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We prove the existence of infinitely many alternating links in S3 whose complements
are arithmetic.

57K32; 11F06

1 Introduction

Let d be a square-free positive integer and let Od denote the ring of integers of
Q.
p
�d/. A noncompact finite-volume hyperbolic 3–manifold X is called arithmetic

if X and the Bianchi orbifold Qd DH3=PSL.2;Od / are commensurable, that is to
say they share a common finite-sheeted cover. (see Maclachlan and Reid [22, Chapters
8 and 9] for further details). If X D S3 nL, we call L an arithmetic link.

Since Thurston’s original studies of hyperbolic structures on 3–manifolds [25], link com-
plements in S3 have played a prominent role, and indeed arithmetic links were also very
much at the heart of his work. Several arithmetic link complements were constructed
in [25], and, over the years, many more examples were constructed; see Aitchison,
Lumsden and Rubinstein [3], Aitchison and Rubinstein [4], Baker [5; 6; 7], Baker,
Goerner and Reid [9; 8], Goerner [14], Grunewald and Hirsch [16] and Hatcher [19].
Several of these arithmetic links are alternating, and although there are infinitely many
arithmetic links in S3 (for example, those links determining certain cyclic covers of
the complement of the Whitehead link), whether there were infinitely many arithmetic
alternating links remained open.

By relating the spectral geometry of the complement to combinatorics of an alternating
diagram, Lackenby [21] showed that there are only finitely many congruence alternating
links, and motivated by this, asks in [21], whether there are only finitely many arithmetic
alternating links. More recently, the question as to whether there were infinitely many
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Figure 1

arithmetic alternating links was asked of the second author by D Futer in 2019. The
main result of this note resolves these questions by answering Futer’s question in the
positive (and hence Lackenby’s in the negative).

Theorem 1.1 There are infinitely many alternating links in S3 whose complements
are arithmetic.

Indeed, we prove something more precise. We will construct two infinite families of
alternating links Lj and Lj whose complements are arithmetic. In more detail, the
family of links Lj is built from j C 1 concentric circles centered at the origin in the
Euclidean plane, with a “horizontal” component (which we will denote by K) added
intersecting each of the concentric circles in four points, and each intersection point
resolved to make the diagram alternating (see Figure 1, left, where L4 is shown). Thus
Lj is an alternating link with j C 2 components. The family of links Lj is constructed
in a similar fashion using jC1 concentric circles centered at the origin in the Euclidean
plane, with two additional components (which we will denote by K1 and K2) added
intersecting each of the concentric circles in two points, and each intersection point
resolved to make the diagram alternating (see Figure 1, right, where L4 is shown).
Thus Lj is an alternating link with j C 3 components.

Theorem 1.2 Lj and Lj are arithmetic for all j � 1 with both S3 nLj !Q3 and
S3 nLj !Q3 of degree 60j.

The arithmetic nature of the link L1 was first explicitly described by Hatcher [19,
Example 5], and we recall this briefly here. As described in [19], the complement

Algebraic & Geometric Topology, Volume 23 (2023)



Infinitely many arithmetic alternating links 2859

of L1 can be obtained as the union of two regular ideal hyperbolic cubes (all of whose
dihedral angles are �=3), and, as noted in [19], a regular ideal cube can be subdivided
into five regular ideal hyperbolic simplices, from which Hatcher deduces that L1 is
arithmetic since the fundamental group of its complement arises as a subgroup of the
group of orientation-preserving isometries of the tessellation of H3 by regular ideal
hyperbolic simplices, which can be identified with the group PGL.2;O3/. Hence the
link L1 is arithmetic. In fact (see the discussion in the proof of Theorem 1.2 given in
Section 2.2), the fundamental group of its complement arises as a subgroup PSL.2;O3/.
Given the description of S3 nL1 as a union of 10 regular ideal tetrahedra, its volume
can be computed as 10v0, where v0 is the volume of the regular ideal simplex in H3 (ie
approximately 10:14941606 : : : ). Since the volume of Q3 is v0=6, S3nL1 is a 60–fold
cover of Q3. In [19, Example 5], Hatcher constructs a second link complement as the
union of two regular ideal hyperbolic cubes, and this is homeomorphic to S3 nL1.

The manifolds S3 nL1 and S3 nL1 have been reconstructed elsewhere in the literature.
By volume considerations — see Adams, Hildebrand and Weeks [2] — S3 nL1 (resp.
S3 nL1) can be seen to be homeomorphic to the complement of the three-component
link 83

4
(resp. to the complement of 84

1
). It can be checked (eg using SnapPy [11])

that S3 nL1 is also homeomorphic to a 5–fold irregular cover of the complement
of the figure-eight knot (namely the so-called Roman link of Hilden, Lozano and
Montesinos [20]). The complements of L1 and L1 were constructed again by Aitchison
and Rubinstein [4, Example 3] as well as being identified as the tetrahedral census
manifolds otet1000006 and otet1000011 of Fominykh, Garoufalidis, Goerner, Tarkaev
and Vesnin [13] (see also Goerner [15]).

In a different direction, neither S3 n L1 nor S3 n L1 contains a closed embedded
essential surface (see Hass and Menasco [18] for L1 and Oertel [24] for L1). By
comparison, in Section 3 we show that both S3 nLj and S3 n Lj contain a closed
embedded essential surface for all j � 2.

Acknowledgements We are grateful to Dave Futer for asking the question. We are
also very grateful to Will Worden for drawing the figures. Reid was supported in part
by an NSF grant.

2 Proof of Theorem 1.2

Our proof will be motivated by that given in [19], but we shall certify arithmeticity in
a slightly different way.
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2.1 Tessellation by regular ideal cubes

Motivated by the description of S3 nL1 as a union of two regular ideal cubes, we make
the following definition (see [13]):

Definition 2.1 Let M be a finite-volume cusped hyperbolic 3–manifold. We call M

cubical if it can be decomposed into regular ideal hyperbolic cubes.

Let M DH3=� be a cubical manifold. On lifting to the universal cover, we obtain a
tessellation T.C / of H3 by regular ideal cubes, C, and so � is a subgroup of the group
of isometries of T.C /, which we denote by Isom.T.C// (which is a discrete group of
isometries of H3). We will denote by IsomC.T.C// the subgroup of Isom.T.C// of
index 2 consisting of orientation-preserving isometries.

Lemma 2.2 Isom.T.C// is an arithmetic subgroup of Isom.H3/ commensurable with
PSL.2;O3/. Hence any cubical manifold is arithmetic.

A proof of Lemma 2.2 is implicit in [23], but we include a proof here for completeness.
Before proving Lemma 2.2, we recall some notation. Let �0.2/ < PSL.2;O3/ be the
image of the subgroup of SL.2;O3/ given by��

a b

c d

�
2 SL.2;O3/

ˇ̌̌
c � 0 mod h2i

�
:

It is easy to check that ŒPSL.2;O3/ W�0.2/�D 5, that H3=�0.2/ has two cusps (corre-
sponding to the inequivalent parabolic fixed points 0 and1), and that the peripheral
subgroup of �0.2/ fixing1 coincides with that of PSL.2;O3/, namely the image in
PSL.2;O3/ of the subgroup��

1 1

0 1

�
;

�
1 !

0 1

�
;

�
! 0

0 1=!

��
; where !2

C!C 1D 0:

Let � and � be the elements of PSL.2;C/ given by the images of the elements
�

i 0
0 �i

�
and�

0 �1=
p

2
p

2 0

�
, respectively. Note that � and � both have order 2, and they normalize �0.2/.

Hence the group GD h�0.2/; �; �i is arithmetic, containing �0.2/ as a normal subgroup
with quotient group Z=2Z�Z=2Z.

Proof To prove Lemma 2.2, it suffices to show that IsomC.T.C// is commensurable
with PSL.2;O3/. To that end, we will show that the orbifolds N1DH3=IsomC.T.C//
and N2DH3=G are isometric and hence IsomC.T.C// and G are conjugate by Mostow–
Prasad rigidity. Using the remarks prior to the proof, this proves commensurability.
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In the notation established above, since �.0/D1, the orbifold N2 has a single cusp,
and since � 2G, this is a rigid cusp of type .2; 3; 6/ (in the notation of [23]). Moreover,
since the volume of Q3 is v0=6, the computation of indices given above shows that the
volume of N2 is 5v0=24.

Now consider the group IsomC.T.C//. This is generated by the extension to H3 of the
orientation-preserving symmetries of a single cube C of T.C /, along with rotations
of 2�=6 in the edges of C. As noted in Section 1, C can be subdivided into five regular
ideal tetrahedra, and so the volume of C is 5v0. From this it now follows that N1 has
volume 5v0=24 and a rigid cusp of type .2; 3; 6/.

Finally, using Adams [1], we deduce that N1 and N2 are isometric, since he proved
there that there is a unique orientable hyperbolic 3–orbifold of volume 5v0=24 and a
single rigid cusp of type .2; 3; 6/.

Remark 2.3 Part of the proof in [1] of the uniqueness of a hyperbolic 3–orbifold with
a single rigid cusp of type .2; 3; 6/ was found to have a gap, but this was corrected in
the recent paper [12].

Remark 2.4 As noted in [23], the group Isom.T.C//, can be identified with the group
generated by reflections in the faces of the tetrahedron T Œ4; 2; 2I 6; 2; 3��H3 in the
notation of [23].

2.2 The link complements S 3 n Lj and S 3 nLj are cubical

Given Lemma 2.2, we must show that S3 nLj (for j � 1) and S3 nLj (for j � 1) are
cubical. We will take a slightly different perspective from Hatcher’s construction of a
cubical structure for S3 nL1 (more in keeping with [3; 4]), which we now describe.
This is what we generalize for the links Lj (j � 2) and Lj (j � 2).

Consider an alternating diagram for L1 on some projection plane S2 � S3. This
produces the 4–valent planar graph P1 shown in Figure 2, left. Two-coloring the
regions in checkerboard fashion and labeling these regions as C and � affords a
decomposition of S3 into two 3–balls, each of which is endowed with an abstract
polyhedral structure. Denote these polyhedra by …C and …�. These polyhedra are
identical up to reversing all the colors and signs. Each face fi of …C is an ni–gon
(where niD 2 or 4 in this case) with a sign �i 2 f˙g, and the polyhedra…C and…� are
identified by sending fi to the corresponding face of …� using a rotation of �i2�=ni

(with C denoting clockwise). The resulting complex with vertices deleted is then
homeomorphic to S3 nL1 (see [3], for example).

Algebraic & Geometric Topology, Volume 23 (2023)
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Figure 2

Note that P1 contains four bigons, and we can collapse each of these bigons to an
edge in each of the polyhedra …C and …�, and then make the identifications described
above. The resulting polyhedra obtained are cubes (see Figure 2, right), so that S3 nL1

is the identification space of two cubes with vertices deleted.

This combinatorial realization can be done geometrically: namely, the identifications
described above can be realized as identifications of the regular ideal cube in H3 with
six 2–cells meeting along an edge (with dihedral angle �=3).

For the general case of Lj , we refer to Figure 3 (which shows the case of L4) and
proceed as follows.

Performing the construction above on each Lj results in a 4–valent planar graph Pj (see
Figure 3, left) and polyhedra…j

C and…j
�. As above, the graphs Pj each contain exactly

four bigons, and collapsing these bigons leads to the polyhedra shown in Figure 3,
right. As is visible from the diagram, each of …j

C and …j
� is a union of j cubes, whose

faces are identified as described above. To establish that for each j � 2 the manifold

Figure 3
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S3 nLj is cubical, and therefore arithmetic by Lemma 2.2, we need to ensure that the
combinatorial decomposition described here can be realized geometrically.

Referring to Figure 3, right, we now view the polyhedra …j
C and …j

� as being built
from copies of the regular ideal cube, so that edges of …j

C and …j
� have dihedral angle

�=3 or 2�=3, the latter occurring at edges where two cubes meet, eg the edges between
those red vertices of Figure 3, right, and then the edges of all concentric squares except
the “innermost” and “outermost” ones. From above, the polyhedra …C and …� are
identified by sending fi to the corresponding face of …� using a rotation of �i�=2

(withC denoting clockwise). Using this we see that edges with dihedral angle 2�=3 are
identified via the �=2 rotation to an edge with dihedral angle �=3. Each such edge with
dihedral angle 2�=3 lies in two faces of adjacent cubes and so once the identifications
are completed the angle sum is 2� . Edges of the innermost and outermost squares have
dihedral angles �=3. They are identified via �=2 rotations to edges also with dihedral
angles �=3. Six of these edges are identified to get angle sum 2� . This proves that
each S3 nLj is cubical, and hence arithmetic.

Moreover, since any arithmetic link complement commensurable with Q3 necessarily
covers Q3 (see for example [22, Theorem 9.2.2] and note that M.2;Q.

p
�3// has

type number one), the final part of Theorem 1.2 follows since, from above, the volume
of S3 nLj is 10j v0, and the volume of Q3 is v0=6.

The case of Lj is handled in a completely similar manner using polyhedra arising as in
Figure 4. We omit the details.

Figure 4
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As was pointed out in [13, Remark 3.7], it is not always the case that a cubical manifold
decomposes into regular ideal tetrahedra. However, this does hold for the manifolds
S3 nLj and S3 nLj . The important point to note is that insertion of the diagonals on
faces to create the five tetrahedra can be done so consistently (as was implicit in [19]). In
particular, each of S3nLj and S3nLj is decomposed into 10j regular ideal tetrahedra,
and so, using this decomposition and [17], a corollary of Theorem 1.2 is:

Corollary 2.5 S3 nLj and S3 nLj are manifolds of maximal volume amongst all
hyperbolic manifolds admitting a decomposition into 10j tetrahedra.

3 Closed embedded essential surfaces

We first show that, for j � 2, S3 nLj contains a closed embedded essential surface.
Deleting the component K of Lj results in the .jC1/–component unlink. The result
now follows from [10, Theorem 4.1] since the SL.2;C/ character variety of FjC1 has
dimension 3.j C 1/� 3D 3j and this is greater than j C 2 for j � 2.

The case of S3nLj is handled in a similar manner. In this case, deleting the components
K1 and K2 from Lj results in the .jC1/–component unlink and we now argue as
above, applying [10, Theorem 4.1] on noting that 3.j C 1/� 3D 3j is greater than
j C 3 for j � 2.
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