of the compact manifold DK , so there are only finitely many ribbon singularities i .

We want to give a construction of an arbitrary ribbon knot using 1–2–handle-canceling
pairs. Given any ribbon knot K � S3, it has a ribbon disk DK by definition. Notice,
every ribbon singularity i must appear exactly twice on the ribbon disk: once as a
properly embedded arc, and once as an arc contained entirely in the interior of DK . We
will use a common color when picturing these pairs. So a general ribbon disk might
look something like the one seen in Figure 14.

Figure 14: A general ribbon disk example.
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'

cj

Figure 15: Cutting a ribbon disk along an arc cj .

We will want to make cuts cj , by pushing off two parallel copies of an arc in DK and
removing a small �–strip. The result of this cut is shown in Figure 15.

We also need to set up a tool for manipulating ribbon disks and their images. Suppose
we have an arc b � @DK whose endpoints are the endpoints of one of our ˇ’s. Further
suppose that the subdisk D they bound contains no other singular points, as in Figure 16.

Let N D I � Œ0; �� be a collar neighborhood of ˇ in DK such that .t; 0/D ˇ. We can
form a new disk D� DD[N with boundary

@D� D b[ .0; s/[ .1; s/[ .t; �/

and notice that int.ˇ/� int.D�/. By choosing � > 0 sufficiently small, we can assume
that zD� is embedded. Then we can see that D� guides an isotopy, supported in a small
neighborhood of DK , taking b to .t; �/ so that the disk DK �D� D D0

K
does not

contain ˇ. We will refer to such a move as a disk slide; Figure 17 shows a typical one.

Theorem 4.1 Given an arbitrary ribbon knot K�S3 with n2N ribbon singularities i ,
we can make n� 1 or fewer cuts cj , so that what remains of K is an unlink , and what
remains of zDK is , after n or fewer disk slides , embedded. That is , it is a collection of
disjoint disks.

'
DK

N

D

ˇ

b

'.ˇ/ '.b/

Figure 16: A subdisk and collar neighborhood, and its immersed image under '.
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'
DK

D

ˇ

'.ˇ/

'
DK

ˇ

'.ˇ/

Figure 17: An illustration of a disk slide.

To prove this we will need the following.

Lemma 4.2 Given a ribbon knot K with n ribbon singularities , if we can find a subdisk
D �DK such that

@D D .an arc in @DK /[ˇi

for one of our properly embedded arcs ˇi , and int.D/ is disjoint from all ˛’s and ˇ’s ,
then a disk slide gives an isotopy of K supported in a small neighborhood of D so that
the new slicing disk zD0

K
has n� 1 ribbon singularities.

Proof For reference, let bi D @D\@DK so that @DD bi[ˇi . Also, let N D I � Œ0; ��

be a collar neighborhood of ˇi in DK such that .t; 0/D ˇi , similar to the one shown
in Figure 16.

Then we can define a new subdisk D� DD[N with boundary

@D� D bi [ .0; s/[ .1; s/[ .t; �/

and notice that int.ˇi/ � int.D�/. By choosing � > 0 sufficiently small, we can
assume that zD� is embedded. Then there is a disk slide taking bi to .t; �/ so that the
disk DK �D� D D0

K
does not contain ˇi . But then it also cannot contain ˛i , since

the preimages of singularities occur in pairs, and hence the singularity i has been
eliminated. We also have that the resulting knot @ zD0

K
is isotopic to K.
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DK

D

ˇi

j̨

bi

DK

ˇi

j̨c

D0
K

S

D0

ˇi

j̨

Figure 18: Cutting a ribbon disk.

Notice that Lemma 4.2 says that if we see a boundary parallel arc in DK with no
other singular points between that arc and some portion of @DK , then we can eliminate
that arc and its interior partner from the picture by an isotopy of K. Now back to our
general picture and the proof of Theorem 4.1.

Proof of Theorem 4.1 We will assume that our ribbon disk is reduced in the sense
that, if it were possible to simplify with a disk slide, then we have done so already.
We will consider Figure 14 as our prototypical ribbon disk, and recall the convention
that for each singularity i , '�1.i/ consists of ˛i [ˇi with ˇi properly embedded.
Given an arbitrary ribbon knot K � S3 with n 2 N ribbon singularities i , and
ribbon disk ' W DK ! S3, there will always be an “outermost” properly embedded
arc ˇi . This means that in some subdisk D, whose boundary is ˇi together with an arc
bi � @DK , there are only interior singular points j̨ , and no other properly embedded
arcs. Figure 18, top left, shows one such case.

Let c be a properly embedded arc in D � DK such that c cuts D into D0 [ S with
ˇi �S and D0 containing all arcs j̨ �D. We may cut DK along c so that ' is defined
on D0

K
DDK �D0 and D0, and after a small isotopy of ' jD0 we have that '.D0/ and

'.D0
K
/ are disjoint, as pictured in Figure 18, bottom. Then a disk slide eliminates ˇi

by Lemma 4.2. Notice that when we eliminate a particular ˇi using a disk slide, that
automatically eliminates the corresponding ˛i since they occur in pairs. Also notice,
each cut eliminates at least one ˇi , but could allow for the removal of more than one.
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D0
K

j̨

ǰ

Figure 19: Final iteration.

But after at most n�1 cuts we have at most one ǰ and its corresponding j̨ . Since ǰ

cuts the disk it sits on into two components, one of them contains no ˛ curves — see
Figure 19 — and so ǰ can be removed with no further cuts. Thus we never need to make
the nth cut since this last ˇ curve may be eliminated by a disk slide without making a
cut. Then the image under ' is now n embedded disks whose boundary is an unlink.

We remark that this gives an upper bound on the number of cuts needed, but there are
certainly cases where this number is not optimal as the following example shows.

Example 4.3 Consider the ribbon knot in Figure 20. This knot has nC 2 ribbon
singularities for any n 2 N, and yet only one cut (shown in green) will reduce the
picture to two disjoint disks.

Now we will introduce handles and obtain a Kirby picture in which our knot K takes a
particularly simple form. We assume that the reader is familiar with basic handlebody

{n times

Figure 20: An example ribbon knot with nC2 singularities for which a single
cut suffices.

Algebraic & Geometric Topology, Volume 23 (2023)



2586 Andrew McCullough

'

hj

cj

Figure 21: A 2–handle hj associated to a cut cj .

theory; an excellent reference for this material is [8]. For every cut cj , we will attach
an arc hj seen in Figure 21. We will think of hj as a thin ribbon, which would recover
K if glued along. For this reason we will give the arc hj a framing, by which we
mean a parallel arc, and keep track of this framing through any isotopies of K. By a
1–subhandlebody, we will mean the subhandlebody consisting of the 0–handles and
the 1–handles.

Proof of Theorem 1.12 Using Theorem 4.1, we can make k < n cuts to the ribbon
disk to obtain the unlink. So we have a diagram in which there are k disjoint disks,
and k�1 framed arcs hj . We know that by taking a band sum along these arcs (paying
attention to framings) we can recover our diagram for K. Let Kcut be the union of the
boundaries of these disks. Now in a small neighborhood of the end points of each hj

we insert the attaching spheres of a 1–handle, letting hj be the attaching circle of a
2–handle as seen in Figure 22.

This pair cancels by construction, and also has the effect of doing the band sum that
recovers K for the cut cj as seen in Figure 23. Notice that we make two handle slides
that free Kcut from the 1–handle, and then cancel the pair. Also notice that this has
exactly the same effect that a band sum of Kcut along hj would have had.

There is no obstruction to this handle slide and cancellation caused by the possible
presence of other handle pairs since the double band sum shown on the left can be

Kcut

hj

Kcut

Figure 22: A 1–2–handle-canceling pair.
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Kcut Kcuthj hj

hj hj

hj –framing

Figure 23: An example of handle cancellation to recover K.

carried out in a small neighborhood of the attaching sphere on the left. So, after n� 1

or fewer iterations, we have recovered our diagram for K. It is worth noting that
framings on 2–handles denote an even number of half twists; therefore the framings on
the hj must be even. If our diagram for K requires an odd number of half twists then
we can accommodate this by inserting any number of half twists in one of the disks
spanning Kcut, shown in Figure 24 for the case of a single half twist.

We would like to think of our diagram in which there are k disjoint disks connected
by k � 1 arcs hj abstractly as a graph in order to show that Kcut can be pulled free
of the 1–handles. To do this, we first work in the boundary of the 1–subhandlebody.
We think of each of our disjoint disks as a vertex, and put an edge between vertices

Kcut Kcut

Kcut
Kcut

hj

hj

Figure 24: Framing adjustment.
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Kcut Kcut Kcut

Figure 25: Handle picture corresponding to a univalent vertex of G.

if the corresponding disks are joined by a 1–handle. Notice G embeds in DK as the
“dual” graph to DK cut along '�1.cj /; that is, there is a vertex in the center of each
component of DK �

Sk�1
jD1'

�1.cj / and an edge for each '�1.cj /. Then G is homotopy
equivalent to DK , and so we see that �.G/D �.DK /D 1. It is well known that the
Euler characteristic of a connected graph is one if and only if that graph is a tree, so
G is a tree. Each univalent vertex of G is now associated to a portion of our picture
consisting of two disks connected by a 1–handle, where one disk might have many
1–handle attaching spheres, but the other must have exactly one 1–handle attaching
sphere as shown in Figure 25. In the 1–subhandlebody it is clear that Kcut may be
isotoped off this 1–handle. Notice that the effect of this isotopy on G is to remove the
corresponding edge and univalent vertex from the graph. Since G is a tree, we can iterate
this procedure revealing that Kcut can be pulled completely free of the 1–handles. This
may be seen in Figure 26 by simply ignoring the attaching circles of the 2–handles hj .

The above iteration gives an isotopy of Kcut which extends to an ambient isotopy of the
boundary of the 1–subhandlebody. This, in turn, induces an isotopy on the attaching
circles of the 2–handles hj , resulting in a 2–handlebody as claimed in Theorem 1.12.
See Figure 26. By construction, handle slides and cancellations give us a knot isotopic
to K � S3.

{ K

n� 1 or fewer

Figure 26: A 2–handlebody picture where K appears as the unknot in the
boundary of the 1–subhandlebody.
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Figure 27: A 2–handlebody picture of the complement of the slice disk for K.

So we have shown that any ribbon knot with n ribbon singularities may be constructed
by starting with the unknot in #k S1 �S2, where k � n� 1, and attaching 2–handles
to cancel each of the 1–handles in an appropriate manner.

Example 4.4 It is an exercise in Kirby calculus to show that images in Figure 2 are
two pictures of the same ribbon knot in S3.

Corollary 4.5 In Figure 26, if we replace the unknot in the 1–subhandlebody with a
dotted circle , then we obtain a picture of the 4–manifold which is the complement of
the slicing disk in D4, shown in Figure 27.

Proof The slicing disk can be seen in the picture as the disk filling the unknot that
we have in the 1–subhandlebody. This is because canceling the 1–2–handle pairs not
only recovers K, but also recovers the ribbon disk zDK . The definition of the dotted
circle notation is that we remove a small neighborhood of the dotted unknot along with
a small neighborhood of the disk after pushing it into D4. And so this is exactly the
complement of the slicing disk, D4� zDK .

One nice fact is that, since disk slides, isotopies and handle cancellations can be done
locally, and since ribbon knots always bound an immersed ribbon disk, this construction
actually works in any 3–manifold. We did not rely on any special properties of S3

during the process. One can create examples by combining a 2–handlebody picture for
a ribbon knot K�S3 as in the above construction with a Kirby picture of a 4–manifold
W whose boundary is the intended 3–manifold M 3 D @W . When combining the two
pictures, K may be allowed to run across noncanceling 1–handles to form nontrivial
examples as shown in Figure 28, where we have a Kirby picture of a 4–manifold whose
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K

K

Figure 28: An example ribbon knot in S1 �S2 and its decomposition.

boundary is S1 �S2. We can see the ribbon disk for K in the image on the left. The
image on the right shows the result using the technique developed above.
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Homology of configuration spaces
of hard squares in a rectangle
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We study ordered configuration spaces C.nIp; q/ of n hard squares in a p � q

rectangle, a generalization of the well-known “15 puzzle”. Our main interest is in
the topology of these spaces. Our first result describes a cubical cell complex and
proves that it is homotopy equivalent to the configuration space. We then focus on
determining for which n, j , p, and q the homology group Hj ŒC.nIp; q/� is nontrivial.
We prove three homology-vanishing theorems, based on discrete Morse theory on
the cell complex. Then we describe several explicit families of nontrivial cycles,
and a method for interpolating between parameters to fill in most of the picture for
“large-scale” nontrivial homology.

55R80; 57Q70, 82B26

1 Introduction

We study the ordered configuration space of n squares in a p � q rectangle, which we
denote by C.nIp; q/. The case nD 15 and p D q D 4 corresponds to the famous “15
puzzle”. This puzzle was apparently invented by Noyes Palmer Chapman, a postmaster
in Canastota, New York, in 1874; see Sonneveld and Slocum [12]. Already by 1879, the
puzzle had been analyzed mathematically by Johnson and Story [10]. They showed that
it is not possible, for example, for any sequence of moves to transpose the pieces labeled
14 and 15. Their observation is really a topological one, namely that the configuration
space has two connected components.

A natural discrete model for the 15 puzzle is the graph G15, which we describe as
follows. The vertices are the aligned positions of the puzzle, corresponding to the 16!
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permutations of the 15 pieces and the one hole, and we have an edge between every
pair of positions that differ by sliding a piece into the hole.

If we allow arbitrary positions for nonoverlapping squares, then the configuration space
for the 15 puzzle is more than 1–dimensional; for instance, there is a three-parameter
family of ways to slide horizontally the three pieces in the bottom row. Nevertheless, as
a special case of our results here, the configuration space of the 15 puzzle deformation
retracts to a one-dimensional subspace homeomorphic to G15.

Having a cell complex structure allows for computing many topological invariants
directly. For example, the Betti number ˇ1 can be computed by counting the number
of 0–cells f0 D 16! and 1–cells f1 D 24 � 15! of G15, using the fact that ˇ0 D 2, and
applying the 1–dimensional Euler formula f0�f1 D ˇ0�ˇ1.

In the more general setting, we describe a cubical complex X.nIp; q/ and show it is
always a deformation retract of the configuration space C.nIp; q/. Applying discrete
Morse theory on this complex allows us to establish some necessary conditions on
where nontrivial homology can appear.

In the following, we always assume that p; q � 1, 0 � n � pq, and j � 0. We also
sometimes use a “large-scale” parametrization, by defining x D n=pq and y D j=pq.
The quantity x has a physical interpretation as “density”, describing the area ratio in
the rectangular region that is occupied by squares.

Theorem 1.1 (homology vanishing theorem) We have:

(1) If j > pq� n, then Hj ŒC.nIp; q/�D 0.

(2) If j > n, then Hj ŒC.nIp; q/�D 0.

(3) If j > pq=3, then Hj ŒC.nIp; q/�D 0.

Equivalently, on the large scale , if Hj ŒC.nIp; q/�¤ 0 then y �min
˚
1�x;x; 1

3

	
.

The cubical cell complex model allows us to do exact computations for small examples.
We include a table of Betti numbers in Section 7. Based in part on our computations,
we conjecture the following.

Conjecture 1.2 If Hj ŒC.nIp; q/�¤ 0, then

j �min
n
pq� n; n�

8n2

9pq
;
pq

4

o
:

Equivalently, we conjecture that if Hj ŒC.nIp; q/�¤ 0, then

y �min
n
1�x;x�

8

9
x2;

1

4

o
:
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In Section 6, we describe several families of explicit nontrivial cycles, and a method for
interpolating between parameters. We almost show that if y �min

˚
1�x;x� 8

9
x2; 1

4

	
there exist n, j , p, and q such that Hj ŒC.nIp; q/�¤ 0. Instead we prove an analogous
statement with a piecewise linear approximation of the parabola y D x� 8

9
x2. Let S

be the set of points on the parabola defined by

S D

��
x;x�

8

9
x2

� ˇ̌̌
x D

3

4k
; k � 1

�
:

Note that
�

3
4
; 1

4

�
2 S and

�
3
8
; 1

4

�
2 S . Let I be the closed interval

I D f.x;y/ j 0� x � 1 and y D 0g:

Theorem 1.3 (large-scale homology nonvanishing theorem) If .x;y/ is any rational
point in the convex hull of S [ I , then there exist n, p, q, and j such that x D n=pq,
y D j=pq, and Hj ŒC.nIp; q/�¤ 0.

Theorem 1.3 might suggest the right necessary conditions for nontrivial homology,
rather than Conjecture 1.2. We do not currently know of any instance of n, j , p, and
q where Hj ŒC.nIp; q/�¤ 0 and .x;y/ lies outside of the convex hull of S [ I .

A summary of our main results is illustrated in Figure 1. Although we have made some
headway, completely resolving the following question is left as future work.

Question 1.4 What are necessary and sufficient conditions on .nI j Ip; q/ for

Hj ŒC.nIp; q/�¤ 0?

We note that Conjecture 1.2 is only about necessary conditions for nontrivial homology,
but at the moment we do not have a good conjecture for necessary and sufficient
conditions. The conditions in Conjecture 1.2 by themselves are not sufficient. For
example,

�
1
4
; 3

16

�
is a point in the blue region of Figure 1, corresponding to nDpDqD4

and j D 3. However, it is not true that we have homology whenever n=pq D 1
4

and
j=pq D 3

16
, even when n is arbitrarily large. Suppose that p D 2 and q D 8k for

some k � 1, and n D 4k; then we cannot get nontrivial homology with j D 3k.
The largest j where we will see nontrivial homology is j D 2k; by the homotopy
equivalence mentioned below, this follows from Theorem 1.2(3) in Alpert, Kahle, and
MacPherson [2].

In recent years, there has been increased interest in similar kinds of configuration
spaces; see Alpert [1], Baryshnikov, Bubenik, and Kahle [3], and Carlsson, Gorham,
Kahle, and Mason [6] for some earlier work on configuration spaces of disks. Plachta
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y D xy D 1�x

y D 1
3

y D 1
4

y D x� 8
9
x2

x D n=pq

y
D

j
=
p

q

Figure 1: A summary of our main results. The axes are x D n=pq and
y D j=pq. We show that if .x;y/ is outside the shaded region bounded by
y D 1�x, y D x, and y D 1

3
, then Hj ŒC.nIp; q/�D 0. We show conversely

that for every rational point .x;y/ in the blue part of the shaded region, there
exist n, j , p, and q such that x D n=pq, y D j=pq, and Hj ŒC.nIp; q/�¤ 0.
Each of the blue dots represents a point .x;y/ where we computed that
Hj ŒC.nIp; q/�¤ 0, with n� 6.

recently studied configuration spaces of squares in a rectangle [11], using affine Morse–
Bott theory, smooth flows, and graphs associated with such configurations. As one
application, he showed that under certain conditions the configuration space which
we denote by C.nIp; q/ is connected. We note that our dimensions of the rectangle,
p and q, are always positive integers, but he studies the more general framework where
they may be positive real numbers.

What we study here is closely related to the recent paper [2] on configuration spaces of
hard disks in an infinite strip, which we now briefly discuss. Let config.n; w/ denote
the configuration space of n disks of unit diameter in an infinite strip of width w. While
we do not prove it here, it is not hard to check that C.nIp; q/ is homotopy equivalent
to config.n; w/ if q � n and p D w. So the configuration spaces of hard squares in a
rectangle we study here are a generalization of the configuration spaces of hard disks
in an infinite strip.
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Motivated by the notion of phase transitions for hard-spheres systems, definitions are
suggested in [2] for homological solid, liquid, and gas regimes. The definitions apply
here as well.

Let Conf.nIR2/ denote the (ordered) configuration space of points in the plane. We
say that .nI j Ip; q/ is

� in the homological solid regime if

Hj ŒC.nIp; q/�D 0;

� in the homological gas regime if the inclusion map i WC.nIp; q/!Conf.nIR2/

induces an isomorphism on homology

i� WHj ŒC.nIp; q/�!Hj ŒConf.nIR2/�; and

� in the homological liquid regime otherwise.

We are mainly concerned with the boundary between trivial and nontrivial homology,
ie separating the solid regime from liquid and gas. It will also be interesting to
better understand the boundary between the homological liquid and gas regimes, as
summarized in the following question.

Question 1.5 What are necessary and sufficient conditions on .nI j Ip; q/ for the
inclusion map i W C.nIp; q/! Conf.nIR2/ to induce an isomorphism on homology

i� WHj ŒC.nIp; q/�!Hj ŒConf.nIR2/�?
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2 Definitions and notation

The configuration space C.nIp; q/ of n unit squares in a p�q rectangle can be written
as a subspace of R2n by keeping track of the coordinates of the centers of the squares.
We select our p�q rectangle to be the set

�
1
2
;pC 1

2

�
�
�

1
2
; qC 1

2

�
in R2. Accordingly,
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we define C.nIp; q/ to be the set of all points .x1;y1; : : : ;xn;yn/ 2R2n such that

� 1� xk � p and 1� yk � q for all 1� k � n, and

� jxk �x`j � 1 or jyk �y`j � 1 for all 1� k < `� n.

Note that the boundaries of the unit squares can intersect each other or the edges of the
rectangle.

We will be working with two ways to draw a grid on the rectangle; these two grids can be
thought of as dual to each other, or as offset by

�
1
2
; 1

2

�
. One grid is the integer coordinate

grid. The set of possible positions of the center of one square is Œ1;p�� Œ1; q�, which
we can think of as having vertices at the points where both coordinates are integers,
edges between vertices at distance 1, and .p� 1/.q � 1/ square 2–cells. We refer to
these integer points as coordinate grid vertices, to the edges as coordinate grid edges,
and to the squares as coordinate grid squares. Together we refer to the coordinate grid
vertices, edges, and squares as coordinate grid cells.

The other grid is the p � q grid on the rectangle itself. Thinking of the rectangle as a
p�q chessboard, we refer to the unit square centered at each coordinate grid vertex as a
board square. For each coordinate grid cell, there is a corresponding rectangle of board
squares given by taking the union of all unit squares for which the center lies on that
coordinate grid cell, as shown in Figure 2. The rectangle corresponding to a coordinate
grid vertex is a single board square, the rectangle corresponding to a coordinate grid
edge is a pair of adjacent board squares, and the rectangle corresponding to a coordinate
grid square is a 2� 2 rectangle of board squares.

Let G.nIp; q/ be the space .Œ1;p�� Œ1; q�/n with its standard cubical complex structure.
Here the letter G stands for grid. We can think of this space as the set of configurations
of labeled squares in the rectangle where the squares are allowed to overlap. As a

Figure 2: The coordinate grid vertices, at points with integer coordinates, are
the centers of the board squares. Here a coordinate grid edge is shown with
its corresponding rectangular piece.
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Figure 3: An illustration of the cell complex X.2I 2; 2/. The vertices of the
complex are labeled by their corresponding configurations with integer coor-
dinates. Note that in this simple case, the cell complex X.2I 2; 2/ equals the
configuration space C.2I 2; 2/, while in general the cell complex X.nIp; q/

is only a subspace of the configuration space C.nIp; q/.

cubical complex, each cell of G.nIp; q/ corresponds to an n–tuple in which each
entry is a coordinate grid cell. We can draw the cell of G.nIp; q/ by drawing the n

corresponding rectangles of board squares. We refer to such a picture as a rectangle
arrangement, and we refer to the n rectangles as pieces in the arrangement. Any list
of n rectangles of board squares of sizes 1� 1, 1� 2, 2� 1, and 2� 2 is the rectangle
arrangement of some cell of G.nIp; q/.

We define X.nIp; q/ to be the subcomplex of G.nIp; q/ consisting of all cells of
G.nIp; q/ that are fully contained in C.nIp; q/. Here the letter X stands for complex,

Figure 4: Any configuration where no two squares touch the same board
square is in the cell of X.nIp; q/ corresponding to the rectangle arrangement
that shows which board squares each square touches.
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because X.nIp; q/ is the main cell complex that we work with throughout the paper. It
is quick to check that X.nIp; q/ is equal to the set of cells in which the corresponding
rectangle arrangement has none of its pieces overlapping. Given a configuration in
C.nIp; q/, we can check whether it is in X.nIp; q/ by looking at each unit square in
the configuration and drawing the rectangle of board squares that it intersects, as shown
in Figure 4. If these rectangles are disjoint, then the configuration is in X.nIp; q/, and
it is in the cell corresponding to the rectangular arrangement that we have just drawn.

3 Homotopy equivalence of the configuration space and
complex

The ambient cubical complex G.nIp; q/ has three kinds of cells: some cells are
fully contained in C.nIp; q/ and together form X.nIp; q/, some cells are partially in
C.nIp; q/, and some cells are disjoint from C.nIp; q/. We will define a deformation
retraction from C.nIp; q/ to X.nIp; q/ by considering the cells of G.nIp; q/ that are
partially in C.nIp; q/ one at a time. To do this, we define local coordinates on each
of these cells and give a criterion in those local coordinates for which points are in
C.nIp; q/ and which points are not.

We define a function snap WR!R by snap.x/D 1
2
.bxcCdxe/. In other words, we have

snap.k/Dk for all k2Z, and if x2 .k; kC1/, then snap.x/DkC1
2

. We can also define
snap WRd !Rd for any dimension d , by applying snap to each coordinate separately.

If z D .x1;y1; : : : ;xn;yn/ 2 R2n is a point in the complex G.nIp; q/, then snap.z/
is the barycenter of the unique cubical cell of G.nIp; q/ whose interior contains z.
Geometrically, if .xi ;yi/ is the center of a unit square, then snap.xi ;yi/ is the center
of the corresponding rectangle of the board squares that it touches. Note that snap
is idempotent, snap.snap.z// D snap.z/, and z is a barycenter of some grid cell in
G.nIp; q/ if and only if z D snap.z/.

3.1 Containment of cells in the configuration space

We can check whether a given cell of G.nIp; q/ has empty intersection with C.nIp; q/

by looking at pairs of pieces, case by case, in its corresponding rectangle arrangement.
Figure 5 shows which pairs of pieces prevent a cell from having any configurations in
C.nIp; q/; in each case, the barycenter of the corresponding cell is not a configuration
in C.nIp; q/. For each pair of pieces, there is no way to fit a unit square in the interior
of each piece while keeping the two unit squares disjoint. (Two unit squares can fit if
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Figure 5: If the unit squares at the centers of the rectangular pieces overlap,
then the corresponding cell in G.nIp; q/ does not contain any configurations
in C.nIp; q/. The darker gray indicates where the two pieces overlap, and
the black dots give the centers of the pieces.

they touch the boundaries of the rectangles, but the resulting configuration is in the
boundary of the specified open cell, not inside it.)

Figure 6 shows the four remaining ways for two pieces in a rectangle arrangement to
overlap; for these, the corresponding cell is partially in C.nIp; q/, and the barycenter is
a configuration in C.nIp; q/. The following lemma summarizes how to check whether
a given cell of G.nIp; q/ is partially in C.nIp; q/.

Lemma 3.1 Let zD snap.z/D .x1;y1; : : : ;xn;yn/ 2G.nIp; q/ be the barycenter of
an open cell � of G.nIp; q/. Then:

(1) � has a nonempty intersection with C.nIp; q/ if and only if its barycenter z lies
in the configuration space C.nIp; q/, or equivalently , the `1 distance between
.x`;y`/ and .xk ;yk/ is at least 1 for all 1� k < `� n:

max.jx` �xk j ; jy` �yk j/� 1:

(2) � is fully contained in C.nIp; q/, and hence a cell of X.nIp; q/, if and only if ,
for all 1� k < `� n, the corresponding pieces do not overlap , or equivalently,

bmax.xk ;x`/c> dmin.xk ;x`/e or bmax.yk ;y`/c> dmin.yk ;y`/e:

Figure 6: If a given cell of G.nIp; q/ is partially contained in C.nIp; q/, then
some pair of overlapping pieces in the rectangle arrangement must overlap in
one of the four ways shown. The darker gray indicates where the two pieces
overlap, and the black dots give the centers of the pieces.
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Proof To check the first claim, we observe that if any point z 2 � is in C.nIp; q/,
then snap.z/ 2 C.nIp; q/ as well. This is because for any x1;x2 2R, if x2�x1 � 1,
then snap.x2/� snap.x1/� 1 as well.

For the second statement, note that piece k covers the board squares with centers
in Œbxkc; dxke� � Œbykc; dyke�, and piece ` covers the board squares with centers
in Œbx`c; dx`e� � Œby`c; dy`e�. The two pieces overlap if and only if the intervals
Œbxkc; dxke� and Œbx`c; dx`e� overlap and the intervals Œbykc; dyke� and Œby`c; dy`e�
also overlap.

We say that a subcomplex of a regular CW complex is a full subcomplex if it is maximal
with respect to its vertex set.

Corollary 3.2 The complex X.nIp; q/ is a full subcomplex of the ambient cubical
complex G.nIp; q/.

An equivalent description for when an open cell � is partially in C.nIp; q/ can be
obtained from examining the cases in Figure 6. Let bD .i1; j1; : : : ; in; jn/2G.nIp; q/

be the barycenter of � , and note that the coordinates ik and jk are half-integers. Then
� is partially in C.nIp; q/ if and only if

(1) for all k and ` we have max.ji` � ik j ; jj` � jk j/� 1, and

(2) there is a pair k; ` such that
(a) ji` � ik j D 1 and jj` � jk j< 1, and ik and i` are not integers, or
(b) jj` � jk j D 1 and ji` � ik j< 1, and jk and j` are not integers, or
(c) ji` � ik j D jj` � jk j D 1 and none of ik , i`, jk , and j` are integers.

3.2 Membership in the configuration space using local coordinates

The next lemma specifies how to use local coordinates to check, for an open cell
partially in C.nIp; q/, whether a given point in the cell is in C.nIp; q/. Given an open
cell � of G.nIp; q/, we can specify the points z 2 � in terms of the local coordinates
z � snap.z/ 2

�
�

1
2
; 1

2

�2n. Not every point in
�
�

1
2
; 1

2

�2n corresponds to a point in
the cell, because for each coordinate of the barycenter snap.z/ that is an integer, the
corresponding coordinate in z� snap.z/ is zero.

Let b be the barycenter of cell � , and let I.�/ be the set of indices of noninteger coor-
dinates of b. The number of elements of I.�/ is the dimension of � . Let

�
�

1
2
; 1

2

�I.�/
denote the coordinate subspace of

�
�

1
2
; 1

2

�2n given by letting the I.�/ coordinates vary
and requiring the remaining coordinates (corresponding to the integer coordinates in b)
to be zero. We have z 2 � if and only if z�b 2

�
�

1
2
; 1

2

�I.�/, in which case bD snap.z/.

Algebraic & Geometric Topology, Volume 23 (2023)



Homology of configuration spaces of hard squares in a rectangle 2603

A point of G.nIp; q/ is in C.nIp; q/ if and only if no two of the n specified squares
intersect. Thus, we check the local coordinates for two of the n squares at a time to see
whether those two squares overlap.

Lemma 3.3 Let � be an open cell of G.2Ip; q/ that is partially in C.2Ip; q/, and let
z D .x1;y1;x2;y2/ be a point in the interior of � . Then .x1;y1;x2;y2/ 2 C.2Ip; q/

if and only if one of the following conditions holds:

� jsnap.x2/� snap.x1/j D 1 and .x2� snap.x2//� .x1� snap.x1// is zero or has
the same sign as snap.x2/� snap.x1/, or

� jsnap.y2/� snap.y1/j D 1 and .y2� snap.y2//� .y1� snap.y1// is zero or has
the same sign as snap.y2/� snap.y1/.

In the fourth case in Figure 6, where the two pieces are 2� 2 rectangles intersecting
at one board square, either condition in the lemma may hold, so the intersection of
C.nIp; q/ with the cell of G.2Ip; q/ is the union of solutions to two linear inequalities.
In the other three cases, the centers of the two pieces have only one coordinate that
differs by 1, so the intersection of C.nIp; q/ with the cell is the set of solutions to one
linear inequality.

Proof A point .x1;y1;x2;y2/ is in C.2Ip; q/ if and only if either jx2�x1j � 1

or jy2�y1j � 1. Note that the function snap is weakly order-preserving, meaning
that x2�x1 � 0 implies snap.x2/� snap.x1/ � 0. Thus, by symmetry of x1 and x2

as well as .x1;x2/ and .y1;y2/, it suffices to show that x2 � x1 � 1 if and only if
both snap.x2/� snap.x1/D 1 and .x2� snap.x2//� .x1� snap.x1//� 0. The latter
condition straightforwardly implies the former.

Conversely, x2�x1�1 clearly implies snap.x2/�snap.x1/�1. Further, the assumption
that � is only partially in C.2Ip; q/ rules out the case snap.x2/� snap.x1/ > 1, as in
this case we would necessarily have bsnap.x2/c> dsnap.x1/e, and Lemma 3.1 would
imply that � is fully contained in C.2Ip; q/. Thus we get snap.x2/� snap.x1/ D 1

and .x2� snap.x2//� .x1� snap.x1//� 0 as desired.

3.3 Construction of the deformation retraction

The next lemma gives the main step in constructing the deformation retraction from
C.nIp; q/ to X.nIp; q/.

Lemma 3.4 Let � be an open cell of G.nIp; q/ that is partially in C.nIp; q/. Then
we have that @� \C.nIp; q/ is a deformation retract of � \C.nIp; q/.
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Proof Let z D .x1;y1; : : : ;xn;yn/ be a point in the open cell � . If we want to
check whether z is in C.nIp; q/, then Lemma 3.3 gives a set of inequalities on the
local coordinates z� snap.z/D .u1; v1; : : : ;un; vn/ within the open cell � that we can
evaluate. For each pair of pieces k; ` in the rectangle arrangement for � , the lemma
specifies zero, one, or two inequalities of the form

� uk � u` or uk � u`,

� vk � v` or vk � v`.

The case of zero inequalities comes from the case where the two rectangular pieces do
not intersect. The case of one inequality comes from the case where they intersect in
one of the first three ways shown in Figure 6. And, the case of two inequalities comes
from the fourth case in Figure 6, where the pieces are both 2� 2 squares and they have
one board square in common; in this case, the local coordinate z � snap.z/ needs to
satisfy either or both of the two inequalities. Together, we refer to the inequalities
from the lemma as the inequalities associated to � . Note that the above inequalities are
stated for local coordinates, but at the same time, the coordinates of the barycenter

b D .i1; j1; : : : ; in; jn/

satisfy the same set of inequalities, even strictly. This property will be crucial for our
argument.

We define the deformation retraction as follows. Let � be large enough that .1=�/b is
in
�
�

1
2
; 1

2

�2n; we can take �D 2.pCq/. Let m be the coordinate projection of .1=�/b
onto

�
�

1
2
; 1

2

�I.�/, that is, for each integer coordinate of b, we set the corresponding
coordinate of m to be zero. Since m is a positively scaled version of b, it inherits
the magical quality of satisfying all of the inequalities associated to � , and since b

satisfies all those inequalities strictly, �m has the magical quality of violating all of the
inequalities associated to � . (Note that every coordinate appearing in the inequalities
associated to � is in I.�/.) Thus the point bCm in � is in the configuration space
C.nIp; q/, while the point b�m is not.

The deformation retraction now pushes every point z 2 � outward along a ray from
b�m until it hits @� . In other words, the vector from b�m to z is given by z�bCm,
so as time t increases from 0, we set

zt D zC t.z� bCm/;

until we reach the maximum t for which z C t.z � b C m/ is in � , and then the
point no longer moves. Formally, we can define Tz to be the positive value such that
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z C Tz.z � b Cm/ 2 @� . (Because � is a cube and hence star-shaped around any
interior point, for any point in � and any nonzero vector within � starting at that point,
there is a unique nonnegative multiple of that vector that reaches @� .) If d is the
distance within � from b �m to C.nIp; q/, then the vector z � bCm from b �m

to z has length at least d , and any vector from z to @� has length at most diam.�/, so
Tz � .1=d/ diam.�/� 2n=d .

Using this notation, the deformation retraction is defined as

F W � \C.nIp; q/�
h
0;

2n

d

i
! � \C.nIp; q/;

.z; t/ 7! zCmin.t;Tz/.z� bCm/:

We still need to check that if z 2 C.nIp; q/, then zt 2 C.nIp; q/ for all t , in order to
ensure that the homotopy remains in � \C.nIp; q/. This is equivalent to checking that

zt � b D .z� b/C t.z� bCm/D .1C t/.z� b/C tm

satisfies a sufficient collection of the inequalities associated to � . We claim that
zt � b satisfies every one of the inequalities that z � b satisfies; since this collection
of inequalities is sufficient for z to be in C.nIp; q/, it is also sufficient for zt to be in
C.nIp; q/. Indeed, the inequalities are linear with no constant term, so given two points
satisfying the inequalities, any linear combination of them with positive coefficients
also satisfies the inequalities. Because z� b satisfies a sufficient set of inequalities and
m satisfies all of the inequalities associated to � , this implies that .1C t/.z� b/C tm

also satisfies the same set of inequalities as z� b. Thus, zt is in C.nIp; q/ for every
t � Tz , and the map F that we have defined is indeed a deformation retraction from
� \C.nIp; q/ to @� \C.nIp; q/.

Putting all the cells together, we obtain a deformation retraction from C.nIp; q/ to
X.nIp; q/.

Theorem 3.5 The subcomplex X.nIp; q/ is a deformation retract of the configuration
space C.nIp; q/.

Proof Order the cells � of G.nIp; q/ that are partially in C.nIp; q/ so that their
dimensions are nonincreasing. Then, cell by cell in order, we use Lemma 3.4 to
obtain a deformation retraction from � \C.nIp; q/ to @� \C.nIp; q/. Concatenating
these deformation retractions gives a deformation retraction from C.nIp; q/ to the set
X.nIp; q/ of cells completely contained in C.nIp; q/.
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4 Discrete Morse theory

In this section, we describe a discrete gradient vector field on X.nIp; q/, in the sense
of Forman’s discrete Morse theory [7], and characterize its critical cells. The analysis
of which cells are critical is based on what we call the apex of a cell. The apex of a
cell, as shown in Figure 7, is the 0–dimensional face that is obtained by replacing each
piece by its upper-right corner square — in particular, the apex of any 0–dimensional
cell is that 0–cell itself. We use discrete Morse theory to collapse our cell complex so
that among the cells remaining, at most one cell has any given apex.

Theorem 4.1 There is a discrete gradient vector field on X.nIp; q/with the properties:

(1) Every matched pair consists of two cells with the same apex.

(2) Among the cells with a given apex, at most one cell is critical (unmatched ).

(3) The matching is Sn–equivariant : if cells e1 and e2 are a matched pair , and we
apply the same permutation to the labels in the rectangle arrangements of e1

and e2, then the two resulting cells are also a matched pair.

The proof relies on constructing what we call the apex graph, which facilitates the
enumeration of all the cells with a given apex. In Lemmas 4.2 and 4.3 we prove the
basic properties of the apex graph, and in Lemma 4.4 we define the matching for
Theorem 4.1 in the language of the apex graph. After that, it is straightforward to finish
the proof of Theorem 4.1.

Given any rectangle arrangement, we describe the locations of the pieces according to
the coordinates of their upper-right corner squares, so we say that a piece is at .i; j / if

Figure 7: The apex of a rectangle arrangement replaces each piece by its
upper-right corner. The correspondence does not depend on the labels of the
pieces, so the labels are not shown.
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Figure 8: To find the apex graph, we place one vertex for each direction that
a piece in the apex can extend, and draw edges between directions where the
pieces cannot extend simultaneously.

its upper-right corner is in column i (from left to right) and row j (from bottom to top)
of our p� q rectangle. (Alternatively, the center of the upper-right board square has
coordinates .i; j / in the plane.) Giving the coordinates of each piece is the same as
specifying the apex of our cell. To distinguish cells with the same apex, we need to
specify, for each piece, whether it has height 1 or 2 and whether it has width 1 or 2. Not
all these possibilities give rise to valid rectangle arrangements, because some pieces
may overlap or hang off the board. For each possible apex, we construct the apex graph
to record these possible conflicts, as shown in Figure 8.

The apex graph has at most two vertices per piece. If our apex has a piece at .i; j /,
then we let

�
i � 1

2
; j
�

— the center of the left edge of the .i; j / board square — be a
vertex of the apex graph if and only if the piece at .i; j / can have width 2 in some cell
with that apex, that is, if i > 1 and there is no piece at .i � 1; j /. Similarly, we let�
i; j � 1

2

�
— the center of the lower edge of the .i; j / board square — be a vertex if

and only if there is a piece at .i; j /, we have j > 1, and there is no piece at .i; j � 1/.

The edges of the apex graph record which of the width 2 or height 2 options would
conflict with each other. A piece at .i; j / can have width 2 or height 2 but not both
when there are no pieces at .i �1; j / and .i; j �1/, but there is a piece at .i �1; j �1/.
In this case we draw an edge between the vertices

�
i � 1

2
; j
�

and .i; j � 1
2
/. The other

possible conflict is between pieces at .i; j / and .i � 1; j C 1/. If there is no piece at
.i�1; j /, then the .i; j / piece may have width 2, and the .i�1; j C1/ piece may have
height 2, but not both simultaneously. In this case we draw an edge between

�
i � 1

2
; j
�

and
�
i � 1; j C 1

2

�
. These two types of edges give all the edges in the apex graph.

Lemma 4.2 Each apex graph is a disjoint union of path graphs.
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Figure 9: Cells with a given apex correspond to independent sets in the apex
graph; we select the vertices corresponding to the directions where the apex
pieces extend. Here, the vertices in the independent set are drawn filled, and
the other vertices are drawn empty.

Proof The two types of edges have the same slope and length when drawn on the
coordinate lattice. Any graph that can be drawn in this way is a disjoint union of paths.
Note that some of the paths may be single vertices.

Lemma 4.3 The set of cells with a given apex is in bijection with the set of independent
sets in its apex graph. One cell is a face of another if and only if the independent set
corresponding to the first cell under this bijection is a subset of the independent set
corresponding to the second cell.

Proof For a cell with a given apex, we find the corresponding subset of vertices in the
apex graph by considering each piece in the associated rectangle arrangement, say at
.i; j /, selecting vertex

�
i� 1

2
; j
�

if the piece has width 2, and selecting vertex
�
i; j � 1

2

�
if it has height 2, as in Figure 9. The construction guarantees that these are in fact
vertices of the apex graph and that no two of them share an edge.

For the converse, suppose that we have an independent set in the apex graph. We
select our pieces to have width 2 and/or height 2 according to which vertices are in
the independent set, and we want to check whether the pieces overlap or hang off the
board. Consider the .i; j / piece. It cannot hang off the board or overlap with a piece at
.i � 1; j / or .i; j � 1/, because the vertices corresponding to those possibilities are not
in the apex graph. It cannot overlap with a piece at .i � 1; j � 1/ because that would
mean choosing both vertices

�
i � 1

2
; j
�

and
�
i; j � 1

2

�
, which would be adjacent. And,

it cannot overlap with a piece at .i �1; j C1/, because that would mean choosing both
vertices

�
i � 1

2
; j
�

and
�
i � 1; j C 1

2

�
, which would be adjacent. Symmetrically, by

swapping the roles of the two pieces, we see that the piece at .i; j / also cannot overlap
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with the pieces at .i C 1; j /, .i; j C 1/, .i C 1; j C 1/, or .i C 1; j � 1/. This exhausts
all the possibilities for how two pieces of width and height at most 2 might overlap,
and shows that we have a bijection.

For the second property, suppose that cells e and f have the same apex. Then f is a
face of e if and only if every piece of width 2 in f also has width 2 in e, and every
piece of height 2 in f also has height 2 in e. This is equivalent to the condition that the
independent set corresponding to f is a subset of the independent set corresponding
to e.

Thinking of the cells as independent sets in the apex graph suggests how to think about
pairing them up. The dimension of a cell is equal to the number of vertices in the
independent set corresponding to that cell. So, if cells e and f have the same apex,
then f is a face of e with dimf D dim e� 1 if and only if the independent set of f is
a subset of the independent set of e and the two sets differ by one vertex. When two
independent sets differ by one vertex, we say that they are adjacent.

Lemma 4.4 Given a disjoint union of paths , there is a matching on the set of indepen-
dent sets such that every matched pair of independent sets are adjacent and at most one
independent set is unmatched.

Proof We start by proving the statement for one connected path of k vertices. We
express the independent sets as binary strings of length k with no consecutive 1’s,
so that 0 indicates that the vertex in that position is not part of the independent set,
and 1 indicates that the vertex is part of the independent set. The matching is defined
recursively. For k D 1 the strings are 0 and 1, which we match as a pair. For k D 2 the
strings are 00, 01, and 10; we match 00 with 10 and leave 01 unmatched. For k > 2,
each string begins with 00, 10, or 010. We match the strings beginning with 00 to the
strings beginning with 10 such that each matched pair differs only in the first bit. Then,
for the strings beginning with 010 we ignore the first three bits and use the matching
for the k � 3 case.

The result is that for k � 1 mod 3 all strings are matched, for k � 0 mod 3 the only
unmatched string consists of repeating copies of 010, and for k � 2 mod 3 the only
unmatched string consists of repeating copies of 010 followed by 01 at the end. This
proves the lemma for the case of one path.

For several disjoint paths, we select some ordering on them. Given an independent
set, if its restriction to each path agrees with the unmatched independent set from
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0 1 0 0 0 1 0

0 1 0 0 1

0 1 0 1 0 1 0

0 1 0 0 1

Figure 10: Given an independent set on a disjoint union of paths, to find
its match we select the first component that is not critical, ignore any 010

prefixes, and flip the first bit of the remainder.

the one-path case, we leave it unmatched. Otherwise, we find the first path P where
this is not true. To find the matching independent set, we keep all the other paths as
they are and alter the set on P to be the matching set from the one-path case, as in
Figure 10. There is an unmatched independent set if and only if none of the paths has
1 mod 3 vertices, and in this case the unmatched set corresponds to repeating 010 on
each path.

To finish the proof of Theorem 4.1, we need to check that the matching we have just
defined determines a discrete gradient vector field with the properties we are looking for.

Proof of Theorem 4.1 The discrete vector field is defined as follows. Given a cell,
we find its apex and the apex graph. Encoding the original rectangle arrangement as
an independent set in the apex graph (Lemma 4.3), we find the matching independent
set (Lemma 4.4) if there is one, and decode to get another cell with the same apex.
Properties (1) and (3) are automatic from the construction, and Property (2) is a
consequence of Lemma 4.4.

We still need to check that the discrete vector field is gradient. We want to show that
there does not exist a cycle of cells e1; f1; e2; f2; : : : ; er ; fr ; erC1D e1 such that every
ei and fi are a matched pair (where, in particular, ei is a face of fi), and every fi is a
face of eiC1 with dimfi D dim eiC1�1. We observe that because fi is a face of eiC1,
if the apex of eiC1 is not equal to the apex of fi , then it differs by moving some piece
one square left or down. Every pair ei and fi have the same apex, so as the sequence
continues, the apex keeps moving leftward and downward, making it impossible to
have a cycle unless all cells in it have the same apex.

Thus we may assume that the cells e1; f1; : : : ; er ; fr all have the same apex. We can
encode these cells as independent sets in the apex graph. To go from e1 to f1, we
delete one vertex v from the independent set of e1, and to go from f1 to e2, we add
one vertex w to the independent set of f1. Remembering the ordering of the paths and
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w

v w

v

. . .

. . .

. . .

. . .

. . .

. . .

e2

f1

e1

Figure 11: In a sequence of cells with the same apex, alternating between two
consecutive dimensions, with consecutive pairs alternating between matched
and incident, the corresponding independent sets look more and more like the
unmatched set, and thus cannot cycle.

vertices in the apex graph, we observe that up until v, the independent set for f1 agrees
with the unmatched independent set, so any added vertices there would destroy the
property of being an independent set. Thus w cannot be at or before v. If the vertex
immediately after v is on the same path, then w can be that vertex. But w cannot be
anywhere else after v, because if so, then the matching independent set to e2, which
we have supposed is f2, would have v added rather than a vertex subtracted — it would
have the wrong dimension — giving a contradiction unless w is immediately after v.

Thus we cannot have a cycle e1; f1; : : : ; er ; fr ; erC1 D e1, because each successive
item agrees more and more with the unmatched set, as in Figure 11: the independent
set of e1 agrees before v, the independent set of f1 agrees through v, the independent
set of e2 agrees through w, and so on. So, our discrete vector field is gradient and has
all three desired properties.

We prove one last theorem in this section, which helps with assessing the dimension of
critical cells in the following section. For the following, we divide each unit square in
the p� q grid into two half-squares by drawing a diagonal line from the upper-right to
the lower-left corner.

Theorem 4.5 There is a function r that assigns a set of half-squares to each vertex of
the apex graph , with the properties:

(1) For any vertex v, the set r.v/ has four half-squares if v is the only vertex of
a path , three half-squares if v is the first or last vertex of a path , and two
half-squares otherwise.

(2) The sets r.v/ are disjoint for all v.
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Figure 12: Each vertex is assigned the two half-squares it touches. If vertex v
has neighbors in both directions, then r.v/ contains only these two half-squares.

Proof Recalling that we can draw each vertex of the apex graph as the midpoint of an
edge between a square occupied by an apex piece and an unoccupied square, we set
r.v/ to contain both of the half-squares that v touches, as in Figure 12.

We think of the vertices as ordered first by the sum of coordinates and then by the
column coordinate, so that the ordering starts in the lower-left corner and goes right
and down along diagonals. If v is the first or last vertex of a path, we need to find
another half-square to add to r.v/. There are several cases, shown in Figure 13:

(1) If v is the first vertex of a path and is on a vertical edge, we add in the remainder
of the square to the left of v.

(2) If v is the last vertex of a path and is on a horizontal edge, we add in the remainder
of the square below v.

(3) If v is the first vertex of a path and is on a horizontal edge and there is no vertex on
the preceding (above-left) edge, we add in the remainder of the square above v.

(4) If v is the last vertex of a path and is on a vertical edge and there is no vertex
on the following (below-right) edge, we add in the remainder of the square to
the right of v.

(5) If v is the first vertex of a path and is on a horizontal edge and there is a
(nonadjacent) vertex on the preceding edge, we add the half-square to the left
of the square below v.

Figure 13: For the first vertex of a path, rules (1), (3), and (5) specify how
to add a third half-square; the � symbol indicates an absence of vertex. The
third picture also shows an instance of rule (6). For the last vertex of a path,
rules (2), (4), and (6) are analogous.
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Figure 14: If the only vertex of a path is on a vertical edge, rules (1) and (4)
or rules (1) and (6) assign four half-squares to that vertex. If the vertex is on
a horizontal edge, rules (2) and (3) or rules (2) and (5) are analogous.

(6) If v is the last vertex of a path and is on a vertical edge and there is a (nonadjacent)
vertex on the following edge, we add the half-square below the square to the left
of v.

In the case where v is the only vertex of the path, if v is on a vertical edge, then either
rules (1) and (4) or rules (1) and (6) apply, as shown in Figure 14, and if v is on a
horizontal edge, then either rules (2) and (3) or rules (2) and (5) apply, so that r.v/ has
four half-squares in total. This completes the definition of r.v/.

We need to check that no half-square has been assigned twice. To do this, we consider
the assignment from the point of view of each square. Consider a square that is occupied
by a piece in the apex arrangement. It may have vertices on its left or lower edges. If
it has both vertices, then half of the square is assigned to each vertex. If it has one
vertex, then all of the square is assigned to that vertex, by rule (3) or rule (4). If it has
no vertex, then none of the rules assign that square to any vertex.

Similarly, consider a square that is unoccupied in the apex arrangement. It may have
vertices on its right or upper edges. If it has both vertices, then half of the square
is assigned to each vertex. If it has one vertex, then all of the square is assigned to
that vertex, by rule (1) or rule (2). (Note that rules (1) and (2) cannot apply to an
unoccupied square with both vertices, because in this case the two vertices would
be adjacent.) If our unoccupied square has no vertices, then we divide the square in
half. The lower-right half gets assigned by rule (5) to the same vertex (if any) as the
half-square to its right, and the upper-left half gets assigned by rule (6) to the same
vertex (if any) as the half-square above it.

In each case, only one rule can apply to each half-square, so each half-square can be
assigned to only one vertex.
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5 Homology-vanishing theorems

The existence of the cell complex X.nIp; q/ and the discrete gradient on it allow us to
establish a number of homology-vanishing results.

Theorem 5.1 If j > pq� n, then Hj ŒC.nIp; q/�D 0.

Proof This is almost immediate from the homotopy equivalence C.nIp;q/�X.nIp;q/.
Consider the dimensions of the cells in X.nIp; q/. A cell is indexed by a collection of
n nonoverlapping rectangular pieces in a p� q grid. A 1� 1 piece contributes 0 to the
dimension of the cell, a 1�2 or 2�1 piece contributes 1, and a 2�2 piece contributes
2. The total area of the pieces is at most pq. So the largest dimension of a cell is at
most pq� n. By the definition of cellular homology, there is no homology above the
dimension of the cell complex itself, so Hj ŒC.nIp; q/�D 0 for j > pq� n.

Theorem 5.2 If j > n, then Hj ŒC.nIp; q/�D 0.

Proof This follows from the properties of the discrete gradient described in Section 4.
Every cell is indexed by a collection of nonoverlapping rectangular pieces, and each
piece is one of 1�1, 1�2, 2�1, or 2�2. The analysis of the gradient shows that there
are no critical cells indexed by a collection of pieces including a 2� 2 piece. (When
such a cell is encoded as an independent set in the apex graph as in Lemma 4.3, the
2� 2 piece corresponds to two vertices of the independent set that are consecutive but
not adjacent. However, the proof of Lemma 4.4 implies that in a critical cell, the first
vertex of each path is never part of the corresponding independent set.) Hence the
dimension of a critical cell is at most n.

Theorem 5.3 If j > 1
3
pq, then Hj ŒC.nIp; q/�D 0.

Proof This follows from Theorem 4.5. A critical cell corresponds to an independent set
that on each path looks like 010 : : : 010 or 010 : : : 01 depending on whether the number
of vertices in the path is 0 or 2 mod 3. The dimension of the critical cell is the number
of vertices in the independent set. If the path has k vertices, then the independent set
has 1

3
k vertices in the first case, and has 1

3
.kC 1/ vertices in the second case.

For a path of k vertices, the theorem allocates half-squares with a total area of kC1 to
the vertices of the path. The independent set for that path contributes at most 1

3
.kC 1/

to the dimension of the critical cell. Thus, in total, the dimension of the critical cell
is at most one third of the total area allocated to all the paths in the apex graph, and
thus is at most 1

3
pq.
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Putting together Theorems 5.1, 5.2, and 5.3, we have proved Theorem 1.1.

Theorem 1.1 (homology vanishing theorem) We have:

(1) If j > pq� n, then Hj ŒC.nIp; q/�D 0.

(2) If j > n, then Hj ŒC.nIp; q/�D 0.

(3) If j > pq=3, then Hj ŒC.nIp; q/�D 0.

Equivalently, on the large scale , if Hj ŒC.nIp; q/�¤ 0 then y �min
˚
1�x;x; 1

3

	
.

6 Nontrivial homology

In this section, our main aim is to prove Theorem 1.3. We give several explicit con-
structions of nontrivial cycles, and then a method for interpolating between parameters.

Lemma 6.1 The points
�

1
2
; 1

4

�
and

�
3
4
; 1

4

�
are attainable.

Proof Figure 15 shows a cycle in H1ŒC.2I 2; 2/�. More precisely, the figure illustrates
a piecewise-linear map i W S1! C.2I 2; 2/, where we linearly interpolate at constant
speed between the positions shown. Then if Œ� � is a generator of H1.S

1/, the cycle we
are describing is the image i�.Œ� �/.

To show that this cycle is nontrivial, consider the map f W C.2I 2; 2/! S1, where one
takes the angle the line from the center of square 1 to the center of square 2 makes

Figure 15: A nontrivial cycle in H1ŒC.2I 2; 2/�. This realizes the point
.x;y/D

�
1
2
; 1

4

�
.
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Figure 16: A nontrivial cycle in H1ŒC.3I 2; 2/�. This realizes the point
.x;y/D

�
3
4
; 1

4

�
.

with the x–axis. In other words, define

f .x1;y1;x2;y2/D
1p

.x2�x1/2C .y2�y1/2
.x2�x1;y2�y1/:

The composition f ı i is a degree-one map S1! S1, and in particular the induced
map .f ı i/� is an isomorphism on H1. So then i must be injective on H1.

Similarly, Figure 16 shows a cycle in H1ŒC.3I 2; 2/�. The figure illustrates a piecewise-
linear map i WS1!C.3I 2; 2/, and the cycle we are interested in is the image. This also
represents a nontrivial cycle in H1ŒC.3I 2; 2/�. Indeed, we have a natural projection
map to C.2I 2; 2/ where one forgets the coordinates of the third square, and then the
argument above shows that the image of the cycle is still nontrivial in this projection.

The following lemma will be superseded later in this section by a stronger result, but we
present the lemma and proof as a warmup, and we will also reuse the main construction
in its proof later.

Lemma 6.2 The point

.x;y/D

�
k

k2
;
k � 1

k2

�
D

�
1

k
;

1

k
�

1

k2

�
is attainable for every k � 1.

Proof Consider first Figure 17. We illustrate a 2�2 square and a 1�1 square orbiting
each other in a 3�3 grid, as in Figure 15. We can then put two 1�1 squares inside the
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Figure 17: A 2� 2 square and a 1� 1 square orbiting each other in a 3� 3 grid.

2� 2 square, and these can orbit each other independently. So, together these motions
describe a map i W T 2! C.3I 3; 3/. This map is illustrated in Figures 18 and 19. By
induction, we can embed a .k�1/–dimensional torus realizing a nontrivial cycle in
C.kI k; k/ for every k � 2.

The same argument as before gives that this represents a nontrivial class in H2ŒC.3I3;3/�.
Indeed, compose with a map f W C.3I 3; 3/! T 2 D S1�S1 which assigns to the first
coordinate the angle between the line segment from the center of square 1 to the center
of square 2 and the x–axis. Similarly, the map assigns to the second coordinate the
angle between the line segment from the center of square 1 to the center of square 3

and the x–axis. This is a degree-one map T 2! T 2. The induced map .f ı i/� is an
isomorphism on homology, and so i� is injective.

Figure 18: A map T 2 ! C.3I 3; 3/. The light gray and dark gray squares
orbit each other inside the blue 2� 2 square as in Figure 15, while the black
and blue squares orbit each other independently as in Figure 17.
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Figure 19: Another view of the map i W T 2 ! C.3I 3; 3/ visualized in
Figure 18. The image of the fundamental class of the torus is a nontrivial
cycle in H2ŒC.3I 3; 3/�.

By Lemma 6.2, there are infinitely many points realized on the parabola y D x�x2.
The following lemma improves on that result, showing that there are infinitely many
points realized on the parabola y D x� 8

9
x2.

Lemma 6.3 The point
.x;y/D

�
3

4k
;

3

4k
�

1

2k2

�
is attainable for every k � 1.

Proof The case k D 1 is already covered by Lemma 6.1. For any k � 2, we can
embed a .k�1/–dimensional torus in C.kI k; k/. Now consider the configuration space
C.3kI 2k; 2k/. We can divide the 2k � 2k grid into four k � k grids. Inside each, we
use k squares to embed a .k�1/–torus as in the proof of Lemma 6.2. This describes
a .3k�3/–torus, and the three k � k squares can orbit each other in the 2k � 2k grid,
giving one more dimension. So putting it all together, we have a .3k�2/–torus. This
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Figure 20: A map T 4 ! C.6I 4; 4/. The three pairs of squares orbit each
other in three 2� 2 squares, and these three 2� 2 squares orbit each other in
the 4� 4 square, as in Figure 16. The image of this map gives a nontrivial
cycle in H4ŒC.6I 4; 4/�, realizing the point .x;y/D

�
3
8
; 1

4

�
.

realizes the point

.x;y/D

�
3k

4k2
;
3k � 2

4k2

�
D

�
3

4k
;

3

4k
�

1

2k2

�
:

The case k D 2 is illustrated in Figure 20, and the case k D 3 in Figure 21.

Lemma 6.4 The point .x; 0/ is attainable for every rational x with 0� x � 1.

Proof Indeed, suppose x is a rational point in Œ0; 1�, and write x D a=b, where a is
a nonnegative integer, b is a positive integer, and a � b. Set nD ab and p D q D b.
By assumption, we have a � b, so n � pq and the configuration space C.nIp; q/ is
nonempty, so H0ŒC.nIp; q/�¤ 0.

Finally, we show that we can rationally interpolate between all the points we have
described. Let S be the set of points

S D

��
3

4k
;

3

4k
�

1

2k2

� ˇ̌̌
k � 1

�
:

Figure 21: A map T 7! C.9I 6; 6/, realizing the point .x;y/D
�

1
4
; 7

36

�
.
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Let I be the closed interval

I D f.x;y/ j 0� x � 1 and y � 0g:

Theorem 1.3 (large-scale homology nonvanishing theorem) If .x;y/ is any rational
point in the convex hull of S [ I , then there exist n, p, q, and j such that x D n=pq,
y D j=pq, and Hj ŒC.nIp; q/�¤ 0.

Proof By Cartheodory’s theorem, if .r1; r2/ is in the convex hull of S [ I , then
.r1; r2/ is in the convex hull of three points of S[I . Write .r1; r2/ as a rational convex
combination of these three points, ie

.r1; r2/D �1.u1; v1/C�2.u2; v2/C�3.u3; v3/

with

(1) .u1; v1/; .u2; v2/; .u3; v3/ 2 S [ I ,

(2) 0� �1; �2; �3 � 1 with �1C�2C�3 D 1, and

(3) �1; �2; �3 all rational.

By the previous lemmas, .ui ; vi/ is realizable as a nontrivial homology class for hard
squares in a square for i D 1; 2; 3. Let ni , pi , and ji be such that ui D ni=p

2
i and

vi D ji=p
2
i for i D 1; 2; 3. Let �i D ai=bi for i D 1; 2; 3. Set

P D p1p2p3; B D b1b2b3; RD PB;

then let
N D r1R2 and J D r2R2:

If we can find a nontrivial class in

HJ ŒC.N IR;R/�;

we are done.

Partition the R�R square into B2 smaller squares, each of dimension P �P . In a �1

fraction of these smaller squares (ie in �1B2D a1b1b2
2
b2

3
of them), we realize .u1; v1/

as follows. Further partition each P � P square into p2
2
p2

3
squares, of dimension

p1 �p1. In each of these squares, we can place n1 squares and can then describe a
map from a torus giving a nontrivial class in Hj1

ŒC.n1Ip1;p1/�. So in total, we place

.a1b1b2
2b2

3/.p
2
2p2

3/n1 D .�1B2/

�
P2

p2
1

�
n1 D �1

�
n1

p2
1

�
.P2B2/D �1u1R2

squares, and get a map from the torus of dimension

.a1b1b2
2b2

3/.p
2
2p2

3/j1 D .�1B2/

�
P2

p2
1

�
j1 D �1

�
j1

p2
1

�
.P2B2/D �1v1R2:
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Similarly, in a �2 fraction of these P �P squares we can realize .u2; v2/ by dividing
up into p2

1
p2

3
smaller squares of dimension p2�p2, and in a �3 fraction of the P �P

squares we realize .u3; v3/.

Altogether, we have used

�1u1R2
C�2u2R2

C�3u3R2
D r1R2

DN

squares, and defined an embedded torus of dimension

�1v1R2
C�2v2R2

C�3v3R2
D r2R2

D J:

This describes a cycle in
HJ ŒC.N IP;P /�;

as desired. The cycle is nontrivial as before — we can compose with a map to T j such
that the composed map T j ! T j has degree one.

7 Betti number computations for small n; p; q

We compute the Betti numbers ǰ ŒC.nIp; q/� for n � 6 and p � q � n. These are
provided in Table 1. Another view of the Betti numbers for nD 6 and j D 2 with p

and q varying is illustrated in Figure 22. Finally, in Table 2 we record information
about the size of the complex X.nIp; q/ in the form of its f –vector .f0; f1; f2; : : : /,
where fi is the number of i–dimensional cells in X.nIp; q/. All of our computations
are using coefficients in the prime field Z=2Z.

For our computations we employ three different software packages, and we dedicate
a small section to each one. The first is a Python/Sage Jupyter notebook which
uses the discrete Morse vector field of Section 4. The second is a branch of the
pyCHomP package, available at [9] specifically for computing the Betti numbers for
these configuration spaces. The third is the DIPHA package with a custom script to
build the configuration cell complex. Finally, note that in the case when n D q the
configuration space C.nIp; q/ is homotopy equivalent to the configuration space of
disks in a strip addressed in [2]; in this case, one can use the Salvetti complex to
compute the Betti numbers as done in [2].

7.1 Discrete Morse theory Sage notebook

Using the discrete gradient vector field from Section 4, we compute the collapsed
Morse chain complex for X.nIp; q/ as follows. The idea is first to find the critical
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n p q ˇ0 ˇ1 ˇ2 ˇ3 ˇ4 ˇ5

2 2 2 1 1 0 0 0 0

3 2 2 2 2 0 0 0 0

3 2 3 1 7 0 0 0 0

3 3 3 1 3 2 0 0 0

4 2 2 24 0 0 0 0 0

4 2 3 1 49 0 0 0 0

4 2 4 1 31 6 0 0 0

4 3 3 1 12 11 0 0 0

4 3 4 1 6 29 0 0 0

4 4 4 1 6 11 6 0 0

5 2 3 2 122 0 0 0 0

5 2 4 1 161 40 0 0 0

5 2 5 1 111 110 0 0 0

5 3 3 1 68 67 0 0 0

5 3 4 1 10 249 0 0 0

5 3 5 1 10 169 40 0 0

5 4 4 1 10 71 62 0 0

5 4 5 1 10 35 146 0 0

5 5 5 1 10 35 50 24 0

6 2 3 720 0 0 0 0 0

6 2 4 1 2241 80 0 0 0

6 2 5 1 351 1790 0 0 0

6 2 6 1 351 1160 90 0 0

6 3 3 1 458 457 0 0 0

6 3 4 1 15 2174 0 0 0

6 3 5 1 15 714 1429 0 0

6 3 6 1 15 714 780 80 0

6 4 4 1 15 441 457 30 0

6 4 5 1 15 85 1541 30 0

6 4 6 1 15 85 1066 275 0

6 5 5 1 15 85 465 394 0

6 5 6 1 15 85 225 875 0

6 6 6 1 15 85 225 274 120

Table 1: The Betti numbers of C.nIp; q/ for 2 � n � 6. The homological
liquid regime is indicated in bold.

cells and then to compute their boundaries in the Morse complex. However, it turns
out that most of this process depends very little on p and q. Thus, in order to compute
for various p and q without duplicating effort, we first compute the Morse complex for
X.nI n; n/. The Morse complex of each X.nIp; q/ for 1�p and q�n turns out to be a
subcomplex of the Morse complex for X.nI n; n/, obtained by selecting only the critical
cells for which the apex is in the p� q rectangle. This is because of the properties of
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p

q

nD 6; j D 2

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 80 1790 1160 1160 1160

0 0 457 2174 714 714 714 714

0 80 2174 441 85 85 85 85

0 1790 714 85 85 85 85 85

0 1160 714 85 85 85 85 85

0 1160 714 85 85 85 85 85

0 1160 714 85 85 85 85 85

Figure 22: Another view of the Betti numbers. Let nD 6 and j D 2, and let
p and q be the horizontal and vertical axes. Then the solid regime is in the
lower-left, the gas regime is in the upper-right, and the liquid regime (in bold)
is in between. If p � n, then the inclusion map C.nIp; q/ ,! C.nIpC 1; q/

induces an isomorphism on homology. Similarly, if q � n then the inclusion
map C.nIp; q/ ,! C.nIp; qC 1/ induces an isomorphism on homology.

our discrete gradient vector field. Namely, we know that if a cell’s apex fits into a p�q

rectangle, so does every boundary cell of that cell (the apex takes upper-right corners,
and the p� q rectangle grows from the lower-left). Together with the fact that every
two paired cells have the same apex, this implies that the X.nIp; q/ Morse complex
is a subcomplex of the X.nIp0; q0/ Morse complex whenever p � p0 and q � q0. The
construction of the discrete gradient vector field guarantees that no apex that skips a
row or column can be the apex of a critical cell — this is because every apex graph
with an isolated vertex has an even number of independent sets — so the X.nI n; n/

Morse complex is sufficiently large to contain the Morse complexes for all X.nIp; q/.

Thus, the code computes as follows. First, we list all ways of placing n squares
in an n � n grid. Then, we check which of these arrangements are the apex of a
critical cell. For each critical cell, we compute its boundary in the Morse complex by
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n p q f0 f1 f2 f3 f4 f5 f6 f7 f8

2 2 2 12 16 4
3 2 2 24 24
3 2 3 120 252 144 18
3 3 3 504 1512 1560 624 72
4 2 3 360 672 264
4 2 4 1680 4800 4464 1488 120
4 3 3 3024 10 080 11 520 5184 720
4 3 4 11 880 48 960 76 608 56 448 19 536 2688 96
4 4 4 43 680 209 664 402 336 393 120 206 232 56 640 7728 576 24
5 2 3 720 840
5 2 4 6720 18 000 14 280 3120
5 2 5 30 240 109 200 141 600 79 200 17 520 960
5 3 3 15 120 50 400 55 200 22 080 2160
5 3 4 95 040 42 8400 735 840 600 600 234 720 38 040 1680
5 3 5 360 360 1 887 600 3 979 800 4 322 880 2 561 160 800 400 114 960 5280
5 4 4 524 160 2 882 880 6 448 200 7 538 400 4 928 640 1 793 280 345 240 33 120 1440
6 3 3 60 480 181 440 161 280 40 320

Table 2: The f –vectors for X.nIp; q/ for small n, p, and q.

applying discrete gradient flow to its original boundary in X.nI n; n/. Doing this for
every critical cell gives all boundary coefficients for the Morse complex of X.nI n; n/,
computed as integers with signs. Then we restrict to smaller p�q rectangles, producing
subcomplexes of the Morse complex. For each p and q, we compute the Betti numbers
from the ranks of the boundary matrices and the dimensions of the chain groups;
because the matrices have integer entries, to specify the coefficient field for homology,
we only need to specify the field for the rank computation, which can be done over Q

or modulo any choice of prime. The Sage notebook is available online.1

We found that the code runs quickly for n� 5 and agrees with our other computation
methods; for n� 6 it becomes slow and would require more speed optimization.

7.2 PyCHomP

We briefly review the computations involved in pyCHomP, which may be used to
compute the homology of X.nIp; q/ with Z=2Z coefficients.

Let .P;�/ be the total order with P Df0; 1g and 0� 1. As X.nIp; q/ is a subcomplex
of G.nIp; q/, there is an order-preserving map � from the face poset .G.nIp; q/;�/

1https://gist.github.com/ubauer/87e7ee1462966127e9837c4747829a4a
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to .P;�/ given by

�.�/D

�
0 if � 2X.nIp; q/;

1 if � 62X.nIp; q/.

In order to construct the map �, we use Lemma 3.1 to determine whether a cell belongs
to the cubical complex X.nIp; q/. The complex G.nIp; q/ together with the map �
defines a P–graded cell complex; see [8]. PyCHomP uses iterated algebraic–discrete
Morse theory to reduce G.nIp; q/ to a (chain-homotopy equivalent) P–graded cell
complex .A.nIp; q/; �/ characterized by the condition that @Aj��1.p/ D 0 for p 2 P .
This condition implies that the j –dimensional Betti number of X.nIp; q/ is precisely
the number of j –dimensional cells in ��1.0/; see [8, Example 4.30] for more detail.

Theorems 5.1–5.3 suggest that speedups can be obtained for any code which computes
homology starting from the complex X.nIp; q/ by not considering cells above a certain
dimension. The branch of pyCHomP available at [9] incorporates these speedups;
pyCHomP is able to compute the Betti numbers for all the examples in Table 1. A
Jupyter notebook which sets up the computation of Betti numbers for X.nIp; q/ is
available online.2

7.3 DIPHA

Finally, we describe the homology computation of X.nIp; q/ using DIPHA, a software
package for computing persistent homology in a distributed setting [4; 5]. DIPHA
supports the computation of persistent homology for lower star filtrations of cubical
grids such as G.nIp; q/. The data determining a lower star filtration is a real-valued
function f on the vertices of G.nIp; q/, ie the integer points in .Œ1;p�� Œ1; q�/n. The
filtration then consists of the full subcomplexes of the ambient cube complex G.nIp; q/

induced by sublevel sets f �1.�1; t � of the function f .

Our computations make use of the fact that X.nIp; q/ is a full subcomplex of the
ambient cube complex G.nIp; q/ (see Corollary 3.2). In other words, the complex
X.nIp; q/ is determined by the set of all configurations in C.nIp; q/ with integer
coordinates. Thus, it suffices to enumerate all permutations of all n–element subsets
of the p� q possible integer coordinates for the cubes. The input to DIPHA consists
of the characteristic function of this set as a subset of all vertices of G.nIp; q/. A
Mathematica file for generating the input to DIPHA is available online.3

2https://github.com/kellyspendlove/pyCHomP/blob/config/doc/config/ConfigSpacePaper.ipynb
3https://gist.github.com/ubauer/01934ad494eeb6e9ef66ca14e0301fe9

Algebraic & Geometric Topology, Volume 23 (2023)

https://github.com/kellyspendlove/pyCHomP/blob/config/doc/config/ConfigSpacePaper.ipynb
https://gist.github.com/ubauer/01934ad494eeb6e9ef66ca14e0301fe9


2626 H Alpert, U Bauer, M Kahle, R MacPherson and K Spendlove

References
[1] H Alpert, Restricting cohomology classes to disk and segment configuration spaces,

Topology Appl. 230 (2017) 51–76 MR Zbl
[2] H Alpert, M Kahle, R MacPherson, Configuration spaces of disks in an infinite strip,

J. Appl. Comput. Topol. 5 (2021) 357–390 MR Zbl
[3] Y Baryshnikov, P Bubenik, M Kahle, Min-type Morse theory for configuration spaces

of hard spheres, Int. Math. Res. Not. 2014 (2014) 2577–2592 MR Zbl
[4] U Bauer, M Kerber, J Reininghaus, DIPHA, a distributed persistent homology

algorithm (2014) Available at https://github.com/DIPHA/dipha
[5] U Bauer, M Kerber, J Reininghaus, Distributed computation of persistent homology,

from “Proceedings of the 16th workshop on algorithm engineering and experiments
(ALENEX ’14)”, SIAM, Philadelphia, PA (2014) 31–38 Zbl

[6] G Carlsson, J Gorham, M Kahle, J Mason, Computational topology for configuration
spaces of hard disks, Phys. Rev. E 85 (2012) art. id. 011303

[7] R Forman, Morse theory for cell complexes, Adv. Math. 134 (1998) 90–145 MR Zbl
[8] S Harker, K Mischaikow, K Spendlove, A computational framework for connection

matrix theory, J. Appl. Comput. Topol. 5 (2021) 459–529 MR Zbl
[9] S Harker, K Spendlove, pyCHomP (computational homology project with python bind-

ings) (2020) https://github.com/kellyspendlove/pyCHomP/tree/config
[10] W W Johnson, W E Story, Notes on the “15” puzzle, Amer. J. Math. 2 (1879) 397–404

MR Zbl
[11] L Plachta, Configuration spaces of squares in a rectangle, Algebr. Geom. Topol. 21

(2021) 1445–1478 MR Zbl
[12] D Sonneveld, J Slocum, The 15 puzzle: how it drove the world crazy, Solcum Puzzle

Foundation, Beverly Hills, CA (2006)

Department of Mathematics and Statistics, Auburn University
Auburn, AL, United States
Department of Mathematics, Technical University of Munich
Munich, Germany
Department of Mathematics, Ohio State University
Columbus, OH, United States
School of Mathematics, Institute for Advanced Study
Princeton, NJ, United States
Mathematical Institute, University of Oxford
Oxford, United Kingdom

hcalpert@auburn.edu, mail@ulrich-bauer.org, mkahle@math.osu.edu,
rdm@ias.edu, kelly.spendlove@gmail.com

Received: 20 November 2020 Revised: 4 October 2021

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.1016/j.topol.2017.08.004
http://msp.org/idx/mr/3702754
http://msp.org/idx/zbl/1377.55013
http://dx.doi.org/10.1007/s41468-021-00070-6
http://msp.org/idx/mr/4298668
http://msp.org/idx/zbl/1480.55015
http://dx.doi.org/10.1093/imrn/rnt012
http://dx.doi.org/10.1093/imrn/rnt012
http://msp.org/idx/mr/3207377
http://msp.org/idx/zbl/1315.55011
https://github.com/DIPHA/dipha
http://dx.doi.org/10.1137/1.9781611973198.4
http://msp.org/idx/zbl/1429.68328
http://dx.doi.org/10.1103/PhysRevE.85.011303
http://dx.doi.org/10.1103/PhysRevE.85.011303
http://dx.doi.org/10.1006/aima.1997.1650
http://msp.org/idx/mr/1612391
http://msp.org/idx/zbl/0896.57023
http://dx.doi.org/10.1007/s41468-021-00073-3
http://dx.doi.org/10.1007/s41468-021-00073-3
http://msp.org/idx/mr/4298671
http://msp.org/idx/zbl/1487.37018
https://github.com/kellyspendlove/pyCHomP/tree/config
http://dx.doi.org/10.2307/2369492
http://msp.org/idx/mr/1505239
http://msp.org/idx/zbl/11.0818.04
http://dx.doi.org/10.2140/agt.2021.21.1445
http://msp.org/idx/mr/4299671
http://msp.org/idx/zbl/1483.57031
mailto:hcalpert@auburn.edu
mailto:mail@ulrich-bauer.org
mailto:mkahle@math.osu.edu
mailto:rdm@ias.edu
mailto:kelly.spendlove@gmail.com
http://msp.org
http://msp.org


msp
Algebraic & Geometric Topology 23:6 (2023) 2627–2672

DOI: 10.2140/agt.2023.23.2627
Published: 7 September 2023

Nonorientable link cobordisms and
torsion order in Floer homologies

SHERRY GONG

MARCO MARENGON

We use unoriented versions of instanton and knot Floer homology to prove inequalities
involving the Euler characteristic and the number of local maxima appearing in
nonorientable cobordisms, which mirror results of a recent paper by Juhász, Miller
and Zemke concerning orientable cobordisms. Most of the subtlety in our argument
lies in the fact that maps for nonorientable cobordisms require more complicated
decorations than their orientable counterparts. We introduce unoriented versions of
the band unknotting number and the refined cobordism distance and apply our results
to give bounds on these based on the torsion orders of the Floer homologies. Finally,
we show that the difference between the unoriented refined cobordism distance of a
knot K from the unknot and the nonorientable slice genus of K can be arbitrarily large.

57K18; 57K16

1 Introduction

A classical problem in low-dimensional topology is the study of embedded orientable
surfaces in 4–manifolds. The special case of surfaces with boundary has been a
particularly popular topic for a very long time, and it includes for example questions
pertaining to the slice genus of a knot or the complexity of a knot or link cobordism.

On the other hand, the study of nonorientable surfaces and knot cobordisms in I �S3

has received increasing attention in the last decade — see Batson [3], Ozsváth, Stipsicz
and Szabó [25], Golla and Marengon [8] and Fan [7] — and there are now several bounds
to the nonorientable slice genus of a knot. However, if a knot bounds a nonorientable
surface of a given “genus”, it is not clear how complicated the embedding must be. We
tackle this question by proving a nonorientable analogue of a recent result of Juhász,
Miller and Zemke. In a recent paper [11], they proved an inequality involving the

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution
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number of local maxima and the genus appearing in an oriented knot cobordism using
a version of knot Floer homology. Here we prove similar inequalities for nonorientable
knot cobordisms using the torsion orders of unoriented versions of knot Floer homology
and instanton Floer homology.

As for knot Floer homology, we use Ozsváth, Stipsicz and Szabó’s unoriented knot
Floer homology HFK0 [26], which is a module over F ŒU �. For a knot K � S3 we
define its unoriented knot Floer torsion order as

OrdU .K/Dminfn� 0 j U n
�TorsD 0g;

where Tors� HFK0.K/ denotes the F ŒU �–torsion subgroup.

In the instanton setting, we use Kronheimer and Mrowka’s instanton Floer homology
with local coefficients, denoted by I ].K/, which is a module over a Noetherian domain
S which has a special element P [17]. We will restrict our attention to certain domains S,
for which I ].K/ is functorial for nonorientable knot cobordisms with singular bundles
represented by surfaces ! with @! on the cobordism. In this case, it can be shown that,
for a knot K and for the torsion part Tors of I ].K/, there is a positive integer n such
that Pn �TorsD 0. Thus, we define

OrdI .K/Dminfn� 0 j Pn
�TorsD 0g:

For a nonorientable surface†with n boundary components, recall that its nonorientable
genus is

 .†/D 2��.†/� n:

For example, RP2 (with an arbitrary number of punctures) has nonorientable genus 1.
Note that, for nonorientable knot cobordisms,  .†/D��.†/. With this notation in
mind, we state our main theorem:

Theorem 1.1 Let K1 and K2 be knots in S3. Suppose that there is a nonorientable
knot cobordism † in I �S3 from K1 to K2 with M local maxima. Then

(1) OrdI .K1/�maxfOrdI .K2/;M gC  .†/

and

(2) OrdU .K1/�maxfOrdU .K2/;M gC  .†/:

From a formal viewpoint, Theorem 1.1 is analogous to [11, Theorem 1.1]. The proof of
Theorem 1.1 uses the functorial properties of HFK0 and I ] (see [7; 17]), in a similar way
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as [11, Theorem 1.1] relies on knot Floer homology cobordism maps; see Juhász [10]
and Zemke [35]. Despite being inspired by [11, Theorem 1.1], the proof of Theorem 1.1
must necessarily deviate from it. Recall that, in order to define a cobordism map in
knot Floer homology, one needs to choose a properly embedded 1–manifold on the
surface, often called the set of decorations. In [11], the chosen decorations were a pair
of parallel arcs, which make the computations of the cobordism maps more tractable.
This choice does not work for nonorientable cobordisms in HFK0, so we are forced
to choose different decorations, which make the cobordism map more complicated.
To circumvent this problem, we relate the resulting nonorientable cobordism to an
orientable one, then use a stabilisation lemma proved by Ian Zemke (see Lemma 5.4).
In the case of I ], for a cobordism † to define a map, one needs a surface ! with
boundary @! �†. The natural choice for orientable cobordisms would be ! D∅, in
which case [11] applies verbatim to the case of I ]. The map can be defined for the
nonorientable surfaces we are interested in, but it will usually vanish. To overcome
this problem, we choose a particular ! that allows us to control the induced map.

Remark 1.2 While Theorem 1.1 is stated for nonorientable cobordisms, both inequal-
ities also hold for orientable cobordisms. The proof follows verbatim from [11], by
replacing knot Floer homology with the desired Floer theory.

We prove several applications of Theorem 1.1, which mirror those of [11, Theorem 1.1].

1.1 Nonorientable ribbon cobordism

A knot cobordism in I �S3 is called ribbon if it has no local maxima. For example,
a ribbon concordance (ie a cobordism of genus 0) from the unknot to a knot K is
equivalent to a ribbon disc for K. Theorem 1.1 has a straightforward application to
nonorientable ribbon cobordisms:

Corollary 1.3 Let K1 and K2 be knots in S3. Suppose that there is a nonorientable
ribbon cobordism † in I �S3 from K1 to K2. Then

OrdI .K1/� OrdI .K2/C  .†/ and OrdU .K1/� OrdU .K2/C  .†/:

1.2 The nonorientable refined cobordism distance

The standard cobordism distance between two knots K1 and K2 is do.K1;K2/ D

2g4.K1 # K2/, where g4 denotes the standard slice genus. This is not a distance on the
set of knots, because concordant knots have distance 0, but it descends to a well-defined
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distance on the concordance group; see Baader [2]. In [11], Juhász, Miller and Zemke
define a refined cobordism distance on the set of knots, and give lower bounds to it in
terms of the torsion order in knot Floer homology.

There are analogous nonorientable notions too. For an (orientable or nonorientable)
cobordism † in I �S3 from K1 to K2 with m local minima and M local maxima, let

j†j Dmaxfm;M g��.†/:

Definition 1.4 Given knots K1;K2;� S3, we define the standard nonorientable
cobordism distance du and the refined nonorientable cobordism distance dr

u between
them as

du.K1;K2/Dminf��.†/g and dr
u .K1;K2/Dminfj†jg;

where in both cases † varies over all nonorientable connected cobordisms and all
genus-0 orientable cobordisms (ie concordances).

Remark 1.5 The orientable counterparts — the standard orientable cobordism dis-
tance do from [2] and the refined orientable cobordism distance dr

o from [11] — are
defined in the same way as in Definition 1.4, but the surface † now varies over all
orientable connected cobordisms. One can also define analogous notions da and dr

a ,
which we can call all-surface cobordism distances, where † varies over all (orientable
or nonorientable) connected cobordisms.

It is immediate to see that do, du and da are distances on the concordance group and
dr

o , dr
u and dr

a are distances on the set of knots.

Theorem 1.1 implies the following lower bounds:

Corollary 1.6 If K1 and K2 are knots in S3, then

jOrdI .K1/�OrdI .K2/j � dr
u .K1;K2/

and
jOrdU .K1/�OrdU .K2/j � dr

u .K1;K2/:

In view of Remark 1.2, one can in fact replace dr
u with dr

a . However, for orientable
cobordisms, one can also use the standard versions of instanton and knot Floer homology,
which should give better bounds.

We use Corollary 1.6 to show that the difference between dr
u .K1;K2/ and du.K1;K2/

can be arbitrarily large.
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Corollary 1.7 For all  � 1 and m� 1, there exists a knot K;m with du.K;m;U1/D

4.K;m/D  and such that dr
u .K;m;U1/�  Cm.

Thus , each nonorientable surface †� B4 with @†DK;m and  .†/D  has at least
m local minima (with respect to the radial function).

The knots K;m that we consider in the proof of Corollary 1.7 are a subfamily of torus
knots for which OrdU can be computed explicitly.

1.3 The unoriented band-unlinking number

For a knot K in S3, the oriented band-unknotting number ub.K/ is defined as the
minimum number of oriented band surgeries that turn K into the unknot. This was called
the SH.2/–unknotting number by Hoste, Nakanishi and Taniyama [9]. Its unoriented
counterpart uu

b
.K/, called the H.2/–unknotting number in [9], seems to predate ub.K/

in the literature, since Lickorish proved that there exist knots with uu
b
.K/ > 1 in [22].

Note that, in the definition of uu
b
.K/, we allow both orientable and nonorientable band

surgeries.

Juhász, Miller and Zemke [11] introduced a variation, called the oriented band-unlinking
number ulb.K/, which is defined as the minimum number of oriented band surgeries
that turn K into an unlink. Of course, ulb.K/�ub.K/, and they proved that Ordv.K/�
ulb.K/ for all knots K in S3. Using Theorem 1.1, we can derive a similar result for
the corresponding unoriented notion.

Definition 1.8 The unoriented band-unlinking number ulub.K/ of a knot K in S3 is
defined as the minimum number of (orientable or nonorientable) band surgeries that
turn K into an unlink.

Clearly, we have
ulub.K/� uu

b.K/� �

ulb.K/� ub.K/

Corollary 1.9 For a knot K in S3,

OrdI .K/� ulub.K/ and OrdU .K/� ulub.K/:

Remark 1.10 Wong (personal communication, 2020) has informed us of a proof,
using methods analogous to Alishahi and Eftekhary [1], that, if there is a cobordism
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†� I �S3 from K1 and K2 (no matter whether orientable or nonorientable) with m

minima, b saddles and M maxima, then

jOrdU .K1/�OrdU .K2/j �mC bCM:

Since the unlink has vanishing torsion order, this would recover the inequality of
Corollary 1.9 involving OrdU.

Ours is one of several recent papers related to ribbon cobordisms. Zemke [33] showed
that knot Floer homology obstructs ribbon concordance, a result that prompted a
flurry of interesting results in this area, including Levine and Zemke [21], Miller
and Zemke [23], Daemi, Lidman, Vela-Vick and Wong [5], Kang [13] and Caprau,
González, Lee, Lowrance, Sazdanović and Zhang [4]. Other papers in the area are
Sarkar’s paper on the ribbon distance [31] and the already-cited paper of Juhász, Miller
and Zemke [11], which is the closest paper to ours.

Organisation

The first two sections of the paper are on instanton Floer homology: we review the
necessary background in Section 2, and we prove the main instanton technical result
(Proposition 3.3) in Section 3. In the following two sections we do the same for knot
Floer homology: after a review in Section 4, we prove the main knot Floer technical
result (Proposition 5.5) in Section 5. In Section 6 we prove Theorem 1.1 and the
applications discussed in the introduction (Corollaries 1.3, 1.6, and 1.9). Finally, in
Section 7 we compute the torsion order OrdU for a subfamily of torus knots and prove
Corollary 1.7.
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2 Background on instanton homology with local systems

2.1 Instanton homology groups

Kronheimer and Mrowka introduced singular instanton homology with local systems
in [15], and introduced several more involved variants of it in [17]. We will be working
with a variant from the latter. Let us now review the relevant definitions and properties,
following [17; 18].

Let Y be a closed, oriented 3–manifold, let L be a link in Y, let y0 be a basepoint
in Y, and let By0

be a ball around y0 that does not intersect L. Let �0 � Y be a
standard �–web in By0

. Let ! be a 1–dimensional submanifold of Y which consists of
components that are circles disjoint from L and By0

and arcs which have endpoints
on L and are otherwise disjoint from L.

Then there is an associated space B].Y;L/! of SO.3/–connections on Y which are
singular at L[�0, lift to SU.2/ away from the L[![�0, and are such that the SU.2/–
holonomy around ! is �1 and the SU.2/-holonomies around components of L and
arcs of �0 are conjugate to I 2 SU.2/, when we regard SU.2/ as the unit quaternions
and 1, I, J and K are the fundamental quaternion units.

The local system � is defined using three maps hi W B].Y;L/!!R=Z for i D 1; 2; 3,
given by taking holonomy along the three arcs of the �–web, which gives three maps
to SU.2/, and then composing with a character SU.2/! U.1/ D R=Z to get maps
to R=Z. Let R D F2ŒZ

3� be the group ring, which we can also write as the ring of
Laurent polynomials in three variables,

RD F2ŒT
˙1
1 ;T˙1

2 ;T˙1
3 �:

Then � is defined as the pullback via .h1; h2; h3/ of a particular local system over
.R=Z/3 with fibre the free rank 1 module over R. For a commutative ring S and a
homomorphism � WR! S, let �� denote the induced local system of S–modules.

The instanton homology group I ].Y;LI�� /! is defined as the Floer homology of
B].Y;L/! with a perturbed Chern Simons functional and with the local system �� .
(In [17], there is an additional map h0 W B].Y;L/!!R=Z coming from taking holo-
nomy along the link itself, and R is defined to be F2ŒZ

4�, but, for our purposes, we
will only be using the local system coming from h1, h2 and h3.)
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2.2 Maps induced by cobordisms with dots

We now review the functoriality of I ].Y;LI�� /! . Keeping previous notation, let
� WR! S be a map of commutative rings.

For i D 1; 2, let Yi denote a closed, oriented 3–manifolds, with a link Li and a
1–manifold !i embedded in Yi with boundary on Li and otherwise not intersecting Li .

For a cobordism of pairs .X;S/ from .Y1;L1/ to .Y2;L2/, and ! a 2–manifold with
corners whose boundary pieces are !1 and !2 in Y1 and Y2, respectively, together with
arcs and circles in S, there is an induced map

I ].X;S I�� /! W I
].Y1;L1I�� /!1

! I ].Y2;L2I�� /!2

of S–modules.

This functoriality can be extended to morphisms given by cobordisms of pairs with dots
on the surfaces. That is, for a cobordism of pairs .X;S/, define a dot on S to be an
interior point p 2 S along with an orientation of TpS. Then, for dots p1;p2; : : : ;pd

on S, there is an induced map of S–modules

I ].X;S;p1;p2; : : : ;pd I�� /! W I
].Y1;L1I�� /!1

! I ].Y2;L2I�� /!2
:

In our computations, we will always have Y1;Y2D S3 and X D S3� Œ0; 1�. Moreover,
we will be using the same �� . Thus, we will denote our cobordisms by

I ].S;p1;p2; : : : ;pd /! D I ].X;S;p1;p2; : : : ;pd I�� /! :

2.3 Properties of the induced maps

Before going over some of the properties of the maps of S–modules induced by
cobordisms, let us recall two particular elements of the rings R and S. Writing
RD F2ŒT

˙1
1
;T˙1

2
;T˙1

3
�, the elements P and Q are given by

P D T1T2T3CT1T �1
2 T �1

3 CT �1
1 T2T �1

3 CT �1
1 T �1

2 T3

and
QD T 2

1 CT �2
1 CT 2

2 CT �2
2 CT 2

3 CT �2
3 :

For � WR!S, the elements �.P /; �.Q/2S will also be denoted P and Q, respectively.

(a) [18, Lemma 3.2] Let S be an oriented cobordism. Suppose S 0 is obtained from S

by adding an internal 1–handle connecting points p; q 2 S, where p and q both have
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the same orientation as S. Then

I ].S 0/D I ].S;p/C I ].S; q/CPI ].S/:

Here and throughout we assume that ! D∅ when it is not denoted.

(b) [17, Lemma 4.2] Let .S; !/ be a cobordism between .L1; !1/ and .L2; !2/. Let
RC and R� be the two standard embedded copies of RP2 in S4 with self-intersection
C2 and �2, respectively. Let � be a disk whose boundary is the generator of H1.RP2/.
Then

I ].S # RC/!C� D I ].S/! and I ].S # R�/!C� D PI ].S/! :

(c) Künneth formula for split links [14, Section 5.5; 16, Section 2.2; 17, Section 5.3]
Let L be a split link, so that LDL0qL1, and L0 and L1 are contained in disjoint
balls in S3. Then

I ].L/' I ].L0/˝ I ].L1/;

and this is natural with respect to cobordisms with dots.

This is shown in [14, Section 5.5] using a version of excision without local coefficients,
Hopf link instead of a �–web, and without dots. There is an argument in [16, Section 2.2]
for why it does not matter whether one uses a �–web or a Hopf link, and it is explained
in [17, Section 5.3] why it still works with local coefficients. The proof of functoriality
in [14] carries over with no problems to the situation of cobordisms with dots.

(d) [17, Section 5.2] Let Ul be the l–component unlink. Then I ].U0/ is a free
module of rank 1 over S, which we write as I ].U0/ D Su0, and I ].U1/ is the free
module over S of rank 2, which we write as I ].U1/D SuC˚Su�. For D the standard
disk viewed as a cobordism from the empty link to the unknot, and q a point with
orientation compatible with the choice of orientation of the knot,

I ].D/.u0/D uC and I ].D; q/.u0/D u�:

Moreover, if Do is the standard disk viewed as a cobordism from the unknot to the
empty link, and q a point with orientation compatible with the choice of orientation of
the knot,

I ].Do/.u�/D 1; I ].Do/.uC/D 0; I ].Do; q/.uC/D 1; I ].Do; q/.u�/D P:

For Ul , by the previous point, we have

I ].Ul/D .SuC˚Su�/
˝l :
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(e) [17, Section 5.4] Let m and � denote the standard “pair of pants” cobordisms
between the two-component unlink U2 and the unknot U1, the merge

m W U2! U1

and the split
� W U1! U2:

The map on I ] induced by m (with no dots) is given by

(3) uC˝uC 7! uC; u˙˝u� 7! u�; u�˝u� 7! Pu�CQuC;

and the map induced by � (with no dots) is given by

(4) uC 7! uC˝u�Cu�˝uCCPuC˝uC; u� 7! u�˝u�CQuC˝uC:

3 A technical result for instantons

In this section we prove the main technical result for instanton Floer homology I ]

which we will use to prove Theorem 1.1. To do so, we will use a classical result in
Morse theory, Lemma 3.2 below. We state it in the most convenient form for us, and
give a quick sketch of its proof.

Definition 3.1 Given a knot K in S3 and a band B for K, ie an embedded rectangle B

in S3 which intersects K in two opposite sides, we say that B is orientable with respect
to K if the knot K and the result of band surgery on K along B can be given coherent
orientations (equivalently, if surgering K along B gives a two-component link).

Lemma 3.2 Let †� I �S3 be a nonorientable cobordism between knots K and K0

with m local minima , b saddles and M local maxima. Then , after an isotopy rel
boundary, we can break it into a sequence of cobordisms as follows:

(a) m births (from K1 DK to L1);

(b) m band surgeries that join the various components of the link (from L1 to K0
1
);

(c) b� .mCM C 1/ band surgeries orientable with respect to K0
1

(this cobordism
ends with a knot or a two-component link L0);

(d) 1 band surgery nonorientable with respect to K0
1

(this cobordism goes from L0

to a knot K0
2
);

(e) M band surgeries that split the knot K0
2

into M C 1 components;

(f) M deaths.
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Moreover , in this decomposition , the attaching arcs of the b bands on K0
1

can be as-
sumed to be all disjoint , and we can assume that both attaching arcs of the nonorientable
band are already contained in K1.

Sketch of the proof We can arrange all births to appear first and all deaths to appear
last (steps (a) and (f)). We can also find bands that connect the various components
(steps (b) and (e)). Thus, we can restrict to the part of the cobordism between K0

1

and K0
2
, which consists of saddles (ie band surgeries). Note that both K0

1
and K0

2
are

knots.

If all bands were orientable with respect to K0
1
, then all † would be orientable, so there

is at least one band nonorientable with respect to K0
1
.

Arrange for all bands from K0
1

to K0
2

to appear at the same time.

If there is more than one band nonorientable with respect to K0
1
, pick one of them (call

it B) and slide it following the surgery of K0
1

along all the other bands. When B slides
over an orientable band, it stays nonorientable. When B slides over a nonorientable
band, it becomes orientable. Note that eventually it must slide over a nonorientable
band because K0

2
is connected, so K0

2
nB consists of just two arcs.

Repeat until you have only one nonorientable band left.

If B is the unique nonorientable band, then you can slide its endpoints along L0 so that
they are disjoint from all the other (oriented) bands, so we can think of it as in K1.

The main technical result of this section, needed to prove Theorem 1.1, is the following
proposition:

Proposition 3.3 Let S be a cobordism from K to K0 with m local minima , b saddles ,
and M local maxima. Then there is a surface ! that meets S cleanly and only at
@! � S, whose boundary is a circle in S such that , for x! its mirror , we have

(5) PM I ].S ıS/![x! D Pb�m Id:

Towards this goal, let us start by doing some computations of maps induced by cobor-
disms with !.

First let us understand the dependence of I ].†/! on ! when ! is a surface with
boundary on † which intersects † cleanly and only at @! � S. Note that, for a
link L in S3, up to isomorphism, I ].S3;L/! depends only on the homology of Œ@!� 2
H0.LIZ=2/, because it counts flat connections and instantons on spaces determined
by the homology class.
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Figure 1: Cylinders with the magenta surfaces depicting !.

Similarly, I ].†/! depends only on the homology class Œ@!� 2H1.†;Z=2/. This is
because the map counts instantons on a moduli space built from †, Œ@!�2H 1.†;Z=2/

and Œ!; @!� 2H2.X; †;Z=2/, and H1.†/'H2.X; †/ for X D S3 �R.

From here, we can see that, for a cylinder † and ! given by either a small disk or a
small tube with boundary on †, as in Figure 1, I ].†/! induces the identity: here @!
is trivial in H1.†/, and Œ!; @!� is also trivial in H2.X; †;Z=2/.

When the cobordism in Figure 2, left, is composed with its inverse, the map in-
duced is the identity. Moreover, up to isomorphism, I ].U; !/ depends only on
Œ@!� 2H0.U IZ=2/, so the two ends of the cobordism have the same instanton Floer
homology. Thus, the cobordism in Figure 2, left, induces an isomorphism.

We will call the two generators of the instanton Floer homology of the unknot with an
arc ! on the right, which is depicted in Figure 2, centre, xC and x�, so that, in the u˙

and x˙ bases, the cobordism depicted in Figure 2, left, is the identity matrix.

The cobordism from the two-component unlink to itself induced by two standard
cylinders with ! as a tube between them, as depicted in Figure 2, right, induces the
identity map, because, in this situation, .!; @!/ is trivial in homology in .S3 � I; †/.

Figure 2
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Figure 3

The same is true for the map depicted in Figure 3 precomposed with its mirror. Thus,
the map induced by the cobordism depicted in Figure 3 is an isomorphism whose
inverse is its mirror image. Here, we are identifying the link with ! on the right end of
Figure 3 with the unlink with empty ! via the isomorphism induced by Figure 2, left,
and the link with ! on the left has isomorphic instanton Floer homology.

For the link on the left in Figure 3, its homology is then a free module of rank 4 over S.
Let fxCC;xC�;x�C;x��g be a basis of this homology, so that, if we choose the basis
fxC˝xC;xC˝x�;x�˝xC;x�˝x�g for the two-component unlink on the right,
the matrix the cobordism induces is the identity. (Recall that x˙ are the basis elements
of the instanton homology of the unknot with an arc, so the cobordism of Figure 2, left,
induces the identity matrix.)

A central step in our proof will be dealing with a cobordism that flips an unknot but
does not change !. To describe this, consider a link L with decoration ! which has
an unknot component U that is split from the rest of L; we may isotope U so that
it is a geometric circle. Suppose that ! has two endpoints on U, p and q, which we
may isotope to be the endpoints of a diameter of U. Then the flip cobordism is a
cobordism in I �S3 that is traced by the isotopy obtained by rotating U by � about the
diameter pq. So this is an isotopy that does not change ! and reverses the orientation
of one of the two components.

Claim 1 The map on the instanton homology of U2 with ! consisting of two arcs ,
each going between the two components , that results from flipping one of the unknots
(as described above) in a way that does not change !, is the identity map.
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Figure 4

Proof By composing with the isomorphisms induced by the cobordism depicted in
Figure 3, if ˆ is the matrix associated to the flip in the basis fxCC;xC�;x�C;x��g,
then

ˆD

2664
a 0 b 0

0 a 0 b

c 0 d 0

0 c 0 d

3775 ;
where ˆ1 D

�
a b
c d

�
is the flip on the unknot with an arc in the basis fxC;x�}, depicted

in Figure 4, right. This is because ˆ is the matrix for ˆ1˝ Id for Id the identity map,
in the basis fxC˝ xC;xC˝ x�;x�˝ xC;x�˝ x�g, and we are using the basis of
the instanton homology of Figure 4, left, corresponding to this basis.

Now let us compute some of the entries of ˆ1. Note that if we pre- or postcompose
ˆ1 with caps like those in Figure 5, we get back the cap itself. These caps induce the
maps

�
1
0

�
and Œ0 1�, so, from these compositions, we can see that aD d D 1 and c D 0.

Note that, if we did not have !, then we could do the same argument with a cap with
a dot, and, using the fact that doing a flip and then a cap with a dot is the same as
doing a negative dot, we would be able to get the remaining entry, b, and recover [17,
Proposition 5.8], in which the flip map does not induce the identity. However, because
we have ! here, this does not work: the flip changes which side of @! the dot is on.

Figure 5
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Figure 6

Going back to our computation, we now have that

ˆD

2664
1 0 b 0

0 1 0 b

0 0 1 0

0 0 0 1

3775 :
We would now like to show that b is 0. Consider the pair of pants cobordism with
! as two half-disks from the unlink with two arcs going between components to the
unknot, as depicted in Figure 6, left. Because we can precompose with isomorphisms
to make a regular merge with a null-homotopic disk on top, as in Figure 6, right,
we see that Figure 6, left, induces the same as the merge map, if we use the basis
fxCC;xC�;x�C;x��g. Here we are using that the reverse of the map in Figure 3 is
also the identity matrix with our choice of basis.

Thus, in this basis, it induces the map

mD

�
1 0 0 Q

0 1 1 P

�
:

Similarly, the reverse of this cobordism induces the same map as �, so it induces

�D

2664
P Q

1 0

1 0

0 1

3775 :
Thus, composing m ıˆ ı�, we get the map

m ıˆ ı�D

�
bCP 0

0 bCP

�
:
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A2

A3

A1

A4

B

Figure 7: The cobordism S is cylindrical on the dotted part.

However, if we compose these cobordisms, we get a Klein bottle, which is a connected
sum of RP2

C and RP2
�, with ! given by two disks, one on each RP2, such that the

boundary circle of each disk is the generator of that H1.RP2/. It is shown in [17] that
this Klein bottle with these ! induces the map P � Id, so b D 0, as desired.

Claim 2 Let S � S3 � Œ0; 2� be a cobordism from K1 to K2 such that in S3 � Œ0; 1�

it is the cylinder on K1 and in S3 � Œ1; 2� it consists of adding a single nonorientable
band. More precisely , we may consider a band B � S3 with vertices A1;A2;A3;A4 2

S3 with A1A2 and A3A4 on K1, as in Figure 7. In S3 � Œ1; 2�, S then looks like
.K1 n .A1A2[A3A4//� Œ1; 2� away from the band B � Œ1; 2�, and within the band it
goes from A1A2[A3A4 at time 1 to A2A3[A4A1 at time 2.

The cobordism is depicted in frames in Figure 8.

Then there is a surface ! with boundary in the interior of S such that ! meets S only
at the boundary , where they meet cleanly , and such that , for S the reverse of S with
corresponding x!,

I ].S/x! ı I ].S/! D P � Id W I ].K1/! I ].K1/:

Figure 8

Algebraic & Geometric Topology, Volume 23 (2023)



Nonorientable link cobordisms and torsion order in Floer homologies 2643

A2

A3

A1

A4

B

c

b a

Figure 9: The cobordism S is cylindrical on the dotted part.

Proof Observe that A1 and A3 split K1 into two parts, which we call a and b (these
are coloured magenta and blue, respectively, in Figure 9). Let c be the diagonal on the
band that goes from A1 to A3.

Consider a[c as a knot in S3 and let F0 be a Seifert surface of it. Then F0 is a surface
with corners, with boundary a[ c, and which meets b at the ends, A1 and A3. We
may isotope a, b and c so that F0 meets b cleanly at the ends and transversely in the
interior, as in Figure 10.

If we choose an orientation of F0 and b, then the intersection points may have positive
or negative sign. We can increase the number of positive or negative intersection points
without changing the isotopy type of the embedding of K1[ c into S3 by twisting b

around A1 or A3, as in Figure 11. Let us do this, adding either positive or negative
intersections as needed until there are the same number of positive as negative interior
intersection points between b and F0.

A1 A3

a

b

c

Figure 10: Here F0 is depicted as a disk though it could have higher genus.
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a
a

bb

c c

Figure 11

Now say that the intersection points are A1;p1;p2; : : :p2k ;A3, in order along b. Then,
if pi and piC1 are intersection points with opposite sign, we may remove a small disk
around each of pi and piC1 and replace it with a small tube around the part of b

that goes from pi to piC1, thus reducing the number of intersection points. We may
continue in this manner, removing adjacent opposite-sign intersection points until none
remain.

We now have a surface, which we call F1 with boundary a[ c, which intersects b only
at A1 and A3, where the intersection is clean.

We now consider a surface F2 � S3 � Œ0; 2� with boundary on S which is given by the
union of F1 � S3 � f1g with a disk sitting between c � 1 � S3 � Œ1; 2� and S, as in
Figure 12.

Then this F2 can have its corners smoothed out to a surface with boundary !.

Let us now show that, for this !, we have

I ].S/x! ı I ].S/! D P � Id W I ].K1/! I ].K1/:

Let † denote the composition of S with S, and let !† D ! [ x! be the decoration on
this cobordism. See Figure 13.

Let  denote the circle composed of the cocore of the band and its mirror, depicted
in blue in Figure 13. A regular neighbourhood of  in † is a tube, represented in

Figure 12
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Figure 13: This is S with ! composed with the reverses S with x!.

Figure 14. If we cut the surface along  , we get the twice-punctured cylinder as a
cobordism from K1 to itself.

Figure 14 shows @!† as well. The mod 2 homology class Œ@!†� on the surface † is
the same as Œ �. One way to see this is to perform surgery on @!† along the green arc
in Figure 14: this operation does not change the homology class and it yields a curve
which is easily checked to be isotopic to  in †.

Let †0 be the cobordism obtained from † by inserting a flip in the tube in the centre
of Figure 14, with the same decoration !†. Using Claim 1, we will see below that
I ].†/!†

D I ].†0/!†
. However, the curve @!† is homologically trivial in†0. One can

check this again by doing surgery on the green arc, but this time the extra flip ensures that
the obtained curve is not  , but a homotopically trivial one. Thus, I ].†0/!†

D I ].†0/∅,

Figure 14
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Figure 15

since the map depends only on Œ@!†�. If !D∅, one can apply the neck-cutting relation
(property (a) in Section 2.3) to obtain that

I ].†0/D P � I ].I �K1/D P � IdI ].K1/
:

We still have to show that I ].†/!†
D I ].†0/!†

. To see this, isotope the tube in the
middle as shown in Figure 15.

Let’s restrict our attention to the piece contained in the cylinder in green, which is the
identity cobordism on a two-component unlink. By Claim 1, the map induced by this
cobordism is the same that we get if we introduce a flip on one of the two components.
Since instanton Floer maps respect composition of cobordisms and disjoint unions,
the map induced by the whole cobordism is not affected by the insertion of the flip, ie
I ].†/!†

D I ].†0/!†
.

Claim 3 Let S be a cobordism from a knot K1 to a knot K2 such that S consists of
only b bands. That is , there are no births nor deaths. Then there is a surface ! with
boundary on S such that

I ].S/x! ı I ].S/! D Pb
� Id:

Proof We proceed by induction on b. The base case b D 0 is obvious.
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For the inductive step, we divide into two cases. If S is orientable, then the statement
holds for ! empty, because the cobordism S ı S is the same as the cylinder on K1

with b orientable tubes, and the result follows from the tube-cutting formula.

In the case that S is not orientable, at least one of the bands of S must be nonorientable
with respect to K. In this case, let us write S D Sr ı Su, where Su is a cobordism
consisting of the nonorientable band and Sr is the rest of the cobordism, which may or
may not be orientable.

Then, by the induction hypothesis, there is some !r such that

I ].Sr /x!r
ı I ].Sr /!r

D Pb�1
� Id:

Applying Claim 2, there is a surface !u with boundary on Su such that

I ].Su/x!u
ı I ].Su/!u

D P � Id:

The statement
I ].S/x! ı I ].S/! D Pb

� Id
now follows.

Now we can proceed with the proof of Proposition 3.3.

Proof of Proposition 3.3 Applying Lemma 3.2, we may break S into

(a) m births (from K1 to L1);

(b) m band surgeries that join the various components of the link (from L1 to K0
1
);

(c) b� .mCM / band surgeries which may or may not be orientable, ending in a
knot K0

2
;

(d) M band surgeries that split the knot K0
2

into M C 1 components;

(e) M deaths.

Let us call the cobordisms corresponding to the five steps S1;S2; : : :S5. We may
isotope the cobordism in S3 �R so that Si is in S3 � Œi; i C 1�.

We will choose ! to be in S3 � Œ2; 3�, so that its boundary is in S3 as in Claim 3, so
that

I ].S3/x! ı I ].S3/! D Pb�m�M
� Id:

The proof now proceeds the same way as the proof of [11, Proposition 4.1]. The main
argument is by considering a cobordism† that comes from adding M tubes connecting
points on the death caps to their mirrors.
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By [18, Lemma 3.2], for a connected, oriented cobordism †, if †0 is obtained from †

by adding a tube between points p and q, then

(6) I ].†0/D I ].†;p/C I ].†; q/CPI ].†/D PI ].†/;

where the second equality is because † is connected, so I ].†;p/ and I ].†; q/ induce
the same map, and, since we are working over characteristic two, they cancel.

Let †1 denote the cobordism that takes S ıS and adds M tubes, one for each death,
connecting a point in the death to its reverse, so that †1 D S1S2S3S4S4S3S2S1.
Applying (6) for each death, to the part of the cobordism from K3 to itself coming
from doing S4, S5 and their reverses, we see that

I ].†1/D PM I ].S ıS/:

Here, we are allowed to use the above result because S4S5S5S4 and S4S4 are both
orientable and connected.

In †1 D .S1S2S3S4/.S1S2S3S4/, M splitting bands of S4 and their reverses, cap
off the ends, and call the resulting cobordism †2. Then, for the same reason as above,
we have

I ].†1/D PM I ].†2/;

because again S3S4S4S3 and S3S3 are both orientable and connected.

Now we have †2 D .S1S2S3/.S1S2S3/.

Because of our construction of !, S3S3 with ! [ x! falls under the setting of Claim 3,
so the map it induces is Pb�m�M � IdI ].K2/

. Thus, if we let †3D .S1S2/.S1S2/, then

I ].†2/D Pb�m�M I ].†3/:

Now †3 is given by a cylinder on K1 and m S2’s, with m tubes, with the tubes
connecting the S2’s and the cylinder in a tree-like fashion. Applying the tube-cutting
formula, Lemma 3.2 of [18], and observing that a sphere without any dots induces the
zero map while a sphere with one dot induces the identity, we see that I ].†3/ induces
the same map as the cylinder, which is to say the identity.

Putting all of this together, we get

PM I ].S ıS/D I ].†1/D Pb�m
� Id;

as desired.
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4 Background on unoriented knot Floer homology

Unoriented knot Floer homology was introduced by Ozsváth, Stipsicz and Szabó
[25; 26]. Fan [7] showed that a nonorientable cobordism (with some extra data) induces
maps on the unoriented knot Floer homology. We now review the relevant definitions,
following mostly [35; 7].

4.1 Zemke’s oriented TQFT

Cobordism maps in link Floer homology were first defined by Juhász [10]. Here we use
Zemke’s setup [35], specified to unoriented link Floer homology in the case Y D S3.

Definition 4.1 An oriented multibased link in S3 is a triple LD .L;w; z/ consisting
of an oriented, embedded link L � S3, with two disjoint collections of basepoints
w and z on L, such that each component of L has at least two basepoints and the
basepoints alternate between those in w and those in z as one traverses a component
of L.

To an oriented multibased link L, Zemke’s most general construction gives a curved
F ŒUw;Vz �–complex CFL�.L/ up to F ŒUw;Vz �–equivariant chain homotopy. Here
F ŒUw;Vz � denotes the polynomial ring generated by a U variable for each w basepoint
and a V variable for each z basepoint. The curved complex is also endowed with
gradings and a filtration.

In our case, we only need a simpler version of Zemke’s complex, namely unoriented
link Floer homology. This is defined as

CFL0.L/ WD CFL�.L/˝F ŒUw;Vz� F ŒU �;

where all variables act on F ŒU � as multiplication by U. For the reader familiar with
Heegaard Floer homology, this is the free F ŒU �–module generated by the intersection
points T˛\Tˇ in the symmetric product, with differential given by

(7) @x D
X

y2T˛\Tˇ

X
�2�2.x;y/
�.�/D1

#M.�/ �U no.�/ �y ;

where no.�/D
P
w2w nw.�/C

P
z2z nz.�/.

Definition 4.2 For a doubly based knot K D .K; w; z/, we also use the notation
CFK0.K/ and HFK0.K/ for CFL0.K/ and HFL0.K/, respectively.
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If K1 D .K; w1; z1/ and K2 D .K; w2; z2/ are two doubly based knots with the same
underlying knot K, then HFK0.K1/ and HFK.K2/ are noncanonically isomorphic as
F ŒU �–modules. Thus, the following number is well defined:

Definition 4.3 If K is a knot, we define its unoriented torsion order as

OrdU .K/Dminfn� 0 j U n
�TorsD 0g;

where Tors is the torsion submodule of HFK0.K/, considered as a module over F ŒU �.
Here K is any doubly based knot with underlying knot K.

Remark 4.4 CFL0 enjoys the following properties:

(a) CFL0.L/ is a genuine chain complex (ie its curvature vanishes), so one can
compute its homology HFL0.L/, known as the unoriented link Floer homology
of L. This is still an F ŒU �–module.

(b) For a doubly based knot KD .K; w; z/, HFK0.K/Š F ŒU �˚Tors, where Tors
is the torsion as an F ŒU �–module.

(c) For a doubly based unknot U1 D .U1; w; z/, HFK0.U1/Š F ŒU �.

(d) Given doubly based knots K1 and K2,

CFK0.K1 # K2/D CFK0.K1/˝F ŒU � CFK0.K2/:

As a consequence, for knots K1 and K2 in S3,

OrdU .K1 # K2/DmaxfOrdU .K1/;OrdU .K2/g:

(e) If L is the mirror of L (with the same basepoints), then, by [26, Proposition
2.17],

CFL0.L/D homF ŒU �.CFL0.L/;F ŒU �/:

As a consequence, for a knot K in S3,

OrdU .K/D OrdU .K/:

Definition 4.5 If L1 D .L1;w1; z1/ and L2 D .L2;w2; z2/ are two oriented multi-
based links, an (oriented) decorated link cobordism from L1 to L2 is a pair SD .†;A/
such that:

(a) †�I�S3 is a properly embedded, compact, oriented surface with†\f0g�S3D

f0g � .�L1/ and †\f1g �S3 D f1g �L2.

(b) A�† is a properly embedded 1–manifold, which we refer to as the decorations.
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(c) The components of † nA are partitioned into two subsurfaces, †w and †z,
which meet along A.

(d) Each component of Li nA contains exactly one basepoint of wi t zi .

(e) w1 tw2 �†w and z1 t z2 �†z.

Definition 4.6 The identity (decorated link) cobordism idL from LD .L;w; z/ to itself
is given by the surface †D I �L with decorations AD I �Q, where Q�Ln .w[z/

is a finite set such that the inclusion induces an isomorphism in �0.

By the work of Zemke [35], an oriented decorated link cobordism S from L1 to L2

induces an F ŒU �–equivariant map

FZ
S W HFL0.L1/! HFL0.L2/:

Remark 4.7 The map FZ
S enjoys the following properties:

(a) FZ
S is invariant under isotopy of † in I �S3 while fixing the boundary, and

under isotopy of A in † while keeping

@A� .L1 n .w1[ z1//[ .L2 n .w2[ z2//:

(b) If idL is the identity cobordism from L to itself, then

FZ
idL
D idHFL0.L/:

(c) If S1 and S2 are oriented decorated link cobordisms from L1 to L2 and from
L2 to L3, respectively, then one can stack S2 on top of S1 (after isotoping
the decorations so that they match on the L2 level), and obtain a new oriented
decorated link cobordism S2 ıS1 from L1 to L3. In such a case,

FZ
S2ıS1

D FZ
S2
ıFZ

S1
:

(d) If S0 D .†0;A0/ is obtained from SD .†;A/ by attaching a tube with both feet
in †z (or both feet in †w), then FZ

S0 D U �FZ
S .

4.2 Fan’s unoriented TQFT

By the work of Fan [7], the link Floer TQFT can be extended to the nonorientable case.
We review the relevant definitions.
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Definition 4.8 A disoriented link in S3 is a tuple L D .L;p; q/ consisting of an
unoriented, embedded link L � S3, with two disjoint collections of points p and q

on L, called the dividing set, such that each component of L has at least two points
in the dividing set and the points in the dividing set alternate between those in p and
those in q as one traverses a component of L.

Each component of Ln.p[q/ is given a canonical orientation from q to p. We denote
the oriented manifold L n .p[ q/ by l . Note that these orientations do not glue to an
orientation of L.

As it is customary, we consider isotopic disoriented knots as different disoriented knots.
It is well known that isotopies can induce nontrivial maps in knot Floer homology, such
as the moving basepoint maps [30; 32].

Definition 4.8 looks exactly the same as Definition 4.1, except that the link is now
unoriented. However, we emphasise that the basepoints w[ z from Definition 4.1
are ontologically different from the dividing set from Definition 4.8. From a Morse-
theoretical viewpoint, the former arise as the intersection between L and the middle
level surface of a Morse function, whereas the latter are the index-0 and index-3 critical
points of the function.

However, we can define a notion of compatibility between oriented decorated links and
disoriented links.

Definition 4.9 We say that an oriented decorated link LD .L;w; z/ and a disoriented
link LD .L;p; q/ are compatible if

� the underlying unoriented link L is the same (but note that in L it also comes
with an orientation);

� p[ q is disjoint from w[ z;

� each component of L n .p[ q/ contains exactly one basepoint in w[ z;

� the components of L n .w[ z/ containing the p point are oriented from z to w
(with orientation induced from L).

Remark 4.10 Every disoriented link admits a (noncanonical) compatible oriented dec-
orated link. Likewise, every oriented decorated link admits a (noncanonical) compatible
disoriented link.
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If two oriented decorated links L1 and L2 are compatible with the disoriented link L,
then HFL0.L1/ and HFL0.L2/ are canonically isomorphic. Thus, we can define
HFL0.L/ as HFL0.L/ for any L compatible with L. (More precisely, HFL0.L/ is
the transitive system over all compatible oriented decorated links.)

Note that HFL0.L/ does not depend on the orientation chosen on L. If .L;w; z/ is
a compatible oriented decorated link, then the orientation reversal Lr is also part of
a compatible oriented decorated link, namely .Lr ; z;w/. The swap of the w and z

basepoints does not affect the homology, since the differential was defined to be
symmetric in w and z (see (7)). This justifies the name unoriented knot Floer homology
used in [26].

Remark 4.11 Fan [7] defines other categories of unoriented links, which he calls
bipartite links and bipartite disoriented links. These are essential to define a TQFT
framework for disoriented links, but we do not recall them here.

We now revise the cobordism maps defined by Fan [7].

Definition 4.12 A disoriented link cobordism from L1 D .L1;p1; q1/ to L2 D

.L2;p2; q2/ is a pair S D .†;M/ such that

(a) † � I � S3 is a properly embedded, compact surface with †\ f0g � S3 D

f0g � .�L1/ and †\f1g �S3 D f1g �L2;

(b) M�† is a properly embedded, compact, oriented 1–manifold, which we refer
to as the motion of the critical points;

(c) the components of†nM are compact, oriented surfaces with orientation induced
by M;

(d) @MD q1�p1Cp2� q2.

Note that, with the orientation given in point (c), @.† nM/ D l2 � l1 C 2M. The
surface † does not need to be oriented.

There is a natural notion of identity cobordism, in the same spirit as Definition 4.6. We
do not write this definition explicitly.

By the work of Fan [7], an disoriented link cobordism S from L1 to L2 induces an
F ŒU �–equivariant map

FF
S W HFL0.L1/! HFL0.L2/:
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Remark 4.13 The map FF
S enjoys the following properties:

(a) FF
S is invariant under isotopy of † in I � S3 while fixing the boundary, and

under isotopy of M in † while fixing the boundary.

(b) If idL is the identity cobordism from L to itself, then

FF
idL D idHFL0.L/:

(c) If S1 and S2 are oriented disoriented link cobordisms from L1 to L2 and from
L2 to L3, respectively, then one can stack S2 on top of S1, and obtain a new
oriented disoriented link cobordism S2 ıS1 from L1 to L3. In such a case,

FF
S2ıS1

D FF
S2
ıFF

S1
:

4.3 Relation between Zemke’s TQFT and Fan’s TQFT

Definition 4.14 For i D 1; 2, suppose that Li D .Li ;wi ; zi/ and Li are compatible.
We say that a decorated link cobordism SD .†;A/ from L1 to L2 and a disoriented
link cobordism S D .†;M/ from L1 to L2 are compatible if

� the underlying unoriented surface † is the same (but note that in S it also comes
with an orientation);

� after isotoping A without crossing w1 t z1 tw2 t z2, ADM.

Remark 4.15 For i D 1; 2, suppose that Li and Li are compatible. Moreover, suppose
that S is a decorated link cobordism from L1 to L2 and S is a compatible disoriented
link cobordism from L1 to L2. Then

FZ
S D FF

S :

5 A technical result for HFK0

5.1 The flip cobordism in HFK0

Definition 5.1 The standard disoriented unknot is U1 D .U1;p; q/, where U1 D

fx2Cy2 D 1g\ fz D 0g, p D .1; 0; 0/ and q D .�1; 0; 0/.

Definition 5.2 The flip cobordism F D .†F ;MF / from the standard disoriented
unknot U1 D .U1;p; q/ to itself is the disoriented cobordism traced by the isotopy
obtained by rotating U1 by � along the x–axis. The points p and q stay fixed throughout
the isotopy, so we can set MF D I � fp; qg.
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p q

p q p q

p q

p q

p q

p q

Figure 16: Our notation for the flip cobordism (left) and a few sections of
the cobordism (right). We use different colours for the two components of
U1 n fp; qg to help the visualisation.

Note that the surface underlying a flip cobordism is orientable, although no orientation
of the surface restricts to the same orientation on the two standard disoriented unknots
on the boundary.

Lemma 5.3 The map FF
F induced by the flip cobordism is the identity map on

HFK0.U1/Š F ŒU �.

Proof The fourth iteration F4 is the disoriented cobordism traced by a 4� rotation
about the x–axis. Since �1.SO.3// D Z=2Z, the rotation by 4� is isotopic to the
identity. Thus, F4 is isotopic to the identity cobordism, and

(8) .FF
F /

4
D FF

F4 D idF ŒU � :

The map
FF
F W F ŒU �! F ŒU �

is U –equivariant, so it is completely determined by the image of 1. If we set p.U / WD

FF
F .1/ 2 F ŒU �, equation (8) implies that .p.U //4 D 1. Since every invertible element

of F ŒU � must be in F, we deduce p.U /D 1.

5.2 A stabilisation lemma

In this subsection only, we will need to work in a more general setting than the one
outlined in Section 4.

First, we will consider decorated links L in a 3–manifold Y, and decorated link cobor-
disms .†;A/ in a 4–manifold W. In Section 4, we have stated the definitions of
decorated link and decorated link cobordism only when Y D S3 and W D I � S3.
The general definitions are only needed in this subsection, and they can be found in
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[35, Definitions 2.1 and 2.4]. Again in this subsection only, we will consider the full
chain complex CFL�.Y;K/ associated to a decorated knot, which is a complex over
F ŒU;V �, up to chain homotopy equivalence.

We will also use the homological action on link Floer homology. (See [27, Section 4.2.5]
for the original definition of Heegaard Floer homology, Theorem 3.1 of [29] for the
cobordism action, and [34, Section 12.2] for its extension to link Floer homology.)
Given a decorated link L in a 3–manifold Y, there is a homological action

A Wƒ�.H1.Y IZ/=Tors/˝ CFL�.Y;L/! CFL�.Y;L/;

and, given a decorated link cobordism .†;A/ in a 4–manifold W, there is a version of
the cobordism map incorporating the homological action,

FH
W ;†;A Wƒ

�.H1.W IZ/=Tors/˝ CFL�.Y1;L1/! CFL�.Y2;L2/:

(We use the notation FH to distinguish it from the cobordism map FZ, which does
not incorporate the homological action.) If the 4–manifold W is obtained by adding
1–handles to B4, then the map FH can be recovered from FZ by postcomposing with
the homological action on Y1. The following lemma, which is needed to establish
Proposition 5.5, was proved by Ian Zemke. A related argument appeared in [12,
Section 5] (see in particular [12, Lemma 5.3]):

Lemma 5.4 Let †D I �K � I �S3 be the identity cobordism from the knot K to
itself , and let †0 denote a surface obtained by adding a compressible 1–handle to †. If
 �† denotes an embedded arc joining the feet of the 1–handle , define decorations A0

on †0 as two parallel embedded arcs from f0g �K to f1g �K such that :

� A0 does not intersect  .

� Each arc of A0 crosses the cocore of the 1–handle exactly once.

� The arcs of A0 join the points .0;p/ and .0; q/ to the points .1;p/ and .1; q/ in
I �K, respectively.

� The decorations A, obtained by restricting A0 to † and by reconnecting each pair
of arcs with an arc parallel to  , are isotopic rel boundary to a product decoration
I � fp; qg.

Then , if KD .K; w; z/ for some points w and z alternated to p and q, the cobordism
map

FZ
†0;A0 W HFK0.K/! HFK0.K/

coincides with the map U � idHFK0.K/.

Algebraic & Geometric Topology, Volume 23 (2023)



Nonorientable link cobordisms and torsion order in Floer homologies 2657

A0

ı

A00 A000

Figure 17: The three decorations A0, A00 and A000 on the surface †0 appearing
in the bypass relation arising from the arc ı.

Proof If a1 and a2 denote the two components of A0, let ı be an arc on †0 which
starts from a1 near a foot of the 1–handle, then traverses a2, follows  to the other foot
of the 1–handle, and ends on a2. See Figure 17, left, for an illustration.

We apply Zemke’s bypass relation on a disc��†0 obtained as a regular neighbourhood
of the arc ı in †0. If A00 and A000 denote the other decorations appearing in the bypass
relation as in Figure 17, we have that

FZ
†0;A0 D FZ

†0;A00 CFZ
†0;A000 :

The decorations A00 can be isotoped away from the cocore of the 1–handle. After
compressing the 1–handle, the surface becomes isotopic to † and the decorations
become isotopic to the product decorations A. Thus, by Remark 4.7(d),

FZ
†0;A00 D U �FZ

†;A D U � idHFK0.K/:

Thus, we only need to show that FZ
†0;A000 D 0. From this point until the end of the proof

we will work on the chain level CFL�.K/, considered as an F ŒU;V �–complex, up to
chain homotopy equivalence. (The variable U is associated to the basepoint w.)

We split the cobordism .I �S3; †0;A000/ as the composition of two cobordisms. The
first one, which we call W1 D .W1; †1;A1/, is obtained by taking as W1 the (disjoint)
union of a regular neighbourhood of f0g �S3 and a neighbourhood of  [ c (where c

denotes the core of the 1–handle) containing the 1–handle entirely. Note that the latter
component of W1 is diffeomorphic to S1 �D3. The decorated surface .†1;A1/ is
obtained by intersecting W1 with .†0;A000/. The second cobordism W2 is obtained by
taking the closure of the complement of W1 in I �S3. Thus, we have

FZ
†;A000 D FH

.I�S3;†0;A000/ D FH
W2
ıFH

W1
:
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Figure 18: Left: the decorated surface .z†1; zA1/. The punctured torus z†1 sits
in S1 �D3 in such a way that its longitude generates H1.S

1 �D3/, while
its meridian is null-homotopic. Right: the decorated surface .†1;A1/.

(In the first equality we used the fact that H1.I �S3/D 0.)

We focus on the map FH
W1

. Since W1 has two connected components (one of which is
an identity cobordism over K), the map splits as a tensor product

(9) FH
W1
D idCFL�.K/˝FH�W1

;

where �W1 D .S1 �D3; z†1; zA1/ is a cobordism from the empty link in the empty
3–manifold to a doubly pointed unknot U in S1 �S2, illustrated in Figure 18, left.

The knot Floer complex CFL�.S1 �S2;U/ is generated over F ŒU;V � by two homo-
geneous elements xC and x�. Their grw and grz gradings (as defined in [34]) are
given by

.grw; grz/.x˙/D
�
˙

1
2
;˙1

2

�
:

For grading reasons [34], we have

(10) FH�W1
.1/D k �x�

for some k 2 Z=2Z. An explicit computation of the action of H1.S
1 �S2/D Zh�i

shows that A.�˝xC/D x�. From this fact, a direct computation shows that

(11) FH
W1
.�˝ 1/D x�;

where W1 D .S
1 �S2; †1;A1/ is the cobordism shown in Figure 18, right.

Recall that the cobordism W1 is the disjoint union of an identity cobordism over K

and the cobordism �W1. If �W1 denotes the cobordism obtained by replacing the �W1

component with W1, then, by combining (9), (10) and (11), we have

(12) FH
W1
.x/D x˝FH�W1

.1/D k �x˝FH
W1
.�˝ 1/D k �FH�W1

.�˝x/:

Finally, let �W denote the composition of �W1 and W2. Note that the 4–manifold
underlying �W is still I �S3 (the same as W), since the replacement of W1 with �W1
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did not affect the underlying 4–manifold. Then, by (12),

FZ
†;A000.x/D FH

W2
ıFH

W1
.x/D k �FH

W2
ıFH�W1

.�˝x/D k �FH�W .��.�/˝x/D 0:

The last term vanishes because the map �� WH1.S
1�D3/!H1.I �S3/D 0 induced

by the inclusion of �W1 into �W must map � to 0.

5.3 The main theorem in HFK0

Proposition 5.5 Suppose that † is a connected nonorientable knot cobordism from
K1 to K2 in I �S3 with m local minima , b saddles and M local maxima , and let †
denote the mirrored upside down cobordism from K2 to K1.

Then there are choices of motions of the critical points such that the disoriented knot
cobordisms S D .†;M1/ and S D .†;M2/ can be composed to S ıS, and

(13) U M
�FF

S ıFF
S D U b�m

� idHFK0.K1/:

Proof Using Lemma 3.2, we can break the cobordism † into the composition of
cobordisms labelled (a)–(f). Let K0

1
and K0

2
be the knots after steps (b) and (d),

respectively, as in the statement of Lemma 3.2, and let L0 be the link after step (c).
Note that L0 differs from K0

2
by a single band surgery.

By removing the two attaching arcs of the nonorientable band B from L0, we are left
with two arcs  and ı. If L0 is a knot, let pa; qa;pb; qb be points on  , appearing in
this order, such that pa and qa are close to one end of  and pb and qb are close to
the other end of  , so that all the intersections of L0\  with the oriented bands are
between pb and qa. See Figure 19, left. If instead L0 is a two-component link, let pa

and qa be on  and pb and qb be on ı such that they are near opposite corners of the
band and pa (resp. qb) is closer to the band than qa (resp. pb). See Figure 20.

Let S be the disoriented cobordism from .K1;pa; qa/ to .K2;pb; qa/ obtained by
endowing † with the following motion of basepoints:

� On steps (a)–(c), the motion consists of straight arcs I � fpa; qag.

� On step (d), the motion consists of a straight arc I �fqag and of an arc that starts
from pa, goes through the nonorientable saddle, and ends at pb (see Figure 19).

� On steps (e)–(f), the motion consists of straight arcs I � fpb; qag.
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B

L0

ı



pa
qa

pb

qb

L0

K0
2

Figure 19: Left: the circle represents L0 after step (c) in the case it is a knot.
Right: step (d) of the cobordism †, from L0 to K0

2
, together with the motion

chosen to define S.

A crucial condition in Definition 4.12 is that each component of † nM1 must be
orientable. In fact, we show that †nM1 consists of a single and orientable component.
If L0 is a knot, one can check from Figure 19 that † nM1 restricted to step (d) has a
single component; in steps (a)–(c) the surface † is orientable and the motion is given
by two parallel arcs, so there are two components of † nM1, which are then glued
to the unique component in step (d); steps (e)–(f) define a concordance of disoriented
knots, which does not change the abstract topology of the disoriented cobordism. The
compatibility of the orientation of † nM1 with the orientation of M1 is dealt with in
an analogous way.

K0
2

L0

qa

pa

pb

qb

L0

Figure 20: Step (d) of S in the case L0 is a two-component link, represented
above by the two inner circles.
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If L0 is a two-component link, then one should consider Figure 20 instead. Let � be
the closed component of L0 containing pb and qb (which appears in Figure 20, right),
and let " be the component containing pa and qa, minus the short arc connecting pa

and qa (which appears in Figure 20, right). From Figure 20, it is immediate to check
that † nM1 has two components in step (d), which deformation retract on � and
on ". Since K1 is a knot, † nM1 in steps (a)–(c) also has two components: a “small”
rectangular one, S, spanned by the short arc connecting pa and qa, and a large one, L,
the complement of it, which contains all the genus. When you glue steps (a)–(c) to
step (d), the rectangular component S is glued to the component containing �, without
affecting the topology, whereas the component L glues to both components of step (d).
Thus, we see that there is only one component of † nM1. Its orientability and the
compatibility with the orientation of M1 is left to the reader (it basically follows from
the fact that cutting along M1 effectively cuts the nonorientable saddle, leaving an
orientable cobordism). As before, we do not worry about steps (e)–(f), since they define
a concordance, which does not change the abstract topology.

We next introduce a disoriented cobordism S from .K2;pb; qa/ to .K1;pa; qa/ with
underlying surface †. To define it, we play the steps of the cobordism S in reverse
order, but we use a different motion of basepoints:

� On the reversed steps (f)–(e), the motion consists of straight arcs I � fpb; qag.

� On the reversed step (d), the motion consists of a straight arc I �fpbg and of an
arc that starts from qa, goes through the (dual) nonorientable saddle, and ends
at qb .

� On the reversed steps (c)–(a), the motion consists of straight arcs I � fpb; qbg.

� Finally, in a collar of the K1 boundary component, the motion of the basepoints
brings pb and qb back to pa and qa.

Note that S is not S turned upside down as disoriented cobordisms (even if the dis-
oriented knots at the boundary are not the same).

We also define a disoriented cobordism T u from .K1;pa; qa/ to .K1;pa; qa/, obtained
in three steps:

� The first step is the same disoriented cobordism as in Figure 19, except that
the knot L0 is replaced with K1; more explicitly, the surface † in the first step
consists of the cylinder I �K1, with the nonorientable band B attached on the
upper end (recall that by Lemma 3.2 all bands have disjoint attaching arcs, so
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pa
qa pa

qa

pa
qa pa

qa

Figure 21: The disoriented cobordism T u (left) and the disoriented cobordism T o (right).

we can attach B to K1), and the motion of the basepoints consists of I � fqag

and of an arc that starts from pa, goes through the band, and ends at pb .

� The surface in the second step is simply the surface from the first step turned
upside down, and the motion consists of a straight arc I � fpbg and of an arc
that starts from qa, goes through the (dual) band, and ends at qb .

� Finally, in a collar of the end boundary component, the motion of the basepoints
brings pb and qb back to pa and qa.

Note that the surface† of the disoriented cobordism T u is a genus-1 surface, consisting
of a cylinder I �K1 with a flipped tube attached to it. The flipped tube is made up of
the two nonorientable bands. See Figure 21, left.

Lastly, we define a variant of T u: the disoriented cobordism T o from .K1;pa; qa/ to
.K1;pa; qa/ is obtained by replacing the flipped tube in T u with an orientable tube, so
that the underlying surface † is orientable (in other words, the nonorientable bands are
replaced with orientable bands); the motion of the basepoints divides † into a disc and
a punctured torus; see Figure 21, right. Note that Lemma 5.3 implies that FF

T u D FF
T o ,

since it is possible to isolate a flip cobordism.

In order to prove Proposition 5.5 we argue in a similar way as in [11, Proposition 4.1]:
we define a cobordism Gu, and we compute the map FF

Gu in two different ways, which
will be the two sides of equation (13).
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The disoriented cobordism Gu, from .K1;pa; qa/ to itself, is obtained by playing all
the steps of S except (f) followed by all the reversed steps of S except (f). (In S we
also play the basepoint moving step in a collar of K1.)

Since the attaching arc of the unoriented band can be isotoped in K1, we can move
step (d) of S and the corresponding reversed step of S up past all the other steps of S
and S. These two steps together make up the cobordism T u, which we can replace with
the orientable cobordism T o. The replacement yields a new disoriented cobordism Go

from Gu, with FF
Go D FF

Gu . The advantage of Go over Gu is that the underlying surface
of the former is orientable, so FF

Go DFZ
G for a compatible decorated link cobordism G,

and we can use the properties of Zemke’s TQFT on FZ
G , in particular the one about

compressing discs.

Note that in the definition of Gu (or Go) we do not play the M deaths of S (step (f))
and the M births of S, obtained by mirroring the deaths of S. Thus, S ıS is obtained
from Gu by compressing M discs with boundary in the complement of the motion of the
basepoints. By transiting through their orientable replacements, and by Remark 4.7(d),
we get

(14) FF
Gu D U M

� ıFF
S ıFF

S :

On the other hand, we saw earlier that the cobordism Go can be rearranged so that we
have T o at the top. The first part consists of a cylindrical cobordism from .K1;pa; qa/

to itself with b� 1�m tubes added, as in [11]. (The �1 here comes from the fact that
we have moved the nonorientable band to the top of the cobordism.) Thus, we can
compress the cobordism Go b� 1�m times to get T o, so

FF
Go D U b�1�m

�FF
T o :

But the cobordism T o is of the form studied in Lemma 5.4, so the map that it induces
is multiplication by U. Thus,

(15) FF
Gu D FF

Go D U b�m
� idHFL0.K1/:

By combining (14) and (15), we finish the proof.

Remark 5.6 The careful reader will note that the motions of the basepoints play an
important role in the proof of Proposition 5.5. This is by contrast with Proposition 4.1
of [11], where the decorations of the cobordism were the simplest possible, ie two
parallel arcs from the bottom to the top. In the unoriented setting it is impossible to
choose two parallel arcs as the motion of basepoints, otherwise the cobordism would
not fall in the correct category.
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6 Applications

In this section we prove Theorem 1.1, which we restate below, together with its
corollaries.

Theorem 1.1 Let K1 and K2 be knots in S3. Suppose that there is a nonorientable
knot cobordism † in I �S3 from K1 to K2 with M local maxima. Then

(1) OrdI .K1/�maxfOrdI .K2/;M gC  .†/

and

(2) OrdU .K1/�maxfOrdU .K2/;M gC  .†/:

Proof The proof closely follows that of [11, Theorem 1.1].

Add decorations on † and † (in the instanton or unoriented knot Floer sense) to obtain
cobordisms with decorations S and S that satisfy the relation in Proposition 3.3 or
Proposition 5.5,

(16) vM
�FS ıFS D v

b�m
� idH .K1/ :

Here m is the number of local minima and b is the number of saddles on †, H is either
I ] or HFK0, F denotes the corresponding map induced by an unoriented cobordism
with decorations, and v denotes the relevant variable P or U.

Suppose that x 2H.K1/ is a torsion element. Since FS.x/ must be torsion in H.K2/,
vl �FS ıFS.x/D FS.v

l �FS.x//D 0 whenever l � Ord.K2/. Thus, in view of (16),
vlCb�m�M �xD 0 whenever l �maxfOrd.K2/;M g. Since this holds for every torsion
element x 2H.K1/, we obtain

Ord.K1/�maxfOrd.K2/;M gC b�m�M;

and we conclude by noticing that  .†/D��.†/D b�m�M.

We now focus on the proofs of the corollaries from the introduction. Corollary 1.3
follows immediately from Theorem 1.1 by setting M D 0, so we move directly to the
following corollary, about the refined unoriented cobordism distance.

Recall that, for a cobordism † in I �S3 from K1 to K2, we define

j†j Dmaxfm;M g��.†/;
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and that the refined nonorientable cobordism distance between two knots K1 and K2

is given by
dr

u .K1;K2/Dminfj†jg;

where† varies over all connected nonorientable cobordisms and oriented concordances
from K1 to K2.

Corollary 1.6 If K1 and K2 are knots in S3, then

jOrdI .K1/�OrdI .K2/j � dr
u .K1;K2/

and
jOrdU .K1/�OrdU .K2/j � dr

u .K1;K2/:

Proof The proof follows closely that of [11, Corollary 1.5]. Given a cobordism †

from K1 to K2 with M maxima and m minima of the kind considered in the definition
of dr

u , by Theorem 1.1 (if † is nonorientable) and Remark 1.2 (if † is an orientable
concordance), we have

Ord.K1/�maxfOrd.K2/;M g��.†/� Ord.K2/CM ��.†/;

where Ord is either OrdI or OrdU. From here we get

Ord.K1/�Ord.K2/�M ��.†/�maxfm;M g��.†/;

and we conclude by exchanging the roles of K1 and K2, and taking the minimum on
the right-hand side.

Recall that the unoriented band-unlinking number ulub.K/ of a knot K in S3 is defined
as the minimum number of (orientable or nonorientable) band surgeries that turn K

into an unlink.

Corollary 1.9 For a knot K in S3,

OrdI .K/� ulub.K/ and OrdU .K/� ulub.K/:

Proof The proof is similar to that of [11, Corollary 1.6]. If b D ulub.K/, one can
build a cobordism † from K to the unknot U with b saddles and M local maxima, by
attaching b bands to K to get an .MC1/–component unlink and then capping off M

components of the latter. By applying Theorem 1.1, and Remark 1.2 if necessary (ie if
† is orientable), we get (for I ] or HFK0)

Ord.K/�maxfOrd.U /;M g��.†/DM ��.†/;

since the unknot has vanishing torsion order in both I ] and HFK0. We conclude by
noticing that �.†/DM � b.
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7 Examples

Lemma 7.1 For the torus knot Tn;nC1, OrdU .Tn;nC1/D
�

1
2
n
˘

.

Proof Any torus knot is an L–space knot, so its Alexander polynomial determines
the full knot Floer complex CFK1 up to chain homotopy equivalence, and in turn the
unoriented knot Floer homology. See [28; 25; 11].

If K is an L–space knot, its Alexander polynomial takes the form

(17) �K .t/D

2lX
kD0

.�1/k t˛k

for a decreasing sequence of integers ˛0; : : : ; ˛2l . Let d1; : : : ; d2l denote the gaps,
ie dk D ˛k � ˛k�1. Then the full knot Floer complex is (up to chain homotopy
equivalence) a staircase F ŒU;U�1�–module, generated by x0; : : : ;x2l , with

@x2k D 0; @x2kC1 D x2k Cx2kC2:

Moreover, the filtration over Z˚Z is determined up to an overall shift by the following
properties:

� The element x2kC1 has the same j –filtration as x2k , but the i–filtration differs
by d2kC1.

� The element x2kC1 has the same i–filtration as x2kC2, but the j –filtration differs
by d2kC2.

Then the unoriented knot Floer complex CFK0.K/ (up to chain homotopy equivalence)
is generated over F ŒU � by y0; : : : ;y2l , with differential

@y2k D 0; @y2kC1 D U d2kC1 �y2k CU d2kC2 �y2kC2:

In the language of [6], this is a standard complex associated to a graded root. Graded
roots were introduced by Némethi [24] to study HFC of plumbed 3–manifolds. We in-
stead consider the “upside-down” graded roots as in [6], which are used to describe HF�.
Note that our generators y0; : : : ;y2lC1 were called v1; ˛1; v2; ˛2; : : : ; ˛n�1; vn in [6].
The numbers di determine the graded root up to an overall shift: the (relative) grading
is given by

�.y2k/��.y2kC1/D d2kC1; �.y2kC2/��.y2kC1/D d2kC2:
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:::
:::

Figure 22: The graded roots homotopy equivalent to CFK0.T7;8/ and CFK0.T8;9/,
respectively. Each dot denotes a generator of the complex over F , and the edges
encode the U –action: for a dot x, U �x is the dot you get by following the edge
exiting from the bottom of the dot x. The height of the dot denotes its (relative)
Maslov grading, and the U –action decreases the Maslov grading by 2. Note that
when n is odd (eg T7;8), there is one branch of length

˙
1
2
n
�

and two branches of
length

�
1
2
n
˘

, whereas when n is even (eg T8;9) there are two branches of length 1
2
n.

We now determine the numbers di in the case of the torus knot Tn;nC1. Recall that the
Alexander polynomial of Tp;q is

�p;q.t/D
.tpq � 1/ � .t � 1/

.tp � 1/ � .tq � 1/
:

The coefficients of �p;q.t/ have been computed in the general case (see for example
[20, (1.6) and (2.16)] or [19]). In our case, p D n and q D nC 1, and �p;q is simple
enough to be computed explicitly. After simplifying

�n;nC1 D
.xn/nC .xn/n�1C � � �xnC 1

xnCxn�1C � � �CxC 1
;

one can carry out the long division explicitly and find that�n;nC1 is in the form of (17),
with

.d1; d2; d3; d4; : : : ; d2l�1; d2l/D .1; n� 1; 2; n� 2; : : : ; n� 1; 1/:
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From this one can check that the graded root has a picture with n branches, of lengths
1; 2; : : : ; 2; 1. See Figure 22. The longest branch is in the middle, of length

˙
1
2
n
�

. This
is also the top graded branch, so it generates the infinite tower. Thus, the order of HFK0 is
given by the next longest branch, which has length

�
1
2
n
˘

. Thus, OrdU .Tn;nC1/D
�

1
2
n
˘

.

We now restrict the attention to the torus knots of the form T2r�1;2r .

Remark 7.2 Batson [3] first proved that 4.T2r�1;2r /D r � 1. This can be proved
with any of the bounds from [3; 26; 8] (for T2r�1;2r or T2r�1;2r ), which all give the
same sharp obstruction. We choose to use � from [26] because it is an additive quantity,
like the knot signature. In [26, Theorem 1.2], Ozsváth, Stipsicz and Szabó proved that,
for a knot K in S3,

(18) 4.K/� �.K/�
1
2
�.K/:

Batson [3] computed that �.T2r�1;2r /D �2r2C 2, and, by [26, Theorem 1.3], one
can compute �.T2r�1;2r /D�r2C r . Thus,

(19) �.T2r�1;2r /�
1
2
�.T2r�1;2r /D r � 1:

We now restate and prove Corollary 1.7 from the introduction:

Corollary 1.7 For all  � 1 and m� 1, there exists a knot K;m with du.K;m;U1/D

4.K;m/D  and such that dr
u .K;m;U1/�  Cm.

Thus , each nonorientable surface †� B4 with @†DK;m and  .†/D  has at least
m local minima (with respect to the radial function).

Proof Let K;m D T2r�1;2r # T2s�1;2s for r D  Cm and s D m. By (18), the
additivity of � and � , and (19), we have

4.K;m/�
�
�.T2r�1;2r /�

1
2
�.T2r�1;2r /

�
�
�
�.T2s�1;2s/�

1
2
�.T2s�1;2s/

�
D .r � 1/� .s� 1/D r � s D :

On the other hand, Batson showed that there is a sequence of r � s unoriented band
surgeries from T2r�1;2r to T2s�1;2s [3, Figure 7]. Thus, we get a sequence of
r � s unoriented band surgeries from K;m to T2s�1;2s # T2s�1;2s , which is slice,
so 4.K;m/D r � s.
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Now let † be a (possibly nonorientable) surface † � B4 with @† D K;m and
b1.†/D  . Theorem 1.1 gives a lower bound on the number of local minima. More
precisely, if† has n local minima, by removing a small ball from B4 we get a cobordism
from K;m to the unknot U1 with M D n� 1 maxima (note that the cobordism is
upside down, so the minima are turned into maxima, and one of them disappears when
we remove the ball). Thus, Theorem 1.1 implies that

OrdU .K;m/� .n� 1/C .r � s/D n� sC r � 1:

We also know that

OrdU .K;m/DmaxfOrdU .T2r�1;2r /;OrdU .T2s�1;2s/g D r � 1

by Remark 4.4(d)–(e) and Lemma 7.1, so we get

n� s Dm:

The statement about du and dr
u follows from the computation of 4.K;m/ above and

from Corollary 1.6.

Remark 7.3 We do not know if the bound on dr
u .K;m;U1/ and on the number of

minima of † in Corollary 1.7 is sharp on the knots used in the proof of the corollary.
Recall that we set

K;m WD T2r�1;2r # T2s�1;2s

for r D  Cm and s Dm. Batson showed that with  bands we can get to K0;m D

T2s�1;2s # T2s�1;2s , and Juhász, Miller and Zemke showed that K0;m bounds a ribbon
disc with 2m� 1 local minima. Thus,

dr
u .K;m;U1/�  C 2m� 2:

We conjecture that this inequality is actually an equality.

References
[1] A Alishahi, E Eftekhary, Knot Floer homology and the unknotting number, Geom.

Topol. 24 (2020) 2435–2469 MR Zbl

[2] S Baader, Scissor equivalence for torus links, Bull. Lond. Math. Soc. 44 (2012) 1068–
1078 MR Zbl

[3] J Batson, Nonorientable slice genus can be arbitrarily large, Math. Res. Lett. 21 (2014)
423–436 MR Zbl

Algebraic & Geometric Topology, Volume 23 (2023)

http://dx.doi.org/10.2140/gt.2020.24.2435
http://msp.org/idx/mr/4194296
http://msp.org/idx/zbl/1464.57018
http://dx.doi.org/10.1112/blms/bds044
http://msp.org/idx/mr/2975163
http://msp.org/idx/zbl/1253.57003
http://dx.doi.org/10.4310/MRL.2014.v21.n3.a1
http://msp.org/idx/mr/3272020
http://msp.org/idx/zbl/1308.57004


2670 Sherry Gong and Marco Marengon

[4] C Caprau, N González, C R S Lee, A M Lowrance, R Sazdanović, M Zhang, On
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A uniqueness theorem for transitive Anosov flows
obtained by gluing hyperbolic plugs

FRANÇOIS BÉGUIN

BIN YU

In work with C Bonatti, we defined a general procedure to build new examples of
Anosov flows in dimension 3. The procedure consists in gluing together some building
blocks, called hyperbolic plugs, along their boundary in order to obtain a closed
three-manifold endowed with a complete flow. The main theorem of that work states
that (under some mild hypotheses) it is possible to choose the gluing maps so the
resulting flow is Anosov. Here we show a uniqueness result for Anosov flows obtained
by such a procedure. Roughly speaking, we show that the orbital equivalence class of
these Anosov flows is insensitive to the precise choice of the gluing maps used in the
construction. The proof relies on a coding procedure, which we find interesting for its
own sake, and follows a strategy that was introduced by T Barbot in a particular case.

37D20; 57M99

1 Introduction

In a previous paper, written with C Bonatti [5], we have proved a result allowing one
to construct transitive Anosov flows in dimension 3 by “gluing hyperbolic plugs along
their boundaries”. The purpose here is to study Anosov flows obtained by such a
construction. We focus our attention on the diffeomorphisms that are used to glue
together the boundaries of the hyperbolic plugs. We aim to understand what is the
impact of the choice of these diffeomorphisms on the dynamics of the resulting Anosov
flows. We will see that two gluing diffeomorphisms that are “strongly isotopic” yield
some Anosov flows that are orbitally equivalent. In other words, in [5], we have proved
the existence of Anosov flows constructed by a certain gluing procedure, and the goal
here is to prove a uniqueness result for these Anosov flows.

In order to state some precise questions and results, we need to introduce some termi-
nology. A hyperbolic plug is a pair .U;X /, where U is a (not necessarily connected)
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compact three-dimensional manifold with boundary and X is a vector field on U,
transverse to @U and such that the maximal invariant set ƒX WD

T
t2R X t .U / is a

saddle hyperbolic set for the flow .X t /. Given such a hyperbolic plug .U;X /, we
decompose @U as the disjoint union of an entrance boundary @inU (the union of the
connected components of @U where the vector field X is pointing into U ) and an
exit boundary @outU (the union of the connected components of @U where the vector
field X is pointing out of U ). The stable lamination W s.ƒX / of the maximal invariant
set ƒX intersects transversally the entrance boundary @inU and is disjoint from the
exit boundary @outU. Hence, Ls

X
WDW s.ƒX /\ @U is a one-dimensional lamination

embedded in the surface @inU. Similarly, Lu
X
WDW u.ƒX /\ @U is a one-dimensional

lamination embedded in the surface @outU. We call Ls
X

and Lu
X

the entrance lamination
and the exit lamination of the hyperbolic plug .U;X /. It can be proved that these
laminations are quite simple:

(i) They contain only finitely many compact leaves.

(ii) Every half noncompact leaf is asymptotic to a compact leaf.

(iii) Each compact leaf may be oriented such that its holonomy is a contraction.

Hyperbolic plugs should be thought as the basic blocks of a building game, our goal
being to build some Anosov flows by gluing a collection of such basic blocks together.
From a formal viewpoint, a finite collection of hyperbolic plugs can always be viewed
as a single nonconnected hyperbolic plug. For this reason, it is enough to consider
a single hyperbolic plug .U;X / and a gluing diffeomorphism  W @outU ! @inU. For
such .U;X / and  , the quotient space M WD U= is a closed three-manifold, and the
incomplete flow .X t / on U induces a complete flow .Y t / on M. The purpose of [5]
was to describe some sufficient conditions on U, X and  for .Y t / to be an Anosov
flow. We will now explain these conditions.

We say that a one-dimensional lamination L is filling a surface S if every connected
component C of S nL is “a strip whose width tends to 0 at both ends”; more precisely,
C is simply connected, the accessible boundary of C consists of two distinct noncompact
leaves `� and `C of L, and these two leaves `� and `C are asymptotic to each
other at both ends. We say that two laminations L1 and L2 embedded in the same
surface S are strongly transverse if they are transverse to each other and, moreover,
every connected component C of S n .L1[L2/ is a topological disc whose boundary
@C consists of exactly four arcs ˛1, ˛2, ˛0

1
and ˛0

2
, where ˛1 and ˛0

1
are arcs of leaves

of the lamination L1 and ˛2 and ˛0
2

are arcs of leaves of the lamination L2. We

Algebraic & Geometric Topology, Volume 23 (2023)
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say that a hyperbolic plug .U;X / has filling laminations if the entrance lamination
Ls

X
is filling the surface @inU and the exit lamination Lu

X
is filling the surface @outU.

Given a hyperbolic plug .U;X /, we say that a gluing diffeomorphism  W @outU !

@inU is strongly transverse if the laminations Ls
X

and  �Lu
X

(both embedded in the
surface @inU ) are strongly transverse. If .U;X1/ and .U;X2/ are two hyperbolic plugs
with the same underlying manifold U and  1;  2 W @

outU ! @inU are two gluing
diffeomorphisms, we say that the triples .U;X1;  1/ and .U;X2;  2/ are strongly
isotopic if one can find a continuous one-parameter family f.U;Xt ;  t /gt2Œ1;2� such
that .U;Xt / is a hyperbolic plug and  t W @

outU ! @inU is a strongly transverse gluing
map for every t . The main technical result of [5] can be stated as follows:

Theorem 1.1 Let .U;X0/ be a hyperbolic plug with filling laminations such that
the maximal invariant set of .U;X0/ contains neither attractors nor repellers , and let
 0 W @

outU ! @inU be a strongly transverse gluing diffeomorphism. Then there exist
a hyperbolic plug .U;X / with filling laminations and a strongly transverse gluing
diffeomorphism  W @outU ! @inU such that .U;X0;  0/ and .U;X;  / are strongly
isotopic , and such that the vector field Y induced by X on the closed manifold M WD

U= is Anosov.

The idea of building transitive Anosov flows by gluing hyperbolic plugs goes back
to [7], where Bonatti and R Langevin consider a very simple hyperbolic plug .U;X /
whose maximal invariant set is a single isolated periodic orbit and are able to find an
explicit gluing diffeomorphism  W @outU ! @inU such that the vector field Y induced
by X on the closed manifold M WD U= generates a transitive Anosov flow. This
example was later generalized by T Barbot, who defined a infinite family of transitive
Anosov flows which he calls BL flows. These examples are obtained by considering the
same very simple hyperbolic plug .U;X / as Bonatti and Langevin, but more general
gluing diffeomorphisms.

Theorem 1.1 naturally raises the following question (see [5, Question 1.7]): In the
statement of Theorem 1.1, is the Anosov vector field Y well defined up to orbitally
equivalence? (Recall that two Anosov flows are said to be orbitally equivalent if there
exists a homeomorphism between their phase space mapping the oriented orbits of the
first flow to the oriented orbits of the second one.) One of the main purposes of the
present paper is to provide a positive answer to this question. More precisely, we will
prove the following:

Algebraic & Geometric Topology, Volume 23 (2023)
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Ls
X

 �L
u
X

Ls
X

 �L
u
X

Figure 1: Two examples of strongly transverse gluing diffeomorphisms. On
the left-hand side, the laminations are filling. The right-hand side corresponds
to Bonatti and Langevin’s example.

Theorem 1.2 Let .U;X1;  1/ and .U;X2;  2/ be two hyperbolic plugs endowed with
strongly transverse gluing diffeomorphisms. Let Y1 and Y2 be the vector fields induced
by X1 and X2 on the closed manifolds M1 WD U= 1 and M2 WD U= 2. Suppose that :

(0) The manifolds U, M1 and M2 are orientable.

(1) Both Y1 and Y2 are transitive Anosov vector fields.

(2) The triples .U;X1;  1/ and .U;X2;  2/ are strongly isotopic.

Then the flows .Y t
1
/ and .Y t

2
/ are orbitally equivalent.

Remark 1.3 In the statement of Theorem 1.2, we do not require that the hyperbolic
plugs .U;X1/ and .U;X2/ have filling laminations. So Theorem 1.2 concerns a class of
Anosov flows which is larger than the class of Anosov flows provided by Theorem 1.1.
For example, Bonatti and Langevin’s classical example and its generalizations by
Barbot (BL flows) satisfy the hypotheses of Theorem 1.2.

Remark 1.4 On the other hand, we require the Anosov vector fields Y1 and Y2 to be
transitive. The result is probably still true without this assumption. Nevertheless, at
some point of our proof, we will need some leaves of the weak (un)stable foliations of
Y1 and Y2 to be dense. This denseness is not true in general for nontransitive Anosov
vector fields. Note that [5, Proposition 1.6] provides a sufficient condition for an
Anosov vector field constructed by gluing some hyperbolic plugs to be transitive.

Remark 1.5 A possible application of Theorem 1.2 is to get some finiteness results.
Suppose we are given a hyperbolic plug .U;X / and a diffeomorphism 0 W@

outU!@inU.
Consider the partition of the isotopy class of  0 into strong isotopy classes. Although
we did not write down a complete proof, it seems to us that this partition is finite.

Algebraic & Geometric Topology, Volume 23 (2023)
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Roughly speaking:

� The stable lamination Ls
X
DW s.ƒX /\@

inU have finitely many compact leaves
which cut @inU in finitely many annuli As

1
; : : : ;As

k
.

� The unstable lamination Lu
X
DW u.ƒX /\ @

outU have finitely many compact
leaves which cut @outU in finitely many annuli Au

1
; : : : ;Au

`
.

� It seems that (except in a finite number of some very specific situations) the strong
isotopy class of a gluing map  (isotopic to  0) only depends on whether the
annulus  .Au

i / intersects the annulus As
j for each .i; j / (which would of course

imply that there are only finitely many possible strong isotopy classes for  0.

Assume that the partition in strong isotopy classes is indeed finite. By Theorem 1.2,
this means the following: up to orbital equivalence, there are only finitely many
transitive Anosov flows that are built using the hyperbolic plug .U;X / and a gluing
map  W @outU ! @inU isotopic to  0. A further consequence should be that, if we
consider some given hyperbolic plugs .U1;X1/; : : : ; .Un;Xn/ such that U1; : : : ;Un are
hyperbolic manifolds, and if we consider a manifold M, then, up to orbital equivalence,
there should only finitely many transitive Anosov flows on M that are obtained by
gluing .U1;X1/; : : : ; .Un;Xn/.

An analog of Theorem 1.2 was proved by Barbot in the much more restrictive context
of BL flows (see [2, Theorem B(2)]). Barbot’s result can actually be considered as a
particular case of Theorem 1.2: it corresponds to the case where the maximal invariant
set of the hyperbolic plug .Ui ;Xi/ is a single isolated periodic orbit for i D 1; 2. Our
proof of Theorem 1.2 roughly follows the same strategy as that of Barbot’s result, but
is far more intricate and requires some important new ingredients since we manipulate
general hyperbolic plugs.

The proof is based on a coding procedure that we will describe now. Consider a hyper-
bolic plug .U;X / and a strongly transverse gluing diffeomorphism  W @outU ! @inU.
Let Y be the vector field induced by X on the closed manifold M WDU= , and assume
that the flow .Y t / is a transitive Anosov flow. The projection in M of @U is a closed
surface transverse to the orbits of the Anosov flow .Y t /; we denote this surface by S.
The projection in M of the entrance lamination of the plug .U;X / is a lamination in the
surface S ; we denote it by Ls . Consider the universal cover �M of the manifold M and
the lifts . zY t /, zS and zLs of .Y t /, S and Ls . We will consider the (countable) alphabet A
whose letters are the connected components of zS n zLs , and the symbolic space† whose

Algebraic & Geometric Topology, Volume 23 (2023)
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elements are bi-infinite words on the alphabet A. We will construct a coding map �
from (a dense subset of) the surface zS to the symbolic space †, commuting with the
natural actions of the fundamental group of M, and conjugating the Poincaré first return
map of the flow . zY t / on the surface zS to the shift map on the symbolic space †. If
ƒ denotes the projection in M of the maximal invariant set of the plug .U;X /, and
zƒ denotes the lift of ƒ in �M, then the map � is defined at every point of zS which is
neither in the stable nor in the unstable lamination of zƒ. This means that the dynamics
of the flow .Y t / can be decomposed into two parts: on the one hand, the orbits that
converge towards to the maximal invariant set ƒ in the past or in the future; on the
other hand, the dynamics that is well described by the coding map �.

Remark 1.6 Besides being the cornerstone of the proof of Theorem 1.2, this coding
procedure is interesting for its own sake. Indeed, it allows one to understand the
behaviour of the recurrent orbits of the Anosov flow .Y t / that intersect the surface S

(ie which do not correspond to recurrent orbits of the incomplete flow .X t /). In a
forthcoming paper [6], we will use this coding procedure to describe the free homotopy
classes of theses orbits, and build new examples of transitive Anosov flows.

Let us now explain how this coding procedure yields a proof of Theorem 1.2. For
i D 1; 2, we get a symbolic space †i and a coding map �i with values in †i . The
strong isotopy between .U;X1;  1/ and .U;X2;  2/ implies that there is a natural map
between the symbolic spaces †1 and †2. Together with the coding maps, this yields a
conjugacy between the Poincaré return maps of the flows . zY t

1
/ and . zY t

2
/ on the surfaces

zS1 and zS2. Unfortunately, this conjugacy is not well defined on the whole surfaces
zS1 and zS2. So we need to extend it. In order to do that, we introduce some (partial)
preorders on the leaf spaces of the lifts of the stable/unstable foliations of the Anosov
flows .Y t

1
/ and .Y t

2
/, and prove that the conjugacy preserves these preorders. This is

quite delicate since the coding maps �1 and �2 do not behave very well with respect to
these preorders. Once the extension has been achieved, we obtain a homeomorphism
between the orbits spaces of the flows . zY t

1
/ and . zY t

2
/ that is equivariant with respect to

the actions of the fundamental groups of the manifolds M1 and M2. Using a classical
result, this implies that the Anosov flows .Y t

1
/ and .Y t

2
/ are orbitally equivalent.

2 Coding procedure

In this section, we will consider a transitive Anosov flow obtained by gluing hyperbolic
plugs. Our goal is to define a coding procedure for the orbits of this Anosov flow.

Algebraic & Geometric Topology, Volume 23 (2023)
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Actually, this coding procedure will only describe the behaviour of the orbits which do
not remain in int.U / forever.

2.1 Setting

We consider a hyperbolic plug .U;X /. Recall that this means that U is a (not necessarily
connected)1 compact three-dimensional manifold with boundary, and X is a vector
field on U, transverse to @U, such that the maximal invariant set

ƒX WD

\
t2R

X t .U /

is a saddle hyperbolic set for the flow of X. We decompose the boundary of U as

@U WD @inU t @outU;

where @inU (resp. @outU ) is the union of the connected component of @U where X

is pointing into (resp. out of) U. The stable manifold theorem implies that W s
X
.ƒX /

and W u
X
.ƒX / are two-dimensional laminations transverse to @U. Moreover, W s

X
.ƒX /

is obviously disjoint from @outU and W u
X
.ƒX / is obviously disjoint from @inU. As a

consequence,
Ls

X WDW s
X .ƒX /\ @U DW s

X .ƒX /\ @
inU;

Lu
X WDW u

X .ƒX /\ @U DW u
X .ƒX /\ @

outU

are one-dimensional laminations embedded in the surfaces @inU and @outU, respectively.
Note that Ls

X
can be described as the set of points in @inU whose forward .X t /–orbit

remains in U forever, ie does not intersect @outU. Similarly, Lu
X

is the set of points
in @outU whose backward .X t /–orbit remains in U forever, ie does not intersect @inU.
These characterizations of Ls

X
and Lu

X
allow us to define a map

�X W @
inU nLs

X ! @outU nLu
X ;

where �X .x/ is the (unique) point of intersection the .X t /–orbit of x with the surface
@outU. Clearly, �X is a homeomorphism between @inU nLs

X
and @outU nLu

X
. We call

�X the crossing map of the plug .U;X /.

In order to create a closed manifold equipped with a transitive Anosov flow, we consider
a diffeomorphism

 W @outU ! @inU:

1Hence, a finite collection of hyperbolic plugs can always be considered as a single, nonconnected,
hyperbolic plug.
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The quotient space
M WD U= 

is a closed three-dimensional topological manifold. We denote by � W U !M the
natural projection map. The topological manifold M can equipped with a differential
structure (compatible with the differential structure of U ) so that the vector field

Y WD ��X

is well defined (and as smooth as X ). We adopt the following hypotheses:

(0) The manifolds U and M are orientable.

(1) The flow .Y t / is a transitive Anosov flow on the manifold M.

(2) The diffeomorphism  is a strongly transverse gluing diffeomorphism.

Recall that (2) means that the laminations Ls
X

and  �.Lu
X
/ are transverse in the

surface @inU and moreover that every connected component C of @inU n .Ls
X
[

 �.L
u
X
// is a topological disc whose boundary @C consists of exactly four arcs ˛s ,

˛s 0, ˛u and ˛u0, where ˛s and ˛s 0 are arcs of leaves of Ls
X

and ˛u and ˛u0 are arcs of
leaves  �.Lu

X
//.

Remark 2.1 We insist on the fact that (2) implies that every connected components of
@inU n.Ls

X
[ �.L

u
X
// is a topological disc, even if some of the connected components

of @inU n Ls
X

and @inU n  �.L
u
X
/ might be annuli (eg in Bonatti and Langevin’s

construction). Further properties which follow from (0)–(2) will be stated and proven
in Section 2.2. Anyhow, recall that the second part of [5] as well as [7] or [2] provide
many examples of hyperbolic plugs .U;X / and gluing maps  for which (0)–(2) are
satisfied.

We define

S WD �.@inU /D �.@outU /; ƒ WD �.ƒX /; Ls
WD ��.L

s
X /; Lu

WD ��.L
u
X /:

By construction, S is a closed surface, embedded in the manifold M, transverse to
the vector field Y. The set ƒ is the union of the orbits of .Y t / that do not intersect
the surface S. It is an invariant saddle hyperbolic set for the Anosov flow .Y t /.
Our assumptions imply that Ls and Lu are two strongly transverse one-dimensional
laminations in the surface S. The lamination Ls (resp. Lu) can be described as the
set of points in S whose forward (resp. backward) .Y t /–orbit does not intersect S.
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Similarly, Lu is a strict subset of W u.ƒ/\ S. The homeomorphism �X induces a
homeomorphism

� D .�j@outU / ı �X ı .�j@inU /
�1
W S nLs

! S nLu:

Note that � is nothing but the Poincaré first return map of the orbits of the Anosov
flow .Y t / on the surface S.

Since .Y t / is an Anosov flow, it comes with a stable foliation Fs and an unstable folia-
tion Fu. These are two-dimensional foliations, transverse to each other, and transverse
to the surface S. Hence, they induce two transverse one-dimensional foliations

F s
WD Fs

\S and Fu
WD Fu

\S

on the surface S. Clearly, Ls and Lu are sublaminations (ie union of leaves) of the
foliations F s and Fu, respectively.

In order to code the orbits of the Anosov flow .Y t /, we cannot work directly in the
manifold M ; we need to unfold the leaves of the laminations Ls and Lu by lifting
them to the universal cover of M. We denote this universal cover by p W �M !M, and
we denote by

zS ; zƒ; �W s.ƒ/; �W u.ƒ/; zLs; zLu; zFs; zFu; zF s; zFu

the complete lifts of the surface S, the hyperbolic set ƒ, the laminations W s.ƒ/,
W u.ƒ/, Ls and Lu, and the foliations Fs , Fu, F s and Fu. We insist that zS is the
complete lift of S ; that is, zS WDp�1.S/. In particular, zS has infinitely many connected
components. By construction, zF s and zFu are two transverse one-dimensional foliations
on the surface zS, and zLs and zLu are sublaminations of zF s and zFu, respectively. We
also lift the vector field Y to a vector field zY on M. Of course, zY is transverse to the
surface zS, so we can consider the Poincaré return map

z� W zS n zLs
! zS n zLu

of the orbits of . zY t / on the surface zS. Obviously, z� is a lift of the map � .

2.2 Connected components of zS n zLs

We next collect some information about the connected components of zS n zLs and the
action of the Poincaré map z� on these connected components. This information will be
used in Section 2.3. Let us start by the topology of the surface zS.
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Proposition 2.2 Every connected component of zS is a properly embedded topological
plane.

Proof The surface S is transverse to the Anosov flow .Y t /. Hence, S is a collection
of incompressible tori in M (see eg [8, Corollary 2.2]).

This allows us to describe the topology of the leaves of the foliations zF s and zFu:

Proposition 2.3 Every leaf of the foliations zF s and zFu is a properly embedded
topological line. A leaf of zF s and a leaf of zFu intersect in no more than one point.

Proof The first assertion follows immediately from Proposition 2.2: it is a classical
consequence of the Poincaré–Hopf theorem that the leaves of a foliation of a plane are
properly embedded topological lines.

The second assertion is again a consequence Proposition 2.2, together with the transver-
sality of the foliations zF s and zFu. To prove it, we argue by contradiction: Consider a
leaf `s of zF s and a leaf `u of zFu, and assume that `s and `u intersect at more than one
point. Then one can find two arcs ˛s � `s and ˛u � `u which share the same endpoints
and have disjoint interiors. The union ˛s [ ˛s is a simple closed curve in zS. Since
every connected component of zS is a topological plane, ˛s [˛s bounds a topological
disc C � zS. Consider two copies of C, and glue them along ˛s in order to obtain a
new topological disc D. The boundary of D is the union of two copies of ˛u, and
hence is piecewise smooth. The foliation zF s provides a one-dimensional foliation on D,
which is topologically transverse to boundary @D. This contradicts the Poincaré–Hopf
theorem.

The next three propositions below concern the action of the Poincaré map z� on the
foliations zF s and zFu and the laminations zLs and zLu. We recall that zLs and zLu are
sublaminations (ie union of leaves) of the foliations zF s and zFu, respectively.

Proposition 2.4 The Poincaré map z� W zS � zLs! zS � zLu preserves the foliations zF s

and zFu.

Remark 2.5 Proposition 2.4 states that the foliation . zF s/j zS�zLs is mapped by z� to
the foliation . zF s/j zS�zLu . The leaves of . zF s/j zS�zLs are full leaves of the foliation zF s .
On the contrary, a leaf of the foliation . zF s/j zS�zLu is never a full leaf of zF s (because
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every leaf of zF s is “cut into infinitely many pieces” by the transverse lamination zLu).
As a consequence, z� maps leaves of zF s to pieces of leaves of zF s . Similarly, z� maps
pieces of leaves of zFu to full leaves of zFu.

Proof of Proposition 2.4 Recall that zF s is defined as the intersection of the foliation
zFs with the transverse surface zS. The foliation zFs is leafwise invariant under the
flow . zY t /. As a consequence, zF s D zFs \ zS is invariant under the Poincaré return map
of . zY t / on zS.

Proposition 2.6 For every n � 0,
Sn

pD0
z��p. zLs/ is a closed sublamination of the

foliation zF s .

Proof The foliation zF s is invariant under the Poincaré map z� W zS � zLs ! zS � zLu.
Since zLs is a union of leaves of zF s , it follows that z��1. zLs/ is a union of leaves
of zF s . Moreover, since zLs is a closed subset of zS, its preimage z��1. zLs/ must be
a closed subset of zS � zLs (remember that z� is well defined on zS � zLs). ThereforeS1

pD0
z��p. zLs/ is a closed subset of zS. So

S1
pD0
z��p. zLs/ is a closed union of leaves

of zF s , ie a closed sublamination of zF s . Repeating the same arguments, one proves by
induction that

Sn
pD0
z��p. zLs/ is a closed sublamination of zF s for every n� 0.

Proposition 2.7
1[

pD0

z��p. zLs/D �W s.ƒ/\ zS :

Proof By definition, W s.ƒ/\S is the set of all points x 2 S such that the forward
orbit of x converges towards the set ƒ, which is disjoint from S. As a consequence,
for every point x 2W s.ƒ/\S, the forward orbit of x intersects the surface S only
finitely many times, say p.x/ times. We have observed that Ls is the set of all points
y 2 S such that the forward orbit of y does not intersect S and converges towards the
set ƒ (see Section 2.1). It follows that, for every x 2W s.ƒ/\S, the last intersection
point �p.x/ of the forward orbit of x with S is in Ls . This proves the inclusion
W s.ƒ/ \ S �

S1
pD0 �

�p.Ls/. The converse inclusion is straightforward. Hence,S1
pD0 �

�p.Ls/DW s.ƒ/\S. The equality
S1

pD0
z��p. zLs/D �W s.ƒ/\ zS follows

by lifting to the universal cover.

Of course, �W s.ƒ/ \ zS and �W u.ƒ/ \ zS are unions of leaves of the foliations zF s

and zFu, respectively. But these sets are not closed. More precisely:

Proposition 2.8 Both �W s.ƒ/\ zS and zS � �W s.ƒ/ are dense in zS.
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D

D

Figure 2: Left: a proper stable strip. Right: a trivially bifoliated proper stable strip.

Proof Recall that .Y t / is a transitive Anosov flow on M. Hence, every leaf of the weak
stable foliation Fs is dense in M. Since both W s.ƒ/ and M nW s.ƒ/ are nonempty
unions of leaves of the foliation Fs , and since the leaves of Fs are transversal to the
surface S, it follows that both W s.ƒ/\S and S nW s.ƒ/ are dense in S. Lifting to
the universal cover, we obtain that �W s.ƒ/\ zS and zS � �W s.ƒ/ are dense in zS.

Of course, the analogs of Propositions 2.6, 2.7 and 2.8 for zLu and W u.zƒ/ hold
(z��p should be replaced by z�p in Propositions 2.6 and 2.7). We will now describe the
topology of the connected components of zS n zLs . We first introduce some vocabulary.

Definition 2.9 We call a proper stable strip every topological open disc D of zS whose
boundary is the union of two leaves of the foliation zF s .

If D is a proper stable strip, one can easily construct a homeomorphism h from the
closure of D to R� Œ�1; 1�. We will need the following stronger notion:

Definition 2.10 We say that a proper stable strip D is trivially bifoliated if there exists
a homeomorphism h from the closure of D to R� Œ�1; 1� mapping the foliations zF s

and zFu to the horizontal and vertical foliations on R� Œ�1; 1�.

Of course, proper unstable strips and trivially bifoliated proper unstable strips can
be defined similarly. The proposition below gives a fairly precise description of the
positions of the connected components of zS � zLs with respect to the foliations zF s

and zFu:

Proposition 2.11 Every connected component of zS� zLs is a trivially bifoliated proper
stable strip bounded by two leaves of the lamination zLs .
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Proof Let D be a connected component of zS � zLs . Denote by P the connected
component of zS containing D. Since P is a topological plane (Proposition 2.2), and
since each leaf of zLs is a properly embedded topological line (Proposition 2.3) which
separates P into two connected components, it follows that D is a topological disc.
The boundary of D is a union of leaves of zLs (which we call the boundary leaves
of D). We denote by D the closure of D.

Claim 1 Let `u be a leaf of the foliation zFu intersecting D, and ˛u be a connected
component of `u\D. Then ˛u is an arc joining two different boundary leaves of D.

Let R be a connected component of D n zLu such that ˛u is included in the closure R

of R (actually R is unique, but we will not use this fact). Observe that R is a connected
component of zS � . zLs [ zLu/. Our assumptions (specifically the strong transversality
of the gluing map  ) imply that R is a relatively compact topological disc whose
boundary @R is made of four arcs ˛s

�, ˛s
C, ˛u

� and ˛u
C, where ˛s

� and ˛s
� are disjoint

and lie in some leaves of zLs , and where ˛u
� and ˛u

C are disjoint and lie in some leaves
of zLu. Loosely speaking, R is a rectangle with two sides ˛s

� and ˛s
C in zLs and two

sides ˛u
� and ˛u

C in zLu. Proposition 2.3 implies that `u intersects ˛s
� and ˛s

C at no
more than one point. Since `u is a proper line and R is a compact set, it follows that
˛u must be an arc going from ˛s

� to ˛s
C. Using again Proposition 2.3, it also follows

that ˛s
� to ˛s

C cannot be in the same leaf of zF s . The claim is proved.

Claim 2 D has exactly two boundary leaves.

In order to prove this claim, we endow the foliation zFu with an orientation (this is
possible since zFu is a foliation on a collection of topological planes). For every x 2D,
we denote by `u.x/ the leaf of the foliation zFu passing through x, and denote by
˛u.x/ the connected component of `u

x \D containing x. Note that `u.x/ and ˛u.x/

are oriented by the orientation of zFu. By Claim 1, ˛u.x/ is an arc whose endpoints
lie on two boundary leaves `s

�.x/ and `s
C.x/ of D. By transversality of the foliations

zFu and zF s , the maps x 7! `s
�.x/ and x 7! `s

C.x/ are locally constant. Since D is
connected, these maps are constant. In other words, one can find two boundary leaves
`s
� and `s

C of D such that ˛u.x/ is an arc from `s
� to `s

C for every x 2D. It follows
that `s

� and `s
C are the only accessible boundary leaves of D: otherwise, one can

consider another boundary leaf `s , take a point x 2 `s , and get a contradiction since
one end of ˛u

x is on `s . As a further consequence, the accessible boundary of D is
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closed (recall that `s
� and `s

C are properly embedded lines), and therefore coincides
with the boundary of D. We finally conclude that `s

� and `s
C are the only boundary

leaves of D, and Claim 2 is proved.

Claims 1 and 2 already imply that D is a proper stable strip bounded by two leaves
`s
� and `s

C of zLs . We are left to prove that D is trivially bifoliated. Recall that zS
is a topological plane (Proposition 2.2), and that `s

� and `s
C are properly embedded

topological lines (Proposition 2.3). By easy planar topology, it follows that there exists
a homeomorphism h from D to R � Œ�1; 1� mapping `s

� and `s
C to R � f�1g and

R�f1g, respectively. Claim 1 implies that h�. zF
u

D
/ is a foliation of R� Œ�1; 1� by arcs

going from R� f�1g and R� f1g. One can easily construct a self-homeomorphism
h0 of R� Œ�1; 1� mapping this foliation on the vertical foliation of R� Œ�1; 1�. Up
to replacing h by h0 ı h, we will assume that h maps zFu

D
on the vertical foliation of

R� Œ�1; 1�. Now we consider a leaf `s of the foliation zF s included in D. According to
Proposition 2.3, `s intersects each leaf of zFu at no more than one point. Hence, h.`s/

intersects each vertical segment in R� Œ�1; 1� at no more than one point. Let E be the
set of t 2R such that h.`s/ intersects the vertical segment ftg � Œ�1; 1�. Since `s is a
proper topological line transversal to zFu, the set Et must be open and closed in R.
Therefore, h.`s/ intersects every vertical segment in R� Œ�1; 1� at exactly one point.
In other words, the leaves of h�. zF

s

D
/ are graphs over the first coordinate in R� Œ�1; 1�.

One can easily modify the homeomorphism h so that h�. zF
s

D
/ is the horizontal foliation

of R� Œ�1; 1�. Hence, D is a trivially bifoliated proper stable strip.

Of course, the unstable analog of Proposition 2.11 holds true: every connected compo-
nent of zS � zLu is a trivially bifoliated proper unstable strip bounded by two leaves of
the lamination zLu. On the other hand, z� maps connected components of zS � zLs to
connected component of zS � zLu. So, we obtain:

Corollary 2.12 If D is a connected component of zS � zLs , then z�.D/ is a trivially
bifoliated proper unstable strip , disjoint from zLu, bounded by two leaves of the lamina-
tion zLu.

The following proposition describes the action of z� on the connected components of
zS � zLs:

Proposition 2.13 Let D be a connected component of zS � zL, and D0 be any trivially
bifoliated proper stable strip. Assume that D\z��1.D0/ is nonempty. Then D\z��1.D0/

is a trivially bifoliated proper stable substrip of D.
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D\ z��1.D0/

D
z��1

zLu
D0

zFu

z�.D/

zF s

z�.D/\D0

zLu

Figure 3: The proof of Proposition 2.13.

Proof We call a trivially bifoliated rectangle every topological open disc R � zS

such that there exists a homeomorphism from the closure of R to Œ�1; 1�2 mapping
the restrictions of zF s and zFu to the horizontal and vertical foliations of Œ�1; 1�2. In
particular, the boundary of such a trivially bifoliated rectangle is made of two stable
sides and two unstable sides.

According to Corollary 2.12, z�.D/ is a trivially bifoliated proper unstable strip, disjoint
from zLu, bounded by two leaves of zLu. By assumption, D0 is a trivially bifoliated
proper stable strip. It easily follows that z�.D/\D0 is a trivially bifoliated rectangle,
disjoint from zLu, whose unstable sides are in zLu (see Figure 3). Observe that the
interiors of two stable sides of z�.D/\D0 are full leaves of zF sj zS�zLu . Hence:

.?/ �.D/\D0 is a connected subset of �.D/ and the boundary of �.D/\D0 in �.D/
is made of two disjoint leaves of zF sj zS�zLu .

Now recall that z��1 is a homeomorphism from zS � zLu to zS � zLs , mapping leaves of
zF sj zS�zLu to full leaves of zF s (see Proposition 2.4 and Remark 2.5). Also observe that
D\ z��1.D0/ is a subset of D. As a consequence, property .?/ implies:

.?0/ D\ z��1.D0/ is a connected subset of D, and the boundary of D\ z��1.D0/ is
made of two disjoint leaves of zF s .

Since D is a trivially foliated proper stable strip D, Property .?0/ clearly implies that
D\ z��1.D0/ is a trivially bifoliated proper stable substrip of D. See Figure 3.
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2.3 The coding procedure

In this section, we will use the connected components of zS n zLs to describe the itinerary
of the orbits the flow . zY t / that do not belong to �W s.ƒ/[ �W u.ƒ/. We consider the
alphabet

A WD fconnected components of zS n zLs
g;

and the symbolic spaces

†s
D fDs

D .Dp/p�0 jDp 2A and z�.Dp/\DpC1 ¤∅ for every pg;

†u
D fDu

D .Dp/p<0 jDp 2A and z�.Dp/\DpC1 ¤∅ for every pg;

†D fD D .Dp/p2Z jDp 2A and z�.Dp/\DpC1 ¤∅ for every pg:

In order to define the coding maps, we need to introduce some leaf spaces. We will
denote by f s the leaf space of the foliation zF s (equipped with the quotient topology).
We will denote by f s;1 the subset of f s made of the leaves that are not in �W s.ƒ/.
Similarly, we denote by f u the leaf space of zFu, and by f u;1 the subset fo f u made
of the leaves that are not in �W u.ƒ/. Finally, we denote by zS1 the set of points in zS
that are neither in �W s.ƒ/ nor in �W u.ƒ/. That is,

f s;1
D fleaves of zF s that are not in �W s.ƒ/g;

f u;1
D fleaves of zFu that are not in �W u.ƒ/g;

zS1 D zS � . �W s.ƒ/[ �W u.ƒ//:

By Proposition 2.7, if `s 2 f s;1, then z�p.`s/ is included in a connected component
of zS � zLs for every p � 0. Similarly, if `u 2 f u;1, then z�p.`u/ is included in a
connected component of zS � zLu for every p � 0. Since z��1 maps homeomorphically
zS� zLu to zS� zLs , we deduce that, if `u 2f u;1, then z�p.`u/ is included in a connected
component of zS � zLs for every p < 0. As a further consequence, if x is a point of zS1,
then z�p.x/ is in a connected component of zS � zLs for every p 2 Z. This shows that
the following coding maps are well defined:

�s
W f s;1

!†s; `s
7!Ds

D .Dp/p�0; where z�p.`s/�Dp for every p � 0I

�u
W f u;1

!†u; `u
7!Du

D .Dp/p<0; where z�p.`u/�Dp for every p < 0I

� W zS1!†; x 7!D D .Dp/p2Z; where z�p.x/ 2Dp for every p 2 Z:

The following proposition is an important ingredient of the proof of Theorem 1.2:

Proposition 2.14 The maps �s , �u and � are bijective.
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Lemma 2.15 (1) For every Ds D .Dp/p�0 2 †
s , the set

T
p�0
z��p.Dp/ is a

stable leaf `s 2 f s;1.

(2) For every Du D .Dp/p<0 2 †
u, the set

T
p<0
z��p.Dp/ is an unstable leaf

`u 2 f u;1.

(3) For every DD .Dp/p2Z 2†, the set
T

p2Z
z��p.Dp/ is a single point x 2 zS1.

Remark 2.16 Lemma 2.15 is completely false if we replace the connected components
of zSn zLs by the connected components of SnLs (and z� by � ). For example, if .Dp/p�0

is a sequence of connected components of S nLs , then
T

p�0 �
�p.Dp/, if not empty,

will be the union of uncountably many leaves of the foliation F s . This is the reason
why we need to work in the universal cover of M.

Proof of Lemma 2.15 Let us prove the first item. Consider a sequence Ds D

.Dp/p�0 2 †
s . By Proposition 2.11, D0 is a trivially bifoliated proper stable strip.

Proposition 2.13 and a straightforward induction imply that, for every n 2 N, the
set

Tn
pD0
z��p.Dp/ is a substrip of D0. So

�Tn
pD0
z��p.Dp/

�
n�0

is a decreasing
sequence of substrips of the trivially bifoliated proper stable strip D0. It easily follows
that

T
p�0
z��p.Dp/ is a substrip of D0. In particular,

T
p�0
z��p.Dp/ is a connected

union of leaves of zF s . On the other hand, since D0;D1; : : : are connected components
of zS � zLs , the set

T
�0
z��p.Dp/ is disjoint from

S
p�0
z��p. zLs/D �W s.ƒ/\ zS (see

Proposition 2.7). But �W s.ƒ/ \ zS is dense in zS (Proposition 2.8). It follows thatT
p�0
z��p.Dp/ must be a single leaf of zF s . This completes the proof of (1).

Item (2) follows from exactly the same arguments as (1). In order to prove the last item,
we consider a sequence D D .Dp/p2Z in †. According to (1)–(2),

T
p�0
z��p.Dp/

is a leaf `s of the foliation zF s and
T

p<0
z��p.Dp/ is a leaf `u of the foliation zFu.

Since D D .Dp/p2Z is in †, the intersection D0 \
z� .D�1/ is not empty. Since D0

is a trivially bifoliated proper stable strip (Proposition 2.11) and z� .D�1/ is a trivially
bifoliated proper unstable strip (Corollary 2.12), every leaf of zF s in D0 intersects every
leaf of zFu in z�.D�1/ at exactly one point. In particular,

T
p2Z
z��p.Dp/D `

s \ `u

is made of exactly one point x. Since the leaves `s and `u are disjoint from �W s.ƒ/

and �W u.ƒ/, respectively, the point x must be in zS1.

Proof of Proposition 2.14 Lemma 2.15 allows us to define some inverse maps for �s ,
�u and �. Therefore, �s , �u and � are bijective.
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Deck transformation preserve the surface zS, the foliations zFs and zFu, and the lamina-
tions W s.zƒ/ and W u.zƒ/. This induces some natural actions of �1.M / on the set zS1,
on the leaf spaces f s;1 and f u;1, on the alphabet A, and therefore on the symbolic
spaces †, †s and †u. From the definition of the coding maps, one easily checks that:

Proposition 2.17 The coding maps �, �s and �u commute with the actions of the
fundamental group of M on zS1 f s , f u, † †s and †u.

The definition of the coding maps also implies that:

Proposition 2.18 The coding map � (resp. �s and �u) conjugates the action of the
Poincaré first return map z� on zS1 (resp. f s and f u) to the left shift on the symbolic
space † (resp. †s and †u).

Given an integer n� 0 and some connected components D0
0
; : : : ;D0

n of zS � zLs , we
define the cylinder

ŒD0
0 : : :D

0
n �

s
WD f.Dp/p�0 2†

s
jDp DD0

p for 0� p � ng:

Similarly, given n< 0 and some connected components D0
n ; : : : ;D

0
�1

of zS � zLs , we
define the cylinder

ŒD0
n : : :D

0
�1�

u
WD f.Dp/p<0 2†

u
jDp DD0

p for n� p � �1g:

The following proposition will be used in the next subsection:

Proposition 2.19 (1) For n� 0 and D0; : : : ;Dn 2A, the set

.�s/�1.ŒD0D1 : : :Dn�
s/D

\
0�p�n

z��p.Dp/

is either empty or a substrip of the trivially foliated proper stable strip D0

bounded by two leaves of z��n. zLs/.

(2) For n< 0 and Dn; : : : ;D�1 2A, the set

.�u/�1.ŒDnDnC1 : : :D�1�/D
\

�n�p��1

z��pC1.Dp/

is a substrip of the trivially foliated proper unstable strip z�.D�1/ bounded by
two leaves of z�K�1. �Lu/.

Proof This follows from the arguments of the proof of Lemma 2.15.
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2.4 Partial orders on the leaf spaces and the symbolic spaces

We will now describe a partial preorder on the leaf space f s . The preservation of
this partial preorder will be a fundamental ingredient of our proof of Theorem 1.2 in
Section 3.

Let us start by choosing some orientations. First of all, we choose an orientation of the
hyperbolic plug U. The orientation of U, together with the vector field X, provides an
orientation of @U : if ! is a 3–form defining the orientation on U, then the 2–form iX U

defines the orientation on @U. The orientation of U induces an orientation of the
manifold M D U= (we have assumed that the manifold M is orientable, which is
equivalent to assuming that the gluing map  preserves the orientation of @U ), and
the orientation of @U induces an orientation of the surface S D �.@inU /D �.@outU /.
The orientations of M and S induce some orientations on �M and zS. Now, since every
connected component of zS is a topological plane, the foliation zF s is orientable. We fix
an orientation of zF s . This automatically induces an orientation of the foliation zFu as
follows: the orientation of zFu is chosen so that, if Zs and Zu are vector fields tangent
to zF s and zFu, respectively, and pointing in the direction of the orientation of the leaves,
then the frame field .Zs;Zu/ is positively oriented with respect to the orientation of zS.

Remarks 2.20 (1) By construction, the orientations of the manifold �M and the
surface zS are related as follows: if ! is a 3–form defining the orientation on �M,
then the 2–form i zY

�M defines the orientation on zS. As a consequence, the
Poincaré return map z� of the orbits of zY on zS preserves the orientation of zS.

(2) Consequently, for any connected component D of zS � zLs , if the Poincaré map
z� jD preserves (resp. reverses) the orientation of the foliation zF s , then it also
preserves (resp. reverses) the orientation of the foliation zFu.

Let ` be a leaf of the foliation zF s , contained in a connected component zS` of zS.
Recall that zS` is a topological plane, and ` is a properly embedded line in zS`. As a
consequence, zS` n ` has two connected components.

Definition 2.21 We denote by L.`/ and R.`/ the two connected components of zS n `
so that the oriented leaves of zFu crossing ` go from L.`/ towards R.`/. The points
of L.`/ are said to be on the left of `; the points of R.`/ are said to be on the right of `.

Now we can define a preorder on the leaf space f s .
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Definition 2.22 (preorder on f s) Given two leaves `¤ `0 of the foliation zF s , we
write `� `0 if there exists an arc of a leaf of zFu with endpoints a 2 ` and a0 2 `0 such
that the orientation of zFu goes from a towards a0.

Proposition 2.23 � is a preorder on f s: the relations `� `0 and `0 � ` are incompati-
ble.

Proof The relation ` � `0 implies that the leaf `0 is on the right of `; that is, `0 �
R.`/. Similarly, the relation `� `0 implies `0 �L.`/. The proposition follows since
L.`/\R.`/D∅.

The proposition below is very easy to prove, but fundamental (it will be used in a
crucial way to extend some conjugating maps in the next section, see Corollary 3.12):

Proposition 2.24 � is a local total order on f s: for every leaf `0 of zF s , there exists
a neighbourhood V0 of `0 in f s such that any two different leaves `; `0 2 V0 are
comparable (ie satisfy either `� `0 or `0 � `).

Proof Consider a leaf `0 of zF s and a leaf `u of zFu such that `u \ `0 ¤ ∅. By
transversality of the foliations zF s and zFu, there exists a neighbourhood V0 of `0 in f s

such that `u crosses every leaf in V0. As a consequence, any two different leaves
`; `0 2 V0 are comparable for the preorder �.

The proposition below shows that the preorder � is “compatible” with the connected
components decomposition of zS � zLs:

Proposition 2.25 Given two different elements D and D0 of A, the following are
equivalent :

(1) There exist some leaves `0; `
0
0
2 f s such that `0 �D, `0

0
�D0 and `0 � `

0
0
.

(2) All leaves `; `0 2 f s such that `�D and `0 �D0 satisfy `� `0.

Proof Assume that (1) is satisfied. Since `0 � `
0
0
, there must be a leaf `u of the

foliation zFu intersecting both `0 and `0
0
. Proposition 2.11 implies that ˛ WD `u\D and

˛0 WD `u\D0 are two disjoint arcs in the leaf `u. Consider some leaves ` and `0 of zF s

contained in D and D0, respectively. Again Proposition 2.11 implies that ` intersects `u

at some point a` 2 ˛ and `0 intersects `u at some point a`0 2 ˛
0. Since `0 � `

0
0
, the

orientation of `u goes from ˛ towards ˛0, and hence from a` towards a`0 . This shows
that `� `0.
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Definition 2.26 (preorder on A) Given two different elements D and D0 of A, we
write D � D0 if there exist some leaves `0; `

0
0
2 f s such that `0 � D, `0

0
� D0 and

`0 � `
0
0
.

Definition 2.27 (preorder on†s) The partial preorder� on A induces a lexicographic
partial preorder on †s � AN , which will also be denoted by � : for D D .Dp/p�0

and D0 D .D0p/p�0 in †s , we write D � D0 if and only if there exists p0 � 0 such
that Dp DD0p for p 2 f0; : : : ;p0� 1g and Dp0

�D0p0
.

We have defined a preorder on the leaf space f s (Definition 2.22) and a preorder on the
symbolic space †s (Definition 2.27). It is natural to wonder whether the coding map
�s W f s;1!†s is compatible with these preorders or not. For pedagogical reasons, we
first consider the simple situation where the two-dimensional foliation Fu is orientable:

Proposition 2.28 Assume that the unstable foliation Fu is orientable. Then the coding
map �s W f s;1!†s preserves the preorders , ie for `; `0 2 f s;1, `� `0 if and only if
�s.`/� �s.`0/.

Proof Since the two-dimensional foliation Fu is orientable, its lift zFu is also orientable.
Recall that the vector field zY is tangent to the leaves of the foliation zFu. So the
orientability of the two-dimensional foliation zFu implies that the return map z� of
the orbits of the vector field zY on the surface zS preserves the orientation of the
one-dimensional foliation zFu D zFu\ zS.

Consider two leaves `; `0 2 f s;1 such that `� `0. Let �s.`/D .Dp/p�0 and �s.`/D

.D0p/p�0. Recall that this means that

`D
\
p�0

z��p.Dp/ and `0 D
\
p�0

z��p.D0p/:

Consider the integer p0 Dminfp � 0 jDp ¤D0pg and the set

yD WD

p0�1\
pD0

z��p.Dp/:

Both the leaves ` and `0 are included in yD, and, according to Proposition 2.19, yD is
a trivially bifoliated proper stable strip. So we can consider an arc ˛u of a leaf `u

of the foliation zFu such that ˛u is included in the trivially bifoliated proper stable
strip yD and the ends a and a0 of ˛u are on ` and `0, respectively. Since ` � `0,
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the orientation of zFu goes from a towards a0. Now observe that yD is a connected
component of zS �

Sp0�1
pD0

z�p. zLs/. As a consequence, the map z�p0 is well defined
on zD. In particular, we can consider ˇu WD z�p0.˛u/. Observe that ˇu is an arc of a
leaf of the foliation zFu. Its ends b WD z�p0.a/ and b0 WD z�p0.a0/ are respectively in
z�p0.`/�Dp0

and z�p0.`0/�D0p0
. Since the return map z�p0 preserves the orientation

of the foliation zFu, the orientation of zFu goes from b towards b0. It follows that
z�p0.`/� z�p0.`0/ and therefore Dp0

�D0p0
. As a further consequence,

�s.`/D .D0;D1; : : : ;Dp0�1;Dp0
; : : : /� .D0;D1; : : : ;Dp0�1;D

0
p0
; : : : /D �s.`0/:

This completes the proof of the implication ` � `0 D) �s.`/ � �s.`0/. The converse
implication follows from the very same arguments in reversed order.

In general, the relationship between the order on the leaf space f s and the symbolic
space †s is more complicated:

Proposition 2.29 Let ` and `0 be two different elements of f s;1. Let .Dp/p�0 WD

�s.`/ and .D0p/p�0 WD �
s.`0/. Let p0 be the smallest integer p such that Dp ¤D0p.

(1) If the map z�p0 jTp0�1

pD0
z��p.Dp/

preserves the orientation of the foliation zFu, then

`� `0 () Dp0
�D0p0

() �s.`/� �s.`0/:

(2) If the map z�p0 jTp0�1

pD0
z��p.Dp/

reverses the orientation of the foliation zFu, then

`� `0 () D0p0
�Dp0

() �s.`0/� �s.`/:

Proof The arguments are exactly the same as in the proof of Proposition 2.28.

3 Topological equivalence of Anosov flows

We will now prove Theorem 1.2 with the help of the coding procedure implemented in
Section 2.

3.1 A simplification

We begin by explaining why it is enough to prove Theorem 1.2 in the particular case
where the vector fields X1 and X2 coincide.

Algebraic & Geometric Topology, Volume 23 (2023)



A uniqueness theorem for transitive Anosov flows obtained by gluing hyperbolic plugs 2695

Let .U;X1;  1/ and .U;X2;  2/ be two triples satisfying the hypotheses of Theorem 1.2.
In particular, .U;X1;  1/ and .U;X2;  2/ are strongly isotopic. This means that there
exists a continuous one-parameter family f.U;Xt ;  t /gt2Œ1;2� such that .U;Xt / is a
hyperbolic plug and  t W @

outU ! @inU is a strongly transverse gluing map for every t .
By standard hyperbolic theory, hyperbolic plugs are structurally stable. Hence, this
means that we can find a continuous family .ht /t2Œ1;2� of self-homeomorphisms of U

such that h1 D Id and ht induces an orbital equivalence between X1 and Xt . For
t 2 Œ1; 2�, define

y t WD .ht j@inU /
�1
ı t ı .ht j@outU /

and observe that y 1 D  1. For sake of clarity, let X WDX1. Then:

� The triples .U;X; y 1/ and .U;X; y 2/ are strongly isotopic; the strong isotopy
is given by the continuous path f.U;X; y t /gt2Œ1;2�.

� For t 2 Œ1; 2�, the flow induced by the vector field X on the manifold �Mt WDU= y t

is orbitally equivalent to the flow induced by the vector field Xt on the manifold
Mt WD U= t ; the orbital equivalence is induced by the homeomorphism ht .

This shows that the hypotheses and the conclusion of Theorem 1.2 are satisfied for
the triples .U;X1;  1/ and .U;X2;  2/ if and only if they are satisfied for the triples
.U;X; y 1/ and .U;X; y 2/. This allows us to replace the vector fields X1 and X2 by a
single vector field X in the proof of Theorem 1.2.

3.2 Setting

From now on, we consider a hyperbolic plug .U;X / endowed with two strongly trans-
verse gluing diffeomorphisms 1;  2 W@

outU!@inU. We denote byƒ WD
T

t2R X t .U /

the maximal invariant set of the plug .U;X /. For i D 1; 2, the quotient space
Mi WD U= i is a closed three-dimensional manifold, and X induces a vector field Yi

on Mi . We assume that the hypotheses of Theorem 1.2 are satisfied; that is:

(0) The manifolds U, M1 and M2 are orientable.

(1) For i D 1; 2, the flow .Y t
i / of the vector field Yi is a transitive Anosov flow.

(2) The gluing maps  1 and  2 are strongly isotopic, ie there exists an isotopy
. s/s2Œ1;2� such that, for every s, the laminations Ls and  s.L

u
X
/ are strongly

transverse.

In order to prove Theorem 1.2, we have to construct a homeomorphism H WM1!M2

mapping the oriented orbits of the Anosov flow .Y t
1
/ to the orbits of the Anosov

flow .Y t
2
/. The construction will be divided into several steps.
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3.3 Starting point of the construction: diffeomorphisms�in; �out W S1 ! S2

For i D 1; 2, we denote by �i the projection of U on the closed three-dimensional
manifold Mi D U= i . We denote by

Si D �i.@
inU /D �i.@

outU /

the projection of the boundary of U. The surface Si is endowed with the strongly
transverse laminations

Ls
i WD �i.L

s
X / and Lu

i WD �i.L
u
X /:

The maps �i j@inU W @
inU ! Si and �i j@outU W @

outU ! Si are invertible. This provides
us with two diffeomorphisms

�in WD�2j@inU ı.�1j@inU /
�1
WS1!S2 and �out WD�2j@outU ı.�1j@outU /

�1
WS1!S2:

The diffeomorphisms �in and �out are the starting point of our construction. Observe
that, at this step, we are very far from getting an orbital equivalence. Indeed, �in and �out

are in no way compatible with the actions of the flows .Y t
1
/ and .Y t

2
/ (ie they do not

conjugate the Poincaré return maps of .Y t
1
/ and .Y t

2
/ on the surfaces S1 and S2).

Nevertheless, the definitions of the diffeomorphisms �in and �out imply that

�in.L
s
1/D �2j@inU ı .�1j@inU /

�1.Ls
1/ D �2.L

s
X /DLs

2:

�out.L
u
1/D �2j@outU ı .�1j@outU /

�1.Lu
1/D �2.L

u
X /DLu

2:

Remark 3.1 Be careful: in general, �in.L
u
1
/¤Lu

2
and �out.L

s
1
/¤Ls

2
.

On the other hand, the strong isotopy connecting the gluing maps  1 and  2 can be
used to construct an isotopy between the diffeomorphisms �in and �out:

Proposition 3.2 There exists a continuous family .�t /t2Œ0;1� of diffeomorphisms from
S1 to S2 such that �0 D �out, such that �1 D �in and such that the laminations �t .L

u
1
/

and Ls
2

are strongly transverse for every t .

Proof By assumption, the gluing maps  1 and  2 are connected by a continuous path
. s/s2Œ1;2� of diffeomorphisms from @outU to @inU such that the laminations  s.L

u/

and Ls are strongly transverse for every s. For t 2 Œ0; 1�, we set

�t WD �2j@outU ı 
�1
2 ı 2�t ı .�1j@outU /

�1:

From this formula, we immediately get

�0 D �2j@outU ı .�1j@outU /
�1
D �out:
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Plugging the equality �i j@inU ı i D �i j@outU into the definition of �1, we get

�1 D �2j@outU ı 
�1
2 ı 1 ı .�1j@outU /

�1
D �2j@inU ı .�1j@inU /

�1
D �in:

We know that the laminations Ls
X

and  2�t .L
u
X
/ are strongly transverse for every t .

As a consequence, the laminations

�2j@outU ı 
�1
2 .Ls

X /D �2j@inU .L
s
X /DLs

2

and
�2j@outU ı 

�1
2 ı 2�t .L

u
X /D �t ı�1j@outU .L

u
X /D �t .L

u
1/

are strongly transverse for every t .

It is important to observe that the diffeomorphism �in can be obtained as the restriction
of a diffeomorphism from M1 to M2:

Proposition 3.3 The diffeomorphism �in W S1 ! S2 is the restriction of a diffeo-
morphism ˆin WM1!M2.

Proof Once again, we use the existence of a continuous path . s/s2Œ1;2� of diffeo-
morphisms from @outU to @inU connecting the gluing maps  1 and  2. We consider a
collar neighbourhood V of @outU in U, and a diffeomorphism � W @outU � Œ0; 1�! V

of V such that �.@outU � f0g/D @outU. We define a diffeomorphism x̂ in W U ! U by
setting x̂ in.�.x; t// WD  

�1
2�t
ı 1.x/ for every .x; t/ 2 @outU � Œ0; 1�, and x̂ in D Id on

U nV. By construction, this diffeomorphism satisfies

x̂ in D

�
Id on @inU;

 �1
2
ı 1 on @outU:

As a consequence, the relation �2 ı
x̂ in D x̂ in ı�1 holds, and therefore x̂ in induces

a diffeomorphism ˆin WM1!M2. Since x̂ in D Id on @inU, it follows that ˆinjS1
D

�2j@inU ı .�2j@inU /
�1 D �in, as desired.

Now, we introduce the return maps on the surface S1 and S2. We first consider the
crossing map of the plug .U;X /

�X W @
inU nLs

! @outU nLu:

By definition, �X .x/ is the unique intersection point of the forward .X t /–orbit of the
point x with the surface @outU. For i D 1; 2, the map �X induces a map

�i WD �i j@outU ı �X ı .�i j@inU /
�1
W Si nLs

i ! Si nLu
i :

This map �i is just the Poincaré return map of the flow .Y t
i / on the surface Si .
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Proposition 3.4 The diffeomorphisms �1, �2, �in and �out are related by

�2 ı�in D �out ı �1:

Proof This follows immediately from the formulas defining �1, �2, �in and �out.

Now we lift all the objects to the universal covers of M1 and M2. We pick a point
x12M1 which will serve as the basepoint of the fundamental group of the manifold M1.
The point x2 WD ˆin.x1/ will be used as the basepoint of fundamental group of the
manifold M2. The diffeomorphism ˆin provides us with an isomorphism .ˆin/�

between the fundamental groups �1.M1;x1/ and �1.M2;x2/. For i D 1; 2, we denote
by pi W

�Mi !Mi the universal cover of the manifold Mi . We denote by zYi the lift of
the vector field Yi on �Mi . Observe that zYi is equivariant under the action of �1.Mi ;xi/:
for  2 �1.Mi ;xi/, one has zYi. Qx/DD Qx: zYi. Qx/. We denote by zSi the complete lift
of the surface Si (ie zSi WD p�1

i .Si/).

We denote by zLs
i and zLu

i the complete lifts of the laminations Ls
i and Lu

i . We denote
by

z�i W
zSi n
zLs

i !
zSi nLu

i

the first return map of the flow of the vector field zYi on the surface zSi . Clearly, z�i is a
lift of the map �i . Moreover, z�i commutes with the deck transformations:

(1) z�i ı  D  ı z�i for every  2 �1.Mi ;xi/:

This commutation relation is an immediate consequence of the equivariance of zYi

(see above). Now we fix a lift ẑ in W �M1!
�M2 of the diffeomorphism ˆin (note that,

unlike what happens for �1 and �2, there is no canonical lift of ˆin). Recall that the
diffeomorphism ˆin maps the surface S1 to the surface S2, and that the restriction
of ˆin to S1 coincides with �in. As a consequence, the lift ẑ in maps the surface zS1

to zS2, and the restriction of ẑ in to zS1 is a lift z�in of the diffeomorphism �in. By
construction, this lift satisfies

(2) z�in ı  D .ˆin/�. / ı z�in for every  2 �1.M1;x1/:

Now recall that, according to Proposition 3.2, there exists a continuous arc .�t /t2Œ0;1�

of diffeomorphisms from S1 to S2 such that �0 D �in and �1 D �out, and such that the
laminations �t .L

u
1
/ and Ls

2
are strongly transverse for every t . We lift this isotopy,

starting at the lift z�in of �in D �0. This yields a continuous arc .z�t /t2Œ0;1� of diffeo-
morphisms from zS1 to zS2 such that z�0 D

z�in and such that the laminations z�t . zL
u
1
/

and zLs
2

are strongly transverse for every t . The diffeomorphism z�out WD z�1 is a lift
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of the diffeomorphism �out. By continuity, the relation (2) remains true if we replace
z�in D z�0 by z�t for any t 2 Œ0; 1�. In particular, the diffeomorphism z�out satisfies

(3) z�out ı  D .ˆin/�. / ı z�out for every  2 �1.M1;x1/:

Proposition 3.5 The diffeomorphisms z�1, z�2, z�in and z�out are related by

z�2 ı
z�in D z�out ı z�1:

Proof According to Proposition 3.4, the diffeomorphisms �2 ı �in and �out ı �1

coincide. Hence, the diffeomorphisms z�2 ı
z�in and z�out ı z�1 are two lifts of the same

diffeomorphism. It follows that there exists a deck transformation 0 2 �1.M2;y0/

such that
z�2 ı
z�in D 0 ı

z�out ı z�1:

Now consider a deck transformation  2 �1.M1;x0/. On the one hand, using (2)
and (1), we get

z�2 ı
z�in D z�2 ı .ˆin/�. / ı z�in D .ˆin/�. / ı z�2 ı

z�in D ..ˆin/�. / � 0/ ı z�out ı z�1:

On the other hand, using (1) and (3), we get

z�2 ı
z�in ı  D 0 ı

z�out ı z�1 ı  D 0 ı
z�out ı  ı z�1 D .0 � .ˆin/�. // ı z�out ı z�1:

Hence,
.ˆin/�. / � 0 D 0 � .ˆin/�. /:

Since .ˆin/�. / ranges over the whole fundamental group �1.M2;y0/, it follows that
0 is in the centre of the fundamental group �1.M2;y0/. If 0 ¤ Id, this implies that
�1.M2;y0/ has a nontrivial centre. It follows that M2 is a Seifert manifold (see eg
[1, Theorem 2.5.5]). Then an easy generalization of a well-known theorem of É Ghys
implies that, up to finite cover, the Anosov flow .X t

2
/ must be topologically equivalent

to the geodesic flow on the unit tangent bundle of a closed hyperbolic surface (see [9]
or [3, théorème 3.1]). This is clearly impossible, since X2 admits a transverse torus (any
connected component of the surface S2 is such a torus). As a consequence, 0 must be
the identity, and the desired relation z�2 ı

z�in D z�in ı z�1 is proved.

3.4 Construction of maps�s W f
s;1

1
! f

s;1

2
and�u W f

u;1

1
! f

u;1

2

In Section 2, we have defined some symbolic spaces which allow us to code certain
orbits of certain Anosov flows. Let us introduce these symbolic space in our particular
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setting. For i D 1; 2, we consider the alphabet

Ai WD fconnected components of zSi n
zLs

i g;

and the symbolic space

†i WD f.Dp/p2Z jDp 2Ai and z�i.Dp/\DpC1 ¤∅ for every pg:

In order to code stable and unstable leaves, we consider the subspaces †s
i and †u

i of †i

defined by

†s
i WD f.Dp/p�0 jDp 2Ai and z�i.Dp/\DpC1 ¤∅ for every pg

and

†u
i WD f.Dp/p<0 jDp 2Ai and z�i.Dp/\DpC1 ¤∅ for every pg:

Proposition 3.6 Let D1 and D0
1

be two elements of A1. Let D2 WD
z�in.D1/ and

D0
2
WD z�in.D

0
1
/. Then z�1.D1/ intersects D0

1
if and only if z�2.D2/ intersects D0

2
.

Proof We have the sequence of equivalences

z�1.D1/\D01 ¤∅ () z�in.z�1.D1//\ z�in.D
0
1/¤∅

() z�out.z�1.D1//\ z�in.D
0
1/¤∅

() z�2.z�in.D1//\ z�in.D
0
1/¤∅

() z�2.D2/\D02 ¤∅:

The first equivalence is straightforward. The last one is nothing but the definition of the
connected components D2 and D0

2
. The third equivalence follows from Proposition 3.5.

It remains to prove the second equivalence. For that purpose, observe that z�1.D1/ is
a strip bounded by two leaves of zLu

1
, and z�in.D

0
1
/ is a strip bounded by two leaves

of zLs
2
. Now recall that there exists an isotopy .z�t /t2Œ0;1� joining z�in to z�out such that

the lamination z�t . zL
u
1
/ is strongly transverse to the lamination zLs

2
. It follows that

z�out.z�1.D1// intersects z�in.D
0
1
/ if and only if z�in.z�1.D1// intersects z�in.D

0
1
/.

Now we consider the map

.z�in/
˝Z
WAZ

1 !AZ
2 ; .Dp/p2Z 7! .z�in.Dp//p2Z:

As an immediate consequence of Proposition 3.6, we get:

Corollary 3.7 .z�in/
˝Z WAZ

1
!AZ

2
maps †1 to †2.
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Corollary 3.7 entails that .z�in/
˝Z�0 maps †s

1
to †s

2
, and .z�in/

˝Z<0 maps †u
1

to †u
2
.

Hence, the map z�in builds a bridge between the symbolic spaces associated to the
vector field Y1 and those associated to the vector field Y2.

Let us recall the definition of the coding maps constructed in Section 2.3. For i D 1; 2,
we denote by Fs

i and Fu
i the weak stable and the weak unstable foliations of the

Anosov flow .Y t
i / on the manifold Mi . These two-dimensional foliations induce two

one-dimensional foliations F s
i and Fu

i on the surface Si . We denote by zF s
i and zFu

i the
lifts of F s

i and Fu
i on zSi . We denote by f s

i and f u
i the leaf spaces of the foliations

zF s
i and zFu

i . We denote by f s;1
i the subset of f s

i made of the leaves that are not
in �W s.ƒi/ (recall that �W s.ƒi/ is a union of leaves of zFs

i and therefore �W s.ƒi/\ zSi

is a union of leaves of F s
i ). Similarly, we denote by f u;1

i the subset of f u
i made of the

leaves that are not in �W u.ƒi/. The construction of Section 2.3 provides two bijective
coding maps

�s
i W
Qf
s;1

i !†s
i ; ` 7! .Dp/p�0; where z�p

i .`/�Dp for every p � 0;

and

�u
i W
Qf
u;1

i !†u
i ; ` 7! .Dp/p<0; where z�p

i .`/�Dp for every p < 0:

Hence, we obtain two natural bijective maps

�s
WD .�s

2/
�1
ı .z�in/

˝Z�0 ı�s
1 W
Qf
s;1

1
! Qf

s;1
2

and
�u
WD .�u

2/
�1
ı .z�in/

˝Z<0 ı�u
1 W
Qf
u;1

1
! Qf

u;1
2

:

3.5 Extension of the maps�s and�u

We wish to extend the map �s in order to obtain a bijective map between the leaf
spaces Qf s

1
and Qf s

2
. Observe that �s is already defined from a dense subset of Qf s

1
onto

a dense subset of Qf s
2

. We will prove that �s preserves the orders on Qf s
1

and Qf s
2

. Of
course, these are only partial orders. Nevertheless, according to Proposition 2.24, every
leaf of zF s

1
(resp. zF s

2
) admits a neighbourhood in Qf s

1
(resp. Qf s

2
) which is totally ordered.

As a consequence, the preservation of the order will be sufficient to extend �s .

Our first task is to write a precise definition of the partial orders on Qf s
1

and Qf s
2

. First
we choose an orientation of the lamination Lu

X
� @outU. Pushing this orientation

by the maps �1 and �2, this defines some orientations of the laminations Lu
1
D

.�1/�.L
u
X
/ � S1 and Lu

2
D .�2/�.L

u
X
/ � S2. Since Lu

i is a sublamination of the
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foliation Fu
i (and since Lu

i intersects every connected component of Si), the orientations
of the laminations Lu

1
and Lu

2
define some orientations of the foliations Fu

1
and Fu

2
.

Finally, these orientations can be lifted, providing orientations of the lifted foliations
zFu

1
and zFu

2
. It is important to notice that our choice of orientations for zFu

1
and zFu

2

are not independent from each other. More precisely, the orientations are chosen so
that �out D �2j@outU ı .�2j@outU /

�1 maps the orientation of the lamination Lu
1

to the
orientation of the lamination Lu

2
, and therefore:

(4) z�out maps the orientated lamination zLu
1 to the orientated lamination zLu

2:

As explained in Section 2.4, the orientation of the foliation zFu
i induces a partial order

�i on the leaf space Qf s
i defined as follows: given two leaves `i ; `

0
i 2
Qf s
i satisfy `i �i `

0
i

if there exists an arc segment of an oriented leaf of zFu
i going from a point of `i to a

point of `0i . Proposition 2.23 proves that this indeed defines an order on Qf s
i . Moreover,

this order on Qf s
i induces a partial order on the alphabet Ai : given two elements Di and

D0i of Ai , we write Di �i D0i if there exists a leaf z̨i of zF s
i included in Di and a leaf

z̨0i of zF s
i included in D0i such that z̨i �i z̨

0
i . Proposition 2.25 shows that we can replace

“there exists” by “for every” in this definition. It follows that �i is indeed a partial
order on Ai . Now comes the technical result which will allow us to extend the map �s:

Proposition 3.8 The map �s W .f
s;1

1
;�1/! .f

s;1
2

;�2/ is order-preserving.

In order to prove Proposition 3.8, we need several intermediary results.

Lemma 3.9 The map z�in W .A1;�1/! .A2;�2/ is order-preserving.

Proof Consider two elements D1 and D0
1

of A1. Assume that D1 �1 D0
1
. This

means that there exists a leaf `1 of the oriented lamination zLu
1

which crosses D1 before
crossing D0

1
. As a consequence, if we endow z�in.`1/ with the image under z�in of the

orientation of ˛1, then z�in.`1/ crosses z�in.D1/ before crossing z�in.D
0
1
/. Now recall

that:

� z�in.D1/ and z�in.D
0
1
/ are strips bounded by leaves of the lamination z�in. zL

s
1
/D zLs

2
.

� There exists an isotopy .z�t / joining z�in to z�out such that the lamination z�t . zL
u
1
/

is strongly transverse to the lamination zLs
2

for every t .

We deduce that, if we endow z�out.`1/ with the image under z�out of the orientation of `1,
then z�out.`1/ crosses z�in.D1/ before crossing z�in.D

0
1
/. According to (4), this means

that there is a leaf of the oriented lamination zLu
1

which crosses z�in.D1/ before crossing
z�in.D

0
1
/. By definition of the partial order �2, this means that z�in.D1/�2

z�in.D
0
1
/.
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Lemma 3.10 Let D1 be a connected component of zS1n
zLs

1
. Set D2 WD

z�in.D1/. Then
the following are equivalent :

(1) The map z�1 restricted to the strip D1 preserves the orientation of the foliation zFu
1

.

(2) The map z�2 restricted to the strip D2 preserves the orientation of the foliation zFu
2

.

Proof The proof is a bit intricate, because we need to introduce no fewer than six
leaves and compare their orientations. Recall that we have chosen some orientations for
the foliations zFu

1
and zFu

2
. In the sequel, we will also consider the foliations .z�in/� zF

u
1

,
.z�out/� zF

u
1

and .z�t /� zF
u
1

; we endow them with the images under z�in, z�out and z�t of the
orientation of zFu

1
.

We pick a leaf `1 of the lamination zLu
1

so that `1\D1 ¤∅ (such a leaf always exists
since the laminations zLs

1
and zLu

1
are strongly transverse). Then we set

`2 WD
z�out.`1/; ỳ

2 WD
z�in.`1/;

`01 WD
z�1.`1\D1/; `02 WD

z�2.`2\D2/; ỳ0
2 WD

z�2. ỳ2\D2/:

Observe that

(5) ỳ0
2 D
z�2.z�in.`1/\D2/D z�2 ı

z�in.`1\D1/D z�out ı z�1.`1\D1/D z�out.`
0
1/

(the third equality follows from Proposition 3.5). Now recall that, for i D 1; 2, both
zLu

i and .z�i/�. zL
u
i \ Ds

i / are sublaminations of the foliation zFu
i . Also recall that

z�out. zL
u
1
/D zLu

2
. This provides some natural orientations on `1, `0

1
, `2, `0

2
, ỳ2 and ỳ0

2
:

� `1 and `0
1

are leaves of the foliation zFu
1

, and hence inherit the orientation of zFu
1

.

� `2 and `0
2

are leaves of the foliation zFu
2

, and hence inherit the orientation of zFu
2

;
we endow them with the orientation of this foliation.

� ỳ2 is a leaf of the foliation .z�in/� zF
u
1

, and hence inherits the orientation of
.z�in/� zF

u
1

;

� ỳ0
2 is a leaf of the foliation .z�out/� zF

u
1

, and hence inherits the orientation of
.z�out/� zF

u
1

.

By symmetry, it is enough to prove the implication .1/D) .2/. So we assume that the
restriction of z�1 to Ds

1
preserves the orientation of zFu

1
; in particular:

(6) z�1 maps the orientation of `1 to that of `0
1
.

According to (4):

(7) z�out maps the orientation of `1 to that of `2.
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`1

zLs
1

zD1

zLu
1

z�in

z�out

.z�in/� zL
u
1

zLu
2

zLs
2

U

V
ỳ
2

zD2

`2

z�1

z�2

`0
1

zLs
1

zFu
1

z�in

z�out

z�2.U /

zLs
2

ỳ0
2 `0

2

z�2.V /

z�2..z�in/� zL
u
1/

zFu
2

Figure 4: Proof of Lemma 3.10.

The orientations of `1, `2, ỳ2 and ỳ0
2

are chosen in such a way that z��1
in maps the

orientation of ỳ2 to that of `1, and z�out maps the orientation of `0
1

to that of ỳ0
2
. Putting

this together with (6), we obtain that z�out ı z�1 ı
z��1

in maps the orientation of ỳ2 to that
of ỳ0

2
. Using Proposition 3.5, we obtain:

(8) z�2 maps the orientation of ỳ2 to that of ỳ0
2
.

Our final goal is to prove that z�2 maps the orientation of `2 to that of `0
2
. So, in view

of (8), we need to compare the orientations of `2 and ỳ2 on the one hand, and the
orientations `0

2
and ỳ0

2
on the other hand. We start with `2 and ỳ2.
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Recall that D2 is a strip in zS2 bounded by two leaves of the stable lamination zLs
2
. We

denote these two leaves by ˛ and ˇ in such a way that oriented unstable leaf `2 enters
in D2 by crossing ˛ and exits D2 by crossing ˇ. According to (7), the orientation
of `2 D .z�out/�`1 as a leaf of zLu

2
� zFu

2
coincides with the orientation as a leaf of

.z�out/� zL
u
1
� .z�out/�F

u
1

. Moreover, recall that there exists an isotopy .z�t /t2Œ0;1� joining
z�0 D

z�in to z�1 D
z�out such that the lamination z�t . zL

u
1
/ is strongly transverse to the

lamination zLu
2

for every t . We deduce that ỳ2 D .z�in/�.`1/ crosses D2 in the same
direction as `2 D .z�out/�`1. In other words:

(9) Both `2 and ỳ2 enter D2 by crossing ˛ and exit D2 by crossing ˇ.

Let U and V be some disjoint neighbourhoods of the stable leaves ˛ and ˇ in the
strip D2. Assertion (9) can be reformulated as follows:

(10) The arcs of oriented leaves `2\D2 and ỳ2\D2 both go from U to V.

We are left to compare the orientations of `0
2

and ỳ0
2
. First observe that z�2.D2/ is an

open strip in zS2, bounded by two leaves of the unstable lamination zLu
2
D .z�out/� zL

u
1
.

The closure Cl.z�2.D2// of z�2.D2/ is the union of the open strip z�2.D2/ and its two
boundary leaves. The boundary components of z�2.D2/ are leaves of both the foliations
Fu

2
and .z�out/�F

u
1

. Moreover, Fu
2

and .z�out/�F
u
1

induce two trivial oriented foliations
on the closed strip Cl.z�2.D2//. In particular, the leaves of Fu

2
and .z�out/�F

u
1

in
Cl.z�2.D2// go from one end of Cl.z�2.D2// to the other end. In order to distinguish
the two ends of the closed strip Cl.z�2.D2//, we use the sets Cl.z�2.U // and Cl.z�2.V //.
These sets are disjoint neighbourhoods of the two ends of Cl.z�2.D2//. So we just
need to decide if the leaves go from Cl.z�2.U // to Cl.z�2.V //, or the contrary. On the
one hand, putting (8) and (10) together, we obtain that ỳ2 goes from Cl.z�2.U // to
Cl.z�2.V //. On the other hand, Fu

2
and .z�out/�F

u
1

are trivial oriented foliations on
Cl.z�2.D2//, and, according to (4), they induce the same orientation on the boundary
leaves of D0

2
. So we conclude that all the leaves of both the oriented foliations Fu

2
and

.z�out/�F
u
1

go from Cl.z�2.U // to Cl.z�2.V //. In particular:

(11) The oriented leaves `0
2

and ỳ0
2

go from z�2.U / to z�2.V /.

From (10) and (11), we deduce that z�2jD2
maps the orientation of `2 to that of `0

2
. By

definition of the orientations of `2 and `0
2
, this means that the restriction of z�2 to the

strip D2 preserves the orientation of the foliation zFu
2

. This completes the proof of the
implication .1/D) .2/.
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Corollary 3.11 Let D1;0; : : : ;D1;p0�1 be connected components of zS1n
zLs

1
such thatTp0�1

pD0
z�

p
1
.D1;p/ is nonempty. For p D 1; : : : ;p0 � 1, let D2;p WD

z�in.D1;p/. Then
the following are equivalent :

(1) The map z�p0

1
restricted to

Tp0�1
pD0

z�
p
1
.D1;p/ preserves the orientation of the

foliation zFu
1

.

(2) The map z�p0

2
restricted to

Tp0�1
pD0

z�
p
2
.D2;p/ preserves the orientation of the

foliation zFu
2

.

Proof For i D 1; 2, consider the set Ji � f0; : : : ;p0 � 1g so that the restriction of
z�i to Di;p preserves the orientation of zFu

i . On the one hand, Lemma 3.10 implies
that the sets J1 and J2 coincide. On the other hand, it is clear that the restriction of
z�i to

Tp0�1
jD0

z�
p
i .Di;p/ preserves the orientation of the leaves of zFu

i if and only if the
cardinality of Ji is even.

Proof of Proposition 3.8 We consider two leaves 1 and  0
1

in f s;1
1

, we define
2 WD �s.1/ and  0

2
WD �s. 0

1
/, and we assume that 1 �1 

0
1
. We aim to prove

2 �2 
0
2
. Let �s

1
.z1/D .D1;p/p�0, �s

1
.z 0

1
/D .D0

1;p
/p�0, �s

2
.z2/D .D2;p/p�0 and

�s
2
.z 0

2
/D .D0

2;p
/p�0. By definition of the map �s

i , this means that, for i D 1; 2,

zi D

\
p�0

z�
�p
i .Di;p/ and z 0i D

\
p�0

z�
�p
i .D0i;p/:

And, since z2 D�
s.z1/ and z 0

2
D�s.z 0

1
/, we have

D2;p D �in.D1;p/ and D02;p D �in.D
0
1;p/

for every p � 0. We denote by p0 the smallest integer p such that D1;p ¤D0
1;p

.

Let us consider the case where the map z�p0

1
restricted to

Tp0�1
pD0

z�
�p
1
.D1;p/ preserves

the orientation of the foliation zFu
1

.

� Proposition 2.29 implies that D1;p0
�1 D0

1;p0
.

� Since �in WA1!A2 is order-preserving (Lemma 3.9), D2;p0
�2 D0

2;p0
.

� Corollary 3.11 implies that the map z�p0

2
restricted to

Tp0�1
pD0

z�
�p
2
.D2;p/ pre-

serves the orientation of the foliation zFu
2

.

� Using again Proposition 2.29, we deduce from the two last items above that
z2 �2 z

0
2
, as desired.

The case where the map z�p0

1
restricted to

Tp0�1
pD0

z�
�p
1
.D1;p/ reverses the orientation

of the foliation zFu
1

follows from the very same arguments.
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Corollary 3.12 The map �s W f
s;1

1
! f

s;1
2

extends in a unique way to an order-
preserving bijection �s W f s

1
! f s

2
.

Proof This is an immediate consequence of the following facts:

� �s W f
s;1

1
! f

s;1
2

is an order-preserving map (Proposition 3.8).

� For i D 1; 2, f s;1
i is a dense subset of the (nonseparated) one-dimensional

manifold f s
i (Proposition 2.8).

� For i D 1; 2, each leaf ` 2 f s
i has a neighbourhood U` in f s

i such that the leaves
in U` are totally ordered (Proposition 2.24).

Of course, the stable and the unstable directions play some symmetric roles, so the
same arguments as above allow one to prove the following analog of Corollary 3.12:

Corollary 3.13 The map �u W f
u;1

1
! f

u;1
2

extends in a unique way to an order-
preserving bijection y�u W f u

1
! f u

2
.

3.6 Mating y�s and y�u: construction of the map y�

Now, we will mate the maps y�s and y�u to obtain a y� W zS1!
zS2. In view to that goal,

we need the following lemma:

Lemma 3.14 Consider a leaf `s
1

of the stable foliation zFs
1

and a leaf `u
1

of the unstable
foliation zFu

1
. Then `s

1
intersects `u

1
if and only if y�s.`s

1
/ intersects y�u.`u

1
/.

Proof The case where the leaves `s
1

and `u
1

belong to f s;1
1

and f u;1
1

is a consequence
of Proposition 3.6 (together with the definitions of the maps �s , �u and �): the leaves
`s

1
and `u

1
intersect at x if and only if the leaves y�s.`s

1
/D�s.`s

1
/ and y�u.`u

1
/D�u.`u

1
/

intersect at �.x/. The general case follows by density of f s;1
i and f u;1

i in f s;1
i

and f u;1
i .

Now we define a map y� W zS1!
zS2. Let Qx be any point in zS1. Denote by `s

1
(resp. `u

1
)

the leaf of the stable foliation zFs
1

(resp. the unstable foliation zFu
1
) passing through x.

Recall that x is the unique intersection point of `s
1

and `u
1
. According to the preceding

lemma, the stable leaf y�s.`s
1
/ and the unstable leaf y�u.`u

1
/ do intersect. According

to Proposition 2.3, the intersection is a single point. We define y�. Qx/ to be the unique
intersection point of the leaves y�s.`s

1
/ and y�u.`u

1
/. In other words, y� is defined by

(12) y�.`s
1\ `

u
1/D

y�s.`s
1/\
y�u.`u

1/:
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By construction, the map y� is bijective and maps the foliations zF s
1

and zFu
1

to the
foliations zF s

2
and zFu

2
, preserving the orders on the leaf spaces. Since the leaf spaces

are locally totally ordered (Proposition 2.24), it follows that y� is continuous. Hence,
y� is a homeomorphism.

Proposition 3.15 The map y� W zS1!
zS2 is equivariant with respect to the actions of

the fundamental groups: for every  of �1.M1/,

y� ı  D . ẑ in/�. / ı y�:

Proof This is a rather immediate consequence of the construction of y�. First recall
that y� is a continuous extension of the map � W zS1

1
! zS1

2
and recall that zS1

1
and zS1

2

are dense subsets of zS1 and zS2. As a consequence, it is enough to prove that � is
equivariant with respect to the actions of the fundamental groups. Now recall that � is
defined as the composition of three maps:

�D .�2/
�1
ı .z�in/

˝Z
ı�1:

But we know that:

� The map �i commutes with the action of the fundamental group �1.Mi/ for
i D 1; 2 (Proposition 2.17).

� The map z�in satisfies z�in ı  D . ẑ in/�. / ı z�in (equation (2)).

This shows that the map � satisfies the equivariance relation �ı D . ẑ in/�. /ı�.

Proposition 3.16 The map y� W zS1!
zS2 conjugates the Poincaré maps z�1 and z�2; that

is ,
y� ı z�1 D

z�2 ı
y�:

Proof On the one hand, for i D 1; 2, the coding map �s
i conjugates the Poincaré

map z�i on zSi to the shift map on the symbolic space †s
i (Proposition 2.18). On the

other hand, the map .z�in/
˝Z�0 obviously conjugates the shift map on †s

1
to the shift

map on †s
2
. Hence, �s D .�s

2
/�1 ı .z�in/

˝Z�0 ı�s
1

conjugates the action z�1 on f s;1
1

to the action of z�2 on f s;1
2

. By density of f s;1
1

in f s
i , it follows that y�s conjugates

the action z�1 on f s
1

to the action of z�2 on f s
2

. Similarly, y�u conjugates the action z�1

on f u
1

to the action of z�2 on f u
2

. Finally, since z� is defined by mating y�s and y�u

(see (12)), this implies that z� conjugates z�1 to z�2.
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3.7 From the map y� to the orbital equivalence

To conclude the proof of Theorem 1.2, we need to introduce the orbit spaces of the
Anosov flows .Y t

1
/ and .Y t

2
/. The orbit space of .Y t

i / is by definition the quotient of
the manifold �Mi by the action of the flow .Y t

i /. We denote it by Oi , and we denote by
pri the natural projection of �Mi on Oi . The action of the fundamental group �1.Mi/

on �Mi induces an action of this group on Oi . The two-dimensional foliations zFs
i

and zFu
i are leafwise invariant under the flow .Y t

i / and therefore can be projected in the
orbit space Oi . They induce a pair .gs

i ;g
u
i / of transverse one-dimensional foliations

on Oi .

The orbit space Oi by itself does not carry much information: indeed, Oi is always a
separated manifold diffeomorphic to R2 (see [8, Proposition 2.1] or [2, Theorem 3.2]).
The pair of transverse foliations .gs

i ;g
u
i / carries much more interesting information (see

the work of Barbot and Fenley on the subject; good references are Barbot’s habilitation
memoir [3] and Barthelmé’s lecture notes [4]). The action of �1.Mi/ on Oi carries
even richer dynamical information: actually, this action characterizes the flow .Y t

i / up
to topological equivalence (see Theorem 3.22 below).

Recall that ƒ denotes the maximal invariant set of the initial hyperbolic plug .U;X /,
that ƒi denotes the projection of ƒ in the manifold Mi D U= i , and that zƒi the
complete lift of ƒi in the universal cover �Mi . Now we denote by Li the projection of
the set zƒi in Oi .

Lemma 3.17 The projection pri.
zSi/ of the surface zSi in the orbit space Oi is exactly

the complement of the set Li in Oi .

Proof The set ƒ is the union of the orbits of the vector field X which remain in U

forever, ie which do not intersect @U. Hence, the set ƒi D �i.ƒ/ is the union of the
orbits of the vector field Yi D .�i/�X which do not intersect the surface Si D �i.@U /.
As a further consequence, zƒi is the union of the orbits of the vector field zYi which do
not intersect the surface zSi . This means that the projection of zSi in the orbit space Oi

is exactly the complement of the projection of the set zƒi .

Proposition 3.16 can be rephrased as follows: two points x;x0 2 zS1 belong to the same
orbit of the flow . zY t

1
/ if and only if the points y�.x/ and y�.x0/ belong to the same

orbit of the flow . zY t
2
/. As a consequence, the homeomorphism y� W zS1!

zS2 induces a
homeomorphism

ı W pr1.
zS1/DO1 nL1! pr2.

zS2/DO2 nL2:
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Since y� is equivariant with respect to the actions of the fundamental groups (Proposition
3.15), the homeomorphism ı is also equivariant: for every  2 �1.M1/,

ı ı  D . ẑ in/�. / ı ı:

Our next step is to extend the map � to the whole orbit spaces.

Proposition 3.18 The homeomorphism ı WO1 nL1!O2 nL2 can be extended in a
unique way to a homeomorphism xı WO1!O2 which is equivariant with respect to the
actions of the fundamental groups of M1 and M2.

We shall use the following general lemma of planar topology:

Lemma 3.19 Let A and B be totally discontinuous subsets of R2 and h WR2 nA!

R2 nB. Assume that , for every compact subset K of R2, the set h.K nA/ is relatively
compact in R2. Then h can be extended to a homeomorphism of Nh WR2!R2.

This lemma is easy and certainly well known to people working in planar topology, but
we were not able to find it in the literature. We provide a proof for sake of completeness.

Proof We proceed to the definition of Nh. Let x be a point in A. We pick a decreasing
sequence .Xn/n�0 of compact connected subsets of R2 so that Xn ¤ fxg for every n

and so that
T

n Xn D fxg. For every n � 0, let Yn be the closure in R2 of the set
h.Xn nA/. Our assumptions imply that .Yn/n�0 is a decreasing sequence of nonempty
compact connected subsets of R2. As a consequence, the intersection

T
n Yn must be

a nonempty compact connected subset of R2. Moreover, since
T

n Xn D fxg �A, the
intersection

T
n Yn must be included in B. Since B is totally disconnected, it follows

that
T

n Yn must be a singleton fyg. Standard arguments show that the point y does
not depend on the choice of the sequence .Xn/. We set Nh.x/ WD y. Repeating the same
procedure for each point x 2A, we get an extension Nh WR2!R2 of h. The continuity
of Nh follows easily from its definition.

Of course, the same procedure yields a continuous extension h�1 W R2! R2 of the
map h�1 WR2 nB!R2 nA. Since R2 nA and R2 nB are dense in R2, the equalities
h ı h�1 D IdR2nB and h�1 ı h D IdR2nA extend to Nh ı h�1 D h�1 ı Nh D IdR2 . This
shows that Nh is a homeomorphism.

Lemma 3.20 For i D 1; 2, the set Li is totally discontinuous in Oi 'R2.
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Let us introduce some terminology that will be used in the proof of Lemma 3.20. By a
local section of a vector field Z on a three-manifold P, we mean a compact surface
with boundary embedded in P and transverse to Z. A .Zt /–invariant set � � P is
said to be transversally totally discontinuous if �\† is totally discontinuous for every
local section † of Z.

Proof By our assumptions, the maximal invariant set ƒX of the hyperbolic plug
.U;X / contains neither attractors nor repellers. SinceƒX is a hyperbolic set, it follows
that ƒX is transversally totally discontinuous. Hence, the projection ƒi of ƒX in
the manifold Mi is also transversally totally discontinuous (recall that ƒX sits in the
interior of U and that the projection pi WU !Mi is a homeomorphism in restriction to
the interior of U ). As a further consequence, the complete lift zƒi of ƒi in the universal
cover �Mi is also transversally totally discontinuous.

Now recall that . �Mi ; zYi/ is topologically equivalent to R3 equipped with the trivial
vertical unit vector field. As a consequence, for every point x 2 �Mi , we can find a local
section † of zYi such that x 2 † and no orbit of zYi intersects † twice. This implies
that the restriction to † of the projection pr W �Mi ! Oi is one-to-one, and hence a
homeomorphism onto its image. Since zƒi is transversally totally discontinuous, it
follows that the set Li D pr.zƒi/ is totally discontinuous in Oi .

Lemma 3.21 For every compact set K �O1 'R2, the set �.K nL1/ has compact
closure in O2 'R2.

Proof For i D 1; 2, the surface Oi nLi has infinitely many ends. One of them is
the end of Oi ' R2, which we denote by 1i . The other ends are in one-to-one
correspondence with the points of Li (since Li is totally discontinuous). Proving
Lemma 3.21 is equivalent to proving that the homeomorphism � WO1 nL1!O2 nL2

maps the end11 to the end12.

From the viewpoint of the topology of the surface Oi nLi , nothing distinguishes1i

from the other ends. Hence, we need to introduce some dynamical invariants to prove
that � necessarily maps11 to12.

For iD1; 2, the foliation zFs
i induces a one-dimensional foliation gs

i on the space Oi . We
denote by gs

i;0
the restriction of the foliation gs

i to Oi nLi . According to Lemma 3.17,
gs

i;0
can be obtained as the projection on Oi of the foliation zFs

i \
zSi D

zF s
i . As a

consequence, � maps the foliation gs
1;0

to the foliation gs
2;0

.
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Since Oi is a plane, every leaf of the foliation gs
i is a properly embedded line, going

from1i to1i (recall that1i is the unique end of Oi). The leaves of gs
i D .pri/� zFs

i

that intersect Li D pri.ƒi/ are the projections of the leaves of the lamination W s.zƒi/.
In particular, there exist leaves of gs

i that do not intersect Li . As a consequence, there
exist leaves of gs

i;0
going from1i to1i . On the other hand, if x is an end of Oi nLi

corresponding to a point of Li , then there does not exist any leaf of gs
i;0

going from x

to x (because every leaf ` of gs
i;0

is a connected component of ỳnLi , where ỳ is a line
in Oi going from1i to1i). So the foliation gs

i;0
allows us to distinguish1i from

the other ends of Oi nLi . Since � maps gs
1;0

to gs
2;0

, it follows that � must map11

to12. Since1i is the unique end of Oi , this exactly means that, for a compact set
K �O1 'R2, the set �.K nL1/ has compact closure in O2 'R2.

Proof of Proposition 3.18 Lemmas 3.20 and 3.21, together with the fact that O1 and
O2 are homeomorphic to R2, show that we are exactly in the situation of Lemma 3.19.
Applying this lemma, we get a homeomorphism xı W O1 ! O2 extending �. The
equivariance of x� follows from that of ı, by continuity and by density of Oi n Li

in Oi .

We will now conclude the proof of Theorem 1.2 by using a result of Barbot.

Theorem 3.22 (see [2, Theorem 3.4] or [3, proposition 1.36 and corollaire 1.42])
Two transitive Anosov flows are topologically equivalent if and only if there exists a
homeomorphism between their orbit spaces which is equivariant with respect to the
actions of the fundamental groups and which does not exchange the stable/unstable
directions.

Proof of Theorem 1.2 The theorem is an immediate consequence of Proposition 3.18
and Theorem 3.22.
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Ribbon 2–knot groups of Coxeter type

JENS HARLANDER

STEPHAN ROSEBROCK

Wirtinger presentations of deficiency 1 appear in the context of knots, long virtual
knots, and ribbon 2–knots. They are encoded by labeled oriented trees and, for that
reason, are also called LOT presentations. These presentations are a well known
and important testing ground for the validity (or failure) of Whitehead’s asphericity
conjecture. We define LOTs of Coxeter type and show that for every given n there
exists a prime LOT of Coxeter type with group of rank n. We also show that label
separated Coxeter LOTs are aspherical.

20F05, 20F06, 20F65; 57K20, 57K45

Dedicated to the memory of Stephen Pride

1 Introduction

Wirtinger presentations of deficiency 1 appear in the context of knots, long virtual knots,
and ribbon 2–knots; see Harlander and Rosebrock [9]. They are encoded by labeled
oriented trees and, for that reason, are also called LOT presentations. Adding a generator
to the set of relators in a Wirtinger presentation P gives a balanced presentation of the
trivial group. Thus the associated 2–complex K.P / is a subcomplex of an aspherical (in
fact contractible) 2–complex. Wirtinger presentations are a well-known and important
testing ground for the validity (or failure) of Whitehead’s asphericity conjecture, which
states that a subcomplex of an aspherical 2–complex is aspherical. For more on the
Whitehead conjecture see Bogley [3], Berrick and Hillman [1] and Rosebrock [18].

If P is a Wirtinger presentation and the group G.P / defined by P is a 1–relator group,
then G.P / admits a 2–generator 1–relator presentation P 0 and the corresponding 2–
complex K.P 0/ is aspherical. Since K.P 0/ and K.P / have the same Euler characteristic
and the same fundamental group, it follows (using Schanuel’s lemma and Kaplansky’s
theorem, which states that finitely generated free ZG–modules are Hopfian) that K.P /
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2716 Jens Harlander and Stephan Rosebrock

is also aspherical. Thus, when investigating the asphericity of K.P / for a given
Wirtinger presentation P, the first thing to ask is if G.P / is a 1–relator group.

Composite knot groups require more than two generators; see Norwood [17].1 However,
many knots have 2–generator 1–relator knot groups. Prime knots whose groups need
more than two generators were known to Crowell and Fox in 1963. As one example,
Crowell and Fox consider a certain prime 9–crossing knot, show that its Wirtinger
presentation simplifies to

P D hx;y; z j y�1xyx�1y D x�1zx�1zxz�1x; x�1zxz�1x D y�1zyz�1yi;

and show that the length of the chain of elementary ideals for this knot group is 2. It
follows that the rank (the minimal number of generators) of G.P / is greater than 2 and
therefore equal to 3. This can also be seen without the use of elementary ideals. We
have an epimorphism

G.P /!�.3; 3; 3/D hx;y; z j x2;y2; z2; .xy/3; .xz/3; .yz/3i

sending x ! x, y ! y and z ! z. Since the rank of the Euclidean triangle group
�.3; 3; 3/ is 3 (see Klimenko and Sakuma [13]), we have rank.G.P //D 3.

This example motivates the first part of this article. It is easier to construct high-rank
ribbon 2–knot groups than classical knot groups, because we do not have to verify that a
given Wirtinger presentation can be read off a knot projection (a 4–regular planar graph).
Below we define labeled oriented trees of Coxeter type and show that, given a Coxeter
group W which abelianizes to Wab D Z2, there exists a Coxeter-type LOT group that
maps onto W. Using this we give examples of prime LOT groups of arbitrarily high
rank.

In the second part of the paper we investigate the question of asphericity of LOTs of
Coxeter type. We show that label-separated LOTs of Coxeter type are aspherical. It
turns out that the study of asphericity can be translated into questions concerning free
subgroups of 1–relator LOT groups of dihedral type.

2 Groups defined by graphs

A labeled oriented graph (LOG) is an oriented finite graph � on vertices x and edges e,
where each oriented edge is labeled by a word in x˙1. Associated with a LOG � is

1The central Lemma 3 in Norwood’s paper has a gap which can be filled, as was pointed out by Menasco
and Reid [15, page 223, Remark 4] and also Bleiler [2].
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the presentation
P .�/D hx j r D fre j e 2 egi;

where re D xw.wy/�1 when eD .x w
�! y/ is the edge of � starting at x, ending at y,

and labeled with the word w on letters in x˙1. We remark that what we call a labeled
oriented graph is elsewhere called a weakly labeled oriented graph or word-labeled
oriented graph. See Howie [12] and Harlander and Rosebrock [10].

Denote by K.�/ and G.�/ the standard 2–complex and the group defined by P .�/,
respectively. The case where � is a tree, now called a labeled oriented tree (LOT), is
special. It is known that the groups G.�/ where � is a LOT are precisely the ribbon
2–knot groups (see Yajima [22], Howie [12] and also Hillman [11, Section 1.7]), since,
in that case, G.�/ is a group of weight 1 (normally generated by a single element, in
fact by each generator) that has a deficiency 1 presentation P .�/. The 2–complexes
K.�/ with � a LOT are of central importance to Whitehead’s asphericity conjecture,
since adding a generator to the set of relators in P .�/ gives a balanced presentation of
the trivial group. So K.�/ is a subcomplex of a 2–dimensional contractible complex. A
question that has been open for a long time asks if K.�/ is aspherical, ie �2.K.�//D 0.
See Bogley [3], Berrick and Hillman [1] and Rosebrock [18].

A subtree �0 � � of a LOT is a sub-LOT if the label w of an edge in �0 is a word in
the vertices of �0. A sub-LOT �0 � � is called proper if it has more than one vertex
and is not all of � . A LOT is called prime if it does not contain proper sub-LOTs.

Let ‡ be a simplicial graph on vertices x, and suppose edges e are labeled with integers
me � 2. Define

P .‡/D hx j x2 for x 2 x; .xy/me if e D fx;yg is an edgei:

The group W DW .‡/ defined by this presentation is called a Coxeter group. We refer
to ‡ as the defining graph for the Coxeter group. We remark that the graph ‡ shows
up in Davis [6, Example 7.1.6] (the Coxeter system associated to a labeled simplicial
graph). It should not be confused with the Dynkin diagram, another labeled graph
that appears in connection with Coxeter groups. Let K D K.‡/ be the 2–complex
associated with P .‡/. Consider the universal covering zK.‡/. The 1–skeleton of zK.‡/
is the Cayley graph for .W;x/. All edges in zK.‡/ are double edges: for every g 2W

and x 2x, we have an edge .g;x/ connecting g to gx, and an edge .gx;x/ connecting
gx to gxx D g. Note that a double edge pair bounds two 2–cells in zK.‡/, coming
from the relator x2. We remove one and collapse the other one to an edge. This turns
each double edge into a single unoriented edge. Every relator .xy/me gives rise to
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2me 2–cells with the same boundary. We remove all but one from this set. We denote
the 2–complex obtained in this fashion by †.2/.‡/. It is the 2–skeleton of the Davis
complex †.‡/. See [6, Proposition 7.3.4]. We remark that the Davis complex is
closely related to the Coxeter complex, but the complexes are not the same. For the
definition of Coxeter complex, see [6, Example 5.2.7]. Under certain conditions, for
example when the defining graph ‡ is a tree, the Davis complex is 2–dimensional:
†.‡/D†.2/.‡/. See [6, Example 7.4.2].

Proposition 2.1 Let ‡ be a defining tree with associated Coxeter group W .‡/. Then:

(1) For every edge e D fx;yg of ‡ we have a 2–cell �e in †.‡/ attached along a
2me–gon whose edge labels read .xy/me .

(2) †.‡/ is the union of the 2–cells w�e for e 2 fedges of ‡g and w 2 W .‡/.
Furthermore , if w1�e1

\w2�e2
¤∅, then e1\ e2 ¤∅; if x D e1\ e2, then the

edge w1�e1
\w2�e2

carries the label x.

(3) †.‡/ is a tree of 2–cells: if we connect the barycenters of the 2–cells with the
barycenters of their boundary edges , we obtain a tree. In particular , if M is
a finite connected union of Coxeter 2–cells wi�ei

in †.‡/, then there exists a
2–cell w�e in M that intersects with the rest of M in a single edge.

y z
y

z

z xy
x
yx

x y

x

yx

y

z
y

zy
z

Figure 1: The Davis complex †.‡/ for ‡ D x
3
� y

3
� z. It is a tree of Coxeter cells.
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Proof The statements (1) and (2) are clear from the construction of ‡ . For an edge
eD fx;yg, let P .e/D hx;y j x2;y2; .xy/mei. Let Dme

be the dihedral group defined
by P .e/. Since ‡ is a tree, W .‡/ is an amalgamated product of the Dme

. The
associated Bass–Serre tree can be seen inside the Davis complex †.‡/. The vertices
of that tree are the barycenters of the 2–cells and 1–cells, and the edges connect
barycenters of 2–cells to the barycenters of the 1–cells in the boundary of that 2–cell.
We can think of †.‡/ as a tree of Coxeter 2–cells. An example is shown in Figure 1.

Suppose M D
Sk

iD0 Di is a union of 2–cells. Let di be the barycenter of Di . Let dp

be a vertex in the Bass–Serre tree furthest away from d0 with p 2 f0; : : : ; kg. Consider
a geodesic from d0 to dp and let dq be the barycenter that is encountered just before
getting to dp when traveling along the geodesic. Then

�S
i¤p Di

�
\Dp DDq \Dp,

which is a single edge.

Lemma 2.2 Let � be a LOT e D .x w
�! y/ an edge such that the word w contains

letters and z ¤ x;y with even (positive or negative) exponent only. Then the relator
re D xw.wy/�1 reduces (up to cyclic permutation) to Nre D .yx/me , with me � 1 and
odd , in hx j x2 for x 2 xi.

Proof The word w reduces to an alternating word Sw in the letters x and y. If Sw is the
empty word, then Nre D xy. There are four remaining cases to consider:

(1) Sw starts with x and has even length.

(2) Sw starts with x and has odd length.

(3) Sw starts with y and has even length.

(4) Sw starts with y and has odd length.

In case (1) we have SwD xyxy, say. So x.xyxy/y.xyxy/D xxyxyyxyxyD xy. In
case (2) we have Sw D xyxyx, say. So x.xyxyx/y.xyxyx/D xxyxyxyxyxyx D

.yx/5. In case (3) we have Sw D yxyx, say. So x.yxyx/y.yxyx/D xy. In case (4)
we have Sw D yxyxy, say. So x.yxyxy/y.yxyxy/D .xy/5.

Definition 2.3 Let � be a LOT with vertex set x. We say � is of Coxeter type if:

(1) For every edge e D .x w
�! y/, the word w contains letters z ¤ x;y with even

(positive or negative) exponent only.

(2) For every edge eD .x w
�! y/, the relator re D xw.wy/�1 reduces (up to cyclic

permutation) to Nre D .yx/me , with me � 2, in hx j x2 for x 2 xi.
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Remark 2.4 Lemma 2.2 shows that, if � is a LOT of Coxeter type, then, for each
edge e, me � 3 and is odd.

Let � be a LOT of Coxeter type. Define a tree‡ in the following way: erase orientations
in � and, if eD .x w

�!y/ is an edge and the LOT relator re reduces to NreD .yx/me (up
to cyclic permutation) in hx j x2 for x 2 xi, then label the (unoriented) edge e by me .
Note that ‡ is a defining tree for a Coxeter group. We have a map P .�/! P .‡/

sending x to x which induces a group epimorphism G.�/!W .‡/. This process can
be reversed.

Lemma 2.5 Let ‡ be a defining tree for a Coxeter group where all me are odd. Then
there exists a LOT of Coxeter type � such that the process described above produces ‡
from � . In particular , G.�/ maps onto W .‡/.

Proof Suppose e D fx;yg is an edge in ‡ . Orient it from x to y. Let w D
.yx/.me�1/=2. Let e D .x w

�! y/ be the corresponding edge in � .

Note that the LOT � of Coxeter type constructed in the lemma is not prime. In fact,
every edge is a sub-LOT. Note also that G.�/ is an Artin group. One can show that
all Artin groups are LOG groups, but we will not pursue this here. Given a defining
tree ‡ , there are many LOTs of Coxeter type that give rise to ‡ .

Lemma 2.6 Let ‡ be a defining tree where all me are odd. Suppose � is a LOT of
Coxeter type such that the process just described produces ‡ . Then there also exists a
prime LOT that produces ‡ .

Proof Suppose �0 is a proper sub-LOT of � . Let e D .x w
�! y/ be an edge in �0 and

z be a vertex not in �0. Replace the label w by z2w to obtain a new LOT � 0. Then �0

is not a sub-LOT of � 0, but � 0 still produces ‡ . We can apply this procedure until we
arrive at a LOT without proper sub-LOTs.

3 LOT groups of high rank

Given two LOTs �1 and �2 and two valency-one vertices xi 2 �i for i D 1; 2, one
can form a composite LOT � D �1 [x1Dx2

�2 by identifying the two vertices. The
LOT group G.�/ is an amalgam G.�1/�Z G.�2/, and, avoiding trivial cases, the rank
of G.�/ is greater than the rank of each G.�i/ for i D 1; 2. This follows from a theorem
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of Karras and Solitar. See also [17]. However, � is not prime, and it is more difficult to
provide lower bounds for the rank of prime LOT groups. This issue is already present
in the classical knot world, as was discussed in the introduction. In this section we
present a method for constructing prime LOTs with groups of arbitrarily high rank.

Theorem 3.1 (Carette and Weidmann [5]) Let ‡ be a defining graph with n vertices
and assume that me � 6 � 2n for each e. Then the rank of W .‡/ is n.

Theorem 3.2 Let W DW .‡/ be a Coxeter group such that Wab D Z2. There exists
a prime labeled oriented tree � of Coxeter type such that G DG.�/ maps onto W.

Proof Since Wab DZ2, the defining graph ‡ is connected. In fact, the subgraph ‡odd

consisting of edges with odd label is connected, because an edge with an even label
does not contribute a relation in Wab, so W .‡odd/ab D W .‡/ab. Thus ‡ contains a
maximal tree ‡0 in which all labels me are odd. Then ‡ and ‡0 have the same set of
vertices and we have an epimorphism W .‡0/!W .‡/. From Lemmas 2.5 and 2.6, we
know that there is a prime LOT � of Coxeter type such that G.�/maps onto W .‡0/.

Corollary 3.3 For any given n there exists a prime labeled oriented tree � of Coxeter
type with n vertices such that G.�/ has rank n. In particular , if n � 3, then G.�/ is
not a 1–relator group.

Proof This follows from Theorem 3.2 together with the Carette–Weidmann theorem,
Theorem 3.1.

Example 3.4 Let � be the prime LOT x
yz2x
���! y

zx2y
���! z. Note that G.�/ maps

onto the amalgamated product D3�Z2
D3, which cannot be generated by two elements.

Thus the rank of G.�/ is 3 and it follows that this LOT group is not a 1–relator group.

Remark 3.5 If � is a LOT of Coxeter type and ‡ is the associated defining tree,
then W .‡/ is an amalgamated product of dihedral groups. A direct way to obtain
upper bounds for the rank of W .‡/ without the full force of Theorem 3.1 is via
Weidmann [21].

Remark 3.6 A reorientation of a LOT is obtained when changing signs on the expo-
nents of letters that occur in the edge words, which has no effect on the quotient W .‡/.
Thus, if rk.G.�// D rk.W .‡//, then this equation holds also for all reorientations
of � .
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4 Largeness

A group is large if it has a subgroup of finite index that has a free quotient of rank � 2.
Large groups of deficiency 1 are studied in Button [4]. A list of properties can also be
found there. If G is large, then:

(1) G contains free subgroups of rank � 2.

(2) G is SQ-universal (every countable group is the subgroup of some quotient).

(3) G has finite-index subgroups with arbitrarily large first Betti number.

(4) G has uniformly exponential word growth.

(5) G has subgroup growth of strict type nn (which is the largest possible growth
for finitely generated groups).

(6) The word problem for G is solvable strongly generically in linear time.

Theorem 4.1 Let � be a LOT of Coxeter type on at least three vertices. Then G.�/ is
large.

Proof The conditions imply that W .‡/ is an infinite group that is the fundamental
group of a finite tree of groups where the vertex groups are either Z2 or dihedral groups
Dm with m� 3 (Z2 vertex groups will appear when ‡ has vertices of valency � 3).
Thus W .‡/ contains a free subgroup F of rank � 2 of finite index (see Serre [20,
Proposition 11, page 120)]. Let H be the preimage of F in G.�/. Then H is a subgroup
of G.�/ of finite index that maps onto F. It follows that G.�/ is large.

A characterization of virtual free Coxeter groups is given in Davis [6, Section 8.8].
When‡ is a tree, the characterization implies that W .‡/ is virtually free. This provides
another proof for Theorem 4.1.

Example 4.2 As in Example 3.4 let � be the prime LOT x
yz2x
���! y

zx2y
���! z. We

have W .‡/ D D3 �Z2
D3. Let �.3; 3; 2/ be the spherical triangle group (it is the

symmetric group S4) defined by hx;y; z j x2;y2; z2; .xy/3; .yz/3; .xz/2i. We have
an epimorphism W .‡/!�.3; 3; 2/ and we claim that the kernel V is free of rank � 2.
Indeed, since both D3’s of W .‡/ are also subgroups of �.3; 3; 2/, it follows that
V intersects both D3’s trivially and thus V acts freely on the Bass–Serre tree T for
W .‡/DD3 �Z2

D3, and hence is free. Note that the valency of every vertex in T is
equal to 3 (since the index of Z2 in the D3’s is 3), and so V cannot be cyclic. Here is
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why: Note that V D�1.X /, where X DT=V is a finite graph in which every vertex has
valency 3. Let v.X / and e.X / denote the number of vertices and edges, respectively.
We have v.X /D 2

3
e.X / and we obtain �.X /D v.X /� e.X /D 2

3
e.X /� e.X / < 0.

Thus dim H0.X /�dim H1.X /D 1�dim H1.X /D�.X /< 0. So dim H1.X /> 1 and
hence dim Vab > 1. One can also check directly that .xz/2 and x.xz/2x�1 D .zx/2

generate a free subgroup of V of rank 2.

5 The question of asphericity

Let � be a labeled oriented tree of Coxeter type and let‡ be the associated defining tree
for the Coxeter group W .‡/. Let K.�/ be the normal covering space with fundamental
group the kernel of the epimorphism G.�/!W .‡/. We will analyze the structure
of K.�/. We have maps

K.�/! zK.‡/!†.‡/;

and note that K.�/ and zK.‡/ have the same 1–skeleton. Let eD .x w
�! y/ be an edge

in � . Let Pe D hxe j rei, where xe � x is the subset of the vertices of � that occur
in re . Let zD xe �fx;yg. Then Pe D hx;y; z j xw D wyi. The complex K.Pe/ is a
subcomplex of K.�/. Consider the preimage of K.Pe/ under the covering projection
K.�/!K.�/. It is a union of finite subcomplexes wKe for w 2W .‡/, which we
will now describe in detail. The 1–skeleton of Ke is a 2me–gon with double edges
labeled in an alternating way by x and y. At each of the 2me vertices we have a double
edge for every z 2 z. The situation is depicted in Figure 2. We have 2me 2–cells,
attached along the loop with label re , starting at every vertex. The dihedral group Dme

,
the stabilizer of the cell �e in †.‡/, acts freely on Ke . It is convenient to replace Ke

by a complex with a single Dme
orbit of vertices. Let xLe be the 2–complex obtained

z

z

z

z
z

z x

y

xy

x

yx

y

xy

x

y

zz

z
z

z
z

zz
z

z

z

z

Figure 2: The complex Ke (on the left) in the case e D .x
w
�! y/ 2 � with

corresponding edge e D .x
3
�! y/ 2 ‡ , so the Coxeter relator is .xy/3. On

the right is the corresponding Coxeter cell �e together with z–edges. The blue
part is a y–side in Ke .
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from Ke in the following way: at every vertex collapse one of the z–edges from the
z–double edge for some z 2 z. The complex xLe is homotopy equivalent to Ke. The
1–skeleton of xLe is a 2me–gon with double edges labeled in an alternating way by
x and y. At each of the 2me vertices we have a loop for every z 2 z. Let Ore be the
word obtained from re by replacing every zp for z 2 z by zp=2. Let yPe D hx;y; z j Orei.
Note that the dihedral group Dme

acts freely on xLe and we have a covering map
xLe!

xLe=Dme
DK. yPe/.

Lemma 5.1 The 2–complex Ke is aspherical.

Proof The complex K. yPe/ is aspherical because yPe is a 1–relator presentation for
which the relator is not a proper power. Thus xLe is aspherical, being a covering space
of K. yPe/. Since Ke is homotopy equivalent to xLe , it follows that Ke is aspherical.

An x–side of Ke consists of a double edge with label x together with all the double
edges connected to the two vertices of the x–double edge. A y–side is defined in the
same way. See Figure 2, where the blue part on the left shows a y–side. Note that Ke

has me x–sides and me y–sides. We refer to these as the sides of Ke. We say Ke

is side injective if the inclusion induced map �1.S/! �1.Ke/ is injective for every
side S. An x–side in xLe is the image of an x–side under Ke!

xLe, etc.

Lemma 5.2 The 2–complex Ke is x–side injective if and only if

hx2;y2; z;xy2x�1;xzx�1
W z 2 zi

is a free subgroup of G. yPe/ on the given basis.

Proof Recall that me � 3. An x–side S in xLe is an x–double edge, a y–double edge
at each of the two vertices, and a loop for every z 2 z at each of the two vertices. The
image of �1.S/ in G. yPe/ under the covering projection is the group in the statement
of the lemma.

Lemma 5.3 If T is a subgraph of the 1–skeleton of Ke that does not involve every
letter from xe D fx;y; zg, then �1.T /! �1.Ke/ is injective.

Proof We can argue with xLe instead of Ke. A reduced loop  in T gives a reduced
word u in the generators of yPe that does not involve all letters from xe Dfx;y; zg. The
presentation yPe has only one relator Ore that does involve all letters from the generating
set xe D fx;y; zg. The Freiheitssatz for 1–relator groups implies that u does not
represent the trivial element in G. yP /. Thus  is not trivial in �1.xLe/.
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We continue our analysis. The complex K.�/ is a union of the complexes wKe for
w 2W .‡/ and e 2 edges of � . The maps

K.�/! zK.‡/!†.‡/

give a one-to-one correspondence between the wKe and Coxeter cells w�e. Since ‡
is a tree, the Davis complex †.‡/ is a tree of Coxeter cells w�e and so K.�/ is a tree
of complexes wKe. In complete analogy to Proposition 2.1, we have:

Proposition 5.4 Consider K.�/D
S
wKe!†.‡/D

S
w�e.

(1) K.�/ is the union of the 2–complexeswKe for e 2 fedges of �g andw 2W .‡/.
Furthermore , if w1Ke1

\w2Ke2
¤∅, then e1\ e2 ¤∅; if x D e1\ e2, then

w1Ke1
\w2Ke2

D T, where T is the subgraph of an x–side S that carries the
letters xe1

\xe2
.

(2) K.�/ is a tree of 2–complexes. In particular , if M is a finite connected union
of 2–complexes wiKei

in K.�/, then there exists a 2–complex wKe in M that
intersects with the rest of M in a subgraph of a single side.

Theorem 5.5 Let � be a LOT of Coxeter type. Then K.�/ is aspherical if the Ke are
side injective for every edge e in � .

Proof We will show that K.�/ is aspherical. It suffices to show that every finite con-
nected union M D

Sn
iD1wiKei

is aspherical. We first claim that the sides of thewiKei

�1–inject into the union M. We do induction on n. If nD 1, the result follows from the
hypothesis. Assume n> 1. Then, by Proposition 5.4(2), there exists a 2–complex wKe

in M that intersects with the rest of M in a subgraph T of a single side S (of course,
T could be S ). Now, by the induction hypothesis, the inclusion S �M �wKe DM0

is �1–injective, and the inclusion S � wKe is �1–injective by hypothesis. It follows
that �1.M / is an amalgamated product �1.M /D �1.M0/��1.T / �1.wKe/. Thus the
inclusion S �M is �1–injective. All other sides that occur in M are contained in either
M0 or wKe. �1–injectivity follows from the amalgamated product decomposition.
Asphericity of M now follows from induction on n and the amalgamated product
decomposition �1.M /D �1.M0/��1.T / �1.wKe/.

Remark The above proof shows more than asphericity. Since each �1.Ke/ is a
finite-index subgroup of a 1–relator group, we see that �1.K/ is a tree of groups, the
vertex groups being finite-index subgroups of 1–relator groups, and the edge groups
(over which we amalgamate) being finitely generated and free.
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Definition 5.6 A labeled oriented tree � is called label separated if, for every pair of
edges e1 and e2 that have a vertex in common, the intersection xe1

\xe2
is a proper

subset of both xe1
and xe2

.

Theorem 5.7 Let � be a label separated LOT of Coxeter type. Then K.�/ is aspheri-
cal.

Proof The proof is very much the same as the proof of Theorem 5.5. Let M DSn
iD1wiKei

as before. Again it suffices to show that M is aspherical. If n D 1

then the proof is clear. It is instructive to look at the case n D 2. The intersection
w1Ke1

\w2Ke2
DT is the subgraph of a side that carries the letters xe1

\xe2
, which is a

proper subset of both xe1
and xe2

. Thus �1–injectivity for the inclusions T �wiKei
for

i D 1; 2 follows from Lemma 5.3. We have �1.M /D �1.w1Ke1
/��1.T / �1.w2Ke2

/

and M is aspherical. For n � 2 we argue by induction and obtain (as in the proof
of Theorem 5.5) a decomposition �1.M /D �1.M0/��1.T / �1.wKe/, which proves
asphericity of M.

6 Side injectivity

Let P D ha; b; c j ri, be a 1–relator group, where c is a finite set of letters (which could
be empty). We assume that r is cyclically reduced and contains all generators. Assume
further that r D .ab/m for some m� 0 modulo the relations a2D b2D c D 1 for c 2 c

and cyclic permutation. The number m is called the dihedral type of P.

Let Q D ha; b; c j .ab/m; a2; b2 for c 2 ci. We have an epimorphism � W G.P /!

G.Q/DDm. Let K.P / be the covering of K.P / associated with the kernel. Note that
K.P /.1/D zK.Q/.1/, which is the Cayley graph for Dm on the generating set fa; b; cg.
So K.P /.1/ is a 2m–gon, consisting of double edges labeled in an alternating way
with a and b, and at every vertex we have a c–loop for every c 2 c. An a–side of K.P /

is a connected subgraph of the 1–skeleton that consists of a double edge with label a,
together with all the b–double edges and c–loops connected to the two vertices of the
a–double edge. A b–side is defined in an analogous way. We say P is side injective if
the inclusion of any side S !K.P / is �1–injective.

Lemma 6.1 Assume that P is of dihedral type m � 3. Suppose that , for every
cyclically reduced word w in fa; b; cg˙1 which represents the trivial element in G.P /,
some cyclic permutation of w contains a reduced subword u of the form

a˙1d1bˇd2a˛d3b˙1 or b˙1d1a˛d2bˇd3a˙1;
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where ˛ and ˇ are odd integers and the di are words in the generators containing a

and b with even exponents (the di could be trivial). Then P is side injective.

Proof We begin with some notation. If w is a word in fa; b; cg˙1, then we denote
by Sw the element of Dm that it represents. If w D x1 : : :xn with xi 2 fa; b; cg

˙1,
then the lift  .w;V / of w into K.P /.1/, starting at a vertex V, is a path with vertices
V;x1V;x1x2V; : : : ;x1 : : :xnV. Now let w be a reduced word as in the statement. We
assume without loss of generality that w D w1.a

˙1d1bˇd2a˛d3b˙1/w2. Consider
 .w;V /. Let V 0Dw1V. Among the vertices of  .w;V / we find V 0, NaV 0, abV 0, abaV 0,
and ababV 0. These are five distinct vertices. A side of K.P / contains exactly four
vertices. It follows that  .w;V / is not contained in a side. We conclude that P is side
injective.

Example 6.2 P D ha; b j .ab/mi for m� 3 is side injective. This is because 1–relator
presentations with torsion are Dehn presentations (in particular, G.P / is hyperbolic).
See Newman [16]. A word w that is trivial in the group contains a subword of length
more than 1

2
that of a cyclic permutation of the relator or its inverse; hence, it contains

a cyclic permutation of abab, or its inverse. The result follows from Lemma 6.1.

Example 6.3 More generally, if P Dha; b; c j r.a; b; c/i (c could be empty) is a Dehn
presentation of dihedral type m� 3 such that more than half of a cyclic permutation
of the relator or its inverse contains a subword u as in Lemma 6.1, then P is side
injective. Recall that P is a Dehn presentation for instance if it satisfies the small
cancellation condition C 0

�
1
6

�
or C 0

�
1
4

�
�T .4/ (see Lyndon and Schupp [14, Chapter V,

Theorem 4.4]). For example, if

r.a; b; c/D a˛1d1bˇ1d2a˛2d3bˇ2d4a˛3d5bˇ3d6a˛4d7bˇ4d8;

where the ˛i and ˇi are odd integers satisfying j˛i jD j j̨ j and jˇi jD j ǰ j for all i; j �4

and the di are words of the same length containing a and b with even exponents, and
P satisfies the small cancellation condition C 0

�
1
6

�
or C 0

�
1
4

�
� T .4/, then P is side

injective. Concrete examples are

ha; b; c j .acbc�1ac�1bc/2i and ha; b; c j acbc�1acbcac�1bc�1ac�1bci;

which are C 0
�

1
4

�
�T .4/, and

ha; b; c j acbca�1cbc�1a�1c�1bcac�1bc�1
i;

which is C 0
�

1
6

�
. These presentations were checked with the help of GAP (see [7]) and

the package SMALLCANCELLATION by Ivan Sadofschi Costa (see [19]).
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Example 6.4 The Artin presentation P D ha; b j prod.a; b;m/D prod.b; a;m/i is not
side injective for mD 3, but is side injective for m� 4:

m D 3 We show that P D ha; b j aba D babi is not side injective. We have
a2.aba2ba/a�2 D aba2ba in G.P / because .aba/2 D aba2ba is central. So

w D a2ba2ba�2b�1a�2b�1
D 1

in G.P /. Note that w lifts into a b–side of K.P /.

mD 4 We show that P D ha; b j ababD babai is side injective. Note that x D abab

is a central element. The quotient G.P /=hxi has a presentation ha; b j .ab/2i. Let
y D ba; then the presentation rewrites to ha;y j y2i. In order to show that P is a–side
injective, we have to show that a2, b2 and ab2a�1 generate a free group of rank 3
in G.P /. We will do this by showing that A D a2, B D .ya�1/2 D ya�1ya�1 and
C0 D a.ya�1/2a�1 D aya�1ya�1a�1 generate a free group in the quotient presented
by QD ha;y j y2i D Z�Z2. Let C1 D BC0. We have

C1 D ya�1ya�1aya�1ya�1a�1
D ya�1yya�1ya�1a�1

D ya�1a�1ya�1a�1

D ya�2ya�2:

And, finally, let C D C1AD ya�2y. In summary we have

AD a2; B D ya�1ya�1; C D ya�2y:

The group H D hA;B;C i is a normal free subgroup of G.Q/ of rank 3 and index 4.
Figure 3 shows a covering space p W K.Q/ ! K.Q/ such that �1.K.Q// is free
of rank 3 and p�

�
�1.K.Q//

�
D hA;B;C i � �1.K.Q//. The argument for b–side

injectivity is analogous.

m � 6 and even This case is easy. Let x D prod.a; b;m/. The quotient G.P /=hxi

is presented by ha; b j .ab/m=2i, which is a Dehn presentation, being a 1–relator
presentation with torsion. Since m� 6, we have 1

2
m� 3. Side injectivity follows from

Example 6.2.

m � 5 and odd Let x D prod.a; b;m/ and y D ba. Note that x D ay.m�1/=2.
Using aD xy.�mC1/=2 and b D y.mC1/=2x�1, the presentation P can be rewritten to
hx;y j x2D ymi. Thus G.P /=hx2i is presented by hx;y j x2;ymi, which is the hyper-
bolic group Z2 �Zm. In the original generators, this is ha; b j prod.a; b;m/2; .ba/mi.
If this were a Dehn presentation, we could proceed as in the previous case (at least
for m � 7), but we do not know. Instead we argue as for m D 4. For simplicity we
assume m D 5; the cases m � 7 go along the same lines. In order to show that P
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Figure 3: If QD ha;y j y2i then the universal covering zK.Q/ is a tree with
spheres attached. Here we see the intermediate covering K.Q/ corresponding
to the subgroup H D hA;B;C i. The gray discs with boundary y2 indicate
2–spheres.

is a–side injective we have to show that a2, b2 and ab2a�1 generate a free group of
rank 3 in G.P /. In terms of x and y, it suffices to show that xy�2xy�2, y3x�1y3x�1

and .xy�2/y3x�1y3x�1.xy�2/�1 generate a free subgroup of rank 3 in the quotient
presented by QD hx;y j x2;y5i. Let

AD xy3xy3; B D y3xy3x; C0 D xyxy3xy2x:

Let C D C0AD .xyxy3xy2x/.xy3xy3/D xyxy.

Note that
C.y�1Cy/D .xyxy/y�1.xyxy/y D xy2xy2

D B�1

and
C.y�1Cy/.y�2Cy2/D xy2xy2y�2xyxyy2

D xy3xy3
DA:
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Figure 4: A rendering of the covering space K.Q/. Each x–edge represents
a double x–edge into which two discs with boundary x2 are glued. Each gray
disc represents five discs with boundary y5.
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So it suffices that to show that

X D C; Y D y�1Cy; Z D y�2Cy2

generate a free subgroup of rank 3. Figure 4 shows a covering space p WK.Q/!K.Q/

such that �1.K.Q// is free of rank 3 and p�
�
�1.K.Q//

�
D hX;Y;Zi � �1.K.Q//.

The argument for b–side injectivity is analogous.

Example 6.5 Let P Dha; b; c j a.babcaba/D .babcaba/bi. Then P is side injective
by Theorem 6.6.

Theorem 6.6 Suppose P has dihedral type m� 3 and

� P D ha; b; c j a.u1c�u3/D .u1c�u3/bi, or

� P D ha; b; c j a.u1c�u2c�u3/D .u1c�u2c�u3/bi,

where

(1) c 2 c and � D˙1,

(2) the words u1 and u3 do not contain c while u2 is arbitrary, and

(3) both u�1
1

a and u3b�1 contain a subword u as in Lemma 6.1.

Then P is side injective.

Proof We assume we are in the second case and � D 1. The first case is shown in an
analogous way. Envision the relator disc placed in the plane as a rectangle, where the a

on the very left of the equation and the b on the very right of the equation are horizontal
edges, and the word u1cu2cu3 is a vertical edge sequence. Connect the midpoints of
c–edges on the left and right by horizontal red edges. See Figure 5. Suppose that w is a
cyclically reduced word that represents the trivial element in G.P /. Let D be a reduced
Van Kampen diagram with boundary w. We may assume that D is a topological disc.

a

b

u1 u1

u2 u2

u3 u3

c c

c c

Figure 5: The relator disc drawn as a rectangle.
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innermost circle

outermost arc

Figure 6: A disc with red arcs, indicating innermost circles and outermost arcs.

The red edges in our relator disc will form red circles and red arcs connecting points on
the boundary of D. See Figure 6. Consider an innermost red circle. Going around the
inside, we read off a word that freely reduces to u�1

1
aku1 or u3bku�1

3
for some k 2Z.

If k D 0, then D is not reduced. If k ¤ 0, then G.P / has torsion. Neither is the case;
hence, there are no red circles in D. Consider an outermost red arc ˛. Let E be the
component of D�˛ that does not contain anything red. Reading along the part of the
boundary of D which belongs to E gives a reduced word (a subword of the reduced
word w) equal to u�1

1
aku1 or u3bku�1

3
. Because D is reduced, k cannot be zero. If k

is positive then u�1
1

aku1 contains u�1
1

a and hence a word u as in Lemma 6.1. Also,
u3bku�1

3
contains bu�1

3
, and, since u3b�1 contains a word u as in Lemma 6.1, so

does .u3b�1/�1 D bu�1
3

. The case where k is negative goes the same way. It now
follows from Lemma 6.1 that P is side injective.

7 Last words about LOT applications

Theorem 7.1 Let � be a LOT of Coxeter type. Suppose that , for every edge e D

.a
we
�! b/, the word we is of the form u1c�u3 or u1c�u2c�u3 for some letter c ¤ a; b,

� D˙1, and words u1, u2 and u3 as in Theorem 6.6. Then K.�/ is aspherical.

Proof Each yPe is side injective. This follows from Theorem 6.6. Thus each Ke is
side injective. The result follows from Theorem 5.5.

What if side injectivity fails?

Theorem 7.2 Suppose � is a LOT of Coxeter type and e1 and e2 are two edges of � .
Let Ke1

\Ke2
D S, which is a subgraph of a side of Ke1

and a side of Ke2
. Let
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N1 D ker.�1.S/! �1.Ke1
// and N2 D ker.�1.S/! �1.Ke2

//. Assume that

N1\N2

ŒN1;N2�
¤ 1:

Then Whitehead’s asphericity conjecture is false.

Proof Suppose Whitehead’s conjecture is true. Then K.�/ and hence K.�/ is
aspherical. Note that Ke1

[Ke2
is a subcomplex of K.�/. Let w be a reduced edge

loop in S that represents a nontrivial element in the quotient .N1\N2/=ŒN1;N2�. It
is the boundary of a Van Kampen diagram D1 for Ke1

and also the boundary of a
Van Kampen diagram D2 for Ke2

. The two diagrams can be glued together to form
a nontrivial element in �2.Ke1

[Ke2
/ (see Gutierrez and Ratcliffe [8]). This is a

contradiction.

References
[1] A J Berrick, J A Hillman, Whitehead’s asphericity question and its relation to other

open problems, from “Algebraic topology and related topics” (M Singh, Y Song, J Wu,
editors), Springer (2019) 27–49 MR Zbl

[2] S A Bleiler, Two-generator cable knots are tunnel one, Proc. Amer. Math. Soc. 122
(1994) 1285–1287 MR Zbl

[3] W A Bogley, J H C Whitehead’s asphericity question, from “Two-dimensional homo-
topy and combinatorial group theory” (C Hog-Angeloni, W Metzler, A J Sieradski,
editors), London Math. Soc. Lecture Note Ser. 197, Cambridge Univ. Press (1993)
309–334 MR Zbl

[4] J O Button, Large groups of deficiency 1, Israel J. Math. 167 (2008) 111–140 MR Zbl

[5] M Carette, R Weidmann, On the rank of Coxeter groups, preprint (2009) arXiv
0910.4997

[6] M W Davis, The geometry and topology of Coxeter groups, London Mathematical
Society Monographs Series 32, Princeton Univ. Press (2008) MR Zbl

[7] The GAP Group, GAP: groups, algorithms, and programming, software (2020)
Version 4.11.0 Available at https://www.gap-system.org

[8] M A Gutiérrez, J G Ratcliffe, On the second homotopy group, Quart. J. Math. Oxford
Ser. 32 (1981) 45–55 MR Zbl

[9] J Harlander, S Rosebrock, Generalized knot complements and some aspherical ribbon
disc complements, J. Knot Theory Ramifications 12 (2003) 947–962 MR Zbl

[10] J Harlander, S Rosebrock, Aspherical word labeled oriented graphs and cyclically
presented groups, J. Knot Theory Ramifications 24 (2015) art. id. 1550025 MR Zbl

Algebraic & Geometric Topology, Volume 23 (2023)

http://dx.doi.org/10.1007/978-981-13-5742-8_3
http://dx.doi.org/10.1007/978-981-13-5742-8_3
http://msp.org/idx/mr/3991175
http://msp.org/idx/zbl/1430.57020
http://dx.doi.org/10.2307/2161200
http://msp.org/idx/mr/1242075
http://msp.org/idx/zbl/0841.57008
http://dx.doi.org/10.1017/CBO9780511629358.012
http://msp.org/idx/mr/1279184
http://msp.org/idx/zbl/0811.57008
http://dx.doi.org/10.1007/s11856-008-1043-9
http://msp.org/idx/mr/2448020
http://msp.org/idx/zbl/1204.20038
http://msp.org/idx/arx/0910.4997
http://msp.org/idx/arx/0910.4997
https://www.jstor.org/stable/j.ctt1r2fnf
http://msp.org/idx/mr/2360474
http://msp.org/idx/zbl/1142.20020
https://www.gap-system.org
http://dx.doi.org/10.1093/qmath/32.1.45
http://msp.org/idx/mr/606922
http://msp.org/idx/zbl/0457.57002
http://dx.doi.org/10.1142/S0218216503002871
http://dx.doi.org/10.1142/S0218216503002871
http://msp.org/idx/mr/2017964
http://msp.org/idx/zbl/1053.57005
http://dx.doi.org/10.1142/S021821651550025X
http://dx.doi.org/10.1142/S021821651550025X
http://msp.org/idx/mr/3349953
http://msp.org/idx/zbl/1373.57007


Ribbon 2–knot groups of Coxeter type 2733

[11] J Hillman, Algebraic invariants of links, 2nd edition, Series on Knots and Everything
52, World Sci., Hackensack, NJ (2012) MR Zbl

[12] J Howie, On the asphericity of ribbon disc complements, Trans. Amer. Math. Soc. 289
(1985) 281–302 MR Zbl

[13] E Klimenko, M Sakuma, Two-generator discrete subgroups of Isom.H2/ containing
orientation-reversing elements, Geom. Dedicata 72 (1998) 247–282 MR Zbl

[14] R C Lyndon, P E Schupp, Combinatorial group theory, Ergebnisse der Math. 89,
Springer (1977) MR Zbl

[15] W Menasco, A W Reid, Totally geodesic surfaces in hyperbolic link complements,
from “Topology ’90” (B Apanasov, W D Neumann, A W Reid, L Siebenmann, editors),
Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter, Berlin (1992) 215–226 MR Zbl

[16] B B Newman, Some results on one-relator groups, Bull. Amer. Math. Soc. 74 (1968)
568–571 MR Zbl

[17] F H Norwood, Every two-generator knot is prime, Proc. Amer. Math. Soc. 86 (1982)
143–147 MR Zbl

[18] S Rosebrock, Labelled oriented trees and the Whitehead-conjecture, from “Advances in
two-dimensional homotopy and combinatorial group theory” (W Metzler, S Rosebrock,
editors), London Math. Soc. Lecture Note Ser. 446, Cambridge Univ. Press (2018)
72–102 MR Zbl

[19] I Sadofschi Costa, The small cancellation package, software (2018) Available at
https://github.com/isadofschi/smallcancellation

[20] J-P Serre, Trees, Springer (2003) MR Zbl

[21] R Weidmann, The rank problem for sufficiently large Fuchsian groups, Proc. Lond.
Math. Soc. 95 (2007) 609–652 MR Zbl

[22] T Yajima, On a characterization of knot groups of some spheres in R4, Osaka Math. J.
6 (1969) 435–446 MR Zbl

Department of Mathematics, Boise State University
Boise, ID, United States

Pädagogische Hochschule Karlsruhe
Karlsruhe, Germany

jensharlander@boisestate.edu, rosebrock@ph-karlsruhe.de

Received: 5 March 2021 Revised: 21 December 2021

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.1142/8493
http://msp.org/idx/mr/2931688
http://msp.org/idx/zbl/1253.57001
http://dx.doi.org/10.2307/1999700
http://msp.org/idx/mr/779064
http://msp.org/idx/zbl/0572.57001
http://dx.doi.org/10.1023/A:1005032526329
http://dx.doi.org/10.1023/A:1005032526329
http://msp.org/idx/mr/1647707
http://msp.org/idx/zbl/0928.20040
http://dx.doi.org/10.1007/978-3-642-61896-3
http://msp.org/idx/mr/0577064
http://msp.org/idx/zbl/0368.20023
http://dx.doi.org/10.1515/9783110857726.215
http://msp.org/idx/mr/1184413
http://msp.org/idx/zbl/0769.57014
http://dx.doi.org/10.1090/S0002-9904-1968-12012-9
http://msp.org/idx/mr/222152
http://msp.org/idx/zbl/0174.04603
http://dx.doi.org/10.2307/2044414
http://msp.org/idx/mr/663884
http://msp.org/idx/zbl/0506.57004
http://dx.doi.org/10.1017/9781316555798.005
http://msp.org/idx/mr/3752468
http://msp.org/idx/zbl/1435.57016
https://github.com/isadofschi/smallcancellation
https://github.com/isadofschi/smallcancellation
http://dx.doi.org/10.1007/978-3-642-61856-7
http://msp.org/idx/mr/1954121
http://msp.org/idx/zbl/1013.20001
http://dx.doi.org/10.1112/plms/pdm018
http://msp.org/idx/mr/2368278
http://msp.org/idx/zbl/1131.20036
http://projecteuclid.org/euclid.ojm/1200692533
http://msp.org/idx/mr/259893
http://msp.org/idx/zbl/0189.54902
mailto:jensharlander@boisestate.edu
mailto:rosebrock@ph-karlsruhe.de
http://msp.org
http://msp.org




msp
Algebraic & Geometric Topology 23:6 (2023) 2735–2776

DOI: 10.2140/agt.2023.23.2735
Published: 7 September 2023

Weave-realizability for D–type

JAMES HUGHES

We study exact Lagrangian fillings of Legendrian links of Dn–type in the standard
contact 3–sphere. The main result is the existence of a Lagrangian filling, represented
by a weave, such that any algebraic quiver mutation of the associated intersection
quiver can be realized as a geometric weave mutation. The method of proof is via
Legendrian weave calculus and a construction of appropriate 1–cycles whose geomet-
ric intersections realize the required algebraic intersection numbers. In particular, we
show that, in D–type, each cluster chart of the moduli of microlocal rank-1 sheaves
is induced by at least one embedded exact Lagrangian filling. Hence, the Legendrian
links of Dn–type have at least as many Hamiltonian isotopy classes of Lagrangian
fillings as cluster seeds in the Dn–type cluster algebra, and their geometric exchange
graph for Lagrangian disk surgeries contains the cluster exchange graph of Dn–type.

53D12; 57K33

1 Introduction

Legendrian links in contact 3–manifolds — see Bennequin [3] and Arnold [2] — are
central to the study of 3–dimensional contact topology; see Ozbagci and Stipsicz [20]
and Geiges [15]. Recent developments due to Casals, Gao, Ng and Zaslow [7; 5; 6] have
revealed new phenomena regarding their Lagrangian fillings, including the existence
of many Legendrian links ƒ � .S3; �st/ with infinitely many (smoothly isotopic)
Lagrangian fillings in the Darboux 4–ball .D4; !st/ which are not Hamiltonian isotopic.
The relationship between cluster algebras and Lagrangian fillings — see Casals and
Zaslow [7] and Gao, Shen and Weng [14] — has also led to new conjectures on the
classification of Lagrangian fillings from Casals [4]. In particular, Conjecture 5.1 of [4]
introduced a conjectural ADE classification of Lagrangian fillings. Here we study
D–type and prove part of the conjectured classification.

The A–type was studied by Ekholm, Honda and Kálmán [9] and Pan [21] via Floer-
theoretic methods, and by Shende, Treumann, Williams and Zaslow [23; 25] via
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License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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n� 2

Figure 1: The front projection of �.Dn/ � .S3; �st/. The box labeled with
an n� 2 represents n� 2 positive crossings given by �n�2

1 . When n is even,
�.Dn/ has three components, while when n is odd, �.Dn/ only has two
components.

microlocal sheaves. Their main result is that the An–Legendrian link �.An/� .S3; �st/,
which is the max-tb representative of the .2; nC1/–torus link, has at least a Catalan
number CnC1 D

1
nC2

�
2nC2
nC1

�
of embedded exact Lagrangian fillings, where CnC1 is

precisely the number of cluster seeds in the finite-type An cluster algebra; see Fomin,
Williams and Zelevinsky [13]. We will show that the same holds in D–type, namely that
Dn–type Legendrian links have at least as many distinct Hamiltonian isotopy classes
of Lagrangian fillings as there are cluster seeds in the Dn–type cluster algebra. This
will be a consequence of a stronger geometric result, weave-realizability in D–type,
which we discuss below.

By definition, the Legendrian link �.Dn/ � .S3; �st/ with n � 4 of Dn–type is the
standard satellite of the Legendrian link defined by the front projection given by
the 3–stranded positive braid �n�2

1
.�2�

2
1
�2/.�1�2/

3, where �1 and �2 are the Artin
generators for the 3–stranded braid group. Figure 1 depicts a front diagram for �.Dn/;
note that the .�1/–framed closure of �n�2

1
.�2�

2
1
�2/.�1�2/

3 is Legendrian isotopic
to the rainbow closure of �n�2

1
.�2�

2
1
�2/, the latter being depicted. The Legendrian

link �.Dn/ is also a max-tb representative of the smooth isotopy class of the link of
the singularity f .x;y/D y.x2Cyn�2/. Since these are algebraic links, the max-tb
representative given above is unique — see eg [4, Proposition 2.2] — and has at least
one exact Lagrangian filling; see Hayden and Sabloff [18].

The N –graph calculus developed by Casals and Zaslow [7] allows us to associate an
exact Lagrangian filling of a .�1/–framed closure of a positive braid to a pair of trivalent

Algebraic & Geometric Topology, Volume 23 (2023)
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D4

�2
�1 �2

�1

�1

�2

�1

�1�1

�2

�1

�1

Dn

�2 �1 �2

�1

�1

�2

�n�2
1

�1

�2

�1

�1

Figure 2: 3–Graphs �0.D4/ (left) and �0.Dn/ (right), pictured with their
associated intersection quivers Q.�0.D4/; f

.0/
i g/ and Q.�0.Dn/; f

.0/
i g/.

The basis f .0/i g for H1

�
ƒ.�0.D4//IZ

�
is depicted by the dark green and

orange and cycles drawn in the graph. Note that the quivers correspond to the
D4 and Dn Dynkin diagrams, usually depicted rotated 90ı counterclockwise.

planar graphs satisfying certain properties. See Figure 2, left, for an example of a particu-
lar 3–graph, denoted by �0.D4/, associated to the Legendrian link �.D4/.1 In Section 3,
we will show that the 3–graph �0.D4/ generalizes to a family of 3–graphs �0.Dn/,
depicted in Figure 2, right, for any n� 3. In a nutshell, a 3–fold branched cover of D2,
simply branched at the trivalent vertices of these 3–graphs, yields an exact Lagrangian
surface in .T �D2; !st/, whose Legendrian lift is a Legendrian weave. One of the
distinct advantages of the 3–graph calculus is that it combinatorializes an operation,
known as Lagrangian disk surgery — see Polterovich [22] and Yau [27] — that modifies
the weave in such a way as to yield additional — non-Hamiltonian isotopic — exact
Lagrangian fillings of the link.

If we consider a 3–graph � and a basis fig for the first homology of the weave ƒ.�/
for i 2 Œ1; b1.ƒ.�//�, we can define a quiver Q.�; fig/ whose adjacency matrix is
given by the intersection form in H1.ƒ.�//. Quivers come equipped with a involutive
operation, known as quiver mutation, that produces new quivers; see Section 2.6 below
or Fomin, Williams and Zelevinsky [12] for more on quivers. A key result of [7] tells
us that Legendrian mutation of the weave induces a quiver mutation of the intersection
quiver. Quivers related by a sequence of mutations are said to be mutation-equivalent,

1We use �.D4/, ie nD 4, as a first example because nD 3 would correspond to �.A3/, which has been
studied previously [9; 21]. The study of �.D4/ is also the first instance where we require the machinery of
3–graphs rather than 2–graphs.
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and the quivers that are of finite mutation type (ie the set of mutation-equivalent
quivers is finite) have an ADE classification [13]. This classification parallels the
naming convention for the Dn links described above: the intersection quiver associated
to �.Dn/ is a quiver in the mutation class of the Dn Dynkin diagram (the latter endowed
with an appropriate orientation). See Figure 2 for examples of D4 and Dn quivers. For
our 3–graph �0.Dn/ for n� 3, we will give an explicit basis f .0/i g D f

.0/
1
; : : : ; 

.0/
n g

for H1

�
ƒ.�0.Dn//;Z

�
, whose intersection quiver Q.�0.Dn/; f

.0/
i g/ is the standard

Dn Dynkin diagram.

Let us introduce the following notion. By definition, a sequence of quiver mutations
for Q.�0.Dn/; f

.0/
i g/ is said to be weave-realizable if each quiver mutation in the

sequence can be realized as a Legendrian weave mutation for a 3–graph. Our main
result is the following theorem:

Theorem 1 Any sequence of quiver mutations of Q.�0.Dn/; 
.0/
1
; : : : ; 

.0/
n g/ is

weave-realizable.

In other words, Theorem 1 states that, in D–type, any algebraic quiver mutation can
actually be realized geometrically by a Legendrian weave mutation. Weave-realizability
is of interest because it measures the difference between algebraic invariants — eg
the cluster structure in the moduli of sheaves — and geometric objects, in this case
Hamiltonian isotopy classes of exact Lagrangian fillings. In general, if any sequence of
quiver mutations were weave-realizable, we would know that each cluster is inhabited
by at least one embedded exact Lagrangian filling; this general statement remains
open for an arbitrary Legendrian link. For instance, any link with an associated quiver
that is not of finite mutation type satisfying the weave-realizability property would
admit infinitely many Lagrangian fillings, distinguished by their quivers.2 Note that
weave-realizability was shown for A–type by Treumann and Zaslow [25], and beyond
A– and D–types we currently do not know whether there are any other links satisfying
the weave-realizability property.

We can further distinguish fillings by studying the cluster algebra structure on the
moduli of microlocal rank-1 sheaves C.�/ of a weave ƒ.�/; see eg [7]. Specifically,
sheaf quantization of each exact Lagrangian filling of �.Dn/ induces a cluster chart
on the coordinate ring of functions on C.�0.Dn// via the microlocal monodromy
functor, giving C.�0.Dn// the structure of a cluster variety of Dn–type; see Shende,

2This would be independent of the cluster structure defined by the microlocal monodromy functor, which
we actually must use for D–type.
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Treumann, Williams and Zaslow [24; 23]. Describing a single cluster chart in this
cluster variety requires the data of the quiver associated to the weave and the microlocal
monodromy around each 1–cycle of the weave. Crucially, applying the Legendrian
mutation operation to the weave induces a cluster transformation on the cluster chart,
and the specific cluster chart defined by a Lagrangian fillings is a Hamiltonian isotopy
invariant. Therefore, Theorem 1 has the following consequence:

Corollary 2 Every cluster chart of the moduli of microlocal rank-1 sheaves C.�0.Dn//

is induced by at least one embedded exact Lagrangian filling of �.Dn/� .S3; �st/. In
particular , there exist at least .3n� 2/Cn�1 exact Lagrangian fillings of the link �.Dn/

up to Hamiltonian isotopy, where Cn denotes the nth Catalan number.

Moreover, weave-realizability implies a slightly stronger result. Specifically, we can
consider the filling exchange graph associated to a link of Dn–type, where the vertices
are Hamiltonian isotopy classes of embedded exact Lagrangians, and two vertices
are connected by an edge if the two fillings are related by a Lagrangian disk surgery.
Then weave-realizability implies that the filling exchange graph contains a subgraph
isomorphic to the cluster exchange graph for the cluster algebra of Dn–type.

Remark As of yet, we have no way of determining whether our method produces
all possible exact Lagrangian fillings of a type Dn link. This question remains open
for A–type Legendrian links as well. In fact, the only known knot for which we have
a complete nonempty classification of Lagrangian fillings is the Legendrian unknot,
which has a unique filling; see Eliashberg and Polterovich [11].

In summary, our method for constructing exact Lagrangian fillings will be to represent
them using the planar diagrammatic calculus of N –graphs developed in [7]. This
diagrammatic calculus includes a mutation operation on the diagrams that yields
additional fillings. We distinguish the resulting fillings up to Hamiltonian using a
sheaf-theoretic invariant. From this data, we extract a cluster algebra structure and
show that every mutation of the quiver associated to the cluster can be realized by
applying our Legendrian mutation operation to the 3–graph, thus proving that there are
at least as many distinct fillings as distinct cluster seeds of Dn–type. The main theorem
will be proven in Section 3 after giving the necessary preliminaries in Section 2.

Added in proof

While writing this manuscript, we learned that recent independent work by Byung
Hee An, Youngjin Bae and Eunjeong Lee [1] also produces at least as many exact
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Lagrangian fillings as cluster seeds for links of ADE–type, providing an alternative
proof to Corollary 2. To our understanding, they use an inductive argument that relies on
the combinatorial properties of the finite-type generalized associahedron. Specifically,
they leverage the fact that the Coxeter transformation in finite type is transitive if
starting with a particular set of vertices by finding a weave pattern that realizes Coxeter
mutations. While their initial 3–graph G.1; 1; n/ is the same as our �0.Dn/, their
method of computing a weave associated to an arbitrary sequence of quiver mutations
requires concatenating some number of concordances corresponding to the Coxeter
mutation before mutating. As a result, a 3–graph arising from a sequence of quiver
mutations �1; : : : ; �i computed using this method is not explicitly shown to be related
to a 3–graph arising from a sequence of quiver mutations �1; : : : ; �i ; �iC1 by a single
Legendrian mutation of the weave. In contrast, in our approach we are able to relate
each 3–graph arising from a sequence of quiver mutations to the next by a single
Legendrian mutation and a specific set of Legendrian Reidemeister moves. While both
this manuscript and [1] use the framework of N –graphs to approach the problem of
enumerating exact Lagrangian fillings, the proofs are different and independent, and our
approach is able to give an explicit construction for realizing any sequence of quiver
mutations via an explicit sequence of mutations in the 3–graph.

Acknowledgments
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2 Preliminaries

In this section we introduce the ingredients required for the proof of Theorem 1 and
Corollary 2. We first discuss the contact topology needed to understand weaves and
their homology. We then discuss the sheaf-theoretic material related to distinguishing
fillings via cluster algebraic methods.

2.1 Contact topology and exact Lagrangian fillings

A contact structure � on R3 is a 2–plane field given locally as the kernel of a 1–form
˛ 2�1.R3/ satisfying ˛^d˛¤ 0. The standard contact structure on .R3; �st/ is given
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by the kernel of ˛ D dz�y dx. A Legendrian link � in .R3; �/ is an embedding of a
disjoint union of copies of S1 that is always tangent to �. By definition, the contact
3–sphere .S3; �st/ is the one-point compactification of .R3; �st/. Since a link in S3 can
always be assumed to avoid a point, we will equivalently be considering Legendrian
links in .R3; �st/ and .S3; �st/. By definition, the symplectization of .R3; �st/ is given
by .R3 �Rt ; d.e

t˛//.

Given two Legendrian links �C and �� in .R3; �/, an exact Lagrangian cobordism †

from �� to �C is an embedded compact orientable surface in the symplectization
.R3 �Rt ; d.e

t˛// such that, for some T > 0,

� †\
�
R3 � ŒT;1/

�
D �C � ŒT;1/,

� †\ .R3 � .�1;�T //D �� � .�1;�T �,

� † is an exact Lagrangian, ie et˛ D df for some function f W†!R.

The asymptotic behavior of †, as specified by the first two conditions, ensures that
we can concatenate Lagrangian cobordisms. By definition, an exact Lagrangian filling
of �C is an exact Lagrangian cobordism from ∅ to �C.

We can also consider the Legendrian lift of an exact Lagrangian in the contactiza-
tion

�
Rs �R4; kerfds � d.et˛/g

�
of .R4; d.et˛//. Note that there exists a contacto-

morphism between
�
Rs �R4; kerfds � d.et˛/g

�
and the standard contact Darboux

structure .R5; �st/, where �st D kerfdz � y1 dx1 � y2 dx2g. We will often work with
the Legendrian front projection .R5; �st/ ! R3

x1;x2;z
for the latter. This will be a

useful perspective for us, as it allows us to construct Lagrangian fillings by studying
(wave)fronts in R3 DR3

x1;x2;z
of Legendrian surfaces in .R5; �st/, and then projecting

down to the standard symplectic Darboux chart R4 D R4
x1;y1;x2;y2

. In this setting,
the exact Lagrangian surface is embedded in R4 if and only if its Legendrian lift has
no Reeb chords. The construction will be performed through the combinatorics of
N –graphs, as we now explain.

2.2 3–Graphs and weaves

In this subsection, we discuss the diagrammatic method of constructing and manipulat-
ing exact Lagrangian fillings of links arising as the .�1/–framed closures of positive
braids via the calculus of N –graphs. It will suffice here to take N D 3.

Definition 3 A 3–graph is a pair of embedded planar trivalent graphs B;R�D2 such
that at any vertex v 2B\R the six edges belonging to B and R incident to v alternate.

Algebraic & Geometric Topology, Volume 23 (2023)



2742 James Hughes

A2
1

A3
1

A2
1

A2
1

D�
4

A2
1

A2
1

Figure 3: A2
1

(left), A3
1

(center) and D�
4

(right) singularities represented in
the 3–graph by an edge, hexavalent vertex and trivalent vertex, respectively.

Equivalently, a 3–graph is an edge-bicolored graph with monochromatic trivalent
vertices and interlacing hexavalent vertices. �0.D4/, depicted in Figure 2, left, contains
two hexavalent vertices displaying the alternating behavior described in the definition.

Remark Casals and Zaslow [7] give a general framework for working with N –graphs,
where N � 1 is the number of embedded planar trivalent graphs. This allows for the
study of fillings of Legendrian links associated to N –stranded positive braids. This
can also be generalized to consider N –graphs in a surface other than D2. In our case,
the family of links �.Dn/ can be expressed as a family of 3–stranded braids, whence
our choice to restrict N to 3 in D2.

Given a 3–graph � �D2, we describe how to associate a Legendrian surface ƒ.�/�
.R5; �st/. To do so, we first describe certain singularities of ƒ.�/ that arise under the
Legendrian front projection � W .R5; �st/! .R3; �st/. In general, such singularities are
known as Legendrian singularities or singularities of fronts. See [2] for a classification
of such singularities. The three singularities we will be interested in are the A2

1
, A3

1

and D�
4

singularities, pictured in Figure 3.

Before we describe our Legendrian surfaces, we must first discuss the ambient contact
structure that they live in. For � �D2 we will take ƒ.�/ to live in the first jet space
.J 1D2; �st/D .T

�D2�Rz; ker.dz��st//, where �st is the standard Liouville form on
the cotangent bundle T �D2. We can view J 1D2 as a certain local model for a contact
structure, in the following way. If we take .Y; �/ to be a contact 5–manifold, then, by the
Weinstein neighborhood theorem, any Legendrian embedding i WD2! .Y; �/ extends
to an embedding from .J 1D2; �st/ to a small open neighborhood of i.D2/ with contact
structure given by the restriction of � to that neighborhood. In particular, a Legendrian
embedding of i WS1!S3 gives rise to a contact embedding Q{ W J 1S1!Op.i.S1// into
some open neighborhood Op.i.S1//� S3. Of particular note in our case is that, under
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Figure 4: The weaving of the singularities pictured in Figure 3 along the
edges of the N –graph. Gluing these local pictures together according to the
3–graph � yields the weave ƒ.�/.

a Legendrian embedding D2 � .R5; �st/, a Legendrian link � in J 1@D2 is mapped to
a Legendrian link in the contact boundary .S3; �st/ of the symplectic .R4; !st D d�st/

given as the codomain of the Lagrangian projection .R5; �st/! .R4; !st/. See [19] for
a description of this Legendrian satellite operation.

To construct a Legendrian weave ƒ.�/ � .J 1D2; �st/ from a 3–graph � , we glue
together the local germs of singularities according to the edges of � . First consider
three horizontal wavefronts D2 � f1g tD2 � f2g tD2 � f3g �D2 �R and a 3–graph
� �D2 � f0g. We construct the associated Legendrian weave ƒ.�/ as follows:

� Above each blue (resp. red) edge, insert an A2
1

crossing between the D2 � f1g

and D2 � f2g sheets (resp. D2 � f2g and D2 � f3g sheets) so that the projection
of the A2

1
singular locus under � WD2�R!D2�f0g agrees with the blue (resp.

red) edge.

� At each blue (resp. red) trivalent vertex v, insert a D�
4

singularity between the
sheets D2 � f1g and D2 � f2g (resp. D2 � f2g and D2 � f3g) in such a way that
the projection of the D�

4
singular locus agrees with v and the projection of the

A1
2

crossings agree with the edges incident to v.

� At each hexavalent vertex v, insert an A3
1

singularity along the three sheets in
such a way that the origin of the A3

1
singular locus agrees with v and the A2

1

crossings agree with the edges incident to v.

If we take an open cover fUig
m
iD1

of D2 � f0g by open disks, refined so that any disk
contains at most one of these three features, we can glue together the resulting fronts
according to the intersection of edges along the boundary of our disks. Specifically, if
Ui \Uj is nonempty, then we define †.U1[U2/ to be the wavefront resulting from
considering the union of wavefronts †.U1/[†.Uj / in .U1 [U2/ �R. We define
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the Legendrian weave ƒ.�/ as the Legendrian surface contained in .J 1D2; �st/ with
wavefront †.�/D†

�Sm
iD1 Ui

�
given by gluing the local wavefronts of singularities

together according to the 3–graph � [7, Section 2.3].

The smooth topology of a Legendrian weave ƒ.�/ is given as a 3–fold branched cover
over D2 with simple branched points corresponding to each of the trivalent vertices
of � . The genus of ƒ.�/ is then computed, using the Riemann–Hurwitz formula, to be

g.ƒ.�//D 1
2

�
v.�/C 2� 3�.D2/� j@ƒ.�/j

�
;

where v.�/ is the number of trivalent vertices of � and j@ƒ.�/j denotes the number
of boundary components of � .

Example If we apply this formula to the 3–graph �0.D4/, pictured in Figure 2, we
have six trivalent vertices and three link components, so the genus is computed as
g
�
ƒ.�0.D4//

�
D

1
2
.6C 2� 3� 3/D 1.

For �0.Dn/, we have three boundary components for even n and two boundary compo-
nents for odd n. The number of trivalent vertices is nC 2, so the genus g

�
ƒ.�0.Dn//

�
is
�

1
2
.n� 1/

˘
, assuming n� 2.

This computation tells us that ƒ.�0.D4// is smoothly a 3–punctured torus bounding
the link �.D4/. Therefore, we can give a basis for H1.ƒ.�0.D4//IZ/ in terms of the
four cycles pictured in Figure 2.

For �0.Dn/, the corresponding weave ƒ.�0.Dn// will be smoothly a genus
�

1
2
.n�1/

˘
surface with a basis of H1.ƒ.�/IZ/ given by n–cycles. Our computation of the
genus in the example above agrees with a theorem of Chantraine [8] specifying the
relationship between the Thurston–Bennequin invariant of �.Dn/ and the genus of any
exact Lagrangian filling ƒ of �.Dn/. In particular, tb.�.Dn//D n� 1 and therefore
the Euler characteristic of ƒ is 3�n when n is odd and 4�n when n is even. Thus, we
recover the genus g.ƒ/D

�
1
2
.n�1/

˘
of any filling of �.Dn/. In the next subsection, we

describe a general method for giving a basis f .0/i g for i 2 Œ1; n� of the first homology
H1.ƒ.�0.Dn//IZ/Š Zn.

2.3 Homology of weaves

We require a description of the first homology H1

�
.ƒ.�//IZ

�
in order to apply the

mutation operation to a 3–graph � . We first consider an edge connecting two trivalent
vertices. Closely examining the sheets of our surface, we can see that each such edge
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Figure 5: A short I–cycle  .e/ for the edge e 2G pictured in the wavefront
†.�/ (left) and a vertical slicing of †.�/ (right).

corresponds to a 1–cycle, as pictured in Figure 5, left. We refer to such a 1–cycle
as a short I–cycle. Similarly, any three edges of the same color that connect a single
hexavalent vertex to three trivalent vertices correspond to a 1–cycle, as pictured in
Figure 6, left. We refer to such a 1–cycle as a short Y–cycle. See Figures 5, right,
and 6, right, for a diagram of these 1–cycles in the wavefront †.�/. We can also
consider a sequence of edges starting and ending at trivalent vertices and passing
directly through any number of hexavalent vertices, as pictured in Figure 7. Such a
cycle is referred to as a long I–cycle. Finally, we can combine any number of I–cycles
and short Y–cycles to describe an arbitrary 1–cycle as a tree with leaves on trivalent
vertices and edges passing directly through hexavalent vertices.

In the proof of our main result, we will generally give a basis for H1.ƒ.�/IZ/

in terms of short I–cycles and short Y–cycles. Indeed, Figure 8 gives a basis of
H1

�
ƒ.�0.Dn//IZ

�
consisting of n� 1 short I–cycles and a single Y–cycle.

The intersection form h � ; � i on H1.ƒ.�// plays a key role in distinguishing our Leg-
endrian weaves. If we consider a pair of 1–cycles 1; 2 2H1.ƒ.�// with nonempty
geometric intersection in � , as pictured in Figure 9, we can see that the intersection of

e3

e1 e2

1
2
3 4 5 6

7
8

9
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4
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6
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8

9

Figure 6: A short Y–cycle  .e/ defined by the edges e1; e2; e3 2G pictured
in the wavefront †.�/ (left) and a vertical slicing of †.�/ (right).
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Figure 7: A pair of long I–cycles, both denoted by  . The cycle on the left
passes through an even number of hexavalent vertices, while the cycle on the
right passes through an odd number.

their projection onto the 3–graph differs from the intersection in ƒ.�/. Specifically,
we can carefully examine the sheets that the 1–cycles cross in order to see that 1 and
2 intersect only in a single point of ƒ.�/. If we fix an orientation on 1 and 2, then
we can assign a sign to this intersection based on the convention given in Figure 9. We
refer to the signed count of the intersection of 1 and 2 as their algebraic intersection
and denote it by h1; 2i. We fix a counterclockwise orientation for all of our cycles
and adopt the convention that any two cycles 1 and 2 intersecting at a trivalent vertex
as in Figure 9 have algebraic intersection h1; 2i D �1.

Notation For the sake of visual clarity, we will represent an element of H1.ƒ.�/IZ/

by a colored edge. This also ensures that the geometric intersection more accurately
reflects the algebraic intersection. The original coloring of the blue or red edges can be
readily obtained by examining � and its trivalent vertices.

In our correspondence between 3–graphs and weaves, we must consider how a Legen-
drian isotopy of the weave ƒ.�/ affects the 3–graph � and its homology basis. We can

Dn

�2
�1 �2

�1

�1

�2

�n�2
1

�1

�2

�1

�1

Figure 8: The 3–graph �0.Dn/ and its associated intersection quiver. The
basis f .0/i g of H1

�
ƒ.�0.Dn//IZ

�
is given by the orange Y–cycle, the green

I–cycles and the n� 3 I–cycles not pictured.
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1 2

Figure 9: Intersection of two cycles, 1 and 2. The intersection point is
indicated by an orange star. If we orient both cycles counterclockwise, then
we will set h1; 2i D �1 as our convention.

restrict our attention to certain isotopies, referred to as Legendrian surface Reidemeister
moves. These moves create specific changes in the Legendrian front †.�/, known
as perestroikas or Reidemeister moves [2]. From [7], we have the following theorem,
relating perestroikas of fronts to the corresponding 3–graphs:

Theorem 4 [7, Theorem 4.2] Let � and � 0 be two 3–graphs related by one of the
moves shown in Figure 10. Then the associated weavesƒ.�/ and ƒ.� 0/ are Legendrian
isotopic relative to their boundaries.

See Figure 11 for a description of the behavior of elements of H1.ƒ.�/IZ/ under
these Legendrian surface Reidemeister moves. In the pair of 3–graphs in Figure 11, top
right, we have denoted a push-through by PT or PT�1 depending on whether we go
from left to right or right to left. This helps us to specify the simplifications we make
in the figures in the proof of Theorem 1, as this move is not as readily apparent as the

Tw PT

PT�1

Fl

Figure 10: Legendrian surface Reidemeister moves for 3–graphs. From left
to right: a candy twist, a push-through and a flop, denoted by Tw, PT and Fl,
respectively.
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Tw PT

PT�1

Fl

Figure 11: Behavior of certain homology cycles under Legendrian surface
Reidemeister moves.

other two. We will refer to the PT�1 move as a reverse push-through. Note that an
application of this move eliminates the geometric intersection between the light green
and dark green cycles in Figure 11.

Remark It is also possible to verify the computations in Figure 11 by examining the
relative homology of a cycle. Specifically, if we have a basis of the relative homology
H1.ƒ.�/; @ƒ.�/IZ/, then the intersection form on that basis allows us to determine a
given cycle by Poincaré–Lefschetz duality.

2.4 Mutations of 3–graphs

We complete our discussion of general 3–graphs with a description of Legendrian
mutation, which we will use to generate distinct exact Lagrangian fillings. Given a
Legendrian weave ƒ.�/ and a 1–cycle  2 H1.ƒ.�/IZ/, the Legendrian mutation
� .ƒ.�// outputs a 3–graph and a corresponding Legendrian weave smoothly isotopic
to ƒ.�/ but whose Lagrangian projection is generally not Hamiltonian isotopic to that
of ƒ.�/.

 !
�

Figure 12: Local fronts for two Legendrian cylinders non-Legendrian isotopic
relative to their boundaries.
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Figure 13: Mutations of a 3–graph. The pair of 3–graphs on the left depicts
mutation at the orange I–cycle, while the pair of 3–graphs on the right depicts
mutation at the orange Y–cycle. In both cases, the dark green edge depicts
the effect of mutation on any cycle intersecting the orange cycle.

Definition 5 Legendrian surfacesƒ0; ƒ1� .R
5; �st/ with equal boundary @ƒ0D @ƒ1

are mutation-equivalent if and only if there exists a compactly supported Legendrian
isotopy f zƒtg relative to the boundary, with zƒ0 Dƒ0, and a Darboux ball .B; �st/ such
that:

(i) Outside the Darboux ball, we have zƒ1jR5nB Dƒ1jR5nB .

(ii) There exists a global front projection � WR5!R3 such that the pair of fronts
�j

B\zƒ1
and �jB\ƒ1

coincides with the pair of fronts in Figure 12.

We briefly note that these two fronts lift to non-Legendrian isotopic Legendrian cylinders
in .R5; �st/, relative to the boundary, and that the 1–cycle we input for our operation is
precisely the 1–cycle defined by the cylinder corresponding to ƒ0.

Combinatorially, we can describe mutation as certain manipulations of the edges of
our graph. Figure 13, left, depicts mutation at a short I–cycle, while Figure 13, right,

(1) (2) (3)

(4)

�

(5) (6)

Figure 14: Mutation at a short Y–cycle given as a sequence of Legendrian
surface Reidemeister moves and mutation at a short I–cycle. The Y–cycle
in the initial 3–graph is given by the three blue edges that each intersect the
yellow vertex in the center.
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depicts mutation at a short Y–cycle. In the N D 2 setting, we can identify 2–graphs
with triangulations of an n–gon, in which case mutation at a short I–cycle corresponds
to a Whitehead move. In the 3–graph setting, in order to describe mutation at a short
Y–cycle, we can first reduce the short Y–cycle case to a short I–cycle, as shown in
Figure 14, before applying our mutation. See [7, Section 4.9] for a more general
description of mutation at long I– and Y–cycles in the 3–graph.

The geometric operation above coincides with the combinatorial manipulation of the
3–graphs. Specifically, we have the following theorem:

Theorem 6 [7, Theorem 4.2.1] Given two 3–graphs , � and � 0, related by either of
the combinatorial moves described in Figure 13, the corresponding Legendrian weaves
ƒ.�/ and ƒ.� 0/ are mutation-equivalent relative to their boundary.

2.5 Lagrangian fillings from weaves

We now describe in more detail how an exact Lagrangian filling of a Legendrian link
arises from a Legendrian weave. If we label all edges of � �D2 colored blue by �1 and
all edges colored red by �2, then the points in the intersection � \ @D2 give us a braid
word in the Artin generators �1 and �2 of the 3–stranded braid group. We can then
view the corresponding link ˇ as living in .J 1S1; �st/. If we consider our Legendrian
weave ƒ.�/ as an embedded Legendrian surface in .R5; �st/, then, according to our
discussion above, it has boundary ƒ.ˇ/, where ƒ.ˇ/ is the Legendrian satellite of ˇ
with companion knot given by the standard unknot. In our local contact model, the
projection � W .J 1D2; �st/! .T �D2; !st/ gives an immersed exact Lagrangian surface
with immersion points corresponding to Reeb chords of ƒ.�/. If ƒ.�/ has no Reeb
chords, then � is an embedding andƒ.�/ is an exact Lagrangian filling ofƒ.ˇ/. Since
.S3; �st/ minus a point is contactomorphic to .R3; �st/, an embedding of ƒ.�/ into
.R5; �st/ gives an exact Lagrangian filling in .R4; �st/ of ƒ.ˇ/� .R3; �st/, as it can be
assumed — after a Legendrian isotopy — to be disjoint from the point at infinity.

Remark We study embedded — rather than immersed — Lagrangian fillings due to
the existence of an h–principle for immersed Lagrangian fillings [10, Theorem 16.3.2].
In particular, any pair of immersed exact Lagrangian fillings is connected by a one-
parameter family of immersed exact Lagrangian fillings relative to the boundary. See
also [16].

Our desire for embedded Lagrangians motivates the following definition:
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(i) (ii)
2

1

(iii)

2 1

Reeb chord (iv)

Figure 15: 2–Graphs with a choice of fronts illustrated by the green curves
while the solid orange lines illustrate the difference in heights between sheets.
A woven front for the pair of 2–graphs on the left can be chosen in such a
way that the function giving the difference of heights between the two sheets
of the front is 0 on G and increasing towards the boundary. Critical points of
the difference function correspond to Reeb chords, so the pair of 2–graphs on
the left are free. However, any difference function for the pair of 2–graphs on
the right must have at least one critical point inside the face.

Definition 7 A 3–graph � �D2 is free if the associated Legendrian front †.�/ can
be woven with no Reeb chords.

In the N D 2 setting, a 2–graph � � D2 is free if and only if G has no bounded
faces contained in the interior of D2. See Figure 15 for examples illustrating this
characterization. In the N D 3 setting, there is no such simple characterization, but
many 3–graphs can be determined to be free by direct inspection, as done in [7,
Section 7]. As an example, the 3–graph �0.Dn/, depicted in Figure 8, is a free 3–graph
of Dn–type. This can be verified by taking a woven front for ƒ0.Dn/ such that the
functions giving the difference of heights between the three sheets take the value 0 on G

and increase radially towards the boundary. Critical points of these difference functions
correspond to Reeb chords. By construction, none of these difference functions have
critical points, so �0.Dn/ can be woven without Reeb chords and is a free 3–graph.

Crucially, the mutation operation described above preserves the free property of a
3–graph.

Lemma 8 [7, Lemma 7.4] Let � �D2 be a free 3–graph. Then the 3–graph �.�/
obtained by mutating according to any of the Legendrian mutation operations given
above is also a free 3–graph.

Therefore, starting with a free 3–graph and performing the Legendrian mutation opera-
tion gives us a method of creating additional embedded exact Lagrangian fillings.

At this stage, we have described the geometric and combinatorial ingredients needed
for Theorem 1. The two subsequent subsections introduce the necessary algebraic
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invariants relating Legendrian weaves and 3–graphs to cluster algebras. These will be
used to distinguish exact Lagrangian fillings.

2.6 Quivers from weaves

Before we describe the cluster algebra structure associated to a weave, we must first
describe quivers and how they arise via the intersection form on H1.ƒ.�/IZ/. A quiver
is a directed graph without loops or directed 2–cycles. In the Legendrian weave setting,
the data of a quiver can be extracted from a given weave and a basis of its first homology.
The intersection quiver is defined as follows: each basis element i 2H1.ƒ.�/IZ/

defines a vertex vi in the quiver and we have k arrows pointing from vj to vi if
hi ; j i D k. We will only ever have k either 0 or 1 for quivers arising from fillings
of �.Dn/. See Figure 2, left, for an example of the quiver Q

�
ƒ.�0.D4//; f

.0/
i g

�
defined by ƒ.�0.D4// and the indicated basis for H1

�
ƒ.�0.D4/IZ/

�
.

The combinatorial operation of quiver mutation at a vertex v is defined as follows;
see eg [12]. First, for every pair of incoming edges and outgoing edges, we add an
edge starting at the tail of the incoming edge and ending at the head of the outgoing
edge. Next, we reverse the direction of all edges adjacent to v. Finally, we cancel any
directed 2–cycles. If we start with the quiver Q, then we denote the quiver resulting
from mutation at v by �v.Q/. See Figure 16, bottom, for an example. Under this
operation, we can naturally identify the vertices of Q with �v.Q/, just as we can
identify the homology bases of a weave before and after Legendrian mutation.

Remark The crucial difference between algebraic and geometric intersections is
captured in the step canceling directed 2–cycles. This cancellation is implemented by
default in a quiver mutation, as the arrows of the quiver only capture algebraic intersec-
tions. In contrast, the geometric intersection of homology cycles after a Legendrian
mutation will, in general, not coincide with the algebraic intersection. This dissonance
will be explored in detail in Section 3.

The following theorem relates the two operations of quiver mutation and Legendrian
mutation:

Theorem 9 [7, Section 7.3] Given a 3–graph � , Legendrian mutation at an embed-
ded cycle  induces a quiver mutation for the associated intersection quivers , taking
Q.�; fig/ to � .Q.�; fig//.

See Figure 16 for an example showing the quiver mutation of Q.�0.D4/; f
.0/
i g/ for

i 2 Œ1; 4�, corresponding to Legendrian mutation applied to ƒ.�0.D4//.
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�3

Figure 16: Mutation of �0.D4/ and its associated intersection quiver at the
short Y–cycle colored in orange. Note that the sign of the intersection between
the dark green I–cycle and the orange Y–cycle changes from negative to
positive, reflecting the reversal of the arrow in the quiver under mutation.

2.7 Microlocal sheaves and clusters

To introduce the cluster structure mentioned above, we need to define a sheaf-theoretic
invariant. We first consider the dg category of complexes of sheaves of C–modules
on D2 �R with constructible cohomology sheaves. For a given 3–graph � and its
associated Legendrian ƒ.�/, we denote by C.�/ WD Sh1

ƒ.�/.D
2�R/0 the subcategory

of microlocal rank-one sheaves with microlocal support along ƒ.�/, which we require
to be zero in a neighborhood of D2�f�1g. Here we identify the unit cotangent bundle
T1;�.D2 �R/ with the first jet space J 1.D2/. With this identification, the sheaves
of C.�/ are constructible with respect to the stratification given by the Legendrian
front †.�/. Work of Guillermou, Kashiwara and Schapira implies that C.�/ is an
invariant under Hamiltonian isotopy [17].

As described in [7, Section 5.3], this category has a combinatorial description. Given a
3–graph � , the data of the moduli space of microlocal rank-one sheaves is equivalent
to the following:

(i) Assign to each face F (connected component of D2 nG) of a flag F�.F / in the
vector space C3.

(ii) For each pair F1 and F2 of adjacent faces sharing an edge labeled by �i , we
require that the corresponding flags satisfy

Fj .F1/D Fj .F2/; 0� j � 3; j ¤ i; and F i.F1/¤ F i.F2/:
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Figure 17: The data of the flag moduli space given in the neighborhood of
a short I–cycle (left) and a short Y–cycle (right). Lines are represented by
lowercase letters, while planes are written in uppercase. The intersection of
the two lines a and b is written as ab.

Finally, we consider the moduli space of flags satisfying (i) and (ii) modulo the di-
agonal action of GLn on F�. The precise statement [7, Theorem 5.3] is that the flag
moduli space, denoted by M.�/, is isomorphic to the space of microlocal rank-one
sheaves C.�/. Since C.�/ is an invariant of ƒ.�/ up to Hamiltonian isotopy, it follows
that M.�/ is an invariant as well. In the I–cycle case, when the edges are labeled
by �1, the moduli space is determined by four lines a¤ b ¤ c ¤ d ¤ a, as pictured in
Figure 17, left. If the edges are labeled by �2, then the data is given by four planes
A¤ B ¤ C ¤D ¤A. Around a short Y–cycle, the data of the flag moduli space is
given by three distinct planes A¤B ¤C ¤A contained in C3 and three distinct lines
a ¨ A, b ¨ B and c ¨ C with a¤ b ¤ c ¤ a, as pictured in Figure 17, right.

To describe the cluster algebra structure on C.�/, we need to specify the cluster seed
associated to the quiver Q.ƒ.�/; fig/ via the microlocal monodromy functor �mon,
which is a functor from the category C.�/ to the category of rank one local systems
on ƒ.�/. As described in [24; 23], the functor �mon takes a 1–cycle as input and
outputs the isomorphism of sheaves given by the monodromy about the cycle. Since
it is locally defined, we can compute the microlocal monodromy about an I–cycle or
Y–cycle using the data of the flag moduli space in a neighborhood of the cycle. If we
have a short I–cycle  with flag moduli space described by the four lines a, b, c and d ,
as in Figure 17, left, then the microlocal monodromy about  is given by the cross ratio

a^b

b^c

c^d

d^a
:

Similarly, for a short Y–cycle with flag moduli space given as in Figure 17, right, the
microlocal monodromy is given by the triple ratio

B.a/C.b/A.c/

B.c/C.a/A.b/
:
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a e

d

c

b

x1 x2

�1

a

e

d

c

b

�.x1/ �.x2/

Figure 18: Prior to mutating at 1, we have h1; 2i D �1. Computing the cross
ratios for 1 and �1.1/, we can see that the cross ratio transforms as �1.1/D

.b ^ c=c ^ e/.e^ a=a^ b/D x�1
1

under mutation. Similarly, computing the cross
ratios for 1 and�1.2/ and applying the relation e^b�a^cDb^c�e^aCa^b�c^e,
we have �1.x2/D .e^ a=a^ c/.c ^ d=d ^ e/

�
1C .a^ b=b ^ c/.c ^ e=e^ a/

�
.

As described in [7, Section 7.2], the microlocal monodromy about a 1–cycle gives rise
to an X –cluster variable at the corresponding vertex in the quiver. Under mutation of the
3–graph, the cross ratio and triple ratio transform as cluster X –coordinates. Specifically,
if we start with a 3–graph with cluster variables xj , then the cluster variables x0j of the
3–graph after mutating at i are given by

x0j D

8<:
x�1

j if i D j ;

xj .1Cx�1
i /�hi ;j i if hi ; j i> 0;

xj .1Cxi/
�hi ;j i if hi ; j i< 0:

See Figure 18 for an example.

The goal of the next section will be to realize each possible mutation of the Dn quiver
as a mutation of the corresponding 3–graph. This will imply that there are at least as
many exact Lagrangian fillings as cluster seeds of Dn–type. There exists a complete
classification of all finite mutation type cluster algebras and, in fact, the number of
cluster seeds of Dn–type is .3n� 2/Cn�1 [13].

Remark Other than Legendrian weaves, it is not known whether methods of generating
exact Lagrangian fillings of �.Dn/ access all possible cluster seeds of Dn–type. When
constructing fillings of D4 by opening crossings, as in [9; 21], experimental evidence
suggests that it is only possible to access at most 46 out of the possible 50 cluster
seeds by varying the order of the crossings chosen. Of note in the combinatorial
setting, we also contrast the 3–graphs �.D4/ with double wiring diagrams for the torus
link T .3; 3/, which is the smooth type of �.D4/. The moduli of sheaves C.�.D4//
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for �.D4/ embeds as an open positroid cell into the Grassmannian Gr.3; 6/ [5], so
we can identify some cluster charts with double wiring diagrams. The double wiring
diagrams associated to Gr.3; 6/ only access 34 out of 50 distinct cluster seeds via local
moves applied to an initial double wiring diagram [12].

3 Proof of the main results

In this section, we state and prove Theorem 11, which implies Theorem 1. The following
definitions relate the algebraic intersections of cycles to geometric intersections in the
context of 3–graphs.

Definition 10 A 3–graph � with associated basis fig for i 2 Œ1; b1.ƒ.�//� of
H1.ƒ.�/IZ/ is sharp at a cycle j if, for any other cycle k 2 fig, the geometric
intersection number of j with k is equal to the algebraic intersection hj ; ki.

� is locally sharp if, for any cycle  2 fig, there exists a sequence of Legendrian
surface Reidemeister moves taking � to some other 3–graph � 0 such that � 0 is sharp at
the corresponding cycle  0 2H1.ƒ.�

0/IZ/.

A 3–graph � with a set of cycles � is sharp if � is sharp at all i 2 fig.

For 3–graphs that are not sharp, it is possible that a sequence of mutations will cause
a cycle to become immersed. This is the only obstruction to weave-realizability.
Therefore, sharpness is a desirable property for our 3–graphs, as it simplifies our
computations and helps us avoid creating immersed cycles. We will not be able to
ensure sharpness for all �.Dn/ that arise as part of our computations (eg see the
Type III.i normal form in Figure 20), but we will be able to ensure that each of our
3–graphs is locally sharp.

3.1 Proof of Theorem 1

The following result is slightly stronger than the statement of Theorem 1, as we are
able to show that each 3–graph in our sequence of mutations is locally sharp:

Theorem 11 Let �v1
; : : : ; �vk

be a sequence of quiver mutations , with initial quiver
Q.�0.Dn/; f

.0/
i g/. Then there exists a sequence �0.Dn/; : : : ; �k.Dn/ of 3–graphs

such that :

(i) �j�1.Dn/ is related to �j .Dn/ by mutation at a cycle j and by Legendrian
surface Reidemeister moves I , II and III. The cycle j represents the vertex vj
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in the intersection quiver and it is given by one of the cycles in the initial basis
f
.0/
i g after mutation and Reidemeister moves.

(ii) �j .Dn/ is sharp at j .

(iii) �j .Dn/ is locally sharp.

(iv) The basis of cycles for �j .Dn/, obtained from the initial basis f .0/i g by mutation
and Reidemeister moves , consists entirely of short Y–cycles and short I–cycles.

The conditions (ii)–(iv) allow us to continue to iterate mutations after applying a small
number of simplifications at each step. Theorem 1 thus follows from Theorem 11.

Proof We proceed by organizing the 3–graphs arising from any sequence of mutations
of �0.Dn/ into four types, in line with the organization scheme introduced by Vatne
for quivers of Dn–type [26]. Vatne’s classification of quivers in the mutation class
of Dn–type uses the configuration of a certain subquiver to define the different types.
Outside of that subquiver, there are a number of disjoint subquivers of An–type that
are referred to as An tail subquivers. We will refer to the corresponding cycles in the
3–graph as An tail subgraphs, or simply An tails when it is clear from context whether
we are referring to the quiver or the 3–graph. For each type, Vatne describes the results
of quiver mutation at different vertices, which can depend on the existence of An tail
subquivers. See Figures 21, 27, 31 and 35 for the four types and their mutations.

Notation As mentioned in the previous section, cycles are pictured as colored edges
for the sake of visual clarity. Throughout this section, we denote all of the dark green
cycles by 1, light green cycles by 2, orange cycles by 3, light blue cycles by 4,
pink cycles by 5, purple cycles by 6, and olive cycles by 7. With this notation, i

will correspond to the vertex labeled by vi in the quivers given below.

An tails We briefly describe the behavior of the An tail subquivers, as given in [26],
in terms of weaves. Any of the n vertices in an An tail subquiver can have valence
between 0 and 4. Cycles in the quiver are oriented with length 3. If a vertex v has
valence 3, then two of the edges form part of a 3–cycle, while the third edge is not part
of any 3–cycle. If v has valence 4, then two of the edges belong to one 3–cycle and the
remaining two edges belong to a separate 3–cycle.

Any An tail of the quiver can be represented by a sharp configuration of n I–cycles
in the 3–graph. See Figure 19 for an identification of I–cycles with quiver vertices
of a given valence. Mutation at any vertex vi in the quiver corresponds to mutation
at the I–cycle i in the 3–graph, so it is readily verified that mutation preserves the
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Figure 19: All possible arrangements of I–cycles in an An tail of the 3–graph
corresponding to a given vertex in the An tail subquiver of valence between 0
and 4.

number of I–cycles and requires no application of Legendrian surface Reidemeister
moves to simplify. The sequences of mutations given in the remainder of the proof
As a consequence, any sequence of An tail mutations is weave-realizable, and a sharp
3–graph remains sharp after mutation at An tail I–cycles that only intersect other An

tail I–cycles.

Normal forms For each of the four types of Dn quivers described in [26], we give a
set of specific subgraphs of �.Dn/, which we refer to as normal forms. These normal

(I) (II) (III.i) (III.ii)

(IV.i) (IV.ii) (IV) (k>3)

Figure 20: Normal forms labeled by their type. The possible addition of
I–cycles corresponding to An tails of the quiver are represented by unfilled
circles appended to the end of edges that do not intersect the boundary.
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forms are pictured in Figure 20. We indicate the possible existence of An tail subgraphs
by an unfilled circle. In our discussion below, we will say that an edge of the 3–graph
carries a cycle if it is part of a homology cycle. We will generally use this terminology
to specify which edges cannot carry a cycle.

For each possible quiver mutation, we describe the possible mutations of the 3–graph
and show that the result matches the quiver type and retains the properties listed in
Theorem 11 above. In addition, the Legendrian surface Reidemeister moves we describe
ensure that the An tail subgraphs continue to consist solely of short I–cycles. If the
mutation results in a long I–cycle or pair of long I–cycles connecting our An tail to
the rest of the 3–graph, we can simplify by applying a sequence of n push-throughs
to ensure that these are all short I–cycles. It is readily verified that we can always do
this and that no other simplifications of the An tails are required following any other
mutations. We include An tail cycles only where relevant to the specific mutation.
In our computations below, we generally omit the final steps of applying a series of
push-throughs to make any long I– or Y–cycles into short I– or Y–cycles. Figure 26
provides an example where these push-throughs are shown for both an I–cycle and a
Y–cycle.

In order to simplify the overall presentation of the normal forms and the computations
below, we allow for the following variations in the Type I and Type IV cases. In the
Type I case, mutating at either of the short I–cycles 1 or 2 in the Type I normal
form produces one of four possible configurations of the cycles 1, 2 and 3 in a
3–graph corresponding to a Type I quiver. Since these mutations are readily computed,
we simplify our presentation by giving a single normal form rather than four, and
describing the relevant mutations of two of the four possible 3–graphs in Figures 22,
23, 24 and 25. The remaining cases can be seen by swapping the cycle(s) to the left
of the short Y–cycle with the cycle(s) to the right of it. This symmetry corresponds
to reversing all of the arrows in the quiver. In general, we will implicitly appeal to
similar symmetries of the normal form 3–graphs to reduce the number of cases we
must consider. In the Type IV case, the edge(s) corresponding to 3, 5 or 6 need
not carry a cycle. See the discussion of Type IV quiver mutations below for a more
detailed description.

Type I We start with 3–graphs, always endowed with a homology basis, whose
associated intersection quivers are a Type I quiver. See Figure 21 for the relevant quiver
mutations.

Algebraic & Geometric Topology, Volume 23 (2023)



2760 James Hughes

v2

v1

v3 v4 �v2

v2

v1

v3 v4

v2

v1

v3

v4

v5

�v2

v2

v1

v3

v4

v5

v2

v1

v3 v4 �v3

v2

v1

v3 v4

v2

v1

v3 v4 �v3

v2

v1

v3 v4

v2

v1

v3

v4

v5

�v3

v2

v1

v3

v4

v5

v4
v2

v1

v3

v5
v2

v1

v3 v4
�v3

v2

v1

v3

v4

v2

v1

v3

v4

v5

�v3

v2

v1

v3

v4

v5

Figure 21: From top to bottom: two Type I to Type I quiver mutations, Type I
to Type II quiver mutations, and Type I to Type IV quiver mutations. The
arrow labeled by �vi

indicates mutation at the vertex vi . Unfilled circles
represent potential An tails. In each line, the first quiver mutation shows
the case where v3 is only adjacent to one An tail vertex, while the second
quiver mutation shows the case where v3 is adjacent to two An tail vertices.
Note that reversing the direction of all of the arrows simultaneously before
mutating gives additional possible quiver mutations of the same type.

Type I to Type I There are two possible Type I to Type I mutations of 3–graphs,
depicted in Figure 22. As shown in Figure 22, left, mutation at 1 only affects the sign
of the intersection of 1 with the 3. This reflects the fact that the corresponding quiver
mutation has only reversed the orientation of the edge between v1 and v3. Mutating at
any other I–cycle is equally straightforward and yields a Type I to Type I mutation as
well.

Type I to Type I For the second possible Type I to Type I mutation, we proceed
as pictured in Figure 22, right. Mutation at 3 does not create any new additional
geometric or algebraic intersections. Instead, it takes positive intersections to negative
intersections and vice versa. This is reflected in the quivers pictured underneath the
3–graphs, as the orientation of edges has reversed under the mutation. As explained
above, we could simplify the resulting 3–graph by applying a push-through move to
each of the long I–cycles to get a sharp 3–graph where the homology cycles are made
up of a single short Y–cycle and some number of short I–cycles.
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1 2
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1 2
3

1 2
3

4

�3
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4

Figure 22: Type I to Type I mutation. Arrows labeled by � indicate mutation
at a cycle of the same color.

Type I to Type II In Figure 23 we consider the cases where the Y–cycle 3 intersects
one I–cycle (top) or two I–cycles (bottom) in the An tail subgraph. Mutation at 3

1 2

3

4

�3
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2

3

4

PT
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2

3

4

1 2

3
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�3
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2

3
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4

5

Figure 23: Type I to Type II mutations. Legendrian surface Reidemeister are
moves labeled as in Theorem 4 and Figure 10.
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Figure 24: Type I to Type IV.i mutations.

introduces an intersection between 2 and 4 that causes the second 3–graph in of each
mutation sequences to no longer be sharp. Applying a push-through to 2 resolves
this intersection so that the geometric intersection between 2 and 4 matches their
algebraic intersection. This simplification ensures that the result of �3

is a sharp
3–graph that matches the Type II normal form. If we compare the mutations in the top
and bottom sequences, we can see that the presence of the An tail cycle 5 does not
affect the computation.

Type I to Type IV.i We now consider the first of two Type I to Type IV mutations,
shown in Figure 24. Starting with the configuration of cycles at the left of each sequence
and mutating at 3 causes 1 and 2 to cross. Applying a push-through to 1 or to 2

(not pictured) simplifies the resulting intersection and yields a Type IV.i normal form
made up of the cycles 1, 2, 3 and 4. The sequences on the top and bottom of
Figure 24 differ only by the presence of the An tail cycle 5.
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Figure 25: Type I to Type IV.ii mutations.

Type I to Type IV.ii In Figure 25, we consider the cases where 1 intersects one
I–cycle (top) or two I–cycles (bottom) in the An tail subgraph, as we did in the Type I to
Type II case. As in the Type I to Type II case, we must apply a push-through to resolve
the new intersections in between that cause the second 3–graph in each sequence to fail
to be sharp. When we include both 4 and 5 in the sequence on the right, we get two
new intersections after mutating, and therefore require two push-throughs. Note that, in
the Type IV.ii case, we must first apply the push-through to 1 and 2 in order to ensure
that we can apply a push-through to any additional cycles in the An tail subgraph. This
causes the Y–cycles of the graph to correspond to different vertices in the quiver than
in the Type IV.i normal form, which is the main reason we distinguish between the
normal forms for Type IV.i and Type IV.ii.

The above cases describe all possible mutations of the Type 1 normal form. Each of
these mutations yields a sharp 3–graph with short I–cycles and Y–cycles, as desired.
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Figure 26: Push-through examples. The first push-through move simplifies
the long I–cycle labeled 1, while the second simplifies the long Y–cycle
labeled 4.

In Figure 26, we show how to apply push-throughs to completely simplify the long I–
and Y–cycles pictured in the Type I to Type IV.ii graph. As mentioned above, these
push-throughs are identical to any other computation required to simplify our resulting
3–graphs to a set of short I– and Y–cycles.

Type II We now consider mutations of our Type II normal form. See Figure 27
for the relevant quivers. As shown in the figure, performing a quiver mutation at the
2–valent vertices labeled by v1 or v2 yields a Type III quiver, while a quiver mutation
at the vertices labeled v3 or v4 yields either another Type II quiver or a Type I quiver,
depending on the intersection of v3 or v4 with any An tail subquivers.

Type II to Type I We first consider the sequence of 3–graphs pictured in Figure 28.
Mutation at 4 results in a new geometric intersection between 2 and 3 even though
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Figure 27: From top to bottom: Type II to Type I, Type II to Type II and Type
II to Type III quiver mutations.
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Figure 28: Type II to Type I mutations. The red e labels an edge in the
3–graph that does not carry a cycle.

their algebraic intersection is zero. We can resolve this by applying a reverse push-
through at the trivalent vertex where 2 and 3 meet. The resulting 3–graph is sharp,
as 2 and 3 no longer have any geometric intersection. This computation is identical
if 3 were to intersect a single An tail cycle and we mutated at 3 instead. Note that
here we require the adjacent red edge labeled e to not carry a cycle, as specified by our
normal form.

Type II to Type II We now consider the sequence shown in Figure 29. After mutating
at 4, we have the same intersection between 2 and 3 as in the previous case. We
again resolve this intersection by applying a reverse push-through at the same trivalent
vertex. In this case, we also have an intersection between 1 and 6, which we resolve
via push-through of 1. As a result, 6 becomes a Y–cycle, and the Type II normal form
is now made up of the cycles 1, 2, 4 and 6, while 3 becomes an An tail cycle.
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Figure 29: Type II to Type II mutations.
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Figure 30: Type II to Type III mutations.

Type II to Type III.i Mutation at 1 or 2 in the Type II normal form yields either
of the Type III normal forms. In the sequence in Figure 30, left, mutation at 2 leads
to a geometric intersection between 3 and 4 at two trivalent vertices. Since the
signs of these two intersections differ, the algebraic intersection h3; 4i is zero, so
the resulting 3–graph is not sharp. However, it is sharp at 1 and 2, and applying a
flop to the 3–graph removes the geometric intersection between 3 and 4 at the cost
of introducing the same intersection between 1 and 2. Therefore, applying the flop
does not make the 3–graph sharp, but it does show that the 3–graph resulting from our
mutation is locally sharp at every cycle.

Type II to Type III.ii In the sequence in Figure 30, right, mutation at 1 yields a
sharp 3–graph that matches the Type III.ii normal form.

Type III Figure 31 illustrates the Type III quiver mutations. Figures 32, 33 and 34
depict the corresponding Legendrian mutations of the Type III normal forms.
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Figure 31: Type III to Type II quiver mutations (top) and Type III to Type IV
quiver mutations (bottom).
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Figure 32: Type III.i to Type II mutations (left) and Type III.ii to Type II
mutations (right).

Type III.i to Type II We first consider the sequence of 3–graphs in Figure 32, left.
Mutating at 1 or 2 immediately yields a Type II normal form. Mutating at 1 and 2

in succession yields a Type III.ii normal form. Note that, if the 3–graph were not sharp
at 1 or 2, we would first need to apply a flop. We can always apply this move because
the 3–graph is locally sharp at each of its cycles. See the Type III.i to Type IV.i subcase
below for an example where we demonstrate this move.

Type III.ii to Type II In the sequence in Figure 32, right, mutation at either 1 or 2

yields a Type II normal form. Mutation at 1 and 2 in succession yields a Type III.i
normal form. Therefore, applying these two moves in succession can take us between
both of our Type III normal forms.

Type III.i to Type IV We now consider the sequence of 3–graphs in Figure 33. Since
the initial 3–graph is not sharp at 4, we must first apply a flop before mutating. After
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Figure 33: Type III.i to Type IV mutations.
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Figure 34: Type III.ii to Type IV mutations.

applying this flop, 4 is a short I–cycle and the 3–graph is sharp at 4. Mutating at 4

then yields a Type IV.i normal form. The short I–cycles 5 and 6 are included to
indicate where any An tail cycles would be sent under this mutation.

Type III.ii to Type IV In Figure 34, mutation at 4 causes 1 and 2 to cross while still
intersecting 3 and 4 at either end. We resolve this by first applying a push-through
to 2 and then applying a reverse push-through to the trivalent vertex where 1 and
3 intersect a red edge. This results in a sharp 3–graph with 1, 2, 3 and 4 making
up the Type IV normal form. We again include 5 and 6 as cycles belonging to a
potential An tail subgraph in order to show where the An tail cycles are sent under this
mutation.

Type IV Figure 35 illustrates all of the relevant Type IV quivers and their mutations.
In general, the edges of a Type IV quiver have the form of a single k–cycle with the
possible existence of 3–cycles or outward-pointing “spikes” at any of the edges along
the k–cycle. At the tip of each of these spikes is a possible An tail subquiver. We will
refer to a vertex at the tip of any of the spikes (eg the vertex v3 in Figure 35) as a spike
vertex and any vertex along the k–cycle will be referred to as a k–cycle vertex. A
homology cycle corresponding to a spike vertex will be referred to as a spike cycle.
Mutating at a spike vertex increases the length of the internal k–cycle by one, while
mutating at a k–cycle vertex decreases the length by 1, so long as k > 3. Figures 36,
37, 38 and 39 illustrate the corresponding mutations of 3–graphs for Type IV to Type I
and Type IV to Type III when k D 3.

Type IV.i to Type I We first consider the sequence of 3–graphs in Figure 36. Mutation
at 1 causes 2 and 4 to cross. Application of a reverse push-through at the trivalent
vertex where 2 and 4 intersect a red edge removes this crossing and yields a Type I
normal form where 1 is the sole Y–cycle.
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Figure 35: From top to bottom: Type IV to Type I, Type IV to Type III, and
Type IV spike vertex (left) and cycle vertex (right) quiver mutations. The
presence or absence of the An tail vertices v6 and v7 in the quiver mutation
depicted in the first column, third row corresponds to the presence or absence
of spikes appearing in the resulting quiver.

Type IV.ii to Type I Mutation at 3 in Figure 37 yields a 3–graph with geometric
intersections between 1 and 5 and between 2 and 4. The application of reverse
push-throughs at the trivalent vertex intersections of 1 with 5 and 2 with 4 removes
these geometric intersections, resulting in a Type I normal form where 1 is the sole
Y–cycle. We also apply a candy twist (Legendrian surface Reidemeister move I) to
simplify the intersection at the top of the resulting 3–graph.
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Figure 36: Type IV.i to Type I mutations.
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Figure 37: Type IV.ii to Type I mutations.

Type IV.i to Type III We now consider the two sequences of 3–graphs in Figure 38.
Mutation at any of 1, 2, 3 or 4 in the Type IV.i normal form yields a Type III
normal form. Specifically, mutation at 4 yields a Type III.i normal form that requires
no simplification, while mutation at 3 (not pictured) yields a Type III.ii normal form
that also requires no simplification. The computation for mutation at 1 is pictured in
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Figure 38: Type IV.i to Type III mutations.
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the sequence on the right and is identical to the computation for mutation at 2. The
first step of the simplification is the same as the Type IV.i to Type I subcase described
above. However, we require the application of an additional push-through to remove
the geometric intersection between 2 and 5. This makes 5 into a Y–cycle and results
in a Type III normal form.

Type IV.ii to Type III Mutation at 1 in our Type IV.ii normal form, depicted in
Figure 39, results in a pair of geometric intersections between 3 and 5. Application
of a flop removes these geometric intersections and results in a sharp 3–graph with Y–
cycles 1 and 4, which matches our Type III.ii normal form. Note that the computations
for mutations involving a Type IV.ii 3–graph with a single spike cycle are identical.

The remaining three subcases are all Type IV to Type IV mutations.

Type IV.ii to Type IV Figure 40 depicts mutation of a Type IV.ii normal form at a
spike cycle. Mutating at 5 results in an additional geometric intersection between 1

and 3. We first apply a reverse push-through at the trivalent vertex where 1, 2 and 3

meet. This introduces an additional geometric intersection between 2 and 3, which
we resolve by applying a push-through to 3. Application of a reverse push-through to
the trivalent vertex where 1 and 5 intersect a red edge resolves the final geometric
intersection between 1 and 5. The Y–cycles of the resulting 3–graph correspond to
k–cycle vertices of the quiver. As shown below, none of the other Type IV to Type IV
mutations result in Y–cycles corresponding to spike vertices. Therefore, assuming we
have simplified after each of our mutations in the manner described above, the only
possible way a Type IV.ii 3–graph arises is by mutating from the initial Type I graphs
in Figure 25. Hence, all other Type IV 3–graphs only have Y–cycles corresponding to
k–cycle vertices in the quiver. The computations involving a Type IV.ii 3–graph with a
single spike cycle are again identical.

Type IV to Type IV Figure 41 depicts Type IV to Type IV mutations when the
length of the quiver k–cycle is greater than 3. When mutating at a homology cycle
corresponding to a k–cycle vertex of the quiver, we have two possibilities. Figure 41,
top, shows the case where 4 intersects another Y–cycle 2, which corresponds to a
k–cycle vertex in the quiver. Figure 41, bottom, considers the case where 4 only
intersects I–cycles. In both of these cases we must apply a reverse push-through to the
trivalent vertex where 3 and 4 intersect a red edge in order to simplify the 3–graph.
This particular simplification requires that neither of the two edges adjacent to the
leftmost edge of 4 carries a cycle before we mutate. A similar computation (not
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Figure 39: Type IV.ii to Type III mutations.

pictured) involving the Y–cycle 2 would also require that neither of the two edges
adjacent to the bottommost edge of 2 carry a cycle. Crucially, our computations show
that Type IV to Type IV mutation preserve this property, ie that both of the Y–cycles
have an edge that is adjacent to a pair of edges which do not carry a cycle. When k D 4,
the resulting 3–graph resulting from the computations in the top line will have a short
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Figure 40: Type IV.ii graph mutation at a spike cycle.
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Figure 41: Type IV to Type IV mutations at homology cycles corresponding
to k–cycle vertices in the quiver. Mutating at 2, 3 or 4 (corresponding
to k–cycle vertices in the quiver) in the 3–graphs on the left decreases the
length of the k–cycle in the quiver by 1.

I–cycle adjacent to 2 and 3, while the 3–graph resulting from the computations in
the bottom line will have a short Y–cycle adjacent to 2 and 3.

Type IV to Type IV Figure 42 depicts mutation at a spike cycle. Since we have
already discussed the Type IV.ii spike cycle subcase above, we need only consider the
case where each of the spike cycles is a short I–cycle. The cycles 7 and 6 are included
to help indicate where An tail cycles are sent under this mutation. The computation
for mutating at a spike edge for Type IV.i (ie the k D 3 case) is identical to the k > 3

case. We have omitted the case where each of the cycles involved in our mutation is
an I–cycle, but the computation is again a straightforward mutation of a single I–cycle
that requires no simplification.

In each of the Type IV to Type IV subcases above, mutating at a Y–cycle or an I–cycle
and applying the simplifications as shown preserves the number of Y–cycles in our
graph. Therefore, our computations match the normal form we gave in Figure 20 with
k�2 short I–cycles in the normal form 3–graph not belonging to any An tail subgraphs.

This completes our classification of the mutations of normal forms. In each case, we
have produced a 3–graph of the correct normal form that is locally sharp and made up of
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Figure 42: Type IV to Type IV mutations at spike cycles. Mutating at the
spike cycles 1 or 5 in the 3–graphs on the left increases the length of the
k–cycle in the intersection quiver by 1.

short Y–cycles and I–cycles. Thus, any sequence of quiver mutations for the intersection
quiver Q.�0.Dn/; f

.0/
i g/ of our initial �0.Dn/ is weave-realizable. Hence, given any

sequence of quiver mutations, we can apply a sequence of Legendrian mutations to our
original 3–graph to arrive at a 3–graph with intersection quiver given by applying that
sequence of quiver mutations to Q.�0.Dn/; f

.0/
i g/, as desired.

Having proven weave-realizability for �0.Dn/, we conclude with a proof of Corollary 2.

3.2 Proof of Corollary 2

We take our initial cluster seed in C.�/ to be the cluster seed associated to �0.Dn/. The
cluster variables in this initial seed exactly correspond to the microlocal monodromies
along each of the homology cycles of the initial basis f .0/i g. The intersection quiver
Q.�0.Dn/; f

0
i g/ is the Dn Dynkin diagram and thus the cluster seed is Dn–type. By

definition, any other cluster seed in the Dn–type cluster algebra is obtained by a sequence
of quiver mutations starting with the quiver Q.�0.Dn/; f

0
i g/ and its associated cluster

variables. Theorem 1 implies that any quiver mutation of Q.�0.Dn/; f
0
i g/ can be

realized by a Legendrian mutation inƒ.�0.Dn//, so we have proven the first part of the
corollary. The remaining part of the corollary follows from the fact that the Dn–type
cluster algebra is known to be of finite mutation type with .3n�2/Cn�1 distinct cluster
seeds.
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3.3 Further study

While a classification of E–type quivers is not yet known, it seems likely that the
techniques in this manuscript could be used to show weave-realizability for Lagrangian
fillings arising from �.E6/, �.E7/ and �.E8/. Identifying normal forms for the
expected weave fillings [4, Conjecture 5.1] could even aid in such a classification of
E–type quivers. More generally, it is possible that the methods used here may be
adapted to show weave-realizability for any positive braid.
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Mapping class groups of surfaces with
noncompact boundary components

RYAN DICKMANN

We show that the pure mapping class group is uniformly perfect for a certain class of
infinite-type surfaces with noncompact boundary components. We then combine this
result with recent work in the remaining cases to give a complete classification of the
perfect and uniformly perfect pure mapping class groups for infinite-type surfaces.
We also develop a method to cut a general surface into simpler surfaces and extend
some mapping class group results to the general case.
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1 Introduction

Let S be a connected, orientable and second-countable surface, possibly with boundary.
The mapping class group Map.S/ is the group of all isotopy classes relative to the
boundary of S of orientation-preserving homeomorphisms of S. The elements in this
group are considered up to isotopy relative to the boundary. A finite-type surface refers
to a surface with �1.S/ finitely generated, and otherwise we say a surface is of infinite
type. The Map.S/ for infinite-type surfaces are commonly referred to as big mapping
class groups. These groups have been the recent focus of many papers, but the case
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2778 Ryan Dickmann

of noncompact boundary components has been largely untouched with only a single
paper of Fabel [10] known to the author considering such groups.

The pure mapping class group PMap.S/ is the subgroup of Map.S/ consisting of
elements that fix the ends of S, and PMapc.S/ is the subgroup of compactly supported
elements. We equip these groups with the natural compact–open topology. Recently
George Domat (and the author in one case) showed the following:

Theorem 1.1 [8] Let S be any infinite-type surface with only compact boundary
components. Then PMapc.S/ and PMap.S/ are not perfect.

This partially answered Problem 8 of Aramayona, Patel and Vlamis [2]. In the finite-
type case, it is a well-known result of Powell that pure mapping class groups are
perfect for genus at least 3 [18]. Surprisingly, a new phenomenon occurs when we
also consider surfaces with noncompact boundary components, and, even though the
general case seems extremely complicated at first glance, it turns out that it is possible
to completely classify the surfaces with perfect or uniformly perfect pure mapping class
groups. A disk with handles will refer to a surface which can be constructed from a
disk by removing points from the boundary and then attaching infinitely many handles
accumulating to some subset of these points. We say compact boundary components
are added to a surface when we delete open balls with disjoint closures from the interior.
We say punctures are added when we remove isolated interior points.

Theorem A Let S be an infinite-type surface. Then:

� PMapc.S/ is uniformly perfect if and only if S is a disk with handles.

� PMapc.S/ is perfect if and only if S is a connected sum of finitely many
disks with handles with possibly finitely many punctures or compact boundary
components added.

In [2], it was shown for surfaces with only compact boundary components that
PMap.S/D PMapc.S/ if and only if S has at most one end accumulated by genus, and
otherwise PMap.S/ factors as a semidirect product of PMapc.S/ with some Zn, where
n is possibly infinite. See Theorem 6.1 for a precise statement. Once we extend this
result to the general case, we immediately get a classification of the perfect PMap.S/.
A disk with handles with exactly one end will be called a sliced Loch Ness monster.1

1This name was chosen because the interior of such a surface is often referred to as the Loch Ness monster.
The author apologizes for adding to the already out of hand terminology.
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Roughly speaking, a degenerate end refers to a end which is the result of deleting
an embedded closed subset of the Cantor set from the boundary of a surface (see
Definition 3.10). For the following theorem, we throw out surfaces with degenerate
ends to give a classification which better fits the chosen definition of a sliced Loch
Ness monster.

Theorem B Let S be an infinite-type surface without degenerate ends. Then

� PMap.S/ is uniformly perfect if and only if S is a sliced Loch Ness monster.

� PMap.S/ is perfect if and only if S is a sliced Loch Ness monster with possibly
finitely many punctures or compact boundary components added.

Since a sliced Loch Ness monster has a single end, the pure mapping class group and
the mapping class group coincide. Therefore, this also gives new examples of surfaces
with uniformly perfect mapping class groups. These results show there is an interesting
distinction between these mapping class groups and the previously studied cases. In
particular, the results of Powell and Domat demonstrate a consistent behavior for pure
mapping class groups of surfaces without noncompact boundary components, but the
cases we study demonstrate a more complicated behavior. Also, many of the tools from
the other cases do not easily extend as one would hope, so new techniques need to be
discovered.

Disks with handles and sliced Loch Ness monsters will be an essential part of this paper.
In Section 4 we will show how to cut a disk with handles into a collection of sliced Loch
Ness monsters, so we can use these simpler surfaces as building blocks for a general
argument. We can summarize the decomposition results with the following theorem,
which is partially inspired by a result in [2]. See Section 3 for some of the terminology.

Theorem C Every disk with handles without planar ends can be cut along a collection
of disjoint essential arcs into sliced Loch Ness monsters.

Furthermore , any infinite-type surface with infinite genus and no planar ends can be cut
along disjoint essential simple closed curves into components which are either

(i) Loch Ness monsters with k 2N [f1g compact boundary components added ,
possibly accumulating to the single end ;2 or

(ii) disks with handles with k 2 N [ f1g compact boundary components added
possibly accumulating to some subset of the ends.

2Here we are using N D f0; 1; 2; : : : g.
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2 Outline

In Section 3, we discuss the necessary background including the classification of
surfaces for orientable noncompact surfaces. The case of compact boundary was done
by Kerékjártó [13] and Richards [20]. The general case was done by Brown and
Messer [6]. We also give examples of surfaces which demonstrate the interesting new
phenomena that occur for surfaces with noncompact boundary. Some understanding of
the general classification and the possible cases may be useful to the usual infinite-type
surface researcher, especially when considering arguments involving cutting a surface
along noncompact objects, such as a union of infinitely many curves or a union of lines
or rays.

In Section 4, we prove Theorem C, and also define the boundary chains of a surface
with noncompact boundary components (see Definition 4.2). Intuitively speaking, a
boundary chain can be thought of as a collection of noncompact boundary components
which can be realized in the surface as a circle with points removed.

In Section 5, we prove Theorem A. The proof that PMapc.S/ is uniformly perfect for
a disk with handles uses standard tricks for writing elements as commutators (see for
example the proof that the symmetric group on a countably infinite set is uniformly
perfect [16]). First we use a fragmentation lemma (see Lemma 5.3) to decompose a
map in PMapc.S/ into a product of two simpler maps. Then, after decomposing the
surface into simpler pieces using Theorem C, we can apply a standard trick to write
each of the simpler maps as a single commutator.

In Section 6, we discuss how to extend the work of [2] to the general case (see
Theorem 6.13) and then prove Theorem B. The main proof in Section 6 involves a
natural way to turn a surface with noncompact boundary components into one without
them via capping the boundary chains (see Construction 6.12). We first extend the
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˛1

˛2

˛3

˛4

ˇ1 ˇ2 ˇ3 ˇ4



Figure 1: A sliced Loch Ness monster with two infinite collections of curves.
The collection fˇig eventually leaves every compact subsurface, but every
curve in the collection f˛ig intersects an arc  .

Alexander method to the general case (see Theorem 6.4) using a doubling trick. We also
extend some well-known facts to the general case (see Lemma 6.2 and Theorem 6.8).

One natural question that immediately comes to mind is whether the mapping class
groups of surfaces with noncompact boundary are even different at all from the compact
boundary counterparts. Is every one of these mapping class groups just naturally
isomorphic to some mapping class group for a surface with (possibly empty) compact
boundary? To the contrary, the following example shows that the mapping class group
for a surface with noncompact boundary can correspond to a proper subgroup of the
mapping class group for the interior surface. Consider the surface with infinite genus,
one end, one noncompact boundary component, and no compact boundary components.
It follows from the classification of surfaces in Section 3 that there is a unique surface
with these properties. This is the 1–sliced Loch Ness monster, which we denote by Ls .
If we take an infinite collection of curves f˛ig accumulating to the boundary as in
Figure 1, then the infinite product of Dehn twists � � �T˛3

T˛2
T˛1

does not correspond to
a homeomorphism of Ls . To see this, take another infinite collection of curves fˇig and
an arc  as shown in the figure. If we let L be the interior of Ls , then the infinite product
of twists corresponds to a well-defined homeomorphism T D

Q1
iD1 T˛i

2Map.L/.
Restricting maps on Ls to the interior induces a homomorphism

i WMap.Ls/!Map.L/;

but T is not in the image. Assume otherwise, and conflate T with a homeomorphism
on Ls which restricts to T on L. Note T . / intersects all of the ˇi , so it follows the
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image is not compact, a contradiction. This follows a similar argument as Proposition 7.1
of [17]. We extend this type of argument to a more general setting in Theorem 6.9.

It will follow from Lemma 6.2 that i is injective. Since we have just shown that i is not
surjective, we see that Map.Ls/ truly corresponds to a proper subgroup of Map.L/.
Note more work must be done to show that Map.Ls/ and Map.L/ are not abstractly
isomorphic. Once we are done though, this will follow from Theorem A.

The above example also partially motivated some of this work. In [8], Domat shows that
certain multitwists (a product of powers of Dehn twists about disjoint curves) cannot
be written as a product of commutators in PMapc.S/. These multitwists involve a
collection of curves similar to the ˛i in Figure 1. The hope was that a natural subgroup
without these types of multitwists would be a perfect group.

3 Background

3.1 Classification of surfaces

3.1.1 Compact boundary Here we summarize the classification theorems from
[20; 6], starting with the case of compact boundary. We briefly review the necessary ter-
minology. We always let a surface refer to a connected, orientable and second-countable
2–manifold. We will assume subsurfaces are connected unless stated otherwise. A
complementary domain of a surface S is a subsurface which is the closure of some
component of S nK for a compact subsurface K.

Definition 3.1 An exiting sequence for a surface S is a sequence of subsurfaces fUig

such that the following properties hold:

� UiC1 � Ui for all i .

�
T1

iD1 Ui D∅.

� Each Ui is a complementary domain.

Two such sequences fUig and fU 0i g are considered equivalent if for any i there exists
a j with Uj � U 0i , and conversely. This defines an equivalence relation on the set of
exiting sequences, and an equivalence class is referred to as an end of the surface. The
ends space of S is the collection of all equivalence classes, denoted by E.S/. Note that
for a given compact exhaustion the complementary domains of the compact subsurfaces
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can be used to build exiting sequences. The ends space is an invariant which does not
depend on the choice of a compact exhaustion here.

For a given subsurface U, let U ? be the set of ends such that there is a representative
sequence eventually contained within U. We now equip E.S/ with a basis generated
by sets of the form U ? ranging over all subsurfaces U such that U is a complementary
domain. This basis gives a topology on E.S/ which is totally disconnected, second-
countable, compact and Hausdorff (see [1]). Topological spaces with these properties
are always homeomorphic to a closed subset of the Cantor set.

We say an end is accumulated by genus if there is a representative sequence fUig such
that every Ui has infinite genus. We denote the set of ends accumulated by genus
by E1.S/. An end is planar if there is a representative sequence in which some
Ui is homeomorphic to a subset of the plane. The space of planar ends is exactly
E.S/ nE1.S/. We say an end is isolated if it is isolated in the topology on the space
of ends. Isolated planar ends are referred to as punctures.

When we consider surfaces with compact boundary, there is the following classification
theorem:

Theorem 3.2 (classification of surfaces with compact boundary [20]) Two surfaces
with compact boundary are homeomorphic if and only if they have homeomorphic
pairs .E.S/;E1.S//, the same genus and the same number of compact boundary
components.

3.1.2 Noncompact boundary Now we summarize the ideas for the general case,
following [6]. The previous definitions all apply to a general surface without adaptation,
but we need more information to capture all the new possibilities. Note compact or,
more generally, finite-type exhaustions for a surface S with noncompact boundary
components must include those subsurfaces whose boundary intersects the noncompact
boundary components of S in a union of intervals.

For a surface with infinitely many compact boundary components, we must record
the ends which are accumulated by these components. We refer to these as ends
accumulated by compact boundary, and we denote the space of these ends by E@.S/.
This can be precisely defined in a similar manner to accumulated by genus.

Let x@S be the disjoint union of the noncompact boundary components of a surface S.
Let E.x@S/ be the set of ends of x@S. This is just a discrete space with two points
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�0.x@S/ E.x@S/ E.S/

O

E1.S/

E@.S/

e v

Figure 2: A surface diagram.

associated to each component. Let v WE.x@S/!E.S/ be the function that takes an end
of a noncompact boundary component to the end of the surface to which it corresponds.
Note it is possible that both ends of a noncompact boundary component get mapped by v
to the same end of S, as is the case for the 1–sliced Loch Ness monster from Figure 1.

Let e WE.x@S/!�0.x@S/ be the map that takes an end to the corresponding noncompact
boundary component. Here �0.x@S/ denotes the discrete set of noncompact boundary
components of S. If we fix an orientation on S, then, for an arbitrary component
p 2 �0.x@S/, we may distinguish the right and left ends of e�1.p/. An orientation
of E.x@S/ is a subset O � E.x@S/ that contains exactly the right ends for the given
orientation. We collect all of this information in Figure 2.

The unlabeled arrows are the inclusion maps. We will refer to this as the surface diagram
for the surface S. See [6] for the construction of a surface from a given abstract surface
diagram, which is a diagram of the above form consisting of topological spaces and maps
satisfying various technical conditions. The abstract surface diagram provides a bundle
of data whose homeomorphism types are in correspondence with the homeomorphism
types of surfaces. Here we consider diagrams to be homeomorphic when there are
homeomorphisms between each of the sets which commute with the arrows. We will
not use abstract surface diagrams in this paper, so we leave it to the reader to review
this definition if desired. One should also note that for the nonorientable case there is
extra data to consider which is not represented in Figure 2.

Theorem 3.3 (classification of surfaces [6]) Two surfaces are homeomorphic if and
only if they have homeomorphic surface diagrams , the same genus and the same number
of compact boundary components.

Since the general case is vastly more complicated, we give a few illustrative examples,
some of which were discussed in the introduction of [6].

Example 3.4 See Figure 3. The two surfaces shown have homeomorphic ends spaces
E.S/DE1.S/D ! � 2C 1. Notice the doubles of these surfaces are homeomorphic.
Here the double of a surface with boundary is constructed by taking two copies and
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Figure 3: Nonhomeomorphic surfaces with homeomorphic doubles. The
boundary components are represented by the blue lines.

gluing along the boundary by the identity. However, the surfaces themselves are not
homeomorphic since they have nonhomeomorphic diagrams. To see this, note that the
upper surface has a noncompact boundary component such that both ends get sent by v
to accumulation points of E.S/, but the lower surface does not. It follows that there
cannot be homeomorphisms between their E.x@S/ and E.S/ sets which commute with
the v maps.

Example 3.5 Take an annulus and from each boundary component remove a point and
a sequence accumulating to the point monotonically. There is a choice whether both
sequences converge in the same direction or not, and this gives two nonhomeomorphic
surfaces. These surfaces have homeomorphic end spaces E.S/D ! � 2C 1, and even
the top rows of their surface diagrams are homeomorphic. The full diagrams are not
homeomorphic, however, because the orientations disagree. When the sequences go
in the same direction, either O or E.x@S/ nO contains (the preimages of) both of the
accumulation points, but, when the sequences go in opposite directions, O contains
exactly one of the accumulation points. Similar reasoning gives another explanation
why the surfaces in Example 3.4 are nonhomeomorphic.

This example highlights an interesting distinction from the compact boundary case. A
connected sum of surfaces with compact boundary always gives a unique surface, up to

Algebraic & Geometric Topology, Volume 23 (2023)



2786 Ryan Dickmann

homeomorphism, but for general surfaces there may be at most two homeomorphism
types, depending on the orientation of the attaching map. The above two surfaces
are each the connected sum of the same disks with boundary points removed. For
orientable surfaces, a connected sum determines a unique surface if and only if at least
one of the surfaces has an orientation-reversing self-homeomorphism.

Now we define a class of surfaces essential to this paper. By attaching a handle or tube to
a surface we mean removing two open balls with disjoint closures and then identifying
the resulting boundary components by an orientation-reversing map of degree �1.

Definition 3.6 (disk with handles) A disk with handles is a surface which can be
constructed by taking a disk, removing a closed embedded subset P of the Cantor
set from the boundary, and then attaching infinitely many handles accumulating to
some subset of P . The choice of infinitely many handles was chosen to simplify the
statement of the theorems and to remove finite-type surfaces.

Remark 3.7 Let D be a disk with boundary points removed, and S a disk with handles
constructed from D. When we attach a sequence of handles to D, it is possible the two
corresponding sequences of open balls accumulate to different points in E.D/. This
joins these ends into a single end of E.S/. This is highlighted in Construction 3.9 and
Figures 4 and 5. Due to this phenomenon, a general disk with handles is much more
complicated than one might first expect.

If we assume this type of handle attaching does not occur, then the possible disks with
handles are classified by homeomorphism types of the pair .E.S/;E1.S// with the
additional structure of a cyclic ordering. Note that this gives another way to distinguish
the surfaces in Example 3.4. A more complicated type of ordering, allowing repeats,
is required to classify general disks with handles. A major part of the Brown–Messer
construction for a surface from a given diagram involves the delicate construction of
such orderings [6].

Now we also want to consider a more specific class of surfaces.

Definition 3.8 (Loch Ness monsters) A Loch Ness monster refers to the unique
surface with one end, infinite genus and empty boundary. A sliced Loch Ness monster
is any of the surfaces with one end, infinite genus, no compact boundary components,
but at least one noncompact boundary component. Equivalently, a sliced Loch Ness
monster is a disk with handles with one end. By the classification of surfaces, a surface
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Figure 4: The 2–sliced Loch Ness monster.

with these properties is determined by the possibly infinite number of noncompact
boundary components. We sometimes refer to an n–sliced Loch Ness monster to
emphasize the number of boundary components.

In order to help visualize these surfaces, we give the following construction:

Construction 3.9 Take a strip R�Œ�1; 1� and remove small disjoint open balls centered
around the points .n; 0/ for n 2 Z n f0g. Now identify pairs of boundary components
centered at .˙n; 0/ via horizontal reflection. Equivalently, we may view this process as
attaching tubes to the strip. The resulting manifold is the 2–sliced Loch Ness monster.
See Figure 4. Similarly, we can construct the n–sliced Loch Ness monster for any
finite n by taking a disk with n points removed from the boundary and attaching tubes
to join all of the ends. To get the1–sliced Loch Ness monster, we can take a disk
with any infinite embedded closed subset of the Cantor set removed from the boundary
and attach tubes to join all of the ends as before. By the classification of surfaces, no
matter what infinite set of points we remove in this construction we always get the
same surface. This is somewhat unintuitive, but it is better understood once we realize
that any interesting topology in the original ends space is collapsed when we attach
tubes to get a surface with a single end.

The choice to define sliced Loch Ness monsters independently of the number of
boundary components simplifies the statement of the main theorems. In particular,
for the first statement of Theorem C it will be simpler to include sliced Loch Ness
monsters which have any number of noncompact boundary components going out the
single end. See Figure 5 for an example of a disk with handles which suggests that we
should include 2–sliced Loch monsters in the list of building blocks.

Algebraic & Geometric Topology, Volume 23 (2023)



2788 Ryan Dickmann

Figure 5: Two visualizations of the same disk with handles. This surface can
be cut along arcs into infinitely many 2–sliced Loch Ness monsters.

According to Theorem C, an infinite-type surface with every end accumulated by genus
can be cut along curves into Loch Ness monsters and disks with handles (without planar
ends), each possibly with compact boundary components added. Therefore, this class
of surfaces corresponds to the set of all surfaces which result from a possibly infinite
procedure of connected sum operations with these building blocks. In Remark 4.14
we discuss a possible extension of Theorem C to general surfaces possibly with finite
genus and planar ends. In this case, we must allow more building blocks, in particular
disks with boundary points removed and possibly compact boundary components added
or finitely many handles attached. Many basic examples one should consider involve
inductive procedures of connected sum operations with these building blocks. Note
that Theorem C or any extension thereof can only tell us that some procedure exists for
connecting together building blocks to create a general surface, but this procedure may
not necessarily be describable in an inductive manner.

3.2 Big mapping class groups

Let HomeoC
@
.S/ be the group of orientation-preserving homeomorphisms of a surface S

which fix the boundary pointwise. The mapping class group Map.S/ is defined to be

Map.S/D HomeoC
@
.S/=�;

where two homeomorphisms are equivalent if they are isotopic relative to the boundary
of S. We will often conflate a mapping class group element with a representative
homeomorphism. We equip HomeoC

@
.S/ with the compact–open topology, which
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induces the quotient topology on Map.S/. We equip subgroups of Map.S/ with the
subspace topology. The mapping class group of a subsurface will correspond to the
subgroup of elements which have a representative supported in the subsurface. The
pure mapping class group PMap.S/ is the subgroup of Map.S/ consisting of elements
which fix the ends of S.

We say f 2Map.S/ is compactly supported if f has a representative that is the identity
outside of a compact subsurface of S. The subgroup consisting of compactly supported
mapping classes is denoted by PMapc.S/. Note any compactly supported mapping
class is in the subgroup PMap.S/.

Definition 3.10 (degenerate ends) Notice removing an embedded closed subset of
the Cantor set from the boundary of a surface does not change the underlying mapping
class group. We refer to the resulting ends as degenerate. More generally, this will
refer to ends with a representative sequence fUig such that some Ui is homeomorphic
to a disk with boundary points removed. It may be convenient in some cases to only
work with homeomorphism types of surfaces up to filling in the degenerate ends. We
will allow these ends except when stated otherwise. Note that given the definition of a
finite-type surface from the introduction, there can be finite-type surfaces with infinitely
many degenerate ends.

Now we review the definition of a handle shift from [2] which will be used throughout
Section 6. Let† be the surface obtained by gluing handles onto R� Œ�1; 1� periodically
with respect to the map .x;y/ 7! .xC 1;y/. We refer to this surface as a strip with
genus. For some � > 0, let � W R� Œ�1; 1�! R� Œ�1; 1� be the map determined by
setting

�.x;y/D

�
.xC 1;y/ for .x;y/ 2R� Œ�1C �; 1� ��;

.x;y/ for .x;y/ 2R� f�1; 1g;

and interpolating continuously on R� Œ�1;�1C ��[R� Œ1� �; 1�. By extending this
map to the attached handles, we get a homeomorphism on †, which we conflate with � .
A homeomorphism h W S ! S is a handle shift if there exists a proper embedding
� W†! S such that

h.x/D

�
.� ı � ı ��1/.x/ if x 2 �.†/;

x otherwise.

The embedding � is required to be proper, so it induces a map O� W E.†/! E1.S/.
A handle shift h then has an attracting and a repelling end, denoted by hC and h�,
respectively. In general, the attracting and repelling ends can be the same, though the
handle shifts used in Section 6 will have different attracting and repelling ends.
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3.3 Curves and arcs

A simple closed curve in a surface S is the image of a topological embedding S1 ,! S.
A simple closed curve is trivial if it is isotopic to a point; it is peripheral if it is either
isotopic to a boundary component or bounds a once-punctured disk. We will often
refer to a simple closed curve as just a curve.

An arc in S is a topological embedding ˛ W I ,! S, where I is the closed unit interval,
with ˛.@I/� @S. We consider all isotopies between arcs to be relative to @I ; ie, the
isotopies are not allowed to move the endpoints. An arc is trivial if it is isotopic to an
arc whose image is completely contained in @S ; it is peripheral if it bounds a disk with
a single point removed from the boundary. This last definition is the only nonstandard
one, and we include it since it aligns with the definition of a peripheral curve. It may
be useful in some cases to extend the definition of trivial/peripheral to include arcs or
curves which are trivial/peripheral in the surface after degenerate ends are filled in.

A curve or arc is essential when it is not trivial nor peripheral; it is separating if its
complement is disconnected and nonseparating otherwise. We will often conflate a
curve or arc with its isotopy class. All curves and arcs will be assumed to be essential
unless stated otherwise. We say curves or arcs intersect if they cannot be isotoped to
be disjoint, and we say they are in minimal position when they are isotoped to have the
smallest number of intersections. We say a subsurface is essential if the inclusion of
the subsurface induces an injective map of fundamental groups.

By cutting along a collection of curves or arcs, we mean removing disjoint open regular
neighborhoods of each of the curves or arcs. Throughout this paper, we will conflate the
complement of a curve or arc with this cut surface. We will also occasionally conflate
the complement of a subsurface with its closure.

4 Decomposing an infinite-type surface

4.1 Outline

In this section, we prove Theorem C along with several other decomposition results.
This is crucial for the proof of the main theorems, since a general surface can be
extremely complicated. We also want an approachable method for visualizing a surface
from the surface diagram data. Our work builds off the Brown–Messer classification [6]
with some inspiration from [19]. The classification theorem from the latter paper is
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incorrect as stated: it cannot distinguish the pairs of surfaces from Examples 3.4 and 3.5.
On the other hand, the argument given there does provide a more intuitive approach.
We precisely define some of the ideas from [19].

The main idea is to study what happens when we remove the boundary of a surface S.
Deleting a compact boundary component leaves a puncture, which corresponds to an
isolated end of So, the interior of S. Deleting the noncompact boundary components
is more complicated as there could be several ends corresponding to these boundary
components which get sent to a single end.

We show that we can think of the noncompact boundary components and their ends as
being grouped together into chains, and that removing the boundary components from
a chain sends all of the corresponding ends to a single end of So. An important tool
will be Lemma 4.12, which allows us to cut a surface along curves so each resulting
component has at most one boundary chain. After we discuss the types of surfaces
which have a single boundary chain (see Lemma 4.8 and the remarks at the end of its
proof), we can apply Lemma 4.12 to prove the “furthermore” statement of Theorem C
by representing the components with boundary chains as disks with handles possibly
with compact boundary components added. The boundary chains will then correspond
to the boundaries of the disks with handles.

4.2 Boundary ends and chains

First we want to precisely define the map on ends spaces induced by deleting the
boundary. Consider the inclusion of S in S 0 D S [@S

�
@S � Œ0;1/

�
. Notice that S 0 is

homeomorphic to So. Consider a compact exhaustion fS 0ig of S 0. Let Si D S 0i \S , so
fSig is a compact exhaustion of S. Choose an end in E.S/ and let fUig be an exiting
sequence representative for this end consisting of complementary domains of the Si .
By replacing components of the S nSi with components of the S 0 nS 0i , we can get an
exiting sequence in S 0. It follows that we have a well-defined canonical map

� WE.S/!E.So/:

Proposition 4.1 The map � is continuous.

Proof Let U ?�E.So/ be a basis element defined by some complementary domain U

in So. This gives a complementary domain US in S after adding in the boundary, and so
it defines a basis element U ?

S
�E.S/. We are done after noting that ��1.U ?/DU ?

S
.
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Figure 6: A surface with a single boundary chain.

Now recall the definition of a surface diagram from Section 3 (see Figure 2). Let V

be the image of v, the map which sends ends of noncompact boundary components to
ends of S. Now we use the map � to define a boundary chain. Intuitively, this can be
thought of as a set of boundary ends and boundary components which can be realized
in the surface as a circle with points removed.

Definition 4.2 (boundary chains) A boundary chain of a surface S is a subset
of E.S/ of the form ��1.p/, where p 2 �.V /. The collection of all such sets is
denoted by C.S/ and is referred to as the set of boundary chains for S. Occasionally,
we will conflate definitions and use boundary chain to refer to the union of noncompact
boundary components with ends in the chain.

Now we define the set of boundary ends for a surface.

Definition 4.3 (boundary ends) Let B.S/ be the union of the boundary chains. This
will be referred to as the set of boundary ends, and any element of B.S/ is a boundary
end.

An end in E.S/ is said to be an interior end if it is not in B.S/. If a boundary end in S

is isolated from the other ends, then we refer to it as a boundary puncture. Note that
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B.S/ contains V, but it is possible that B.S/ contains additional ends. The definitions
above were specifically chosen to include additional ends, such as the ones from the
following example:

Example 4.4 Consider a disk with a Cantor set removed from the boundary. We want
every end of this surface to be considered a boundary end, but there are some ends
which are not in the image of v. These correspond to points in the Cantor set which
are not the endpoint of any interval that is removed during the usual middle thirds
construction.

We can use � to define an equivalence relation on B.S/ for which C.S/ is the resulting
quotient. After equipping B.S/ with the subspace topology, C.S/ inherits the quotient
topology. Note � is injective on E.S/ nB.S/. The set of boundary chains exactly
records the noninjectivity of � on B.S/.

Remark 4.5 Since there are countably many boundary components in a surface,
�.B.S// is countable.

Remark 4.6 The subset B.S/�E.S/ is not necessarily closed. For example, take
a once-punctured sphere, remove infinitely many open balls with disjoint closures
accumulating to the puncture, and then remove a single point from each of the resulting
boundary components. It is not necessarily open either, as in the case of a disk with a
point removed from the boundary with interior punctures added accumulating to the
boundary end. By Proposition 4.1, each boundary chain is a closed subset. Then, by
Remark 4.5, B.S/ is the countable union of closed subsets.

Example 4.7 Consider any disk with handles S. The interior of S is the Loch
Ness monster, since it corresponds to a once-punctured sphere with handles attached
accumulating to the puncture. Every boundary end of S gets sent by � to the single
end of the Loch Ness monster, so any disk with handles has a single boundary chain.

This last statement has a partial converse, which provides a more intuitive way to think
about a boundary chain:

Lemma 4.8 Every surface S with infinite genus , one boundary chain and only bound-
ary ends is a disk with handles possibly with compact boundary components added.

Before we prove Lemma 4.8, we first need a few facts.
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Proposition 4.9 Let S be a noncompact surface without boundary. Then the following
are equivalent :

(i) There exists a compact exhaustion fSig of S such that each @Si has a single
component.

(ii) S has exactly one end.

Proof Since the complementary regions of a compact exhaustion can be used to
build exiting sequences, and the ends space is independent of this choice of a compact
exhaustion, the first condition immediately implies the second. Assuming the second
condition, S is either a finite-type surface with one puncture, or the Loch Ness monster.
In either case, we can directly construct the desired exhaustion.

Proposition 4.10 Let S be a noncompact surface with no compact boundary compo-
nents and no interior ends. Then the following are equivalent :

(i) There exists a compact exhaustion fSig of S such that each @Si has a single
component.

(ii) S has exactly one boundary chain.

Proof Suppose the first condition holds. To get the second condition, it suffices to
show that the interior of S has a single end. Remove open regular neighborhoods
of the boundary from each Si , shrinking the neighborhoods as we increase i so we
get a compact exhaustion for the interior. Each subsurface in this exhaustion has one
boundary component, so we are done by Proposition 4.9.

Now suppose the second condition holds, so the interior of S has a single end by
the definition of a boundary chain. Let fKig be a compact exhaustion of the interior
of S given by Proposition 4.9 such that each @Ki has a single boundary component.
Let N be an open regular neighborhood of the boundary chain. Note that, if we set
Si DKi \ .S nN /, then we get a compact exhaustion fSig for S nN.

We want to modify the Ki so the resulting Si each have a single boundary component.
First remove subsurfaces from fKig so K1\N ¤∅. Now isotope @K1 so it is transverse
to @N and each component of K1\N is a bigon. Now we proceed inductively. Remove
some subsurfaces from the exhaustion so Ki contains the previously modified Ki�1,
and isotope @Ki in S nKi�1 so its position with N is as above. We can ensure the
bigons exhaust the interior of N, so the modified sequence fKig is an exhaustion of
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Figure 7: A surface satisfying the conditions of Lemma 4.8 with a collection
of curves that cuts it into a surface with zero genus and one boundary chain.

the interior of S. Now, since Si is the result of removing disjoint bigons from Ki , we
conclude that each Si has one boundary component. We are now done since S nN is
homeomorphic to S.

Now we are ready to prove Lemma 4.8.

Proof of Lemma 4.8 Throughout this proof, we modify S also calling the new surface
at each step S. First cap any compact boundary components of S with disks. Since S

has no interior ends, one boundary chain and now no compact boundary components,
Proposition 4.10 gives us a compact exhaustion fSig of S such that each @Si has one
component. Now we want to find an infinite sequence of nonseparating curves such
that cutting S along the curves gives a surface with no genus and one boundary chain.
See Figure 7 for an example. We must be careful since cutting the surface from this
figure along a sequence of horizontal curves about each tube similar to the two leftmost
curves gives two surfaces each with one boundary chain. If we exclude the curve about
the middle tube, then cutting gives a surface with two boundary chains.

To get the desired collection of curves, note we can find a finite collection of curves in
each Si which cut it into a surface with no genus and one boundary component (after
capping the compact boundary components resulting from cutting), and we can ensure
each collection extends to subsequent collections. The desired collection of curves is
then the increasing union of these collections. Cut S along these curves, and cap the
resulting boundary components with disks. Now S has no genus, and, by applying
Proposition 4.10 to a modified compact exhaustion, we see S has one boundary chain.

As in the first paragraph of the proof of Proposition 4.10, by removing open regular
neighborhoods from the boundary of the Si , we can get a compact exhaustion of the
interior of S satisfying the first condition of Proposition 4.9. Then, by Proposition 4.9
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and classification of surfaces, the interior of S is homeomorphic to a once-punctured
sphere. Therefore, if we fill in the boundary ends of S, we get a compact surface which
must be homeomorphic to a disk. We are then done after reversing the above steps,
since this will correspond to deleting points from the boundary and then attaching
handles as in the definition of a disk with handles. Finally, if there were initially any
compact boundary components then reversing the capping corresponds to adding back
in these components.

We should mention that a version of this lemma holds if we allow surfaces with finite
genus. In this case, our surface will be homeomorphic to a disk with boundary points
removed with finitely many (possibly zero) handles attached and possibly compact
boundary components added. We could also allow interior ends, and then we would
need to allow a final step where we delete interior points from the modified disk and
then possibly attach handles or compact boundary components accumulating to any of
the ends. The overall takeaway of this lemma is that a surface with a single boundary
chain is homeomorphic to a modified disk.

4.3 Decomposition results

Lemma 4.11 Every infinite-type surface S without boundary and without planar ends
can be cut along a collection of disjoint essential simple closed curves into Loch Ness
monsters with k 2N [f1g compact boundary components added.

Proof This was first shown in [2] as a tool to prove Theorem 6.1. See Section 6
for this argument. We provide a different proof, which gives us more control over
the ends of the components in the cut surface. Recall that the ends space E.S/ is
homeomorphic to a closed subset of the Cantor set. Let T be some locally finite tree
with E.T / homeomorphic to E.S/.3 We can think of S as a thickened version of T

with genus added accumulating to every end. For simplicity, we will assume T has no
vertices of valence one.

We may write T as a union of rays fRig where, for each distinct Ri and Rj , Ri\Rj is
empty or a single vertex. To see this, enumerate a countable dense subset fxig of E.T /

and fix some basepoint vertex v. Begin by letting R1 be the ray from v to x1, then let
R2 be the ray from v to x2 with the interior of the overlap with R1 deleted. Continue

3The ends space of a tree is defined analogously to the ends space of a surface. For locally finite trees, the
ends space is always homeomorphic to a closed subset of the Cantor set.
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in this manner to build the desired collection fRig. Since T has no vertices of valence
one, this will exhaust the entire tree.

Associate each Ri with a Loch Ness monster Li . Let ni 2 N [ f1g be the number
of vertices in Ri \

S
j¤i Rj . For each i , remove ni open balls with disjoint closures

from Li with the balls accumulating to the single end when ni is infinite. Associate each
boundary component of Li with a vertex in Ri \

S
j¤i Rj , and attach the boundary

components of distinct Li and Lj when these components correspond to the same
vertex of T. Let S 0 be the resulting surface and let f˛ig be the collection of curves
in S 0 corresponding to the attached boundary components.

Now E.T / and E.S 0/ are homeomorphic. This requires showing a correspondence
between a compact exhaustion of T and an exhaustion of S 0. One approach is to
subdivide T, then write it as a union of stars of the vertices from the original tree. Then
associate each star with an n–holed torus, where n is the number of edges in the star.
The stars and the tori can then be attached to build compact exhaustions for T and S 0,
respectively. By the classification of surfaces, S 0 is homeomorphic to S. Cutting S 0

along the ˛i gives components which are Loch Ness monsters with compact boundary
components added, so we are done.

The argument from this lemma will be referenced often in the following proofs. By
decomposing a tree T into rays we mean writing T as a union of rays which are either
disjoint or intersect one another at a single vertex.

Lemma 4.12 Every surface S can be cut along a collection of disjoint simple closed
curves into components with at most one boundary chain. Additionally, we may assume
the components with boundary chains have only boundary ends.

Proof We can assume S has noncompact boundary components, since otherwise the
lemma holds trivially. Recall that, by the definition of a boundary chain, two boundary
ends p; q 2B.S/ are in the same boundary chain if and only if �.q/D �.p/. Suppose
we can cut So along curves into one-ended components so that �.B.S// is contained
in the dense subset of E.So/ corresponding to these components. Now, when we cut S

along these same curves, each component of the cut surface has at most one boundary
chain. Since � maps interior ends outside of �.B.S//, we get the last statement of the
lemma. Therefore, it suffices to decompose So in this manner.

Following the proof of Lemma 4.11, represent So by a tree T with no valence one
vertices. Fix a base vertex v and let T 0 be the union of rays from v to an end in �.B.S//.
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By Remark 4.5, �.B.S// is countable, so enumerate the elements of �.B.S// as a
sequence fxig. As in the proof of Lemma 4.11, we can use an inductive process to
decompose T 0 into a collection of rays fRig where each element of fxig corresponds
to the end of one of the rays. Then we can decompose the remainder of T into rays.
Now we follow the proof of Lemma 4.11 to decompose So as desired. Note for this
last step we need to allow one-ended pieces with finite genus into our decomposition
since we are not assuming S has only ends accumulated by genus (see Remark 4.14).
We may also need to allow nonessential curves.

Lemma 4.13 Every disk with handles S without planar ends can be cut along a
collection of disjoint essential arcs into sliced Loch Ness monsters.

Proof Let D be a disk with points removed from the boundary used to construct S.
Note we may realize D as a closed neighborhood of a tree T properly embedded
in C.4 As before, we will assume this tree has no valence one vertices. Recall from
Remark 3.7 that the handles may be attached in a way that joins ends of D together. By
similar reasoning to Proposition 4.1 and the preceding remarks, the process of attaching
handles determines a well-defined continuous quotient map

q WE.D/!E.S/:

By classification of surfaces, two disks with handles without planar ends are homeo-
morphic when there is a homeomorphism between the base disks which respects the
quotient maps induced by attaching the handles.

We argue by analogy to the proof of Lemma 4.11. First suppose that q is injective.
Decompose T into rays fRig and then associate each ray with a 1–sliced Loch Ness
monster. Attach these surfaces along intervals on their boundaries according to the
incidences of the Ri in T. This attaching procedure is analogous to the procedure from
Lemma 4.11 with boundary connected sum operations in place of the connected sum
operations. This gives a disk with handles with a base disk homeomorphic to D and an
injective quotient map, so it is homeomorphic to S. It then follows that we can cut S

into 1–sliced Loch Ness monsters. See Figure 8, left, for an example of a disk with
handles constructed from a thickened binary tree being cut into 1–sliced Loch Ness
monsters. However, if q is not injective, we need to be a little more careful. See for
example Figure 8, right. If we choose to cut this surface along arcs similar to the ones

4One approach is to take a triangulation of D and then build T from a spanning tree of the dual 1–skeleton.
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Figure 8: Left: a disk with handles gets cut along blue arcs into 1–sliced
Loch Ness monsters. Right: a more complicated disk with handles gets cut
along the red and blue arcs into a 2–sliced Loch Ness monster and 1–sliced
Loch Ness monsters. The surface bounded by the red arcs corresponds to two
rays chosen to exhaust the subset q�1.x1/, where x1 is the single element
of U.

used for the left surface, then we will have components in the cut surface which are
not sliced Loch Ness monsters. Let

U D fp 2E.S/ W jq�1.p/j � 2g:

Enumerate a countable dense subset fxig of U. Now, when we decompose T into rays,
first choose rays that exhaust a dense subset of each q�1.xi/. Here we are conflating
the ends space of D with the ends space of T. Then decompose the remainder of T to
exhaust a dense subset of the entire ends space. Let fRig be the resulting rays. Similar
to before, associate each Ri with a disk with one boundary puncture Di , and attach
the Di along intervals on their boundaries according to the incidences of the Ri to get
a base disk homeomorphic to D.

Choose some xi and consider the subset of rays with an end corresponding to an element
of q�1.xi/. Attach infinitely many handles to the union of the respective Dj in order
to join the boundary ends of the Dj into a single end. Similar to Construction 3.9, this
gives n–sliced Loch Ness monsters where n� 2. Repeat this process for every xi . Now,
for the remaining rays, attach handles to the corresponding disks to get 1–sliced Loch
Ness monsters. Attaching handles in this manner to the base disk gives an equivalence
relation on E.D/ which agrees with the equivalence relation given by q on a dense
subset. Therefore, by continuity and the above remarks, this construction gives a surface
homeomorphic to S. Now we are done, since cutting this surface along the ˛i gives
sliced Loch Ness monsters.
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Now we combine everything thus far.

Proof of Theorem C The first statement of this theorem is Lemma 4.13. Let S be
an infinite-type surface with infinite genus and no planar ends. Apply Lemma 4.12
to cut S into components with at most one boundary chain, where the components
with a boundary chain have only boundary ends. We can assume each component has
infinite genus since S has only ends accumulated by genus. Then, by Lemma 4.8,
the components with a boundary chain are disk with handles possibly with compact
boundary components added. The other components are Loch Ness monsters possibly
with compact boundary components added.

Remark 4.14 If we allow planar ends then similar decomposition results hold, where
we have to allow other one-ended building blocks. For example, when decomposing a
disk with handles with planar ends similar to Lemma 4.13, we need to include disks
with one boundary puncture. We could also allow finite genus. For example, when
decomposing a surface without boundary similar to Lemma 4.11, we have to allow one-
ended surfaces with finite genus and possibly with infinitely many compact boundary
components added. In these cases we may need to allow cutting along peripheral curves
and arcs.

One possible extension of Theorem C to general surfaces with noncompact boundary
involves using Lemma 4.12 and the extension of Lemma 4.8 mentioned in the final
remarks of its proof. In this case, we must add the modified disks discussed in these
remarks to our building blocks.

5 Main results

5.1 Background

Domat has shown for surfaces with compact boundary components and at least two
ends accumulated by genus that PMapc.S/ is not perfect [8]. In the appendix of that
paper, the author and Domat use the Birman exact sequence to extend this to the case
with one end accumulated by genus. On the other hand, Calegari has shown that the
mapping class group of the sphere minus a Cantor set is uniformly perfect [7]. Now we
want to show many surfaces with noncompact boundary components have uniformly
perfect mapping class groups.

First we need to extend a result of Patel and Vlamis to the general case, since we will
use this implicitly throughout the proof of Theorem A.
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Theorem 5.1 [17] For any infinite-type surface S with only compact boundary
components and at most one end accumulated by genus , PMapc.S/D PMap.S/.

This result was originally stated for compact boundary, but the proof in [17] also works
when there are infinitely many compact boundary components. The argument uses
pants decompositions which we can construct without adaptation when there are only
compact boundary components. Pants decompositions seem more tedious to use in
the general case, so we instead give a slightly modified proof using a more general
exhaustion. To simplify our arguments we will assume surfaces do not have degenerate
ends (Definition 3.10) for the entirety of Section 5. Note this will not affect the proof of
Theorem A, since filling in degenerate ends does not change the mapping class group.

Theorem 5.2 For any infinite-type surface S with at most one end accumulated by
genus , PMapc.S/D PMap.S/.

Proof Let f 2 PMap.S/ be an arbitrary element. We want to find a sequence ffig of
elements of PMapc.S/ such that fi! f in the compact–open topology. Let fSig be
an exhaustion of S by essential finite-type surfaces. It will suffice to show that there is
always some compactly supported fi which agrees with f on Si . We can assume that
the complementary domains of each Si are of infinite type.

Note the orbit of any curve in S under PMap.S/ is determined, up to isotopy, by the
partition it determines on E.S/, the partition it determines on the compact boundary
components of S, and the topological type of the complementary domains. The orbit
of an arc, up to isotopy, is determined by the same properties and the endpoints of the
arc. This is also true for curves and arcs in any surface.

Fix some Si and let n be large enough that f .Si/� Sn. Let f˛kg be the components
of @Si n @S. First suppose ˛k is a separating curve or arc. Since S has at most one end
accumulated by genus, S n˛k has one component U with finite genus. Increase n if
necessary so that Sn\U contains all of this genus. Note f .˛k/ and ˛k determine the
same partition on E.Sn/ and the same partition on the compact boundary components
of Sn.

Let V DSn\U and W DSn\f .U /. Since Sn contains all the genus of U, we must have
that V and W have the same genus. It follows that ˛k and f .˛k/ have homeomorphic
complementary domains. Now, if ˛k is nonseparating, then ˛k and f .˛k/ are both
nonseparating in Sn, and so the complementary domains are homeomorphic in this
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case too. Therefore, we can find some g 2 PMap.Sn/ which takes f .˛k/ to ˛k . We
can also require gf to fix the orientation of ˛k when it is a nonseparating curve.

Now we build a compactly supported element fi which approximates f on Si . Start
by finding some g1 2 PMap.Sn/ which takes f .˛1/ to ˛1. Now find some g2 2

PMap.Sn n ˛1/ which takes g1f .˛2/ to ˛2. Repeat this process to find a sequence
of compactly supported elements fgkg such that g D � � �g3g2g1 sends each f .˛k/

to ˛k . Also choose the gk so that gf fixes the orientation of each ˛k . Now, finally,
g 2 PMapc.S/ sends f .Si/ to Si . Then let hi be equal to gf in Si and the identity
outside Si , so fi D g�1hi agrees with f on Si .

5.2 Fragmentation

The main tool for the proof of Theorem A is a fragmentation lemma that allows us
to write a map in PMapc.S/ as a product of two simpler maps. This is based on
fragmentation results from [9; 14], and was originally formulated by Domat in the case
of no boundary. Here we provide a proof that works in the general case.

Lemma 5.3 (fragmentation) Let S be any infinite-type surface and f 2 PMapc.S/.
There exist two sequences of compact subsurfaces fKig and fCig, with each sequence
consisting of pairwise disjoint surfaces , and g; h 2 PMapc.S/ such that

(i) supp.g/�
S

i Ci and supp.h/�
S

i Ki ,

(ii) f D hg.

Proof Fix a compact exhaustion fSig of S by essential subsurfaces, and begin by
setting K0

1
DS1. Choose some n large enough that f .K0

1
/�Sn, and then set K1DSn.

Now there exists some �1 2 PMap.K1/ such that �1f fixes @K0
1
. Let

 1 D �1f jK 0
1
2 PMap.K01/:

Then  �1
1
�1 2 PMap.K1/ and  �1

1
�1f fixes K0

1
. Let g1 D  �1

1
�1. Next let

K0
2
; : : : ;K0j be the components of some Sn n Sn�1, where n is large enough that

f .K0i/ is disjoint from K1 for each 2� i � j.

Now we run the same argument as before to get elements �2; : : : ; �j contained in
some PMap.K2/; : : : ;PMap.Kj /, respectively, with all of the Ki pairwise disjoint
and such that K0i � Ki and each �if fixes @K0i . Our choices for the new Ki will
be the components of some Sn n Sm, where n and m are any numbers such that
f .K0i/ � Sn n Sm for each 2 � i � j, and K1 � Sm. Then let  i D �if jK 0

i
and

gi D  
�1
i �i , so that each gif fixes K0i .
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Continue this process to obtain an infinite sequence of elements gi and compact
subsurfaces K0i � Ki such that gi 2 PMap.Ki/, each gif fixes K0i , and the Ki are
pairwise disjoint. The gi are compactly supported and have pairwise disjoint supports,
so the product � � �g3g2g1 converges to Ng 2 PMapc.S/. Set g D Ngf, so that g fixes
every K0i . Now let fCig be the complementary domains of

S
i K0i in S, and note the

Ci are compact, since each is contained in some Sn nSm. Note that in general the Ci

are allowed to intersect the Ki . Let hD Ng�1, so that f D hg. Now supp.h/�
S

i Ki ,
as desired. Also

S
i Ci D S n

S
i K0i and g D Ngf fixes each of the K0i , which shows

that supp.g/�
S

i Ci .

There is one subtlety we should mention. It will often be the case that a homeo-
morphism supported in some Ki or Ci will be trivial in PMapc.S/, so we should throw
these subsurfaces out of our collections. For example, if the surface has any interior
punctures, then the Ki and Ci will contain annuli bounding that puncture, and any
map supported in the union of these annuli is trivial in PMapc.S/. Note the above
proof would also work if we were to instead work with the subgroup of HomeoC

@
.S/

corresponding to homeomorphisms which can be approximated by compactly supported
homeomorphisms. In this case, we would not throw out any of the subsurfaces. We
could also relax the infinite-type assumption if desired.

Remark 5.4 A critical observation is that some of the compact subsurfaces we get
from fragmentation can be modified. Say K is a compact subsurface whose boundary
is composed of alternating essential arcs in S and arcs in @S. Let f 2Map.K/ and
conflate f with a representative homeomorphism. Since f fixes @K, we can assume
after an isotopy that f is the identity in an open regular neighborhood N of @K, so
f 2Map.K0/, where K0 DK nN. The boundary of K0 is then a union of essential
simple closed curves in S.

Modifying the subsurfaces in this manner may turn a surface which separates into one
that does not. For example, the rightmost two subsurfaces shown in Figure 9 can be
modified to be nonseparating. This idea can be extended as follows:

Lemma 5.5 Suppose S is a disk with handles. Let g and h be maps given by
fragmentation on some f 2 PMapc.S/, and let fCig and fKig be the respective
sequences of compact subsurfaces. We can assume the following:

(i) Each @Ki and @Ci is a single essential simple closed curve.

(ii) S n
S

i Ki and S n
S

i Ci are homeomorphic to S with compact boundary
components added accumulating to some subset of the ends.
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Figure 9: Example of one of the maps produced via fragmentation on a
surface with two boundary chains (bold lines). The blue shaded regions
represent the Ki before we modify them.

Proof Recall fragmentation depends on a given choice of a compact exhaustion fSig.
By Proposition 4.10, we can choose our exhaustion so each @Si has one component
composed of alternating essential arcs in S and arcs in @S. From the proof of Lemma 5.3,
each Ci and Ki is either some Sn or a component of some Sn nSm. We now show we
can assume the desired conditions for h and the Ki , and the proof for the other map
is similar. Since each component of @Ki intersects @S, we can modify the Ki as in
Remark 5.4 so that @Ki is a union of essential simple closed curves. See Figure 10
for an example. In the case of fragmentation on the 2–sliced Loch Ness monster (see
Figure 4 and Construction 3.9), this process will often give Ki with two boundary
components, and in general this can give any finite number of boundary components.

K1

K2

Figure 10: Example of fragmentation on a 1–sliced Loch Ness. The blue arcs
correspond to the compact exhaustion used for the fragmentation. The Ki

correspond to the modified subsurfaces containing the support of one of the
maps from fragmentation.
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Now note that none of the Ki bounds a common subsurface. By selecting the compact
subsurfaces carefully in the proof of Lemma 5.3, we can assume that S n

S
i Ki has

infinite genus. It follows that S n
S

i Ki is a disk with handles with compact boundary
components added. We can also assume an end in S n

S
i Ki is accumulated by genus

if and only if the corresponding end of S is accumulated by genus. Therefore, we have
the second condition of the lemma.

For any Ki with n compact boundary components where n > 1, connect all the
components together with n� 1 disjoint arcs f˛kg

n�1
kD1

in S n
S

i Ki . Now enlarge
Ki by adding in a small closed regular neighborhood of @Ki [

S
k ˛k . Repeat this

for every Ki , making sure the new subsurfaces are all disjoint. Now we have the
first condition of the lemma. In order to maintain the second condition, we must also
assume that only finitely many of the new Ki intersect any given compact subsurface.
This is possible by choosing the arcs at each stage carefully. In particular, at each step
let Sji

be the largest subsurface in the original compact exhaustion which does not
intersect Ki and choose the arcs to be outside of Sji

.

Lemma 5.6 Suppose S is a connected sum of finitely many disks with handles. Let g

and h be maps given by fragmentation on some f 2 PMapc.S/, and let fCig and fKig

be the respective sequences of compact subsurfaces. We can assume the following:

(i) S nK1 and S nC1 are disks with handles with one compact boundary component
added.

(ii) For the remaining Ci and Ki , each @Ki and @Ci is a single essential simple
closed curve.

(iii) Each component of S n
S

i Ki and S n
S

i Ci is a disk with handles with compact
boundary components added accumulating to some subset of the ends.

Proof Suppose S is a connected sum of n disks with handles. By piecing together
compact exhaustions of the disks with handles and using Proposition 4.10, we can
choose our exhaustion fSig of S for fragmentation so each @Si has n components, each
corresponding to one of the boundary chains, composed of alternating essential arcs
in S and arcs in @S. For the h map, K1 is equal to some Sn. Then modifying K1 as in
Remark 5.4 gives the first condition of the lemma. We get the remaining conditions
for this map by following the proof of Lemma 5.5 for each component of S nK1. For
the g map, enlarge its C1 to be some Sn which contains K1 and any of the Ci which
intersect K1. Then we get the desired conditions for this map by the same argument.
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Note we could have stated a version of this lemma with different conditions for this
second map, but that will not be necessary for the following proofs.

5.3 Proof of Theorem A

First we use fragmentation along with standard commutator tricks to show every element
of PMapc.S/ can be written as a product of two commutators when S is a sliced Loch
Ness monster. Then we will show the same for any disk with handles by applying
Lemma 4.13. Finally we extend to the remaining cases using Lemma 4.12. During the
upcoming proofs, we are implicitly using the fact that

PMapc.S/D PMap.S/DMap.S/

when S is a sliced Loch Ness monster.

Lemma 5.7 PMapc.S/ is uniformly perfect when S is a disk with handles.

Proof Let g be any of the two maps given by fragmentation on a general f 2PMapc.S/

and let fCig be the corresponding sequence of compact subsurfaces. First consider the
case when our surface is the 1–sliced Loch Ness monster, Ls . By Lemma 5.5, we may
assume each @Ci has one component and the complement of

S
i Ci is homeomorphic

to Ls with infinitely many compact boundary components added accumulating to the
single end.

Realize Ls as the closed upper half-plane with a handle attached inside an �–ball at
every integer point, and let  be the map .x;y/! .xC 1;y/ extended to the attached
handles and isotoped in a neighborhood of the boundary to be the identity. Now we can
assume, using the change-of-coordinates principle or by replacing g with a conjugate,
that the Ci are contained inside the vertical strip bounded by the lines x D˙1

2
and

also the support of  . Letting aD
Q

k�0  
kg �k , we can now write

g D  a�1 �1aD Œ ; a�1�:

See Figure 11. It now follows that we can write any f 2 PMapc.S/ as the product of
two commutators.

Next we extend this to any n–sliced Loch Ness monster, Ln
s . First we need a model

of this surface that works with the above method. Take a copy of Ls with the above
half-plane model, and denote it by T. Now take the disjoint union with n� 1 new
copies of Ls realized in any way. Attach handles from T to each additional copy of Ls

to join all the ends into a single end. When removing open balls from T in the process
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C1

C2

C3

Figure 11: The last step for showing PMapc.Ls/ is uniformly perfect. The
support of the element a is shown in blue.

of attaching these handles, choose the open balls to be below the line y D 1
2

. Similar
to Construction 3.9, this yields a surface homeomorphic to Ln

s , which we use as our
model. See Figure 12 for an example when n D 3. Let T 0 � Ln

s be the subsurface
corresponding to the area of T above the line y D 1

2
. Now we can use Lemma 5.5 and

the change-of-coordinates principle as before to assume that the Ci are contained above
the attached handles within a vertical strip of T 0. We then let  be the map which acts
as the previous shift map on T 0 and fixes the remainder of Ln

s . Proceed as before to
show g D Œ ; a�1�.

Now suppose S is any disk with handles. After applying Lemma 5.5, we can assume
S n

S
i Ci is homeomorphic to S with infinitely many compact boundary components

Figure 12: A model of the 3–sliced Loch Ness monster used in the proof of
Lemma 5.7 with the surfaces Ci shown in blue in a vertical strip in the middle
piece.
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added accumulating to some subset of the ends. Using a slight variation of Lemma 4.13,
where we allow the disks with handles to have compact boundary components added, we
can cut S along a collection of disjoint arcs f j̨ g which miss the Ci , so the components
of the cut surface are sliced Loch Ness monsters. When we then cut out the Ci , we
get sliced Loch Ness monsters with compact boundary components added. Give the
components the models discussed in the previous paragraphs, and apply the change-of-
coordinates principle argument to each component to assume each Ci is contained in a
vertical strip within its respective component. Let f ig be the collection of plane shift
maps for each component analogous to the previous paragraphs. Since the supports of
the  i are disjoint, we have a well-defined product  D

Q
i  i , and then we can show

g D Œ ; a�1� as before.

Lemma 5.8 PMapc.S/ is perfect when S is a connected sum of finitely many disks
with handles with possibly finitely many punctures or compact boundary components
added.

Proof Let g be a map given by fragmentation on a general f 2 PMapc.S/, and let
fCig be the corresponding compact subsurfaces. First suppose S has no punctures
or compact boundary components. When fragmenting in this case, we get supports
with boundary components that are curves which separate ends (see the two leftmost
subsurfaces in Figure 9). If a map is supported within one of these subsurfaces, then
we cannot move the support off of itself as we did in the other cases. This is commonly
referred to as a nondisplaceable subsurface (see [15, Definition 1.8]).

Apply Lemma 5.6, so we can assume the Ci have the desired properties. We can assume
C1 has genus at least 3 by replacing it with a connected compact surface containing C1

and more of the Ci . Now g D g1g2, where g1 2 PMap.C1/ and g2 2 PMap.S nC1/.
The classic result of Powell [18] tells us we can write g1 as a product of commutators.
By the method in the previous lemma, we can write g2 as a single commutator. It
follows that every element in PMapc.S/ can be written as a product of commutators.

The cases with finitely many punctures and compact boundary components are done
similarly. To consider the cases with punctures, we can slightly modify the fragmen-
tation process by replacing a compact exhaustion with an exhaustion of finite-type
surfaces. Then, depending on the number of boundary chains, we use a modification of
either Lemma 5.5 or Lemma 5.6 such that C1 includes the boundary components and
punctures.
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These lemmas complete the reverse implications from Theorem A, so now we discuss
why the other directions hold. For all infinite-type surfaces with only compact boundary
components, PMapc.S/ is not perfect, by the work of Domat. His proof relies on
finding a particular sequence of disjoint essential annuli. Then he shows some multitwist
about the core curves of these annuli cannot be written as a product of commutators.
His work can be summarized by the following theorem. For the statement of this
theorem, a nondisplaceable surface in S refers to an essential subsurface K disjoint
from the noncompact boundary components of S such that f .K/\K ¤ ∅ for all
f 2 PMapc.S/. Note a subsurface K is nondisplaceable if it separates ends, ie if S nK

is disconnected and induces a partition of E.S/ into two sets. A subsurface is also
nondisplaceable if some component of S nK is a finite-type subsurface containing a
compact boundary component of @S.

Theorem 5.9 [8] Let S be an infinite-type surface such that there exists an infinite
sequence of disjoint nondisplaceable essential annuli that eventually leaves every
compact subsurface. Then PMapc.S/ is not perfect.

The hypothesis of Theorem 5.9 holds whenever there are interior ends of S accumulated
by genus, except in the case of the Loch Ness monster, which was handled separately
in the appendix of [8]. It also holds if there are infinitely many planar ends or infinitely
many compact boundary components. By using Lemma 4.12, we see the hypothesis of
Theorem 5.9 holds whenever there are infinitely many boundary chains as well. The
only cases that remain are exactly the surfaces from Lemmas 5.7 and 5.8. This proves
the forward direction of the second bullet point in Theorem A.

Finally, in order to show the forward direction of the first bullet point, we must explain
why PMapc.S/ is not uniformly perfect when S has more than one boundary chain, any
planar ends or any compact boundary components. We will only sketch the details, since
the main ideas here are taken from [8]. The issue in these cases is that there is some
essential curve ˛ which is nondisplaceable under the action of PMapc.S/. Take a curve
which either separates ends or bounds a finite-type subsurface containing a compact com-
ponent of @S. The orbit of ˛ can then be used to build a Bestvina–Bromberg–Fujiwara
projection complex (see [4]) on which PMapc.S/ acts by isometries. This complex
is quasi-isometric to a tree, and the Dehn twist about ˛ is a WWPD element (in the
language of Bestvina, Bromberg and Fujiwara; see [3]). An adaptation of a construction
of Brooks [5] then gives a quasimorphism from PMapc.S/ to R which is unbounded
on fT n

˛ g
1
nD1

. Combining this with the fact that homogeneous quasimorphisms are
bounded on commutators, we see PMapc.S/ cannot be uniformly perfect.
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6 Extending results

6.1 Background

In the case of surfaces with only compact boundary components, it is known that
PMap.S/ factors as a semidirect product containing PMapc.S/ as one of the factors.

Theorem 6.1 (Aramayona, Patel and Vlamis [2, Corollary 6]) Let S be an infinite-
type surface with compact boundary components. Then

PMap.S/D PMapc.S/Ì H;

where H Š Zn�1 when there is a finite number n > 1 of ends of S accumulated by
genus , H Š Z1 when there are infinitely many ends accumulated by genus , and H is
trivial otherwise. Furthermore , H is generated by pairwise commuting handle shifts.

Here Z1 refers to the direct product of a countably infinite number of copies of Z.
Although many of the results of Aramayona, Patel and Vlamis are stated for the case
of compact boundary, the proofs all apply to surfaces with only compact boundary
components.

In order to extend this result, we will also need to extend a well-known fact about when
the inclusion of a subsurface induces an injective map between mapping class groups.
Recall the definition of a degenerate end (Definition 3.10). We say a boundary chain
of a surface is degenerate when every end in the chain is degenerate. After filling in
degenerate ends, degenerate chains become compact boundary components. Similar to
a Dehn twist about a compact boundary component, we can also speak of a Dehn twist
about a degenerate chain.

Lemma 6.2 Let S be any surface and † a closed essential subsurface. The natural
homomorphism i W PMap.†/! PMap.S/ is injective when the following holds:

(i) No compact component of @† bounds a disk with a single interior puncture.

(ii) No two compact components of @† bound an annulus.

(iii) There are no degenerate chains in † such that each boundary component of the
chain bounds an upper half-plane.

The proof will rely on the Alexander method for infinite-type surfaces. The case of
compact boundary components was done in [12]. We will use a slight modification of
the standard definition for a stable Alexander system.
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Definition 6.3 A stable Alexander system for a surface without degenerate ends is
a locally finite collection of essential simple closed curves and essential arcs � in a
surface S such that the following properties hold:

� The elements in � are in pairwise minimal position.

� For distinct ˛i ; j̨ 2 � , we have that ˛i is not isotopic to j̨ .

� For all distinct ˛i ; j̨ ; ˛k 2� , at least one of the sets: ˛i\ j̨ , ˛i\˛k or j̨ \˛k

is empty.

� The collection � fills S ; ie each complementary component is a disk or a disk
with a single interior puncture.

� Every f 2 HomeoC
@
.S/ that preserves the isotopy class of each element of � is

isotopic to the identity.

We say � is a stable Alexander system for a surface with degenerate ends if it becomes
a stable Alexander system when the degenerate ends are filled in.

Theorem 6.4 (Alexander method) For any infinite-type surface S, there exists a
stable Alexander system � .

Proof We will assume the compact boundary case from [12]. First suppose S has
noncompact boundary and no degenerate ends. Embed it in the natural way inside the
double, dS. Let � be a stable Alexander system for dS.

For an arbitrary  2 � , isotope it to be transverse and in minimal position with @S
so that  \S is either a curve or a union of arcs in S. Let � 0 be the collection of all
curves and arcs formed in this manner. After possibly removing repeated occurrences
of isotopy classes, � 0 is a stable Alexander system for S.

Now suppose S has degenerate ends. Apply the argument to S with the degenerate
ends filled in, then isotope the arcs along the boundary if necessary so they descend to
arcs in S.

The proof of Lemma 6.2 will also rely on some facts about arcs. Note, given the current
definition of an essential arc, in a surface with degenerate ends there may be essential
arcs which bound a disk with boundary points removed. These arcs can be isotoped to
be disjoint from any curve. In fact, we have the following:

Proposition 6.5 Let S be a surface which contains essential simple closed curves.
An essential arc ˛ in S can be isotoped to be disjoint from any curve if and only if it
bounds a disk with boundary points removed.
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Proof The reverse direction is clear, so suppose some essential arc ˛ can be isotoped
to be disjoint from any curve. Let fSig be an exhaustion of S by compact essential
subsurfaces. For any Si large enough to contain ˛, we must have that ˛ bounds a
disk in Si . Otherwise, we could construct a curve in S which cannot be isotoped
away from ˛. It follows that ˛ is separating and a component of S n˛ has a compact
exhaustion composed of only disks. This component cannot be compact, since then
˛ would be trivial, and it cannot contain compact boundary components or interior
ends, since then we could construct a curve which cannot be isotoped away from ˛. By
Proposition 4.10, this component has a single boundary chain. Since it has no genus,
no compact boundary components and no interior ends, it must be a disk with boundary
points removed.

For the following proposition and its proof, we allow all isotopies of arcs to move the
endpoints along the boundary.

Proposition 6.6 Let S be an infinite-type surface with nonempty boundary , and ˛ an
essential arc in S. There exists a collection of curves � disjoint from ˛ such that the
following holds: if ˇ is an arc with endpoints on the same boundary components as ˛,
and ˇ can be isotoped to be disjoint from any curve in � , then ˛ and ˇ are isotopic.

Proof First suppose S has no degenerate ends. Let fSig be a compact exhaustion
of S. Delete the first few subsurfaces in the exhaustion so that each Si n˛ is complex
enough to contain essential simple closed curves. First suppose ˛ is nonseparating
in Si . Then let �i be a finite collection of curves in minimal position which fills the
interior of Si n˛, so each complementary component of �i in Si is a disk or an annulus.
When ˛ is separating in Si , it is possible it bounds an annulus or a pair of pants. Then
let �i be a collection which fills the interior of the other component. If the compact
component is a pair of pants, add the curve bounding the two boundary components
not containing ˛ to �i . For all other cases, we just let �i be a collection which fills the
interiors of both components of Si n˛. Let � D

S
i �i .

Suppose ˇ is any arc as in the statement of the lemma. Choose some i large enough
that Si contains ˛ and ˇ and both these arcs have endpoints on the same boundary
components of Si . Now isotope ˇ to be disjoint from every curve in �i . Let A be
the complementary component of �i in Si which contains ˛ and ˇ. Note that the
complementary components of �i in S n ˛ which intersect ˛ are annuli. Therefore,
A is the result of gluing two annuli together along a pair of arcs on their boundaries
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or by gluing a single annulus to itself along two arcs on the boundary. These arcs all
correspond to ˛ in A after the gluing. The single annulus case only occurs when ˛ is
an arc between two different compact boundary components of Si , and in this case the
annulus gets glued to itself by arcs on the same boundary component. It follows that A

is a pair of pants. It is standard fact that there is a unique arc, up to isotopy, between
any two boundary components of a pair of pants (see [11, Proposition 2.2]). It follows
that ˇ must be isotopic to ˛ in Si . Since this holds for all sufficiently large i , we see
that ˇ is isotopic to ˛ in S.

Now suppose the surface has degenerate ends. If ˛ does not become trivial after these
ends are filled in, then we can apply the above argument to the filled-in surface to get
the desired collection of curves. Otherwise, let � be the collection of all curves in S.
By Proposition 6.5, if ˇ can be isotoped to be disjoint from every curve, it must be
an arc which bounds a disk with boundary points removed. The arc ˛ also has this
property. Now, since ˛ and ˇ have endpoints on the same boundary components, they
induce the same partition of the ends space and have homeomorphic complementary
components, so it follows that ˛ and ˇ are isotopic.

Proof of Lemma 6.2 The last condition is similar to the first condition in the sense
that it prevents Dehn twists from being in the kernel, in this case Dehn twists about
degenerate chains. For example, consider any compact surface with one boundary
component and then delete an embedded closed subset of the Cantor set from the
boundary to form a degenerate chain. Attaching closed upper half-planes to each
boundary component in the degenerate chain yields a surface with a single puncture,
and the Dehn twist about the chain becomes trivial in the mapping class group of the
new surface. We give a proof following Farb and Margalit [11].

Let f 2PMap.†/ be in the kernel and conflate it with a representative homeomorphism.
We extend f by the identity to a homeomorphism which represents i.f /. Let � be a
stable Alexander system for †.

Let ˛ be any essential simple closed curve in †. Since i.f / is isotopic to the identity
and i.f / agrees with f on †, we have that f .˛/ is isotopic to ˛ in S. Let K � S be
a compact essential subsurface which contains this isotopy. If K can be isotoped to be
contained within † then we are done, so assume otherwise. Now, after isotoping @K
and @† to be transverse and in minimal position, K\@† is a union of arcs in K. Since
f .˛/ and ˛ are contained in the interior of †, they are disjoint from these arcs, and
it follows from a standard fact of isotopies in the compact case that there is an isotopy
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in † from f .˛/ to ˛ missing the arcs. See for example [11, Lemma 3.16]. Although
the lemma here is stated for curves instead of arcs, the same proof extends to our setting
with minor changes. Therefore, f fixes the isotopy class of every curve in †.

Let ˛ be an arbitrary arc in � . By Proposition 6.6, we can find a collection of curves
in † such that f .˛/ is isotopic to ˛, by an isotopy possibly moving the endpoints, if it
can be isotoped to miss each curve in the collection. This last condition holds since f
fixes the isotopy class of every curve. Now we can assume by an isotopy not moving
the endpoints that f .˛/ agrees with ˛ outside of an open collar neighborhood N of the
boundary components. Since � descends to a stable Alexander system for S nN, we
can apply the Alexander method to S nN to show f is supported in N. The components
of N are annuli and strips R� Œ�1; 1�. Since the mapping class groups of the latter
components are trivial, it follows that f is a possibly infinite product of Dehn twists
supported in the annuli. By the given conditions, we must now have that f is isotopic
to the identity, since otherwise i.f / would be nontrivial.

Remark 6.7 Deleting a noncompact boundary component is topologically the same
as attaching an upper half-plane to the component. Therefore, we can extend the above
proof to show that homomorphisms such as the one discussed in Section 2 are injective.
In particular, we will still have injectivity as long as we do not delete any degenerate
chains or compact boundary components.

As an application of Lemma 6.2, we mention a potentially useful theorem:

Theorem 6.8 Let S be an infinite-type surface with no compact boundary components
and no degenerate chains , and suppose f 2Map.S/ fixes the isotopy class of every
curve. Then f must be the identity.

Proof The conditions on S are necessary since otherwise a Dehn twist about a compact
boundary component or degenerate chain would provide a counterexample.

Let S 0D S [@S

�
@S � Œ0;1/

�
and let i be the map from Map.S/ to Map.S 0/ induced

by the inclusion of S into S 0. Since the conditions of Lemma 6.2 are satisfied by this
inclusion, i must be injective. Curves in S 0 can always be isotoped by an innermost
bigon argument to be inside of S, so i.f / must fix every curve in S 0 up to isotopy. By
the Alexander method for surfaces without boundary, i.f / must be the identity, and so
f must be as well by injectivity of i .
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Now we will prove a theorem which is a direct extension to the result shown in Section 2.

Theorem 6.9 Let S be an infinite-type surface with at least one nondegenerate bound-
ary chain. Then the map i WMap.S/!Map.So/ given by restricting a mapping class
to the interior is not surjective.

Proof By Lemma 4.12, we can cut S along curves so that each component of the cut
surface has at most one boundary chain. Consider one of the components A which has
a nondegenerate boundary chain. By Lemma 4.12, we can assume A has no interior
ends. Now A must have a boundary end which is either accumulated by genus or
compact boundary components. Cap all the compact boundary components with disks,
and then apply Proposition 4.10 to get a compact exhaustion fAig of A such that each
@Ai has one component. Isotope each @Ai into the interior of A to get a curve ˛i . Note
we can assume after isotopies that f˛ig is a pairwise disjoint collection and each ˛i is
disjoint from the disks used to cap the compact boundary components.

Undo the capping of the compact boundary components, and then note each ˛i bounds
a compact subsurface and these subsurfaces form a compact exhaustion of AnC, where
C is the union of noncompact boundary components of A. Observe that f˛ig contains
infinitely many nonisotopic curves. Otherwise, ˛iC1 and ˛i would bound an annulus
for all sufficiently large i . Then, by considering the compact exhaustion of A n C

given by the ˛i , we see that A nC, and therefore A, has finite genus and finitely many
compact boundary components. However, this is not possible by assumption. Now
throw away any repeated occurrences of isotopy classes from f˛ig.

Now we want to show that T D
Q1

iD1 T˛i
2Map.So/ is not in the image of i . Let 

be any essential arc in A� S with endpoints on the noncompact boundary components
such that  does not bound a disk with boundary points removed. Now we use the same
approach from Section 2 to show that, if T were in the image of i , then there would
be a homeomorphism on S which sends  to something noncompact, a contradiction.
Conflate T with a homeomorphism on S which restricts to T on the interior. By
the construction of the ˛i and  , for all sufficiently large i we have that  cannot be
isotoped to be disjoint from ˛i . Note here we are implicitly using Proposition 6.5
applied to  . Now we can find an infinite collection of curves fˇig which eventually
leaves every compact subsurface of S such that each ˛i intersects ˇi , and therefore
T . / intersects each ˇi . We are then done since it follows that T . / is noncompact.
One approach for finding the ˇi is to consider a compact exhaustion fSig of S and
choose each ˇi in some Sni

nSmi
, where ni and mi go to infinity as i does.
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6.2 Extending Aramayona–Patel–Vlamis

First we will give a proof of Theorem 6.1, and then explain how to extend it to the
general case. We say a handle shift h cuts a curve ˛ when hC and h� are on opposite
sides of ˛. Let S be a surface with only compact boundary components. A principal
exhaustion of S is an exhaustion of S by finite-type subsurfaces such that the following
conditions hold for all i :

(i) Each complementary domain of Si is an infinite-type surface.

(ii) Each component of @Si is separating.

Now we state a few results from [2] which we will assume for the following proofs.
Let H

sep
1
.S;Z/ denote the subgroup of the first homology of a surface generated by

classes that can be represented by separating curves on the surface.

Lemma 6.10 [2, Lemma 4.2] Let S be a surface with only compact boundary
components. Given a principal exhaustion fSig of S there exists a basis of H

sep
1
.S;Z/

composed of curves in the boundary of the Si .

Lemma 6.11 [2, Proposition 3.3] Suppose S is a surface with only compact boundary
components. Then we have the following:

(1) There is an injection � from H
sep
1
.S;Z/ to H 1.PMap.S/;Z/, thought of as the

group of all homomorphisms from PMap.S/ to Z.

(2) Let ˛ be a curve representing an element in H
sep
1
.S;Z/. The homomorphism

�.˛/ W PMap.S/! Z sends a handle shift h to a nonzero element if and only if
it cuts ˛, and it sends any map in PMapc.S/ to 0. We can assume �.˛/ sends a
given handle shift cutting ˛ to 1.

Proof of Theorem 6.1 First assume S has no planar ends or compact boundary
components. The case of at most one end accumulated by genus was done in [17], so
assume S has at least two ends accumulated by genus. Let f˛ig be a collection of curves
forming a basis for H

sep
1
.S;Z/, which exists by Lemma 6.10 and the fact that principal

exhaustions always exist for surfaces with only compact boundary components. Now
cut S along each of the ˛i . Each separating curve in the cut surface bounds a compact
surface, since otherwise the collection of curves above would not form a basis. Since
any infinite-type surface with more than one end has separating curves which do not
bound a compact subsurface, it follows that each component of the cut surface is a
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Loch Ness monster with k 2N[f1g compact boundary components added. Note this
gives another proof of Lemma 4.11, and the collection of curves given by this lemma
will provide an example of a basis for H

sep
1
.S;Z/.

Each component Z of the cut surface can be modeled as R2 with k open disks removed
along the horizontal axis and handles attached periodically and vertically above each
removed disk. Let Y be the surface obtained from Œ�1; 1�� Œ0;1/�R2 by attaching a
handle inside a small neighborhood about each interior integer point. We can properly
embed k disjoint copies of Y into Z so that each copy of Œ�1; 1��f0g � Y is mapped
to a different boundary component of Z.

Now we paste all of the components back together to form the original surface S. We
can choose the embeddings of Y above so the union of their images is a collection of
disjoint strips with genus. This then gives a collection of handle shifts fhig, where each
hi cuts only ˛i . By Lemma 6.11, we have homomorphisms �.˛i/ W PMap.S/!Z such
that �.˛i/ sends hi to 1 and every other hj to 0. Let H be the subgroup topologically
generated by the fhig. Since all of the hi commute, H is a direct product of countably
many copies of Z. The product map � D

Qn
iD1 �.˛i/ gives a homomorphism from

PMap.S/ to H. Then, by Lemma 6.11, we have a split exact sequence

1 PMapc.S/ PMap.S/ H 1,
�

s

where s is inclusion. The cases of surfaces with planar ends and compact boundary
components are done similarly. When there are planar ends, we choose handle shifts
which miss the planar ends. Then we get the desired semidirect product.

The general case is a corollary of this result using Lemma 6.2 along with a new version
of the usual capping trick.

Construction 6.12 (capping boundary chains) Let S be a surface with noncompact
boundary components. Using Lemma 4.12, we can cut S along curves so that the
components of the cut surface each have at most one boundary chain. Let fSig be the
collection of components with exactly one boundary chain. By the final remarks in the
proof of Lemma 4.8, we can build each Si by adding topology to a disk with boundary
points removed, which we will call Di . Now we cap the boundary chains of S by
attaching a copy of each Di to the boundary of Si � S via the identity. We will denote
the resulting surface by S.
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As an example, capping the boundary chain of any sliced Loch Ness monster gives the
Loch Ness monster. Capping the boundary chain of a strip with genus gives the unique
surface with empty boundary and exactly two ends, both of which are accumulated by
genus (often referred to as the ladder surface). This construction was chosen because
the inclusion of a surface into the capped-off surface induces a map on the ends spaces
which preserves ends accumulated by genus and planar ends. Note there is a natural
homomorphism

(1) i W PMap.S/! PMap.S/

induced by inclusion, and i is injective by Lemma 6.2.

Theorem 6.13 Let S be any infinite-type surface. Then

PMap.S/D PMapc.S/Ì H;

where H Š Zn�1 when there is a finite number n > 1 of ends of S accumulated by
genus , H Š Z1 when there are infinitely many ends accumulated by genus , and H is
trivial otherwise. Furthermore , H is generated by pairwise commuting handle shifts.

Proof Recall that the case of at most one end accumulated by genus was done in
Theorem 5.2. Assume S is a surface with noncompact boundary components, without
planar ends or compact boundary components, and with at least two ends accumulated
by genus. Let S be the capped surface given by Construction 6.12 and let i be the
homomorphism between pure mapping class groups from (1) above. Note S has the
same number of ends accumulated by genus as S. By Theorem 6.1, there is a split exact
sequence as above with S in the place of S. Recall H is the subgroup topologically
generated by disjoint handle shifts fhig and s is the inclusion map. It suffices to show
each of the hi can be chosen to be inside i.PMap.S//, because then by injectivity of i

we get a split exact sequence

1 PMapc.S/ PMap.S/ H 1.
� ı i

i�1 ı s

Apply Lemma 4.12 to cut S along a collection of curves so that each component of
the cut surface has at most one boundary chain. As in Construction 6.12, each of the
components with boundary chains can be represented as disks with boundary points
removed with additional topology added. In fact, by the assumption that there are no
planar ends, these components are disks with handles possibly with compact boundary

Algebraic & Geometric Topology, Volume 23 (2023)



Mapping class groups of surfaces with noncompact boundary components 2819

Figure 13: A disk with handles shaded blue embedded in the capped-off
surface. The red curves are created by closing up arcs in the disk with handles.
The blue arcs are used to replace the red curves with the green curves.

components added. We can piece together compact exhaustions on the components to
get an exhaustion fSig for S, and, using Proposition 4.10, we can choose the exhaustion
so @Si n @S is always composed of separating curves and arcs with endpoints on
boundary components of the same chain. Also we can assume the exhaustion satisfies
the first condition in the definition of a principal exhaustion.

Now we modify this exhaustion to get a principal exhaustion of S. For every arc ˇk in
@Si n @S, there is a corresponding arc ˇ0

k
in the attached disk which, together with ˇk ,

closes up to a curve k . The k together with the curves in @Si n @S bound a compact
subsurface Ki � S. Then fKig is a compact exhaustion for S which is not necessarily
principal, but we can modify it so it becomes principal. Let U be any complementary
domain of K1 such that @U has n> 1 components. Connect each component of @U
together with n� 1 disjoint arcs in U \S. Now enlarge K1 by adding a closed regular
neighborhood in U of the arcs and the boundary components, then repeat this for each
complementary domain with more than one boundary component. See Figure 13 for an
example. Now remove some subsurfaces from the exhaustion so that K1�K2, and then
repeat the above process for K2. Continue in this manner to get a principal exhaustion.

Now we sketch the final details. Find a homology basis f˛ig of H
sep
1
.S ;Z/ composed

of curves that are boundary components for surfaces in the above principal exhaustion.
Then we cut S along these curves and we get components which are Loch Ness monsters
with compact boundary components added. Next we build the subgroup H by taking
the group topologically generated by disjoint handle shifts hi , where each hi cuts ˛i
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and no other curve in the basis. In this part of the proof there is a great deal of choice
for how to embed these strips; in particular, we can assume the strips are contained
in S. The remaining cases are done similarly to the proof of Theorem 6.1.

Now we show why Theorems 6.13 and A imply Theorem B.

Proof of Theorem B The reverse directions of Theorem B are immediate from
Theorem A. Now notice that the commutator subgroup of

PMap.S/D PMapc.S/Ì H

is contained in PMapc.S/ since H is abelian. Therefore, PMap.S/ cannot be perfect
when S has more than one end accumulated by genus. Since PMap.S/D PMapc.S/

when S has one end accumulated by genus, we get the forward implications of
Theorem B from the forward implications of Theorem A and the above remark.
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Pseudo-Anosov homeomorphisms
of punctured nonorientable surfaces

with small stretch factor

SAYANTAN KHAN

CALEB PARTIN

REBECCA R WINARSKI

We prove that in the nonorientable setting, the minimal stretch factor of a pseudo-
Anosov homeomorphism of a surface of genus g with a fixed number of punctures
is asymptotically on the order of 1=g. Our result adapts the work of Yazdi to
nonorientable surfaces. We include the details of Thurston’s theory of fibered faces
for nonorientable 3–manifolds.

37E30

1 Introduction

Let Sg;n be a surface of genus g with n punctures. The mapping class group of Sg;n

consists of homotopy classes of orientation-preserving homeomorphisms of Sg;n. The
Nielsen–Thurston classification of mapping classes (elements of the mapping class
group) says that each mapping class is periodic, preserves some multicurve, or has
a representative that is pseudo-Anosov. For each pseudo-Anosov homeomorphism
' WSg;n!Sg;n, the stretch factor �.'/ is an algebraic integer that describes the amount
by which ' changes the length of curves. Arnoux and Yoccoz [4] and Ivanov [15]
prove that the set

Spec.Sg;n/D flog.�.'// j ' is a pseudo-Anosov homeomorphism of Sg;ng

is a closed discrete subset of .0;1/. The minimum of Spec.Sg;n/,

`g;n Dminflog.�.'// j ' is a pseudo-Anosov homeomorphism of Sg;ng;

quantitatively describes both the dynamics of the mapping class group of Sg;n and the
geometry of the moduli space of Sg;n.
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Penner [26] showed that for orientable surfaces,

`g;0 �
1

g
:

Penner conjectured that `g;n will have the same asymptotic behavior for n�0 punctures.
Following Penner, substantial attention has been given to finding bounds for `g;n —
see Aaber and Dunfield [1], Bauer [5], Hironaka, Hirose, Kin and Takasawa [12; 13;
14; 17], Loving [21], and Minakawa [24] — calculating `g;n for specific values of
.g; n/— see Cho, Ham and Song [7; 11], Lanneau and Thiffeault [18], and Song, Ko
and Los [27] — and finding asymptotic behavior of `g;n for orientable surfaces with
n� 0 — see Kin and Takasawa [17], Tsai [30], Valdivia [31], and Yazdi [33]. We adapt
a result of Yazdi [33] to nonorientable surfaces.

Theorem 1.1 Let Ng;n be a nonorientable surface of genus g with n punctures ,
and let `0g;n be the logarithm of the minimum stretch factor of the pseudo-Anosov
mapping classes acting on Ng;n. Then , for any fixed n 2N, there are positive constants
B0

1
D B0

1
.n/ and B0

2
D B0

2
.n/ such that , for any g � 3, the quantity `0g;n satisfies

B0
1

g
� `0g;n �

B0
2

g
:

Pseudo-Anosov homeomorphisms Let S be a (possibly nonorientable) surface of
finite type. A homeomorphism ' W S ! S is said to be pseudo-Anosov if there exist a
pair of transverse measured singular foliations Fs and Fu and a real number � such
that

'.Fs/D �
�1
�Fs and '.Fu/D � �Fu:

The stretch factor of ' is the algebraic integer �D �.'/.

Endow S with a Riemannian metric. The stretch factor �.'/ measures the growth rate
of the length of geodesic representatives of a simple closed curve S under iteration
of '; see Fathi, Laudenbach and Poénaru [8, Proposition 9.21]. Moreover, log.�.'// is
the minimal topological entropy of any homeomorphism of S that is isotopic to ' [8,
Exposé 10].

Geometry of moduli space Let Tg;n denote the Teichmüller space of Sg;n; that is,
the space of isotopy classes of hyperbolic metrics on Sg;n. When endowed with the
Teichmüller metric, the mapping class group of Sg;n acts properly discontinuously
on Tg;n by isometries. The quotient of this action is the moduli space of Sg;n. The set
Spec.Sg;n/ is the length spectrum of geodesics in the moduli space of Sg;n. Therefore
the quantity `g;n is the length of the shortest geodesic in the moduli space of Sg;n.

Algebraic & Geometric Topology, Volume 23 (2023)
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Explicit bounds In his foundational work, Penner found .log 2/=.12g� 12C 4n/ to
be a lower bound for `g;n for orientable surfaces [26]. He also determined .log 11/=g

to be an upper bound for `g;0. Penner’s work proves that `g;0 � 1=g. McMullen [23]
later asked:

Question 1.2 (McMullen) Does limg!1 g � `g;0 exist, and, if so, what does it
converge to?

To this end, Bauer [5] strengthened the upper bound for limg!1 g � `g;0 to log 6, and
Minakawa [24] and Hironaka and Kin [13] further sharpened the upper bounds for
limg!1 g �`g;0 and limg!1 g �`0;2gC1 to log.2C

p
3/. Later, Aaber and Dunfield [1],

Hironaka [12] and Kin and Takasawa [16] determined that log..3C
p

5/=2/ is an upper
bound for limg!1 g � `g;0 and conjectured it is the supremum of limg!1 g � `g;0.

Asymptotic behavior of punctured surfaces Tsai initiated the study of asymptotic
behavior of `g;n along lines in the .g; n/–plane [30]. In particular, Tsai determined
that for orientable surfaces of fixed genus g � 2, the asymptotic behavior in n is

`g;n �
log n

n
:

Further, she showed that `0;n� 1=n. Later, Yazdi [33] determined that for an orientable
surface with a fixed number of punctures n� 0, the asymptotic behavior in g is

`g;n �
1

g
;

confirming the conjecture of Penner.

Nonorientable surfaces Let Ng;n be a nonorientable surface of genus g with n

punctures. As above, let `0g;n denote the minimum stretch factor of pseudo-Anosov
homeomorphisms of Ng;n. For any n� 0 and g � 1, `g�1;2n is a lower bound for `0g;n,
which can be seen by passing to the orientation double cover of Ng;n (note that the
definition of genus is different for orientable and nonorientable surfaces). Because
the upper bounds for `g;n are constructed by example, upper bounds for `0g;n do not
follow immediately from passing to the orientation double cover. Recently, Liechti and
Strenner determined `0

g;0
for g 2 f4; 5; 6; 7; 8; 10; 12; 14; 16; 18; 20g [20]. Our work

captures the asymptotic behavior for the punctured case.

Techniques To prove Theorem 1.1, we adapt the strategy of Yazdi [33] to nonorientable
surfaces with punctures. The lower bound of `0g;n is found by lifting to the orientation
double cover of Ng;n. The upper bound (as in all prior work) is constructive. Fix n� 0:
the desired number of punctures. Yazdi’s construction is as follows. For a sequence of

Algebraic & Geometric Topology, Volume 23 (2023)
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genera gn;k , where k goes from 3 to1 and gn;k D .14k � 2/nC 2, use the Penner
construction [25] to obtain a homeomorphism fn;k of Sgn;k ;n that is pseudo-Anosov
and has low stretch factor. In order to find pseudo-Anosov homeomorphisms of Sg;n

with small stretch factor for all g (not just those in the sequence above), construct a
mapping torus for each fn;k . To do this, Yazdi’s appeals to a technique involving the
use of Thurston’s theory of fibered faces.

Thurston norm for nonorientable 3–manifolds In Thurston’s development of what
is now called the Thurston norm for 3–manifolds [28], his definitions and theorems
required that all surfaces were orientable. Thurston said that the theorems should still
be true for nonorientable surfaces, but there are some subtleties that have not been
addressed elsewhere in the literature. In this paper, we write the details of Thurston’s
theory of fibered faces to nonorientable 3–manifolds. In particular, for orientable 3–
manifolds, the Thurston norm is a norm on the second homology of a 3–manifold that
measures the minimum complexity of an embedded (orientable) surface; it will need to
be adjusted in nonorientable 3–manifolds. Specifically, the Thurston norm does not
recognize embedded nonorientable surfaces in the second homology of a nonorientable
3–manifold. To address this limitation, we instead calculate the Thurston norm on
the first cohomology of a nonorientable manifold. We develop a (weak) version of
Poincaré duality in Theorem 2.7 that suffices to define a Thurston norm on H 1.M IR/

for a nonorientable 3–manifold M .

Fibered faces A special case of Thurston’s hyperbolization theorem says that the
monodromy of any fibration of a hyperbolic 3–manifold over S1 is a pseudo-Anosov
homeomorphism. Therefore by finding other fibrations of the same 3–manifold, one
obtains additional pseudo-Anosov homeomorphism. Work of Fried [9; 10], Mat-
sumoto [22], and Agol, Leininger and Margalit [2] can be used to bound the stretch
factors of certain pseudo-Anosov homeomorphisms obtained in this way.

Outline In Section 2 we state Thurston’s theory of fibered faces and adapt it to
the nonorientable setting. In Section 3 we show how Thurston’s theory of fibered
faces can be used to construct pseudo-Anosov homeomorphisms of low stretch factor
for nonorientable surfaces. Specifically, we state and prove the Nielsen–Thurston
classification for nonorientable surfaces. Then we adapt the results of Fried [9; 10],
Matsumoto [22], and Agol, Leininger and Margalit [2] used to construct pseudo-Anosov
homeomorphisms with low stretch factor of orientable surfaces to the nonorientable
setting. In Section 4, we prove Theorem 1.1, following the strategy of Yazdi.

Algebraic & Geometric Topology, Volume 23 (2023)
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2 Thurston norm for nonorientable 3–manifolds

Thurston defined a norm on H2.M IR/ where M is an orientable 3–manifold [28],
and this norm is now called the Thurston norm. In his manuscript, Thurston wrote:
“Most of this paper works also for nonorientable manifolds but for simplicity we only
deal with the orientable case”. However, the details are not explained in Thurston’s
work or in subsequent literature. Therefore the goal of this section is to write the
details of the Thurston norm for nonorientable 3–manifolds. We recall the Thurston
norm for orientable manifolds in Section 2.1. In Section 2.2 we describe the challenge
of defining the Thurston norm on H2.M IR/ if M is nonorientable and present the
solution of defining the Thurston norm instead on H 1.M IR/. However, Poincaré
duality does not hold for nonorientable manifolds. We therefore define a condition —
relative orientability — on a pair consisting of a manifold and an embedded surface.
A surface that is relatively orientable in a nonorientable 3–manifold M will have a
corresponding cohomology class in H 1.M IZ/, giving a version of Poincaré duality for
nonorientable 3–manifolds as stated in Theorem 2.7. Finally, in Section 2.4, we define
the oriented sum for relatively oriented embedded surfaces in nonorientable manifolds.

2.1 Thurston norm and mapping tori

In this section we recall the Thurston norm for orientable surfaces and how it detects
when a 3–manifold fibers over a circle.

Mapping tori Let S be a surface and ' W S ! S be a homeomorphism. A mapping
torus of S by ' is the 3–manifold M' given by the identification

M' WD
S � Œ0; 1�

.x; 1/� .'.x/; 0/
:

A mapping torus is a fibration over S1, denoted by S!M'!S1. A fibration defines
a flow on M , called the suspension flow, where, for any x0 2 S and t0 2 S1, the pair
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.x0; t0/ is sent to .x0; t0 C t/. The fiber of a fibration is the preimage of any point
� 2 S1 under the projection map M' ! S1. If we do not specify � , the fiber as a
subset of M' is only well defined up to isotopy. The homology class of the fiber in
H2.M' IR/ is well defined.

A natural inverse question is to determine when a 3–manifold fibers over a circle, and
the possible fibers. To this end, Thurston established a correspondence between second
homology of 3–manifolds and surfaces embedded in 3–manifolds.

Complexity of an embedded surface Let M be a compact orientable closed 3–
manifold. Let S be a connected surface embedded in M . The complexity of S is
��.S/Dmaxf��.S/; 0g. If the surface S has multiple components S1; : : : ;Sm then
��.S/D

Pm
iD1 ��.Si/. The elements in H2.M IZ/ can be represented by embedded

surfaces inside of M [28, Lemma 1].

Thurston norm Let a be a homology class in H2.M IZ/. Define the integer valued
norm x WH2.M IZ/! Z as

x.a/Dminf��.S/ j ŒS �D a and S is compact, properly embedded and orientedg:

We then linearly extend x to H2.M IQ/. The Thurston norm is the unique continuous
R–valued function that is an extension of x to H2.M IR/. The unit ball for the Thurston
norm is a convex polyhedron in H2.M IR/.

The following remarkable theorem of Thurston [28] determines all possible fibrations
of an oriented 3–manifold over the circle. We use the restatement of Yazdi [33].

Theorem 2.1 (Thurston) Let M be an orientable 3–manifold. Let F be the set of
homology classes in H2.M IR/ that are representable by fibers of fibrations of M over
the circle.

(i) Elements of F are in one-to-one correspondence with (nonzero) lattice points
inside some union of cones over open faces of the unit ball in the Thurston norm.

(ii) If a surface F is transverse to the suspension flow associated to some fibration of
M ! S1 then ŒF � lies in the closure of the corresponding cone in H2.M IR/.

The class ŒF � has orientation such that the positive flow direction is pointing outwards
relative to the surface. An open face of the unit ball is said to be a fibered face if the
cone over the face contains the fibers of a fibration.

The goal for the rest of this section is to prove a version of Theorem 2.1 for compact
nonorientable 3–manifolds. Most of the work in the proof will involve reducing the
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version for nonorientable 3–manifolds to the orientable version by passing to the double
cover.

2.2 Thurston norm on cohomology of nonorientable mapping tori

Let N be a compact nonorientable surface. A naïve first attempt at defining the Thurston
norm would be to define it on the H2.N IR/, like in the orientable case. However, if
the norm is defined on H2.N IR/, the nonorientable version of Theorem 2.1 will not
be true. Let ' WN !N be a homeomorphism and let N' be associated mapping torus.
Clearly, N' fibers over S1, and N is the fiber of this fibration. However, the homology
class associated to N is the zero homology class, since the top-dimensional homology
of nonorientable compact surfaces is 0–dimensional.

Our workaround for this problem will be to define a norm on the first cohomology
H 1.N'/ rather than the second homology H2.N'/. By Poincaré duality they are iso-
morphic for orientable 3–manifolds, but that is not true for nonorientable 3–manifolds.

Poincaré duality To see why Poincaré duality fails for nonorientable 3–manifolds,
we will work through the construction of the isomorphism between first cohomology
and second homology for orientable 3–manifolds. Let M be a 3–manifold. To define
the Poincaré dual of H 1.M IZ/, we first define a homotopy class of maps M ! S1.
Then we construct an element of H2.M IZ/. Let ˛ be a 1–form on M and Œ˛� its class
in H 1.M IZ/. Fix a basepoint y0 2M . The associated map f˛ WM ! S1 is given by

(1) f˛.y/ WD

Z y

y0

˛ mod Z:

The choice of basepoint does not affect the homotopy class of f˛ (see [6, Section 5.1]
for the details).

Now let � 2 S1 be a regular value so that S D f �1
˛ .�/ is a surface. To construct the

associated element of H2.M IZ/, we choose an orientation on S by assigning positive
values of ˛ to the outward-pointing normal vectors on S . Then S inherits an orientation
from the orientation on M , and we have defined a fundamental class ŒS � 2H2.M IZ/.
We claim that ŒS � is the Poincaré dual to ˛.

Lemma 2.2 Let � and � 0 be two regular values of the function f˛ and let S Df �1
˛ .�/

and S 0 D f �1
˛ .� 0/. Then , for any closed 2–form ! on M ,

(i)
R

S ! D
R

S 0 !, and

(ii)
R

S ! D
R

M ˛^!.

In particular , the homology class of S is Poincaré dual to ˛.
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Proof To see (i), observe that S and S 0 are homologous, ie f �1
˛ .Œ�; � 0�/ is a singular

3–chain that has S and S 0 as boundaries. By Stokes’ theorem,Z
S�S 0

! D

Z
f �1
˛ .Œ�;� 0�/

d! D 0:

To prove (ii), observe that because ˛ is the pullback of d� along the map f˛ we can
write the right-hand side asZ

M

˛^! D

Z
S1

�Z
f �1
˛ .�/

!

�
d�:

By Sard’s theorem, almost every � 2 Œ0; 1� is a regular value. Therefore the right-hand
side is well defined. By (i), the inner integral is a constant function, as we vary over
the � which are regular values of f˛. Then the integral of d� over S1 is 1, giving us
the identity Z

M

˛^! D

Z
S

!:

What we have here is an explicit formula for the Poincaré duality map from H 1.M IR/

to H2.M IR/. For orientable 3–manifolds, this is an isomorphism.

Theorem 2.3 (Poincaré duality for orientable 3–manifolds) Let M be an orientable
3–manifold , and let S be an orientable embedded surface. Then there exists a 1–form
˛ and a regular value � 2 S1 such that S and f �1

˛ .�/ are homologous surfaces.

Let N be a nonorientable 3–manifold. The map above from H 1.N IR/ to H2.N IR/

is still well defined. However the map from H 1.N IZ/ to H2.N IZ/ has a nontrivial
kernel. For example, when N' is the mapping torus of a nonorientable surface N , as
above, the fiber is trivial in H2.N IZ/.

Nonorientable manifolds Let N be a nonorientable 3–manifold. Let zN and the
covering map p W zN !N be the orientation double covering space of N . Let � be the
orientation-reversing deck transformation of zN . Let N D N' be the mapping torus
of the nonorientable surface N by a homeomorphism ' W N ! N . Then zN is the
mapping torus of .S; z'/, where S is the orientation double cover of N , and z' is the
orientation-preserving lift of '.

Defining the Thurston norm on cohomology In order to define the Thurston norm
on H 1.N IZ/, we first need to relate H 1.N IR/ and H 1. zN IR/. We do so by pulling
back H 1.N IR/ to H 1. zN IR/ via p. We also state the following lemma without proof
(the proof is elementary).
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Lemma 2.4 The pullback p� WH 1.N IR/!H 1. zN IR/ maps H 1.N IR/ bijectively
to the ��–invariant subspace of H 1. zN IR/.

Next we use Lemma 2.4 to define the Thurston norm on H 1.N IR/.

Thurston norm for nonorientable 3–manifolds Let ˛ 2H 1.N IR/ and let Qx be the
Thurston norm on H 1. zN IR/ŠH2. zN IR/. The Thurston norm on H 1.N IR/, is the
norm x WH 1.N IR/!R defined by

x.˛/ WD Qx.p�˛/:

Note that defining the Thurston norm on H 1.N IR/ rather than H2.N IR/ is not quite
satisfactory. In particular, fibers of fibrations are embedded surfaces in N . In the
orientable case, the embedded surfaces define the Thurston norm. In Section 2.3, we
develop a (weak) version of Poincaré duality for nonorientable 3–manifolds.

2.3 Weak inverse to the Poincaré duality map

We state and prove a weak version of Poincaré duality for relatively oriented (nonori-
entable) surfaces embedded in 3–manifolds as Theorem 2.7.

Relative oriented surfaces Let M be a 3–manifold, and S an embedded surface
in M . The surface S is said to be relatively oriented with respect to M if there is a
nowhere-vanishing vector field on S that is transverse to the tangent plane of S . Two
such vector fields are said to induce the same orientation if they induce the same local
orientation after choosing a local frame for S . A surface S is relatively oriented in M

if both S and the choice of positive normal vector field are specified.

If S and M are orientable, then S is relatively oriented with respect to M . But even if
M is nonorientable, a nonorientable embedded surface S may be relatively oriented
in M . In particular, we have the following lemma.

Lemma 2.5 Let N be the fiber of a fibration f W N ! S1. Then N is relatively
oriented in N .

Proof Consider a nonzero tangent vector v pointing in the positive direction at a point
� 2 S1. One can pull back the tangent vector v to a nowhere-vanishing vector field
over f �1.�/DN because f is a fibration, ie a submersion. The pulled-back vector
field defines a relative orientation for N in N .

Orientable manifolds Now let M be an orientable 3–manifold, and let S be an
orientable embedded surface. If S is relatively oriented with respect to M , then a
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choice of orientation on S determines an orientation on M and vice versa. We also
need to define the notion of incompressible surfaces to state our version of Poincaré
duality.

Incompressible surfaces Let S be a surface with positive genus embedded in a 3–
manifold M . The surface S is said to be incompressible if there does not exist an
embedded disc D in M such that D intersects S transversely and D\S D @D. The
following result of Thurston demonstrates the link between incompressible surfaces
and fibers of fibrations.

Theorem 2.6 [28, Theorem 4] Let M be an oriented 3–manifold that fibers over S1.
Let S be an incompressible surface embedded in M . If S is homologous to a fiber ,
then S is isotopic to the fiber.

In the remainder of the section, we will be working with a nonorientable 3–manifold N

and an embedded nonorientable surface N . Let zN and the covering map p W zN !N be
the orientation double covering space of N . Let zN be the preimage of N under p. Let
� W zN ! zN be the orientation-reversing deck transformation of p. We will initiate N

and N in each result below, but we suppress the initiation of the orientation double cover.

Theorem 2.7 (Poincaré duality for nonorientable 3–manifolds) Let N be a compact
nonorientable 3–manifold , and let N be a relatively oriented incompressible surface
embedded in N . Then there exists Œ˛� 2H 1.N IZ/ such that the pullback of Œ˛� to zN
is the Poincaré dual of zN in zN . If Œ˛� has a 1–form representative ˛ that vanishes
nowhere on N , then N is homeomorphic to f �1

˛ .�/ for all � 2 S1.

We will refer to the 1–form ˛ given in Theorem 2.7 as the Poincaré dual of the
nonorientable surface N . Before proving Theorem 2.7, we need three lemmas.

Lemma 2.8 Let N be a nonorientable 3–manifold. Let N be a relatively oriented
embedded surface in N , and let zN D p�1.N / in zN . Then the Poincaré dual to Œ zN � is
��–invariant.

Proof A positive vector field on N that is transverse to its tangent plane in N lifts to
a relative orientation of zN in zN . Since zN and zN are orientable, the relative orientation
of zN defines an orientation of zN , and thus the homology class Œ zN � in H2. zN IR/ is
well defined.

Next we show that � reverses the orientation of zN . To do so, we first observe that
because N is relatively oriented in N , the outward-pointing transverse vector field
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on N must lift to an outward-pointing transverse vector field on zN . In particular, for
any outward-pointing vector Qv on N , the vector �. Qv/ is also outward-pointing.

Lift an outward-pointing transverse vector field on N to an outward-pointing transverse
vector field zV on zN . Let .v1; v2; v3/ be a local frame for some point in zN such that
v3 is in zV . Since � reverses the orientation of zN but preserves the direction of v3, �
must reverse the orientation of the pair .v1; v2/. In particular, that means � reverses the
orientation of zN .

Therefore Œ zN � is in the .�1/–eigenspace of the �� action on H2. zN IR/. Let the co-
homology class Œz̨� be the Poincaré dual to Œ zN �. Let z̨ be a representative 1–form z̨
of Œz̨� (that need not be ��–invariant). We use the fact that �2 D id in the first and third
equalities: Z

�� zN
! D

Z
zN
��! (by a change of variables)

D

Z
zN

z̨ ^ ��! (Poincaré duality)

D

Z
zN

��.�� z̨ ^!/

D

Z
zN

�.�� z̨ ^!/ (� is orientation-reversing):

Because ��Œ zN �D�Œ zN �, Z
�� zN

! D�

Z
zN
! D�

Z
zN

z̨ ^!:

Since Z
zN

z̨ ^! D

Z
zN

�� z̨ ^!

for all !, it follows that z̨ and �� z̨ differ by an exact form, and therefore the cohomology
class Œz̨� is ��–invariant.

As above, we will denote the Poincaré dual to Œ zN � by Œz̨�. The class Œz̨� is an ��–
invariant element of H 1. zN IZ/, but it is not clear that Œz̨� is the pullback of an element
of H 1.N IZ/ under p. In the next lemma, we show that is indeed the case.

Lemma 2.9 Let N be a nonorientable 3–manifold. Let Œz̨� 2H 1. zN ;Z/ and let zS be
the Poincaré dual of Œz̨� in zN . There exists Œ˛� 2H 1.N IZ/ such that z̨ D p�˛.

Proof It will suffice to show that for any simple closed curve  in N , the integral of z̨
along any path lift of  is an integer. Let x0 2N be a basepoint of  . Note that  has
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two (path) lifts, z1 and z2 under p in zN , one based at each element of p�1.x0/. Either
z1 and z2 are both simple closed curves based at each of the two preimages p�1.x0/,
or z1 and z2 are both arcs between the two points of p�1.x0/. If each lift, z1 and z2,
of  is a closed curve in zN , the integral

R
zi
z̨ will be an integer since Œz̨� 2H 1. zN IZ/

for i D 1; 2.

If each lift, z1 and z2, of  is an arc between the two preimages of p�1.x0/, we
consider the simple closed curve z D z1[ z2. We note that �.z /D z . By Lemma 2.8,
z̨ is ��–invariant. Therefore we have that

R
z1
z̨ D

R
z2
z̨, soZ

z

z̨ D 2

Z
z1

z̨:

It will suffice to show that
R
z z̨ is an even integer. Without loss of generality, we can

assume all intersections of the simple closed curve z with the surface zS are transverse.
Since z̨ is a representative of the Poincaré dual to ŒzS�, the integral of z̨ along z is the
signed intersection number of z with zS. The intersection number must be even, for if
z and zS intersect at a point y, then they also intersect at �.y/.

The last lemma we need is that lifts of incompressible surfaces are incompressible.

Lemma 2.10 Let N be a nonorientable 3–manifold. If N is a relatively oriented
incompressible surface in N , then zN D p�1.N / is incompressible in zN .

Proof Because N is incompressible in N , the map on fundamental groups induced
by inclusion N !N is injective. Since p� W �1. zN /! �1.N / is injective, the induced
map �1. zN /!�1. zN /must also be injective. An injective induced map on fundamental
groups is equivalent to the orientable surface zN being incompressible.

We now have everything we need to finish proving Theorem 2.7.

Proof of Theorem 2.7 Let zN D p�1.N /. The relative orientation of zN determines a
homology class Œ zN � 2H2.N IZ/. Let the 1–form z̨ be the Poincaré dual to Œ zN � in zN .
By Lemma 2.9, there exists a 1–form ˛ 2H 1.N IZ/ such that z̨ D p�˛.

We define the map f˛ WN ! S1 according to (1). Because ˛ is nonvanishing, f˛ has
full rank everywhere. Therefore f˛ is a fibration. The map f˛ ıp is a lift of f˛ to zN
under p, and is therefore also a fibration. By Lemma 2.10, zN is incompressible. It
follows from the orientable version of Poincaré duality that zN and p�1.f �1

˛ .�// are
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homologous surfaces in zN . Theorem 2.6 then tells us zN must be isotopic to a fiber
of f˛ ı p. The restriction of p to the homeomorphic surfaces zN and p�1.f �1

˛ /.�/

determines two equivalent 2–fold covering maps zN!N and p�1.f �1
˛ .�//!f �1

˛ .�/.
Therefore the image surfaces N and f �1

˛ .�/ must also be homeomorphic.

Note that the above proof does not tell us that N and f �1
˛ .�/ are isotopic. Isotopy of

the fibers of N requires the isotopy between zN and p�1.f �1
˛ .�// to be ��–equivariant.

However, the theorem is sufficient for our application.

We conclude the section with a nonorientable version of Theorem 2.1.

Theorem 2.11 Let N be a compact nonorientable 3–manifold , and let F be the
elements of H 1.N IZ/ corresponding to fibrations of N over S1.

(i) Elements of F are in one-to-one correspondence with (nonzero) lattice points —
ie points of H 1.N IZ/— inside some union of cones over open faces of the unit
ball in the Thurston norm.

(ii) Let N be relatively oriented surface in N that transverse to the suspension flow
associated to some fibration f WN ! S1. Let Œ˛� be the Poincaré dual Œ˛� to N .
Then Œ˛� lies in the closure of the cone in H 1.N IR/ containing the 1–form
corresponding to f .

Proof For (i), we observe that by Theorem 2.1 the fibrations of zN are in one-to-one
correspondence with lattice points inside a union of cones over open faces of the unit
ball in H2. zN IR/. Let zK be the union of cones in H2. zN IR/. By Poincaré duality, zK is
in one-to-one correspondence to a union of cones in H 1. zN IR/, which we will call zK�.

Because H 1.N IR/ is isomorphic to a subspace of H 1. zN IR/, we can construct a
union of cones in H 1.N IR/ that map to the intersection of p�.H 1.N IR// with zK�.
Indeed, every lattice point in zK� corresponds to a fibration f W N ! S1, since the
pullback of f to H 1. zN IZ/ corresponds to a fibration of zN . Conversely, every fibration
of f WN ! S1 must correspond to an element of zK�, since the composition f ıp is a
fibration of zN ! S1.

For (ii), assume that the surface N is transverse to the suspension flow of a fibration
f WN !S1. Then zN is transverse to the suspension flow pıf W zN !S1. Let z̨ be the
pullback of ˛ under p. Then z̨ is the Poincaré dual of zN . By Theorem 2.1, the 1–form
z̨ lies in the closure of a component of zK� that contains the 1–form corresponding to
f ıp. Let zK be this component. Let K �H 1.N IR/ be the preimage of zK under p�.
The cone K contains both ˛ and the 1–form corresponding to f , as desired.
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SS

S 0

S 0

Figure 1: Cross section of intersection of S and S 0.

2.4 Oriented sums

The next step in studying embedded nonorientable surfaces will be to describe oriented
sums. Let M be a 3–manifold. The oriented sum of two embedded surfaces in M is
additive in both the Euler characteristic and H 1.M IR/. This operation is well known
in the case of orientable 3–manifolds (along with orientable embedded surfaces), but we
will sketch the relevant details. We then extend the construction to relatively oriented
embedded surfaces.

Oriented sum for oriented manifolds Let M be an orientable manifold. Let S and S 0

be orientable embedded surfaces in M . Assume that S and S 0 intersect transversally.
Thus S \S 0 is a disjoint union of copies of S1. For each component of S \S 0, take a
tubular neighborhood that has cross section as in Figure 1.

We then perform a surgery on the leaves of S and S 0 so that the outward-pointing
normal vector fields match as in Figure 2.

By performing this surgery at all the intersections, we get a new submanifold S 00

of M (which may have multiple components). This new submanifold S 00 is called the
oriented sum of S and S 0. The operation of taking oriented sums is additive on Euler

SS

S 0

S 0S 0

S 0

S S

Figure 2: On the left, the normal vectors on S and S 0 are consistent. On the
right, they are not.
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z1

zS 0

zS 0

zS zS
z2

zS 0

zS 0

zS zS

Figure 3: Neighborhoods of z1 and z2, with the outward-pointing normal
vector field.

characteristic, as well as the homology classes (and thus the cohomology classes of
their Poincaré duals),

�.S 00/D �.S/C�.S 0/; ŒS 00�D ŒS �C ŒS 0�:

Oriented sum for nonorientable manifolds Let N be a nonorientable 3–manifold
and let N and N 0 be embedded surfaces in N that are relatively oriented. We define
the oriented sum on N and N 0 as follows. As above, let p W zN !N be the orientation
double cover and let � be the orientation-reversing deck transformation of zN . Let
zN D p�1.N / and zN 0 D p�1.N 0/, which are embedded oriented surfaces in zN . The

oriented sum of N and N 0 is the image under p of the oriented sum of zN and zN 0.

To see that the operation is well defined, we recall that � preserves the relative orientation
of zN and zN 0. Therefore � leaves the outward normal vector fields on zN and zN 0 invariant
(see the proof of Lemma 2.8). Thus a leaf L of zN is surgered with a leaf of L0 of zN 0

if and only if �.L/ and �.L0/ are surgered. Therefore surgery factors through p and
ŒN �C ŒN 0� is well defined for nonorientable surfaces.

Example 2.12 Let  be a component of N \N 0 and z1 and z2 be the path lifts of  .
One possible orientation of zS and zS 0 is given in Figure 3. The outward-pointing normal
vectors to zN and zN 0 determine which leaves are glued together along z1 and z2.

To preserve the normal vector field, glue the left zN leaf to the bottom zN 0 leaf near z1

and z2. Since �.z1/D z2, the outward-pointing normal vector fields point the same
(relative) directions.
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Additivity By the consistency of the oriented sum in N and zN , it easily follows that
the oriented sum is additive in Euler characteristic, as well as in terms of Poincaré dual,
since the Poincaré dual was also defined by passing to the orientation double cover.

3 Mapping classes with small stretch factors

In this section, we provide a strategy to compute pseudo-Anosov homeomorphisms
with small stretch factors.

3.1 Mapping class groups of nonorientable surfaces

Let N be a nonorientable surface and let zN and the covering map p W zN !N be its
orientation double covering space. Every homeomorphism ' WN !N , has a unique
orientation-preserving lift z' W zN ! zN .

A consequence is that lifting homeomorphisms induces a monomorphism between
homeomorphisms of N and orientation-preserving homeomorphisms of zN . Every
homotopy of N lifts to a homotopy of zN . Therefore there is an inclusion from the
mapping class group of N to the (orientation-preserving) mapping class group of zN .
This inclusion also respects the Nielsen–Thurston classification of mapping classes,
both qualitatively, and quantitatively, as the following proposition shows.

Proposition 3.1 Let ' W N ! N be a homeomorphism and let z' W zN ! zN be the
orientation-preserving lift of '. Then

(i) ' is periodic if and only if z' is periodic ,

(ii) ' is reducible if and only if z' is reducible , and

(iii) ' is pseudo-Anosov if and only if z' is pseudo-Anosov. Moreover , if ' has
stretch factor �, then z' also has stretch factor �.

Proof The fact that the map from Mod.N / to Mod. zN / is type-preserving follows
from Aramayona, Leininger and Souto [3, Lemma 10] (while the statement of the
lemma is for orientable surfaces, the argument, which we will skip, is identical for
nonorientable surfaces).

Suppose now that ' WN!N is a pseudo-Anosov homeomorphism with stretch factor �
and stable and unstable foliations Fs and Fu respectively. Let zFs and zFu denote the
lifts of the stable and unstable foliations to the orientation double cover. Let  be a
simple closed curve in zN . We need to show that the following identities hold for all 
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(see [8, Exposé 5] for the definition of intersection number with measured foliations;
the fact that these identities suffice follows from [8, Lemma 9.15]):

i.; z'. zFu//D � � i.; zFu/;(2)

i.; z'. zFs//D
1

�
� i.; zFs/:(3)

To see that (2) holds, we partition  into short arcs fig such that the restriction of the
covering map p to a neighborhood of each arc is a homeomorphism. Then

i.i ; zFu/D i.p.i/;Fu/;(4)

i.i ; z'. zFu//D i.p.i/; '.Fu//:(5)

Since we know that Fu is the unstable foliation for ' with stretch factor �, we can
compute the ratio of the right-hand side of (4) and (5),

(6) i.p.i/; '.Fu//D � � i.p.i/;Fu/:

Combining (4), (5) and (6) and summing over all i gives us that (2) holds. A similar
argument also proves that (3) holds.

3.2 Constructing pseudo-Anosov maps using oriented sums

The goal of this section is to prove that the stretch factor of any pseudo-Anosov
homeomorphism provides an asymptotic upper bound for the minimum stretch factor.
We do this in Proposition 3.2.

Proposition 3.2 Let Ng be a nonorientable surface of genus g and let ' WNg!Ng be
a pseudo-Anosov homeomorphism with stretch factor �. Let N' be the mapping torus
of Ng by '. Let Ng0 be a genus 3 nonorientable relatively orientable surface embedded
in N' that is transverse to the suspension flow associated to '. Then , for all k 2 ZC,
there is a pseudo-Anosov homeomorphism of the oriented sum NgCkNg0 with stretch
factor at most �.

Our strategy for proving Proposition 3.2 is to find fibrations of N' over S1 that have
fiber NgC kNg0 . We then apply a special case of Thurston’s hyperbolization theorem,
which says that the mapping torus of an orientable surface S by a homeomorphism
' is hyperbolic if and only if ' is pseudo-Anosov [29, Theorem 0.1]. In particular,
Thurston’s theorem implies that if M DM' fibers over S1 in two ways, either both
monodromies are pseudo-Anosov or neither monodromy is pseudo-Anosov. Finally,
we adapt theorems of Fried and Matsumoto (Theorem 3.4) and Agol, Leininger and
Margalit (Theorem 3.5) to work for mapping tori with nonorientable fibers.
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We will use the following two facts for orientable surfaces and hyperbolic 3–manifolds
that fiber over S1:

(1) [6, Lemma 5.7] A Thurston norm-minimizing surface S is incompressible.

(2) [28, Corollary 2] The fiber of any fibration over S1 minimizes the Thurston
norm in its homology class.

Proposition 3.3 Let N 0 be a genus 3 nonorientable relatively orientable surface
embedded in N that is transverse to the suspension flow associated to '. Let ˛ be the
Poincaré dual of N and ˛0 the Poincaré dual of N 0. If the oriented sum of N and N 0 is
connected , then N CN 0 is homeomorphic to the fiber of the fibration given by ˛C˛0.

Proof We first need to show that N 0 is incompressible to consider its Poincaré dual.
This follows from the fact that the preimage zN 0 in the orientation double cover is a
genus 2 surface, and minimizes the Thurston norm in its homology class. If it did not
minimize the Thurston norm in the homology class, then the norm minimizing surface
in its homology class would have to be a torus or a sphere, but that would contradict the
fact that the 3–manifold is the mapping torus of a pseudo-Anosov map. By Calegari [6,
Lemma 5.7], we have that zN 0 incompressible, and therefore N 0 is incompressible.

Let p W zN ! N be the orientation double cover of N . The surface N minimizes
the Thurston norm because it is a fiber of f . Similarly, p�1.N / also minimizes the
Thurston norm. Thus the Thurston norm of ˛ is 2��.N /. Likewise, the Thurston norm
of ˛0 is 2��.N 0/.

By Theorem 2.11(ii), ˛0 lies in the same cone in H 1.N IZ/ as ˛. The Thurston norm x

on H 1.N IZ/ is a linear function on that cone. Since the Thurston norm is also linear
on oriented sums of N and N 0,

x.˛C˛0/D x.˛/Cx.˛0/D 2��.N /C 2��.N 0/D 2��.N CN 0/:

Because 2��.NCN 0/ achieves the Thurston norm of ˛C˛0, the preimage p�1.NCN 0/
achieves the Thurston norm of the pullback of ˛C˛0 under p. Therefore p�1.NCN 0/
is incompressible. Thus N CN 0 is also incompressible.

By Theorem 2.11(i), ˛C ˛0 corresponds to some other fibration f 00 W N ! S1. By
Theorem 2.7, the fiber of f 00 must be homeomorphic to N CN 0.

In the proof of Proposition 3.2, we will use Proposition 3.3 along with a theorem of
Thurston to obtain a pseudo-Anosov homeomorphism 'k of the surface of genus gCkg0.
We then use Theorems 3.4 and 3.5 to obtain a upper bound on the stretch factor of 'k .
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Theorem 3.4 (Fried [9; 10] and Matsumoto [22]) Let M be an orientable hyperbolic
3–manifold and let K be the union of cones in H 1.M IR/ whose lattice points corre-
spond to fibrations over S1. There exists a strictly convex function h WK!R satisfying
the following properties:

(i) h.cu/D 1
c
h.u/ for all c > 0 and u 2 K.

(ii) For every primitive lattice point u 2 K, h.u/ D log.�/, where � is the stretch
factor of the pseudo-Anosov map associated to this lattice point.

(iii) h.u/ goes to1 as u approaches @K.

Theorem 3.5 (Agol, Leininger and Margalit) Let K be a fibered cone for a mapping
torus M and let K be its closure in H 1.M IR/. If u2K and v2K, then h.uCv/<h.u/.

Proof of Proposition 3.2 The oriented sum

S DNgC kNg0

constructed in Proposition 3.3 is a surface of genus gCkg0, and S is homeomorphic to
a fiber of N' given by ˛C k˛0. Let 'k W S! S be the monodromy of N' over S. By
Thurston’s theorem, 'k is pseudo-Anosov. We claim that 'k has stretch factor at most �.

Let p W zN ! N' be the orientation double cover of N' . Let hjN be the restriction
of h to the pullback p�.H 1.N' IR// in H 1. zN IR/. The restriction hjN satisfies all
the properties of Theorems 3.4 and 3.5.

Let z' be the orientation-preserving lift of ' to p�1.N /. Since z̨ is the pullback of ˛,
the map z' is the pseudo-Anosov homeomorphism associated to z̨. By Proposition 3.1,
the stretch factor of z' is �.

Let K be the cone in H 1.N' IR/ that contains ˛. Since Ng0 is transverse to the
suspension flow in the direction of ', we have that ˛0 is in the closure of K in H 1.N IR/.
Let z̨ be the pullback of ˛ under p and let z̨0 be the pullback of ˛0 under p. Then
hjN .z̨ C z̨

0/ < hjN .z̨/. By Theorem 3.4, h.z̨/ is equal to the stretch factor of the
pseudo-Anosov homeomorphism associated to z̨. Therefore hjN .z̨ C z̨

0/ < log.�/. It
follows that the stretch factor of 'k is less than �.

4 Minimal stretch factors for nonorientable surfaces with
marked points

In this section we will use Theorem 2.11 and Proposition 3.2 to adapt the methods of
Yazdi [33] to nonorientable surfaces. We recall the statement of the main theorem:
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Theorem 1.1 Let Ng;n be a nonorientable surface of genus g with n punctures ,
and let `0g;n be the logarithm of the minimum stretch factor of the pseudo-Anosov
mapping classes acting on Ng;n. Then , for any fixed n 2N, there are positive constants
B0

1
D B0

1
.n/ and B0

2
D B0

2
.n/ such that , for any g � 3, the quantity `0g;n satisfies

B0
1

g
� `0g;n �

B0
2

g
:

Observe that the lower bound for the nonorientable case follows easily from the lower
bound for the orientable case. Indeed, let ' be a pseudo-Anosov map with the minimal
stretch factor on Ng;n. The orientation double cover of Ng;n is SG;2n, where GDg�1.
Note that in the nonorientable case we measure genus as the number of copies of the
projective plane attached to S2 via a connect sum and in the orientable case we measure
genus as the number of copies of the torus attached to S2 via a connected sum. Let
z' W SG;2n! SG;2n be the orientation-preserving lift of '. By Proposition 3.1, z' has
the same stretch factor as '. The logarithm of the former is bounded below by B1=G,
where B1 is given by Yazdi [33], and thus the stretch factor of ' is bounded below as
well. The more challenging part of the proof is showing that the upper bound holds.

We will closely follow Yazdi’s construction, which proceeds in five steps, though we
will reorder them for clarity. In Steps 1 and 2, we construct a family of pseudo-Anosov
homeomorphisms of Ngi ;n, where fgig is an unbounded increasing sequence. However
the sequence fgig does not contain all natural numbers. In Step 3 we give an upper
bound to the stretch factor of the previously constructed homeomorphisms. In Steps 4
and 5, we construct pseudo-Anosov maps on surfaces of genera that do not belong to
the sequence fgig. It is in Steps 4 and 5 that we use Thurston’s fibered face theory. We
have adapted each of Yazdi’s five steps to work for nonorientable surfaces.

Step 1: constructing the surfaces

We begin by defining a family of surfaces Pn;k . Let S be an orientable surface of
genus 5 with three boundary components. Call the boundary components c, d and e.
Choose an orientation of S and let c, d and e inherit the induced orientations. Let p

and q be marked points in the boundary component e. In Step 5 we will remove p and
all its copies. Let r and s be the components of e n fp; qg. We obtain a nonorientable
surface T from S by adding two cross caps to S (retaining the orientation of the
boundary components of S ). The resulting surface T is shown in Figure 4.
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s

p

r

q

d c

Figure 4: The surface T , which will be the building block of the construction.

Let Ti;j be copies of the surface T , where i; j 2 Z. Let ci;j , di;j and ei;j be the
(oriented) boundary components of Ti;j , and let ri;j and si;j be the copies of the arcs
r and s in Ti;j . Define a connected infinite surface T1 as the quotient

T1 WD

�[
i;j

Ti;j

�.
�

for all integers i and j . The gluing � is given by orientation-reversing identifications

(7) ci;j � diC1;j ; ri;j � si;jC1:

We have two natural shift maps, N�1; N�2 W T1! T1,

N�1 W Ti;j 7! TiC1;j ; N�2 W Ti;j 7! Ti;jC1:

Note that N�1 and N�2 commute. Define the surface Pn;k as the quotient of the surface T1

by the covering action of the group generated by . N�1/
n and . N�2/

k . Then N�1 and N�2 are
equivariant with respect to the covering map. We denote the induced homeomorphisms
of the quotient Pn;k by �1 and �2. Note that later we will require that k � 3 and n is
the number of punctures, given in Theorem 1.1.

Lemma 4.1 Let
gn;k D .14k � 2/nC 2

for n� 1 and k � 1. The genus of Pn;k is gn;k .
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Proof Let U � Pn;k be the subsurface

U D

� k�1[
jD0

T0;j

�.
�
0

where �0 is given by (7) and by identifying ri;k�1 and si;0. Then U is a compact,
nonorientable surface of genus 12k with 2k boundary components. The surface Pn;k

consists of n copies of U identified along the 2k boundary components. Therefore the
Euler characteristic of Pn;k is

�.Pn;k/D n ��.U /D n � .2� 12k � 2k/D�n.14k � 2/:

Since Pn;k is a nonorientable surface with empty boundary,

gn;k D n.14k � 2/C 2:

Step 2: constructing the maps

In what is now a classical paper, Penner gives a construction of pseudo-Anosov home-
omorphisms on both orientable and nonorientable surfaces [25]. Below we outline
the Penner construction for nonorientable surfaces following the details of Liechti and
Strenner [20, Section 2].

Inconsistent markings Let N be a nonorientable surface and let c be a two-sided
curve in N . There exists a neighborhood of c that is homeomorphic to an annulus.
Let Ac be an annulus and let �c W Ac ! N be the homeomorphism that maps to a
neighborhood of c. The homeomorphism �c is called a marking of c. A pair consisting
of a curve c and �c is called a marked curve. If we fix an orientation of Ac , then we can
pushforward this orientation to N . Let .c; �c/ and .d; �d / be two marked curves that
intersect at one point p. We say that .c; �c/ and .d; �d / are marked inconsistently if the
pushforward of the orientation of Ac disagrees with the pushforward of the orientation
of Ad in a neighborhood of p. We emphasize that we can also say that two disjoint
curves are inconsistently marked.

Dehn twists We define the Dehn twist �c;�c
.x/ around a marked curve .c; �c/ as

�c;�c
.x/D

�
�c ı �c ı �

�1
c .x/ if x 2 �c.Ac/;

x if x 2N � �c.Ac/:

Here �c is the left-handed Dehn twist on Ac , ie �c.�; t/D .� C 2� t; t/.
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The Penner construction for nonorientable surfaces Let C be a set of marked
essential simple closed curves in N such that no two curves in C are homotopic. A
Penner construction on N is a composition of Dehn twists about the marked curves
in C such that

(1) the complement of curves in C in N consists of disks with at most one puncture
or marked point,

(2) the marked curves .ci ; �i/; .cj ; �j / 2 C with i ¤ j are marked inconsistently,

(3) a Dehn twist about each marked curve in C is included in the composition, and

(4) all powers of Dehn twists are positive (alternatively, all powers are negative).

Construction of fn;k We now construct homeomorphisms fn;k W Pn;k ! Pn;k that
are defined as a composition of specific Dehn twists followed by a finite order mapping
class. The key insight is that a power of this map will be a composition of Dehn twists
that satisfy the criteria to be a Penner construction. Therefore fn;k is pseudo-Anosov.
Here we are using the rotational symmetry of the Pn;k .

Let f˛1; : : : ; ˛8g be the multicurve in T0;0 as shown in Figure 5. Let fˇ1; : : : ; ˇ7g be
the multicurve in T0;0[T0;1[T1;0 shown in Figure 5.

For any ˛i , we choose a marking �˛i
to be orientation-preserving. For any ǰ , let �

ǰ

be orientation-reversing. From here forward, we will think of ˛i and ǰ as (inconsis-
tently) marked curves but we will suppress the marking maps. These choices give an
inconsistent marking of f˛1; : : : ; ˛8g[ fˇ1; : : : ; ˇ7g.

Let

RD
8[

iD2

˛i :

Then R is a marked multicurve that is disjoint from  . Let

RDR[ �1.R/[ � � � [ �n�1
1 .R/:

Let ˆr be the composition of Dehn twists about the marked curves in R. Because the
curves in R are disjoint, the Dehn twists about the curves commute.

Let

B D
7[

jD2

ǰ

in T0;0[T0;1[T1;0. As above, B is a marked multicurve that is disjoint from  . Let

B D B[ �1.B/[ � � � [ �n�1
1 .B/:
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T1;0 T1;1

q

p
ˇ7

˛8 �2

�1

ˇ6

˛7

˛6
˛5

ˇ4 ˇ5

 ˛1

ˇ1 ˇ3
˛4

˛3

T0;n�1 c0;n�1 � d0;0 T0;0

ˇ2 ˛2
c0;0 � d0;1 T0;1

Figure 5: Part of surface Pn;k that includes the subsurface T0;0 and the curves
˛i , ǰ and  .

Let ˆb as the composition of Dehn twists about all of the marked curves in B. As
with R, the Dehn twists about curves in B commute.

Let ˛1; ˇ1 � T0;0 be the (marked) curves in Figure 5. Let ˆ be the composition of
Dehn twists along all the curves ˛1; �1.˛1/; : : : ; �

n�1
1

.˛1/ followed by Dehn twists
along all the curves ˇ1; �1.ˇ1/; : : : ; �

n�1
1

.ˇ1/. Define the map fn;k as

fn;k WD �2 ıˆ ıˆb ıˆr :

Since the curves about which we twist to construct fn;k satisfy the conditions of
Penner’s construction, fn;k is a pseudo-Anosov homeomorphism.

Step 3: bounding the stretch factor

Following Yazdi, our next goal is to find an upper bound for the stretch factor of the
pseudo-Anosov homeomorphisms fn;k .
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Train tracks Let S be a surface. A train track in S is graph embedded in S with that
property that for every vertex v of valence three or greater, all edges adjacent to v have
the same tangent vector at v. Let ' W S ! S be a pseudo-Anosov homeomorphism.
The map ' is equipped with a train track whose image under ' is homotopic to itself.
Such a train track is an invariant train track associated to '. Invariant train tracks have
an associated matrix whose Perron–Frobenius eigenvalue is the stretch factor of '.

Yazdi uses Lemma 4.2 to bound the spectral radius of the associated matrices.

Lemma 4.2 [33, Lemma 2.3] Let A be a nonnegative integral matrix , � be the
adjacency graph of A, and V .�/ the set of vertices of � . For each v 2 V .�/, define vC

to be the set of vertices u 2 V .�/ such that there is an oriented edge from v to u. Let D

and k be fixed natural numbers. Assume the following conditions hold for �:

(i) For each v 2 V .�/, we have degout.v/�D.

(ii) There is a partition V .�/ D V1 [ � � � [ V` such that , for each v 2 Vi , we have
vC�ViC1 for any 1� i � ` except possibly when i D 1 or 3 (indices are mod `).

(iii) For each v 2 V1, we have vC � V2[V3.

(iv) For each v 2 V3 we have vC � V3[V4, and for u 2 vC\V3 we have uC � V4.

(v) For all 3< j � k and each v 2 Vj , the set vC consists of a single element.

Then the spectral radius of A`�1 is at most 4D4.

With this result in hand, we can find an upper bound for the stretch factor of fn;k .

Lemma 4.3 Let �n;k be the stretch factor of fn;k . Then there exists a universal
positive constant C 0 such that , for every n� 1 and k � 3, we have the upper bound

log.�n;k/� C 0
n

gn;k
:

Proof We deliberately constructed our curves so that all intersections of the multicurves
f˛1; : : : ; ˛8g and fˇ1; : : : ; ˇ7g occur in the subsurface T0;0. The curve ˇ3 intersects
�2.˛3/ at one point in T0;1 and ˇ7 intersects �1.˛8/ at one point in T1;0.

We define the unions of marked curves

A WD B[R[f˛1; ˇ1g D

8[
iD1

˛i [

7[
jD1

ǰ ;

A WDA[ �1.A/[ � � � [ �n�1
1 .A/;

yA WDA[ �2.A/[ � � � [ �k�1
2 .A/:
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Because fn;k is pseudo-Anosov, it has a corresponding invariant train track � . Let V�

be the space of all measured foliations that can be obtained by varying the weights on
the tracks of � . This forms a finite dimensional cone of measures, all of which can be
carried by the combinatorial train track � . Furthermore, fn;k acts linearly on this cone,
and leaves the cone invariant, since � is an invariant track for fn;k . Consider now the
transverse measure �ı for any curve ı in yA. This transverse measure is carried by � ,
and thus �ı belongs in the cone of measures V� . Let H be the subspace spanned by
f�ı j ı � yAg. This linear subspace is also left invariant by fn;k . Let M be the matrix
representing the linear action of fn;k on H with respect to the basis f�ı j ı� yAg. Let �
be the adjacency graph for M . Work of Penner [25] tells us that the Perron–Frobenius
eigenvalue of M is the stretch factor of fn;k .

To bound the spectral radius of M , we need to show that � satisfies the criteria of
Lemma 4.2.

(i) There exists a constant D0, independent of n and k, such that, for every curve ı 2 yA,
the geometric intersection number between ı and every curve in A is at most D0. Recall
that fn;k D �2 ıˆ ıˆb ıˆr . Let M1, M2, M3 and M4 be the matrices describing
the linear action of ˆr , ˆb , ˆ and �2 on H , respectively. The matrix M can then be
written as the product

M DM4M3M2M1:

For a curve ı 2 yA, the L1–norm of Mi.�ı/ is bounded above by the geometric
intersection of fn;k.ı/ with the curves in A. Thus each of M1, M2 and M3 will change
the norm by a factor of at most 1CD0. Since �2 will not change intersection numbers,
M4 will preserve the L1–norm. If we let D D .1CD0/3, then the outward degree of
each vertex in � is at most D.

For the remaining conditions, we partition the vertices of � . Observe

yAD ��1
2 .A/[A[

k[
iD3

�i�2
2 .A/:

Then define V1 as the vertices of � corresponding to ��1
2
.A/, the set V2 as the vertices

of � corresponding to A, and Vi for 3� i � k as the vertices of � corresponding to
elements in �i�2

2
.A/.

(ii) Suppose that v 2 Vi , for i ¤ 1; 3, is a vertex that corresponds to �ı for a curve
ı 2 yA. Then ı is disjoint from all curves in A. The action of ˆ ıˆb ıˆr on yA will
preserve the set �.i�2/ mod k

2
.A/ for each i ¤ 1; 3. In particular, f�ı j ı � yAg will
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also be in �.i�2/ mod k
2

.A/. Then �2 will rotate the curve ˆ ıˆb ıˆr .ı/ into the set
�.i�1/ mod k

2
.A/. That is, fn;k D �2 ıˆ ıˆb ıˆr maps �ı 2H toX

�2Z

�� ;

where Z is a subset of �.i�1/ mod k
2

.A/. Therefore fn;k maps v to a subset of ViC1.

(iii) To verify the third condition, we first look at the vertices v 2V1 such that vC 6�V2.
Such vertices will correspond to the curves in ��1

2
.A/ that ˆıˆb ıˆr maps to curves

that are not in �2.A/. Because �1 and �2 commute, we can write the curves of ��1
2
.A/ as

��1
2 .A/D ��1

2 .A/[ �1.�
�1
2 .A//[ � � � [ �n�1

1 .��1
2 .A//:

The elements of vC that are not in V2 correspond to the images of curves in ��1
2
.A/

under fn;k that are not in A. As in Yazdi, the only curves in ��1
2
.A/ that intersect

curves in A are those in the set

X D f�i
1.�
�1
2 .ˇ7// j 0� i � n� 1g:

Therefore ˆ ıˆb ıˆr maps curves in X to curves in ��1
2
.A/[A. Then

fn;k D �2 ıˆ ıˆb ıˆr

maps curves in X to curves in A[�2.A/. For any curve in X , the corresponding vertex
v 2 V1 will have vC � V2[V3. Moreover, fn;k maps the curves ��1

2
.A/nX to curves

in A. Thus, for any vertex v 2 V1 that does not correspond to an element of X , the
set vC is contained in V2.

(iv) Similarly, we look for the v 2V3 such that vC 6�V4. Such vertices will correspond
to the curves in �2.A/ that ˆıˆb ıˆr maps to curves that are not in �2

2
.A/. As above,

�2.A/D �2.A/[ �1.�2.A//[ � � � [ �n�1
1 .�2.A//:

The elements of vC that are not in V4 correspond to the images of �2.A/ that intersect
the curves in A. The only vertices of V4 that correspond to such curves are those in
the set

Y D f�i
1.�2.˛8// j 0� i � n� 1g:

For any element v 2V3 corresponding to a curve in Y and any u2 vC\V3, the vertex u

does not correspond to an element of Y . Therefore uC � V4.

(v) All the curves corresponding to an element of Vj , for 3< j � k, are disjoint from
all the curves in A. Thus, fn;k just acts by rotation.
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Let �D �n;k be the stretch factor of fn;k . By Lemma 4.2,

�k�1
D �.M /k�1

D �.M k�1/� 4D4:

Then the logarithm of � satisfies

log.�k�1/D .k � 1/ � log.�/� log.4D4/:

Then, for k � 2,
1
2
k log.�/� .k � 1/ log.�/� log.4D4/:

On the other hand, we know gn;k D .14k�2/nC2� 14kn by Lemma 4.1. Therefore,

log.�/� 2 log.4D4/ �
1

k
� 2 log.4D4/ �

14n

gn;k
:

Let C 0 WD 28 log.4D4/ to complete the result.

Step 4: the mapping torus

We have now constructed an infinite family of nonorientable surfaces Pn;k and pseudo-
Anosov homeomorphisms fn;k W Pn;k ! Pn;k , but this is not enough. In Lemma 4.1,
we show that fPn;kg does not include surfaces of infinitely many genera. We use the
strategy of McMullen [23] and our extension of the Thurston’s fibered face theory to
fill in the gaps.

Next we follow the strategy of Leininger and Margalit [19] to find a surface embedded
in the mapping torus of minimal genus. In our situation, this means that we will
construct an embedded surface homeomorphic to N3.

Proposition 4.4 Let Mn;k be the mapping torus of fn;k . Let Kn;k denote the fibered
cone of H 1.Mn;k IR/ corresponding to the map fn;k . There is a relatively orientable
incompressible surface Fn;k embedded in Mn;k that is homeomorphic to N3. Moreover ,
Fn;k is transverse to the suspension flow direction given by fn;k and the Poincaré dual
of Fn;k is in the closure Kn;k .

Proof Let  � T0;0 be the curve shown in Figure 6. Note that  and ˆ. / bound a
nonorientable surface yF of genus 1 with boundary. For convenience, we will denote
ˆ. / by O . We are going to follow the image of  under powers of fn;k . Then we
attach annuli to the boundary of yF to obtain N3. Since  is disjoint from all curves in
R and B (as seen in Figure 5), the maps ˆr and ˆb act trivially on  . Recalling that
fn;k D �2 ıˆ ıˆb ıˆr , we have

fn;k. /D �2 ıˆ ıˆb ıˆr . /D �2 ıˆ. /D �2. O /:
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Figure 6: The curves  and O bound an a nonorientable surface of genus 1.

It follows that for all 1 � i � k, the curve f i
n;k
. / is �i

2
. O /. For 1 � i � k, let Ai

be an annulus in Mn;k that connects f i�1
n;k

. / to f i
n;k
. / obtained by following the

suspension flow of fn;k around Mn;k . Let A be the union of all of the Ai , which is
also an annulus. We can now construct the embedded surface Fn;k by taking the union
of A and yF . The union of yF with A has empty boundary and Euler characteristic 0, so
Fn;k is homeomorphic to N3.

We now need to show that Fn;k is relatively orientable. We construct a outward-pointing
normal vector field by combining the outward-pointing vector fields on yF and A given
by following  along the suspension flow. Let v1 be a vector field on yF pointing in the
flow direction. Define v2 to be a vector field on A as follows: on  define v2 to be the
vector field pointing in to yF , and flow the vector field along the suspension flow so v2

is pointing away from yF on O .

Let U be a neighborhood of  in Fn;k D
yF [A. Define two bump functions, c1 and c2,

supported in U . Let c1 be 1 on @U \A and 0 on yF . Let c2 be 1 on @U \ yF and 0

on A. We add the vector fields v1 on yF and v2 on A using these bump functions; the
resulting vector field is c1v1C c2v2. Observe that since v1 points in the flow direction,
and v2 points into the surface, the new vector field c1v1C c2v2 is transverse to Fn;k

in the neighborhood of  (see Figure 7 for a picture of the resulting transverse vector
field).
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OO

yF
yF

yFyF

Figure 7: Left: the vector fields v1 on yF and v2 on A. The upper picture is a
neighborhood of  and the lower picture is a neighborhood of O . Right: the
vector fields c1v1C c2v2 on neighborhoods of  and O .

We perform a similar construction in a small neighborhood of O : in this case, the
fact that the vector field on yF points in the flow direction, and the vector field on A

points away from the surface yF ensures that the new vector field is transverse, in a
neighborhood of O , to the surface Fn;k .

A key fact we use in this construction is that the vector field along A that starts pointing
into yF at  comes back pointing away from the surface at O . This is because the
homeomorphism fn;kj maps the inner tubular neighborhood of  to the outer tubular
neighborhood of O , where inner and outer tubular neighborhoods are the half tubular
neighborhoods contained in yF and the complement, respectively. This fact about fn;k

follows from its definition, ie following the four homeomorphisms whose composition
is fn;k .

The proof that Fn;k can be isotoped to be transverse to the suspension flow is the
same as the proof Yazdi uses [33], which is a restatement of that of Leininger and
Margalit [19]. We include it here for completeness.

Let N. / be a tubular neighborhood of  in yF . Let � W yF! Œ0; 1� be a smooth function
supported on N. / with

� ��1.1/D  , and

� the derivative of � vanishes on  .

Let � WMn;k ! S1 be the projection map and let t0 be such that yF � ��1.t0/. Let
g W yF !Mn;k be the suspension flow of fn;k defined as g.x/ D .x; t0 C k � �.x//.
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Then the restriction of g to the interior of yF is an embedding into Mn;k and g. /D O .
Therefore the image of yF under g is an embedded nonorientable surface of genus 3.
Moreover, g. yF / is isotopic to the natural embedding of Fn;k in Mn;k , and is transverse
to the suspension flow. Therefore, the Poincaré dual of Fn;k is in Kn;k by Theorem 2.11.

Finally, Fn;k is incompressible in Mn;k because Mn;k is hyperbolic, and Fn;k is
genus 3, the lowest possible genus for a hyperbolic nonorientable surface.

Step 5: filling in the gaps

Recall that the family of surfaces Pn;k that we have constructed have genera in the
set f.14k � 2/nC 2g. We now want to construct surfaces of genera not in the set
f.14k�2/nC2g and pseudo-Anosov homeomorphisms of those surfaces that have small
stretch factors. To do this we use the mapping torus Mn;k of Pn;k by fn;k WPn;k!Pn;k .
By Proposition 4.4, there exists a relatively incompressible surface Fn;k in Mn;k that
is homeomorphic to N3. Let P r

n;k
be the oriented sum of Pn;k and rFn;k , as defined

in Proposition 3.3. The surfaces P r
n;k

will be surfaces of the remaining genera.

Lemma 4.5 The surface P r
n;k

is of genus gr
n;k
D gn;k C r . In particular , as r varies

between 0 and 14n, the genera of fP r
n;k
g span the range between gn;k and gn;kC1.

Moreover , P r
n;k

is isotopic to a fiber of a fibration of Mn;k with pseudo-Anosov
monodromy that fixes 2n of the singularities of its invariant foliation.

Proof The Euler characteristic of an oriented sum is the sum of the Euler characteristics
of the summands,

�.P r
n;k/D �.Pn;k/C r�.Fn;k/D .�gn;k C 2/� r D�.gn;k C r/C 2:

Since P r
n;k

has no boundary or punctures, we have that the genus of P r
n;k

is gn;k C r .

By Proposition 4.4 we know that Fn;k is incompressible and transverse to the sus-
pension flow given by fn;k . Therefore, by Proposition 3.2, there is a pseudo-Anosov
homeomorphism f r

n;k
of P r

n;k
D Pn;k C rFn;k .

As in Yazdi [32, Lemma 3.5], fn;k fixes the 2n singularities of the stable foliation
that are the intersection points of the axis of �1 with Pn;k . By Proposition 4.4, the
surface Fn;k can be isotoped to be transverse to the suspension flow and disjoint from
the orbit of the 2n singularities of fn;k . Hence the monodromy f r

n;k
still fixes the

corresponding 2n singularities on P r
n;k

.

We now prove the nonorientable version of the final piece of Yazdi’s proof [33,
Lemma 3.6].
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Lemma 4.6 Let �r
n;k

be the stretch factor of f r
n;k
W P r

n;k
! P r

n;k
. Then there exists a

constant C > 0 such that , for every n� 1, k � 3 and 0� r � 14n, we have the upper
bound

log.�r
n;k/� C

n

gr
n;k

:

Proof Let KD Kn;k be the fibered cone in H 1.Mn;k IR/ corresponding to fn;k and
h W K!R the function described in Theorem 3.4. Note that gn;k � 42, so

gr
n;k D gn;k C r � gn;k C 14n< 2gn;k :

Let ! be the Poincaré dual of P r
n;k

and ˛ the Poincaré dual of Pn;k . Then

h.Œ!�/ < h.Œ˛�/ (convexity of h)

� C 0
n

gn;k

(Lemma 4.3)

� 2C 0
n

gr
n;k

(upper bound for gr
n;k):

In the initial construction of Pn;k , there were 2n marked points, which were singularities
of the map fn;k . By the construction of P r

n;k
, these marked points are also singularities

of f r
n;k

. Now we puncture P r
n;k

at n of these marked points. We could think of this as
removing all copies of the point p in the construction of Pn;k in Step 1.

We can now give a proof of Theorem 1.1.

Proof of Theorem 1.1 As above, the lower bound follows easily from the lower bound
in the orientable setting.

To find the upper bound, let C 0 D 1
2
C be the value given in Lemma 4.6. Let

B02.n/Dmaxf2C 0n; `01;n; 2`
0
2;n; : : : ; .40nC 1/`040nC1;ng:

By Proposition 3.2 and Lemma 4.6, B0
2
.n/ is an upper bound for g � `0g;n.
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Infinitely many arithmetic alternating links
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We prove the existence of infinitely many alternating links in S3 whose complements
are arithmetic.

57K32; 11F06

1 Introduction

Let d be a square-free positive integer and let Od denote the ring of integers of
Q.
p
�d/. A noncompact finite-volume hyperbolic 3–manifold X is called arithmetic

if X and the Bianchi orbifold Qd DH3=PSL.2;Od / are commensurable, that is to
say they share a common finite-sheeted cover. (see Maclachlan and Reid [22, Chapters
8 and 9] for further details). If X D S3 nL, we call L an arithmetic link.

Since Thurston’s original studies of hyperbolic structures on 3–manifolds [25], link com-
plements in S3 have played a prominent role, and indeed arithmetic links were also very
much at the heart of his work. Several arithmetic link complements were constructed
in [25], and, over the years, many more examples were constructed; see Aitchison,
Lumsden and Rubinstein [3], Aitchison and Rubinstein [4], Baker [5; 6; 7], Baker,
Goerner and Reid [9; 8], Goerner [14], Grunewald and Hirsch [16] and Hatcher [19].
Several of these arithmetic links are alternating, and although there are infinitely many
arithmetic links in S3 (for example, those links determining certain cyclic covers of
the complement of the Whitehead link), whether there were infinitely many arithmetic
alternating links remained open.

By relating the spectral geometry of the complement to combinatorics of an alternating
diagram, Lackenby [21] showed that there are only finitely many congruence alternating
links, and motivated by this, asks in [21], whether there are only finitely many arithmetic
alternating links. More recently, the question as to whether there were infinitely many
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Figure 1

arithmetic alternating links was asked of the second author by D Futer in 2019. The
main result of this note resolves these questions by answering Futer’s question in the
positive (and hence Lackenby’s in the negative).

Theorem 1.1 There are infinitely many alternating links in S3 whose complements
are arithmetic.

Indeed, we prove something more precise. We will construct two infinite families of
alternating links Lj and Lj whose complements are arithmetic. In more detail, the
family of links Lj is built from j C 1 concentric circles centered at the origin in the
Euclidean plane, with a “horizontal” component (which we will denote by K) added
intersecting each of the concentric circles in four points, and each intersection point
resolved to make the diagram alternating (see Figure 1, left, where L4 is shown). Thus
Lj is an alternating link with j C 2 components. The family of links Lj is constructed
in a similar fashion using jC1 concentric circles centered at the origin in the Euclidean
plane, with two additional components (which we will denote by K1 and K2) added
intersecting each of the concentric circles in two points, and each intersection point
resolved to make the diagram alternating (see Figure 1, right, where L4 is shown).
Thus Lj is an alternating link with j C 3 components.

Theorem 1.2 Lj and Lj are arithmetic for all j � 1 with both S3 nLj !Q3 and
S3 nLj !Q3 of degree 60j.

The arithmetic nature of the link L1 was first explicitly described by Hatcher [19,
Example 5], and we recall this briefly here. As described in [19], the complement

Algebraic & Geometric Topology, Volume 23 (2023)



Infinitely many arithmetic alternating links 2859

of L1 can be obtained as the union of two regular ideal hyperbolic cubes (all of whose
dihedral angles are �=3), and, as noted in [19], a regular ideal cube can be subdivided
into five regular ideal hyperbolic simplices, from which Hatcher deduces that L1 is
arithmetic since the fundamental group of its complement arises as a subgroup of the
group of orientation-preserving isometries of the tessellation of H3 by regular ideal
hyperbolic simplices, which can be identified with the group PGL.2;O3/. Hence the
link L1 is arithmetic. In fact (see the discussion in the proof of Theorem 1.2 given in
Section 2.2), the fundamental group of its complement arises as a subgroup PSL.2;O3/.
Given the description of S3 nL1 as a union of 10 regular ideal tetrahedra, its volume
can be computed as 10v0, where v0 is the volume of the regular ideal simplex in H3 (ie
approximately 10:14941606 : : : ). Since the volume of Q3 is v0=6, S3nL1 is a 60–fold
cover of Q3. In [19, Example 5], Hatcher constructs a second link complement as the
union of two regular ideal hyperbolic cubes, and this is homeomorphic to S3 nL1.

The manifolds S3 nL1 and S3 nL1 have been reconstructed elsewhere in the literature.
By volume considerations — see Adams, Hildebrand and Weeks [2] — S3 nL1 (resp.
S3 nL1) can be seen to be homeomorphic to the complement of the three-component
link 83

4
(resp. to the complement of 84

1
). It can be checked (eg using SnapPy [11])

that S3 nL1 is also homeomorphic to a 5–fold irregular cover of the complement
of the figure-eight knot (namely the so-called Roman link of Hilden, Lozano and
Montesinos [20]). The complements of L1 and L1 were constructed again by Aitchison
and Rubinstein [4, Example 3] as well as being identified as the tetrahedral census
manifolds otet1000006 and otet1000011 of Fominykh, Garoufalidis, Goerner, Tarkaev
and Vesnin [13] (see also Goerner [15]).

In a different direction, neither S3 n L1 nor S3 n L1 contains a closed embedded
essential surface (see Hass and Menasco [18] for L1 and Oertel [24] for L1). By
comparison, in Section 3 we show that both S3 nLj and S3 n Lj contain a closed
embedded essential surface for all j � 2.

Acknowledgements We are grateful to Dave Futer for asking the question. We are
also very grateful to Will Worden for drawing the figures. Reid was supported in part
by an NSF grant.

2 Proof of Theorem 1.2

Our proof will be motivated by that given in [19], but we shall certify arithmeticity in
a slightly different way.

Algebraic & Geometric Topology, Volume 23 (2023)
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2.1 Tessellation by regular ideal cubes

Motivated by the description of S3 nL1 as a union of two regular ideal cubes, we make
the following definition (see [13]):

Definition 2.1 Let M be a finite-volume cusped hyperbolic 3–manifold. We call M

cubical if it can be decomposed into regular ideal hyperbolic cubes.

Let M DH3=� be a cubical manifold. On lifting to the universal cover, we obtain a
tessellation T.C / of H3 by regular ideal cubes, C, and so � is a subgroup of the group
of isometries of T.C /, which we denote by Isom.T.C// (which is a discrete group of
isometries of H3). We will denote by IsomC.T.C// the subgroup of Isom.T.C// of
index 2 consisting of orientation-preserving isometries.

Lemma 2.2 Isom.T.C// is an arithmetic subgroup of Isom.H3/ commensurable with
PSL.2;O3/. Hence any cubical manifold is arithmetic.

A proof of Lemma 2.2 is implicit in [23], but we include a proof here for completeness.
Before proving Lemma 2.2, we recall some notation. Let �0.2/ < PSL.2;O3/ be the
image of the subgroup of SL.2;O3/ given by��

a b

c d

�
2 SL.2;O3/

ˇ̌̌
c � 0 mod h2i

�
:

It is easy to check that ŒPSL.2;O3/ W�0.2/�D 5, that H3=�0.2/ has two cusps (corre-
sponding to the inequivalent parabolic fixed points 0 and1), and that the peripheral
subgroup of �0.2/ fixing1 coincides with that of PSL.2;O3/, namely the image in
PSL.2;O3/ of the subgroup��

1 1

0 1

�
;

�
1 !

0 1

�
;

�
! 0

0 1=!

��
; where !2

C!C 1D 0:

Let � and � be the elements of PSL.2;C/ given by the images of the elements
�

i 0
0 �i

�
and�

0 �1=
p

2
p

2 0

�
, respectively. Note that � and � both have order 2, and they normalize �0.2/.

Hence the group GD h�0.2/; �; �i is arithmetic, containing �0.2/ as a normal subgroup
with quotient group Z=2Z�Z=2Z.

Proof To prove Lemma 2.2, it suffices to show that IsomC.T.C// is commensurable
with PSL.2;O3/. To that end, we will show that the orbifolds N1DH3=IsomC.T.C//
and N2DH3=G are isometric and hence IsomC.T.C// and G are conjugate by Mostow–
Prasad rigidity. Using the remarks prior to the proof, this proves commensurability.

Algebraic & Geometric Topology, Volume 23 (2023)



Infinitely many arithmetic alternating links 2861

In the notation established above, since �.0/D1, the orbifold N2 has a single cusp,
and since � 2G, this is a rigid cusp of type .2; 3; 6/ (in the notation of [23]). Moreover,
since the volume of Q3 is v0=6, the computation of indices given above shows that the
volume of N2 is 5v0=24.

Now consider the group IsomC.T.C//. This is generated by the extension to H3 of the
orientation-preserving symmetries of a single cube C of T.C /, along with rotations
of 2�=6 in the edges of C. As noted in Section 1, C can be subdivided into five regular
ideal tetrahedra, and so the volume of C is 5v0. From this it now follows that N1 has
volume 5v0=24 and a rigid cusp of type .2; 3; 6/.

Finally, using Adams [1], we deduce that N1 and N2 are isometric, since he proved
there that there is a unique orientable hyperbolic 3–orbifold of volume 5v0=24 and a
single rigid cusp of type .2; 3; 6/.

Remark 2.3 Part of the proof in [1] of the uniqueness of a hyperbolic 3–orbifold with
a single rigid cusp of type .2; 3; 6/ was found to have a gap, but this was corrected in
the recent paper [12].

Remark 2.4 As noted in [23], the group Isom.T.C//, can be identified with the group
generated by reflections in the faces of the tetrahedron T Œ4; 2; 2I 6; 2; 3��H3 in the
notation of [23].

2.2 The link complements S 3 n Lj and S 3 nLj are cubical

Given Lemma 2.2, we must show that S3 nLj (for j � 1) and S3 nLj (for j � 1) are
cubical. We will take a slightly different perspective from Hatcher’s construction of a
cubical structure for S3 nL1 (more in keeping with [3; 4]), which we now describe.
This is what we generalize for the links Lj (j � 2) and Lj (j � 2).

Consider an alternating diagram for L1 on some projection plane S2 � S3. This
produces the 4–valent planar graph P1 shown in Figure 2, left. Two-coloring the
regions in checkerboard fashion and labeling these regions as C and � affords a
decomposition of S3 into two 3–balls, each of which is endowed with an abstract
polyhedral structure. Denote these polyhedra by …C and …�. These polyhedra are
identical up to reversing all the colors and signs. Each face fi of …C is an ni–gon
(where niD 2 or 4 in this case) with a sign �i 2 f˙g, and the polyhedra…C and…� are
identified by sending fi to the corresponding face of …� using a rotation of �i2�=ni

(with C denoting clockwise). The resulting complex with vertices deleted is then
homeomorphic to S3 nL1 (see [3], for example).

Algebraic & Geometric Topology, Volume 23 (2023)
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Figure 2

Note that P1 contains four bigons, and we can collapse each of these bigons to an
edge in each of the polyhedra …C and …�, and then make the identifications described
above. The resulting polyhedra obtained are cubes (see Figure 2, right), so that S3 nL1

is the identification space of two cubes with vertices deleted.

This combinatorial realization can be done geometrically: namely, the identifications
described above can be realized as identifications of the regular ideal cube in H3 with
six 2–cells meeting along an edge (with dihedral angle �=3).

For the general case of Lj , we refer to Figure 3 (which shows the case of L4) and
proceed as follows.

Performing the construction above on each Lj results in a 4–valent planar graph Pj (see
Figure 3, left) and polyhedra…j

C and…j
�. As above, the graphs Pj each contain exactly

four bigons, and collapsing these bigons leads to the polyhedra shown in Figure 3,
right. As is visible from the diagram, each of …j

C and …j
� is a union of j cubes, whose

faces are identified as described above. To establish that for each j � 2 the manifold

Figure 3

Algebraic & Geometric Topology, Volume 23 (2023)
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S3 nLj is cubical, and therefore arithmetic by Lemma 2.2, we need to ensure that the
combinatorial decomposition described here can be realized geometrically.

Referring to Figure 3, right, we now view the polyhedra …j
C and …j

� as being built
from copies of the regular ideal cube, so that edges of …j

C and …j
� have dihedral angle

�=3 or 2�=3, the latter occurring at edges where two cubes meet, eg the edges between
those red vertices of Figure 3, right, and then the edges of all concentric squares except
the “innermost” and “outermost” ones. From above, the polyhedra …C and …� are
identified by sending fi to the corresponding face of …� using a rotation of �i�=2

(withC denoting clockwise). Using this we see that edges with dihedral angle 2�=3 are
identified via the �=2 rotation to an edge with dihedral angle �=3. Each such edge with
dihedral angle 2�=3 lies in two faces of adjacent cubes and so once the identifications
are completed the angle sum is 2� . Edges of the innermost and outermost squares have
dihedral angles �=3. They are identified via �=2 rotations to edges also with dihedral
angles �=3. Six of these edges are identified to get angle sum 2� . This proves that
each S3 nLj is cubical, and hence arithmetic.

Moreover, since any arithmetic link complement commensurable with Q3 necessarily
covers Q3 (see for example [22, Theorem 9.2.2] and note that M.2;Q.

p
�3// has

type number one), the final part of Theorem 1.2 follows since, from above, the volume
of S3 nLj is 10j v0, and the volume of Q3 is v0=6.

The case of Lj is handled in a completely similar manner using polyhedra arising as in
Figure 4. We omit the details.

Figure 4
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As was pointed out in [13, Remark 3.7], it is not always the case that a cubical manifold
decomposes into regular ideal tetrahedra. However, this does hold for the manifolds
S3 nLj and S3 nLj . The important point to note is that insertion of the diagonals on
faces to create the five tetrahedra can be done so consistently (as was implicit in [19]). In
particular, each of S3nLj and S3nLj is decomposed into 10j regular ideal tetrahedra,
and so, using this decomposition and [17], a corollary of Theorem 1.2 is:

Corollary 2.5 S3 nLj and S3 nLj are manifolds of maximal volume amongst all
hyperbolic manifolds admitting a decomposition into 10j tetrahedra.

3 Closed embedded essential surfaces

We first show that, for j � 2, S3 nLj contains a closed embedded essential surface.
Deleting the component K of Lj results in the .jC1/–component unlink. The result
now follows from [10, Theorem 4.1] since the SL.2;C/ character variety of FjC1 has
dimension 3.j C 1/� 3D 3j and this is greater than j C 2 for j � 2.

The case of S3nLj is handled in a similar manner. In this case, deleting the components
K1 and K2 from Lj results in the .jC1/–component unlink and we now argue as
above, applying [10, Theorem 4.1] on noting that 3.j C 1/� 3D 3j is greater than
j C 3 for j � 2.
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Unchaining surgery, branched covers,
and pencils on elliptic surfaces

TERRY FULLER

R İnanç Baykur, Kenta Hayano, and Naoyuki Monden used a technique called
unchaining to construct a family of simply connected symplectic 4–manifolds X 0g.i/

for all g � 3 and 0� i � g� 1 (Geom. Topol. 20 (2016) 2335–2395). Among this
family, the manifolds X 0g.g�2/ are shown to be symplectic Calabi–Yau 4–manifolds.
They also showed that each X 0g.i/ # CP 2 admits a pair of inequivalent genus g

Lefschetz pencils. We show how to describe every X 0g.i/ as a 2–fold branched cover
of a rational surface, and use this to prove that each X 0g.i/ is diffeomorphic to the
elliptic surface E.g� i/. This has several notable consequences: each symplectic
Calabi–Yau they construct is diffeomorphic to K3; for each n � 3 and g � n, the
elliptic surface E.n/ admits a genus g Lefschetz pencil; and for each n� 3 and g� n,
the once blown up elliptic surface E.n/ # CP 2 admits a pair of inequivalent genus g

Lefschetz pencils.

57K40, 57K43

1 Introduction

Since the foundational work of Donaldson [6] and Gompf [10] in the 1990s, Lefschetz
pencils and fibrations have been known to characterize symplectic 4–manifolds. In [4],
R İnanç Baykur, Kenta Hayano, and Naoyuki Monden construct a doubly indexed family
of symplectic 4–manifolds X 0g.i/ for all g � 3 and 0� i � g� 1. Their examples are
constructed as the total spaces of symplectic genus g Lefschetz pencils, through explicit
factorizations of their monodromy. We review the specific factorizations which define
X 0g.i/ below, but in the meantime summarize results from [4] about these manifolds:

Theorems [4] For each g � 3 and 0� i � g�1, there is a genus g Lefschetz pencil
on X 0g.i/ with the following properties:

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution
License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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(a) [4, Lemma 4.7] The manifolds X 0g.i/ are simply connected , with Euler charac-
teristic e.X 0g.i//D 12.g� i/ and signature �.X 0g.i//D�8.g� i/.

(b) [4, Lemma 5.6] The manifolds X 0g.i/ are spin if and only if g� i is even.

(c) [4, Theorem 4.8] The manifolds X 0g.g� 1/ are diffeomorphic to the rational
elliptic surface E.1/.

These statements suggest our main result:

Theorem 1 The manifolds X 0g.i/ are diffeomorphic to the elliptic surface E.g� i/.

This has some immediate corollaries. In [4], Baykur, Hayano, and Monden note that
when g� i is even, X 0g.i/ is irreducible (since it is spin), but the irreducibility of X 0g.i/

for odd g� i is left open.

Corollary 2 X 0g.i/ is irreducible for all g � 3 and 0� i � g� 2.

Additionally, in [4], the Kodaira dimensions of X 0g.i/ are computed only for the special
cases of g� 3� i � g� 1 and g� i even. Our main theorem fills in the missing cases:

Corollary 3 The symplectic Kodaira dimension of X 0g.i/ is

(1) �.X 0g.i//D

8<:
�1 if i D g� 1;

0 if i D g� 2;

1 if 0� i � g� 3:

An additional corollary concerns symplectic Calabi–Yau 4–manifolds. A complex
Calabi–Yau surface is one with a trivial canonical class, and one can likewise define a
symplectic Calabi–Yau 4–manifold to be one with a trivial symplectic canonical class.
All known examples of symplectic Calabi–Yau manifolds are complex K3 surfaces
or torus bundles over tori. Since any symplectic Calabi–Yau manifold must have the
rational homology type of these complex surfaces (see Bauer [2] and Li [13]), it is an
intriguing open question if there exist any symplectic Calabi–Yau 4–manifolds which
are not diffeomorphic to one of these; see Friedl and Vidussi [8] and Li [14]. Baykur,
Hayano, and Monden show that the manifolds X 0g.g� 2/ are symplectic Calabi–Yau
[4, Corollary 4.10], and ask if they are diffeomorphic to the standard K3 surface.

Corollary 4 The symplectic Calabi–Yau manifolds X 0g.g�2/ are diffeomorphic to K3.

Algebraic & Geometric Topology, Volume 23 (2023)
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In addition to its relevance to finding examples of symplectic Calabi–Yau manifolds,
this result serves to illustrate the diversity of Lefschetz pencils on fixed 4–manifolds.
The K3 surface is known to admit pencils of every genus (see Smith [15]), and it is
noted in [4] that the diffeomorphism X 0g.g�1/ŠE.1/ implies that the same is true for
the rational elliptic surface E.1/. The author is not aware of any other such examples.

Corollary 5 For all n� 3, the elliptic surface E.n/ admits a genus g Lefschetz pencil
for every g � n.

A deeper related application concerns finding inequivalent Lefschetz pencils on a given
4–manifold with the same topological data (ie genus and number of basepoints). By
using the braiding lantern substitution technique of Baykur and Hayano [3], Baykur,
Hayano, and Monden prove:

Theorem [4, Corollary 6.4] For all g�3 and 0� i�g�1, the manifold X 0g.i/#CP2

admits a pair of inequivalent genus g Lefschetz pencils. In particular , the manifold
E.1/ # CP2 admits a pair of inequivalent genus g Lefschetz pencils for all g � 3.

Theorem 1 strengthens this result.

Corollary 6 For all n � 3, the once blown up elliptic surface E.n/ # CP2 admits a
pair of inequivalent genus g Lefschetz pencils for all g � n.

Of course, the conclusions of corollaries 5 and 6 apply to blow ups of E.n/ and
E.n/ # CP2 at basepoints, as well.

The method of proof of Theorem 1 exploits the natural 2–fold symmetry of Baykur,
Hayano, and Monden’s construction. We begin by blowing up the pencil on X 0g.i/

to obtain an associated Lefschetz fibration Xg.i/, and use this symmetry to represent
Xg.i/ as a 2–fold branched cover of a rational surface. A sequence of handle slides
in the base of this cover allows one to find and blow down the required number of
exceptional sections, and we arrive at a branched cover description of X 0g.i/. The
branch surface of this cover is represented as a banded unlink diagram, of the sort
studied by Mark Hughes, Seungwon Kim, and Maggie Miller in [11], with an explicitly
drawn ribbon surface as (most of) the branch locus. We then use various band moves
to obtain an isotopy of the branch surface, yielding a branched cover description that is
recognized as one for elliptic surfaces.

Algebraic & Geometric Topology, Volume 23 (2023)



2870 Terry Fuller

In Section 2 we discuss banded unlink diagram descriptions of embedded surfaces, and
review the moves on these diagrams that we will employ in the proof. The following
section reviews the topology of Lefschetz pencils and fibrations. Finally, in Section 4,
we define the manifolds X 0g.i/ and Xg.i/, and give the proof of Theorem 1.

2 Banded unlink diagrams

In this section we review the notion of a banded unlink diagram [11]. This describes a
closed surface embedded in a closed 4–manifold X . Banded unlink diagrams can be
defined using any handlebody description for X , but since in our application X will
lack 1– and 3–handles, we only discuss that setting here.

Suppose X is obtained by attaching n 2–handles to a single 0–handle, and then attaching
one 4–handle. The manifold X can be depicted by a Kirby diagram K consisting of
an n–component framed link in S3. Let X0 denote the boundary of the 0–handle, and
X1 the union of the 0– and 2–handles. Of course, both @.X0/ and @.X1/ are S3, and
@.X1/ can be described as the result of a surgery of S3 along the components of K.

Let L be a link in the exterior E.K/. Since L avoids the attaching region of the
2–handles, we can view L as a link in @.X0/ and in @.X1/. In a banded unlink diagram,
we begin with an unlink in E.K/, and form a ribbon surface by attaching a disjoint
collection of bands to the spanning disks of the unlink; L is the link that results from
the band surgery to the unlink, and we may push the interior of the ribbon surface into
X0 to get an embedded surface. In a banded unlink diagram, we also require that L

bounds a collection of disjoint disks in @.X1/. In this way, the ribbon surface that L

bounds can be capped off by these disks, giving a closed surface in X .

In [11], Hughes, Kim, and Miller give a complete set of moves for banded unlink
diagrams of isotopic surfaces in a 4–manifold. As we will apply these to manifolds
without 1–handles, we review only the moves that we use later: band slides, band
swims, 2–handle band swims, and 2–handle band slides. These are shown in Figure 1.
(The 2–handle band slides in Figure 1 can be done with any knotted attaching circle
and any framing, following the usual rules of Kirby calculus; the 0–framed unknot
pictured here is all that will be used later. The strands running through the attaching
circle of the handle can represent other handles, bands, or unlink components.)

Two particular iterations of the swim moves will be used often, and are shown in
Figures 2 and 3. In each figure, a sequence of swims is performed, moving the band

Algebraic & Geometric Topology, Volume 23 (2023)
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band slide band swim

0 0

n n
2–handle
band slide 2–handle

band swim

Figure 1: In the two swim moves, the band/attaching circle passes lengthwise
through the interior of the horizontally drawn band.

or attaching circle from the right side of the initial diagram successively through each
of the bands to its left. An intermediate step following the first swim is depicted in
each figure. In later use, the initial ribbon surface from each figure will be replaced by

Figure 2: A band dive.
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n

n

n

Figure 3: A 2–handle band dive.

the final one, and we will refer to these moves as band dives and 2–handle band dives,
respectively.

3 Lefschetz pencils and fibrations

In this section we review the definitions of Lefschetz fibrations and Lefschetz pencils,
and discuss the topology of these structures. A more comprehensive description of the
topology of Lefschetz fibrations and pencils can be found in [10].

We denote a closed oriented genus g surface by †g, and a compact oriented genus g

surface with n boundary components by †n
g. Their mapping class groups will be

denoted by �g and �n
g , respectively. We will also denote a sphere with m marked points

by †0;m, and its mapping class group by �0;m.

Definition Let W be a compact oriented smooth 4–manifold, and C a compact
oriented smooth surface. A proper smooth map f WW ! C is a Lefschetz fibration if

Algebraic & Geometric Topology, Volume 23 (2023)
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(i) the critical points of f lie in the interior of W , and

(ii) for each critical point of f in W , there are complex coordinate charts agreeing
with the orientations on W and C such that locally f can be expressed as
f .z1; z2/D z2

1
C z2

2
.

We will only encounter C D S2 or D2.

Definition Let W 0 be a closed oriented smooth 4–manifold. Let B �W 0 be a finite
set of points. A smooth map f WW 0 nB!CP1 is a Lefschetz pencil if:

(i) For each critical point of f in W 0 n B there are complex coordinate charts
agreeing with the orientations on W 0 and CP1 such that locally f can be
expressed as f .z1; z2/D z2

1
C z2

2
.

(ii) For each point of B there is a complex coordinate chart on W 0 and an identifi-
cation of the base as CP1 such that locally f can be expressed as f .z1; z2/D

Œz1 W z2�.

The existence of a Lefschetz pencil f WW 0 nB! CP1 will be described by saying
that there is a Lefschetz pencil on W 0.

The points of B are called basepoints of the Lefschetz pencil. A Lefschetz pencil with
B D∅ is a Lefschetz fibration over CP1

Š S2. If B ¤∅, we can blow up W 0 at each
basepoint to get W , and the Lefschetz pencil on W 0 becomes a Lefschetz fibration
W !CP1

Š S2.

It is a consequence of these definitions that, for a Lefschetz fibration, a regular fiber
f �1.x/ is a closed genus g surface. For a Lefschetz pencil with n > 0 basepoints,
f �1.x/ is not compact, and we instead consider f �1.x/\ .W 0 n .U1 [ � � � [Un//,
where Ui is an open ball about the basepoint in each coordinate chart with property (ii)
above. This fiber will be a compact genus g surface with n boundary components. We
refer to genus g Lefschetz fibrations or pencils, accordingly.

Lefschetz pencils and fibrations are understood topologically through monodromy
factorizations. Let x1; : : : ;x� be the critical values for f . We assume, without loss
of generality, that each critical point of f lies in a separate fiber. For a pencil, we
select a regular value x0 2 CP1, and a disjoint collection of arcs i from x0 to xi

for each i D 1; : : : ; �. (We also assume each i avoids the other critical points.) We
further assume the arcs 1; : : : ; � appear in this order as we travel in a small circle
about x0. For each i , we consider a loop that begins at x0, travels along i , then
counterclockwise around a small circle centered at xi , and back to x0 along i . Using
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an identification of f �1.x0/ with †n
g, the monodromy of f along this loop is known

to be a right-handed Dehn twist tci
along a simple closed curve ci � †

n
g [12]. The

curve ci is called a vanishing cycle. To get a global description of a Lefschetz pencil,
these local models must fit together according to the equation tc1

: : : tc�
D tı1

: : : tın

in �n
g , where ıj denotes a right-handed Dehn twist about a curve parallel to the j th

boundary component of †n
g. Conversely, given any factorization in �n

g of tı1
: : : tın

as a product of right-handed Dehn twists, one can construct a Lefschetz pencil with
monodromy prescribed by the factorization.

When working with Lefschetz fibrations, one has a similar description of the local mon-
odromy about a critical value xi as a right-handed Dehn twist tci

about a simple closed
curve ci �†g. To form a global Lefschetz fibration over S2, the local monodromies
must concatenate to form a relation tc1

: : : tc�
D 1 in �g.

Any particular monodromy description of a Lefschetz pencil is far from unique, as it
depends on a choice of identification of a regular fiber, as well as on a system of arcs i .
Modifying these choices translates into a simple set of moves on factorizations in �n

g

(see [10]), and two factorizations related in this way are said to be Hurwitz equivalent.

There is a straightforward relationship between a monodromy factorization of a Lef-
schetz pencil on W 0 and that of the Lefschetz fibration W ! S2 obtained by blowing
up W 0 at all basepoints. Under the homomorphism �n

g ! �g obtained by capping off
each boundary component of †n

g with a disk, Dehn twists about the boundary parallel
curves ıj become trivial in �g. A monodromy factorization tc1

: : : tc�
D tı1

: : : tın

in �n
g for the pencil on W 0 then gives a monodromy factorization tc1

: : : tc�
D 1 in �g

for the fibration W ! S2.

A monodromy factorization of a genus g Lefschetz fibration f WW ! S2 also leads
to a handlebody description of W in a well-understood way [10]. One begins with
a handlebody description of †g �D2 consisting of a 0–handle, 1–handles, and 2–
handles. Given a factorization tc1

: : : tc�
D 1 in �g, we form †g �D2[

�S�
iD1

H 2
i

�
,

where each H 2
i is a 2–handle attached along the vanishing cycle ci in a separate

fiber †g � fpointg � †g � S1 D †g � @D
2. The 2–handles are attached along the

S1 factor in the order they appear in the factorization, and they have framing �1

relative to the framing on ci induced by the product †g �S1. Following these handle
attachments, we have a handlebody describing a Lefschetz fibration over D2 with
the prescribed monodromy factorization. The boundary of †g �D2[

�S�
iD1

H 2
i

�
is

†g–bundle over S1 with monodromy tc1
: : : tc�

; because this is isotopic to the identity,
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this boundary is diffeomorphic to†g�S1. Hence we can extend the Lefschetz fibration
to be one over S2 by attaching the trivial fibration †g �D2! D2 along †g � S1.
This final attachment adds one or more 2–handles, 3–handles, and a 4–handle.

A technique for constructing new Lefschetz pencils or fibrations from old is monodromy
substitution. Given a monodromy factorization, a monodromy substitution swaps a
subword of the factorization with a different (but equal, in �n

g or �g) product of right-
handed Dehn twists. In [4], Baykur, Hayano, and Monden employ this operation using
the odd chain relation: suppose c1; c2; : : : ; c2hC1 are simple closed curves on†n

g or†g

that form a chain; that is, ci and ciC1 intersect in one point for all i , and ci and cj

are disjoint otherwise. A regular neighborhood of c1[ � � � [ c2hC1 is a subsurface S

homeomorphic to †2
h
. The chain relation is .tc1

tc2
: : : tc2hC1

/2hC2 D tb1
tb2

, where b1

and b2 are the boundary components of S . Using this relation to replace a subword in
a monodromy factorization given by the left-hand side of the chain relation with the
two Dehn twists on the right is referred to as unchaining.

Realizing hyperelliptic Lefschetz fibrations as branched covers Let � W†g!†g

be the hyperelliptic involution, and � W†g!†0;2gC2 the branched covering that is
the quotient of �. A Lefschetz fibration on W ! S2 is hyperelliptic if it is Hurwitz
equivalent to one with a monodromy factorization where each vanishing cycle ci

satisfies �.ci/D ci . If all ci are nonseparating, then W is a 2–fold branched cover of an
S2–bundle over S2, with the Lefschetz fibration map obtained as the composition of
this cover with the bundle projection [9]. This cover is crucial to the proof of Theorem 1,
and we review the details.

Since all ci are nonseparating and symmetric, the factorization tc1
: : : tc�

D 1 is the
lift of the relation h�.c1/ : : : h�.c�/ D 1 in �0;2gC2, where h�.ci / is a right-handed
disk twist about the arc �.ci/ in †0;2gC2. The factorization h�.c1/ : : : h�.c�/ can be
used to construct a ribbon surface in S2 �D2, for which the cover branched over that
surface is a Lefschetz fibration over D2 with the required monodromy factorization.
The Birman–Hilden theorem (see [5; 7]) then implies that we can always extend this
cover by attaching a trivial covering of†g�D2 over S2�D2, resulting in W covering
an S2–bundle over S2 branched over a closed surface.

In practice, the base and branch set of this cover can be explicitly drawn as a banded
unlink diagram. In S2 �D2, represented as a Kirby diagram by a 0–framed unknot,
we begin with 2g C 2 disks representing fpointg �D2, drawn as meridians to the
unknot, with their interiors pushed into the 0–handle. The branched cover of S2 �D2
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over these disks is †g �D2, restricting to the hyperelliptic quotient in each fiber. A
ribbon surface is then constructed by attaching left-handed half-twisted bands so that
the core of each band is the arc �.ci/ in S2 � fpointg. By the method in [1], in the
2–fold cover of S2 �D2 branched over this ribbon surface, each added band lifts
to a 2–handle attached along ci , with relative framing �1. Thus the lift of S2 �D2

branched over the ribbon surface is the total space of a Lefschetz fibration over D2,
with monodromy factorization tc1

: : : tc�
. On the boundary, we have a †g–bundle

over S1 covering an S2–bundle over S1, each with monodromy isotopic to the identity.
To extend the branched covering over W , it is necessary to find a fiber-isotopy of the
factorization tc1

: : : tc�
to the identity (ie an isotopy through homeomorphisms which

are all fiber-preserving with respect to �): using a given fiber-isotopy to the identity, we
can then identify the branched covering on the boundary as �� id W†g�S1!S2�S1

and extend the covering as � � id W†g �D2! S2 �D2. The attachment of S2 �D2

to the base matches the boundary of disks fpointg �D2 to the boundary of the ribbon
surface, and in this way we get a closed surface as branch set. The extension attaches
a 2–handle union a 4–handle to the diagram of the base, with the 2–handle attached
as a meridian to the 0–framed 2–handle. When working with examples, the braid
factorization h�.c1/ : : : h�.c�/ plays a valuable role. The necessary fiber-isotopy to the
identity can often be seen by simply observing that the braid factorization is isotopic to
the identity by an isotopy that fixes the branch points at all times, in which case one
obtains a fiber-isotopy of tc1

: : : tc�
to the identity as its lift. We can also use the braid

factorization to compute the framing of the second attached 2–handle and to see how
the attaching circle links the boundary of the branch surface. To do this, we select a
reference point � 2 †0;2gC2 nB2

2gC2
, where B2

2gC2
is a disk containing the branch

points, and track a framed neighborhood of � through the isotopy of dh.c1/ : : : dh.c�/

to the identity.

In [9], it was shown how to modify this branched covering description of a hyperelliptic
Lefschetz fibration to accomplish an unchaining monodromy substitution. Although
the procedure in [9] was described only for even unchaining substitutions, the method
applies equally well to the odd unchaining substitutions considered here.

4 The proof of Theorem 1

We are now ready to describe the manifolds X 0g.i/ constructed by Baykur, Hayano,
and Monden, and prove that they are diffeomorphic to the elliptic surfaces E.g� i/.
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4.1 The manifolds X 0
g.i / and Xg.i /

In [4], Baykur, Hayano, and Monden construct their infinite family of Lefschetz pencils
by explicit monodromy factorization. Their factorizations use Dehn twists about the
curves on †2.iC1/

g shown in Figure 4. We abbreviate the product of boundary curve
twists as � D tıiC1

: : : tı2
tı1

tı0
iC1

: : : tı0
2
tı0

1
, and also let Dg D td4

td5
: : : td2gC1

and
Eg D te2gC1

: : : te5
te4

.

Theorem [4, Theorem 4.6] For each g � 3 and 0� i � g� 1, there are symplectic
genus g Lefschetz pencils on X 0g.i/ with monodromy factorizations in �2.iC1/

g ,

�D

(
DgEgtxiC1

: : : tx2
tx1

tx0
iC1

: : : tx0
2
tx0

1
.tc1

tc2
tc3
/4.g�i/; g odd;

DgEgtxiC1
: : : tx2

tx1
tx0

iC1
: : : tx0

2
tx0

1
.tc1

tc2
tc3
/4.g�1�i/C2.tc3

tc2
tc1
/2; g even:

(Here we have cyclically permuted the right-hand side from its expression in [4].)

If we cap off each boundary component of †2.iC1/
g with a disk, each of the curves

xj and x0j become parallel copies of a curve x and x0, respectively, on †g. From the
previous equation we see that the monodromy factorization of the Lefschetz fibration
Xg.i/! S2 is

(2) 1D

(
DgEg.tx/

iC1.tx0/iC1.tc1
tc2

tc3
/4.g�i/ if g is odd;

DgEg.tx/
iC1.tx0/iC1.tc1

tc2
tc3
/4.g�1�i/C2.tc3

tc2
tc1
/2 if g is even:

...

...

...

... ...

......

... ...

ıiC1 ık ı1

ı0iC1 ı0
k

ı01

xk

x0
k c1 c2 c3 c4 c2gC1

d4 d5
d2gC1

e4 e5 e2gC1

Figure 4: Curves on †2.iC1/
g .
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......
c1 c2 c3

c2gC1
x0

x

Figure 5: Curves on †g.

As it will play a role later, we review Baykur, Hayano, and Monden’s derivation of this
monodromy factorization. They begin with the full chain relation

tı1
tı0

1
D .tc1

tc2
: : : tc2gC1

/2gC2

in �2
g . This is well known to be the monodromy of a pencil with two basepoints on a

complex surface Z0g of general type. Through a series of lemmas, they show this is
Hurwitz equivalent to the factorization

(3) tı1
tı0

1
D

�
DgEg.tc1

tc2
tc3
/4g.tc5

tc6
: : : tc2gC1

/2g�2; g odd;
DgEg.tc1

tc2
tc3
/4.g�1/C2.tc3

tc2
tc1
/2.tc5

tc6
: : : tc2gC1

/2g�2; g even:

They then apply unchaining monodromy substitutions to this factorization, i times
to the subword .tc1

tc2
tc3
/4, and once to .tc5

tc6
: : : tc2gC1

/2g�2. In addition, a clever
inductive use of the lantern relation shows that this relation has a lift from �2

g to �2.iC1/
g ,

providing enough sections of the pencil to allow for the computation of the symplectic
Kodaira dimension for some of the resulting 4–manifolds, and giving the factorization
in the above theorem.

We give separate proofs that X 0g.i/ŠE.g�i/ for g odd and even. Each proof will have
two stages: representing X 0g.i/ as a 2–fold branched cover, followed by modifications
of the base that realize the diffeomorphism.

4.2 The proof for odd g

4.2.1 Representing X 0
g.i / as a branched covering Let Fn denote the nth Hirzebruch

surface. We begin by discussing how to represent X 0g.i/ for odd g as the 2–fold branched
cover of the rational surface FiC1, branched over an embedded surface. The base of
the covering and the branch surface will be represented as a banded unlink diagram.

Recalling the derivation of the factorization in the theorem of Section 4.1, we discuss
first the Lefschetz fibration Zg! S2 that comes from blowing up the Lefschetz pencil
defined by (3). This Lefschetz fibration on Zg has monodromy given by the relation

(4) DgEg.tc1
tc2

tc3
/4i.tc5

tc6
: : : tc2gC1

/2g�2.tc1
tc2

tc3
/4.g�i/

D 1
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...

0

�1

D2gC2

C i
4 C

g�i
4

C2g�2

[ 4–handle

Figure 6: The 2–fold branched cover is Zg.

in �g. This is a hyperelliptic Lefschetz fibration, and from the discussion in Section 3,
we see that Zg can be described as the 2–fold cover of F1 branched over the surface
described in Figure 6. The visible part of the branch surface is the ribbon surface
consisting of 2gC 2 horizontal disks together with the collection of bands C4, C2g�2,
and D2gC2 defined in Figures 7 and 8. (The exponents for C4 denote repeated copies.)
The branched cover of the 0–handle union the 0–framed 2–handle branched over the
ribbon surface is a Lefschetz fibration over D2 with monodromy given by (4). It can
be checked directly using the Alexander method (see [7]) that the projection of (4)

...

...

...

...

...

...

n columns

n strands

Figure 7: The braid Cn.
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Figure 8: The braid Dn, with n strands.

to a homeomorphism of †0;2gC2 equals a right-handed Dehn twist about a circle
which encloses all marked branch points. This is isotopic to the identity by an isotopy
that fixes all branch points throughout, providing a fiber-isotopy to the identity, as
required. This isotopy also fixes a reference point � 2†0;2gC2 nB2

2gC2
, and rotates a

framed neighborhood of � once in a left-handed direction. Thus if we attach the second
2–handle as shown in Figure 6, along a meridian with framing �1, we match 2gC 2

disks to the boundary of the ribbon surface, and we see Zg as the cover of the surface
given as a banded unlink diagram, as claimed.

We now consider unchaining substitutions on (4), i times on the subword .tc1
tc2

tc3
/4i

and once on .tc5
tc6
: : : tc2gC1

/2g�2. Doing so yields Baykur, Hayano, and Monden’s
relation (2) that defines the Lefschetz fibration Xg.i/. As described in [9], we can
realize this substitution pictorially by “blowing up” the chain boxes in Figure 6, that
is, by replacing them with �1–framed 2–handles, as shown in Figure 9. Each of the
newly introduced 2–handles will lift to two 2–handles with relative product framing �1,
attached along the pair of vanishing cycles x and x0. This figure still represents a
banded unlink diagram, with 2gC 2 disks in the 4–handle, attached to the boundary of
the ribbon surface. Thus Xg.i/ is the 2–fold cover of F1 # .i C 1/CP2 branched over
the surface shown in Figure 9.

We next execute a series of moves to the base of the branched covering. We begin by
isotoping the newly added 2–handles by swinging them around the back of the ribbon
surface so that they appear on the left, as in Figure 10.

We next slide the upper left �1–framed 2–handle over the lower one, producing
Figure 11. Next the �2–framed 2–handle is slid over the parallel 0–framed one, giving
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{

...

...
0

�1

D2gC2

C
g�i
4

�1

�1 �1

i

[ 4–handle

Figure 9: The 2–fold branched cover is Xg.i/.

Figure 12, and then slid over the �1–framed 2–handle that links it as a meridian. The
result is Figure 13.

...

{

...

0
�1 i � 1

�1

�1

�1 �1
D2gC2

C
g�i
4

[ 4–handle

Figure 10
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{

...

...

0
�1 i � 1�2

�1
�1 �1

D2gC2

C
g�i
4

[ 4–handle

Figure 11

We repeat this series of slides for each of the remaining �1–framed 2–handles at the
top of the picture, resulting in Figure 14.

{

...

...

0

�1

�2

i � 1

�1
�1 �1 D2gC2

C
g�i
4

[ 4–handle

Figure 12
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{

...

...

0

�1

�1

i � 1

�1
�1 �1 D2gC2

C
g�i
4

[ 4–handle

Figure 13

Next we slide the lower �1–framed 2–handle over the blue 0–framed 2–handle, then
slide the result over the (blue) �1–framed 2–handle, giving Figure 15. Finally, we blow

{

... ...
...

0

�1

�1

�1

i

D2gC2

C
g�i
4

[ 4–handle

Figure 14
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{

... ...

...

0

�1

�1

0

i

D2gC2

C
g�i
4

[ 4–handle

Figure 15

down each of the �1–framed 2–handles that link the 0–framed 2–handle, to arrive at
Figure 16.

We pause here for an important observation: in this last step, each of the 2–handles
that we are blowing down are attached along meridians to the 0–framed 2–handle.

...

0 i C 1

C
g�i
4

[ 4–handle

Figure 16: The 2–fold branched cover is X 0g.i/.
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...

...
0 n

S

T bands

[ 4–handle

Figure 17: The ribbon surface F.R;S;T / has R horizontal disks.

Retracing the diffeomorphism that goes between Figures 16 and 9, we see that the
spheres given by these handles will each lift to two sections of the Lefschetz fibration
on Xg.i/, of square �1. Because we have blown down 2.iC1/ sections of the fibration
Xg.i/ with square �1, it follows that the 2–fold branched cover of FiC1 branched over
the embedded surface described in Figure 16 is X 0g.i/.

We next show that description of X 0g.i/ as the branched cover in Figure 16 can be used
to show that it is diffeomorphic to E.g� i/. This relies on a key lemma.

4.2.2 A key lemma To set up the statement, let F.R;S;T / denote any ribbon
surface in the 4–manifold Fn of the form shown in Figure 17. The box can represent

...

0 n

S C 1

Figure 18
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...

...

0 n

Figure 19

any collection of bands, with the condition that any bands located there are attached to
the top four horizontal disks, and avoid the disks below.

The notation records that

� the ribbon surface has R horizontal disks,

� the n–framed attaching circle links the horizontal disks S times positively in the
indicated region, and

� there are T trivial bands attached to the top four horizontal disks.

In applications of Lemma 7, T will be divisible by four, and the trivial bands will be
distributed evenly among the top four horizontal disks.

...

...

0 n

Figure 20
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...

...

0 n

Figure 21

Lemma 7 For R� 8, the ribbon surface F.R;S;T / is isotopic to the ribbon surface
F.R� 4;S C 1;T C 4/.

Proof Beginning with F.R;S;T / as shown in Figure 17, we obtain Figure 18 by a
2–handle band dive of the n–framed 2–handle. This increases the linking in the upper
left of the picture to S C 1. A band slide results in Figure 19, and a band dive of that
same band gives Figure 20.

At this point, we may cancel the bottom horizontal disk with the remaining attached
band. In addition, we do a 2–handle band slide over the 0–framed 2–handle, using
a band indicated by the gray arrow; the slide disengages the band from the top four
horizontal disks, and it can be isotoped to the trivial band shown in Figure 21.

The transition from Figure 18 to Figure 21 resulted in the cancellation of the bottom
horizontal disk, and added a trivial band in the process. We can repeat these steps three

{... {...

{

0 n
T C 4 bands

S C 1

Figure 22
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...

...{

0 i C 1

kC 1
[ 4–handle

C
g�i
4

Figure 23

times to remove the bottom three horizontal disks, as shown in Figure 22. In this figure,
we have moved the trivial bands from their position in Figure 21, by sliding them over
the long bands to their right, so that they are now attached to the top four disks. In total
we have removed the four bottom horizontal disks, and added four trivial bands; thus
the values of R and T change to R� 4 and T C 4, respectively.

4.2.3 An isotopy of the branch surface Let g D 2k C 1. Returning to the proof
of Theorem 1, Figure 16 shows that X 0g.i/ is diffeomorphic to the 2–fold branched
cover of FiC1 branched over a surface of the form F.2gC 2; 0; 0/D F.4kC 4; 0; 0/.
Then k iterations of Lemma 7 give that X 0g.i/ is diffeomorphic to the 2–fold branched
cover branched over a surface of the form F.4; k; 4k/. Recall that the full surface
in Figure 16 includes 2g C 2 unseen disks attached to the boundary of the ribbon
surface, with their interiors in the 4–handle. Using 4k D 2g�2 of these disks to cancel
the trivial bands, we have that X 0g.i/ is diffeomorphic to the cover of the manifold
in Figure 23. (Note that four disks remain in the 4–handle.) We arrive at Figure 24
by sliding the .iC1/–framed 2–handle over the 0–framed one kC 1 times. The new
framing is .i C 1/� 2.kC 1/D i � 2k � 1D�.g� i/, as shown.

The proof for odd g is completed by recognizing that the branched cover of Fg�i

over the surface in Figure 24 is E.g � i/. This is immediate from the discussion

0 �.g� i/

[ 4–handle

C
g�i
4

Figure 24
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...

0
�1

D2gC2

C i
4 C

g�i�1
4

C2g�2

E

[ 4–handle

Figure 25

in Section 3. The lift of the branched cover of the 0–handle union the 0–framed 2–
handle branched over the ribbon surface is a genus 1 Lefschetz fibration over D2 with
monodromy .tc1

tc2
tc3
/4.g�i/. The braid .d�.c1/d�.c2/d�.c3//

4.g�i/ is equal to g � i

full right-handed Dehn twists about a circle enclosing all branch points. This isotopy
of this to the identity fixes a reference point in †0;4 n B2

4
while rotating a framed

neighborhood g� i times in a left-handed direction. Thus adding a 2–handle with the
indicated location and framing shows that the branched cover of Fg�i over the rest
of the surface extends to a total space which is a genus 1 Lefschetz fibration over S2,
whose monodromy matches a well-known factorization of E.g� i/.

4.3 The proof for even g

The proof for even g is essentially the same as for odd g. However, because 2gC 2 is
no longer divisible by four, we must include two additional iterations of the basic moves
used in the proof of Lemma 7. Also, because the different form of the monodromy
of X 0g.i/ makes for a different ribbon branch surface, the final step of recognizing the
total space of the cover as an elliptic surface is somewhat different.

Figure 26: The ribbon surface E.
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{

...

...
0

�1

D2gC2

C
g�i�1
4 E

[ 4–handle

�1

�1 �1

i

Figure 27

As a starting point for even g, we begin with the Lefschetz fibration on Zg, which
from (3) has a monodromy factorization given by the relation

(5) DgEg.tc1
tc2

tc3
/4i.tc5

tc6
:::tc2gC1

/2g�2.tc1
tc2

tc3
/4.g�i�1/.tc1

tc2
tc3
/2.tc3

tc2
tc1
/2

D 1:

As before, this hyperelliptic Lefschetz fibration can be described as the 2–fold cover
of F1 branched over the surface described in Figures 25 and 26. Once again, it can
be checked that the projection of (5) to a homeomorphism of †0;2gC2 equals a right-
handed Dehn twist about a circle that encloses all marked branch points. The unseen
part of the branch surface is 2gC2 disks attached to the boundary of the ribbon surface,

...

0
i C 1

C
g�i�1
4 E

[ 4–handle

Figure 28
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{
{

...

...

0
i C 1

k

4k bands

Figure 29

with interiors in the 4–handle, exactly as in the odd g case. Thus Figure 25 depicts a
banded unlink diagram, as before.

Performing unchaining monodromy substitutions gives that Xg.i/ is the 2–fold cover
of F1 # .i C 1/CP2, branched over the surface in Figure 27. Mimicking the 2–handle
slides from the odd case yields 2.i C 1/ sections which are blown down to give X 0g.i/

as the 2–fold cover of FiC1 branched over the surface in Figure 28.

Let g D 2kC 2. The ribbon surface in Figure 28 is of the form

F.2gC 2; 0; 0/D F.4kC 6; 0; 0/:

Then k iterations of Lemma 7 give that X 0g.i/ is diffeomorphic to the cover of FiC1

branched over F.6; k; 4k/, shown in Figure 29.

We next cancel the bottom two horizontal disks as follows. A 2–handle band dive
gives Figure 30. We can then twice more use the sequence of moves in the proof of
Lemma 7: a band slide, followed by a band dive, followed by a 2–handle band slide.
(See the transition from Figure 18 to Figure 21.) This adds two more trivial bands to

{...

{ ...

0 i C 1

kC 1

4k bands

Figure 30
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...

...{

0 i C 1

C
g�i�1
4 E

[ 4–handle
kC 1

Figure 31

the picture, but we cancel all 4kC 2D 2g� 2 of them using disks from the 4–handle.
This results in Figure 31.

We next slide the .iC1/–framed 2–handle kC 1 times over the 0–framed handle. The
new framing is .i C 1/� 2.kC 1/D i � 2k � 1D�.g� i � 1/. This is Figure 32.

It remains to see that the branched cover described by Figure 32, right, is E.g � i/.
The lift of the branched cover of the 0–handle union the 0–framed 2–handle branched
over the ribbon surface is a genus 1 Lefschetz fibration over D2 with monodromy

.tc1
tc2

tc3
/4.g�i�1/.tc1

tc2
tc3
/2.tc3

tc2
tc1
/2:

The location and framing of the other attaching circle is explained by tracking a framed
neighborhood of a reference point � 2†0;2gC2 nB2

2gC2
through an isotopy from the

braid

.d�.c1/d�.c2/d�.c3//
4.g�i�1/.d�.c1/d�.c2/d�.c3//

2.d�.c3/d�.c2/d�.c1//
2

to the identity. This isotopy first undoes g � i � 1 right-handed Dehn twists, which
fixes � while rotating its neighborhood g � i � 1 times oppositely, followed by an
isotopy that pushes � around a circle passing through the middle two marked points
without twisting its neighborhood. Thus the branched cover of Fg�i�1 extended over
the rest of the surface gives a total space which is a genus 1 Lefschetz fibration over S2.
Finally, we note that the monodromy factorization of this fibration is easily seen to be
equivalent to other well-known factorizations for elliptic fibrations on E.g� i/.

0 �.g� i � 1/

C
g�i�1
4 E

[ 4–handle

Figure 32
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Bifiltrations and persistence paths for 2–Morse functions

RYAN BUDNEY

TOMASZ KACZYNSKI

We study the homotopy type of bifiltrations of compact manifolds induced as the
preimage of filtrations of R2 for generic smooth functions f WM !R2. The primary
goal of the paper is to allow for a simple description of the multigraded persistent
homology associated to such filtrations. Our main result is a description of the
evolution of the bifiltration of f in terms of cellular attachments. Analogs of the
Morse–Conley equation and Morse inequalities along so-called persistence paths are
derived, and a scheme for computing pathwise barcodes is proposed.

57R35; 55M99, 55N31

1 Introduction

In the past two decades, the Morse theory of smooth functions on manifolds, and
singularity theory, its extension to functions with multidimensional values, have driven a
lot of attention in the applied mathematics and theoretical computer science communities
due to their applications in imaging, visualisation and most recently, topological data
analysis (TDA). While those theories have been extensively developed for nearly a
century, new and potential applications bring different perspectives.

Morse theory is a tool that allows one to use real-valued functions on a manifold to give
a combinatorial description of that manifold, in the language of handle decompositions
or CW–complexes. A topological model for M is built following changes in sublevel
sets Mg�y D g�1..�1;y�/ of a Morse function (ie smooth and generic) g WM !R.
The central theorem — see Milnor [22] — about the filtration of M by sublevel sets is
that:

(1) The homotopy type of Mg�y does not change for y 2 Œa; b� provided there are
no critical values of g in the interval Œa; b�.
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2896 Ryan Budney and Tomasz Kaczynski

(2) If there is precisely one critical value in .a; b/ then the Mg�b is obtained from
Mg�a by a handle attachment, which up to a homotopy equivalence, is a cell
attachment.

In imaging and TDA, the interest shifts to the function itself. The domain of the image
is typically a well-understood space such as Rn or a triangulated sphere Sn. That is a
typical setting in works on the shape similarity by size function methods such as in
Biasotti, Cerri, Frosini, Giorgi and Landi [4]. When it comes to the study of functions
with multidimensional values, there are new challenges and more differences between
the classical singularity theory setting and the applied context.

Given the success of Morse theory, the study of generic smooth mappings from man-
ifolds to surfaces f WM ! † is a natural next step. The most basic elements of the
theory involves the description of the stratification of the manifold M by the singularity
types, together with the local properties of the mapping around singular points. This
was first worked out by Whitney [29] — see also Guillemin and Pollack [16] — when
M is a surface, and fully generalized in the subsequent decades; see Saeki [26] and
Wan [28]. Perhaps the main difference between the study of functions taking values
in R vs in a surface is that the set of fibres ff �1.a/ j a 2 †g lack a linear order on
them, so a poset relation has to be taken into account. In contrast, the real numbers
have the relatively canonical poset f.1; a� j a 2Rg of half-infinite intervals.

To be specific, let us state the posets studied in this paper. Consider f WM ! R2,
where M is an m–manifold of dimension m� 2, and the plane R2 is endowed with
the poset relation

.a; b/� .a0; b0/ () a� a0 and b � b0:

Any such function gives rise to a bifiltration of M , which is defined as the family
Mf D fM.a;b/g.a;b/2R2 of subsets of M given by

M.a;b/ D fp 2M j f .p/� .a; b/g:

Equivalently, the sets M.a;b/ are the preimages of the quadrants

C.a;b/ D .�1; a�� .�1; b�

under f . They are nested with respect to inclusions; that is, M.a;b/ �M.a0;b0/ for
every .a; b/� .a0; b0/.

Persistence consists of analyzing homological changes occurring along the bifiltration
as the point .a; b/ varies. Note that the boundary @C.a;b/ of the quadrant C.a;b/ is
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not a submanifold of R2: it can be viewed as a manifold with a corner. The problem
of bifiltration has been addressed in the presented setting by Smale in 1975 [27]
and further investigated by Wan [28]. As it is pointed out by Smale, the study is
historically motivated by the Pareto optimal problem of simultaneously maximizing
several functions. Our work is an extension of the work done in [27; 28], with the same
topic viewed from a different perspective.

There has been progress in computing persistent homology for multifiltrations which
include functions g WM !Rk as a special case for any 1< k < dim M . We refer the
reader to Carlsson and Zomorodian [8] and Cavazza, Cerri, Di Fabio, Ethier, Ferri,
Frosini, Kaczynski and Landi [9; 10]. However, most of the dimension-independent
work on computing persistent homology, often in a discrete setting, is “geometry blind”
in the sense that it does not give much insight to the particular types of singularities
one may encounter. Providing that insight is the main motivation for this paper. In
particular, in Allili, Kaczynski, Landi and Masoni [1], a Forman-type discrete analogy
of multidimensional Morse functions is investigated. In the conclusion of that paper,
it is pointed that an appropriate application-driven extension of the Morse theory to
multifiltrations for smooth functions is not much investigated yet, and it would help
in understanding the discrete analogy. The present work is a step in that direction. A
study of discrete Forman type multidimensional Morse functions is currently under
way by Landi and Scaramuccia, for instance, in [18]. A study of smooth multifiltrations
on manifolds with similar geometric motivation as ours and complementary goals is
currently under way by Bubenik and Catanzaro [6] and Assif and Baryshnikov [2].

We begin Section 2 with the definition of a 2–Morse function f WM !R2, following
Gay and Kirby [14] and Wan [28]. This allows us to define the (oriented) signature
invariant; see Definition 2.2. We follow this definition with a few simple examples
where one can explicitly compute the homotopy types of the filtration M.a;b/ for all
.a; b/ 2R2. The main result of the paper is a characterisation of the singular points
of the bifiltration. In short, these are the locations where the homotopy type of the
bifiltration changes; see Definition 2.1.

Theorem 1.1 If f W M ! R2 is a 2–Morse function then the bifiltration Mf has
singular points consisting entirely of corner and tail singular points.

In short, this theorem gives us a stratification of the plane R2 such that the homotopy
type of M.a;b/ is constant in the connected codimension zero strata. We follow that
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up by a description of how the homotopy type of M.a;b/ changes as .a; b/ crosses a
codimension one stratum.

Our Lemma 2.8 is the analogue of (1), in that it tells us that generically the homotopy
type of the manifolds M.a;b/ D f

�1.C.a;b// is locally constant. The nature of the
proof of Lemma 2.8 is significant to the rest of the paper, describing a rather flexible
technique of vector field flows, allowing us to construct conjugate isotopies (ie fibre-
preserving isotopies, also known as isotopies that are horizontal diffeomorphisms with
respect to the map f ) in both M and the plane R2. This allows us the freedom to
frame our remaining arguments in the language of how the homotopy type of f �1.Ct /

changes when Ct is an arbitrary “smoothly varying” 2–manifold in the plane. There
are however some points in the plane where the homotopy type of M.a;b/ does change;
this is described in Theorem 2.9. The main feature of Theorem 2.9 is that the homotopy
type of M.a;b/ changes via handle (or cell) attachments. In the proof we see one of the
handle attachments comes directly from a classical Morse theory argument. The second
type of handle attachment uses global features of the singular point set of f , and is
perhaps best thought of as a Bott-style handle attachment. We give a brief account of
Bott’s variant of Morse theory. Proposition 2.10 summarizes elements of the proof of
Theorem 2.9, describing the dimension of the cell attachments in terms of the oriented
signature invariant. One last feature of Section 2 is the observation that at “cubic”
points .a; b/ 2R2, while the homotopy type of M.a;b/ generally does not change, the
fibrewise homotopy type (with respect to the map f ) does change. Roughly speaking,
these cubic points correspond to pairs of cancelling handles (or cells).

In Section 3, we turn our attention to bifiltered persistent homology. We briefly review
descriptive techniques, and relations to one-dimensional persistence. In particular, the
foliation method that has been introduced in [4] for size functions, used by Cagliari,
Di Fabio and Ferri [7] and [10] for multidimensional persistent homology and later
named as fibred barcode in the context of persistence modules by [10] and Lesnick
and Wright [20]. As it is visible in examples of Section 2, in the presence of the
poset relation, there are multiple ways of building the topology of M by crossing
different arcs of the critical value set while respecting the poset relation. That leads us
to Definition 3.1 of persistence paths. It is a new concept which is somewhat analogous
to the mentioned foliation method of [10]. It also can be viewed as an analogy of a
flow induced by the generalized gradient in [28], in that our persistence paths apply to
functions f which may have cycles in the sense of [28, Definition 6.4 and 6.5]. We
prove an analogy of the Morse–Conley equation — see Rybakowski and Zehnder [25] —
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in Theorem 3.2, and derive from it Corollary 3.4 on strong Morse inequalities for
persistence paths. This gives us a flexible family of Morse inequalities associated
to f , extending the work of Wan [28]. We conclude Section 3 by introducing pathwise
barcodes in Definition 3.5 and describing a scheme for computing the barcodes based
on a small representable subfamily Rep.f / of all persistence paths. While Carlsson
and Zomorodian [8] outline an argument that there is no complete and discrete invariant
of multigraded persistent homology, the primary result of this paper strikes a more
optimistic note in the case of multifiltrations induced by smooth functions, implying
that our filtrations are tame; see Corollary 2.11.

In Section 4 we discuss some possible future research directions.

Acknowledgements The authors would like to thank Hyam Rubinstein, Marian
Mrozek, and Michael Lesnick for helpful suggestions.

Research of Kaczynski was supported by a Discovery Grant from NSERC of Canada.

2 Fold and cubical singularities

In the classical Morse theory of smooth real-valued functions and, respectively, sin-
gularity theory of functions with values in a 2–dimensional manifold †, a critical
point or singular point is a point p 2 M at which Df .p/ is not of maximal rank.
The corresponding point c D f .p/ in the target space is called a critical, respectively,
singular value of f . The terminology found in the literature is not consistent: sometimes
the terms critical and singular are interchanged.

In computational topology, we deal with nonsmoothness and degeneracy, so a topologi-
cal definition is more appropriate. It is also helpful in describing handle attachments. In
addition, in the presence of the poset structure of bifiltrations, as we shall see soon, there
is a substantial difference between singularity in the differential sense and criticality in
the topological sense. We shall adopt the following definition.

Definition 2.1 A homotopy regular value of f with respect to the bifiltration of M

is a point .a; b/ 2 R2 such that, in some neighbourhood U.a;b/ of .a; b/, for all
.a0; b0/; .a00; b00/ 2 U.a;b/ with

.a0; b0/� .a00; b00/;

the inclusion M.a0;b0/ ,!M.a00;b00/ is a homotopy equivalence. If this condition fails,
.a; b/ is called a homotopy critical value.

Algebraic & Geometric Topology, Volume 23 (2023)
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A weakening of this definition suited to persistent homology is the notion of homological
regular and critical values defined by replacing homotopy equivalence by isomorphism
induced in homology. This coincides with the definition of given in [9, Definition 3.4].

When f WM ! R is a Morse function, the sets of critical points and values in the
differential and topological sense coincide. For R2–valued functions, even the generic
ones, they are substantially different. We shall adopt the terms of singular points
and values for those given by differential definition and critical to those given by
Definition 2.1. Given f WM !R2. we consider the sets

SingpD fp 2M j rank Df .p/ < 2g; SingvD f .Singp/;

CritvD f.a; b/ 2R2
j .a; b/ is homotopy criticalg; CritpD f �1.Critv/:

We shall soon see that the arcs of Singv along which both coordinates .a; b/ increase are
homotopy regular, so they are not subsets of Critv. The topologically significant arcs
are those whose normal vectors have both coordinates of the same sign. Conversely,
Critv contains horizontal or vertical half-lines passing through the vertex of C.a;b/ and
“kissing” points on the singularity Singv but not contained in it. In Proposition 2.10 we
give a classification of different types of criticality.

As we just noticed, Definition 2.1 also applies to points .a; b/ 2 R2 which are not
necessarily the values of f , that is, are not in the image f .M /. For that reason we
will refer to them as points rather than values and whether we speak about points in M

or in R2 should be made clear from the context.

Following [11], the set Critv will be referred as to the extended Pareto grid. We begin
with a definition from Gay and Kirby [15; 14], and earlier Wan [28].

Definition 2.2 A 2–Morse function (also called Morse 2–function) is a smooth function

f WM !†;

where M is an m–manifold, m� 2 and † is a 2–manifold satisfying a local condition.
For any point p 2 M there are neighbourhoods Up � M of p in M , Vf .p/ � †

of f .p/ in †, U 0
0

of 0 in Rm, and V 0
0

of 0 in R2 together with diffeomorphisms
� WUp!U 0

0
�Rm and  WVf .p/!V 0

0
with �.p/D .f .p//D 0 making the diagram

Up Vf .p/

U 0
0

V 0
0

f jUp

�  

commute, where the bottom horizontal arrow must be one of the following three:
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� .x1;x2; � � � ;xm/ 7! .x1;x2/; for this, p is a regular point.

� .x1;x2; � � � ;xm/ 7! .x1;˙x2
2
C � � �C˙x2

m/; for this, p is a fold point.

� .x1;x2; � � � ;xm/ 7! .x1;x
3
2
Cx1x2C˙x2

3
C� � �C˙x2

m/; for this p is a cubic
point.

Just like with Morse functions, there are elementary transversality conditions equivalent
to Definition 2.2 [28, Section 1]. This allows the conclusion that, for any smooth
function f WM !† where † is a 2–manifold, via a small perturbation of f we may
convert f into a 2–Morse function, ie 2–Morse functions form an open and dense
subset of the space of smooth functions M !†.

The curves of the fold singularities come equipped with transverse-oriented indices.
This is analogous to the index of a critical point of a Morse function, but made slightly
more complex by the codomain of our function being R2.

The index has the form of a triple .v; i; j / where v is a vector transverse to the
singular value set, and i is the dimension of the eigenspace that is folded into the
v direction, while j is the dimension of the eigenspace that is folded into the �v
direction. Thus iCj Dm�1. Due to this convention we need the equivalence relation
.v; i; j /� .�v; j ; i/. Further notice that due to the nature of the cubic singularity there
are two fold-type singularities that merge, with one fold being of type .v; i; j / and
the other fold being of the type .v; i C 1; j � 1/. In our diagrams we will typically
draw the v vectors, and only plot the pair .i; j /. In general i is an integer in the set
f0; 1; 2; : : : ;m� 1g; see Figure 1. Our oriented index makes sense only on the fold
points. We give a more precise definition in the next paragraph.

An elementary observation that may help the reader acclimatize to 2–Morse functions
is the observation that if S �† is a smoothly embedded copy of R, with f WM !† a
2–Morse function, then provided S is transverse to the critical values of f , ie disjoint
from the cubic points and without “kissing” tangencies to the fold points, then the
restriction of f as a map f �1.†/ ! † ' R is a Morse function. We use this in
Section 3 to define persistence paths. It is also used in the proof of Theorem 2.9.

Definition 2.3 Given a Morse 2–function f WM !R2, and a point p 2M in the fold
singular points,

Hfp W TpM ˝TpM !R2

is a bilinear function taking values in a 1–dimensional subspace of R2, complementary
to the image of Dfp. Choosing v 2 R2 spanning this subspace, we can treat Hfp
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.i; j /

.j ; i/

Figure 1: Depiction of the symmetry of the index of fold points.

as real-valued bilinear function, ie by considering Hfp � v W TpM ˝ TpM ! R. As
this is a symmetric bilinear function, Sylvester’s law of inertia gives us a well-defined
signature invariant, .i; j /, that can be thought of as the dimensions of the maximal
subspaces where the form is positive or negative definite, respectively.

Notice that at a cubic singular point the Hessian is degenerate, ie iCj Dm�2<m�1,
with the nullspace together with the image of Dfp spanning the cusp’s plane of curvature.

Before we begin the examples, it is important to be aware that a Morse function
f WM !R gives rise to a cell decomposition of M [22]. These cell decompositions
are computable in terms of flow lines of vector fields conditioned by the derivative of f .
The cellular descriptions of M in their most natural state are homotopy-theoretic in
nature, ie these techniques give homotopy equivalences between M and CW–complexes,
not homeomorphisms. That said, CW–complexes are far from ideal tools to describe
manifolds. The adaptation of CW–complexes to smooth manifolds are called handle
decompositions, developed by Smale in his proof of the h–cobordism theorem. A
k–cell for an m–manifold M is a map Dk !M that satisfies various properties, such
as being an embedding on the interior. A k–handle for an m–manifold is a smooth
embedding Dk�Dm�k!M , ie handles are not only fully embedded, but they contain
the data of both the cell and a tubular neighbourhood of the cell. This allows handle
decompositions to not just describe the homotopy type of M , but also its smooth
structure. A subtlety of handle attachments is that a k–handle is attached only on
part of its boundary, ie .@Dk/�Dm�k , thus there is a risk that we are entering the
class of manifolds with cubical corners. The exposition of Kosinski [17] gives careful
consideration to this problem, keeping the constructions purely in the language of
manifolds with boundary. A Morse function f WM !R gives a handle decomposition
of M ; moreover this handle decomposition describes the smooth structure on M .

Starting from illustrative examples, we investigate the relation between bifiltration and
the classical singularity theory.
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� � �

c1

ck

.m�I1; I1/

.m�Ik; Ik/

H I1

H I1C1

H I1C1

H m�I1

H Ik

H IkC1

H IkC1

H m�Ik

Figure 2: Singular values for f with oriented index in Example 2.4 (left)
and extended Pareto grid (right). The dimension of the manifold S1 �M is
mC 1. Only the first and last values, c1 and ck , are displayed. The notation
H k indicates k–handle attachments.

Example 2.4 If g WM !R is a Morse function, then

f W S1
�M !R2

given by f .z;p/D z �g.p/ is a 2–Morse function on the .mC1/–dimensional manifold
S1 �M with only fold singularity types.

If the singular values of g consist of positive real numbers 0< c1< c2< � � �< ck then the
singular values of f consist of the circles of radius c1; c2; : : : ; ck centred at the origin.

If the singular value ci (of g) has index Ii , then the circle at f of radius ci is also a
fold-type singular value set of index . Or ;m�Ii ; Ii/, where Or is the unit outward-pointing
radial vector.

The persistence diagram for the preimages M.a;b/ is a union of the descending part of
the singular values of f together with some vertical and horizontal lines at the endpoints.

In Figure 2, the diagram on the left depicts the singular values of the function f . These
are the circles of rotation of the singular values of g. Say the red circle corresponds to
a singular point of index Ii . An alternative way of saying this is that the homotopy type
of the space g�1..�1; t �/ as t transitions through the point ci changes by an Ii–cell
attachment.

In the figure on the right, we describe how the preimages M.a;b/ change as the points
.a; b/ 2R2 vary. The Ii–handle attachments are labelled by H Ii . Only a portion of
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.1; 0/

.1; 0/

.0; 1/
H 0

H 0

H 1

H 1

H 2

H 2

0

1

2

1Ct

1Ct2

Figure 3: Cupped sphere projection.

the circle from the left diagram remains in the right, since at those (dotted) points the
homotopy type of the filtration does not change.

Let us take the blue circle for example, on the left. This is the singular value c1 of
index I1. On the right, this singular circle gives us two singular arcs. The lower blue
arc is properly embedded in R2, and transitioning through it corresponds to a m� I1

handle attachment. This should be thought of as a dual handle to c1 (of g). The other
singular value is a “fishtail”, divided into three properly embedded arcs. The round arc
corresponds to a handle attachment of index I1, while the two straight lines correspond
to handle attachments of index I1C 1. The handles of index I1C 1 should be thought
of as cancelling handles to the index I1 handle. Thus attachment of all three handles
of index I1, I1C 1 and I1C 1 has the same effect on the homotopy type as a single
attachment of a handle of index I1C 1.

Example 2.5 Given a round sphere S2�R3, the orthogonal projection map� WR3!R2

when restricted to S2 has singular values the unit circle, corresponding to an equatorial
circle in S2 of singular points. Imagine the sphere being made of rubber. We grab a
small section of the sphere (away from the equator) and fold it over itself, creating a
cupped sphere. This introduces an eye singularity in the projection map, as depicted in
Figure 3.

The pure fold singularity, the equator, is in blue. The red singularity is an “eye” type
singularity, with precisely two cubic (cusp) points. This is depicted on the left. In the
central figure we describe the handle attachments of the bifiltration. In the figure on
the right we describe the Poincaré polynomials of the bifiltration, ie the bifiltration is
regular at the white points, with transitions only at the red and blue points.
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.0; 1/
.0; 1/

.1; 0/

.1; 0/

.1; 0/

H 0

H 0

H 1

H 1

H 1

H 1
H 1

H 1

H 2

H 2

H 2

Figure 4: Klein bottle projection.

We give a fairly general example with cubic singularities.

Example 2.6 Cerf theory tells us that a 1–parameter family of real-valued functions
on a manifold is not (generically) Morse at all parameter times. There will be finitely
many times where the Morse singularities devolve into cubic singularities. Thus take
a generic 1–parameter family of functions on M , F W S1! C.M;R/, and form the
function

f W S1
�M !R2

given by f .v;p/D F.v/.p/ � v. The function f is 2–Morse. The bifiltration M.a;b/

will be described in Theorem 2.9.

Notice Example 2.6 is a direct generalization of Example 2.4; ie Example 2.4 can be
derived by setting F to be the constant function.

Example 2.7 A rather colourful example comes from orthogonal projection R4!R2

precomposed with one of the standard embeddings of the Klein bottle K2 ! R4.
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.a; b/.a; b/.a; b/

(R) (B) (G)

Figure 5: Three intersection types with dimension 1 stratum of the singular val-
ues. Type (R) consists of transverse intersections with the 0– and 1–dimensional
strata of the singular value set for f . Type (B) consists of both transverse
intersections and simple “kissing” nontransverse intersections with the 1–strata
of the singular value set. Type (G) consists of transverse intersections together
with a corner-type intersection. Thus (R) is generic, ie codimension 0 in the
filtration, while types (B) and (G) are of higher codimension.

This example appears in [28]. The singularity theory for mappings of 2–manifolds
into the plane, of which this is a good demonstration, was originally discovered by
Whitney [29].

We have seen in the previous examples that the singular points of the filtration consist
of a subset of the singular points of the mapping f , together with some regular points
of the original mapping — these were a collection of vertical and horizontal rays. We
divide singular points of the filtration into two classes, corner singular points and tail
singular points:

� We say a point .a; b/ 2 R2 is a corner singular point if for all suitably small
neighbourhoods U of .a; b/ in R2 there are points .a0; b0/ 2 U such that U \C.a0;b0/

intersects the singular set of f in both the horizontal and vertical boundary edges
of C.a0;b0/. If we write the coordinates of R2 as .x;y/ then this happens when locally
writing the singular values of f as the graph of a function y.x/, then the function y.x/

would be decreasing at x D a. A corner singular point is demonstrated in Figure 5(G).

� For .a; b/ to be a tail singular point, we require that C.a;b/ intersects the singular
values of f tangentially, on either the interior of the horizontal or vertical boundary
curve. In a neighbourhood of the tangential intersection we require the singular set to
be on one side of the cube, ie either contained in the cube or in the closure of its exterior.
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Thus it is a “kissing” tangency. The two tail singular point types are demonstrated in
Figure 5(B).

Notice that Figure 5(R) describes a regular point .a; b/ of the filtration Mf . We should
note that while it is true a point can be both corner singular and tail singular at the
same time, this is a codimension two condition, thus it is relatively rare. On the other
hand, tail and corner singular points are codimension one conditions.

The proof of Theorem 2.9 has several special cases, but there is one elemental argument
that is common to all cases. We put this in the next lemma.

Lemma 2.8 If f WM !R2 is a 2–Morse function , provided the point .a; b/ 2R2 is
regular for f , and the boundary of C.a;b/ intersects the singular values of f transversely
without double-points then .a; b/ is not only a regular point for the filtration Mf , but
the filtration is locally trivial near .a; b/.

Proof Precisely, there is a neighbourhood U of .a; b/2R2 such that for any .a0; b0/2U

there is a diffeomorphism Q� WM !M covering a diffeomorphism � WR2!R2 such
that Q�.f �1.C.a;b///Df

�1.C.a0;b0// and �.C.a;b//DC.a0;b0/. When we say Q� “covers”
� we mean the following diagram commutes:

M M

R2 R2

Q�

f f

�

The map Q� is sometimes called a fibre-preserving diffeomorphism of f , or a horizontal
diffeomorphism. A consequence of our proof will be that Q� and � are close to the
identity diffeomorphism, where “close” is controlled by the size of the neighbourhood U .
That such a neighbourhood exists can be deduced from the transversality stability
theorem [16].

The idea of the proof is to find a vector field in the plane whose flow maps C.a;b/

to C.a0;b0/ provided .a0; b0/ is near enough to .a; b/. We construct the vector field in
a manner that allows us to lift it to a vector field on M ; thus the flow of this vector
field will send f �1.C.a;b// to f �1.C.a0;b0//. Given that the derivative of f is not an
epimorphism at singular points of f , we have to take some care defining the vector
field. At fold points of f the derivative of f is only onto the tangent space of the
singular value set. Thus our neighbourhood U will be constrained by the sole demand
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.a; b/.a; b/
.a; b/

(R) (B) (G)

Figure 6: Three intersection types with dimension 0 stratum of the singular
values. Type (R) consists of generic outward and inward intersections with the
0–dimensional stratum of the singular value set for f . Type (B) consists of
nongeneric intersections with the 0–dimensional stratum. Type (G) consists
of a generic corner-type intersection with the 0–dimensional stratum. In the
filtration parameters, (G) is of codimension two. Type (B) is of codimension
one if it exists, but for a generic 2–Morse function these singularity types are
avoidable; one can convert them into type (R) by applying a small isotopy
to f .

that the singular value set needs to be transverse to @C.a0;b0/ for all .a0; b0/ 2 U . An
example illustration of a valid U is depicted in the green region illustrated is the set of
points UC D fp 2 @C.a0;b0/ j .a

0; b0/ 2 U g.

For the sake of argument, let’s assume b0 D b, ie we break the proof into two steps,
step 1 with b0 D b and step 2 with a0 D a. We further assume a0 > a as the a0 < a

case is analogous. Let Singv.f / denote the singular values of f , ie Singv.f / � R2.
Consider the curves of Singv.f /\UC . On the path-components of Singv.f /\UC

that live in the vertical portion of UC , we define the vector field to be the unique vector
field that is tangent to Singv.f /, and whose x–component is, in particular, positive.
On the path components of Singv.f /\UC that are in the horizontal portion of UC

we define the vector field to be zero. In the horizontal portion of UC we extend
the vector field to be zero. In the vertical portion of UC we interpolate between the
definition on Singv.f /\UC and the vector field .1; 0/, using a tubular neighbourhood
of Singv.f / in UC . Doing this we can ensure the vector field in the vertical portion of
UC always has unit x–component. We extend the vector field to all of R2, choosing
any extension that keeps the length of the vector field bounded, ie so that its flow is
complete. This gives us a flow on R2 that sends C.a;b/ to C.a0;b/. Our vector field
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.a; b/ .a0; b/

UC

Singv.f /

Figure 7: Neighbourhood of @C.a;b/ and the tangency types for Singv.

lifts to M since the derivative of f is onto the tangent spaces of Singv.f /, and for
regular points, the derivative has rank two. By the existence and uniqueness theorem
for solutions to ODEs, the flow of an f –lifted vector field is conjugated (by f ) to the
flow of the original vector field on R2. Thus the flow on M is fibre-preserving and
sends f �1.C.a;b// to f �1.C.a0;b//.

Lemma 2.8 has several natural generalizations. For example, let C and C 0 be compact
2–dimensional submanifolds of R2. Then provided there is an isotopy between C and
C 0 such that @C is transverse to the singular value set of f through the entire isotopy
(technically one needs to include intersections pairs of Singv.f / curves as 0–strata
in Singv.f / for this statement to be true), then f �1.C / and f �1.C 0/ are fibrewise
diffeomorphic. The condition that the isotopy is transverse to the singular value set
through all parameter times guarantees that the boundary of C does not pass over a
cubic point, or ever become tangent to the singular value set. These are the events that
can trigger changes in the fibrewise homotopy type of the preimage.

Similarly, provided .a; b/ is a regular value of f we can round the corner, turning C.a;b/

into a smooth manifold C 0
.a;b/

such that f �1.C.a;b// and f �1.C 0
.a;b/

/ are homotopy
equivalent.

We choose to let C be a compact submanifold of R2 for the following arguments; ie
rather than working with quadrants C.a;b/ we choose to work with compact smooth
manifolds, as it exposes the essential features of the argument.

The next theorem states that if the boundary of C (or quadrant C.a;b/) passes over a
cubic point in the isotopy, the fibrewise homotopy type changes but the homotopy type
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.a; b/ .a; b/

Figure 8: Rounding C.a;b/ to produce C 0
.a;b/

.

does not. Moreover, if the boundary of C passes across the singular value set — at a
tangency or corner, ie Figure 5(B) and (G) — then the homotopy type changes via a cell
attachment. We also give enough details that allow the computation of the attaching
maps.

Theorem 2.9 If f W M ! R2 is a 2–Morse function then the bifiltration Mf has
singular points consisting entirely of corner and tail singular points. Further , provided
the two height functions �i WR2!R given by �1.x;y/D x and �2.x;y/D y restrict
to Morse function on the fold singular values of f , with distinct critical heights , then
the transitions to the homotopy type of M.a;b/ when .a; b/ is either a corner or tail
singular point are given by individual cell attachments.

Proof Rather than using the restrictive language of quadrants, let C be a compact
submanifold of R2 and we investigate the change in homotopy type of f �1.C / through
an isotopy of C . We have two cases to consider.

Case 1 is a regular tangency — analogous to a type-2 Reidemeister move of the planar
diagram, in that it creates two points of intersection between the boundary of C and the
singular value set. Roughly speaking, there are two types of regular tangency moves.
This move can be described via a “bigon modification” where one appends a bigon to
the manifold C , attaching along one of the edges. The second edge of the bigon belongs
to Singv.f /. In the “nonengulfing” move, Singv.f / points out of C after the bigon is
appended, while in the engulfing version, Singv.f / points into C as one departs the
bigon.

In the nonengulfing version of case 1, the move corresponds to a cell attachment of
index i provided the index of Singv.f / is of the form .v; i; j / where v is in the direction
of @C as it sweeps over Singv.f /.
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C

C 0

Singv.f /

Figure 9: Case 1, nonengulfing.

Let C 0 denote the submanifold of R2 after the isotopy of C has been applied, ie as in
the right hand side of Figure 8. Using an argument analogous to Lemma 2.8 we see
that f �1.C 0/ has the same homotopy type as f �1.C /[f �1.B/, where B is the blue
arc in Figure 10.

The restriction of f to f �1.B/, and after identifying B with an interval in R, is a
1–Morse function; thus f �1.B/ has the homotopy type of f �1.B \ C / attach an
i–cell, by the Morse lemma. More specifically, this is proven in [22, Theorem 3.2].

For the engulfing version of case 1, the cell attachment is of index i C 1 provided
the index of Singv.f / is .v; i; j /, and the attaching map is analogous to the previous
case, but it should be thought of as an unbased version of a Whitehead product of the
attaching map in the previous case, with the red interval disjoint from C in the diagram
in Figure 11. Specifically, the characteristic map will be a product Di � I , where the
Di maps transversely to the red interval, and I can be identified with the red interval.

C

B

Singv.f /

Figure 10: Case 1, nonengulfing.
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C

C 0

Figure 11: Case 1, engulfing.

Figure 11 indicates the rationale. Specifically, f �1.C 0/ is f �1.C / union a relative
Bott-type handle. This handle should be thought of as I�Di�Dm�i�1, where .v; i; j /
is the index of Singv.f /. This is because �v ı f is a Bott-style Morse function on
f �1.B/; see Figure 12. The function �v WR2!R �v is orthogonal projection onto the
line spanned by v. The “box” B is diffeomorphic to a product B ' I � I where the
first interval factor corresponds to the red arc of Singv.f / disjoint from C in Figure 12,
while the second interval I is in the transverse direction (ie can be taken to be parallel
to v). Thus f �1.B/ is an interval cross an i–handle, being attached to f �1.C / along
.I �@Di/[ ..@I/�Di/, ie @.I �Di/. This could be thought of as an unbased version
of a Whitehead product.

For details on Bott-style Morse functions, and how they give disc-bundle adjunctions
for manifolds, see the paper of Bott [5, below (3.6)]. For a gentler introduction, see [3].

Case 2 is the case where the boundary of C passes over a cubic point. We will see that
the homotopy type of f �1.C / does not change in this instance. Like case 1 there is are
“engulfing” and “nonengulfing” subcases. We restrict to the nonengulfing case, as the
engulfing case is similar. The main idea of the proof is that this transition corresponds
to a 1–parameter family of cancelling i and .iC1/–handle attachments; thus we are
attaching a ball along a hemisphere, which results in no change in the homotopy type.

A small variant of Lemma 2.8 occurs when the boundary of C transitions over a
double-point in the singular set as in Figure 14. While the fibre homotopy type of
f �1.C / changes during this kind of transition, the homotopy type of f �1.C / does
not. The proof is exactly as in Lemma 2.8, in that we define the vector fields first on
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C

B

Figure 12: Case 1, engulfing.

the red curves, and then lift to M . The problem with this argument is that there is no
consistent way to define the vector fields on the union of the two red curves. But this
is okay, as we can lift the definition on the individual red curves (as their preimages
are disjoint critical manifolds in M ), and define the vector field on M directly, ie the
flow of the vector field on M cannot be made to be equivariant with respect to a flow
on R2.

We should point out that case 2 has one special case that does result in a homotopy
type change. This is depicted in Figure 6(B). These types of 2–Morse functions are not

C

Singv.f /

Figure 13: Case 2.

Algebraic & Geometric Topology, Volume 23 (2023)



2914 Ryan Budney and Tomasz Kaczynski

Figure 14: Case 3, over a double-point.

generic. A small isotopy of f allows one to ensure the tangent vectors at the cusps
are neither vertical or horizontal, ie this at least codimension 1 in the space of smooth
functions M !R2, thus this situation is avoidable.

Theorem 2.9 allows us to draw the singular point set of the filtration Mf from the
singular values of f , allowing automatic deduction of Examples 2.4, 2.5 and 2.7.
Specifically, the singular points of the filtration are the Pareto curves of the defining
map f together with the relevant vertical and horizontal rays (extending to C1) at the
corresponding vertical and horizontal tangent points.

An analogous result to Theorem 2.9 appears in [2].

Proposition 2.10 We summarize the cell attachments at the singular values of the
filtration Mf .

� For corner singular points , the index of the cell attachment for Mf is the same as
the index for f .

� [28] For tail singular points , if the singular values of f near the kissing tangency
are exterior to the cube , then the cell attachment has the same index as f . This
corresponds to Wan terminating a Pareto arc with a positive sign.

� [28] For a tail singular point , if the singular values of f near the kissing
tangency are in the interior of the cube then the index of the cell attachment is
one greater than that of the corresponding singular value for f . This corresponds
to Wan terminating a Pareto arc with a negative sign.
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As a consequence of Theorem 2.9, the bifiltration of M associated to a 2–Morse function
divides the plane into finitely many regions according to the homotopy type of the
preimage f �1.C.a;b//. The notion of tameness [21] requires a further no monodromy
condition, which is the requirement that there is a canonical isomorphism between
f �1.C.a;b// and a fixed representative for the region, and this isomorphism has to be
natural in the sense that there is a canonical homomorphism between regions (if one
exists). Our division of the plane is into contractible subspaces. By a cubical subdivision
of the regions (akin to the argument that open subsets of the plane are triangulable),
and taking a maximal tree in the dual 1–skeleton, one can construct a canonical zigzag
of maps between any two points in a common region. The argument that there is no
monodromy amounts to observing that the only avoidable handle attachments in a path
from one region to another are cancelling pairs.

Corollary 2.11 [21] Assuming the same conditions of Theorem 2.9, the bifiltration
of f WM !R2 is tame.

We should note Wan [28] gives a filtration of the manifold M when f WM ! R2

is 2–Morse, provided the 2–Morse function satisfies the no cycle condition; see [28,
Proposition 6.3]. Central to Wan’s construction is the usage of flowlines of “generalized
gradient” vector fields — roughly these are vector fields where both coordinates are
increasing (away from the Pareto points). When one has a cycle, one can loop endlessly
between Pareto points, but when there are no cycles, the process of connecting Pareto
points via paths of generalized gradients exhausts the manifold M and linearly orders
the critical intervals of Pareto sets. In our work there are a multitude of filtrations
whether or not f has cycles. All the examples provided so far in this paper — and all
examples in Wan’s work [28] — satisfy the no cycle condition.

The simplest example of a 2–Morse function with a cycle in Wan’s sense is a function
of the form f W S1�D2!R2 having two critical arcs of index .1; 1/, with the critical
arcs being properly embedded in S1�D2. There are generalized gradient flows on the
endpoints connecting the arcs in a cyclic ordering. While this function is only defined
on a manifold diffeomorphic to S1�D2, with a little work one can embed this 2–Morse
function into a closed 3–manifold, but one needs to add additional critical values. There
is a rather simple cyclic example if one allows the use of 2–Morse functions of the sort
f W S3! S2. We obtain this map as the composite of the 2–sheeted branched cover
S3! S3 over the Hopf link together with the Hopf fibration S3! S2, provided the
Hopf fibration projection of the Hopf link is a 2–crossing diagram in S2.
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3 Persistence paths and pathwise barcodes

In a 1–dimensional persistent homology, barcodes represent collections of parameter
intervals at which homology generators are born and killed. In multifiltered persistent
homology, in particular, in our 2–dimensional case, there is no simple barcode analogy,
and, as Carlsson and Zomorodian pointed out in [8], there is no complete discrete
invariant. Many authors have studied rank invariants in a module theory setting [8;
19]. A somewhat more elementary notion of persistent Betti number (PBN) functions
is presented in Cerri, Di Fabio, Ferri, Frosini and Landi [10, Definition 2.2]. These are
collections of functions f f̌;q W�C!N [1gq2Z,

f̌;q..a; b/; .a
0; b0//D rank Hq.i

..a;b/;.a0;b0///;

where
�C D f..a; b/; .a0; b0// 2R2

�R2
j .a; b/� .a0; b0/g;

and i ..a;b/;.a
0;b0// WM.a;b/ ,!M.a0;b0/ is the inclusion of sublevel sets.

For computational purposes, the authors of [10] use a reduction to one-dimensional
persistence diagrams via so called foliation method. It consists of applying the one-
dimensional rank invariant along the lines defined by positive coordinate vectors in
chosen finite grids. That method is restated as a fibred barcode in the context of
persistence modules by Lesnick and Wright [20, Section 1.5].

As we observed in Section 2 on our 2–Morse function examples, although there are
uncountably many singular points, the changes in topology can be finitely characterised.
They either occur when we cross an arc of the singularity Singv in the poset-increasing
direction, or when we cross a horizontal or vertical half-line passing through the
vertex .a; b/ of C.a;b/ and “kissing” the singularity. We will refer to both types of
components of Critv as to Pareto critical value arcs or, for short, Pareto arcs. Note
that in [28], the term Pareto set refers to a subset of Singp�M and critical intervals
to its components, while our Pareto arcs are the corresponding subsets of the extended
Pareto grid Critv � R2. There are finitely many homotopically distinct paths, with
M.a;b/ starting with an empty set and ending with the whole manifold. Each one can
give a different sequence of handle attachments creating new generators of homology
or cancelling previous ones, all giving H�.M / at the end of the day.

This observation leads to the notion of persistence paths which is a substitute for either
Cerri’s foliation method [10] or Lesnick and Wright fibred barcode [20]. It can be also
be viewed as a discrete analogy of Wan’s generalized gradient (whose choice is also
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Figure 15: Klein bottle projection, with Poincaré polynomials.

not unique) in [28]. Before we proceed, let us introduce some terminology. As far as
rank invariants or persistent Betti numbers are of concern, a convenient way to record
the homological information carried in sublevel sets is the Poincaré polynomial

P .t;M /D

nX
kD0

ˇk tk ;

where ˇk D rank Hk.M / and n is the dimension of M .

In Figure 3 and Figure 15, left, we see the Poincaré polynomials P .t;M.a;b// for points
.a; b/ located in regions bounded by Pareto arcs. We are also interested in increments
�P .t;H j / arising as we cross a Pareto arc increasingly in .a; b/. A j –handle can
either create a j generator (new component, creating a hole or a cavity) or kill a .j �1/

generator (merging components, filling a hole or a cavity). In the first case, we get
�P .t;H j /D tj , and in the second case we get �P .t;H j /D�tj�1. Thus the index
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of a handle can be read out from �P . If it is tk , we have a creating k–handle and if it
is �tk , we have a cancelling .kC1/–handle.

The term Pareto arc includes half-lines defined by quadrants C.a;b/. Crossing their
vertex .a; b/may create “multiple handles” where�P is not just one term. For example
in the vertex of fish tail visible in Figure 16, �P D�t C t2. A point at which a single
handle is attached will be called generic.

We choose a generic point .a; b/ on each Pareto arc and let H.a;b/ be the corresponding
handle. At this time, the choice is arbitrary but we may want to chose endpoints of an
arc, when we study metric sensitive barcodes.

We let T D Œ0; 1� and R D Œr1;R1�� Œr2;R2� be a fixed rectangle in R2 containing
f .M / in its interior.

Definition 3.1 Let f.ai ; bi/giD0;1;:::m �R be a sequence of generic points on Pareto
arcs such that M.a;b/ D ∅ for all .a; b/ downward-left of .a0; b0/, .aiC1; biC1/ can
be reached from .ai ; bi/ going upward-right through the region enclosed by the two
arcs, and M.am;bm/ DM . A persistence path is a continuous function � W I !R with
�.0/D .r1; r2/ and �.1/D .R1;R2/ which is nondecreasing in both coordinates, and
joins the points of the sequence.

It can be seen that one can find sequences on the arcs so to get piecewise linear
persistence (PL) paths with line segments between two consecutive points. This is
useful in showing that we get a discrete characterization. For simplicity of notation,
we let Hi DH.ai ;bi / and Mi DM.ai ;bi /. We have a linear filtration

M0 �M1 � � � � �Mm DM:

Figure 16, left, shows two persistence paths for the cupped sphere presented in
Example 2.5. The path displayed in dark green avoids the pocket, the one in orange
passes through it.

Note that [28] needs a no-cycle condition to apply the generalized gradient. Our
persistence paths can be defined even in the presence of Wan’s cycles, because they are
more restrictive than Wan’s admissible curves [28, Definition 6.3]: A persistence path
leaves a Pareto arc at the same point as it enters it. Along the path, there may be no
cycles, because it is increasing with respect to the poset relation.

We now shift our attention to a multidimensional analogy of the Morse inequalities. Our
results may be useful for the continuation of the work on the discrete multidimensional
Morse–Forman theory initiated in [1].
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Figure 16: Left: two persistence paths for the function in Example 2.5. Right:
their corresponding barcodes in rectangles marked with the same colour as
the corresponding path; ˇ0 barcodes displayed by green lines, ˇ1 by brown
lines, and ˇ2 by cyan lines.

The following result is an analogy of the Morse equation in the Conley index theory
[23; 25].

Theorem 3.2 (Morse–Conley equation for persistence paths) Let � be a persistence
path for ..ai ; bi//iD0;1;:::m and let cj be the number of j –handles associated to its
points. Then there exists a polynomial Q with nonnegative integer coefficients such that

(1)
nX

jD0

cj tj
D P .t;M /C .1C t/Q.t/:

Proof A direct consequence of the definition of �P and that of persistence path is

(2)
mX

iD0

�P .t;H.ai ;bi //D

nX
kD0

ˇk tk
D P .t;M /:

If all handles of � create new generators, then, in light of the preceding discussion, the
left-hand side of (2) is exactly the left-hand side of (1). Thus (1) holds with Q.t/D 0.
If a j –handle kills a .j � 1/ generator, then the sum on the left-hand side of (2)
misses two terms, tj�1 and tj , contributing the sum on the left-hand side of (1). By
adding all these missing terms to both sides of (2), we get (1) with Q built by terms
tj�1C tj D .1C t/tj�1.
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By taking t D�1 in (1), we get the following corollary.

Corollary 3.3 (Euler characteristics) For any persistence path �,

(3)
nX

jD0

.�1/j cj D �.M /;

where �.M /D
Pn

kD0.�1/kˇk is the Euler–Poincaré characteristic of M .

Equation (3) is a part of the set of classical Morse inequalities. Since two polynomials
are equal if and only if all their coefficients are equal, (1) also gives weak Morse
inequalities,

(4) cj � ǰ for all j D 1; 2; : : : n:

We conclude this section by deriving a classical result of Morse theory on strong
Morse inequalities. The reader is referred to the book by Milnor [22] for the classical
formulation. For the sake of completeness, we present a neat and short proof of an
unknown source we have been told about by Marian Mrozek.

Corollary 3.4 (strong Morse inequalities) For any persistence path � and any k � 0,

(5) ck � ck�1C ck�2C � � �˙ c0 � ˇk �ˇk�1Cˇk�2C � � �˙ˇ0:

Proof Knowing that cj D ǰ D 0 for all j > n, we can treat (1) as a power series
equation

(6)
1X

jD0

cj tj
D

1X
jD0

ǰ tj
C .1C t/Q.t/:

Multiplying both sides of (6) by
P1

iD0.�1/i t i , the power series inverse of .1C t/, we
get

1X
kD0

� kX
iD0

.�1/ick�i

�
tk
D

1X
kD0

� kX
iD0

.�1/iˇk�i

�
tk
CQ.t/:

Since two power series are equal if and only if all their coefficients are equal and the
coefficients of Q.t/ are nonnegative, we get (5).

Our Morse inequalities should be compared with the work of Wan [28]. Perhaps the
main difference between our work and his is that we convert functions f WM !R2

into families of filtrations of the manifold M . Wan uses essentially all of the Pareto
arcs to define his filtration, which is often larger than our filtrations. Moreover he
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requires special “acyclic” Morse 2–functions to even define a filtration of M , while
any Morse 2–function works for us.

We now turn our attention to the computability of persistent homology via persistence
paths. We associate pathwise barcodes to any persistence path � as follows. First, we
want to normalise lengths of persistence paths so to have them all of length 1. Given a
point .a; b/ 2 �.I/, let s.a; b/ be the euclidean distance from .r1; r2/ to .a; b/ along
the path � divided by the total length of �.

Definition 3.5 The �–barcode in homology of dimension k is a function on repre-
sentatives of the Hk generators, whose values are subintervals of Œ0; 1�. When an Hk

generator is born by a handle attachment at the point .ai ; bi/ and it is killed at the point
.aj ; bj / with i < j <m, the corresponding barcode interval is Œs.ai ; bi/; s.aj ; bj /�. The
lifetime of that generator is s.aj ; bj /� s.ai ; bi/. If a generator persists until the point
.R1;R2/ of the chosen rectangle, it will also persist if the values of .R1;R2/ increase.
Thus it is reasonable to declare that its lifetime is infinite and the corresponding barcode
interval is Œs.ai ; bi/;1/.

Figure 16, right, shows barcodes of the two persistence paths displayed on the right.
It is visible that the lifetime of the second generator of H0 created when crossing the
pocket is short and it may be null, if we choose the path in dark green that avoids the
pocket. Similarly, the lifetime of the H1 generator is short.

We shall now briefly discuss prospects for numerical implementations of pathwise
barcodes. We should emphasize that the aim of our paper is to only provide a theoretical
background for computation.

Following predecessors [8; 10] who set up computing methods for multifiltrations, we
should consider the family of all piecewise linear persistence paths � built on points
.ai ; bi/ in a given finite grid. However, that is a huge family and this choice is likely to
lead to computational complexity issues. The size of the family of such paths is most
likely similar to that of Young diagrams [13]. Moreover, the number of nodes to join by
paths, decisive for the size of the family, increases quadratically with grid subdivisions.

For pathwise barcodes, we postulate that it should be sufficient to consider a finite
representable family Rep.f / of persistence paths built of specific points on Pareto
curves: centre points, nearly lower-right and upper-left endpoints of Pareto curves, as
well as their intersections with horizontal and vertical lines passing through or touching
other endpoints. We claim that Rep.f / is a small and exhaustive representation.
Moreover, the size of Rep.f / does not increase with grid subdivisions.
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By exhaustive representation, we mean here that any additional paths give rise to
equivalent barcodes. That, in turn, means that their barcodes have the same number
of intervals for each homology dimension, they may vary by length but appear in the
same sequence according to birth and death dates.

We are conscious of the fact that, proceeding this way, we are missing the postulate
that the persistence should be computed blindly from data, without knowing the exact
manifold M and exact function f . But it may also be interesting to consider the case
when we have M and f given by formulas that enable computing singularities.

4 Extensions

When applying pathwise barcodes to functions which do not satisfy Wan’s no-cycle
property [28, Definitions 6.4 and 6.5], it would be interesting to see what is the
information carried by the barcodes of those persistence paths of Rep.f / which cross
and go about the cycles of f .

The filtration of R2 by quadrants C.a;b/ has a complementary filtration by quadrant
exteriors

E.a;b/ D f.x;y/ 2R2
j x � a or y � bg:

Provided the boundary of C.a;b/ is transverse to the singular points of f WM ! R2,
one has that f �1.C.a;b// is a manifold with corners. This allows us to use a Poincaré
duality isomorphism

Hk.f
�1.C.a;b///'H m�k.M; f �1.E.a;b///:

Given that quadrant exteriors are the union of three quadrants, this gives a fairly detailed
relationship between the persistent homologies of filtrations corresponding to the four
quadrant families:

Cf1�a;f2�b D C.a;b/; Cf1�a;f2�b; Cf1�a;f2�b; Cf1�a;f2�b:

This technique could be thought to be a strong parallel to the theory of trisections of
4–manifolds [14; 15] as developed by Gay and Kirby. It also gives a formal setup
analogous to extended persistence of Morse functions, considered in [12].

Another direction one could take to extrapolate this research would be using smooth
functions M !Rk for k > 2. This topic is of a great interest to the topological data
analysis community. The computational methods of multiparameter persistent homol-
ogy such as those in [1; 8; 9; 19] are dimension-independent but, on the other hand, they
do not have the same insight into the geometry of the encountered singularities as the
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one we present here for the R2–valued functions. There are a variety of useful “Morse
theory” type tools to describe the singularities of functions of this kind. The analogous
theory of multisections of manifolds is developed by Rubinstein and Tillman [24].

Yet another direction to undertake is the practical implementation of our suggested
method for computing pathwise barcodes on the basis of a representable family Rep.f /.
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