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Ribbon 2–knot groups of Coxeter type

JENS HARLANDER

STEPHAN ROSEBROCK

Wirtinger presentations of deficiency 1 appear in the context of knots, long virtual
knots, and ribbon 2–knots. They are encoded by labeled oriented trees and, for that
reason, are also called LOT presentations. These presentations are a well known
and important testing ground for the validity (or failure) of Whitehead’s asphericity
conjecture. We define LOTs of Coxeter type and show that for every given n there
exists a prime LOT of Coxeter type with group of rank n. We also show that label
separated Coxeter LOTs are aspherical.

20F05, 20F06, 20F65; 57K20, 57K45

Dedicated to the memory of Stephen Pride

1 Introduction

Wirtinger presentations of deficiency 1 appear in the context of knots, long virtual knots,
and ribbon 2–knots; see Harlander and Rosebrock [9]. They are encoded by labeled
oriented trees and, for that reason, are also called LOT presentations. Adding a generator
to the set of relators in a Wirtinger presentation P gives a balanced presentation of the
trivial group. Thus the associated 2–complex K.P / is a subcomplex of an aspherical (in
fact contractible) 2–complex. Wirtinger presentations are a well-known and important
testing ground for the validity (or failure) of Whitehead’s asphericity conjecture, which
states that a subcomplex of an aspherical 2–complex is aspherical. For more on the
Whitehead conjecture see Bogley [3], Berrick and Hillman [1] and Rosebrock [18].

If P is a Wirtinger presentation and the group G.P / defined by P is a 1–relator group,
then G.P / admits a 2–generator 1–relator presentation P 0 and the corresponding 2–
complex K.P 0/ is aspherical. Since K.P 0/ and K.P / have the same Euler characteristic
and the same fundamental group, it follows (using Schanuel’s lemma and Kaplansky’s
theorem, which states that finitely generated free ZG–modules are Hopfian) that K.P /
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2716 Jens Harlander and Stephan Rosebrock

is also aspherical. Thus, when investigating the asphericity of K.P / for a given
Wirtinger presentation P, the first thing to ask is if G.P / is a 1–relator group.

Composite knot groups require more than two generators; see Norwood [17].1 However,
many knots have 2–generator 1–relator knot groups. Prime knots whose groups need
more than two generators were known to Crowell and Fox in 1963. As one example,
Crowell and Fox consider a certain prime 9–crossing knot, show that its Wirtinger
presentation simplifies to

P D hx;y; z j y�1xyx�1y D x�1zx�1zxz�1x; x�1zxz�1x D y�1zyz�1yi;

and show that the length of the chain of elementary ideals for this knot group is 2. It
follows that the rank (the minimal number of generators) of G.P / is greater than 2 and
therefore equal to 3. This can also be seen without the use of elementary ideals. We
have an epimorphism

G.P /!�.3; 3; 3/D hx;y; z j x2;y2; z2; .xy/3; .xz/3; .yz/3i

sending x ! x, y ! y and z ! z. Since the rank of the Euclidean triangle group
�.3; 3; 3/ is 3 (see Klimenko and Sakuma [13]), we have rank.G.P //D 3.

This example motivates the first part of this article. It is easier to construct high-rank
ribbon 2–knot groups than classical knot groups, because we do not have to verify that a
given Wirtinger presentation can be read off a knot projection (a 4–regular planar graph).
Below we define labeled oriented trees of Coxeter type and show that, given a Coxeter
group W which abelianizes to Wab D Z2, there exists a Coxeter-type LOT group that
maps onto W. Using this we give examples of prime LOT groups of arbitrarily high
rank.

In the second part of the paper we investigate the question of asphericity of LOTs of
Coxeter type. We show that label-separated LOTs of Coxeter type are aspherical. It
turns out that the study of asphericity can be translated into questions concerning free
subgroups of 1–relator LOT groups of dihedral type.

2 Groups defined by graphs

A labeled oriented graph (LOG) is an oriented finite graph � on vertices x and edges e,
where each oriented edge is labeled by a word in x˙1. Associated with a LOG � is

1The central Lemma 3 in Norwood’s paper has a gap which can be filled, as was pointed out by Menasco
and Reid [15, page 223, Remark 4] and also Bleiler [2].
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the presentation
P .�/D hx j r D fre j e 2 egi;

where re D xw.wy/�1 when eD .x w
�! y/ is the edge of � starting at x, ending at y,

and labeled with the word w on letters in x˙1. We remark that what we call a labeled
oriented graph is elsewhere called a weakly labeled oriented graph or word-labeled
oriented graph. See Howie [12] and Harlander and Rosebrock [10].

Denote by K.�/ and G.�/ the standard 2–complex and the group defined by P .�/,
respectively. The case where � is a tree, now called a labeled oriented tree (LOT), is
special. It is known that the groups G.�/ where � is a LOT are precisely the ribbon
2–knot groups (see Yajima [22], Howie [12] and also Hillman [11, Section 1.7]), since,
in that case, G.�/ is a group of weight 1 (normally generated by a single element, in
fact by each generator) that has a deficiency 1 presentation P .�/. The 2–complexes
K.�/ with � a LOT are of central importance to Whitehead’s asphericity conjecture,
since adding a generator to the set of relators in P .�/ gives a balanced presentation of
the trivial group. So K.�/ is a subcomplex of a 2–dimensional contractible complex. A
question that has been open for a long time asks if K.�/ is aspherical, ie �2.K.�//D 0.
See Bogley [3], Berrick and Hillman [1] and Rosebrock [18].

A subtree �0 � � of a LOT is a sub-LOT if the label w of an edge in �0 is a word in
the vertices of �0. A sub-LOT �0 � � is called proper if it has more than one vertex
and is not all of � . A LOT is called prime if it does not contain proper sub-LOTs.

Let ‡ be a simplicial graph on vertices x, and suppose edges e are labeled with integers
me � 2. Define

P .‡/D hx j x2 for x 2 x; .xy/me if e D fx;yg is an edgei:

The group W DW .‡/ defined by this presentation is called a Coxeter group. We refer
to ‡ as the defining graph for the Coxeter group. We remark that the graph ‡ shows
up in Davis [6, Example 7.1.6] (the Coxeter system associated to a labeled simplicial
graph). It should not be confused with the Dynkin diagram, another labeled graph
that appears in connection with Coxeter groups. Let K D K.‡/ be the 2–complex
associated with P .‡/. Consider the universal covering zK.‡/. The 1–skeleton of zK.‡/
is the Cayley graph for .W;x/. All edges in zK.‡/ are double edges: for every g 2W

and x 2x, we have an edge .g;x/ connecting g to gx, and an edge .gx;x/ connecting
gx to gxx D g. Note that a double edge pair bounds two 2–cells in zK.‡/, coming
from the relator x2. We remove one and collapse the other one to an edge. This turns
each double edge into a single unoriented edge. Every relator .xy/me gives rise to
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2me 2–cells with the same boundary. We remove all but one from this set. We denote
the 2–complex obtained in this fashion by †.2/.‡/. It is the 2–skeleton of the Davis
complex †.‡/. See [6, Proposition 7.3.4]. We remark that the Davis complex is
closely related to the Coxeter complex, but the complexes are not the same. For the
definition of Coxeter complex, see [6, Example 5.2.7]. Under certain conditions, for
example when the defining graph ‡ is a tree, the Davis complex is 2–dimensional:
†.‡/D†.2/.‡/. See [6, Example 7.4.2].

Proposition 2.1 Let ‡ be a defining tree with associated Coxeter group W .‡/. Then:

(1) For every edge e D fx;yg of ‡ we have a 2–cell �e in †.‡/ attached along a
2me–gon whose edge labels read .xy/me .

(2) †.‡/ is the union of the 2–cells w�e for e 2 fedges of ‡g and w 2 W .‡/.
Furthermore , if w1�e1

\w2�e2
¤∅, then e1\ e2 ¤∅; if x D e1\ e2, then the

edge w1�e1
\w2�e2

carries the label x.

(3) †.‡/ is a tree of 2–cells: if we connect the barycenters of the 2–cells with the
barycenters of their boundary edges , we obtain a tree. In particular , if M is
a finite connected union of Coxeter 2–cells wi�ei

in †.‡/, then there exists a
2–cell w�e in M that intersects with the rest of M in a single edge.

y z
y

z

z xy
x
yx

x y

x

yx

y

z
y

zy
z

Figure 1: The Davis complex †.‡/ for ‡ D x
3
� y

3
� z. It is a tree of Coxeter cells.
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Proof The statements (1) and (2) are clear from the construction of ‡ . For an edge
eD fx;yg, let P .e/D hx;y j x2;y2; .xy/mei. Let Dme

be the dihedral group defined
by P .e/. Since ‡ is a tree, W .‡/ is an amalgamated product of the Dme

. The
associated Bass–Serre tree can be seen inside the Davis complex †.‡/. The vertices
of that tree are the barycenters of the 2–cells and 1–cells, and the edges connect
barycenters of 2–cells to the barycenters of the 1–cells in the boundary of that 2–cell.
We can think of †.‡/ as a tree of Coxeter 2–cells. An example is shown in Figure 1.

Suppose M D
Sk

iD0 Di is a union of 2–cells. Let di be the barycenter of Di . Let dp

be a vertex in the Bass–Serre tree furthest away from d0 with p 2 f0; : : : ; kg. Consider
a geodesic from d0 to dp and let dq be the barycenter that is encountered just before
getting to dp when traveling along the geodesic. Then

�S
i¤p Di

�
\Dp DDq \Dp,

which is a single edge.

Lemma 2.2 Let � be a LOT e D .x w
�! y/ an edge such that the word w contains

letters and z ¤ x;y with even (positive or negative) exponent only. Then the relator
re D xw.wy/�1 reduces (up to cyclic permutation) to Nre D .yx/me , with me � 1 and
odd , in hx j x2 for x 2 xi.

Proof The word w reduces to an alternating word Sw in the letters x and y. If Sw is the
empty word, then Nre D xy. There are four remaining cases to consider:

(1) Sw starts with x and has even length.

(2) Sw starts with x and has odd length.

(3) Sw starts with y and has even length.

(4) Sw starts with y and has odd length.

In case (1) we have SwD xyxy, say. So x.xyxy/y.xyxy/D xxyxyyxyxyD xy. In
case (2) we have Sw D xyxyx, say. So x.xyxyx/y.xyxyx/D xxyxyxyxyxyx D

.yx/5. In case (3) we have Sw D yxyx, say. So x.yxyx/y.yxyx/D xy. In case (4)
we have Sw D yxyxy, say. So x.yxyxy/y.yxyxy/D .xy/5.

Definition 2.3 Let � be a LOT with vertex set x. We say � is of Coxeter type if:

(1) For every edge e D .x w
�! y/, the word w contains letters z ¤ x;y with even

(positive or negative) exponent only.

(2) For every edge eD .x w
�! y/, the relator re D xw.wy/�1 reduces (up to cyclic

permutation) to Nre D .yx/me , with me � 2, in hx j x2 for x 2 xi.
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Remark 2.4 Lemma 2.2 shows that, if � is a LOT of Coxeter type, then, for each
edge e, me � 3 and is odd.

Let � be a LOT of Coxeter type. Define a tree‡ in the following way: erase orientations
in � and, if eD .x w

�!y/ is an edge and the LOT relator re reduces to NreD .yx/me (up
to cyclic permutation) in hx j x2 for x 2 xi, then label the (unoriented) edge e by me .
Note that ‡ is a defining tree for a Coxeter group. We have a map P .�/! P .‡/

sending x to x which induces a group epimorphism G.�/!W .‡/. This process can
be reversed.

Lemma 2.5 Let ‡ be a defining tree for a Coxeter group where all me are odd. Then
there exists a LOT of Coxeter type � such that the process described above produces ‡
from � . In particular , G.�/ maps onto W .‡/.

Proof Suppose e D fx;yg is an edge in ‡ . Orient it from x to y. Let w D
.yx/.me�1/=2. Let e D .x w

�! y/ be the corresponding edge in � .

Note that the LOT � of Coxeter type constructed in the lemma is not prime. In fact,
every edge is a sub-LOT. Note also that G.�/ is an Artin group. One can show that
all Artin groups are LOG groups, but we will not pursue this here. Given a defining
tree ‡ , there are many LOTs of Coxeter type that give rise to ‡ .

Lemma 2.6 Let ‡ be a defining tree where all me are odd. Suppose � is a LOT of
Coxeter type such that the process just described produces ‡ . Then there also exists a
prime LOT that produces ‡ .

Proof Suppose �0 is a proper sub-LOT of � . Let e D .x w
�! y/ be an edge in �0 and

z be a vertex not in �0. Replace the label w by z2w to obtain a new LOT � 0. Then �0

is not a sub-LOT of � 0, but � 0 still produces ‡ . We can apply this procedure until we
arrive at a LOT without proper sub-LOTs.

3 LOT groups of high rank

Given two LOTs �1 and �2 and two valency-one vertices xi 2 �i for i D 1; 2, one
can form a composite LOT � D �1 [x1Dx2

�2 by identifying the two vertices. The
LOT group G.�/ is an amalgam G.�1/�Z G.�2/, and, avoiding trivial cases, the rank
of G.�/ is greater than the rank of each G.�i/ for i D 1; 2. This follows from a theorem
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of Karras and Solitar. See also [17]. However, � is not prime, and it is more difficult to
provide lower bounds for the rank of prime LOT groups. This issue is already present
in the classical knot world, as was discussed in the introduction. In this section we
present a method for constructing prime LOTs with groups of arbitrarily high rank.

Theorem 3.1 (Carette and Weidmann [5]) Let ‡ be a defining graph with n vertices
and assume that me � 6 � 2n for each e. Then the rank of W .‡/ is n.

Theorem 3.2 Let W DW .‡/ be a Coxeter group such that Wab D Z2. There exists
a prime labeled oriented tree � of Coxeter type such that G DG.�/ maps onto W.

Proof Since Wab DZ2, the defining graph ‡ is connected. In fact, the subgraph ‡odd

consisting of edges with odd label is connected, because an edge with an even label
does not contribute a relation in Wab, so W .‡odd/ab D W .‡/ab. Thus ‡ contains a
maximal tree ‡0 in which all labels me are odd. Then ‡ and ‡0 have the same set of
vertices and we have an epimorphism W .‡0/!W .‡/. From Lemmas 2.5 and 2.6, we
know that there is a prime LOT � of Coxeter type such that G.�/maps onto W .‡0/.

Corollary 3.3 For any given n there exists a prime labeled oriented tree � of Coxeter
type with n vertices such that G.�/ has rank n. In particular , if n � 3, then G.�/ is
not a 1–relator group.

Proof This follows from Theorem 3.2 together with the Carette–Weidmann theorem,
Theorem 3.1.

Example 3.4 Let � be the prime LOT x
yz2x
���! y

zx2y
���! z. Note that G.�/ maps

onto the amalgamated product D3�Z2
D3, which cannot be generated by two elements.

Thus the rank of G.�/ is 3 and it follows that this LOT group is not a 1–relator group.

Remark 3.5 If � is a LOT of Coxeter type and ‡ is the associated defining tree,
then W .‡/ is an amalgamated product of dihedral groups. A direct way to obtain
upper bounds for the rank of W .‡/ without the full force of Theorem 3.1 is via
Weidmann [21].

Remark 3.6 A reorientation of a LOT is obtained when changing signs on the expo-
nents of letters that occur in the edge words, which has no effect on the quotient W .‡/.
Thus, if rk.G.�// D rk.W .‡//, then this equation holds also for all reorientations
of � .

Algebraic & Geometric Topology, Volume 23 (2023)
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4 Largeness

A group is large if it has a subgroup of finite index that has a free quotient of rank � 2.
Large groups of deficiency 1 are studied in Button [4]. A list of properties can also be
found there. If G is large, then:

(1) G contains free subgroups of rank � 2.

(2) G is SQ-universal (every countable group is the subgroup of some quotient).

(3) G has finite-index subgroups with arbitrarily large first Betti number.

(4) G has uniformly exponential word growth.

(5) G has subgroup growth of strict type nn (which is the largest possible growth
for finitely generated groups).

(6) The word problem for G is solvable strongly generically in linear time.

Theorem 4.1 Let � be a LOT of Coxeter type on at least three vertices. Then G.�/ is
large.

Proof The conditions imply that W .‡/ is an infinite group that is the fundamental
group of a finite tree of groups where the vertex groups are either Z2 or dihedral groups
Dm with m� 3 (Z2 vertex groups will appear when ‡ has vertices of valency � 3).
Thus W .‡/ contains a free subgroup F of rank � 2 of finite index (see Serre [20,
Proposition 11, page 120)]. Let H be the preimage of F in G.�/. Then H is a subgroup
of G.�/ of finite index that maps onto F. It follows that G.�/ is large.

A characterization of virtual free Coxeter groups is given in Davis [6, Section 8.8].
When‡ is a tree, the characterization implies that W .‡/ is virtually free. This provides
another proof for Theorem 4.1.

Example 4.2 As in Example 3.4 let � be the prime LOT x
yz2x
���! y

zx2y
���! z. We

have W .‡/ D D3 �Z2
D3. Let �.3; 3; 2/ be the spherical triangle group (it is the

symmetric group S4) defined by hx;y; z j x2;y2; z2; .xy/3; .yz/3; .xz/2i. We have
an epimorphism W .‡/!�.3; 3; 2/ and we claim that the kernel V is free of rank � 2.
Indeed, since both D3’s of W .‡/ are also subgroups of �.3; 3; 2/, it follows that
V intersects both D3’s trivially and thus V acts freely on the Bass–Serre tree T for
W .‡/DD3 �Z2

D3, and hence is free. Note that the valency of every vertex in T is
equal to 3 (since the index of Z2 in the D3’s is 3), and so V cannot be cyclic. Here is
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why: Note that V D�1.X /, where X DT=V is a finite graph in which every vertex has
valency 3. Let v.X / and e.X / denote the number of vertices and edges, respectively.
We have v.X /D 2

3
e.X / and we obtain �.X /D v.X /� e.X /D 2

3
e.X /� e.X / < 0.

Thus dim H0.X /�dim H1.X /D 1�dim H1.X /D�.X /< 0. So dim H1.X /> 1 and
hence dim Vab > 1. One can also check directly that .xz/2 and x.xz/2x�1 D .zx/2

generate a free subgroup of V of rank 2.

5 The question of asphericity

Let � be a labeled oriented tree of Coxeter type and let‡ be the associated defining tree
for the Coxeter group W .‡/. Let K.�/ be the normal covering space with fundamental
group the kernel of the epimorphism G.�/!W .‡/. We will analyze the structure
of K.�/. We have maps

K.�/! zK.‡/!†.‡/;

and note that K.�/ and zK.‡/ have the same 1–skeleton. Let eD .x w
�! y/ be an edge

in � . Let Pe D hxe j rei, where xe � x is the subset of the vertices of � that occur
in re . Let zD xe �fx;yg. Then Pe D hx;y; z j xw D wyi. The complex K.Pe/ is a
subcomplex of K.�/. Consider the preimage of K.Pe/ under the covering projection
K.�/!K.�/. It is a union of finite subcomplexes wKe for w 2W .‡/, which we
will now describe in detail. The 1–skeleton of Ke is a 2me–gon with double edges
labeled in an alternating way by x and y. At each of the 2me vertices we have a double
edge for every z 2 z. The situation is depicted in Figure 2. We have 2me 2–cells,
attached along the loop with label re , starting at every vertex. The dihedral group Dme

,
the stabilizer of the cell �e in †.‡/, acts freely on Ke . It is convenient to replace Ke

by a complex with a single Dme
orbit of vertices. Let xLe be the 2–complex obtained

z

z

z

z
z

z x

y

xy

x

yx

y

xy

x

y

zz

z
z

z
z

zz
z

z

z

z

Figure 2: The complex Ke (on the left) in the case e D .x
w
�! y/ 2 � with

corresponding edge e D .x
3
�! y/ 2 ‡ , so the Coxeter relator is .xy/3. On

the right is the corresponding Coxeter cell �e together with z–edges. The blue
part is a y–side in Ke .
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from Ke in the following way: at every vertex collapse one of the z–edges from the
z–double edge for some z 2 z. The complex xLe is homotopy equivalent to Ke. The
1–skeleton of xLe is a 2me–gon with double edges labeled in an alternating way by
x and y. At each of the 2me vertices we have a loop for every z 2 z. Let Ore be the
word obtained from re by replacing every zp for z 2 z by zp=2. Let yPe D hx;y; z j Orei.
Note that the dihedral group Dme

acts freely on xLe and we have a covering map
xLe!

xLe=Dme
DK. yPe/.

Lemma 5.1 The 2–complex Ke is aspherical.

Proof The complex K. yPe/ is aspherical because yPe is a 1–relator presentation for
which the relator is not a proper power. Thus xLe is aspherical, being a covering space
of K. yPe/. Since Ke is homotopy equivalent to xLe , it follows that Ke is aspherical.

An x–side of Ke consists of a double edge with label x together with all the double
edges connected to the two vertices of the x–double edge. A y–side is defined in the
same way. See Figure 2, where the blue part on the left shows a y–side. Note that Ke

has me x–sides and me y–sides. We refer to these as the sides of Ke. We say Ke

is side injective if the inclusion induced map �1.S/! �1.Ke/ is injective for every
side S. An x–side in xLe is the image of an x–side under Ke!

xLe, etc.

Lemma 5.2 The 2–complex Ke is x–side injective if and only if

hx2;y2; z;xy2x�1;xzx�1
W z 2 zi

is a free subgroup of G. yPe/ on the given basis.

Proof Recall that me � 3. An x–side S in xLe is an x–double edge, a y–double edge
at each of the two vertices, and a loop for every z 2 z at each of the two vertices. The
image of �1.S/ in G. yPe/ under the covering projection is the group in the statement
of the lemma.

Lemma 5.3 If T is a subgraph of the 1–skeleton of Ke that does not involve every
letter from xe D fx;y; zg, then �1.T /! �1.Ke/ is injective.

Proof We can argue with xLe instead of Ke. A reduced loop  in T gives a reduced
word u in the generators of yPe that does not involve all letters from xe Dfx;y; zg. The
presentation yPe has only one relator Ore that does involve all letters from the generating
set xe D fx;y; zg. The Freiheitssatz for 1–relator groups implies that u does not
represent the trivial element in G. yP /. Thus  is not trivial in �1.xLe/.

Algebraic & Geometric Topology, Volume 23 (2023)
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We continue our analysis. The complex K.�/ is a union of the complexes wKe for
w 2W .‡/ and e 2 edges of � . The maps

K.�/! zK.‡/!†.‡/

give a one-to-one correspondence between the wKe and Coxeter cells w�e. Since ‡
is a tree, the Davis complex †.‡/ is a tree of Coxeter cells w�e and so K.�/ is a tree
of complexes wKe. In complete analogy to Proposition 2.1, we have:

Proposition 5.4 Consider K.�/D
S
wKe!†.‡/D

S
w�e.

(1) K.�/ is the union of the 2–complexeswKe for e 2 fedges of �g andw 2W .‡/.
Furthermore , if w1Ke1

\w2Ke2
¤∅, then e1\ e2 ¤∅; if x D e1\ e2, then

w1Ke1
\w2Ke2

D T, where T is the subgraph of an x–side S that carries the
letters xe1

\xe2
.

(2) K.�/ is a tree of 2–complexes. In particular , if M is a finite connected union
of 2–complexes wiKei

in K.�/, then there exists a 2–complex wKe in M that
intersects with the rest of M in a subgraph of a single side.

Theorem 5.5 Let � be a LOT of Coxeter type. Then K.�/ is aspherical if the Ke are
side injective for every edge e in � .

Proof We will show that K.�/ is aspherical. It suffices to show that every finite con-
nected union M D

Sn
iD1wiKei

is aspherical. We first claim that the sides of thewiKei

�1–inject into the union M. We do induction on n. If nD 1, the result follows from the
hypothesis. Assume n> 1. Then, by Proposition 5.4(2), there exists a 2–complex wKe

in M that intersects with the rest of M in a subgraph T of a single side S (of course,
T could be S ). Now, by the induction hypothesis, the inclusion S �M �wKe DM0

is �1–injective, and the inclusion S � wKe is �1–injective by hypothesis. It follows
that �1.M / is an amalgamated product �1.M /D �1.M0/��1.T / �1.wKe/. Thus the
inclusion S �M is �1–injective. All other sides that occur in M are contained in either
M0 or wKe. �1–injectivity follows from the amalgamated product decomposition.
Asphericity of M now follows from induction on n and the amalgamated product
decomposition �1.M /D �1.M0/��1.T / �1.wKe/.

Remark The above proof shows more than asphericity. Since each �1.Ke/ is a
finite-index subgroup of a 1–relator group, we see that �1.K/ is a tree of groups, the
vertex groups being finite-index subgroups of 1–relator groups, and the edge groups
(over which we amalgamate) being finitely generated and free.
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Definition 5.6 A labeled oriented tree � is called label separated if, for every pair of
edges e1 and e2 that have a vertex in common, the intersection xe1

\xe2
is a proper

subset of both xe1
and xe2

.

Theorem 5.7 Let � be a label separated LOT of Coxeter type. Then K.�/ is aspheri-
cal.

Proof The proof is very much the same as the proof of Theorem 5.5. Let M DSn
iD1wiKei

as before. Again it suffices to show that M is aspherical. If n D 1

then the proof is clear. It is instructive to look at the case n D 2. The intersection
w1Ke1

\w2Ke2
DT is the subgraph of a side that carries the letters xe1

\xe2
, which is a

proper subset of both xe1
and xe2

. Thus �1–injectivity for the inclusions T �wiKei
for

i D 1; 2 follows from Lemma 5.3. We have �1.M /D �1.w1Ke1
/��1.T / �1.w2Ke2

/

and M is aspherical. For n � 2 we argue by induction and obtain (as in the proof
of Theorem 5.5) a decomposition �1.M /D �1.M0/��1.T / �1.wKe/, which proves
asphericity of M.

6 Side injectivity

Let P D ha; b; c j ri, be a 1–relator group, where c is a finite set of letters (which could
be empty). We assume that r is cyclically reduced and contains all generators. Assume
further that r D .ab/m for some m� 0 modulo the relations a2D b2D c D 1 for c 2 c

and cyclic permutation. The number m is called the dihedral type of P.

Let Q D ha; b; c j .ab/m; a2; b2 for c 2 ci. We have an epimorphism � W G.P /!

G.Q/DDm. Let K.P / be the covering of K.P / associated with the kernel. Note that
K.P /.1/D zK.Q/.1/, which is the Cayley graph for Dm on the generating set fa; b; cg.
So K.P /.1/ is a 2m–gon, consisting of double edges labeled in an alternating way
with a and b, and at every vertex we have a c–loop for every c 2 c. An a–side of K.P /

is a connected subgraph of the 1–skeleton that consists of a double edge with label a,
together with all the b–double edges and c–loops connected to the two vertices of the
a–double edge. A b–side is defined in an analogous way. We say P is side injective if
the inclusion of any side S !K.P / is �1–injective.

Lemma 6.1 Assume that P is of dihedral type m � 3. Suppose that , for every
cyclically reduced word w in fa; b; cg˙1 which represents the trivial element in G.P /,
some cyclic permutation of w contains a reduced subword u of the form

a˙1d1bˇd2a˛d3b˙1 or b˙1d1a˛d2bˇd3a˙1;
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where ˛ and ˇ are odd integers and the di are words in the generators containing a

and b with even exponents (the di could be trivial). Then P is side injective.

Proof We begin with some notation. If w is a word in fa; b; cg˙1, then we denote
by Sw the element of Dm that it represents. If w D x1 : : :xn with xi 2 fa; b; cg

˙1,
then the lift  .w;V / of w into K.P /.1/, starting at a vertex V, is a path with vertices
V;x1V;x1x2V; : : : ;x1 : : :xnV. Now let w be a reduced word as in the statement. We
assume without loss of generality that w D w1.a

˙1d1bˇd2a˛d3b˙1/w2. Consider
 .w;V /. Let V 0Dw1V. Among the vertices of  .w;V / we find V 0, NaV 0, abV 0, abaV 0,
and ababV 0. These are five distinct vertices. A side of K.P / contains exactly four
vertices. It follows that  .w;V / is not contained in a side. We conclude that P is side
injective.

Example 6.2 P D ha; b j .ab/mi for m� 3 is side injective. This is because 1–relator
presentations with torsion are Dehn presentations (in particular, G.P / is hyperbolic).
See Newman [16]. A word w that is trivial in the group contains a subword of length
more than 1

2
that of a cyclic permutation of the relator or its inverse; hence, it contains

a cyclic permutation of abab, or its inverse. The result follows from Lemma 6.1.

Example 6.3 More generally, if P Dha; b; c j r.a; b; c/i (c could be empty) is a Dehn
presentation of dihedral type m� 3 such that more than half of a cyclic permutation
of the relator or its inverse contains a subword u as in Lemma 6.1, then P is side
injective. Recall that P is a Dehn presentation for instance if it satisfies the small
cancellation condition C 0

�
1
6

�
or C 0

�
1
4

�
�T .4/ (see Lyndon and Schupp [14, Chapter V,

Theorem 4.4]). For example, if

r.a; b; c/D a˛1d1bˇ1d2a˛2d3bˇ2d4a˛3d5bˇ3d6a˛4d7bˇ4d8;

where the ˛i and ˇi are odd integers satisfying j˛i jD j j̨ j and jˇi jD j ǰ j for all i; j �4

and the di are words of the same length containing a and b with even exponents, and
P satisfies the small cancellation condition C 0

�
1
6

�
or C 0

�
1
4

�
� T .4/, then P is side

injective. Concrete examples are

ha; b; c j .acbc�1ac�1bc/2i and ha; b; c j acbc�1acbcac�1bc�1ac�1bci;

which are C 0
�

1
4

�
�T .4/, and

ha; b; c j acbca�1cbc�1a�1c�1bcac�1bc�1
i;

which is C 0
�

1
6

�
. These presentations were checked with the help of GAP (see [7]) and

the package SMALLCANCELLATION by Ivan Sadofschi Costa (see [19]).
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Example 6.4 The Artin presentation P D ha; b j prod.a; b;m/D prod.b; a;m/i is not
side injective for mD 3, but is side injective for m� 4:

m D 3 We show that P D ha; b j aba D babi is not side injective. We have
a2.aba2ba/a�2 D aba2ba in G.P / because .aba/2 D aba2ba is central. So

w D a2ba2ba�2b�1a�2b�1
D 1

in G.P /. Note that w lifts into a b–side of K.P /.

mD 4 We show that P D ha; b j ababD babai is side injective. Note that x D abab

is a central element. The quotient G.P /=hxi has a presentation ha; b j .ab/2i. Let
y D ba; then the presentation rewrites to ha;y j y2i. In order to show that P is a–side
injective, we have to show that a2, b2 and ab2a�1 generate a free group of rank 3
in G.P /. We will do this by showing that A D a2, B D .ya�1/2 D ya�1ya�1 and
C0 D a.ya�1/2a�1 D aya�1ya�1a�1 generate a free group in the quotient presented
by QD ha;y j y2i D Z�Z2. Let C1 D BC0. We have

C1 D ya�1ya�1aya�1ya�1a�1
D ya�1yya�1ya�1a�1

D ya�1a�1ya�1a�1

D ya�2ya�2:

And, finally, let C D C1AD ya�2y. In summary we have

AD a2; B D ya�1ya�1; C D ya�2y:

The group H D hA;B;C i is a normal free subgroup of G.Q/ of rank 3 and index 4.
Figure 3 shows a covering space p W K.Q/ ! K.Q/ such that �1.K.Q// is free
of rank 3 and p�

�
�1.K.Q//

�
D hA;B;C i � �1.K.Q//. The argument for b–side

injectivity is analogous.

m � 6 and even This case is easy. Let x D prod.a; b;m/. The quotient G.P /=hxi

is presented by ha; b j .ab/m=2i, which is a Dehn presentation, being a 1–relator
presentation with torsion. Since m� 6, we have 1

2
m� 3. Side injectivity follows from

Example 6.2.

m � 5 and odd Let x D prod.a; b;m/ and y D ba. Note that x D ay.m�1/=2.
Using aD xy.�mC1/=2 and b D y.mC1/=2x�1, the presentation P can be rewritten to
hx;y j x2D ymi. Thus G.P /=hx2i is presented by hx;y j x2;ymi, which is the hyper-
bolic group Z2 �Zm. In the original generators, this is ha; b j prod.a; b;m/2; .ba/mi.
If this were a Dehn presentation, we could proceed as in the previous case (at least
for m � 7), but we do not know. Instead we argue as for m D 4. For simplicity we
assume m D 5; the cases m � 7 go along the same lines. In order to show that P
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a

C a

B
y y

a

A

a

y y

Figure 3: If QD ha;y j y2i then the universal covering zK.Q/ is a tree with
spheres attached. Here we see the intermediate covering K.Q/ corresponding
to the subgroup H D hA;B;C i. The gray discs with boundary y2 indicate
2–spheres.

is a–side injective we have to show that a2, b2 and ab2a�1 generate a free group of
rank 3 in G.P /. In terms of x and y, it suffices to show that xy�2xy�2, y3x�1y3x�1

and .xy�2/y3x�1y3x�1.xy�2/�1 generate a free subgroup of rank 3 in the quotient
presented by QD hx;y j x2;y5i. Let

AD xy3xy3; B D y3xy3x; C0 D xyxy3xy2x:

Let C D C0AD .xyxy3xy2x/.xy3xy3/D xyxy.

Note that
C.y�1Cy/D .xyxy/y�1.xyxy/y D xy2xy2

D B�1

and
C.y�1Cy/.y�2Cy2/D xy2xy2y�2xyxyy2

D xy3xy3
DA:

�
�
�

� � �

� �
�

�
�
�

xx
x

x
x

y5 y5

x

X
x

Y
x

Z

x

x

x
x

x
x

�
�
�

� �
�

� � �

�
�
�

Figure 4: A rendering of the covering space K.Q/. Each x–edge represents
a double x–edge into which two discs with boundary x2 are glued. Each gray
disc represents five discs with boundary y5.
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So it suffices that to show that

X D C; Y D y�1Cy; Z D y�2Cy2

generate a free subgroup of rank 3. Figure 4 shows a covering space p WK.Q/!K.Q/

such that �1.K.Q// is free of rank 3 and p�
�
�1.K.Q//

�
D hX;Y;Zi � �1.K.Q//.

The argument for b–side injectivity is analogous.

Example 6.5 Let P Dha; b; c j a.babcaba/D .babcaba/bi. Then P is side injective
by Theorem 6.6.

Theorem 6.6 Suppose P has dihedral type m� 3 and

� P D ha; b; c j a.u1c�u3/D .u1c�u3/bi, or

� P D ha; b; c j a.u1c�u2c�u3/D .u1c�u2c�u3/bi,

where

(1) c 2 c and � D˙1,

(2) the words u1 and u3 do not contain c while u2 is arbitrary, and

(3) both u�1
1

a and u3b�1 contain a subword u as in Lemma 6.1.

Then P is side injective.

Proof We assume we are in the second case and � D 1. The first case is shown in an
analogous way. Envision the relator disc placed in the plane as a rectangle, where the a

on the very left of the equation and the b on the very right of the equation are horizontal
edges, and the word u1cu2cu3 is a vertical edge sequence. Connect the midpoints of
c–edges on the left and right by horizontal red edges. See Figure 5. Suppose that w is a
cyclically reduced word that represents the trivial element in G.P /. Let D be a reduced
Van Kampen diagram with boundary w. We may assume that D is a topological disc.

a

b

u1 u1

u2 u2

u3 u3

c c

c c

Figure 5: The relator disc drawn as a rectangle.
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innermost circle

outermost arc

Figure 6: A disc with red arcs, indicating innermost circles and outermost arcs.

The red edges in our relator disc will form red circles and red arcs connecting points on
the boundary of D. See Figure 6. Consider an innermost red circle. Going around the
inside, we read off a word that freely reduces to u�1

1
aku1 or u3bku�1

3
for some k 2Z.

If k D 0, then D is not reduced. If k ¤ 0, then G.P / has torsion. Neither is the case;
hence, there are no red circles in D. Consider an outermost red arc ˛. Let E be the
component of D�˛ that does not contain anything red. Reading along the part of the
boundary of D which belongs to E gives a reduced word (a subword of the reduced
word w) equal to u�1

1
aku1 or u3bku�1

3
. Because D is reduced, k cannot be zero. If k

is positive then u�1
1

aku1 contains u�1
1

a and hence a word u as in Lemma 6.1. Also,
u3bku�1

3
contains bu�1

3
, and, since u3b�1 contains a word u as in Lemma 6.1, so

does .u3b�1/�1 D bu�1
3

. The case where k is negative goes the same way. It now
follows from Lemma 6.1 that P is side injective.

7 Last words about LOT applications

Theorem 7.1 Let � be a LOT of Coxeter type. Suppose that , for every edge e D

.a
we
�! b/, the word we is of the form u1c�u3 or u1c�u2c�u3 for some letter c ¤ a; b,

� D˙1, and words u1, u2 and u3 as in Theorem 6.6. Then K.�/ is aspherical.

Proof Each yPe is side injective. This follows from Theorem 6.6. Thus each Ke is
side injective. The result follows from Theorem 5.5.

What if side injectivity fails?

Theorem 7.2 Suppose � is a LOT of Coxeter type and e1 and e2 are two edges of � .
Let Ke1

\Ke2
D S, which is a subgraph of a side of Ke1

and a side of Ke2
. Let
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N1 D ker.�1.S/! �1.Ke1
// and N2 D ker.�1.S/! �1.Ke2

//. Assume that

N1\N2

ŒN1;N2�
¤ 1:

Then Whitehead’s asphericity conjecture is false.

Proof Suppose Whitehead’s conjecture is true. Then K.�/ and hence K.�/ is
aspherical. Note that Ke1

[Ke2
is a subcomplex of K.�/. Let w be a reduced edge

loop in S that represents a nontrivial element in the quotient .N1\N2/=ŒN1;N2�. It
is the boundary of a Van Kampen diagram D1 for Ke1

and also the boundary of a
Van Kampen diagram D2 for Ke2

. The two diagrams can be glued together to form
a nontrivial element in �2.Ke1

[Ke2
/ (see Gutierrez and Ratcliffe [8]). This is a

contradiction.
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