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We completely classify orientable torus bundles over the circle that bound smooth
4–manifolds with the rational homology of the circle. Along the way, we classify
certain integral surgeries along chain links that bound rational homology 4–balls
and explore a connection to 3–braid closures whose double branched covers bound
rational homology 4–balls.
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1 Introduction

In [13], we showed that two infinite families of T 2–bundles over S1 bound (smooth)
rational homology circles (QS1 � B3’s). As an application, the QS1 � B3’s were
used to construct infinite families of rational homology 3–spheres (QS3’s) that bound
rational homology 4–balls (QB4’s). The main purpose of this article is to show that
the two families of torus bundles used in [13] are the only torus bundles that bound
smooth QS1 �B3’s.
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2450 Jonathan Simone

After endowing T 2 � Œ0; 1� D R2=Z2 � Œ0; 1� with the coordinates .x; t / D .x; y; t/,
any orientable torus bundle over S1 is of the form T 2 � Œ0; 1�=.x; 1/ � .˙Ax; 0/,
where A 2 SL.2;Z/. The matrix A is called the monodromy of the torus bundle and is
defined up to conjugation. Throughout, we will express the monodromy in terms of the
generators T D

�
1 1
0 1

�
and S D

�
0 1
�1 0

�
. A torus bundle is called elliptic if jtrAj < 2,

parabolic if jtrAj D 2, and hyperbolic if jtrAj> 2. Moreover, a torus bundle is called
positive if trA>0 and negative if trA<0. Torus bundles naturally arise as the boundaries
of plumbings of D2–bundles over S2 (see Neumann [11, Section 6] for details). Using
these plumbing descriptions, it is easy to draw surgery diagrams for torus bundles.
Table 1 gives a complete list of torus bundles over S1, along with their monodromies
(up to conjugation) and surgery diagrams. To simplify notation, T˙A.a/ will always
denote the hyperbolic torus bundle with monodromy ˙A.a/ D ˙T �a1S � � �T �anS,
where aD .a1; : : : ; an/, a1 � 3, and ai � 2 for all i .

Theorem 1.1 A torus bundle over S1 bounds a QS1 �B3 if and only if

� it is negative parabolic , or

� it is positive hyperbolic of the form TA.a/, where

aD .3Cx1; 2
Œx2�; : : : ; 3Cx2mC1; 2

Œx1�; 3Cx2; 2
Œx3�; : : : ; 3Cx2m; 2

Œx2mC1�/;

m� 0, and xi � 0 for all i .

Elliptic torus bundles and parabolic torus bundles that bound QS1 �B3’s are rather
simple to classify. Classifying hyperbolic torus bundles, which make up the “generic”
class of torus bundles, is much more involved and includes the bulk of the techni-
cal work. In [13], it is shown that TA.a/ indeed bounds a QS1 � B3 when a D

.3Cx1; 2
Œx2�; : : : ; 3Cx2mC1; 2

Œx1�; 3Cx2; 2
Œx3�; : : : ; 3Cx2m; 2

Œx2mC1�/. To obstruct
all other hyperbolic torus bundles from bounding QS1 � B3’s, we first consider a
related class of QS3’s.

Let Ltn denote the n–component link shown in Figure 1, where t denotes the number
of half-twists. We call Ltn the n–component, t–half-twisted chain link. If t D 0, we
call the chain link untwisted. Consider the surgery diagram for the hyperbolic torus
bundle T˙A.a/ given in Table 1. Now perform m–surgery along a meridian of the
0–framed unknot as in the left side of each of the four diagrams in Figure 2. Next,
slide the unknot with framing �a1 (or �a1˙ 2) twice over the blue m–framed unknot
so that it no longer passes through the 0–framed unknot. Then cancel the 0–framed
and m–framed unknots. When n � 2, the resulting 3–manifolds are obtained by
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elliptic torus bundles

monodromy surgery diagram monodromy surgery diagram

S 0

2

�S 0

�2

T �1S 0

1

�T �1S 0

�3

.T �1S/2 0

3

�.T �1S/2 0

�1

parabolic torus bundles

monodromy surgery diagram monodromy surgery diagram

T n

.n 2 Z/ 0

n 0
�T n

.n 2 Z/ 0

�n 0

hyperbolic torus bundles T˙A.a1;:::;an/

monodromy surgery diagram

n > 1 nD 1

T �a1S � � �T �anS
.a1 � 3; ai � 2 for all i/ 0

�a1

�a2

�an

0

�a1C 2

�T �a1S � � �T �anS
.a1 � 3; ai � 2 for all i/ 0

�a1

�a2

�an

0

�a1� 2

Table 1: Monodromy and surgery diagrams of parabolic, elliptic and hyperbolic
T 2–bundles over S1.

Algebraic & Geometric Topology, Volume 23 (2023)
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t

Figure 1: The n–component, t–half-twisted chain link, Ltn. The box labeled t
denotes t half-twists.

m

�a1� 2

2m� 1

�a1� 2

D

D

D

D

m

�a1

�a2

�an

0 2m� 1

�a1

�a2

�an

m

�a1C 2

2m

�a1C 2

m

�a1

�a2

�an

0 2m

�a1

�a2

�an

Figure 2: Surgering the hyperbolic torus bundle T˙A.a/, where a D

.a1; : : : ; an/, to obtain the rational homology sphere Y ta . The blue boxes
labeled 2m and 2m� 1 indicate the number of half-twists.
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.�a1; : : : ;�an/–surgery along the chain link Ltn, where t D 2m or 2m�1. We denote
these 3–manifolds by Y ta D S

3
.�a1;:::;�an/

.Ltn/, where aD .a1; : : : ; an/, a1 � 3, and
ai � 2 for all i . Note that, by cyclically reordering or reversing the surgery coefficients,
we obtain the same 3–manifold. When nD 1, the resulting 3–manifolds are obtained by
�.a1˙2/–surgery along Lt1, where t D 2mC .1˙ 1/; we denote them by Y ta D Y

t
.a1/

.
Note that Y t

.a1/
D S3

�a1C2
.Lt1/ when t is even, and Y t

.a1/
D S3

�a1�2
.Lt1/ when t is

odd. Finally note that Y ta is a QS3 for all a and t ; this follows from the fact that
jH1.Y

t
a /j D jTor.H1.T˙A.a///j is finite (see Lemma A.1).

Lemma 1.2 [13] Let Y be a QS1 � S2 that bounds a QS1 �B3 and let K be a
knot in Y such that ŒK� has infinite order in H1.Y IZ/. Then any integer surgery on Y
along K yields a QS3 that bounds a QB4.

By Lemma 1.2, if TA.a/ bounds a QS1 �B3, then Y ta bounds a QB4 for all even t ,
and if T�A.a/ bounds a QS1 � B3, then Y ta bounds a QB4 for all odd t . Thus, if
Y ta does not bound a QB4 for some even (or odd) t , then TA.a/ (or T�A.a/) does not
bound a QS1 �B3. Using this fact, we will obstruct most hyperbolic torus bundles
from bounding QS1 �B3’s by identifying the strings a for which Y 0a and Y �1a do
not bound QB4’s. Before writing down the result, we first recall and introduce some
useful terminology.

Let .b1; : : : ; bk/ be a string of integers such that bi � 2 for all i . If bj � 3 for some
j, then we can write this string in the form .2Œm1�; 3C n1; : : : ; 2

Œmj �; 2C nj /, where
mi ; ni � 0 for all i and 2Œt� denotes a string 2; : : : ; 2 of t 2’s. The string .c1; : : : ; cl/D
.2Cm1; 2

Œn1�; 3Cm2; : : : ; 3Cmj ; 2
Œnj �/ is called the linear-dual string of .b1; : : : ; bk/.

If bi D 2 for all 1� i � k, then we define its linear-dual string to be .kC1/. Linear-dual
strings have a topological interpretation. If Y is obtained by .�b1; : : : ;�bk/–surgery
along a linear chain of unknots, then the reversed-orientation manifold Y can be
obtained by .�c1; : : : ;�cl/–surgery along a linear chain of unknots (see Neumann [11,
Theorem 7.3]). Finally, we define the linear-dual string of .1/ to be the empty string.

Suppose a D .a1; : : : ; an/ is of the form .2Œm1�; 3C n1; : : : ; 2
Œmj �; 3C nj /, where

mi ; ni � 0 for all i ; we define its cyclic-dual to be the string d D .d1; : : : ; dm/ D

.3Cm1; 2
Œn1�; : : : ; 3Cmj ; 2

Œnj �/. In particular, a string of the form .x/ with x � 3
has cyclic-dual .2Œx�3�; 3/. Notice that this definition only slightly differs from the
definition of the linear-dual string. As a topological interpretation of cyclic-dual strings,
the reversed-orientation of T˙A.a/ is given by T˙A.a/ D T˙A.d/ (see Neumann [11,
Theorem 7.3]). Finally, .an; : : : ; a1/ is called the reverse of .a1; : : : ; an/.

Algebraic & Geometric Topology, Volume 23 (2023)
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Example 1.3 Consider the strings in Theorem 1.7,

aD .3C x1; 2
Œx2�; : : : ; 3C x2mC1; 2

Œx1�; 3C x2; 2
Œx3�; : : : ; 3C x2m; 2

Œx2mC1�/:

It is easy to see that the cyclic-dual of a is simply a. Moreover, a is of the above form if
and only if it can be expressed in the form aD .b1C1;b2; : : : ; bk�1; bkC1;c1; : : : ; cl/ if
k�2, where .b1; : : : ;bk/ and .c1; : : : ; cl/ are linear-dual strings, or aD .b1C2;2

Œb1�1�/

if k D 1.

To remove the necessity of multiple cases, from now on, if a contains a substring of the
form .b1C 1; b2; : : : ; bk�1; bkC 1/ and k D 1, then we will understand this substring
to simply be .b1C 2/, as in Example 1.3.

Definition 1.4 Two strings are considered to be equivalent if one is a cyclic reordering
and/or reverse of the other. Each string in the following sets is defined up to this
equivalence. Moreover, strings of the form .b1; : : : ; bk/ and .c1; : : : ; cl/ are assumed
to be linear-dual. We define

S1aDf.b1; : : : ; bk; 2; cl ; : : : ; c1; 2/ jkCl�3g;

S1bDf.b1; : : : ; bk; 2; cl ; : : : ; c1; 5/ jkCl�2g;

S1cDf.b1; : : : ; bk; 3; cl ; : : : ; c1; 3/ jkCl�2g;

S1dDf.2; b1C1; b2; : : : ; bk�1; bkC1; 2; 2; clC1; cl�1; : : : ; c2; c1C1; 2/ jkCl�2g;

S1eDf.2; 3Cx; 2; 3; 3; 2Œx�1�; 3; 3/ jx�0 and .3; 2Œ�1�; 3/ WD.4/g;

S2aDf.b1C3; b2; : : : ; bk; 2; cl ; : : : ; c1/g;

S2bDf.3Cx; b1; : : : ; bk�1; bkC1; 2Œx�; clC1; cl�1; : : : ; c1/ jx�0 and kCl�2g;

S2cDf.b1C1; b2; : : : ; bk�1; bkC1; c1; : : : ; cl/ jkCl�2g;

S2dDf.2; 2Cx; 2; 3; 2Œx�1�; 3; 4/ jx�0 and .3; 2Œ�1�; 3/ WD.4/g;

S2eDf.2; b1C1; b2; : : : ; bk; 2; cl ; : : : ; c2; c1C1; 2/; .2; 2; 2; 3/ jkCl�2g;

ODf.6; 2; 2; 2; 6; 2; 2; 2/; .4; 2; 4; 2; 4; 2; 4; 2/; .3; 3; 3; 3; 3; 3/g;

S1DS1a[S1b[S1c[S1d[S1e;

S2DS2a[S2b[S2c[S2d[S2e;

SDS1[S2:

Definition 1.5 Let a D .a1; : : : ; an/, where ai � 2 for all i . Define I.a/ to be the
integer I.a/D

Pn
iD1.ai � 3/.

Algebraic & Geometric Topology, Volume 23 (2023)
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Remark 1.6 If b and c are linear-dual strings, it is easy to see that I.b/C I.c/D�2.
Using this observation, it easy to check that, if a 2 S1, then �4 � I.a/ � �1, and if
a 2 S2, then �3� I.a/� 0. In the same vein, if a and d are cyclic-dual strings, then
I.a/C I.d/D 0. Consequently, if a;d 2 S, then I.a/D I.d/D 0. Moreover, a 2 S
and I.a/D 0 if and only if a 2 S2a [S2b [S2c .

Theorem 1.7 Let a D .a1; : : : ; an/, where n � 1, ai � 2 for all i , and aj � 3 for
some j, and let d be the cyclic-dual of a.

(1) Suppose d … S1a [ O. Then Y �1a bounds a QB4 if and only if a 2 S1 or
d 2 S1b [S1c [S1d [S1e.

(2) Suppose a … S1a [ O. Then Y 1a bounds a QB4 if and only if d 2 S1 or
a 2 S1b [S1c [S1d [S1e.

(3) Y 0a bounds a QB4 if and only if a 2 S2 or d 2 S2.

Remark 1.8 The hypothesis “aj � 3 for some j ” in Theorem 1.7 ensures that T˙A.a/

is a hyperbolic torus bundle. If we remove this condition from the theorem, then we
would have an additional case: ai D 2 for all i . In this case, Y �1a bounds a QB4 and
Y 0a does not bound a QB4. This follows from Lemma 1.2 and Theorem 1.1 and the
fact that the corresponding torus bundles are the parabolic torus bundles with respective
monodromies �T n and T n (see [13]).

Remark 1.9 We will see in Lemma 4.2 that, for certain strings d that are the cyclic-
duals of .b1; : : : ; bk; 2; cl ; : : : ; c1; 2/, Y �1d

does not bound a QB4 (see Theorem 1.7(1)).
However, we are unable to prove this fact for all such strings. Moreover, for each a2O,
we are unable to obstruct Y ˙1a from bounding a QB4 or show that it indeed bounds
a QB4. These strings are outliers that are unobstructed by the analysis we present here.

Combined with Lemma 1.2, Theorem 1.7 obstructs most hyperbolic torus bundles
from bounding QS1 �B3’s. In Section 3, we will obstruct the rest by considering
certain cyclic covers of QS1 �B3’s. The proof of Theorem 1.7 relies on Donaldson’s
diagonalization theorem [6] and lattice analysis. From this analysis, it follows that,
if a … S1 [O, then Y ta does not bound a QB4 for all odd t , and if a … S2, then Y ta
does not bound a QB4 for all even t . Moreover, by Lemma 1.2 and Theorem 1.1, if
a 2 S2c , then Y ta bounds a QB4 for all even t . This leads to the following question:

Question 1.10 For what values of t and for which strings a 2 S nS2c does Y ta bound
a QB4?

Algebraic & Geometric Topology, Volume 23 (2023)
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1.1 Connection to 3–braids

There is an intimate connection between the rational homology 3–spheres Y ta and
3–braid closures; we will show that Y ta is the double cover of S3 branched over the link
given by the closure of the 3–braid word .�1�2/3t�1�

�.a1�2/
2 � � � �1�

�.an�2/
2 , where

�1 and �2 are the standard generators of the braid group on three strands.

Let aD .a1; : : : ; an/ and consider Y �1a and Y 0a , as shown in the top of Figure 3. Using
the techniques of Akbulut and Kirby [2], it is clear that Y �1a and Y 0a are the double
covers of S3 branched over the links shown in the middle of Figure 3. The Z2–action
inducing these covers are the 180ı rotations shown in Figure 3. By isotoping these

=

=

Y �1a
�a1

�a2

�an

180ı

2 W 1

�a1

�a2 �a3 �an

if t D 0

t
1
�.a1� 2/

1
�.a2� 2/

1
�.an� 2/

if t D�1

Y 0a
�a1

�a2

�an

180ı

2 W 1

�a1

�a2 �a3 �an

Figure 3: Y �1a and Y 0a are the double covers of S3 branched over the closure
of the 3–braid word .�1�2/3t�1�

�.a1�2/
2 � � � �1�

�.an�2/
2 , where t D�1 and

t D 0, respectively. The blue box labeled t indicates the number of full-twists,
while all other boxes in all other diagrams indicated the number of half-twists.
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links, we obtain the closures of the 3–braid words .�1�2/�3�1�
�.a1�2/
2 � � � �1�

�.an�2/
2

and �1�
�.a1�2/
2 � � � �1�

�.an�2/
2 , respectively, as shown in Figure 3. Note that, in the

figure, the blue box labeled t indicates the number of full-twists, while all other boxes
indicate the number of half-twists.

Using Kirby calculus, we can argue that, for any t , Y ta is the double cover of S3

branched over the closure of the 3–braid word .�1�2/3t�1�
�.a1�2/
2 � � � �1�

�.an�2/
2 .

Notice that, if t D 2m� 1 � �1 is odd, then Y ta can be realized as .�1Œm�/–surgery
along a link in Y �1a , as shown in the top left of Figure 4, top, and if t D 2m� 0 is even,
then Y ta can be realized as .�1Œm�/–surgery along a link in Y 0a , as shown in the top left
of Figure 4, bottom. Under the Z2–action, each of these surgery curves double covers
a curve isotopic to the braid axis of the 3–braid. Thus each �1–surgery curve maps to
a �1

2
–surgery curve isotopic to the braid axis, as shown in the intermediate stages in

Figure 4. By blowing down these curves, we obtain the desired 3–braid closures at the
bottom of the figures. Note that the same argument can be used when t < �1; the only
difference is that the surgery curves would all have positive coefficients.

Coupling this characterization with Theorems 1.7 and 1.1 and Lemma 1.2, we can
classify certain families of 3–braid closures admitting double branched covers bounding
QB4’s.

Corollary 1.11 Let aD .a1; : : : ; an/, where n � 1, ai � 2 for all i , and aj � 3 for
some j, and let d be the cyclic-dual of a.

� Suppose d … S1a [O. Then the double cover of S3 branched over the closure
of the 3–braid word .�1�2/�3�1�

�.a1�2/
2 � � � �1�

�.an�2/
2 bounds a QB4 if and

only if a 2 S1 or d 2 S1b [S1c [S1d [S1e.
� Suppose a … S1a[O. Then the double cover of S3 branched over the closure of

the 3–braid word .�1�2/3�1�
�.a1�2/
2 � � � �1�

�.an�2/
2 bounds a QB4 if and only

if d 2 S1 or a 2 S1b [S1c [S1d [S1e.
� The double cover of S3 branched over the closure of the 3–braid word

�1�
�.a1�2/
2 � � � �1�

�.an�2/
2

bounds a QB4 if and only if a 2 S2.
� If a 2 S2c , then the double cover of S3 branched over the closure of the 3–braid

word .�1�2/3t�1�
�.a1�2/
2 � � � �1�

�.an�2/
2 bounds a QB4 for all even t .

The 3–braid knots corresponding to strings in S1a[S2a[S2b[S2c (and their mirrors)
were shown by Lisca [10] to be 3–braid knots of finite concordance order. Moreover,

Algebraic & Geometric Topology, Volume 23 (2023)
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m
�1

�1

�a1

�a2

�an

Y 2m�1a 2 W 1

m

�
1
2
�
1
2

�1 1
�.a1� 2/

1
�.an� 2/

blow down

2m� 1 1
�.a1� 2/

1
�.an� 2/

m
�1

�1

�a1

�a2

�an

Y 2ma 2 W 1

m

�
1
2
�
1
2

1
�.a1� 2/

1
�.an� 2/

blow down

2m 1
�.a1� 2/

1
�.an� 2/

Figure 4: When t � �1, Y ta is the double cover of S3 branched over the
closure of the 3–braid word .�1�2/3t�1�

�.a1�2/
2 � � � �1�

�.an�2/
2 . The same

is true when t < �1.
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some of them were shown be slice knots and so for these the corresponding double
branched covers are already known to bound QB4’s. Furthermore, by the classification
in [10], many of the remaining strings in S correspond to infinite concordance order
3–braid knots. Thus, these give examples of infinite concordance order knots whose
double branched covers bound QB4’s. Rewording Question 1.10 in terms of 3–braids,
a natural question is the following:

Question 1.12 Which other 3–braid closures admit double branched covers bounding
QB4’s?

Organization

In Section 2, we will highlight some simple obstructions to QS1 � S2’s bounding
QS1 �B3’s, recall Heegaard Floer homology calculations of 3–braid closures due
to Baldwin, and use these calculations to explore the orientation reversal of the 3–
manifold Y ta . These obstructions and calculations will be used in Sections 3 and 4.
In particular, in Section 3, we will use the obstructions and other techniques to prove
Theorem 1.1, and in Section 4, we will show that the QS3’s of Theorem 1.7 do
indeed bound QB4’s by explicitly constructing them. In Sections 5–7, we will use
lattice analysis to prove that the QS3’s of Theorem 1.7 are the only such QS3’s that
bound QB4’s. Finally, the appendix provides some continued fraction calculations that
are used in Sections 2 and 4.

Acknowledgements

Thanks to Vitalijs Brejevs for pointing out a missing case in Lemma 6.1 and thanks
to the referee for carefully reading through the technical aspects of the paper and
suggesting ways to greatly improve the flow of the paper.

2 Obstructions

In this section, we highlight some simple ways to obstruct a QS1 �S2 from bounding
a QS1 �B3, recall Baldwin’s calculations of the Heegaard Floer homology of double
covers of S3 branched over certain 3–braid closures [3] (ie the rational homology 3–
spheres Y ta ), and show that reversing the orientation of the rational homology sphere Y ta
yields Y �t

d
, where d is the cyclic-dual of a. The first obstruction is a consequence of

[5, Proposition 1.5 and Corollary 1.6].
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Lemma 2.1 [5] If K � S3 is an alternating knot and S30 .K/ bounds a QS1 �B3,
then �.K/D 0.

The next obstruction is akin to a well-known homology obstruction of QS3’s bounding
QB4’s [4, Lemma 3].

Lemma 2.2 If Y bounds a QS1 � B3, then the torsion part of H1.Y / has square
order.

Proof It is well known that, if a QS3 bounds a QB4, then its first homology group
has square order [4, Lemma 3]. A similar but more complicated argument will prove
the lemma.

Let A D Tor.H1.Y //. We aim to show that jAj is a perfect square. Let W be a
QS1 �B3 bounded by Y. Then

Hi .W /Š

8<:
T2 if i D 2;
Z˚T1 if i D 1;
Z if i D 0;

where T1 and T2 are torsion groups. By duality and the universal coefficient theorem,

Hi .W; Y /Š

8<:
Z if i D 3;
T1 if i D 2;
T2 if i D 1:

Consider the long exact sequence

H3.W; Y / H2.Y / H2.W / H2.W; Y / H1.Y / H1.W / H1.W; Y /

Z Z T2 T1 Z˚A Z˚T1 T2

f g h

Š Š Š Š Š Š Š

Since H3.W / and H1.W; Y / are torsion groups, and H3.W; Y / Š H0.Y / Š Z, the
maps H3.W /! H3.W; Y / and H1.W; Y /! H0.Y / in the long exact sequence of
the pair .W; Y / are trivial; hence, f is injective and g is surjective. Express the
map g as g D g1C g2, where g1 W Z! Z˚ T1 and g2 W A! f0g ˚ T1. Notice that
ImgŠ Img1˚Img2 and g1 is injective. Thus Img2 can be identified with a subgroup
of cokerg1 and T2Š cokergŠ cokerg1=Img2. Moreover, it follows from duality that,
if f is given by multiplication by n, then g1 is of the form g1.x/D˙nzC

P
�ibi ,

where x is a generator of the domain of g1 and fz; big is a basis for Z˚T1 such that z
is an infinite order element and the bi are torsion elements. Thus jcokerg1j D njT1j D
jcokerf jjT1j.
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By exactness, we can reduce the above sequence to the short exact sequence

0! T1=.T2=cokerf / i
�! Z˚A

g
�! Img! 0;

where we identify cokerf with its image in T2 and T2=cokerf with its image in T1.
Since g1 W Z! Img1 is an isomorphism, we have the short exact sequence of finite
groups

0! T1=.T2=cokerf / i
�! A

g2
�! Img2! 0:

Consequently, jAj D jT1=.T2=cokerf /j � jImg2j.

Moreover, ˇ̌̌̌
T1

T2=cokerf

ˇ̌̌̌
D
jT1jjcokerf j
jT2j

D
jcokerg1j

jcokerg1j=jImg2j
D jImg2j:

Thus, jAj D jImg2j
2 is a square.

2.1 Heegaard Floer homology calculations

Let aD .a1; : : : ; an/, where ai �2 for all 1� i�n and aj �3 for some j. As mentioned
in Section 1.1, the rational sphere Y ta is the double cover of S3 branched over the
closure of the 3–braid represented by the word .�1�2/3t�1�

�.a1�2/
2 � � � �1�

�.an�2/
2 .

In [3], Baldwin calculated the Heegaard Floer homology of these 3–manifolds equipped
with a canonical spinc structure s0. In particular, he showed that

HFC.Y 2ma ; s0/D

�
.T C0 ˚Zm0 /

˚
1
4

�
3n�

P
ai
�	

if m� 0;

.T C0 ˚Z�m
�1 /

˚
1
4

�
3n�

P
ai
�	

if m< 0;

HFC.Y 2mC1a ; s0/D

(
.T C0 ˚Zm

�1/
˚
1
4

�
3nC 4�

P
ai
�	

if m� 0;

.T C
�2˚Z�.mC1/

�2 /
˚
1
4

�
3nC 4�

P
ai
�	

if m< 0;
and

fd.Y ta ; s/ j s¤ s0g D fd.Y
s
a ; s/ j s¤ s0g for all s; t 2 Z:

2.2 Reversing orientation

Let aD .a1; : : : ; an/, where ai �2 for all 1� i �n and aj �3 for some j. As discussed
in the introduction, reversing the orientation of the hyperbolic torus bundle T˙A.a/

yields the hyperbolic torus bundle T˙A.a/ D T˙A.d/, where d D .d1; : : : ; dm/ is the
cyclic-dual of a [11]. Therefore, by construction, reversing the orientation on Y ta yields
Y ta D Y

s
d

for some integer s. The following lemma shows that s D�t :

Lemma 2.3 Let a D .a1; : : : ; an/ and d D .d1; : : : ; dm/ be cyclic-dual. Then
Y ta D Y

�t
d

.
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t

�a1

�a2

�an

perform
C1–blowup

t

�.a1� 1/

C1

�.a2� 1/

�an

perform blowups and
blowdowns until all
surgery coefficients

are positive

t

d1

d2

dm

reflect diagram
through
the page

�t

�d1

�d2

�dm

Figure 5: Proving that Y ta D Y
�t

d
, where .d1; : : : ; dm/ is the cyclic-dual of

aD .a1; : : : ; an/ and n > 1.

Proof This is an exercise in Kirby calculus. We will focus on the case n> 1. The case
nD 1 is similar, but much simpler. Start with the surgery diagram of Y ta that is made up
of a t–half-twisted chain link with surgery coefficients .�a1; : : : ;�an/, as in the top
left of Figure 5. We will produce a different surgery diagram for Y ta using blowups and
blowdowns. Without loss of generality, assume that a1 � 3. Let i > 1 be the smallest
integer such that ai � 3 and let Ki denote the unknot with surgery coefficient �ai . If
ai D 2 for all 2 � i � n, then set i D nC 1, with the understanding that anC1 D a1
and KnC1 DK1. We will prove the lemma in the case i � n. The case of i D nC 1
is similar and requires fewer steps. Blow up the linking of the �a1– and �a2–framed
unknots with a C1–framed unknot to obtain the second diagram in Figure 5. We can
now perform i � 2 successive blowdowns of �1–framed unknots (with i � 2 D 0 a
possibility). Next, perform ai � 2 successive C1–blowups of the linking between
Ki and the adjacent positively framed unknot; the resulting framing on Ki is �1.
Continue to perform blowdowns and blowups in this way until every surgery coefficient
is a positive number; we obtain the surgery diagram for Y ta made up of a chain link
with positive surgery coefficients .d1; : : : ; dm/, as in the third diagram of Figure 5,
where d D .d1; : : : ; dm/ is the cyclic-dual of a. Now we can change the orientation
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of Y ta by reflecting this new surgery diagram through the page. This yields a surgery
diagram of Y ta that is made up of a �t–half-twisted chain link with surgery coefficients
.�d1; : : : ;�dn/, as shown in the final diagram of Figure 5. Thus Y ta D Y

�t
d

.

3 Torus bundles over S 1 that bound rational homology circles

In this section, we will prove Theorem 1.1. By considering the obvious handlebody
diagrams of the plumbings shown in Table 1, it is rather straightforward to classify
elliptic and parabolic torus bundles over S1 that bound QS1 �B3’s. In fact, through
Kirby calculus, we will explicitly construct QS1�B3’s bounded by negative parabolic
torus bundles and use the obstructions in Section 2 to obstruct positive parabolic torus
bundles and elliptic torus bundles from bounding QS1 �B3’s.

Proposition 3.1 No elliptic torus bundle bounds a QS1 �B3.

Proof According to Table 1, there are only six elliptic torus bundles; they have
monodromies ˙S, ˙T �1S, and ˙.T �1S/2. By Lemma 2.2, if one of these torus
bundles bounds a QB4, then the torsion part of its first homology group must be
a square. By considering the surgery diagrams in Table 1, it is easy to see that
the only elliptic torus bundles that have the correct first homology are those with
monodromy T �1S or �.T �1S/2. Moreover, note that, by reversing the orientation on
the torus bundle with monodromy T �1S, we obtain the torus bundle with monodromy
�.T �1S/2. Thus we need only show that one of these torus bundles does not bound
a QS1 �B3. Consider the leftmost surgery diagram of the elliptic torus bundle with
monodromy T �1S in Figure 6. By blowing down the 1–framed unknot, we obtain
0–surgery on the right-handed trefoil. Since the signature of the right-handed trefoil
is 2, by Lemma 2.1, the elliptic torus bundle does not bound a QS1 �B3.

=0

1

1

0
blow
down

0

Figure 6: The elliptic torus bundle with monodromy T �1S does not bound a
rational homology circle.
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n

Figure 7: A QS1 �B3 bounded by the negative parabolic torus bundle with
monodromy �T n.

Proposition 3.2 Every negative parabolic torus bundle bounds a QS1 � B3. No
positive parabolic torus bundle bounds a QS1 �B3.

Proof By considering the surgery diagrams of the parabolic torus bundles in Table 1,
it is easy to see that positive parabolic torus bundles, which have monodromy T n,
satisfy b1 D 2. Thus, by the homology long exact sequence of the pair, it is easy to
see that no such torus bundle can bound a QS1 �B3. On the other hand, the negative
parabolic torus bundles with monodromy �T n bound obvious QS1 �B3’s, as shown
in Figure 7.

Classifying hyperbolic torus bundles that bound QS1 �B3’s is not as simple as the
elliptic and parabolic cases. The hyperbolic torus bundles listed in Theorem 1.1 were
shown to bound QS1 �B3’s in [13].

Proposition 3.3 [13] Let

aD .3Cx1; 2
Œx2�; : : : ; 3Cx2mC1; 2

Œx1�; 3Cx2; 2
Œx3�; : : : ; 3Cx2m; 2

Œx2mC1�/ 2 S2c ;

where m� 0 and xi � 0 for all i . Then TA.a/ bounds a QS1 �B3.

It remains to obstruct all other hyperbolic torus bundles from bounding QS1 �B3’s.
A major ingredient towards proving this fact is Theorem 1.7, which we assume to
be true throughout the remainder of this section. The proof of Theorem 1.7 will be
covered in Sections 4–7. Note that “most” hyperbolic torus bundles are obstructed by
Theorem 1.7. In particular, by Theorem 1.7, if a;d … S1 [O, then T�A.a/ does not
bound a QS1�B3, and if a;d … S2, then TA.a/ does not bound a QS1�B3 (where d

is the cyclic-dual of a). Thus, it remains to prove that, if a or d 2 S1[O, then T�A.a/

does not bound a QS1 �B3, and if a or d 2 S2 n S2c , then TA.a/ does not bound a
QS1 �B3 (recall that a 2 S2c if and only if d 2 S2c by Example 1.3). We will prove
this by considering cyclic covers of these torus bundles. But first we need to better
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understand the set S. In the upcoming subsection, we will round up some necessary
technical results regarding S, and in the subsequent subsection, we will explore cyclic
covers and finish the proof of Theorem 1.1.

3.1 Analyzing S

The first technical lemma shows that the sets S1 and S2 are disjoint.

Lemma 3.4 For a fixed string a, Y 0a and Y �1a do not both bound QB4’s (and conse-
quently TA.a/ and T�A.a/ do not both bound QS1�B3’s). It follows that S1\S2D∅.

Proof By construction,

jH1.Y
0
a /j D jTor.H1.TA.a///j and jH1.Y

�1
a /j D jTor.H1.T�A.a///j:

By Lemma A.1, jTor.H1.TA.a///j D jTor.H1.T�A.a///j � 4. Thus jH1.Y 0a /j and
jH1.Y

�1
a /j cannot simultaneously be squares and so, by [4, Lemma 3], Y 0a and Y �1a

do not both bound QB4’s. Now suppose a 2 S1 \ S2. Then, by Theorem 1.7, Y �1a

and Y 0a both bound QB4’s, which is not possible. Therefore, S1\S2 D∅.

Recall from Example 1.3 that a string a 2 S2c can be expressed in two different, but
equivalent, ways, namely

aD .3C x1; 2
Œx2�; : : : ; 3C x2mC1; 2

Œx1�; 3C x2; 2
Œx3�; : : : ; 3C x2m; 2

Œx2mC1�/;(1)

aD .b1C 1; b2; : : : ; bk�1; bkC 1; c1; : : : ; cl/;(2)

where m� 0, xi � 0 for all i , and .b1; : : : ; bk/ and .c1; : : : ; cl/ are linear-dual strings
with kC l � 2. This relationship is easy to see:

.b1C 1; b2; : : : ; bk�1; bkC 1/D .3C x1; 2
Œx2�; : : : ; 3C x2mC1/;

.c1; : : : ; cl/D .2
Œx1�; 3C x2; 2

Œx3�; : : : ; 3C x2m; 2
Œx2mC1�/:

Also recall that S is defined up to cyclic reordering and reversing strings. Thus a string
aD .a1; : : : ; an/ 2 S2c may not be of the form (1) written above. However, by a cyclic
reordering of a, we can put a in the form (1), which is equivalent to (2). Moreover, it is
clear that, if a1 � 3, then a is already in the form (1) and thus already in the form (2).
This simple observation will be used throughout the rest of this subsection.

Definition 3.5 Let a and b be strings. Then ab denotes the string obtained by con-
catenating a and b, and ap denotes the string obtained by concatenating a with itself
p times.
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The next lemma follows directly from the definitions of linear-dual and cyclic-dual
strings. We leave the proof to the reader.

Lemma 3.6 (a) Suppose a has linear-dual x D .x1; : : : ; xp/ and b has linear-dual
y D .y1; : : : ; yq/. Then

(i) ab has linear-dual .x1; : : : ; xp�1; xp � 1Cy1; y2; : : : ; yq/, and

(ii) ab has cyclic-dual .x2; : : : ; xp�1; xp � 1Cy1; y2; : : : ; yq�1; yq � 1C x1/
(up to cyclic reordering).

(b) If a has cyclic-dual d , then ap has cyclic-dual dp.

Definition 3.7 We call a string .a1; : : : ; an/ a palindrome if ai D an�.i�1/ for all
1� i � n.

Lemma 3.8 Consider the strings a D .b1 C 3; b2; : : : ; bk; 2; cl ; : : : ; c1/ 2 S2a and
bD .3C x; b1; : : : ; bk�1; bkC 1; 2

Œx�; cl C 1; cl�1; : : : ; c1/ 2 S2b .

(a) a 2 S2c if and only if .b1C 1; b2; : : : ; bk/ is a palindrome.

(b) b 2 S2c if and only if .b1; : : : ; bk/ is a palindrome.

Proof (a) Since .c1; : : : ; cl/ is the linear-dual of .b1; : : : ; bk/, .2; c1; : : : ; cl/ is the
linear-dual of .b1C1; b2; : : : ; bk/. Consequently, .b1C1; b2; : : : ; bk/ is a palindrome
if and only if .2; c1; : : : ; cl/ is a palindrome if and only if cl D 2 and ci D cl�i for all
1� i � l � 1.

Assume that .b1C 1; b2; : : : ; bk/ is a palindrome. Then bk D b1C 1� 3 and, conse-
quently, clD2. Let d1Db1C2; dkDbk�1, and diDbi for all 2� i�k�1, so that aD

.d1C 1; d2; : : : ; dk�1; dk C 1; 2; cl ; : : : ; c1/. By Lemma 3.6, .2; 2; c1; c2; : : : ; cl�1/
has linear-dual .b1C2; b2; : : : ; bk�1; bk�1/D .d1; : : : ; dk/. On the other hand, since
.2; c1; : : : ; cl/ is a palindrome, .2; 2; c1; c2; : : : ; cl�1/ D .2; cl ; cl�1; cl�2; : : : ; c1/.
Set e1 D e2 D 2 and ei D ci�2 for all 3� i � lC1. Then .d1; : : : ; dk/ has linear-dual
.e1; : : : ; elC1/ and thus

.b1C3; b2; : : : ; bk; 2; cl ; : : : ; c1/D .d1C1; d2; : : : ; dk�1; dkC1; e1; : : : ; elC1/2S2c :

Now assume a 2 S2c . Since b1C 3 > 3, a is of the form

aD .d1C 1; d2; : : : ; dp�1; dpC 1; e1; : : : ; eq/;

where .d1; : : : ; dp/ and .e1; : : : ; eq/ are linear-dual. Thus d1 D b1C 2 and eq D c1.
Note that the length of a is kC lC 1D pC q. We claim that p D k. Indeed, if p > k,
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then .d1; : : : ; dk/ D .b1C 2; b2; : : : ; bk/ has linear-dual .2; 2; c1; : : : ; cl/, implying
that the length of a is greater than kC l C 1, a contradiction; if p < k, we arrive at
a similar contradiction. Therefore p D k and q D l C 1; consequently, e1 D 2 and
ei D cl�iC2 for all 2 � i � l C 1. On the other hand, by Lemma 3.6, the linear-dual
of .d1; : : : ; dp/D .b1C2; b2; : : : ; bk �1/ is .e1; : : : ; eq/D .2; 2; c1; : : : ; cl�1/. Thus
cl D e2 D 2 and ci D cl�i for all 1� i � l � 1. As mentioned above, this implies that
.b1C 1; b2; : : : ; bk/ is a palindrome.

(b) Note that .b1; : : : ; bk/ is a palindrome if and only if .c1; : : : ; cl/ is a palindrome.

Assume .b1; : : : ; bk/ is a palindrome. Let d1 D 2C x and di D bi�1 for all 2 � i �
kC1. By Lemma 3.6, the linear-dual of .d1; : : : ; dkC1/D .2Cx; b1; : : : ; bk�1; bk/ is
.2Œx�; c1C1; c2; : : : ; cl/D .2

Œx�; clC1; cl�1; : : : ; c1/ since .c1; : : : ; cl/ is a palindrome.
Relabel this string as .e1; : : : ; eq/. Then

bD .d1C 1; d2; : : : ; dk; dkC1C 1; e1; : : : ; eq/ 2 S2c :

Now assume b 2 S2c . Since 3C x � 3, b is of the form

bD .d1C 1; d2; : : : ; dp�1; dpC 1; e1; : : : ; eq/;

where .d1; : : : ; dp/ and .e1; : : : ; eq/ are linear-dual. Thus d1C1D 3Cx and eq D c1.
Following as in the proof of the first part, p D kC 1 and q D l C x. Consequently,
exC1D clC1 and exCj D cl�jC1 for all l � j � l . On the other hand, the linear-dual
of .d1; : : : ; dp/D .2Cx; b1; : : : ; bk/ is .e1; : : : ; eq/D .2Œx�; c1C1; c2; : : : ; cl/. Thus
c1 D exC1 � 1D cl and cj D exCj D cl�jC1 for all 2 � j � l . That is, .c1; : : : ; cl/
is a palindrome and thus so is .b1; : : : ; bk/.

Lemma 3.9 Let b 2 S2a [ S2b and p � 4. Then there does not exist some proper
substring a of b such that ap D b.

Proof Let bD .3Cx; b1; : : : ; bk�1; bkC1; 2
Œx�; clC1; cl�1; : : : ; c1/2S2b . Suppose

that a is a proper substring of b satisfying ap D b for some p � 4. Then a D

.3Cx; b1; : : : ; bm/ for somem. If mD 0, then aD .3Cx/ and every entry of b equals
3Cx. The only such string satisfies x D 0 and .b1; : : : ; bk/D .2/D .c1; : : : ; cl/; that
is, bD .3; 3; 3/. But then p D 3, a contradiction.

Assume m� 1. Since ap D b, we have that bmC1 D 3C x � 3; consequently, either
m � k or m � kC x. If m � kC x, then m � l . Thus, up to switching the roles of
.b1; : : : ; bk/ and .c1; : : : ; cl/, we may assume without loss of generality that m� k.
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By Lemma 3.6, the linear-dual of .b1; : : : ; bm/ is of the form .c1; : : : ; cn�1; c
0
n/, where

n � l and c0n � cn. We claim that mD n. First suppose m< n. Then, since ap D b,
we have bm D c1; bm�1 D c2; : : : ; b2 D cm�1; b1 D cm; that is, .b1; : : : ; bm/ is a
proper substring of .c1; : : : ; cn�1; c0n/. But then the linear-dual of .b1; : : : ; bm/ (ie
.c1; : : : ; cn�1; c

0
n/) is a proper substring of the linear-dual of .c1; : : : ; cn�1; c0n/ (ie

.b1; : : : ; bm/), which is a contradiction. A similar argument shows that n < m is also
not possible. Thus mD n.

Since mD n and ap D b, we have that bmD c1, bm�1D c2; : : : ; b2D cm�1; b1D cm,
and cmC1 D 3C x � 3. If m D k, then, since cmC1 � 3, we necessarily have that
x D 0 and p D 2, a contradiction. If m D k � 1, then bk C 1 D bmC1 D 3C x

and, by Lemma 3.6, .c1; : : : ; cl/ D .c1; : : : ; c0mC 1; 2
Œx�/; since cmC1 � 3, we once

again have x D 0 and p D 2, a contradiction. Thus either x D 0 or m � k � 2. In
the latter case, since .b1; : : : ; bk/ has linear-dual .c1; : : : ; cm�1; c0m/, by Lemma 3.6,
.b1; : : : ; bm; 3C x; b1/ has linear-dual .c1; : : : ; cm�1; c0mC 1; 2

Œx�; 3; 2Œb1�2�/; since
cmC1D 3Cx� 3, we necessarily have that xD 0. Thus cmC1D bmC1D 3. Moreover,
since .b1; : : : ; bm/ has linear-dual .c1; : : : ; cm�1; c0m/, by Lemma 3.6, .b1; : : : ; bm; 3/
has linear-dual .c1; : : : ; cm�1; c0mC 1; 2/. Therefore, cm D c0mC 1.

Since p� 4, it follows that either 2mC2� k or 2mC2� l . Without loss of generality,
assume 2mC2� k. Then .b1; : : : ; bm; 3; b1; : : : ; bm; 3/ is a substring of .b1; : : : ; bk/
and its linear-dual is a substring of .c1; : : : ; cl/. By Lemma 3.6, .b1; : : : ; bm; 3/ has
linear-dual .c1; : : : ; cm; 2/ and consequently .b1; : : : ; bm; 3; b1; : : : ; bm; 3/ has linear-
dual .c1; : : : ; cm; c1 C 1; c2; : : : ; cm; 2/. But, since ap D b, the latter string is also
of the form .bm; : : : ; b1; 3; bm; : : : ; b2; b1/. Thus c1 D 2 and b1 D 2. But, since
.b1; : : : ; bm/ and .c1; : : : ; c0m/ are linear-dual and c1 D b1 D 2, we necessarily have
.b1; : : : ; bk/D .2/D .c1; : : : ; cl/; therefore, bD .3; 3; 3/ and p D 3, a contradiction.
We have thus shown that there does not exist a proper substring a of b such that bD ap

for some p � 4.

Next suppose bD .b1C3; b2; : : : ; bk; 2; cl ; : : : ; c1/2S2a. Let aD .b1C3; b2; : : : ; bm/

be a substring of b such that ap D b, where p � 4. We first claim that m < k.
Assume otherwise. Then m� l and since ap D b, .b1C3; b2; : : : ; bk/ is a substring of
.c1; : : : ; cl/. Consequently, the linear-dual of .b1C3;b2; : : : ; bk/ (ie .2;2;2;c1; : : : ; cl/)
is a substring of the linear-dual of .c1; : : : ; cl/ (ie .b1; : : : ; bk/), implying that l <k <m,
a contradiction. Thus m � k. If mD k, then bmC1 D b1C 3 � 3; on the other hand,
bmC1D bkC1D 2, a contradiction. Thus k <m. Now, following the same argument as
in the first part of the proof, we see that the linear-dual of .b1C3; b2; : : : ; bm/ is of the
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form .c1; : : : ; c
0
m/, where c0m � cm and m� l . Thus bmC1 D cmC1 D b1C3� 5. But,

by Lemma 3.6, .b1C3;b2; : : : ; bm; bmC1/D .b1C3;b2; : : : ; bm; b1C3/ has linear-dual
.c1; : : : ; cm; 2

Œb1C1�/, implying that cmC1 � 5, which is another contradiction.

Lemma 3.10 Suppose a 2 S2a [S2b [S2c and ap 2 S2c for some p. Then a 2 S2c .

Proof It suffices to show that, if a 2 S2a or a 2 S2b , then a 2 S2c . Let a 2 S2a, so
that ap is of the form

ap D
�
b1C 3; b2; : : : ; bk; 2; cl ; : : : ; c1;

::: l

b1C 3; b2; : : : ; bk; 2; cl ; : : : ; c1;

b1C 3; b2; : : : ; bk; 2; cl ; : : : ; c1;

b1C 3; b2; : : : ; bk; 2; cl ; : : : ; c1;
::: p�l�1

b1C 3; b2; : : : ; bk; 2; cl ; : : : ; c1
�
:

Since ap 2 S2c and b1 C 3 > 3, ap D .d1 C 1; d2; : : : ; dq�1; dq C 1; e1; : : : ; er/,
where .d1; : : : ; dq/ and .e1; : : : ; er/ are linear-dual strings. Following as in the proof
of Lemma 3.8 and appealing to Lemma 3.6, p is odd, l D 1

2
.p � 1/ and q D

1
2
.p � 1/.k C l C 1/C k, which is the length of the blue substring above. Thus,
.e1; : : : ; er/ is the black substring of ap above. Comparing the end of both strings, it is
clear that cl D 2 and ci D cl�i for all 1� i � l�1. As mentioned in the first paragraph
of the proof of Lemma 3.8, this implies that .b1C 1; b2; : : : ; bk/ is a palindrome. By
Lemma 3.8, a 2 S2c .

Now assume a 2 S2b . Then ap is of the form

ap D
�
3C x; b1; : : : ; bk�1; bkC 1; 2

Œx�; cl C 1; cl�1; : : : ; c1;
::: l

3C x; b1; : : : ; bk�1; bkC 1; 2
Œx�; cl C 1; cl�1; : : : ; c1;

3C x; b1; : : : ; bk�1; bkC 1; 2
Œx�; cl C 1; cl�1; : : : ; c1;

3C x; b1; : : : ; bk�1; bkC 1; 2
Œx�; cl C 1; cl�1; : : : ; c1;

::: p�l�1

3C x; b1; : : : ; bk�1; bkC 1; 2
Œx�; cl C 1; cl�1; : : : ; c1

�
:

Since ap 2 S2c , ap D .d1C 1; d2; : : : ; dq�1; dqC 1; e1; : : : ; er/, where .d1; : : : ; dq/
and .e1; : : : ; er/ are linear-dual strings. Following as above, we have that p is odd,
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l D 1
2
.p � 1/ and q D 1

2
.p � 1/.kC l C xC 1/C kC 1, which is the length of the

blue substring above. Thus, on the one hand, .e1; : : : ; er/ is the black substring of ap

above. On the other hand, by computing the linear-dual of .d1; : : : ; dq/ from the blue
string above, .e1; : : : ; er/ ends in the substring .c1C1; : : : ; cl/. Comparing the end of
both strings, it is clear that .c1; : : : ; cl/D .cl ; : : : ; c1/ and thus .b1; : : : ; bk/ is also a
palindrome. By Lemma 3.8, a 2 S2c .

Corollary 3.11 If a; ap 2 S2a [S2b [S2c , where p � 4, then a 2 S2c .

Proof It follows from Lemma 3.9 that ap 2 S2c; thus, ap 2 S2c . By Lemma 3.10,
a 2 S2c .

The final technical lemma shows that the cyclic-duals of strings in S2a[S2b [S2c are
also in S2a[S2b [S2c . Although this result is implicit in the proof of Theorem 1.7, it
is also relatively simple to prove directly, with the help of Lemma 3.6.

Lemma 3.12 Let d be the cyclic-dual of a. If a 2 S2a [ S2b [ S2c , then d 2

S2a [S2b [S2c .

Proof Let a 2 S2c . Using the description of a as in (1) on page 2465, it is easy to
see that d 2 S2c . Next let aD .3Cx; b1; : : : ; bkC1; 2

Œx�; clC1; cl�1; : : : ; c1/ 2 S2b .
Notice that .3 C x; b1; : : : ; bk C 1/ has linear-dual .2ŒxC1�; c1 C 1; : : : ; cl ; 2/ and
.2Œx�; cl C 1; cl�1; : : : ; c1/ has linear-dual .2C x; bk; : : : ; b1/. Thus, by Lemma 3.6,
d D .2Œx�; c1C 1; : : : ; cl ; 3C x; bk; : : : ; b1C 1/ 2 S2b .

Finally, let aD .b1C 3; b2; : : : ; bk; 2; cl ; : : : ; c1/ 2 S2a. If kC l D 1, then aD .4; 2/

and d D .2; 4/ 2 S2a. If kC l D 2, then aD .5; 2; 2/ and d D .2; 2; 5/ 2 S2a. Now
let k C l � 3. Then either bk � 3 and cl D 2 or vice versa. Assume the former.
Since .b1C 3; b2; : : : ; bk/ has linear-dual .2; 2; 2; c1; : : : ; cl/ and .2; cl ; : : : ; c1/ has
linear-dual .bkC 1; bk�1; : : : ; b1/, by Lemma 3.6,

d D .2; 2; c1; : : : ; cl�1; cl C bk; bk�1; : : : ; b2; b1C 1/:

Let d1 D cl C bk � 3, dk D b1C 1, and di D bk�iC1 for all 2 � i � k � 1. Also let
e1 D cl�1, el D 2, and ei D cl�i for all 2� i � l � 1. Then

d D .2; el ; : : : ; e1; d1C 3; d2; : : : ; dk/

and .d1; : : : ; dk/D .bk�1; bk�1; : : : ; b2; b1C1/ and .e1; : : : ; el/D .cl�1; : : : ; c1; 2/
are linear-dual; thus d 2 S2a. Now assume bk D 2 and cl � 3. Set d1 D cl C bk � 3,
dlC1D 2, di D cl�iC1 for all 2� i � l , e1D bk�1, ek�1D b1C1, and ei D bk�i for
all 2� i � k� 2. Proceeding as above, we see that d 2 S2a.
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3.2 Cyclic covers and proving Theorem 1.1

We are now ready to finish the proof of Theorem 1.1. The next two results explore cyclic
covers of QS1�B3’s and cyclic covers of hyperbolic torus bundles over S1. Coupling
these results with the results in Section 3.1, we complete the proof of Theorem 1.1 in
the subsequent corollaries.

Lemma 3.13 Let W be a QS1 �B3 and let �W be a p–fold cyclic cover of W, where
p is prime and not a divisor of jTor.H2.W IZ//j. If @�W is a QS1 �S2, then �W is a
QS1 �B3.

Proof Let Y D @W and zY D @�W. Since W is a QS1 �B3 and H3.W IZ/ has no
torsion, it follows that H3.W IZ/ D 0. Thus, by Poincaré duality and the universal
coefficient theorem, we have the isomorphisms

H1.W; Y IZp/ŠH
3.W IZp/Š Ext.H2.W IZ/;Zp/:

Since p is relatively prime to jTor.H2.W IZ//j, we have

H1.W; Y IZp/Š Ext.H2.W IZ/;Zp/D 0:

By the proof of [7, Theorem 1.2], since p is prime, it follows that H1.�W ; zY IZp/D 0.
Once again applying Poincaré duality and the universal coefficient theorem, we have
the isomorphisms

0DH1.�W ; zY IZp/ŠH 3.�W IZp/Š Hom.H3.�W IZ/;Zp/˚Ext.H2.�W IZ/;Zp/:
ThusH3.�W IZ/ is a torsion group. Thus, if we apply Poincaré duality and the universal
coefficient theorem as above, but with Q–coefficients, we obtain

H1.�W ; zY IQ/ŠH 3.�W IQ/Š Hom.H3.�W IZ/;Q/˚Ext.H2.�W IZ/;Q/D 0:
Thus the map H1. zY IQ/!H1.�W IQ/ induced by inclusion is surjective. Since zY is
a QS1�S2, it follows that rank.H1.�W IQ//� 1. Finally, since �.�W /D p�.W /D 0
and H3.�W IQ/ D 0, we necessarily have that H1.�W IQ/ D Q and H2.�W IQ/ D 0,
proving that �W is indeed a QS1 �B3.

Proposition 3.14 Let T˙A.a/ be a hyperbolic torus bundle that bounds a QS1 �B3,
say W. If p is an odd prime that does not divide jTor.H2.W IZ//j, then T˙A.ap/

bounds a QS1 �B3.
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Figure 8: Surgery diagrams for TA.a/ (top left), T�A.a/ (top right), TA.a3/
(bottom left) and T�A.a3/ (bottom right). T˙A.a3/ is a 3–fold cyclic cover
of T˙A.a/. There is an obvious Z3–action on T˙A.a3/ given by a rotation
of 120ı through the 0–framed unknot. The quotient of T˙A.a3/ by this action
is T˙A.a/.

Proof Let W be a QS1 �B3 bounded by some negative hyperbolic torus bundle
T˙A.a/, where aD .a1; : : : ; an/. Let p be an odd prime number that is not a factor of
jTor.H2.W IZ//j. Consider the obvious surgery diagrams of TA.a/ and T�A.a/ as in
Figure 8, top. In both diagrams, let �i denote the homology class of the meridian of
the �ai–framed surgery curve and let �0 denote the homology class of the meridian
of the 0–framed surgery curve. Then H1.T˙A.a/IZ/ is generated by �0; : : : ; �n.

Consider the torus bundle T�A.ap/, which has monodromy �.T �a1S � � �T �anS/p.
The standard surgery diagram of this torus bundle includes a �1–half-twisted chain
link (as in Table 1). Note that, by sliding the chain link over the 0–framed unknot
1
2
.p� 1/ times, we may arrange that the chain link has �p half-twists, as in Figure 8,

bottom right (for the case p D 3). For the torus bundle TA.ap/, which has monodromy
.T �a1S � � �T �anS/p , consider the standard surgery diagram shown in Figure 8, bottom
left (for the case p D 3). There is an obvious Zp–action on T˙A.ap/ obtained by
rotating the chain link through the 0–framed unknot by an angle of 2�=p, as indicated
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in Figure 8, bottom. The quotient of T˙A.ap/ by this action is clearly T˙A.a/ and
the induced map f WH1.T˙A.a/IZ/! Zp satisfies f .�0/D 1 and f .�i /D 0 for all
1� i � n. Consider the long exact sequence of the pair .W;T˙A.a//,

H1.T˙A.a/IZ/
i�
�!H1.W IZ/!H1.W;T˙A.a/IZ/! 0:

Choose a basis fm0; m1; : : : ; mkg for H1.W IZ/ such that m0 has infinite order and
mi is a torsion element for all 1� i � k. Since H1.W;T˙A.a/IZ/ is a torsion group,
i�.�0/D˛m0C

Pk
iD1 ˇimi for some ˛; ˇi 2Z, where ˛¤ 0. Since p is not relatively

prime to jTor.H2.W IZ//j D jH1.W;T˙A.a/IZ/j and ˛ divides jH1.W;T˙A.a/IZ/j,
it follows that ˛ and p are relatively prime; thus there exists an integer t such that
t˛� 1 mod p. Define a map g WH1.W IZ/!Zp by g.m0/D t and g.mi /D 0 for all
1� i � k. Then g is a surjective homomorphism satisfying f D g ı i�. Let �W be the
p–fold cyclic cover of W induced by g. Then @�W D T˙A.ap/ and, by Lemma 3.13,�W is a QS1 �B3.

The two following corollaries conclude the proof of Theorem 1.1.

Corollary 3.15 No negative hyperbolic torus bundle bounds a QS1 �B3.

Proof Let T�A.a/ be a negative hyperbolic torus bundle that bounds a QS1 �B3,
say W. Let p > 3 be an odd prime number that is not a factor of jTor.H2.W IZ//j. By
Proposition 3.14, T�A.ap/ also bounds a QS1 �B3. Let d be the cyclic-dual of a; by
Lemma 3.6, dp is the linear-dual of ap . By Lemma 1.2, Y �1a and Y �1ap bound QB4’s
and so, by Theorem 1.7, a or d belongs to S1[O and ap or dp belongs to S1[O.

First assume a; ap 2 S1 [ O. By Remark 1.6, �4 � I.a/; I.ap/ � 0. Moreover,
I.ap/ D pI.a/. If I.a/ < 0, then, since p > 3, we have I.ap/ < �4, which is a
contradiction. Thus I.ap/D I.a/D 0. By Remark 1.6, a; ap 2 S2a [S2b [S2c [O.
Since S1\S2 D∅, by Lemma 3.4, we necessarily have that a; ap 2O, which is not
possible since p ¤ 1.

Next assume a;dp 2 S1[O. By Remark 1.6, �4� I.a/; I.dp/� 0. Since I.dp/D
pI.d/D�pI.a/, we necessarily have that I.a/D I.dp/D 0. As above, this implies
that a;dp 2O. But, since a 2O, it is clear that aD d and thus d 2O. As above, it is
clear that d and dp cannot both be contained in O.

Finally, if d ;dp 2 S1 [ O or d ; ap 2 S1 [ O, similar arguments provide similar
contradictions. Therefore, @W cannot be a negative hyperbolic torus bundle.
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Corollary 3.16 If a positive hyperbolic torus bundle TA.a/ bounds a QS1 �B3, then
a 2 S2c .

Proof Let TA.a/ be a positive hyperbolic torus bundle that bounds a QS1 � B3,
say W, and let p > 3 be an odd prime number that is not a factor of jTor.H2.W IZ//j.
Following as in the proof of Corollary 3.15, a or d belongs to S2 and ap or dp

belongs to S2, where d is the cyclic-dual of a. Suppose a; ap 2 S2. As in the proof of
Corollary 3.15, I.a/D I.ap/D 0 and so, by Remark 1.6, a; ap 2 S2a[S2b[S2c . By
Corollary 3.11, a 2 S2c . Next suppose a;dp 2 S2. Once again, following the argument
in Corollary 3.15, I.a/D I.dp/D 0 and so, by Remark 1.6, a;dp 2 S2a[S2b [S2c .
By Lemma 3.12, we necessarily have that ap 2 S2a [S2b [S2c ; proceeding as in the
previous case, we find a 2 S2c . Finally, if d ; ap 2 S2 or d ;dp 2 S2, we can similarly
deduce that a 2 S2c .

4 Surgeries on chain links bounding rational homology
4–balls

In this section, we will prove the necessary conditions of Theorem 1.7. Namely, we
will show that the QS3’s of Theorem 1.7 bound QB4’s by explicitly constructing such
QB4’s via Kirby calculus. Notice that the necessary condition of Theorem 1.7(2) fol-
lows from the necessary condition of Theorem 1.7(1) in light of Lemma 2.3. Therefore,
we need only show the following three cases (where a and d are cyclic-duals):

� If a 2 S1a, then Y �1a bounds a QB4.

� If a 2 S1b [S1c [S1d [S1e, then Y �1a and Y �1
d

bound QB4’s.

� If a 2 S2, then Y 0a and Y 0
d

bound QB4’s.

Figures 9–15 exhibit the Kirby calculus needed to produce these QB4’s. We will
describe in detail the QB4 constructed in Figure 9, top. The constructions in the other
cases are similar. Notice that the top figure of Figure 9, top (without the�1–framed blue
unknot) is a surgery diagram for Y �1a , where aD .b1; : : : ; bk; 2; cl ; : : : ; c1; 2/ 2 S1a.
Thicken Y �1a to the 4–manifold Y �1a � Œ0; 1�. By attaching a �1–framed 2–handle to
Y �1a �f1g along the blue unknot in Figure 9, top, we obtain a 2–handle cobordism from
Y �1a to a new 3–manifold, which we will show is S1�S2. By performing a blowdown,
we obtain the middle surgery diagram. Blowing down a second time, the surgery
curves with framings �b1 and �c1 link each other once and have framings �.b1� 1/
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Figure 9: With Figures 10–12, we show the 3–manifolds in Theorem 1.7(1)–(2)
bound rational balls. Top: if a 2 S1a, then Y �1a bounds a QB4. Bottom: if
a 2 S1b , then Y �1a and Y 1a bound QB4’s.
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Figure 10: If a 2 S1c , then Y �1a and Y 1a bound QB4’s.

and �.c1� 1/, respectively. Since .b1; : : : ; bk/ and .c1; : : : ; cl/ are linear-dual, either
�.b1� 1/ or �.c1� 1/ is equal to �1. We can thus blow down again. Continuing in
this way, we can continue to blow down �1–framed unknots until we obtain 0–surgery
on the unknot, which is shown on the right side of the figure. Thus we have a 2–handle
cobordism from Y �1a to S1 �S2. By gluing this cobordism to S1 �B3, we obtain the
desired QB4 bounded by Y �1a .

Suppose a 2 S1b [S1c [S1d [S1e and let d be its cyclic-dual. Then, by Lemma 2.3,
Y �1

d
D Y 1a . To show that Y �1

d
bounds a QB4, we will show that Y 1a bounds a QB4.
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Figure 11: If a 2 S1d , then Y �1a and Y 1a bound QB4’s.

Figures 9–12 show that, if a 2 S1b [ S1c [ S1d [ S2e, then Y �1a and Y 1a bound
QB4’s. Note that Figure 9, bottom, depicts a cobordism similar to the one constructed
in Figure 9, top, which was described in the previous paragraph. However, the co-
bordisms constructed in Figures 10–12 are slightly different. In Figure 11, we have
a 2–handle cobordism from Y ˙1a to S1 �S2 #L.�4; 1/, which bounds a QS1 �B3,
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Figure 12: If a 2 S1e , then Y �1a and Y 1a bound QB4’s.

since L.�4; 1/ bounds a QB4 [8]. Gluing this QS1 �B3 to the cobordism yields
the desired QB4. The cobordisms depicted in Figures 10 and 12 are built out of two
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Figure 13: With Figures 14–15, we show the 3–manifolds in Theorem 1.7(3)
bound rational balls Top: if a 2 S2a, then Y 0a bounds a QB4. Bottom: if
a 2 S2b , then Y 0a bounds a QB4.

2–handles. These cobordisms are from Y ˙1a to S1 � S2 # S1 � S2. Gluing these
cobordisms to S1 �B3 \ S1 �B3 yields the desired QB4’s.

Lastly, suppose a 2 S2. By Lemma 2.3, Y 0a D Y 0
d

. Thus, once we show that Y 0a
bounds a QB4, it will follow that Y 0

d
also bounds a QB4. Figures 13–15 show that, if

a 2 S2, then Y 0a bounds a QB4. The QB4’s in almost all of the cases are constructed
in very similar ways as in the negative cases. The last case, Y 0

.2;2;2;3/
, is much simpler;

Figure 15, bottom, shows that Y 0
.2;2;2;3/

D L.�4; 1/, which bounds a QB4.
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Figure 14: Top: if a 2 S2c , then Y 0a bounds a QB4. Bottom: if a 2 S2d , then
Y 0a bounds a QB4.
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Figure 15: Top: if a¤ .3; 2; 2; 2/ 2 S2e , then Y 0a bounds a QB4. Bottom: if
aD .3; 2; 2; 2/ 2 S2e , then Y 0a bounds a QB4.

As shown above, if a 2 S1b [S1c [S1d [S1e , then Y �1
d

bounds a QB4. However, as
the next results will show, if a2S1a, then Y �1

d
does not necessarily bound a QB4. The

key is that jH1.Y �1a /j can be either even or odd when a 2 S1a, but, in all other cases,
H1.Y

�1
a / has even order. Recall that Œb1; : : : ; bk� represents the Hirzebruch–Jung

continued fraction (see the appendix for details).

Proposition 4.1 Let a D .b1; : : : ; bk; 2; cl ; : : : ; c1; 2/ 2 S1a, where Œb1; : : : ; bk� D
p=q. Then jH1.Y �1a /j D jTor.H1.T�A.a///j D p2.

Proof See Proposition A.3.
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Lemma 4.2 Let aD .2; b1; : : : ; bk; 2; cl ; : : : ; c1/ 2 S1a, where Œb1; : : : ; bk�D p=q,
and let d D .d1; : : : ; dm/ be the cyclic-dual of a. If p is odd , then Y �1

d
and Y 1a do not

bound QB4’s.

Proof By Lemma 2.3, Y �1
d
DY 1a , so it suffices to show that Y 1a does not bound a QB4.

Since .b1; : : : ; bk/ and .c1; : : : ; cl/ are linear-dual strings, it is clear that 1
4
I.a/D�1

(see Remark 1.6). By the calculations in Section 2.1, d.Y 1a ; s0/D 1�
1
4
I.a/D 2. Since

p is odd, by Proposition 4.1, jH1.Y 1a /j D jH1.Y
�1
a /j has odd order and so s0 extends

over any QB4 bounded by Y 1a . Thus, if Y 1a bounds a QB4, then d.Y 1a ; s0/D 0, which
is not possible.

Remark 4.3 By Lemma 1.2 and Theorem 1.1, we already know that, if a 2 S2c ,
then Y 0a bounds a QB4. However, by [13], the QB4’s constructed via Theorem 1.1
necessarily admit handlebody decompositions with 3–handles. On the other hand, the
QB4’s constructed in this section do not contain 3–handles. Thus Y 0a bounds a QB4

without 3–handles, even though TA.a/ only bounds QS1 �B3’s containing 3–handles.

5 Cyclic subsets

The remainder of the sections are dedicated to proving the sufficient conditions of
Theorem 1.7. In fact, we will prove something more general. We will show that if t is
odd and Y ta bounds a QB4, then a 2 S1 [O or d 2 S1 [O, and if t is even and Y ta
bounds a QB4, then a 2 S2 or d 2 S2. For convenience, we recall the definition of
these sets.

Definition 1.4 Two strings are considered to be equivalent if one is a cyclic reordering
and/or reverse of the other. Each string in the following sets is defined up to this
equivalence. Moreover, strings of the form .b1; : : : ; bk/ and .c1; : : : ; cl/ are assumed
to be linear-dual. We define

S1aDf.b1; : : : ; bk; 2; cl ; : : : ; c1; 2/ jkCl�3g;

S1bDf.b1; : : : ; bk; 2; cl ; : : : ; c1; 5/ jkCl�2g;

S1cDf.b1; : : : ; bk; 3; cl ; : : : ; c1; 3/ jkCl�2g;

S1dDf.2; b1C1; b2; : : : ; bk�1; bkC1; 2; 2; clC1; cl�1; : : : ; c2; c1C1; 2/ jkCl�2g;

S1eDf.2; 3Cx; 2; 3; 3; 2Œx�1�; 3; 3/ jx�0 and .3; 2Œ�1�; 3/ WD.4/g;

S2aDf.b1C3; b2; : : : ; bk; 2; cl ; : : : ; c1/g;

S2bDf.3Cx; b1; : : : ; bk�1; bkC1; 2Œx�; clC1; cl�1; : : : ; c1/ jx�0 and kCl�2g;
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S2cDf.b1C1; b2; : : : ; bk�1; bkC1; c1; : : : ; cl/ jkCl�2g;

S2dDf.2; 2Cx; 2; 3; 2Œx�1�; 3; 4/ jx�0 and .3; 2Œ�1�; 3/ WD.4/g;

S2eDf.2; b1C1; b2; : : : ; bk; 2; cl ; : : : ; c2; c1C1; 2/; .2; 2; 2; 3/ jkCl�2g;

ODf.6; 2; 2; 2; 6; 2; 2; 2/; .4; 2; 4; 2; 4; 2; 4; 2/; .3; 3; 3; 3; 3; 3/g;

S1DS1a[S1b[S1c[S1d[S1e;

S2DS2a[S2b[S2c[S2d[S2e;

SDS1[S2;

Also recall, to remove the necessity of different cases, if a 2 S1d [S2c and kD 1, then
the substring .b1C 1; b2; : : : ; bk�1; bkC 1/ is understood to be the substring .b1C 2/.

First suppose n D 1 and let a D .a1/, where a1 � 3. Then L01 and L�11 are both
the unknot and so Y 0

.a1/
D L.a1 � 2; 1/ and Y �1

.a1/
D L.a1C 2; 1/ (see Figure 2). By

Lisca’s classification of lens spaces that bound QB4’s [8], the only such lens spaces
that bound QB4’s are L.1; 1/D S3 and L.4; 1/. Thus Y �1

.a1/
does not bound a QB4

for all a1 � 3 and Y 0
.a1/

bounds a QB4’s if and only if a1D 3 or a1D 6. In the former
case, aD .3/ 2 S2c , and in the latter case, d D .2; 2; 2; 3/ 2 S2e.

We now assume the length of a is at least 2. Throughout, we will consider the standard
negative definite intersection lattice .Zn;�In/. Let fe1; : : : ; eng be the standard basis
of Zn. Then, with respect to the product � given by �In, we have ei � ej D�ıij for all
i and j. We begin by recalling definitions and results from [8] and introducing new
terminology for our purposes.

We consider two subsets S1; S2 �Zn to be the same if S2 can be obtained by applying
an element of Aut.Zn/ to S1. Let S D fv1; : : : ; vng � Zn be a subset. We call each
element vi 2 S a vector and we call the string of integers .a1; : : : ; an/ defined by
ai D �vi � vi the string associated to S. Two vectors z; w 2 S are called linked if
there exists e 2 Zn such that e � e D �1 and z � e; w � e ¤ 0. A subset S is called
irreducible if, for every pair of vectors v;w 2S, there exists a finite sequence of vectors
v1 D v; v2; : : : ; vk D w 2 S such that vi and viC1 are linked for all 1� i � k� 1.

Definition 5.1 A subset S D fv1; : : : ; vng 2 Zn is

� good if it is irreducible and

vi � vj D

8<:
�ai � �2 if i D j;
0 or 1 if ji � j j D 1;
0 otherwise;
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� standard if

vi � vj D

8<:
�ai � �2 if i D j;
1 if ji � j j D 1;
0 otherwise:

Note that, by definition, standard subsets are good. If S is a good subset, then a vertex
v 2 S is called isolated if v �w D 0 for all w 2 S n fvg, final if there exists exactly one
vertex w 2 S n fvg such that v �w D 1, and internal otherwise. A component of a good
subset G is a subset of G corresponding to a connected component of the intersection
graph of G (which is the graph consisting of vertices v1; : : : ; vn and an edge between
two vertices vi and vj if and only if vi � vj D 1).

Definition 5.2 A subset S D fv1; : : : ; vng 2 Zn is

� negative cyclic if either

(1) nD 2 and
vi � vj D

�
�ai � �2 if i D j;
0 if i ¤ j;

or

(2) n� 3 and there is a cyclic reordering of S such that

vi � vj D

8̂̂̂<̂
ˆ̂:
�ai � �2 if i D j;
1 if ji � j j D 1;
�1 if i ¤ j 2 f1; ng;
0 otherwiseI

� positive cyclic if �ai � �3 for some i and either

(1) nD 2 and
vi � vj D

�
�ai � �2 if i D j;
2 if i ¤ j;

or

(2) n� 3 and there is a cyclic reordering of S such that

vi � vj D

8̂̂̂<̂
ˆ̂:
�ai � �2 if i D j;
1 if ji � j j D 1;
1 if i ¤ j 2 f1; ng;
0 otherwiseI

� cyclic if S is negative or positive cyclic.

If S is cyclic, then the indices of each vertex are understood to be defined modulo n
(eg vnC1 D v1). If vi � viC1 D˙1, then we say that vi and vj have a positive/negative
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intersection. Moreover, if S is cyclic and S 0 is obtained from S by reversal and/or cyclic
reordering, then we consider S and S 0 to be the same subset. In this way, associated
strings of cyclic subsets are well defined up to reversal and cyclic-reordering.

Remark 5.3 By standard linear algebra, it is easy to see that, if S is good, cyclic, or
the union of a good subset and a cyclic subset, then S forms a linearly independent set
in Zn (see [8, Remark 2.1]).

Remark 5.4 Suppose S D fv1; : : : ; vng is a cyclic subset. Then, by replacing vk
with v0

k
D �vk , we obtain a new subset yS D fv1; : : : ; vk�1; v0k; vkC1; : : : ; vng such

that vk�1 � v0k D �vk�1 � vk and v0
k
� vkC1 D �vk � vkC1. Notice that S and yS have

the same associated strings. Thus we can change the number of positive and negative
intersections of S without changing the associated string. Conversely, any subset of
the form S D fv1; : : : ; vng, where n� 3 and

vi � vj D

8̂̂̂<̂
ˆ̂:
�ai � �2 if i D j;
˙1 if ji � j j D 1;
˙1 if i ¤ j 2 f1; ng;
0 otherwise;

can modified into a positive or negative cyclic subset by changing the signs of select
vertices. In particular, for any negative cyclic subset, the negative intersection can be
moved at will by negating select vertices.

Similarly, any irreducible subset of the form G D fv1; : : : ; vng, where

vi � vj D

8<:
�ai � �2 if i D j;
˙1 if ji � j j D 1;
0 otherwise;

can be modified into a good subset by changing the signs of select vertices. In Section 7,
we will often create such subsets and assume that they are good, without specifying
the need to possibly negate select vertices first.

Definition 5.5 Let S D fv1; : : : ; vng � Zn be a subset with vi � vi D�ai . We define

I.S/ WD

nX
iD1

.ai � 3/; ESi WD fj W vj � ei ¤ 0g;

pi .S/ WD
ˇ̌
fj W jESj j D ig

ˇ̌
; V Si WD fj W vi � ej ¤ 0g:

In some cases we will drop the superscript S from the above notation if the subset
being considered is understood.
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t

�a1

�a2

�an

Figure 16: A 4–manifold P t with boundary Y ta .

Remark 5.6 Lisca [8] classified all standard subsets of Zn with I.S/ < 0. The results
in the next three sections rely in part on his classification of standard subsets. We will
review his classification in Section 5.1.

Example 5.7 The subset S D fe1 � e2; e2 � e3; : : : ; en�1 � en; en C e1g � Zn for
n� 2 is a negative cyclic subset with associated string .2Œn�/. Moreover, I.S/D�n,
p2.S/D n, and pj .S/D 0 for all j ¤ 2. When nD 4, there is an alternative subset
with associated string .2; 2; 2; 2/, namely S 0 D fe1 � e2; e2 � e3;�e2 � e1; e1C e4g,
which satisfies p1.S 0/D p3.S 0/D 2. This latter subset will be used to construct the
family strings in S1a.

Let aD .a1; : : : ; an/. The rational sphere Y ta is the boundary of the negative definite
2–handlebody P t whose handlebody diagram is given in Figure 16. LetQP t denote the
intersection form of P t . Note thatQP t depends only on the parity of t . Further suppose
Y ta bounds a rational homology ball B. Then the closed 4–manifold X t D P t [B is
negative definite. By Donaldson’s diagonalization theorem [6], the intersection lattice
.H2.X

t /;QX t / is isomorphic to the standard negative definite lattice .Zn;�In/. Thus
the intersection lattice .H2.P t /;QP t / must embed in .Zn;�In/. The existence of
such an embedding implies the existence of a cyclic subset S � Zn with associated
string .a1; : : : ; an/. Thus our goal is to classify all cyclic subsets of Zn, where n� 2.

Recall that, by reversing the orientation of Y ta , we obtain the Y ta D Y
�t
d

, where d D

.d1; : : : ; dm/ is the cyclic-dual of .a1; : : : ; an/ (Section 2.2). In particular, .a1; : : : ; an/
is of the form .2Œm1�; 3C n1; : : : ; 2

Œmk�; 3C nk/ if and only if .d1; : : : ; dm/ is of the
form .3Cm1; 2

Œn1�; : : : ; 3Cmk; 2
Œnk�/. If S and S denote the cyclic subsets associated

to .a1; : : : ; an/ and .d1; : : : ; dm/, respectively, then I.S/C I.S/D 0. Now, since Y ta
bounds a QB4 if and only if Y �t

d
bounds a QB4, we will focus our attention on subsets

satisfying I.S/� 0. The following theorem is the main result of our lattice analysis:
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Theorem 5.8 Let S be a cyclic subset such that I.S/� 0. Then S is either negative
with associated string in S1 [O [ f.2Œn�/ j n � 2g or positive with associated string
in S2.

Proof The theorem follows from Example 5.7 and Propositions 6.5, 7.5 and 7.14,
which will be proven in Sections 6 and 7.

We can now prove Theorem 1.7, which we recall here for convenience.

Theorem 1.7 Let a D .a1; : : : ; an/, where n � 1, ai � 2 for all i , and aj � 3 for
some j, and let d be the cyclic-dual of a.

(1) Suppose d … S1a [ O. Then Y �1a bounds a QB4 if and only if a 2 S1 or
d 2 S1b [S1c [S1d [S1e.

(2) Suppose a … S1a [ O. Then Y 1a bounds a QB4 if and only if d 2 S1 or
a 2 S1b [S1c [S1d [S1e.

(3) Y 0a bounds a QB4 if and only if a 2 S2 or d 2 S2.

Proof The sufficient conditions of Theorem 1.7 follow from the calculations in
Section 4. The necessary conditions of Theorem 1.7 follow from Theorem 5.8 and the
fact that Y ta bounds a QB4 if and only if Y �t

d
bounds a QB4.

The proof of Theorem 5.8 will span the next three sections. The proof will begin in
earnest in Section 6. The proof applies two strategies. The first will be to reduce certain
cyclic subsets to good subsets and standard subsets and appeal to Lisca’s work [8; 9].
The second will be to reduce certain cyclic subsets (via contractions) to a small list of
base cases. In the upcoming subsection, we will recall Lisca’s classification of standard
subsets. In the subsequent subsection, we will describe how to perform contractions
and list the relevant base cases. In the final subsection, we will prove a few preliminary
lemmas that will be useful going forward.

5.1 Lisca’s standard and good subsets

In Section 7, we will construct good subsets and standard subsets satisfying I < 0 from
cyclic subsets, thus reducing the problem of classifying certain cyclic subsets to Lisca’s
work [8; 9]. In this section, we collect relevant results proved by Lisca. The first two
propositions can be found in [8, Sections 3–7]. In particular, the “moreover” statements
in Proposition 5.10 are obtained by examining the proofs of [8, Lemmas 7.1–7.3].
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Proposition 5.9 Let T D fv1; : : : ; vng be a standard subset with I.T / < 0. Then:

(1) I.T / 2 f�1;�2;�3g.

(2) jvi � ej j � 1 for all i and j .

(3) p1.T /D 1 if and only if I.T /D�3 and , if p1.T /D 0, then p2.T / > 0.

(4) If I.T /D�3, then p1.T /D p2.T /D 1 and p3.T /D n� 2.

(5) If I.T /D�2, then p2.T /D 3, p4.T /D 1, and p3.T /D n� 4.

(6) If I.T /D�1, then p2.T /D 2, p4.T /D 1 and p3.T /D n� 3.

Proposition 5.10 Let T be standard with I.T / < 0. Let x; y � 0.

(1) If I.T /D�3, then , if Ei Dfsg, then vs is internal (ie 1< s <n) and vs �vs D�2;
if jEj j D 2, then Ej D f1; ng; either v1 � v1 D �2 or vn � vn D �2; and v1 � ej D

�vn � ej . Moreover , T has associated string of the form .b1; : : : ; bk; 2; cl ; : : : ; c1/,
where .b1; : : : ; bk/ and .c1; : : : ; cl/ are linear-dual strings.

(2) If I.T /D�2, then (up to reversal ) T has associated string of the form

(a) .2Œx�; 3; 2Cy; 2C x; 3; 2Œy�/,

(b) .2Œx�; 3Cy; 2; 2C x; 3; 2Œy�/, or

(c) .b1; : : : ; bk�1; bkC 1; 2; 2; cl C 1; cl�1; : : : ; c1/, where the strings .b1; : : : ; bk/
and .c1; : : : ; cl/ are linear-dual.

Moreover , up to the action of Aut.Zn/, the corresponding embeddings are of the form

(a)
�
exC4� exC3; exC3� exC2; : : : ; e5� e4; e4� e2� e3;

e2C e1C

xCyC4X
˛DxC5

ei ;�e2� e4�

xC4X
˛D5

ei ; e2� e1� e3; e1� exC5;

exC5� exC6; : : : ; exCyC3� exCyC4

�
;

(b)
�
exC4� exC3; exC3� exC2; : : : ; e5� e4; e4� e2� e3�

xCyC4X
˛DxC5

ei ; e2C e1;

�e2�e4�

xC4X
˛D5

ei ; e2�e1�e3; e3�exC5; exC5�exC6; : : : ; exCyC3�exCyC4

�
;

(c) fu1; : : : ; uk�1; ukCe4�e2�e3; e2Ce1;�e2�e4; e2�e1�e3Cw1;w2; : : : ;wlg;
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where kCl �3, ukD0 orw1D0, jE1jD jE4jD2. Furthermore (up to reversal ), in (c)
we may assume that u21 D�2; consequently, there exist integers j1 and j2 such that
jEj1 j D 2, jEj2 j D 3, u1 �ej2 D�u2 �ej2 D�wl �ej2 D 1, and ju1 �ej2 j D jwl �ej2 j D 1.

(3) If I.T /D�1, then (up to reversal ) T has associated string of the form

(a) .2C x; 2Cy; 3; 2Œx�; 4; 2Œy�/,

(b) .2C x; 2; 3Cy; 2Œx�; 4; 2Œy�/, or

(c) .3C x; 2; 3Cy; 3; 2Œx�; 3; 2Œy�/.

Moreover , up to the action of Aut.Zn/, the corresponding embeddings are of the form

(a)
�
e2C e4C

xC4X
˛D5

e˛; e1� e2C

xCyC4X
˛DxC5

e˛; e2� e3� e4; e4� e5;

e5� e6; : : : ; exC3� exC4; exC4� e1� e2� e3; e1� exC5;

exC5� exC6; : : : ; exCyC3� exCyC4

�
;

(b)
�
e2Ce4C

xC4X
˛D5

e˛; e1�e2; e2�e3�e4�

xCyC4X
˛DxC5

e˛; e4�e5; : : : ; exC3�exC4;

exC4� e1� e2� e3; e3� exC5; exC5� exC6; : : : ; exCyC3� exCyC4

�
;

(c)
�
e1� e2� e5�

xC5X
˛D6

e˛; e2C e3;�e2� e1� e4�

xCyC5X
˛DxC6

e˛;�e5C e2� e3;

e5� e6; e6� e7; : : : ; exC4� exC5; exC5C e1� e4; e4� exC6;

exC6� exC7; : : : ; exCyC4� exCyC5

�
:

The next proposition follows from the first case (S irreducible) of the proof of the main
theorem in [9, page 2160ff] and [8, Lemma 6.2] (see also [1, Lemma 6.6]). See [8,
Definition 4.1] for the definition of bad component.

Proposition 5.11 [9] Let G � Zn be a good subset with two components and
I.G/ � �2. If G has no bad components , then I.G/ D �2 and G has associated
string of the form .b1; : : : ; bk/[ .c1; : : : ; cl/, where .b1; : : : ; bk/ and .c1; : : : ; cl/ are
linear-dual strings. Moreover , if G D fv1; : : : ; vk; vkC1; : : : ; vkClg, where �v2i D bi
for 1� i � k and �v2

kCj
D cj for all 1� j � l , then there exist integers ˛ and ˇ such

that E˛ D f1; kC 1g and Eˇ D fk; kC lg.
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5.2 Contractions, expansions and base cases

In this section, we discuss how to reduce the length of certain cyclic subsets via
contractions.

Definition 5.12 Suppose S D fv1; : : : ; vng with n� 3 is a cyclic subset and suppose
there exist integers i , s and t such that Ei D fs; Qs; tg, where Qs 2 fs˙1g, VQs \Vs D fig,
jvu �ei j D 1 for all u2Ei , and at � 3. After possibly cyclically reordering and reindex-
ing S, we may assume that s … f1; ng. Let S 0 � Zn�1 D he1; : : : ; ei�1; eiC1; : : : ; eni

be the subset defined by

S 0 D .S n fvs; vQs; vtg/[fvsC vQs; �ei .vt /g;

where �ei .vt /D vt C .vt � ei /ei . We say that S 0 is obtained from S by a contraction
and S is obtained from S 0 by an expansion.

Since s … f1; ng and jvQs � ei j D jvs � ei j D 1, we have vs�1 � ei D�vs � ei . Thus

.vsC vQs/ � vu D

8<:
1 if Qs D sC 1 and u 2 fs� 1; sC 2g;
1 if Qs D s� 1 and u 2 fs� 2; sC 1g;
0 otherwise:

Moreover, .�ei .vt //
2 D v2t C 1� �2 and

�ei .vt / � vu D

�
1 if uD t ˙ 1;
0 otherwise:

Therefore, S 0 is a positive/negative cyclic subset if and only if S is positive/negative
cyclic. Moreover, I.S 0/D I.S/, pj .S 0/Dpj .S/ for all j ¤3, and p3.S 0/Dp3.S/�1.

Definition 5.13 Using the notation above, if vt �vs D 1 (so that t D s˙1 if QsD s�1)
and aQs D 2, then we say

� vs is the center of S relative to ei ,

� S 0 is obtained by a contraction of S centered at vs , and

� S is obtained by a �2–expansion of S .

Note that a subset obtained by a contraction of S centered at vs is unique. Indeed,
if Ei D fs � 1; s; sC 1g, as�1 D 2 and asC1 � 3, then Vs�1 \Vs D fig and the only
contraction centered at vs is S n fvs; vs�1; vsC1g[ fvs�1C vs; �ei .vsC1/g. Similarly,
if Ei D fs � 1; s; sC 1g, as�1 D 2 and asC1 � 3, then Vs�1 \Vs D fig and the only
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contraction centered at vs is S n fvs; vs�1; vsC1g [ fvs C vsC1; �ei .vs�1/g. Now let
S have associated string .a1; : : : ; an/. Then, under the contraction centered at vs , the
associated string changes via

.a1; : : : ; as�2; 2;as; asC1; asC2; : : : ; an/! .a1; : : : ; as�2;as; asC1�1;asC2; : : : ; an/

or

.a1; : : : ; as�2; as�1;as; 2; asC2; : : : ; an/! .a1; : : : ; as�2; as�1�1;as; asC1; : : : ; an/:

Notice that two strings .b1; : : : ; bk/ and .cl ; : : : ; c1/ are reverse linear-dual if and only
if .b1; : : : ; bk�1/ and .cl�1; : : : ; c1/ or .b1; : : : ; bk�1/ and .cl�1; : : : ; c1/ are reverse
linear-dual. Thus the substrings on either side of as in the associated string of S are
reverse linear-dual if and only if the substrings on either side of as in the associated
string of the contraction of S centered at vs are reverse linear-dual.

More generally, let S D fv1; : : : ; vng and consider a sequence of contractions S0 D S,
S1, S2; : : : ; Sm such that Sk is obtained from Sk�1 by performing a contraction
centered at v.k�1/s 2 Sk�1, where v.0/s D vs . We call such a sequence of contractions
the sequence of contractions centered at vs and call the reverse sequence of expansions
a sequence of �2–expansions centered at v.m/s . Notice that, for all 1� k �m, v.k/s D
v
.k�1/
s C v

.k�1/

Qs
, where v.k�1/

Qs
is the unique vertex of Sk�1 adjacent to v.k�1/s with

square �2. We have proven the following:

Lemma 5.14 Let S 0 be obtained from S by a sequence of contractions centered at v
and let v2 D�a. Then S has associated string of the form .b1; : : : ; bk; a; cl ; : : : ; c1/,
where .b1; : : : ; bk/ and .cl ; : : : ; c1/ are reverse linear-dual , if and only if S 0 has
associated string of the form .b01; : : : ; b

0
k0
; a; c0

l 0
; : : : ; c01/, where .b01; : : : ; b

0
k0
/ and

.c0
l 0
; : : : ; c01/ are reverse linear-dual.

When I.S/ � 0 and either p1.S/ > 0 or p1.S/ D p2.S/ D 0, we will be able to
sequentially perform contractions until we arrive at certain base cases. In light of
Example 5.7, we will restrict our attention to cyclic subsets containing at least one
vector with square at most �3. We will now list all such cyclic subsets of length 2
and 3 with I.S/ � 0. It can be concretely checked case by case that the only such
cyclic subsets are positive and (up to the action of Aut.Z2/) are of the form

� f2e1;�e1C e2g, which has associated string .4; 2/ 2 S2a;

� f2e1� e3; e3C e2;�e1� e3g, which has associated string .5; 2; 2/ 2 S2a; and

� fe1�e2�e3; e3�e1�e2; e2�e3�e1g, which has associated string .3; 3; 3/2S2c .
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Notice that the second and third vertices of the subset with associated string .5; 2; 2/
are both centers relative to e3. If we perform a contraction centered at either vertex
relative to e3, we obtain the subset with associated string .4; 2/. Note that, when nD 3,
centers are not unique, but when n� 4, centers are necessarily unique.

Remark 5.15 We will usually denote cyclic subsets by S, standard subsets by T, and
good subsets by G. Moreover, S 0 will be reserved for contractions of S.

5.3 Preliminary lemmas

The following lemmas will be important in future sections. The first follows from the
proof of [8, Lemma 2.5].

Lemma 5.16 [8, Lemma 2.5] If S Dfv1; : : : ; vng�ZnDhe1; : : : ; eni is any subset ,
then

2p1.S/Cp2.S/C I.S/�

nX
jD4

.j � 3/pj .S/;

with equality if and only if jv˛ � eˇ j � 1 for all 1� ˛; ˇ � n.

Lemma 5.17 Let S be cyclic and such that p2.S/ > 0 and jv˛ � eˇ j � 1 for all
1� ˛; ˇ � n. Then

P
i p2i .S/��I.S/ mod 4.

Proof First notice that, since I.S/D
Pn
iD1.ai � 3/, we have

Pn
iD1 ai D 3nC I.S/.

Now

�

� nX
iD1

vi

�2
D

nX
iD1

ai �

n�1X
iD1

2vi � viC1� 2v1 � vn D

�
nC I.S/ if S is positive;
nC 4C I.S/ if S is negative:

On the other hand, set
Pn
iD1 vi D

Pn
iD1 �iei and let k˛ D

ˇ̌
fi W j�i j D 2˛C 1g

ˇ̌
and

xˇ D
ˇ̌
fi W j�i j D 2ˇg

ˇ̌
. Finally, let m 2 Z be the largest integer such that km ¤ 0 and

kt D 0 for all t > m, and let y 2 Z be the largest integer such that xy ¤ 0 and xt D 0
for all t > y. Since jv˛ � eˇ j � 1 for all ˛ and ˇ, we have

P
i p2i .S/D x0C � � �C xy .

Hence,

�

� nX
iD1

vi

�2

D�

nX
iD1

�2i D

�
n�

� mX
˛D1

k˛

�
�

� yX
ˇD0

xˇ

��
C

mX
˛D1

.2˛C 1/2k˛C

yX
ˇD0

.2ˇ/2xˇ
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D nC

mX
˛D1

.4˛2C 4˛/k˛C

yX
ˇD0

.4ˇ2� 1/xˇ

D nC

mX
˛D1

.4˛2C 4˛/k˛C

yX
ˇD0

.4ˇ2/xˇ �

�X
i

p2i .S/

�
:

Thus,
mX
˛D1

.4˛2C 4˛/k˛C

yX
ˇD1

.4ˇ2/xˇ D

�P
i p2i .S/C I.S/ if S is positive;P
i p2i .S/C 4C I.S/ if S is negative:

It follows that
P
i p2i .S/��I.S/ mod 4.

Lemma 5.18 If G D fv1; : : : ; vng � Zn is a good subset with I.G/D 0, p3.G/D n,
and n components , then , up to the action of Aut Zn, negating vertices , and permuting
vertices ,

� G D fe1� e2C e3� e4; e1C e2;�e1C e2C e3� e4; e3C e4g with associated
string .4; 2; 4; 2/, or

� G D fe1 � e2 � e3; e1 C e2 � e4; e2 � e3 C e4; e1 C e3 C e4g with associated
string .3; 3; 3; 3/.

Proof First notice that, by Lemma 5.16, jv˛ � eˇ j � 1 for all ˛ and ˇ. Let i , s, t and u
be integers such that Ei D fs; t; ug. Since every vertex of G is isolated, up to negating
vertices we may assume that vs � ei D vt � ei D vu � ei D�1.

First suppose as D 2 and let vs D ei C ej . Then, since vs � vt D vs � vu D 0, we
have vt D ei � ej C a and vu D ei � ej C b. Since vt � vu D 0, there are integers
k; l 2 Vt \Vu such that vt D ei � ej C ek � el Ca0 and vu D ei � ej � ekC el Cb0. If
.a0/2 ¤ 0, then let RD fv01; : : : ; v

0
s�1; v

0
sC1; : : : ; v

0
ng �Zn�2 D he1; : : : ; eni=hei ; ej i,

where v0t D �ej .�ei .vt //, v
0
u D �ej .�ei .vu//, and v0x WD vx for all x … ft; ug. Then

.v0t /
2 ��3, v0t �v

0
u D 2, and v0t �vx D v

0
u �v
0
x D 0 for all x … ft; ug. Consequently, R is

the union of a positive cyclic subset fv0t ; v
0
ug and a good subset R n fv0t ; v

0
ug. Thus,

by Remark 5.3, R is a linearly independent set of n� 1 vectors in Zn�2, which is
impossible. Thus .a0/2D 0 and, similarly, .b0/2D 0; hence, vt D ei �ej Cek�el and
vu D ei � ej � ekC el . Now, since jEkj D jEl j D 3, there exists an integer z such that
k; l 2 Vz and, since vz � vt D 0, we may assume that vz D ek C el C c. By a similar
argument as above, c2 D 0 and so vz D ekC el . Since G is irreducible, it follows that
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n D 4 and so G has associated string of the form .4; 2; 4; 2/. Setting i D 3, j D 4,
k D 1 and l D 2, we have the subset listed in the statement of the lemma.

Next suppose as; at ; au � 3. Assume as > 3. Let RD fv01; : : : ; v
0
s�1; v

0
sC1; : : : ; v

0
ng �

Zn�1 D he1; : : : ; eni=hei i, where v0s D �ei .vs/, v
0
t D �ei .vt /, v

0
u D �ei .vu/, and

v0x WD vx for all x … fs; t; ug. Then .v0s/
2<�2 and v0s �v

0
t D v

0
s �v
0
uD v

0
t �v
0
uD 1; hence,

fv0s; v
0
t ; v
0
ug is a positive cyclic subset. Moreover, v0s � v

0
x D v

0
t � v
0
x D v

0
u � v
0
x D 0 for all

x … fs; t; ug. ThusR is the union of a positive cyclic subset and a good subset and so, by
Remark 5.3,R is a linearly independent set of n�1 vectors in Zn�2, which is impossible.
Thus as D 3; similarly, at D au D 3. Without loss of generality, vs D ei � ej � ek ,
vt D ei C ej � el and vu D ei C ekC el for some integers j, k and l . Since jEj j D 3,
there exists an integer z such that j 2 Vz . Since vz �vs D vz �vt D vz �vuD 0, we have
vz D ej � ek C el C a. If a2 ¤ 0, then we can define a subset R as above and arrive
at a similar contradiction. Thus vz D ej � ek � el . Since G is irreducible, it follows
that nD 4 and so G has associated string of the form .3; 3; 3; 3/. Setting i D 1, j D 2,
k D 3 and l D 4, we have the subset listed in the statement of the lemma.

6 Lattice analysis, case I: p1.S / > 0

Throughout this section, we will assume that S D fv1; : : : ; vng is a cyclic subset with
I.S/� 0 and p1.S/ > 0. Thus there exist integers i and s such that Ei Dfsg. Lemmas
6.1–6.3 will ensure that we can contract such subsets.

Lemma 6.1 Let S be a cyclic subset of length 4 such that I.S/� 0 and Ei D fsg for
some integers i and s. If asC1 � 3 or as�1 � 3, then S is positive and has associated
string of the form .6; 2; 2; 2/ or .5; 2; 2; 3/. If as˙1 D 2, then S is either negative and
has associated string of the form .2; 2; 2; 2/ or .2; 2; 2; 5/, or positive and has associated
string of the form .2; 2; 2; 3/ or .2; 2; 2; 6/.

Proof If jVsjD1, then, sinceEiDfsg, we obtain vs �vsC1D0, which is a contradiction.
Thus jVsj � 2.

Suppose as�1 � 3. If jVsj � 3, then let R � Z3 be the subset obtained by replacing
vs by vs C .vs � ei /ei . Then R is a cyclic subset and, by Remark 5.3, R is made
of four linearly independent vectors in Z3, which is not possible. Thus jVsj D 2.
Let Vs D fi; j g. Then Ej D fs � 1; s; sC 1g, since otherwise we would necessarily
have that jEi j > 1. Moreover, since Vs�1 \ Vs D VsC1 \ Vs D fj g, we necessarily
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have that jvs�1 � ej j D jvs � ej j D jvsC1 � ej j D 1. If S is positive cyclic, then it
is clear that vs�1 � ej D vsC1 � ej D �vs � ej . If S is negative cyclic, then, by
possibly moving the negative intersection (see Remark 5.4), we may assume that
vs�1 � ej D vsC1 � ej D �vs � ej . Thus we may perform a contraction of S centered
at vs relative to ej to obtain a length 3 cyclic subset S 0 with I.S 0/ D I.S/ � 0

and p1.S 0/ > 0. By considering the base cases in Section 5.2, it is clear that S 0 D
f2e1�e3; e3Ce2;�e1�e3g (up to the action of Aut.Z3/), which has associated string
.5; 2; 2/. Thus i D 2, j D 4, and either S Df2e1�e3�e4; e2Ce4;�e4Ce3;�e1�e3g
or S D f2e1 � e3; e3 � e4; e4C e2;�e4 � e1 � e3g. Therefore, S is positive and has
associated string .6; 2; 2; 2/ or .5; 2; 2; 3/.

Now suppose as�1 D asC1 D 2. Without loss of generality, assume s D j D 4.
Let T D fv1; v2; v3g � Z3 D he1; e2; e3i be the length 3 standard subset obtained by
removing vs from S. Then T has associated string of the form .2; a2; 2/. Since I.S/�0,
we must have a2 � 6. It is easy to see that a2 ¤ 6, since otherwise v2 D 2e1� e2� e3
(up to the action of Aut.Z3/), implying that v1 � v2 ¤˙1, which is a contradiction. If
a2D 5, then T is of the form fe1� e2; e2C2e3;�e2� e1g and therefore S must be of
the form fe1� e2; e2C 2e3;�e2� e1; e1C e4g (up to the action of Aut.Z3/). Thus S
is negative with associated string .2; 5; 2; 2/ (equivalently .2; 2; 2; 5/). If a2 � 4, then
I.T / < 0. By Proposition 5.10, the only such length 3 standard subset has associated
string .2; 2; 2/. Moreover, T is of the form T D fe1� e2; e2� e3;�e2C e1g (see [8,
Lemma 2.4]). Since v3 � v4 D˙1, either 1 2 V S4 , 2 2 V S4 , or both. If 1; 2 2 V S4 , then
since v2 � v4 D 0, we must have 3 2 V S4 ; thus jV S4 j D 4. Moreover, since v1 � v4 D˙1,
we must have that v4 � e1 D v4 � e2˙ 1, implying that a4 � 7, which is not possible.
Thus either 1 2 V S4 or 2 2 V S4 , but not both. If 1 2 V S4 , then S is negative and of the
form fe1 � e2; e2 � e3;�e2 � e1; e1C e4g or fe1 � e2; e2 � e3;�e2 � e1; e1C 2e4g,
which have associated strings .2; 2; 2; 2/ and .2; 2; 2; 5/ (note that we found the
latter subset above). If 2 2 V S4 , then 3 2 V S4 and S is positive and of the form
fe1�e2; e2�e3;�e2�e1; e2Ce3Ce4g or fe1�e2; e2�e3;�e2�e1; e2Ce3C2e4g,
which have associated strings .2; 2; 2; 3/ and .2; 2; 2; 6/.

Lemma 6.2 Let S be a cyclic subset of length at least 5 such that Ei D fsg for some
i and s. Then jVsj D 2. Moreover , if Vs D fi; j g, then Ej D fs � 1; s; s C 1g and
vs�1 � ej D vsC1 � ej D�vs � ej D˙1.

Proof First note that, if jVsjD1, then, sinceEi Dfsg, we obtain vs �vsC1D0, which is
a contradiction. Now suppose jVsj � 3. Then, by replacing vs with v0s D vsC.vs �ei /ei
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and relabeling v0u D vu for all u¤ s, we obtain a subset

RD fv01; : : : ; v
0
s�1; v

0
s; v
0
sC1; : : : ; v

0
ng � Zn�1 D he1; : : : ; ei�1; eiC1; : : : ; eni:

Let .a01; : : : ; a
0
n/ be the string associated to R, where �a0s WD v

0
s �v
0
s ��2 and a0j D aj

for all j ¤ i . If S is negative cyclic, then so is R and thus, by Remark 5.3, R is made
of n linearly independent vectors in Zn�1, which is not possible. If S is positive cyclic
and either a0s � 3 or ai � 3 for some i ¤ s, then R is also positive cyclic, and we obtain
a similar contradiction. Now suppose S is positive cyclic, a0s D 2 and a0t D at D 2 for
all t ¤ s. Let T be the subset obtained by removing vs from S. Then T has associated
string .2Œn�1�/ and so I.T /D�.n�1/��4. If jES

k
j � 2 for all k 2 V Ss , where k¤ i ,

then T is a standard subset of Zn�1 with I.T /��4, which contradicts Proposition 5.9.
If jES

k
j D 1 for some k 2 V Ss such that k¤ i , then, by Remark 5.3, T consists of n�1

linearly independent vectors in Zm, where m < n� 1, which is not possible. Thus
jVsj D 2. Let V Ss D fi; j g. Then, as in the proof of Lemma 6.1, Ej D fs� 1; s; sC 1g
and vs�1 � ej D vsC1 � ej D�vs � ej D˙1.

Lemma 6.3 Let S be a cyclic subset of length at least 5 such that I.S/ � 0 and
Ei D fsg for some i and s. Then either as�1 � 3 or asC1 � 3. Moreover , if as˙1 � 3,
then S is positive with associated string .2; 3; 2; 3; 2/ or .2; 3; 5; 3; 2/.

Proof By Lemma 6.2, Vs D fi; j g and Ej D fs � 1; s; sC 1g. Assume that as�1 D
asC1D 2. Then Vs�1Dfj; kg for some k, VsC1Dfj; k0g for some k0, and jvs˙1 �ej jD
jvs�1 � ekj D jvsC1 � ek0 j D 1. Since vs�1 � vsC1 D 0, we must have k D k0. Since
jvs�2 � vs�1j D 1 and j … Vs�2, we must have k 2 Vs�2. But then vs�2 � vsC1 ¤ 0,
which is a contradiction.

Now suppose as�1; asC1 � 3 and let R be the subset obtained by removing vs and
replacing vs˙1 with v0s˙1 D vs˙1 C .vs˙1 � ej / � ej . Note that v0s�1 � v

0
sC1 D ˙1.

As in the proof of Lemma 6.2, either R is cyclic or S is positive cyclic and R has
associated string of the form .2Œn�1�/. In the former case, by Remark 5.3, R �
Zn�2 contains n� 1 linearly independent vectors, which is not possible. In the latter
case, let T � Zn�1 be the standard subset obtained from S by only removing vs .
Then T has associated string .3; 2; : : : ; 2; 3/. By Proposition 5.10, the only such
standard subset is fe4C e3� e2; e2C e1;�e2� e4; e2C e3� e1g (up to the action of
Aut.Z4/), which has associated string .3; 2; 2; 3/. Thus j D 3, jvs � e3j D 1. Since
I.S/� 0, S is of the form f�e2� e4; e2C e3� e1; e5� e3; e4C e3� e2; e2C e1g or
f�e2� e4; e2C e3� e1; 2e5� e3; e4C e3� e2; e2C e1g, which are positive and have
associated strings .2; 3; 2; 3; 2/ and .2; 3; 5; 3; 2/, respectively.
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Let S D fv1; : : : ; vng be a cyclic subset such that n � 6, I.S/ � 0 and ESi D fsg
for some integers i and s. By Lemma 6.2, we may assume that V Ss D fi; j g and
ESj D fs � 1; s; sC 1g for some integer j. Thus vs is the center vertex of S relative
to ej . By Lemma 6.3, we may further assume that asC1 � 3 and as�1 D 2 and so
V Ss�1 D fj; j1g for some integer j1. Let S 0 D fv01; : : : ; v

0
s�2; v

0
s; v
0
sC1; : : : ; v

0
ng be the

contraction of S centered at vs , where v0xDvx for all x…fs�1; s; sC1g, v0sDvs�1Cvs ,
and v0sC1 D �ej .vt /. Since V S

0

s D fi; j1g and ES
0

j1
D fs� 2; s; sC 1g, v0s is the center

vertex of S 0 relative to ej1 and, by Lemma 6.3, either .v0s�2/
2��3 or .v0sC1/

2��3. If
.v0s�2/

2��3 and .v0sC1/
2��3, then, by Lemma 6.3, S 0 is positive and has associated

string of the form .2; 3; 2; 3; 2/ or .2; 3; 5; 3; 2/. If .v0s�2/
2 D �2 or .v0sC1/

2 D �2,
then we can perform the contraction centered at v0s relative to ej1 , as above. Continuing
in this way, we have a sequence of contractions centered at vs , which ends in a subset yS
either of length 4 or of length 5 with associated string .2; 3; 2; 3; 2/ or .2; 3; 5; 3; 2/.
Let Ovs denote the resulting center vertex of yS. Then V ySs D fi; kg for some integer k
and jE yS

k
j D 3.

Suppose that yS has length 4. By considering the length 4 cyclic subsets in the proof of
Lemma 6.1, it is clear that yS is either negative and of the form

� fe1� e2; e2� e3;�e2� e1; e1C e4g with associated string .2; 2; 2; 2/, or

� fe1� e2; e2� e3;�e2� e1; e1C 2e4g with associated string .2; 2; 2; 5/;

or positive and of the form

� SDf2e1�e3�e4; e2Ce4;�e4Ce3;�e1�e3gwith associated string .6; 2; 2; 2/,
or

� S D f2e1�e3; e3�e4; e4Ce2;�e4�e1�e3g with associated string .5; 2; 2; 3/.

Each bold number in the above strings corresponds to a vertex Ovm satisfying E yS˛ Dfmg
for some integers ˛ and m. In particular, one of the bold numbers in each of the above
strings corresponds to Ovs . In the first two cases, notice that the substrings between the
bold numbers (ie .2/ and .2/) are reverse linear-dual. Thus, by Lemma 5.14, S has asso-
ciated string of the form .b1; : : : ; bk; 2; cl ; : : : ; c1; 2/ or .b1; : : : ; bk; 2; cl ; : : : ; c1; 5/,
where .b1; : : : ; bk/ and .cl ; : : : ; c1/ are reverse linear-dual. Similarly, the third and
fourth strings are of the form .b1C 3; b2; : : : ; bk; 2; cl ; : : : ; c1/, where .b1; : : : ; bk/
and .cl ; : : : ; c1/ are reverse linear-dual, and so S has associated string of the same
form. Note that the strings .5; 2; 2/ and .4; 2/ also fall under this family (recall that
the linear-dual of .1/ is the empty string).
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Now suppose yS has length 5. Then, by the proof of Lemma 6.3, yS is positive and of
the form

� f�e2 � e4; e2C e3 � e1; e5 � e3; e4C e3 � e2; e2C e1g with associated string
.2; 3; 2; 3; 2/, or

� f�e2� e4; e2C e3� e1; 2e5� e3; e4C e3� e2; e2C e1g with associated string
.2; 3; 5; 3; 2/.

As above, the bold numbers in these two strings correspond to the vertex Ovs . Notice
that, after performing a �2–expansion centered at Ovs , the first and last entries in each
string remain unchanged. Moreover, the substrings adjacent to the bold numbers are .3/
and .3/; notice .3�1/D .2/ and .3�1/D .2/ are reverse linear-dual strings. Thus, as
above, S has associated string of the form .2; b1C1; b2; : : : ; bk; 2; cl ; : : : ; c2; c1C1; 2/

or .2; b1C 1; b2; : : : ; bk; 5; cl ; : : : ; c2; c1C 1; 2/, where .b1; : : : ; bk/ and .cl ; : : : ; c1/
are reverse linear-dual strings.

Remark 6.4 Consider the length 5 subsets above. We can perform contractions to
obtain the cyclic subsets of Lemma 6.1 with associated strings .2; 2; 2; 3/ and .2; 2; 2; 6/.
However, these do not fall under the general formulas listed above. Moreover, the string
.2; 2; 2; 6/ is also the associated string of a different subset, as seen in Lemma 6.1.
This string already appeared in first set of cases we considered and so we will not count
this string again.

Combining all of these cases, we have proven the following:

Proposition 6.5 Let S be a cyclic subset with I.S/ � 0 and p1.S/ > 0. Then S is
either negative with associated string in S1a [S1b , or positive with associated string in
S2a [S2b [S2e.

7 Lattice analysis, case II: p1.S / D 0

In this section, we will assume that S D fv1; : : : ; vng is cyclic with I.S/ � 0 and
p1.S/ D 0. By Lemma 5.16, p2.S/ �

Pn
jD4.j � 3/pj .S/. If p2.S/ D 0, then the

inequality is necessarily an equality and so pj .S/D 0 for all 4� j � n. Thus, in this
case, I.S/D 0 and p3.S/D n. Therefore, we have two cases to consider: p2.S/D 0
and p2.S/ > 0.
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7.1 Case IIa

Let S be cyclic and p1.S/ D p2.S/ D 0. Then, as shown above, I.S/ D 0 and
p3.S/D n. The next two lemmas provide some general properties of S.

Lemma 7.1 If S is cyclic and p1.S/Dp2.S/D0, then jv˛ �eˇ j�1 for all 1�˛; ˇ�n.

Proof Let vi D
Pn
jD1mij ej for each i , where mij D vi � ej . Then, since I.S/D 0,

we have 3nD�
Pn
iD1 v

2
i D

P
i;j m

2
ij �

P
i;j jmij j � 3n. Thus m2ij D jmij j for all i

and j and so jvi � ej j D jmij j � 1 for all i and j.

Lemma 7.2 If S is cyclic and p1.S/D p2.S/D 0, then S is positive cyclic.

Proof Again, let vi D
Pn
jD1mij ej . By Lemma 7.1, jmij j � 1 for all i and j. LetPn

iD1 vi D
Pn
iD1 �iei . Then, since p3.S/D n, �i 2 f˙1;˙3g for all i . Now, if S is

negative, then�3nD
Pn
iD1 v

2
i D

�Pn
iD1 vi

�2
�2

P
i<j vi �vj D

�
�
Pn
iD1 �

2
i

�
�2.n�2/

or
Pn
iD1 �

2
i D nC 4. Thus there must exist j such that �j D˙3. But then n� 1 �P

i¤j �
2
i D n� 5, which is impossible. Thus S must be positive.

If p3.S/D n, then it is clear that n� 3. If nD 3, then S is the subset with associated
string .3; 3; 3/ 2 S2b \S2c found in Section 5.2. From now on, we will assume that
n� 4.

Lemma 7.3 Let S be cyclic with p1.S/D p2.S/D I.S/D 0. Suppose there exist
integers i and s such that Ei D fs� 1; s; sC 1g. Then S is positive and has associated
string in S2b .

Proof By Lemma 7.2, we know that S is necessarily positive. Now, since Ei D
fs� 1; s; sC 1g, we necessarily have that as � 3; otherwise, if as D 2 and Vs D fi; i 0g,
then jEi 0 j D 1, which is a contradiction. We further claim that as�1 � 3 or asC1 � 3.
Suppose otherwise: as�1 D asC1 D 2. Then Vs�1 D VsC1 D fi; j g for some integer j
and, since jEi j D 3, we necessarily have that j 2 Vs�2 \ VsC2. Since jEj j D 3, we
necessarily have that nD 4. But then there exists an integer k 2 Vs such that either
jEkj D 1 or jEkj D 2, which is a contradiction. Without loss of generality, assume that
as�1 � 3.

First assume that vs�1 � ei D vs � ei (or similarly vsC1 � ei D vs � ei ). Let x � 0 be the
smallest integer such that asCxC1� 3. Since asC1D � � � D asCx D 2, we have VsC˛ D
fi˛�1; i˛g for all 1�˛�x, where i0 WD i and fi0; : : : ; ixg contains xC1 distinct integers.
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Moreover, Ei˛ D fs�1; sC˛; sC˛C1g for all 1� ˛ � x. Since vs�1 �ei D vs �ei , by
Lemmas 7.1 and 7.2, there exist integersm; k 2Vs�1\Vs such that vs�1 �emD�vs �em
and vs�1 �ekD�vs �ek . Thus as�1�xC3. LetRDfv01; : : : ; v

0
s�1; v

0
sCxC1; : : : ; vng�

Zn�x�1Dhe1; : : : ; eni=hei0 ; : : : ; eix i, where v0s�1D�ei0
�
�ei1 . � � � .�eix .vs�1// � � � /

�
,

v0sCxC1 D �eix .vsCxC1/, and v0y D vy for all y … fs � 1; : : : ; s C x C 1g. Then R
is negative cyclic with I.R/ D 1 � as � �2. By Proposition 7.14 in Section 7.2,
R must have associated string in S1c [ S1d [ S1e [O [ f.2Œn�/ j n � 2g and hence
either I.R/ D �.n� x � 1/ or I.R/ D �2. In the former case, we necessarily have
that as�1 D 3C x, as D nC x, and asCxC1 D 3; hence S has associated string of
the form .3C x; nC x; 2Œx�; 3; 2Œn�x�3�/ 2 S2b . In the latter case, as D 3 and so
V Ss \ V

S
s�1 D fi; m; kg. Since v2s D �3, it follows that V Sm D V

S
k
D fs � 1; s; zg for

some integer z … fs � 1; sg. It is easy to see that v2s�1 � �.4C x/ and Qv2z � �3.
Let T D .S n fvz; vs; vs�1g/[ f�ek .vs/; �em.�ek .vs�1//g. Then T is standard with
I.T / � �3 and ETm D fsg. By Proposition 5.9, I.T / D �3 and so v2z D �3; by
Proposition 5.10(1), T has associated string of the form .b1; : : : ; bk; 2; cl ; : : : ; c1/,
where .b1; : : : ; bk/ and .c1; : : : ; cl/ are linear-dual strings and the middle vertex with
square �2 is �ek .vs/. Thus S has associated string .3; b1; : : : ; bk C 2; 3; cl ; : : : ; c1/.
Since .ˇ1; : : : ; ˇ�/D .b1; : : : ; bk C 1/ has linear-dual .
1; : : : ; 
�/D .2; c1; : : : ; cl/
(see Lemma 3.6), we have

.3;b1; : : : ; bkC2;3; cl ; : : : ; c1/D .3;ˇ1; : : : ;ˇ��1;ˇ�C1;
�C1;
l�1; : : : ; 
1/2S2b:

Now assume that vs�1 �ei D�vs �ei DvsC1 �ei . Suppose asC1D2 and set VsC1Dfi; j g.
Note that Ej D fs� 1; sC 1; sC 2g and Vs \VsC1 D fig. Thus vs is the center of S
relative to ei . Perform the contraction of S centered at vs to obtain the positive cyclic
subset S 0Dfv01; : : : ; v

0
s; v
0
sC2; : : : ; v

0
ng, where v0xD vx for all x … fs�1; s; sC1g, v0sD

vsCvsC1, and v0s�1D�ei .vs�1/. Then I.S 0/D0 and p3.S 0/Dn�1. Now the vertices
v0s�1, v0s , and v0sC2 are adjacent in S 0, ES

0

j D fs � 1; s; sC 2g, and .v0s/
2 D v2s � �3.

Thus v0s is the center of S 0 relative to ej . Moreover, v0s�2 � ej D�v
0
s � ej D v

0
sC2 � ej . If

.v0s�2/
2 D�2 or .v0sC1/

2 D�2, then we can contract S 0 centered at v0s . Continuing in
this way, we have a sequence of contractions centered at vs which terminates in a positive
subset zS such that the resulting center vertex Qvs has adjacent vertices whose squares are
both at most�3. Reindex zS chronologically and let uD s under the new indexing. Then
Qv2uDv

2
s ��3, Qv2u˙1��3, and there is an integer l such thatE zS

l
Dfu�1; u; uC1g and

Qvu�1 �el D�Qvu �el D QvuC1 �el . Note that, if asC1� 3, then zS DS. Let C be the subset
obtained from zS by removing Qvu, replacing Qvu˙1 with Qv0u˙1 D �el . Qvu˙1/, and setting
Qv0x D Qvx for all x … fu� 1; u; uC 1g. Then I.C / � �2, p1.C /D 0, p2.C / > 0, and
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Qvu�1 � QvuC1D1. If there exists a vertex of C with square at most�3, then C is a positive
cyclic subset. However, by Proposition 7.14 in Section 7.2, positive cyclic subsets with
p1D0 and p2>0 have associated strings in S2c[S2d and thus have I 2f�1; 0g. Since
I.C /� �2, every vertex of C must have square equal to �2 and so zS has associated
string of the form .3Cx; 3; 2Œx�; 3/, where �. Qvu/2 D 3Cx. Notice that .3� 1/D .2/
and .3�1/D .2/ are reverse linear-dual strings. Thus, by Lemma 5.14, S has associated
string of the form .3Cx; b1; : : : ; bk�1; bkC1; 2

Œx�; clC1; cl�1; : : : ; c1/2 S2b , where
.b1; : : : ; bk/ and .c1; : : : ; cl/ are linear-dual strings.

Lemma 7.4 Let S be a cyclic subset with p1.S/D p2.S/D I.S/D 0. Suppose that ,
for all 1 � i � n, Ei ¤ fs � 1; s; sC 1g for some integer s. Then S is positive with
associated string in S2c .

Proof Let s be an integer such that as � 3. Let i be an integer such that vs � ei D
�vsC1 � ei , which exists by Lemmas 7.1 and 7.2. Finally, let Ei D fs � 1; s; tg. By
assumption, t … fs� 2; sC 1g. Let x � 0 be the smallest integer such that asCxC1 � 3.
Since asC1 D � � � D asCx D 2, we have VsC˛ D fi˛�1; i˛g for all 1 � ˛ � x, where
i0 WD i and fi0; : : : ; ixg contains xC1 distinct integers. Since i 2Vt and vt �vsC˛D0 for
all 1�˛� x�1, we have i0; : : : ; ix�1 2Vt . If t D sCxC1, then it is clear that ix …Vt
and so jEix j D 1, which is a contradiction. Thus vt �vsCx D 0 and so ix 2Vt\VsCxC1,
and at �xC1. Moreover, sinceEix DfsCx; sCxC1; tg, by assumption, t¤ sCxC2.
Now, since vt �vs�1Dvt �vsCxC1D0, there exist integersm12 .Vtnfi0; : : : ; ixg/\Vs�1
and m2 2 .Vt n fi0; : : : ; ixg/\VsCxC1, implying that at � 2C x. If at D 2C x, then
m1Dm2; setm WDm1Dm2. But thenm2Vt˙1, implying that jEmj�5, which is a con-
tradiction. Thus at �3Cx. LetGDfv01; : : : ; v

0
s�1; v

0
sCxC1; : : : ; v

0
t�1; v

0
tC1; : : : ; vng�

Zn�x�1Dhe1; : : : ; eni=hei0 ; : : : ; eix i, where v0s�1D�ei .vs�1/, v
0
sCxC1D�eix .vsCx/,

and v0˛ D v˛ for all ˛ … fs � 1; : : : ; sC xC 1; tg. Then G has two components and
p1.G/D p4.G/D 0 and I.G/� �2.

We first claim thatG is irreducible and thus a good subset. Suppose otherwise. ThenG is
the union of two standard subsets G1 and G2. By Proposition 5.9, I.G1/; I.G2/��3.
Since p1.G/ D p4.G/ D 0, Proposition 5.9 tells us that I.G1/; I.G2/ � 0. Con-
sequently, �2 D I.G/ D I.G1/C I.G2/ � 0, a contradiction. Thus G is a good
subset. Moreover, by the hypothesis, there do not integers l and z such that EG

l
D

fz� 1; z; zC 1g, implying that neither component of G is bad (see [8, Definition 4.1]).
By Proposition 5.11, I.G/ D �2 (so at D 3C x) and G1 and G2 have associated
strings of the form .b1; : : : ; bk/ and .c1; : : : ; cl/, where .b1; : : : ; bk/ and .c1; : : : ; cl/
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are linear-dual strings. Thus G has associated string of the form .b1; : : : ; bk; c1; : : : ; cl/

or .b1; : : : ; bk; cl ; : : : ; c1/.

To determine which string is correct, we first claim that m1 ¤m2. Assume otherwise,
and set m WD m1 D m2. Since at D 3C x, we have V St D fi0; : : : ; ix; m; zg for
some integer z. Since ESm D fs � 1; s C x C 1; tg, we necessarily have that ESz D
ft � 1; t; t C 1g, contradicting the hypothesis of the lemma. Thus m1 ¤m2 and V St D
fi0; : : : ; ix;m1;m2g. Once again by the hypothesis, we may assume thatm1 2V St�1 and
m22V

S
tC1. ThusEGm1Dfs�1; t�1g andEGm2DfsCxC1; tC1g. By Proposition 5.11,

G must have associated string .b1; : : : ; bk; c1; : : : ; cl/. Consequently, S has associated
string of the form .3C x; b1; : : : ; bk�1; bk C 1; 2

Œx�; c1 C 1; c2; : : : ; cl/. Note that,
by Lemma 3.6, .ˇ1; : : : ; ˇ�/ D .2C x; b1; : : : ; bk/ has linear-dual .
1; : : : ; 
�/ D
.2Œx�; c1C 1; c2; : : : ; c1/; hence S has associated string

.ˇ1C 1; ˇ2; : : : ; ˇ��1; ˇ� C 1; 
1; : : : ; 
�/ 2 S2c :

Combining the above two lemmas, we have proven the following:

Proposition 7.5 Let S be a cyclic subset with I.S/ � 0 and p1.S/ D p2.S/ D 0.
Then S is positive with associated string in S2b [S2c .

7.2 Case IIb: p2.S / > 0

Throughout this section, we will consider cyclic subsets satisfying p1.S/ D 0 and
p2.S/ > 0. In light of Example 5.7, we will further restrict ourselves to cyclic subsets
containing at least one vertex with square at most �3. By the discussion in Section 5.2,
there are no such cyclic subsets of length 2 or 3. Thus we assume that n� 4. We start
with some useful notation and some preliminary lemmas.

Definition 7.6 Let S D fv1; : : : ; vng � Zn be any subset. We define the sets

IS D fi jEi D fs; tg and as D 2 or at D 2g; J S D fi jEi D fs; tg and as; at � 3g:

In some cases, we will drop the superscript S from the notation if the subset being
considered is understood. Notice that p2.S/D jIS j [ jJ S j. For each i 2 IS [J S, let
Ei D fs.i/; t.i/g. For each i 2 IS, assume as.i/ D 2.

Lemma 7.7 Let S be cyclic , I.S/ � 0, p1.S/D 0, p2.S/ > 0, and n � 4. If i 2 I,
then at.i/ � 3.
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Proof Set s WD s.i/ and t WD t .i/. Assume at D 2. Suppose vs � vt D 0. Then
Vs D Vt D fi; j g for some j, and Ej � fs� 1; s; sC 1; t � 1; t; t C 1g. If n � 5, then
either vs�1 �vt D0 or vsC1 �vt D0, and so i 2Vs�1 or i 2VsC1, which is a contradiction.
If nD 4, then t ˙ 1D s� 1. Since vt�1 � vtC1 D 0, there exists an integer k such that
k 2 Vt˙1. Moreover, there exists a fourth integer m such that m 2 VtC1 or Vt�1, but
not both, since vt�1 � vtC1 D 0. Thus p1.S/ > 0, contradicting the hypothesis.

Now suppose jvs � vt j D 1 and, without loss of generality, let t D s C 1. Since
as D asC1 D 2, we have Vs D fi; j g and VsC1 D fi; i1g, where i1 ¤ j. Let l � 2 be
the smallest integer such that asCl � 3. Then it is easy to see that VsC˛ D fi˛�1; i˛g
for all 1 � ˛ � l � 1, where i0 WD i , i˛ … fi; j g for all 1 � ˛ � l � 1 and the i˛ are
all distinct. Similarly, let m� 1 be the smallest integer such that as�m � 3. Then, as
above, Vs�ˇ D fjˇ�1; jˇ g for all 1� ˇ �m�1, where j0 WD j and the set fjˇ ; i; i˛g
has m C l distinct elements. Now, since jvsCl�1 � vsCl j D 1, we must have that
VsCl�1\VsCl D fil�1g and jvsCl � eil�1 j D 1. Similarly, Vs�mC1\Vs�m D fjm�1g
and jvs�m �ejm�1 jD 1. Moreover, Ei˛ DfsC˛; sC˛C1g and Ejˇ Dfs�ˇ; s�ˇ�1g
for all ˛ and ˇ.

If vs�mD vsCl D vu, then fil�1; jm�1g � Vu. Since jvu �eil�1 j D jvu �ejm�1 j D 1 and
au � 3, we have jVuj � 3. Thus there is an integer p such that Ep D fug, which contra-
dicts p1.S/D 0. Now suppose vs�m¤ vsCl . Let T D fv01; : : : ; v

0
s�1; v

0
sCl

; : : : ; v0ng �

Zn�.mCl/Dhe1; : : : ; eni=hei0 ; : : : ; eil�1 ; ej0 ; : : : ; ejm�1i, where v0s�mD�ejm�1 .vs�m/
and v0

sCl
D�eil�1

.vsCl/. Since jvsCl �eil�1 j D jvs�m �ejm�1 j D 1 and as�m; asCl � 3,
we have .v0s�m/

2; .v0
sCl

/2 ��2. Thus T is a standard subset made of n� .lCm� 1/
vectors. However, by Remark 5.3, these vectors are linearly independent in Zn�.lCm/,
which is not possible.

Lemma 7.8 Let S be cyclic , I.S/ � 0, p1.S/D 0, p2.S/ > 0, and n � 4. If i 2 I,
then vs.i/ � vt.i/ D 0.

Proof Set s WD s.i/ and t WD t .i/. Let Vs D fi; j g. Then, by Lemma 7.7, at � 3. As-
sume jvs �vt jD 1 and, without loss of generality, assume t D sC1. Then fs�1; sg�Ej .
If there exists an integer u… fs�1; s; sC1g such that u2Ej , then we necessarily have
that i 2 Vu, implying that jEi j � 3, which is not possible. Thus either Ej D fs� 1; sg
or Ej D fs� 1; s; sC 1g.

IfEj Dfs�1; sg, then, by Lemma 7.7, as�1� 3. Moreover, since jvs �ei jD jvs �ej jD 1,
Vs \Vs�1 D fj g and Vs \VsC1 D fig, we have jvsC1 � ei j D jvs�1 � ej j D 1. Let T D
fv01; : : : ; v

0
s�1; v

0
sC1; : : : ; v

0
ng�Zn�2Dhe1; : : : ; eni=hei ; ej i, where v0sC1D�ej .vsC1/,
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v0s�1 D �ej .vs�1/, and v0x D vx for all x … fs� 1; s; sC 1g. Then .v0s˙1/
2 � �2 and

v0s�1 �v
0
sC1D 0. Thus T is standard with final vertices v0s�1 and v0sC1. By Remark 5.3,

T � Zn�2 contains n� 1 linearly independent vectors, which is impossible.

If Ej D fs � 1; s; s C 1g, then, since vs�1 � vsC1 D 0, there exists an integer k …
fi; j g such that k 2 Vs�1 \ VsC1. Moreover, jvs�1 � ej j D 1 and, since VsC1 \ Vs D
fi; j g and jvsC1 � vsj D 1, we have jvsC1 � ei j D x and jvsC1 � ej j D x ˙ 1, where
x; x˙ 1 ¤ 0. Thus asC1 � x2C .x˙ 1/2C 1 � 6. If jvsC1 � ei j D x � 2, let T D
fv01; : : : ; v

0
s�1;v

0
sC1; : : : ; v

0
ng�Zn�1Dhe1; : : : ; eni=hei i, where v0sC1D�ei .vsC1/ and

v0xDvx for all x …fs; sC1g. Then T is standard and 0� I.S/D I.T /Cx2C.as�3/D
I.T /Cx2�1. Thus I.T /� 1�x2<0 and so, by Proposition 5.9, we necessarily have
that I.T /D�3 and p1.T /D 1. But then p1.S/D p1.T /D 1, which contradicts our
assumption that p1.S/D 0. Now suppose jvsC1 �ei j D 1, so that jvsC1 �ej j D 2. Since
jvs�1 � ej j D 1 and jvs�1 � vsC1j D 0, either as�1 � 3 or as�1 D 2 and jvsC1 � ekj D 2.
In the latter case, note that Ek D fs�2; s�1; sC1g and Ej D fs�1; s; sC1g. In this
case, let T 0 D fv01; : : : ; v

0
s�2; v

0
sC1; : : : ; v

0
ng D� Zn�2 D he1; : : : ; eni=hei ; ej i, where

v0sC1 D �ei .�ej .vsC1// and v0x D vx for all x … fs� 1; s; sC 1g. Then T 0 is standard
with p1.T 0/ D 0 and 0 � I.S/ D I.T 0/C 5C .as�1 � 3/C .as � 3/ D I.T 0/C 3,
implying that I.T 0/��3. But, by Proposition 5.9, no such subset exists. In the former
case (as�1� 3), let T 00Dfv01; : : : ; v

0
s�1; v

0
sC2; : : : ; v

0
ng�Zn�2Dhe1; : : : ; eni=hei ; ej i,

where v0s�1D�ej .vs�1/ and v0xD vx for all x … fs�1; s; sC1g. Then T 00 is a standard
subset such that 0 � I.S/ D I.T 00/C 1C .as � 3/C .asC1 � 3/ � I.T 00/C 3. By
Proposition 5.9, we necessarily have that I.T 00/D�3 and p1.T 00/D 1. Thus asC1D 6
and V SsC1 D fi; j; kg. This implies that jET

00

k
j D 1. But k 2 V T

00

s�1 and vs�1 is a final
vertex of T 00. By Proposition 5.10(a), no such standard subset exists.

Lemma 7.9 Let S be cyclic , I.S/� 0, p1.S/D 0, jIj> 0, and n� 4.

(a) If there exist integers i; i 0 2 I such that jvs.i/ � vs.i 0/j D 1, then S is negative and
has associated string in S1d , jJ j D 0, and jv˛ � vˇ j � 1 for all 1� ˛; ˇ � n.

(b) If vs.i/ � vs.i 0/ D 0 for all i; i 0 2 I, then p4.S/� jIj.

Proof Suppose jvs.i/�vs.i 0/jD1 and, without loss of generality, assume s.i 0/D s.i/C1.
Then t .i/ D s.i/ C 2, t .i 0/ D s.i/ � 1, and there exists an integer j such that
Ej D fs.i/�1; s.i/; s.i/C1; s.i/C2g. Set s WD s.i/. By Lemma 7.7, as�1; asC2 � 3;
consequently, n� 5. Without loss of generality, assume vs�1 � vs D vs � vsC1 D 1, so
that vs�1 � ej D�vs � ej D vsC1 � ej 2 f˙1g. Let S 0 D fv01; : : : ; v

0
s�1; v

0
sC1; : : : ; v

0
ng �

Zn�1Dhe1; : : : ; eni=hei i, where v0sC2D�ei .vsC2/, v
0
s�1D�ei0 .vs�1/, and v0x WD vx
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for all x … fs � 1; s; s C 2g. Then S 0 is cyclic with I.S 0/ D I.S/ � 1 < 0 and
p1.S

0/ D 1 (since ES
0

i 0 D fs C 1g). Moreover, v0s�1 � ej D v0sC1 � ej and so S 0

is positive if and only if S is negative. By the proof of Proposition 6.5, the only
cyclic subset with p1 D 1 and I < 0 is positive and has associated string of the form
.2; b1C1; b2; : : : ; bk; 2; cl ; : : : ; c2; c1C1; 2/2S2e . Moreover, the vertex with square 2
in the middle of the string is v0sC1. Thus S is negative and has associated string of
the form .2; b1C1; b2; : : : ; bkC1; 2; 2; cl C1; : : : ; c2; c1C1; 2/ 2 S1d . Furthermore,
by the proof of Proposition 6.5, it is easy to see that jv0˛ � v

0
ˇ
j � 1 for all ˛ and ˇ and

jJ S 0 j D 0; hence jv˛ � vˇ j � 1 for all 1� ˛; ˇ � n and jJ S j D 0.

By Lemma 7.8, for all i 2 IS, there exists an integer j.i/ such that

Ej.i/ D fs.i/� 1; s.i/; s.i/C 1; t.i/g:

If vs.i/�vs.i 0/D0 for some i; i 02IS, it follows that j.i/¤j.i 0/; hence, if vs.i/�vs.i 0/D0
for all i; i 0 2 IS, then p4.S/� jIS j.

Lemma 7.10 Let S be cyclic , I.S/ � 0, p1.S/ D 0, p2.S/ > 0, and n � 4. Then
jv˛ � eˇ j � 1 for all integers ˛ and ˇ.

Proof By Lemma 7.9, we may assume that vs.i/ � vs.i 0/ D 0 for all i; i 0 2 I, so that
p4.S/ � jIj. First suppose that jJ j ¤ 0. Let i 2 J and set s WD s.i/ and t WD t .i/.
Notice that we cannot have jVsj D jVt j D 2. Without loss of generality, assume that
jVsj � 3. Let T D fv01; : : : ; v

0
t�1; v

0
tC1; : : : ; v

0
ng � Zn�1 D he1; : : : ; eni=hei i, where

v0s D �ei .vs/ and v0x D vx for all x … fs; tg. Then .v0s/
2 ��2 and v0t�1 �v

0
tC1D 0, and

so T is standard. Let jvs � ei j D x � 1. Then

0� I.S/D I.T /C x2C .at � 3/� I.T /C x
2
� I.T /C 1:

Thus I.T / � �1 and so, by Proposition 5.9, I.T / 2 f�1;�2;�3g. Thus at � 5
and jvs � ei j D x D 1. Moreover, by Proposition 5.9, jv0˛ � eˇ j � 1 for all ˛ and ˇ.
Thus jv˛ � eˇ j � 1 for all ˛ ¤ t and all ˇ. If jvt � ej j � 2 for some j, then, since
at � 5, we necessarily have Vt D fi; j g and at D 5; consequently, I.T /D�3 and, by
Proposition 5.9, p1.T /D 1. In particular, jETj j D 1 and ESj D fs; tg. If vs � vt D 0,
then vt � vt˙1 D 0, which is a contradiction. If jvs � vt j D 1 and, say, t D sC 1, then
vsC1 � vsC2 D 0, which is a contradiction. Thus jv˛ � eˇ j � 1 for all ˛ and ˇ.

Now suppose jJ j D 0. Then p4.S/ � p2.S/ and so, by Lemma 5.16, I.S/ D 0,
p2.S/D p4.S/ and pj .S/D 0 for all j D 5; : : : ; n. Thus p3.S/D n� 2p2.S/. Let
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mij WD vi � ej . Then

3nD
X

ai D
X
i;j

m2ij �
X
i;j

jmij j �
X

ipi .S/D 2p2.S/C4p2.S/C3.n�2p2.S//

D 3n:

Thus jvi � ej j D jmij j � 1 for all i and j.

In light of Lemma 7.10, it will now be a standing assumption that jv˛ � eˇ j � 1 for all
integers ˛ and ˇ.

Lemma 7.11 Suppose S is cyclic with n� 4 and jJ j ¤ 0. If there exists i 2 J with
as.i/; at.i/ � 4, then S is positive with associated string .4; 4; 2; 2; 2/ 2 S2d .

Proof By cyclically reordering and negating vertices, we may assume s.i/D 1 and
t .i/D k for some integer k. Let RDfv01; : : : ; v

0
ng �Zn�1D he1; : : : ; eni=hei i, where

v01 D �ei .v1/, v
0
k
D �ei .vk/, and v0i WD vi for all i ¤ 1; k.

Case 1 (v1 �vkD0, so k …f2; ng) By Lemma 7.10, �.v01/
2Da1�1, �.v0

k
/2Dak�1,

and v01 � v
0
k
D˙1. Let A be the intersection matrix AD .v0i � v

0
j /. Assume a1; ak � 4.

By Lemma A.4, if S is negative cyclic or S is positive cyclic with v1 � ei D�vk � ei ,
then A is negative definite; in these cases R is a linearly independent set of n vectors
in Zn�1, which is not possible. Thus we may assume that S is positive and v1 � ei D
vk � ei . Again by Lemma A.4, we arrive at another linear independence contradiction
unless a1 D ak D 4 and ax D 2 for all x … f1; kg. Thus I.S/ D �.n � 4/. Let
T D fv02; : : : ; v

0
ng � Zn�1 D he1; : : : ; eni=hei i, where v0

k
D �ei .vk/ and v0x D vx

for all x … f1; kg. Then T is a standard subset and I.T / D I.S/ � 2 D �.n � 2/.
Since I.T /� �3 by Proposition 5.9, it follows that n� 5. If nD 5, then I.S/D�1,
I.T /D�3, and T has length 4. By Proposition 5.10(1), up to reversal, T has associated
string of the form .3; 2; 2; 2/. Since at D 4, this implies that k D 2, a contradiction. If
nD 4, then I.S/D 0, I.T /D�2, and T has length 3. But, by Proposition 5.10(2), no
such standard subset exists.

Case 2 (jv1 � vkj D 1) Without loss of generality, assume k D 2. If v1 � ei D�v2 � ei ,
then v01 �v

0
2D 0; hence R is standard and so, by Remark 5.3, R is a linearly independent

set of n vectors in Zn�1, a contradiction. If v1 �ei D v2 �ei , then v01 �v
0
2D 2; by applying

Lemma A.5 as in Case 1, we obtain a contradiction unless S is positive, a1 D a2 D 4,
and a3 D � � � D an D 2. In this case, I.S/D�.n� 4/. As in Case 1, we necessarily
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have that n� 5. If nD 4, then I.T /D�2 and T has length 3; by Proposition 5.10(2),
no such subset exists. Suppose n D 5, so that I.T / D �3 and T has length 4. By
Proposition 5.10(1), up to reversal, T has associated string of the form .3; 2; 2; 2/.
Hence S is positive and has associated string of the form .4; 4; 2; 2; 2/ 2 S2d .

We are now ready to finish the classification of cyclic subsets with I.S/� 0, p1.S/D 0,
and p2.S/ > 0. We will consider two cases: jJ j ¤ 0 and jJ j D 0. These cases are
handled respectively in the next two propositions.

Proposition 7.12 Let S be cyclic , I.S/ � 0, p1.S/ D 0, p2.S/ > 0, and n � 4.
If jJ j ¤ 0, then S is positive with associated string in S2c [ S2d or negative with
associated string in S1c [S1e [O.

Proof Let i 2J and set s WD s.i/ and t WD t .i/. If as; at � 4, then, by Lemma 7.11, S
is positive with associated string in S2d . Without loss of generality, we may now assume
that as D 3. Moreover, by Lemma 7.9, vs.i1/ � vs.i2/ D 0 for all i1; i2 2 I, implying
that p4.S/� jIj. Let T D fv01; : : : ; v

0
s�1; v

0
sC1; : : : ; v

0
ng � Zn�1 D he1; : : : ; eni=hei i,

where v0t D �ei .vt / and v0x D vx for all x … fs; tg. By Lemma 7.10, .v0t /
2 D v2t C 1

and so T is a standard subset and I.T /D I.S/� 1� �1. By Proposition 5.9, I.T / 2
f�3;�2;�1g. We will work case by case, considering each of the standard subsets
listed in Proposition 5.10.

Case 1 (I.T /D �1) By Proposition 5.9, p1.T /D 0, p2.T /D 2, p4.T /D 1, and
pj .T /D 0 for all j � 5. Thus p2.S/� 3, p4.S/� 3, p5.S/� 1, and pj .S/D 0 for all
j � 6. Note that, since asD 3, if p5.S/D 1, then p4.S/Dp2.S/�2, and if p5.S/D 0,
then p2.S/Dp4.S/. By Lemma 5.17, p2.S/Cp4.S/� 0 mod 4, implying that either
p5.S/ D 1, p2.S/ D 3 and p4.S/ D 1, or p5.S/ D 0 and p2.S/ D p4.S/ D 2. By
Proposition 5.10(3), T is of one of the forms (a)–(c) given there.

Case 1(a) Without loss of generality, we may assume that the listed vertices are
v0sC1; : : : ; v

0
n; v
0
1; : : : ; v

0
s�1. First assume p5.S/ D 1, p2.S/ D 3, and p4.S/ D 1.

Then 2 2 V Ss and 3; xCyC 4 … V Ss (where xCyC 4D 1 if y D 0). If y D 0, then,
since vsC2 �vs D 0 and 1 … V Ss , we have i 2 V SsC2. Since vsC3 �vs D 0 and 2 2 V Ss , we
have 42V Ss and vs �e2Dvs �e4. Since V Ss Dfi; 2; 4g, if x�1, then vsC4 �vs¤0, which
is a contradiction, and if xD0, then vs�1 �vsD0, which is a contradiction. Thus we may
assume y � 1. Since vs �vsC2D vs �vsC3D 0 and as D 3, either i 2 V SsC2 and 4 2 V Ss ,
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or i 2V SsC3 and jf1; xC5; : : : ; xCyC3g\V Ss jD 1. In the former case, V Ss Dfi; 2; 4g
and so jvs � vsC1j ¤ 1, which is a contradiction. In the latter case, if 1 2 V Ss , then
V Ss D fi; 1; 2g and vs � e1 D vs � e2 (since vs � vsC2 D 0); but then jvsCxC4 � vsj D 2,
which is a contradiction. On the other hand, if jfxC 5; : : : ; xC y C 3g \ V Ss j D 1,
then, since vs �vs�˛ D 0 for all 2� ˛ � y, fxC5; : : : ; xCyC3g � V Ss , implying that
y D 1 and 1 2 V Ss , which is again a contradiction.

Now assume p5.S/D0 and p2.S/Dp4.S/D2. Then 2…V Ss and either xCyC42V Ss
or 3 2 V Ss , but not both (where xCyC 4D 1 if y D 0). First assume xCyC 4 2 V Ss .
Since xCyC42V SsC2 and vsC2 �vsD 0, either jf1; xC5; : : : ; xCyC3g\V Ss jD 1 or
i 2 V SsC2. In the former case, y � 1 and, since vs�˛ �vs D 0 for all 2� ˛� y, it follows
that f1; xC5; : : : ; xCyC3g�V Ss , implying that jvs �vs�1j¤1, which is a contradiction.
In the latter case, since jvs � vsC1j D 1, we have jf4; 5; : : : ; xC 4g \V Ss j D 1. Since
vsC˛ �vs D 0 for all 4� ˛� xC4, we have f4; 5; : : : ; xC4g � V Ss , which implies that
x D 0 and V Ss D fi; 4; xCyC 4g; but then jvsC3 � vsj D 1, which is a contradiction.

Now suppose 3 2 V Ss . Since vs � vsC3 D 0 and 3 2 V SsC3, either i 2 V SsC3 or 4 2 V Ss .
In the former case, since jvs � vsC1j D 1, we have jf4; 5; : : : ; xC 4g\V Ss j D 1. As in
the previous case, we see that x D 0 and V Ss D fi; 3; 4g and so vsC3 � vs ¤ 0, which
is a contradiction. In the latter case, since 4 2 V SsC4, we have i 2 V SsC4 and, since
jvs � vs�1j D 1, we necessarily have that y D 0. Consequently, S is of the form�
ei � e4C e3; e2C e4C

xC4X
˛D5

e˛; e1� e2; e2� e3� e4; ei C e4� e5;

e5� e6; : : : ; exC3� exC4; exC4� e1� e2� e3

�
;

which is positive and has associated string .3; 2C x; 2; 3; 3; 2Œx�1�; 4/ 2 S2c .

Case 1(b) As in the previous case, we may label the vertices v0sC1; : : : ;v
0
n;v
0
1; : : : ;v

0
s�1.

Note that, if y D 0, then S is also of the form in Case 1(a), which we already covered.
Thus we may assume y � 1. Consequently, jIT j D 2. If p5.S/D 1, then p2.S/D 3
and so jIS jD 2; but we also have that p4.S/D 1�jIS j, which is a contradiction. Thus
p5.S/D 0 and p2.S/Dp4.S/D 2; hence 2…V Ss and either 12V Ss or xCyC42V Ss ,
but not both. Assume xC yC 4 2 V Ss . Since xC yC 4 2 V SsC3, either i 2 V SsC3 or
jf3; 4; x C 5; : : : ; x C y C 3g \ V Ss j D 1. In the former case, since jvs � vsC1j D 1,
following as in Case 1(a) we see that x D 0 and V Ss D fi; xCyC4; 4g, which implies
that jvs � vsC3j D 1, which is a contradiction. In the latter case, since vs�˛ � vs D 0
for all 2 � ˛ � y, it is clear that 3; xC 5; : : : ; xC yC 3 … V Ss and so 4 2 V Ss . Since
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4; xCyC4 2 V SsC3 and 4 2 V SsC4, we have i 2 V SsC4. Hence, if x � 1, S is of the form�
ei � e4C exCyC4; e2C e4C

xC4X
˛D5

e˛; e1� e2; e2� e3� e4�

xCyC4X
˛DxC5

e˛;

ei C e4� e5; : : : ; exC3� exC4; exC4� e1� e2� e3; e3� exC5;

exC5� exC6; : : : ; exCyC3� exCyC4

�
;

which is positive and has associated string .3; 2C x; 2; 3Cy; 3; 2Œx�1�; 4; 2Œy�/ 2 S2c ,
and if x D 0, then S is of the form�
ei � e4C eyC4; e2C e4; e1� e2; e2� e3� e4�

yC4X
˛D5

e˛; ei C e4� e1� e2� e3;

e3� e5; e6� e7; : : : ; eyC3� eyC4

�
;

which is positive and has associated string .3; 2; 2; 3Cy; 5; 2Œy�/ 2 S2c .

Next assume 32 V Ss . Since vs �vsC3D vs �vsCxC4D 0 and 32 V SsC3\V
S
sCxC4, either

i 2V SsC3 or i 2V SsCxC4. Since y � 1 and jvs�1 �vsj D 1, it follows that xCyC32V Ss
(where xCyC 3D 3 if y D 1). But then vs � vsC1 D 0, which is a contradiction.

Case 1(c) Label the vertices v0sC1; : : : ; v
0
n; v
0
1; : : : ; v

0
s�1. Notice that jIT j D 2 if y � 1.

By the same argument as in Case 1(b), if y � 1, then p5.S/ ¤ 0. Suppose y D 0,
p5.S/ D 1, and p2.S/ D 3. Then 2 2 V Ss and 3; 4 … V Ss . Since 2; 3 2 V SsC2 and
vs � vsC2 D 0, we necessarily have that i 2 V SsC2. Now, since V SsC3 \ V

S
sC4 D f2g, it

follows that either vs � vsC3 ¤ 0 or vs � vsC4 ¤ 0, which is a contradiction. Thus we
may assume that p5.S/D 0 and p2.S/D p4.S/D 2. Thus 2 … V Ss and either 3 2 V Ss
or xCyC 5 2 V Ss , but not both (where xCyC 5D 4 if y D 0). If xCyC 5 2 V SsC3,
then either i 2 V SsC3 or jf1; 4; xC6; : : : ; xCyC3g\V Ss j D 1. In the former case, we
obtain a contradiction as in Cases 1(a) and 1(b). In the latter case, we obtain similar
contradictions unless 1 2 V Ss . In this case, since 1; xCyC 5 2 V SsC3 and 1 2 V SsCxC5,
we have i 2 V SsCxC4. Thus S is of the form�
ei � e1C exCyC5; e1� e2� e5�

xC5X
˛D6

e˛; e2C e3;�e2� e1� e4�

xCyC5X
˛DxC6

e˛;

�e5C e2� e3; e5� e6; : : : ; exC4� exC5;�ei C exC5C e1� e4;

e4� exC6; exC6� exC7 : : : ; exCyC4� exCyC5

�
;

which is positive and has associated string .3; 3C x; 2; 3Cy; 3; 2Œx�; 4; 2Œy�/ 2 S2c .
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Next suppose 3 2 V Ss . Since 2 … V SsC2 and vs � vsC2 D 0, we necessarily have that
i 2 V SsC2. Since vs �vsC4D 0, we have 5 2 V Ss and so V Ss D fi; 3; 5g. Moreover, since
5 2 V SsC5, vs �vsC5 D 0, and jvs �vs�1j D 1, we must have that x D y D 0. Hence S is
of the form

fei � e3C e5; e1� e2� e5; e2C e3C ei ;�e2� e1� e4;�e5C e2� e3; e5C e1� e4g;

which is negative cyclic with associated string .3; 3; 3; 3; 3; 3/ 2O.

Case 2 (I.T / D �2, so that I.S/ D �1) By Proposition 5.10(2), p1.T / D 0,
p2.T /D 3, p4.T /D 1, pj .T /D 0 for all j � 5, and jIT j D 2. Then, since as D 3,
p2.S/ � 4, p4.S/ � 3, and p5.S/ � 1. By Lemma 5.17, p2.S/Cp4.S/D 1 mod 4.
By a similar argument as in Case 1(b), p5.S/D 0 and so p2.S/D 3 and p4.S/D 2.
By Proposition 5.10(2), T is of one of the forms (a)–(c) given there.

Case 2(a) Label the vertices v0sC1; : : : ; v
0
n; v
0
1; : : : ; v

0
s�1. Notice that, if y D 0, then

T is also of the form given in Case 2(b). Moreover, if x D 0, then the reverse of T
is of the form given in Case 2(b). We will assume that x; y � 1 and handle the cases
x D 0 and y D 0 in Case 2(b). Since p5.S/D 0 and p2.S/D 3, we have 2 … V Ss and
jfxC 4; xC y C 4; 3g \ V Ss j D 1. If xC 4 2 V Ss or xC y C 4 2 V Ss , then, arguing
as in Case 1, we arrive at contradictions. Assume 3 2 V Ss . Since 3 2 VsCxC4 and
vs � vsCxC4 D 0, either i 2 V SsCxC4 or 1 2 V Ss , but not both. In the former case, since
jvs � vs˙1j D 1, we have x C 3; x C y C 3 2 V Ss , implying that as � 4, which is a
contradiction. In the latter case, V Ss D fi; 1; 3g, implying that vs � vsC1 D 0, which is a
contradiction.

Case 2(b) Label the vertices v0sC1; : : : ;v
0
n;v
0
1; : : : ;v

0
s�1. Notice that, if xD0, then T is

of the form in Case 2(c). We will assume that x�1 and handle xD0 in Case 2(c). Since
p5.S/D 0 and p2.S/D 3, we have 2…V Ss and jfxC4;xCyC4; 1g\V Ss jD 1 (where
xCyC4D 3 if yD 0). If 12V Ss , then, since vsCxC2 �vsD 0, we necessarily have that
i 2 V SsCxC2. Now, since jvsC1 �vsj D 1, we have xC32 V Ss and so V Ss Dfi; 1; xC3g;
but then jvs �vsC2jD 1, which is a contradiction. If xC42V Ss , then, since vs �vsC˛D 0
for all 2� ˛ � x, it follows that 4; : : : ; xC 3 … V Ss . Since xC 4 2 V SsCxC3, we must
have that i 2 V SsCxC3; consequently, since jvs�1 � vsj D 1, we necessarily have that
y � 1 and xC y C 3 2 V Ss . But then vs�2 � vs ¤ 0, which is a contradiction. Thus
xC yC 4 2 V Ss . As above, it is easy to see that 3; xC 5; : : : ; xC yC 3 … V Ss . Since
xCyC 4 2 V SsCxC1, it follows that either i 2 V SsCxC1 or 4 2 V Ss . In the former case,
since jvs � vsC1j D 1, we have xC 3 2 V Ss , which leads to a contradiction. In the latter
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case, since 4 2 V SsCxC3, we see that i 2 V SsCxC4. Since jvs � vs�1j D 1, it follows that
x D 1. Thus S is of the form�
ei C e4C exCyC4; e5� e4; e4� e2� e3�

xCyC4X
iDxC5

ei ; e2C e1; ei � e2� e4� e5;

e2� e1� e3; e3� exC5; exC5� exC6; : : : ; exCyC3� exCyC4

�
;

which is positive cyclic with associated string .3; 2; 3Cy; 2; 4; 3; 2Œy�/ 2 S2d .

Case 2(c) Label the vertices v0sC1; : : : ; v
0
n; v
0
1; : : : ; v

0
s�1. As usual, since p5.S/D 0,

2…V Ss . Notice 22V S
sCkC1

\V S
sCkC2

. By our standing assumption that vs.i/ �vs.i 0/D 0
for all i; i 0 2 IS , we necessarily have that either 1 2 V Ss or 4 2 V Ss , but not both.
Consequently, since vs � vsCkC1 D vs � vsCkC2 D 0, either i 2 V S

sCkC1
or i 2 V S

sCkC2
.

Moreover, since p2.S/ D 3, j1 … V Ss and so j2 2 V Ss . Now, since j2 2 V SsC2 and
vs � vsC2 D 0, we necessarily have that k D 2 and 4 2 V Ss . Hence V Ss D f4; i; j2g,
i 2 V S

sCkC2
, and T has associated string of the form .2; 3 C x; 2; 2; 3; 2Œx�1�; 3/.

Moreover, vs � ej2 D˙vs�1 � ej2 D�vsC1 � ej2 . Thus S is negative and has associated
string of the form .3; 2; 3C x; 2; 3; 3; 2Œx�1�; 3/ 2 S1e.

Case 3 (I.T /D�3, so that I.S/D�2) By Proposition 5.9, p1.T /D 1, p2.T /D 1,
and pj .T / D 0 for all j � 4. Thus pj .S/ D 0 for all j � 5. Let l be the unique
integer such that jET

l
j D 1 and let u be the integer such that ET

l
D fug, where

u ¤ s˙ 1. Then, since p1.S/ D 0, l 2 V Ss . Since as D 3, we have p2.S/ 2 f2; 3g
and p4.S/D p2.S/� 2. By Lemma 5.17, p2.S/Cp4.S/D 2p2.S/� 2� 2 mod 4,
implying that p2.S/D 2 and p4.S/D 0. By Proposition 5.10(1), there is an integer k
such that ET

k
D fs � 1; sC 1g and vs�1 � ek D�vsC1 � ek . Since p2.S/D 2, k 2 V Ss ,

and so V Ss D fi; l; kg. Since k … V Su , we must have that i 2 V Su . Thus au D 3. Now,
by Proposition 5.10(1), T has associated string .b1; : : : ; bk; 2; cl ; : : : ; c1/, where the
middle entry “2” corresponds to the square of v0u. Now, since vs�1 � ek D�vsC1 � ek ,
we have vs � ek D ˙vs�1 � ek D �vsC1 � ek and so S is negative and has associated
string of the form .3; b1; : : : ; bk; 3; cl ; : : : ; c1/ 2 S1c .

Proposition 7.13 Let S be cyclic , I.S/ � 0, p1.S/ D 0, p2.S/ > 0, and n � 4. If
jJ j D 0, then S is negative and has associated string in S1d [O.

Proof Note that jIj D p2.S/. By Lemma 7.7, at.i/ � 3 for all i 2 I. If there
exist i1; i2 2 I such that vs.i1/ � vs.i2/ ¤ 0, then, by Lemma 7.9, S is negative with
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associated string in S1d . Now assume that vs.i1/ � vs.i2/ D 0 for all i1; i2 2 I. Then, by
Lemmas 5.16 and 7.9, p4.S/D p2.S/, I.S/D 0, and pj .S/D 0 for all j … f2; 3; 4g.
Let G D .S n fvs.i/; vt.i/ j i 2 Ig/[f�ei .vt.i// j i 2 Ig and set v0

t.i/
D �ei .vt.i// for

all i 2 I, v0x WD vx for all x … fs.i/; t.i/ j i 2 Ig, and a0x D �.v
0
x/
2 for all x. Then

p2.G/ D p4.S/ D 0, I.G/ D 0, p3.G/ D n � p2.G/, and, by Lemma 7.9, G has
jIj components. Finally, since, for each i 2 I, there exists an integer j.i/ such that
ES
j.i/
D fs.i/� 1; s.i/; s.i/C 1; t.i/g, G is irreducible and hence a good subset.

Assume C is a component of G of length at least 2. After possibly relabeling, let
C D fv01; : : : ; v

0
mg. Since v01 �v

0
2D 1, by Lemma 7.10, there is an integer k 2 V G1 \V

G
2

such that v01 �ek D�v
0
2 �ek . Since jEG

k
j D 3, there exists an integer z such that k 2 V Gz .

Since v01 is a final vertex, v0z � v
0
1 D 0 and so there exists an integer l 2 V G1 \ V

G
z .

Moreover, since jEG
l
j D 3, we necessarily have that a01 � 3. We claim that, if a0z D 2,

then v0z D v
0
3. If v0z ¤ v

0
3, then it is clear that v0z must be isolated. In this case, since

v0z �v
0
2D 0, we have l 2 V G2 and v01 �el D�v

0
2 �el . Since v01 �v

0
2D 1, there exists another

integer m2 V G1 \V
G
2 and so a01; a

0
2 � 3. Let LD .G nfv01; v

0
2g/[f�ek .v

0
1/; �ek .v

0
2/g;

then L is good and p1.L/D 1. By [8, Corollary 3.5], I.L/D�3; but it is clear that
I.L/D I.G/� 2D�2, which is a contradiction.

Thus, if a0zD2, then v0zDv
0
3 and we can perform a contraction yielding the subsetG0D

Gnfv01; v
0
2; v
0
3g[f�ek .v

0
1/; v

0
2Cv

0
3g. Notice thatG0 is a good subset with I.G0/D0 and

pj .G
0/D0 for all j ¤3; moreover, the componentC 0Df�ek .v

0
1/; v

0
2Cv3; v

0
4; : : : ; v

0
mg

has length one less than the length of C. On the other hand, if a0z � 3, then we can
perform a contraction yielding the subset G00 DG n fv01; v

0
2; v
0
zg[ fv

0
1C v

0
2; �ek .v

0
z/g.

As above, G00 is a good subset with I.G00/D 0 and pj .G00/D 0 for all j ¤ 3, and the
component C 00 resulting from C has length one less than the length of C. We may
continue performing contractions in this way until the component C is reduced to an
isolated vertex. We can similarly perform contractions on all remaining components
until they are all isolated vertices. We obtain a good subsetK that contains only isolated
vertices. By Lemma 5.18, K is of the form

� fe1� e2C e3� e4; e1C e2;�e1C e2C e3� e4; e3C e4g, or

� fe1� e2� e3; e1C e2� e4; e2� e3C e4; e1C e3C e4g.

It is easy to see that no expansion of either subset exists. Thus K DG. Moreover, by
construction, jIj D 4 and we may assume that 1 D j.i1/, 2 D j.i2/, 3 D j.i3/, and
4 D j.i4/, where I D fi1; i2; i3; i4g. Thus (up to the action of Aut Z8), S is of the
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form either˚
e1� e2C e3� e4� ei2 C ei3 ; ei1 � e1; e1C e2;

ei2 � e2;�e1C e2C e3� e4� ei1 � ei4 ; ei3 � e3; e3C e4; ei4 � e4
	

or˚
e1� e2� e3� ei2 ; ei1 � e1; e1C e2� e4� ei4 ; ei2 � e2; e2C e3C e4C ei3 ;

ei4 � e4; e1C e3C e4C ei1 ; ei3 � e3
	
;

So S is negative cyclic with associated string .6;2;2;2;6;2;2;2/ or .4;2;4;2;4;2;4;2/,
both of which are in O.

To summarize, we have proven the following:

Proposition 7.14 Let S be a cyclic subset with p1.S/D 0, p2.S/ > 0 and I.S/� 0.
Then S is positive with associated string in S2c[S2d or negative with associated string
in S1c [S1d [S1e [O[f.2Œn� j n� 2/g.

Appendix

Given a sequence of integers .a1; : : : ; an/ the (Hirzebruch–Jung) continued fraction
expansion is given by

Œa1; : : : ; an�D a1�
1

a2�
1

:::� 1
an

:

If ai � 2 for all 1 � i � n, then this fraction is well defined and the numerator is
greater than the denominator. In fact, for coprime p > q > 0 2Z, there exists a unique
continued fraction expansion Œa1; : : : ; an� D p=q, where ai � 2 for all 1 � i � n.
Moreover, by reversing the order of the continued fraction, Œan; : : : ; a1�D p=q0, where
q0 is the unique integer such that 1� q0 < p and qq0 � 1 mod p.

Lemma A.1 Let p=q D Œa1; : : : ; an�, s=r D Œa1; : : : ; an�1�, and a D .a1; : : : ; an/.
Then jTor.H1.T˙A.a///j D p� .r ˙ 2/.

Proof Let aD .a1; : : : ; an/. By [11, Theorem 6.1], hyperbolic torus bundles are of
the form T˙A.a/ D T

2 � Œ0; 1�=.x; 1/� .˙Ax; 0/, where

AD A.a/D

�
p q

�s �r

�
;

p

q
D Œa1; : : : ; an� and s

r
D Œa1; : : : ; an�1�:
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Note that, since A 2 SL2.Z/, we have qs � pr D 1. Moreover, since T˙A.a/ is
hyperbolic, trA.a/ D p � r > 2. Now, by [12, Lemma 10], jTor.H1.T˙A.a///j D
jtr.˙A.a//� 2j D j˙.p� r/� 2j D j˙.p� .r ˙ 2//j D p� .r ˙ 2/.

Lemma A.2 Let .b1; : : : ; bk/ and .c1; : : : ; cl/ be linear-dual strings , where lCk � 2,
x � 1 be an integer , and Œb1; : : : ; bk� D p=q. Then Œb1; : : : ; bk; xC 1; cl ; : : : ; c1� D
xp2=.xpqC 1/ and Œc1; : : : ; cl ; xC 1; bk; : : : ; b1�D xp2=.xp2� xpqC 1/.

Proof Given the first conclusion, the second follows since .xpqC1/.xp2�xpqC1/D
xp2.xpq � q2 C 1/C 1. We will now prove that Œb1; : : : ; bk; x C 1; cl ; : : : ; c1� D
xp2=.xpqC 1/.

Let n D k C l C 1 be the length of .b1; : : : ; bk; x C 1; cl ; : : : ; c1/. We proceed by
induction on n. If nD 3, then kD 1, l D 1, .b1/D 2

1
, and Œ2; xC1; 2�D 4x=.2xC1/D

x22=.x.2/.1/C 1/. Suppose the lemma is true for all length n� 1 continued fractions
and consider Œb1; : : : ; bk; xC 1; cl ; : : : ; c1�. By definition of linear-dual strings, either
b1 D 2 and c1 � 3 or vice versa.

Assume that b1 D 2. Then the strings .b2; : : : ; bk/ and .c1� 1; : : : ; cl/ are linear-dual
and, by the inductive hypothesis,

Œb2; : : : ; bk; xC 1; cl ; : : : ; c1� 1�D
xm2

xmnC 1
;

Œc1� 1; c2; : : : ; cl ; xC 1; bk; : : : ; b2�D
xm2

xm2� xmnC 1
;

where Œb2; : : : ; bk�Dm=n. Thus,

Œc1; c2; : : : ; cl ; xC 1; bk; : : : ; b2�D 1C
xm2

xm2� xmnC 1
D
2xm2� xmnC 1

xm2� xmnC 1
:

Since .2xmn�xn2C2/.xm2�xmnC1/D .2xm2�xmnC1/.xmn�xn2C1/C1,

Œb2; : : : ; bk; xC 1; cl ; : : : ; c1�D
2xm2� xmnC 1

2xmn� xn2C 2
:

Thus,

Œb1; : : : ; bk; xC 1; cl ; : : : ; c1�D 2�
2xmn� xn2C 2

2xm2� xmnC 1
D

x.2m�n/2

x.2m�n/mC 1
;

Œb1; : : : ; bk�D 2�
n

m
D
2m�n

m
:

Setting p D 2m�n and q Dm yields the result.
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Now suppose c1 D 2. Then .b1� 1; : : : ; bk/ and .c2; : : : ; cl/ are linear-dual and

Œb1� 1; : : : ; bk; xC 1; cl ; : : : ; c2�D
xm2

xmnC 1
;

Œc2; : : : ; cl ; xC 1; bk; : : : ; b1� 1�D
xm2

xm2� xmnC 1
;

where Œb1� 1; : : : ; bk�Dm=n. Thus,

Œc1; : : : ; cl ; xC 1; bk; : : : ; b1� 1�D 2�
xm2� xmnC 1

xm2
D
xm2C xmn� 1

xm2
:

Since .xmnC xn2C 1/xm2 D .xm2C xmn� 1/.xmnC 1/C 1,

Œb1� 1; : : : ; bk; xC 1; cl ; : : : ; c2; c1�D
xm2C xmn� 1

xmnC xn2C 1
:

Thus,

Œb1; : : : ; bk; xC 1; cl ; : : : ; c2; c1�D 1C
xm2C xmn� 1

xmnC xn2C 1
D

x.mCn/2

x.mCn/nC 1
;

Œb1; : : : ; bk�D 1C
m

n
D
mCn

n
:

Setting p DmCn and q D n yields the result.

Proposition A.3 Let Œb1; : : : ; bk� D p=q and let a D .a1; : : : ; an/ 2 S1a. Then
jTor.H1.T�A.a///j D p2.

Proof Let aD .2; b1; : : : ; bk; 2; cl ; : : : ; c1/, where .b1; : : : ; bk/ and .c1; : : : ; cl/ are
linear-dual (up to cyclic reordering). By Lemma A.2, Œb1; : : : ; bk; 2; cl ; : : : ; c1� D
p2=.pqC 1/ and so

Œ2; b1; : : : ; bk; 2; cl ; : : : ; c1�D 2�
pqC 1

p2
D
2p2�pq� 1

p2
:

By Lemma A.1, jTor.H1.T�A.a///j D j2p2 � pq � 1 � .˛ � 2/j, where ˛ is the
denominator of Œ2; b1; : : : ; bk; 2; cl ; : : : ; c2�. By Lemma A.2,

Œc1; : : : ; cl ; 2; bk; : : : ; b1�D
p2

p2�pqC 1

and so
Œc2; : : : ; cl ; 2; bk; : : : ; b1�D

p2�pqC 1

.c1� 1/p2� c1pqC c1
:

Thus,
Œb1; : : : ; bk; 2; cl ; : : : ; c2�D

p2�pqC 1

s
for some s:

Now it is clear that ˛ D p2�pqC 1 and so

jTor.H1.T�A.a///j D j2p
2
�pq� 1� .p2�pqC 1� 2/j D p2:
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Lemma A.4 Let

AD .aij /D

2666666664

�a1 1 .�1/t .�1/r

1 �a2
: : : 1

.�1/t 1 �ak 1

1
: : :

�an�1 1

.�1/r 1 �an

3777777775
:

Suppose ai � 2 for all 1� i � n, a1 � 3, ak � 3, and r; t 2 f0; 1g.

(1) If r D 1 or t D 1, then A is negative definite.

(2) If r D t D 0 and either a1 � 4, ak � 4, or there exists an integer i … f1; kg such
that ai � 3, then A is negative definite.

Proof Let si D
Pn
jD1 aij be the i th row sum of A. Then si � 0 for all i . Moreover,

since either a1 � 4, ak � 4, or there exists an integer i … f1; sg such that ai � 3, there
exists a row sum that is strictly less than 0. Let w 2 Zn. Then

wTAw D
X
i;j

aijwiwj D
1

2

X
i;j

aij .w
2
i Cw

2
j � .wi �wj /

2/

D

X
i;j

aijw
2
i �

X
i<j

aij .wi �wj /
2
D

X
i

siw
2
i �

X
i<j

aij .wi �wj /
2:

First suppose r D t D 0. Then every term in the above expression is at most zero and so
wTAw � 0. Moreover, if either a1 � 4, ak � 4 or there exists an integer i … f1; kg such
that ai � 3, then one of the row sums si is strictly less than 0. In this case, wTAw D 0
if and only if w D 0. Thus A is negative definite. Next suppose r D 1 and t D 0. Then
s1; sn � �2 and so

wTAw D s1w
2
1 C snw

2
nC .w1�wn/

2
C

X
i¤1;n

siw
2
i �

X
i<j

.i;j /¤.1;n/

.wi �wj /
2

� �2w21 � 2w
2
nC .w1�wn/

2
C

X
i¤1;n

siw
2
i �

X
i<j

.i;j /¤.1;n/

.wi �wj /
2

D�.w1Cwn/
2
C

X
i¤1;n

siw
2
i �

X
i<j

.i;j /¤.1;n/

.wi �wj /
2:

Each term in this expression is clearly negative. If wTAw D 0, then, from the first
term, w1 D�wn. From the terms in the last summand, w1 D w2 D � � � D wn. Hence
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wn D�wn, implying that w1 D � � � D wn D 0. Therefore, A is negative definite. We
obtain a similar result if r D 0 and t D 1. Finally assume r D t D 1. Then s1 � �4
and sk; sn � �2. Arguing as above,

wTAw D s1w
2
1 C skw

2
kC snw

2
nC .w1�wn/

2
C .w1�wk/

2

C

X
i¤1;k;n

siw
2
i �

X
i<j

.i;j /¤.1;n/;.1;k/

.wi �wj /
2

� �.w1Cwn/
2
� .w1Cwk/

2
C

X
i¤1;n

siw
2
i �

X
i<j

.i;j /¤.1;n/;.1;k/

.wi �wj /
2:

Once again, we can see that A is necessarily negative definite.

Lemma A.5 Let

AD

26666664

�a1 2 .�1/r

2 �a2 1

1 �a3
: : :

�an�1 1

.�1/r 1 �an

37777775 :

Suppose ai � 2 for all 1� i � n, a1 � 3, a2 � 3, and r 2 f0; 1g.

(a) If r D 1, then A is negative definite.

(b) If r D 0 and either a1 � 4, a2 � 4 or there exists an integer i … f1; kg such that
ai � 3, then A is negative definite.

Proof The proof is similar to the proof of Lemma A.4.
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