

Algebraic & Geometric Topology

Volume 23 (2023)

Infinitely many arithmetic alternating links

MARK D BAKER Alan W Reid

Infinitely many arithmetic alternating links

MARK D BAKER Alan W Reid

We prove the existence of infinitely many alternating links in S^3 whose complements are arithmetic.

57K32; 11F06

1 Introduction

Let *d* be a square-free positive integer and let O_d denote the ring of integers of $\mathbb{Q}(\sqrt{-d})$. A noncompact finite-volume hyperbolic 3-manifold *X* is called *arithmetic* if *X* and the Bianchi orbifold $Q_d = \mathbb{H}^3/\text{PSL}(2, O_d)$ are commensurable, that is to say they share a common finite-sheeted cover. (see Maclachlan and Reid [22, Chapters 8 and 9] for further details). If $X = S^3 \setminus L$, we call *L* an arithmetic link.

Since Thurston's original studies of hyperbolic structures on 3–manifolds [25], link complements in S^3 have played a prominent role, and indeed arithmetic links were also very much at the heart of his work. Several arithmetic link complements were constructed in [25], and, over the years, many more examples were constructed; see Aitchison, Lumsden and Rubinstein [3], Aitchison and Rubinstein [4], Baker [5; 6; 7], Baker, Goerner and Reid [9; 8], Goerner [14], Grunewald and Hirsch [16] and Hatcher [19]. Several of these arithmetic links are alternating, and although there are infinitely many arithmetic links in S^3 (for example, those links determining certain cyclic covers of the complement of the Whitehead link), whether there were infinitely many arithmetic alternating links remained open.

By relating the spectral geometry of the complement to combinatorics of an alternating diagram, Lackenby [21] showed that there are only finitely many *congruence* alternating links, and motivated by this, asks in [21], whether there are only finitely many arithmetic alternating links. More recently, the question as to whether there were infinitely many

^{© 2023} MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

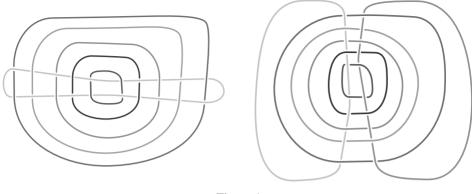


Figure 1

arithmetic alternating links was asked of the second author by D Futer in 2019. The main result of this note resolves these questions by answering Futer's question in the positive (and hence Lackenby's in the negative).

Theorem 1.1 There are infinitely many alternating links in S^3 whose complements are arithmetic.

Indeed, we prove something more precise. We will construct two infinite families of alternating links L_j and \mathcal{L}_j whose complements are arithmetic. In more detail, the family of links L_j is built from j + 1 concentric circles centered at the origin in the Euclidean plane, with a "horizontal" component (which we will denote by K) added intersecting each of the concentric circles in four points, and each intersection point resolved to make the diagram alternating (see Figure 1, left, where L_4 is shown). Thus L_j is an alternating link with j + 2 components. The family of links \mathcal{L}_j is constructed in a similar fashion using j + 1 concentric circles centered at the origin in the Euclidean plane, with two additional components (which we will denote by K_1 and K_2) added intersecting each of the concentric circles in two points, and each intersection point resolved to make the diagram alternating (see Figure 1, right, where \mathcal{L}_4 is shown). Thus \mathcal{L}_j is an alternating link with j + 3 components.

Theorem 1.2 L_j and \mathcal{L}_j are arithmetic for all $j \ge 1$ with both $S^3 \setminus L_j \to Q_3$ and $S^3 \setminus \mathcal{L}_j \to Q_3$ of degree 60*j*.

The arithmetic nature of the link L_1 was first explicitly described by Hatcher [19, Example 5], and we recall this briefly here. As described in [19], the complement

of L_1 can be obtained as the union of two regular ideal hyperbolic cubes (all of whose dihedral angles are $\pi/3$), and, as noted in [19], a regular ideal cube can be subdivided into five regular ideal hyperbolic simplices, from which Hatcher deduces that L_1 is arithmetic since the fundamental group of its complement arises as a subgroup of the group of orientation-preserving isometries of the tessellation of \mathbb{H}^3 by regular ideal hyperbolic simplices, which can be identified with the group PGL(2, O_3). Hence the link L_1 is arithmetic. In fact (see the discussion in the proof of Theorem 1.2 given in Section 2.2), the fundamental group of its complement arises as a subgroup PSL(2, O_3). Given the description of $S^3 \setminus L_1$ as a union of 10 regular ideal tetrahedra, its volume can be computed as $10v_0$, where v_0 is the volume of the regular ideal simplex in \mathbb{H}^3 (ie approximately 10.14941606...). Since the volume of Q_3 is $v_0/6$, $S^3 \setminus L_1$ is a 60-fold cover of Q_3 . In [19, Example 5], Hatcher constructs a second link complement as the union of two regular ideal hyperbolic cubes, and this is homeomorphic to $S^3 \setminus L_1$.

The manifolds $S^3 \setminus L_1$ and $S^3 \setminus \mathcal{L}_1$ have been reconstructed elsewhere in the literature. By volume considerations — see Adams, Hildebrand and Weeks $[2] - S^3 \setminus L_1$ (resp. $S^3 \setminus \mathcal{L}_1$) can be seen to be homeomorphic to the complement of the three-component link 8_4^3 (resp. to the complement of 8_1^4). It can be checked (eg using SnapPy [11]) that $S^3 \setminus L_1$ is also homeomorphic to a 5-fold irregular cover of the complement of the figure-eight knot (namely the so-called Roman link of Hilden, Lozano and Montesinos [20]). The complements of L_1 and \mathcal{L}_1 were constructed again by Aitchison and Rubinstein [4, Example 3] as well as being identified as the tetrahedral census manifolds otet10₀₀₀₀₆ and otet10₀₀₀₁₁ of Fominykh, Garoufalidis, Goerner, Tarkaev and Vesnin [13] (see also Goerner [15]).

In a different direction, neither $S^3 \setminus L_1$ nor $S^3 \setminus \mathcal{L}_1$ contains a closed embedded essential surface (see Hass and Menasco [18] for L_1 and Oertel [24] for \mathcal{L}_1). By comparison, in Section 3 we show that both $S^3 \setminus L_j$ and $S^3 \setminus \mathcal{L}_j$ contain a closed embedded essential surface for all $j \ge 2$.

Acknowledgements We are grateful to Dave Futer for asking the question. We are also very grateful to Will Worden for drawing the figures. Reid was supported in part by an NSF grant.

2 Proof of Theorem 1.2

Our proof will be motivated by that given in [19], but we shall certify arithmeticity in a slightly different way.

2.1 Tessellation by regular ideal cubes

Motivated by the description of $S^3 \setminus L_1$ as a union of two regular ideal cubes, we make the following definition (see [13]):

Definition 2.1 Let M be a finite-volume cusped hyperbolic 3–manifold. We call M cubical if it can be decomposed into regular ideal hyperbolic cubes.

Let $M = \mathbb{H}^3 / \Gamma$ be a cubical manifold. On lifting to the universal cover, we obtain a tessellation $\mathcal{T}(C)$ of \mathbb{H}^3 by regular ideal cubes, C, and so Γ is a subgroup of the group of isometries of $\mathcal{T}(C)$, which we denote by $\mathrm{Isom}(\mathcal{T}(C))$ (which is a discrete group of isometries of \mathbb{H}^3). We will denote by $\mathrm{Isom}^+(\mathcal{T}(C))$ the subgroup of $\mathrm{Isom}(\mathcal{T}(C))$ of index 2 consisting of orientation-preserving isometries.

Lemma 2.2 Isom($\mathcal{T}(C)$) is an arithmetic subgroup of Isom(\mathbb{H}^3) commensurable with PSL(2, O_3). Hence any cubical manifold is arithmetic.

A proof of Lemma 2.2 is implicit in [23], but we include a proof here for completeness. Before proving Lemma 2.2, we recall some notation. Let $\Gamma_0(2) < PSL(2, O_3)$ be the image of the subgroup of SL(2, O_3) given by

$$\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}(2, O_3) \mid c \equiv 0 \mod \langle 2 \rangle \right\}.$$

It is easy to check that $[PSL(2, O_3) : \Gamma_0(2)] = 5$, that $\mathbb{H}^3 / \Gamma_0(2)$ has two cusps (corresponding to the inequivalent parabolic fixed points 0 and ∞), and that the peripheral subgroup of $\Gamma_0(2)$ fixing ∞ coincides with that of PSL(2, O_3), namely the image in PSL(2, O_3) of the subgroup

$$\left\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & \omega \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} \omega & 0 \\ 0 & 1/\omega \end{pmatrix} \right\rangle$$
, where $\omega^2 + \omega + 1 = 0$.

Let ι and τ be the elements of PSL(2, \mathbb{C}) given by the images of the elements $\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$ and $\begin{pmatrix} 0 & -1/\sqrt{2} \\ \sqrt{2} & 0 \end{pmatrix}$, respectively. Note that ι and τ both have order 2, and they normalize $\Gamma_0(2)$. Hence the group $G = \langle \Gamma_0(2), \iota, \tau \rangle$ is arithmetic, containing $\Gamma_0(2)$ as a normal subgroup with quotient group $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Proof To prove Lemma 2.2, it suffices to show that $\text{Isom}^+(\mathcal{T}(C))$ is commensurable with $\text{PSL}(2, O_3)$. To that end, we will show that the orbifolds $N_1 = \mathbb{H}^3/\text{Isom}^+(\mathcal{T}(C))$ and $N_2 = \mathbb{H}^3/G$ are isometric and hence $\text{Isom}^+(\mathcal{T}(C))$ and G are conjugate by Mostow–Prasad rigidity. Using the remarks prior to the proof, this proves commensurability.

Algebraic & Geometric Topology, Volume 23 (2023)

In the notation established above, since $\tau(0) = \infty$, the orbifold N_2 has a single cusp, and since $\iota \in G$, this is a rigid cusp of type (2, 3, 6) (in the notation of [23]). Moreover, since the volume of Q_3 is $v_0/6$, the computation of indices given above shows that the volume of N_2 is $5v_0/24$.

Now consider the group Isom⁺($\mathfrak{T}(C)$). This is generated by the extension to \mathbb{H}^3 of the orientation-preserving symmetries of a single cube *C* of $\mathfrak{T}(C)$, along with rotations of $2\pi/6$ in the edges of *C*. As noted in Section 1, *C* can be subdivided into five regular ideal tetrahedra, and so the volume of *C* is $5v_0$. From this it now follows that N_1 has volume $5v_0/24$ and a rigid cusp of type (2, 3, 6).

Finally, using Adams [1], we deduce that N_1 and N_2 are isometric, since he proved there that there is a unique orientable hyperbolic 3–orbifold of volume $5v_0/24$ and a single rigid cusp of type (2, 3, 6).

Remark 2.3 Part of the proof in [1] of the uniqueness of a hyperbolic 3–orbifold with a single rigid cusp of type (2, 3, 6) was found to have a gap, but this was corrected in the recent paper [12].

Remark 2.4 As noted in [23], the group $\text{Isom}(\mathcal{T}(C))$, can be identified with the group generated by reflections in the faces of the tetrahedron $T[4, 2, 2; 6, 2, 3] \subset \mathbb{H}^3$ in the notation of [23].

2.2 The link complements $S^3 \setminus L_j$ and $S^3 \setminus \mathcal{L}_j$ are cubical

Given Lemma 2.2, we must show that $S^3 \setminus L_j$ (for $j \ge 1$) and $S^3 \setminus \mathcal{L}_j$ (for $j \ge 1$) are cubical. We will take a slightly different perspective from Hatcher's construction of a cubical structure for $S^3 \setminus L_1$ (more in keeping with [3; 4]), which we now describe. This is what we generalize for the links L_j ($j \ge 2$) and \mathcal{L}_j ($j \ge 2$).

Consider an alternating diagram for L_1 on some projection plane $S^2 \,\subset S^3$. This produces the 4-valent planar graph P_1 shown in Figure 2, left. Two-coloring the regions in checkerboard fashion and labeling these regions as + and - affords a decomposition of S^3 into two 3-balls, each of which is endowed with an abstract polyhedral structure. Denote these polyhedra by Π_+ and Π_- . These polyhedra are identical up to reversing all the colors and signs. Each face f_i of Π_+ is an n_i -gon (where $n_i = 2$ or 4 in this case) with a sign $\sigma_i \in \{\pm\}$, and the polyhedra Π_+ and Π_- are identified by sending f_i to the corresponding face of Π_- using a rotation of $\sigma_i 2\pi/n_i$ (with + denoting clockwise). The resulting complex with vertices deleted is then homeomorphic to $S^3 \setminus L_1$ (see [3], for example).

Figure 2

Note that P_1 contains four bigons, and we can collapse each of these bigons to an edge in each of the polyhedra Π_+ and Π_- , and then make the identifications described above. The resulting polyhedra obtained are cubes (see Figure 2, right), so that $S^3 \setminus L_1$ is the identification space of two cubes with vertices deleted.

This combinatorial realization can be done geometrically: namely, the identifications described above can be realized as identifications of the regular ideal cube in \mathbb{H}^3 with six 2–cells meeting along an edge (with dihedral angle $\pi/3$).

For the general case of L_j , we refer to Figure 3 (which shows the case of L_4) and proceed as follows.

Performing the construction above on each L_j results in a 4-valent planar graph P_j (see Figure 3, left) and polyhedra Π^j_+ and Π^j_- . As above, the graphs P_j each contain exactly four bigons, and collapsing these bigons leads to the polyhedra shown in Figure 3, right. As is visible from the diagram, each of Π^j_+ and Π^j_- is a union of j cubes, whose faces are identified as described above. To establish that for each $j \ge 2$ the manifold

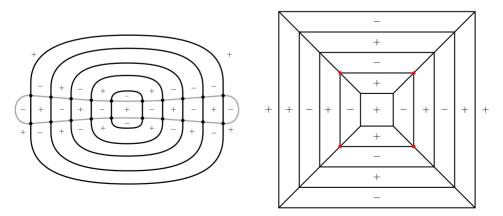


Figure 3

 $S^3 \setminus L_j$ is cubical, and therefore arithmetic by Lemma 2.2, we need to ensure that the combinatorial decomposition described here can be realized geometrically.

Referring to Figure 3, right, we now view the polyhedra Π_{+}^{j} and Π_{-}^{j} as being built from copies of the regular ideal cube, so that edges of Π_{+}^{j} and Π_{-}^{j} have dihedral angle $\pi/3$ or $2\pi/3$, the latter occurring at edges where two cubes meet, eg the edges between those red vertices of Figure 3, right, and then the edges of all concentric squares except the "innermost" and "outermost" ones. From above, the polyhedra Π_{+} and Π_{-} are identified by sending f_i to the corresponding face of Π_{-} using a rotation of $\sigma_i \pi/2$ (with + denoting clockwise). Using this we see that edges with dihedral angle $2\pi/3$ are identified via the $\pi/2$ rotation to an edge with dihedral angle $\pi/3$. Each such edge with dihedral angle $2\pi/3$ lies in two faces of adjacent cubes and so once the identifications are completed the angle sum is 2π . Edges of the innermost and outermost squares have dihedral angles $\pi/3$. They are identified via $\pi/2$ rotations to edges also with dihedral angles $\pi/3$. Six of these edges are identified to get angle sum 2π . This proves that each $S^3 \setminus L_j$ is cubical, and hence arithmetic.

Moreover, since any arithmetic link complement commensurable with Q_3 necessarily covers Q_3 (see for example [22, Theorem 9.2.2] and note that $M(2, \mathbb{Q}(\sqrt{-3}))$ has type number one), the final part of Theorem 1.2 follows since, from above, the volume of $S^3 \setminus L_j$ is $10jv_0$, and the volume of Q_3 is $v_0/6$.

The case of \mathcal{L}_j is handled in a completely similar manner using polyhedra arising as in Figure 4. We omit the details.

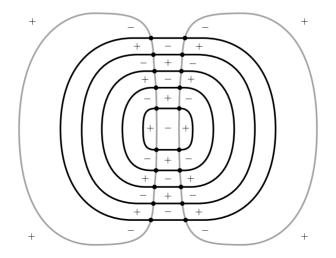


Figure 4

As was pointed out in [13, Remark 3.7], it is not always the case that a cubical manifold decomposes into regular ideal tetrahedra. However, this does hold for the manifolds $S^3 \setminus L_j$ and $S^3 \setminus \mathcal{L}_j$. The important point to note is that insertion of the diagonals on faces to create the five tetrahedra can be done so consistently (as was implicit in [19]). In particular, each of $S^3 \setminus L_j$ and $S^3 \setminus \mathcal{L}_j$ is decomposed into 10j regular ideal tetrahedra, and so, using this decomposition and [17], a corollary of Theorem 1.2 is:

Corollary 2.5 $S^3 \setminus L_j$ and $S^3 \setminus \mathcal{L}_j$ are manifolds of maximal volume amongst all hyperbolic manifolds admitting a decomposition into 10*j* tetrahedra.

3 Closed embedded essential surfaces

We first show that, for $j \ge 2$, $S^3 \setminus L_j$ contains a closed embedded essential surface. Deleting the component *K* of L_j results in the (j+1)-component unlink. The result now follows from [10, Theorem 4.1] since the SL(2, \mathbb{C}) character variety of F_{j+1} has dimension 3(j+1)-3 = 3j and this is greater than j+2 for $j \ge 2$.

The case of $S^3 \setminus \mathcal{L}_j$ is handled in a similar manner. In this case, deleting the components K_1 and K_2 from \mathcal{L}_j results in the (j+1)-component unlink and we now argue as above, applying [10, Theorem 4.1] on noting that 3(j+1) - 3 = 3j is greater than j + 3 for $j \ge 2$.

References

- C C Adams, Noncompact hyperbolic 3–orbifolds of small volume, from "Topology '90" (B Apanasov, W D Neumann, A W Reid, L Siebenmann, editors), Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter, Berlin (1992) 1–15 MR Zbl
- [2] C Adams, M Hildebrand, J Weeks, Hyperbolic invariants of knots and links, Trans. Amer. Math. Soc. 326 (1991) 1–56 MR Zbl
- [3] IR Aitchison, E Lumsden, JH Rubinstein, Cusp structures of alternating links, Invent. Math. 109 (1992) 473–494 MR Zbl
- [4] IR Aitchison, JH Rubinstein, Combinatorial cubings, cusps, and the dodecahedral knots, from "Topology '90" (B Apanasov, W D Neumann, A W Reid, L Siebenmann, editors), Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter, Berlin (1992) 17–26 MR Zbl
- [5] MD Baker, Link complements and imaginary quadratic number fields, PhD thesis, Massachusetts Institute of Technology (1981) MR Available at https:// www.proquest.com/docview/303188699

Algebraic & Geometric Topology, Volume 23 (2023)

- [6] MD Baker, Link complements and integer rings of class number greater than one, from "Topology '90" (B Apanasov, WD Neumann, AW Reid, L Siebenmann, editors), Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter, Berlin (1992) 55–59 MR Zbl
- [7] M D Baker, *Link complements and the Bianchi modular groups*, Trans. Amer. Math. Soc. 353 (2001) 3229–3246 MR Zbl
- [8] MD Baker, M Goerner, A W Reid, All known principal congruence links, preprint (2019) arXiv 1902.04426
- M D Baker, M Goerner, A W Reid, All principal congruence link groups, J. Algebra 528 (2019) 497–504 MR Zbl
- [10] D Cooper, D D Long, Derivative varieties and the pure braid group, Amer. J. Math. 115 (1993) 137–160 MR Zbl
- [11] M Culler, N M Dunfield, M Goerner, J R Weeks, SnapPy, a computer program for studying the geometry and topology of 3-manifolds, version 2.6 (2017) Available at http://snappy.computop.org
- [12] ST Drewitz, R Kellerhals, The non-arithmetic cusped hyperbolic 3–orbifold of minimal volume, Trans. Amer. Math. Soc. 376 (2023) 3819–3866 MR Zbl
- [13] E Fominykh, S Garoufalidis, M Goerner, V Tarkaev, A Vesnin, A census of tetrahedral hyperbolic manifolds, Exp. Math. 25 (2016) 466–481 MR Zbl
- [14] M Goerner, Visualizing regular tessellations: principal congruence links and equivariant morphisms from surfaces to 3-manifolds, PhD thesis, University of California, Berkeley (2011) MR Available at https://www.proquest.com/docview/ 928944884
- [15] M Goerner, A census of hyperbolic platonic manifolds and augmented knotted trivalent graphs, New York J. Math. 23 (2017) 527–553 MR Zbl
- [16] F Grunewald, U Hirsch, Link complements arising from arithmetic group actions, Internat. J. Math. 6 (1995) 337–370 MR Zbl
- [17] U Haagerup, H J Munkholm, Simplices of maximal volume in hyperbolic n-space, Acta Math. 147 (1981) 1–11 MR Zbl
- [18] J Hass, W Menasco, Topologically rigid non-Haken 3-manifolds, J. Austral. Math. Soc. Ser. A 55 (1993) 60–71 MR Zbl
- [19] A Hatcher, Hyperbolic structures of arithmetic type on some link complements, J. London Math. Soc. 27 (1983) 345–355 MR Zbl
- [20] H M Hilden, M T Lozano, J M Montesinos, On knots that are universal, Topology 24 (1985) 499–504 MR Zbl
- [21] M Lackenby, Spectral geometry, link complements and surgery diagrams, Geom. Dedicata 147 (2010) 191–206 MR Zbl

Algebraic & Geometric Topology, Volume 23 (2023)

- [22] C Maclachlan, A W Reid, The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Math. 219, Springer (2003) MR Zbl
- W D Neumann, A W Reid, *Notes on Adams' small volume orbifolds*, from "Topology '90" (B Apanasov, W D Neumann, A W Reid, L Siebenmann, editors), Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter, Berlin (1992) 311–314 MR Zbl
- [24] U Oertel, *Closed incompressible surfaces in complements of star links*, Pacific J. Math. 111 (1984) 209–230 MR Zbl
- [25] **W P Thurston**, *The geometry and topology of three-manifolds*, lecture notes, Princeton University (1979) Available at http://msri.org/publications/books/gt3m

IRMAR, Université de Rennes 1 Rennes, France Department of Mathematics, Rice University Houston, TX, United States

mark.baker@univ-rennes1.fr, alan.reid@rice.edu

Received: 2 August 2021 Revised: 14 February 2022

ALGEBRAIC & GEOMETRIC TOPOLOGY

msp.org/agt

EDITORS

PRINCIPAL ACADEMIC EDITORS

John Etnyre etnyre@math.gatech.edu Georgia Institute of Technology Kathryn Hess kathryn.hess@epfl.ch École Polytechnique Fédérale de Lausanne

BOARD OF EDITORS

Julie Bergner	University of Virginia jeb2md@eservices.virginia.edu	Robert Lipshitz	University of Oregon lipshitz@uoregon.edu
Steven Boyer	Université du Québec à Montréal cohf@math.rochester.edu	Norihiko Minami	Nagoya Institute of Technology nori@nitech.ac.jp
Tara E. Brendle	University of Glasgow tara.brendle@glasgow.ac.uk	Andrés Navas	Universidad de Santiago de Chile andres.navas@usach.cl
Indira Chatterji	CNRS & Université Côte d'Azur (Nice) indira.chatterji@math.cnrs.fr	Thomas Nikolaus	University of Münster nikolaus@uni-muenster.de
Alexander Dranishnikov	University of Florida dranish@math.ufl.edu	Robert Oliver	Université Paris 13 bobol@math.univ-paris13.fr
Corneli Druţu	University of Oxford cornelia.drutu@maths.ox.ac.uk	Birgit Richter	Universität Hamburg birgit.richter@uni-hamburg.de
Tobias Ekholm	Uppsala University, Sweden tobias.ekholm@math.uu.se	Jérôme Scherer	École Polytech. Féd. de Lausanne jerome.scherer@epfl.ch
Mario Eudave-Muñoz	Univ. Nacional Autónoma de México mario@matem.unam.mx	Zoltán Szabó	Princeton University szabo@math.princeton.edu
David Futer	Temple University dfuter@temple.edu	Ulrike Tillmann	Oxford University tillmann@maths.ox.ac.uk
John Greenlees	University of Warwick john.greenlees@warwick.ac.uk	Maggy Tomova	University of Iowa maggy-tomova@uiowa.edu
Ian Hambleton	McMaster University ian@math.mcmaster.ca	Nathalie Wahl	University of Copenhagen wahl@math.ku.dk
Hans-Werner Henn	Université Louis Pasteur henn@math.u-strasbg.fr	Chris Wendl	Humboldt-Universität zu Berlin wendl@math.hu-berlin.de
Daniel Isaksen	Wayne State University isaksen@math.wayne.edu	Daniel T. Wise	McGill University, Canada daniel.wise@mcgill.ca
Christine Lescop	Université Joseph Fourier lescop@ujf-grenoble.fr		-

See inside back cover or msp.org/agt for submission instructions.

The subscription price for 2023 is US \$650/year for the electronic version, and \$940/year (+\$70, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Algebraic & Geometric Topology is indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.

Algebraic & Geometric Topology (ISSN 1472-2747 printed, 1472-2739 electronic) is published 9 times per year and continuously online, by Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840. Periodical rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.

AGT peer review and production are managed by EditFlow[®] from MSP.

PUBLISHED BY mathematical sciences publishers nonprofit scientific publishing

http://msp.org/ © 2023 Mathematical Sciences Publishers

ALGEBRAIC & GEOMETRIC TOPOLOGY

X 7.

Volume 25 Issue 6 (pages 2415–2924) 2025	
An algorithmic definition of Gabai width	2415
RICKY LEE	
Classification of torus bundles that bound rational homology circles JONATHAN SIMONE	2449
A mnemonic for the Lipshitz–Ozsváth–Thurston correspondence	2519
ARTEM KOTELSKIY, LIAM WATSON and CLAUDIUS ZIBROWIUS	
New bounds on maximal linkless graphs	2545
RAMIN NAIMI, ANDREI PAVELESCU and ELENA PAVELESCU	
Legendrian large cables and new phenomenon for nonuniformly thick knots	2561
ANDREW MCCULLOUGH	
Homology of configuration spaces of hard squares in a rectangle	2593
HANNAH ALPERT, ULRICH BAUER, MATTHEW KAHLE, ROBERT MACPHERSON and KELLY SPENDLOVE	
Nonorientable link cobordisms and torsion order in Floer homologies	2627
SHERRY GONG and MARCO MARENGON	
A uniqueness theorem for transitive Anosov flows obtained by gluing hyperbolic plugs	2673
FRANÇOIS BÉGUIN and BIN YU	
Ribbon 2-knot groups of Coxeter type	2715
JENS HARLANDER and STEPHAN ROSEBROCK	
Weave-realizability for D -type	2735
JAMES HUGHES	
Mapping class groups of surfaces with noncompact boundary components	2777
Ryan Dickmann	
Pseudo-Anosov homeomorphisms of punctured nonorientable surfaces with small stretch factor	2823
SAYANTAN KHAN, CALEB PARTIN and REBECCA R WINARSKI	
Infinitely many arithmetic alternating links	2857
MARK D BAKER and ALAN W REID	
Unchaining surgery, branched covers, and pencils on elliptic surfaces	2867
Terry Fuller	
Bifiltrations and persistence paths for 2–Morse functions	2895
RYAN BUDNEY and TOMASZ KACZYNSKI	