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Bifiltrations and persistence paths for 2–Morse functions

RYAN BUDNEY

TOMASZ KACZYNSKI

We study the homotopy type of bifiltrations of compact manifolds induced as the
preimage of filtrations of R2 for generic smooth functions f WM !R2. The primary
goal of the paper is to allow for a simple description of the multigraded persistent
homology associated to such filtrations. Our main result is a description of the
evolution of the bifiltration of f in terms of cellular attachments. Analogs of the
Morse–Conley equation and Morse inequalities along so-called persistence paths are
derived, and a scheme for computing pathwise barcodes is proposed.

57R35; 55M99, 55N31

1 Introduction

In the past two decades, the Morse theory of smooth functions on manifolds, and
singularity theory, its extension to functions with multidimensional values, have driven a
lot of attention in the applied mathematics and theoretical computer science communities
due to their applications in imaging, visualisation and most recently, topological data
analysis (TDA). While those theories have been extensively developed for nearly a
century, new and potential applications bring different perspectives.

Morse theory is a tool that allows one to use real-valued functions on a manifold to give
a combinatorial description of that manifold, in the language of handle decompositions
or CW–complexes. A topological model for M is built following changes in sublevel
sets Mg�y D g�1..�1;y�/ of a Morse function (ie smooth and generic) g WM !R.
The central theorem — see Milnor [22] — about the filtration of M by sublevel sets is
that:

(1) The homotopy type of Mg�y does not change for y 2 Œa; b� provided there are
no critical values of g in the interval Œa; b�.
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(2) If there is precisely one critical value in .a; b/ then the Mg�b is obtained from
Mg�a by a handle attachment, which up to a homotopy equivalence, is a cell
attachment.

In imaging and TDA, the interest shifts to the function itself. The domain of the image
is typically a well-understood space such as Rn or a triangulated sphere Sn. That is a
typical setting in works on the shape similarity by size function methods such as in
Biasotti, Cerri, Frosini, Giorgi and Landi [4]. When it comes to the study of functions
with multidimensional values, there are new challenges and more differences between
the classical singularity theory setting and the applied context.

Given the success of Morse theory, the study of generic smooth mappings from man-
ifolds to surfaces f WM ! † is a natural next step. The most basic elements of the
theory involves the description of the stratification of the manifold M by the singularity
types, together with the local properties of the mapping around singular points. This
was first worked out by Whitney [29] — see also Guillemin and Pollack [16] — when
M is a surface, and fully generalized in the subsequent decades; see Saeki [26] and
Wan [28]. Perhaps the main difference between the study of functions taking values
in R vs in a surface is that the set of fibres ff �1.a/ j a 2 †g lack a linear order on
them, so a poset relation has to be taken into account. In contrast, the real numbers
have the relatively canonical poset f.1; a� j a 2Rg of half-infinite intervals.

To be specific, let us state the posets studied in this paper. Consider f WM ! R2,
where M is an m–manifold of dimension m� 2, and the plane R2 is endowed with
the poset relation

.a; b/� .a0; b0/ () a� a0 and b � b0:

Any such function gives rise to a bifiltration of M , which is defined as the family
Mf D fM.a;b/g.a;b/2R2 of subsets of M given by

M.a;b/ D fp 2M j f .p/� .a; b/g:

Equivalently, the sets M.a;b/ are the preimages of the quadrants

C.a;b/ D .�1; a�� .�1; b�

under f . They are nested with respect to inclusions; that is, M.a;b/ �M.a0;b0/ for
every .a; b/� .a0; b0/.

Persistence consists of analyzing homological changes occurring along the bifiltration
as the point .a; b/ varies. Note that the boundary @C.a;b/ of the quadrant C.a;b/ is
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not a submanifold of R2: it can be viewed as a manifold with a corner. The problem
of bifiltration has been addressed in the presented setting by Smale in 1975 [27]
and further investigated by Wan [28]. As it is pointed out by Smale, the study is
historically motivated by the Pareto optimal problem of simultaneously maximizing
several functions. Our work is an extension of the work done in [27; 28], with the same
topic viewed from a different perspective.

There has been progress in computing persistent homology for multifiltrations which
include functions g WM !Rk as a special case for any 1< k < dim M . We refer the
reader to Carlsson and Zomorodian [8] and Cavazza, Cerri, Di Fabio, Ethier, Ferri,
Frosini, Kaczynski and Landi [9; 10]. However, most of the dimension-independent
work on computing persistent homology, often in a discrete setting, is “geometry blind”
in the sense that it does not give much insight to the particular types of singularities
one may encounter. Providing that insight is the main motivation for this paper. In
particular, in Allili, Kaczynski, Landi and Masoni [1], a Forman-type discrete analogy
of multidimensional Morse functions is investigated. In the conclusion of that paper,
it is pointed that an appropriate application-driven extension of the Morse theory to
multifiltrations for smooth functions is not much investigated yet, and it would help
in understanding the discrete analogy. The present work is a step in that direction. A
study of discrete Forman type multidimensional Morse functions is currently under
way by Landi and Scaramuccia, for instance, in [18]. A study of smooth multifiltrations
on manifolds with similar geometric motivation as ours and complementary goals is
currently under way by Bubenik and Catanzaro [6] and Assif and Baryshnikov [2].

We begin Section 2 with the definition of a 2–Morse function f WM !R2, following
Gay and Kirby [14] and Wan [28]. This allows us to define the (oriented) signature
invariant; see Definition 2.2. We follow this definition with a few simple examples
where one can explicitly compute the homotopy types of the filtration M.a;b/ for all
.a; b/ 2R2. The main result of the paper is a characterisation of the singular points
of the bifiltration. In short, these are the locations where the homotopy type of the
bifiltration changes; see Definition 2.1.

Theorem 1.1 If f W M ! R2 is a 2–Morse function then the bifiltration Mf has
singular points consisting entirely of corner and tail singular points.

In short, this theorem gives us a stratification of the plane R2 such that the homotopy
type of M.a;b/ is constant in the connected codimension zero strata. We follow that
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up by a description of how the homotopy type of M.a;b/ changes as .a; b/ crosses a
codimension one stratum.

Our Lemma 2.8 is the analogue of (1), in that it tells us that generically the homotopy
type of the manifolds M.a;b/ D f

�1.C.a;b// is locally constant. The nature of the
proof of Lemma 2.8 is significant to the rest of the paper, describing a rather flexible
technique of vector field flows, allowing us to construct conjugate isotopies (ie fibre-
preserving isotopies, also known as isotopies that are horizontal diffeomorphisms with
respect to the map f ) in both M and the plane R2. This allows us the freedom to
frame our remaining arguments in the language of how the homotopy type of f �1.Ct /

changes when Ct is an arbitrary “smoothly varying” 2–manifold in the plane. There
are however some points in the plane where the homotopy type of M.a;b/ does change;
this is described in Theorem 2.9. The main feature of Theorem 2.9 is that the homotopy
type of M.a;b/ changes via handle (or cell) attachments. In the proof we see one of the
handle attachments comes directly from a classical Morse theory argument. The second
type of handle attachment uses global features of the singular point set of f , and is
perhaps best thought of as a Bott-style handle attachment. We give a brief account of
Bott’s variant of Morse theory. Proposition 2.10 summarizes elements of the proof of
Theorem 2.9, describing the dimension of the cell attachments in terms of the oriented
signature invariant. One last feature of Section 2 is the observation that at “cubic”
points .a; b/ 2R2, while the homotopy type of M.a;b/ generally does not change, the
fibrewise homotopy type (with respect to the map f ) does change. Roughly speaking,
these cubic points correspond to pairs of cancelling handles (or cells).

In Section 3, we turn our attention to bifiltered persistent homology. We briefly review
descriptive techniques, and relations to one-dimensional persistence. In particular, the
foliation method that has been introduced in [4] for size functions, used by Cagliari,
Di Fabio and Ferri [7] and [10] for multidimensional persistent homology and later
named as fibred barcode in the context of persistence modules by [10] and Lesnick
and Wright [20]. As it is visible in examples of Section 2, in the presence of the
poset relation, there are multiple ways of building the topology of M by crossing
different arcs of the critical value set while respecting the poset relation. That leads us
to Definition 3.1 of persistence paths. It is a new concept which is somewhat analogous
to the mentioned foliation method of [10]. It also can be viewed as an analogy of a
flow induced by the generalized gradient in [28], in that our persistence paths apply to
functions f which may have cycles in the sense of [28, Definition 6.4 and 6.5]. We
prove an analogy of the Morse–Conley equation — see Rybakowski and Zehnder [25] —

Algebraic & Geometric Topology, Volume 23 (2023)



Bifiltrations and persistence paths for 2–Morse functions 2899

in Theorem 3.2, and derive from it Corollary 3.4 on strong Morse inequalities for
persistence paths. This gives us a flexible family of Morse inequalities associated
to f , extending the work of Wan [28]. We conclude Section 3 by introducing pathwise
barcodes in Definition 3.5 and describing a scheme for computing the barcodes based
on a small representable subfamily Rep.f / of all persistence paths. While Carlsson
and Zomorodian [8] outline an argument that there is no complete and discrete invariant
of multigraded persistent homology, the primary result of this paper strikes a more
optimistic note in the case of multifiltrations induced by smooth functions, implying
that our filtrations are tame; see Corollary 2.11.

In Section 4 we discuss some possible future research directions.

Acknowledgements The authors would like to thank Hyam Rubinstein, Marian
Mrozek, and Michael Lesnick for helpful suggestions.

Research of Kaczynski was supported by a Discovery Grant from NSERC of Canada.

2 Fold and cubical singularities

In the classical Morse theory of smooth real-valued functions and, respectively, sin-
gularity theory of functions with values in a 2–dimensional manifold †, a critical
point or singular point is a point p 2 M at which Df .p/ is not of maximal rank.
The corresponding point c D f .p/ in the target space is called a critical, respectively,
singular value of f . The terminology found in the literature is not consistent: sometimes
the terms critical and singular are interchanged.

In computational topology, we deal with nonsmoothness and degeneracy, so a topologi-
cal definition is more appropriate. It is also helpful in describing handle attachments. In
addition, in the presence of the poset structure of bifiltrations, as we shall see soon, there
is a substantial difference between singularity in the differential sense and criticality in
the topological sense. We shall adopt the following definition.

Definition 2.1 A homotopy regular value of f with respect to the bifiltration of M

is a point .a; b/ 2 R2 such that, in some neighbourhood U.a;b/ of .a; b/, for all
.a0; b0/; .a00; b00/ 2 U.a;b/ with

.a0; b0/� .a00; b00/;

the inclusion M.a0;b0/ ,!M.a00;b00/ is a homotopy equivalence. If this condition fails,
.a; b/ is called a homotopy critical value.
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A weakening of this definition suited to persistent homology is the notion of homological
regular and critical values defined by replacing homotopy equivalence by isomorphism
induced in homology. This coincides with the definition of given in [9, Definition 3.4].

When f WM ! R is a Morse function, the sets of critical points and values in the
differential and topological sense coincide. For R2–valued functions, even the generic
ones, they are substantially different. We shall adopt the terms of singular points
and values for those given by differential definition and critical to those given by
Definition 2.1. Given f WM !R2. we consider the sets

SingpD fp 2M j rank Df .p/ < 2g; SingvD f .Singp/;

CritvD f.a; b/ 2R2
j .a; b/ is homotopy criticalg; CritpD f �1.Critv/:

We shall soon see that the arcs of Singv along which both coordinates .a; b/ increase are
homotopy regular, so they are not subsets of Critv. The topologically significant arcs
are those whose normal vectors have both coordinates of the same sign. Conversely,
Critv contains horizontal or vertical half-lines passing through the vertex of C.a;b/ and
“kissing” points on the singularity Singv but not contained in it. In Proposition 2.10 we
give a classification of different types of criticality.

As we just noticed, Definition 2.1 also applies to points .a; b/ 2 R2 which are not
necessarily the values of f , that is, are not in the image f .M /. For that reason we
will refer to them as points rather than values and whether we speak about points in M

or in R2 should be made clear from the context.

Following [11], the set Critv will be referred as to the extended Pareto grid. We begin
with a definition from Gay and Kirby [15; 14], and earlier Wan [28].

Definition 2.2 A 2–Morse function (also called Morse 2–function) is a smooth function

f WM !†;

where M is an m–manifold, m� 2 and † is a 2–manifold satisfying a local condition.
For any point p 2 M there are neighbourhoods Up � M of p in M , Vf .p/ � †

of f .p/ in †, U 0
0

of 0 in Rm, and V 0
0

of 0 in R2 together with diffeomorphisms
� WUp!U 0

0
�Rm and  WVf .p/!V 0

0
with �.p/D .f .p//D 0 making the diagram

Up Vf .p/

U 0
0

V 0
0

f jUp

�  

commute, where the bottom horizontal arrow must be one of the following three:
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� .x1;x2; � � � ;xm/ 7! .x1;x2/; for this, p is a regular point.

� .x1;x2; � � � ;xm/ 7! .x1;˙x2
2
C � � �C˙x2

m/; for this, p is a fold point.

� .x1;x2; � � � ;xm/ 7! .x1;x
3
2
Cx1x2C˙x2

3
C� � �C˙x2

m/; for this p is a cubic
point.

Just like with Morse functions, there are elementary transversality conditions equivalent
to Definition 2.2 [28, Section 1]. This allows the conclusion that, for any smooth
function f WM !† where † is a 2–manifold, via a small perturbation of f we may
convert f into a 2–Morse function, ie 2–Morse functions form an open and dense
subset of the space of smooth functions M !†.

The curves of the fold singularities come equipped with transverse-oriented indices.
This is analogous to the index of a critical point of a Morse function, but made slightly
more complex by the codomain of our function being R2.

The index has the form of a triple .v; i; j / where v is a vector transverse to the
singular value set, and i is the dimension of the eigenspace that is folded into the
v direction, while j is the dimension of the eigenspace that is folded into the �v
direction. Thus iCj Dm�1. Due to this convention we need the equivalence relation
.v; i; j /� .�v; j ; i/. Further notice that due to the nature of the cubic singularity there
are two fold-type singularities that merge, with one fold being of type .v; i; j / and
the other fold being of the type .v; i C 1; j � 1/. In our diagrams we will typically
draw the v vectors, and only plot the pair .i; j /. In general i is an integer in the set
f0; 1; 2; : : : ;m� 1g; see Figure 1. Our oriented index makes sense only on the fold
points. We give a more precise definition in the next paragraph.

An elementary observation that may help the reader acclimatize to 2–Morse functions
is the observation that if S �† is a smoothly embedded copy of R, with f WM !† a
2–Morse function, then provided S is transverse to the critical values of f , ie disjoint
from the cubic points and without “kissing” tangencies to the fold points, then the
restriction of f as a map f �1.†/ ! † ' R is a Morse function. We use this in
Section 3 to define persistence paths. It is also used in the proof of Theorem 2.9.

Definition 2.3 Given a Morse 2–function f WM !R2, and a point p 2M in the fold
singular points,

Hfp W TpM ˝TpM !R2

is a bilinear function taking values in a 1–dimensional subspace of R2, complementary
to the image of Dfp. Choosing v 2 R2 spanning this subspace, we can treat Hfp
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.i; j /

.j ; i/

Figure 1: Depiction of the symmetry of the index of fold points.

as real-valued bilinear function, ie by considering Hfp � v W TpM ˝ TpM ! R. As
this is a symmetric bilinear function, Sylvester’s law of inertia gives us a well-defined
signature invariant, .i; j /, that can be thought of as the dimensions of the maximal
subspaces where the form is positive or negative definite, respectively.

Notice that at a cubic singular point the Hessian is degenerate, ie iCj Dm�2<m�1,
with the nullspace together with the image of Dfp spanning the cusp’s plane of curvature.

Before we begin the examples, it is important to be aware that a Morse function
f WM !R gives rise to a cell decomposition of M [22]. These cell decompositions
are computable in terms of flow lines of vector fields conditioned by the derivative of f .
The cellular descriptions of M in their most natural state are homotopy-theoretic in
nature, ie these techniques give homotopy equivalences between M and CW–complexes,
not homeomorphisms. That said, CW–complexes are far from ideal tools to describe
manifolds. The adaptation of CW–complexes to smooth manifolds are called handle
decompositions, developed by Smale in his proof of the h–cobordism theorem. A
k–cell for an m–manifold M is a map Dk !M that satisfies various properties, such
as being an embedding on the interior. A k–handle for an m–manifold is a smooth
embedding Dk�Dm�k!M , ie handles are not only fully embedded, but they contain
the data of both the cell and a tubular neighbourhood of the cell. This allows handle
decompositions to not just describe the homotopy type of M , but also its smooth
structure. A subtlety of handle attachments is that a k–handle is attached only on
part of its boundary, ie .@Dk/�Dm�k , thus there is a risk that we are entering the
class of manifolds with cubical corners. The exposition of Kosinski [17] gives careful
consideration to this problem, keeping the constructions purely in the language of
manifolds with boundary. A Morse function f WM !R gives a handle decomposition
of M ; moreover this handle decomposition describes the smooth structure on M .

Starting from illustrative examples, we investigate the relation between bifiltration and
the classical singularity theory.

Algebraic & Geometric Topology, Volume 23 (2023)
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� � �

c1

ck

.m�I1; I1/

.m�Ik; Ik/

H I1

H I1C1

H I1C1

H m�I1

H Ik

H IkC1

H IkC1

H m�Ik

Figure 2: Singular values for f with oriented index in Example 2.4 (left)
and extended Pareto grid (right). The dimension of the manifold S1 �M is
mC 1. Only the first and last values, c1 and ck , are displayed. The notation
H k indicates k–handle attachments.

Example 2.4 If g WM !R is a Morse function, then

f W S1
�M !R2

given by f .z;p/D z �g.p/ is a 2–Morse function on the .mC1/–dimensional manifold
S1 �M with only fold singularity types.

If the singular values of g consist of positive real numbers 0< c1< c2< � � �< ck then the
singular values of f consist of the circles of radius c1; c2; : : : ; ck centred at the origin.

If the singular value ci (of g) has index Ii , then the circle at f of radius ci is also a
fold-type singular value set of index . Or ;m�Ii ; Ii/, where Or is the unit outward-pointing
radial vector.

The persistence diagram for the preimages M.a;b/ is a union of the descending part of
the singular values of f together with some vertical and horizontal lines at the endpoints.

In Figure 2, the diagram on the left depicts the singular values of the function f . These
are the circles of rotation of the singular values of g. Say the red circle corresponds to
a singular point of index Ii . An alternative way of saying this is that the homotopy type
of the space g�1..�1; t �/ as t transitions through the point ci changes by an Ii–cell
attachment.

In the figure on the right, we describe how the preimages M.a;b/ change as the points
.a; b/ 2R2 vary. The Ii–handle attachments are labelled by H Ii . Only a portion of
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.1; 0/

.1; 0/

.0; 1/
H 0

H 0

H 1

H 1

H 2

H 2

0

1

2

1Ct

1Ct2

Figure 3: Cupped sphere projection.

the circle from the left diagram remains in the right, since at those (dotted) points the
homotopy type of the filtration does not change.

Let us take the blue circle for example, on the left. This is the singular value c1 of
index I1. On the right, this singular circle gives us two singular arcs. The lower blue
arc is properly embedded in R2, and transitioning through it corresponds to a m� I1

handle attachment. This should be thought of as a dual handle to c1 (of g). The other
singular value is a “fishtail”, divided into three properly embedded arcs. The round arc
corresponds to a handle attachment of index I1, while the two straight lines correspond
to handle attachments of index I1C 1. The handles of index I1C 1 should be thought
of as cancelling handles to the index I1 handle. Thus attachment of all three handles
of index I1, I1C 1 and I1C 1 has the same effect on the homotopy type as a single
attachment of a handle of index I1C 1.

Example 2.5 Given a round sphere S2�R3, the orthogonal projection map� WR3!R2

when restricted to S2 has singular values the unit circle, corresponding to an equatorial
circle in S2 of singular points. Imagine the sphere being made of rubber. We grab a
small section of the sphere (away from the equator) and fold it over itself, creating a
cupped sphere. This introduces an eye singularity in the projection map, as depicted in
Figure 3.

The pure fold singularity, the equator, is in blue. The red singularity is an “eye” type
singularity, with precisely two cubic (cusp) points. This is depicted on the left. In the
central figure we describe the handle attachments of the bifiltration. In the figure on
the right we describe the Poincaré polynomials of the bifiltration, ie the bifiltration is
regular at the white points, with transitions only at the red and blue points.
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.0; 1/
.0; 1/

.1; 0/

.1; 0/

.1; 0/

H 0

H 0

H 1

H 1

H 1

H 1
H 1

H 1

H 2

H 2

H 2

Figure 4: Klein bottle projection.

We give a fairly general example with cubic singularities.

Example 2.6 Cerf theory tells us that a 1–parameter family of real-valued functions
on a manifold is not (generically) Morse at all parameter times. There will be finitely
many times where the Morse singularities devolve into cubic singularities. Thus take
a generic 1–parameter family of functions on M , F W S1! C.M;R/, and form the
function

f W S1
�M !R2

given by f .v;p/D F.v/.p/ � v. The function f is 2–Morse. The bifiltration M.a;b/

will be described in Theorem 2.9.

Notice Example 2.6 is a direct generalization of Example 2.4; ie Example 2.4 can be
derived by setting F to be the constant function.

Example 2.7 A rather colourful example comes from orthogonal projection R4!R2

precomposed with one of the standard embeddings of the Klein bottle K2 ! R4.

Algebraic & Geometric Topology, Volume 23 (2023)
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.a; b/.a; b/.a; b/

(R) (B) (G)

Figure 5: Three intersection types with dimension 1 stratum of the singular val-
ues. Type (R) consists of transverse intersections with the 0– and 1–dimensional
strata of the singular value set for f . Type (B) consists of both transverse
intersections and simple “kissing” nontransverse intersections with the 1–strata
of the singular value set. Type (G) consists of transverse intersections together
with a corner-type intersection. Thus (R) is generic, ie codimension 0 in the
filtration, while types (B) and (G) are of higher codimension.

This example appears in [28]. The singularity theory for mappings of 2–manifolds
into the plane, of which this is a good demonstration, was originally discovered by
Whitney [29].

We have seen in the previous examples that the singular points of the filtration consist
of a subset of the singular points of the mapping f , together with some regular points
of the original mapping — these were a collection of vertical and horizontal rays. We
divide singular points of the filtration into two classes, corner singular points and tail
singular points:

� We say a point .a; b/ 2 R2 is a corner singular point if for all suitably small
neighbourhoods U of .a; b/ in R2 there are points .a0; b0/ 2 U such that U \C.a0;b0/

intersects the singular set of f in both the horizontal and vertical boundary edges
of C.a0;b0/. If we write the coordinates of R2 as .x;y/ then this happens when locally
writing the singular values of f as the graph of a function y.x/, then the function y.x/

would be decreasing at x D a. A corner singular point is demonstrated in Figure 5(G).

� For .a; b/ to be a tail singular point, we require that C.a;b/ intersects the singular
values of f tangentially, on either the interior of the horizontal or vertical boundary
curve. In a neighbourhood of the tangential intersection we require the singular set to
be on one side of the cube, ie either contained in the cube or in the closure of its exterior.

Algebraic & Geometric Topology, Volume 23 (2023)
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Thus it is a “kissing” tangency. The two tail singular point types are demonstrated in
Figure 5(B).

Notice that Figure 5(R) describes a regular point .a; b/ of the filtration Mf . We should
note that while it is true a point can be both corner singular and tail singular at the
same time, this is a codimension two condition, thus it is relatively rare. On the other
hand, tail and corner singular points are codimension one conditions.

The proof of Theorem 2.9 has several special cases, but there is one elemental argument
that is common to all cases. We put this in the next lemma.

Lemma 2.8 If f WM !R2 is a 2–Morse function , provided the point .a; b/ 2R2 is
regular for f , and the boundary of C.a;b/ intersects the singular values of f transversely
without double-points then .a; b/ is not only a regular point for the filtration Mf , but
the filtration is locally trivial near .a; b/.

Proof Precisely, there is a neighbourhood U of .a; b/2R2 such that for any .a0; b0/2U

there is a diffeomorphism Q� WM !M covering a diffeomorphism � WR2!R2 such
that Q�.f �1.C.a;b///Df

�1.C.a0;b0// and �.C.a;b//DC.a0;b0/. When we say Q� “covers”
� we mean the following diagram commutes:

M M

R2 R2

Q�

f f

�

The map Q� is sometimes called a fibre-preserving diffeomorphism of f , or a horizontal
diffeomorphism. A consequence of our proof will be that Q� and � are close to the
identity diffeomorphism, where “close” is controlled by the size of the neighbourhood U .
That such a neighbourhood exists can be deduced from the transversality stability
theorem [16].

The idea of the proof is to find a vector field in the plane whose flow maps C.a;b/

to C.a0;b0/ provided .a0; b0/ is near enough to .a; b/. We construct the vector field in
a manner that allows us to lift it to a vector field on M ; thus the flow of this vector
field will send f �1.C.a;b// to f �1.C.a0;b0//. Given that the derivative of f is not an
epimorphism at singular points of f , we have to take some care defining the vector
field. At fold points of f the derivative of f is only onto the tangent space of the
singular value set. Thus our neighbourhood U will be constrained by the sole demand
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.a; b/.a; b/
.a; b/

(R) (B) (G)

Figure 6: Three intersection types with dimension 0 stratum of the singular
values. Type (R) consists of generic outward and inward intersections with the
0–dimensional stratum of the singular value set for f . Type (B) consists of
nongeneric intersections with the 0–dimensional stratum. Type (G) consists
of a generic corner-type intersection with the 0–dimensional stratum. In the
filtration parameters, (G) is of codimension two. Type (B) is of codimension
one if it exists, but for a generic 2–Morse function these singularity types are
avoidable; one can convert them into type (R) by applying a small isotopy
to f .

that the singular value set needs to be transverse to @C.a0;b0/ for all .a0; b0/ 2 U . An
example illustration of a valid U is depicted in the green region illustrated is the set of
points UC D fp 2 @C.a0;b0/ j .a

0; b0/ 2 U g.

For the sake of argument, let’s assume b0 D b, ie we break the proof into two steps,
step 1 with b0 D b and step 2 with a0 D a. We further assume a0 > a as the a0 < a

case is analogous. Let Singv.f / denote the singular values of f , ie Singv.f / � R2.
Consider the curves of Singv.f /\UC . On the path-components of Singv.f /\UC

that live in the vertical portion of UC , we define the vector field to be the unique vector
field that is tangent to Singv.f /, and whose x–component is, in particular, positive.
On the path components of Singv.f /\UC that are in the horizontal portion of UC

we define the vector field to be zero. In the horizontal portion of UC we extend
the vector field to be zero. In the vertical portion of UC we interpolate between the
definition on Singv.f /\UC and the vector field .1; 0/, using a tubular neighbourhood
of Singv.f / in UC . Doing this we can ensure the vector field in the vertical portion of
UC always has unit x–component. We extend the vector field to all of R2, choosing
any extension that keeps the length of the vector field bounded, ie so that its flow is
complete. This gives us a flow on R2 that sends C.a;b/ to C.a0;b/. Our vector field
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.a; b/ .a0; b/

UC

Singv.f /

Figure 7: Neighbourhood of @C.a;b/ and the tangency types for Singv.

lifts to M since the derivative of f is onto the tangent spaces of Singv.f /, and for
regular points, the derivative has rank two. By the existence and uniqueness theorem
for solutions to ODEs, the flow of an f –lifted vector field is conjugated (by f ) to the
flow of the original vector field on R2. Thus the flow on M is fibre-preserving and
sends f �1.C.a;b// to f �1.C.a0;b//.

Lemma 2.8 has several natural generalizations. For example, let C and C 0 be compact
2–dimensional submanifolds of R2. Then provided there is an isotopy between C and
C 0 such that @C is transverse to the singular value set of f through the entire isotopy
(technically one needs to include intersections pairs of Singv.f / curves as 0–strata
in Singv.f / for this statement to be true), then f �1.C / and f �1.C 0/ are fibrewise
diffeomorphic. The condition that the isotopy is transverse to the singular value set
through all parameter times guarantees that the boundary of C does not pass over a
cubic point, or ever become tangent to the singular value set. These are the events that
can trigger changes in the fibrewise homotopy type of the preimage.

Similarly, provided .a; b/ is a regular value of f we can round the corner, turning C.a;b/

into a smooth manifold C 0
.a;b/

such that f �1.C.a;b// and f �1.C 0
.a;b/

/ are homotopy
equivalent.

We choose to let C be a compact submanifold of R2 for the following arguments; ie
rather than working with quadrants C.a;b/ we choose to work with compact smooth
manifolds, as it exposes the essential features of the argument.

The next theorem states that if the boundary of C (or quadrant C.a;b/) passes over a
cubic point in the isotopy, the fibrewise homotopy type changes but the homotopy type
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.a; b/ .a; b/

Figure 8: Rounding C.a;b/ to produce C 0
.a;b/

.

does not. Moreover, if the boundary of C passes across the singular value set — at a
tangency or corner, ie Figure 5(B) and (G) — then the homotopy type changes via a cell
attachment. We also give enough details that allow the computation of the attaching
maps.

Theorem 2.9 If f W M ! R2 is a 2–Morse function then the bifiltration Mf has
singular points consisting entirely of corner and tail singular points. Further , provided
the two height functions �i WR2!R given by �1.x;y/D x and �2.x;y/D y restrict
to Morse function on the fold singular values of f , with distinct critical heights , then
the transitions to the homotopy type of M.a;b/ when .a; b/ is either a corner or tail
singular point are given by individual cell attachments.

Proof Rather than using the restrictive language of quadrants, let C be a compact
submanifold of R2 and we investigate the change in homotopy type of f �1.C / through
an isotopy of C . We have two cases to consider.

Case 1 is a regular tangency — analogous to a type-2 Reidemeister move of the planar
diagram, in that it creates two points of intersection between the boundary of C and the
singular value set. Roughly speaking, there are two types of regular tangency moves.
This move can be described via a “bigon modification” where one appends a bigon to
the manifold C , attaching along one of the edges. The second edge of the bigon belongs
to Singv.f /. In the “nonengulfing” move, Singv.f / points out of C after the bigon is
appended, while in the engulfing version, Singv.f / points into C as one departs the
bigon.

In the nonengulfing version of case 1, the move corresponds to a cell attachment of
index i provided the index of Singv.f / is of the form .v; i; j / where v is in the direction
of @C as it sweeps over Singv.f /.
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C

C 0

Singv.f /

Figure 9: Case 1, nonengulfing.

Let C 0 denote the submanifold of R2 after the isotopy of C has been applied, ie as in
the right hand side of Figure 8. Using an argument analogous to Lemma 2.8 we see
that f �1.C 0/ has the same homotopy type as f �1.C /[f �1.B/, where B is the blue
arc in Figure 10.

The restriction of f to f �1.B/, and after identifying B with an interval in R, is a
1–Morse function; thus f �1.B/ has the homotopy type of f �1.B \ C / attach an
i–cell, by the Morse lemma. More specifically, this is proven in [22, Theorem 3.2].

For the engulfing version of case 1, the cell attachment is of index i C 1 provided
the index of Singv.f / is .v; i; j /, and the attaching map is analogous to the previous
case, but it should be thought of as an unbased version of a Whitehead product of the
attaching map in the previous case, with the red interval disjoint from C in the diagram
in Figure 11. Specifically, the characteristic map will be a product Di � I , where the
Di maps transversely to the red interval, and I can be identified with the red interval.

C

B

Singv.f /

Figure 10: Case 1, nonengulfing.
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C

C 0

Figure 11: Case 1, engulfing.

Figure 11 indicates the rationale. Specifically, f �1.C 0/ is f �1.C / union a relative
Bott-type handle. This handle should be thought of as I�Di�Dm�i�1, where .v; i; j /
is the index of Singv.f /. This is because �v ı f is a Bott-style Morse function on
f �1.B/; see Figure 12. The function �v WR2!R �v is orthogonal projection onto the
line spanned by v. The “box” B is diffeomorphic to a product B ' I � I where the
first interval factor corresponds to the red arc of Singv.f / disjoint from C in Figure 12,
while the second interval I is in the transverse direction (ie can be taken to be parallel
to v). Thus f �1.B/ is an interval cross an i–handle, being attached to f �1.C / along
.I �@Di/[ ..@I/�Di/, ie @.I �Di/. This could be thought of as an unbased version
of a Whitehead product.

For details on Bott-style Morse functions, and how they give disc-bundle adjunctions
for manifolds, see the paper of Bott [5, below (3.6)]. For a gentler introduction, see [3].

Case 2 is the case where the boundary of C passes over a cubic point. We will see that
the homotopy type of f �1.C / does not change in this instance. Like case 1 there is are
“engulfing” and “nonengulfing” subcases. We restrict to the nonengulfing case, as the
engulfing case is similar. The main idea of the proof is that this transition corresponds
to a 1–parameter family of cancelling i and .iC1/–handle attachments; thus we are
attaching a ball along a hemisphere, which results in no change in the homotopy type.

A small variant of Lemma 2.8 occurs when the boundary of C transitions over a
double-point in the singular set as in Figure 14. While the fibre homotopy type of
f �1.C / changes during this kind of transition, the homotopy type of f �1.C / does
not. The proof is exactly as in Lemma 2.8, in that we define the vector fields first on
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C

B

Figure 12: Case 1, engulfing.

the red curves, and then lift to M . The problem with this argument is that there is no
consistent way to define the vector fields on the union of the two red curves. But this
is okay, as we can lift the definition on the individual red curves (as their preimages
are disjoint critical manifolds in M ), and define the vector field on M directly, ie the
flow of the vector field on M cannot be made to be equivariant with respect to a flow
on R2.

We should point out that case 2 has one special case that does result in a homotopy
type change. This is depicted in Figure 6(B). These types of 2–Morse functions are not

C

Singv.f /

Figure 13: Case 2.
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Figure 14: Case 3, over a double-point.

generic. A small isotopy of f allows one to ensure the tangent vectors at the cusps
are neither vertical or horizontal, ie this at least codimension 1 in the space of smooth
functions M !R2, thus this situation is avoidable.

Theorem 2.9 allows us to draw the singular point set of the filtration Mf from the
singular values of f , allowing automatic deduction of Examples 2.4, 2.5 and 2.7.
Specifically, the singular points of the filtration are the Pareto curves of the defining
map f together with the relevant vertical and horizontal rays (extending to C1) at the
corresponding vertical and horizontal tangent points.

An analogous result to Theorem 2.9 appears in [2].

Proposition 2.10 We summarize the cell attachments at the singular values of the
filtration Mf .

� For corner singular points , the index of the cell attachment for Mf is the same as
the index for f .

� [28] For tail singular points , if the singular values of f near the kissing tangency
are exterior to the cube , then the cell attachment has the same index as f . This
corresponds to Wan terminating a Pareto arc with a positive sign.

� [28] For a tail singular point , if the singular values of f near the kissing
tangency are in the interior of the cube then the index of the cell attachment is
one greater than that of the corresponding singular value for f . This corresponds
to Wan terminating a Pareto arc with a negative sign.
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As a consequence of Theorem 2.9, the bifiltration of M associated to a 2–Morse function
divides the plane into finitely many regions according to the homotopy type of the
preimage f �1.C.a;b//. The notion of tameness [21] requires a further no monodromy
condition, which is the requirement that there is a canonical isomorphism between
f �1.C.a;b// and a fixed representative for the region, and this isomorphism has to be
natural in the sense that there is a canonical homomorphism between regions (if one
exists). Our division of the plane is into contractible subspaces. By a cubical subdivision
of the regions (akin to the argument that open subsets of the plane are triangulable),
and taking a maximal tree in the dual 1–skeleton, one can construct a canonical zigzag
of maps between any two points in a common region. The argument that there is no
monodromy amounts to observing that the only avoidable handle attachments in a path
from one region to another are cancelling pairs.

Corollary 2.11 [21] Assuming the same conditions of Theorem 2.9, the bifiltration
of f WM !R2 is tame.

We should note Wan [28] gives a filtration of the manifold M when f WM ! R2

is 2–Morse, provided the 2–Morse function satisfies the no cycle condition; see [28,
Proposition 6.3]. Central to Wan’s construction is the usage of flowlines of “generalized
gradient” vector fields — roughly these are vector fields where both coordinates are
increasing (away from the Pareto points). When one has a cycle, one can loop endlessly
between Pareto points, but when there are no cycles, the process of connecting Pareto
points via paths of generalized gradients exhausts the manifold M and linearly orders
the critical intervals of Pareto sets. In our work there are a multitude of filtrations
whether or not f has cycles. All the examples provided so far in this paper — and all
examples in Wan’s work [28] — satisfy the no cycle condition.

The simplest example of a 2–Morse function with a cycle in Wan’s sense is a function
of the form f W S1�D2!R2 having two critical arcs of index .1; 1/, with the critical
arcs being properly embedded in S1�D2. There are generalized gradient flows on the
endpoints connecting the arcs in a cyclic ordering. While this function is only defined
on a manifold diffeomorphic to S1�D2, with a little work one can embed this 2–Morse
function into a closed 3–manifold, but one needs to add additional critical values. There
is a rather simple cyclic example if one allows the use of 2–Morse functions of the sort
f W S3! S2. We obtain this map as the composite of the 2–sheeted branched cover
S3! S3 over the Hopf link together with the Hopf fibration S3! S2, provided the
Hopf fibration projection of the Hopf link is a 2–crossing diagram in S2.
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3 Persistence paths and pathwise barcodes

In a 1–dimensional persistent homology, barcodes represent collections of parameter
intervals at which homology generators are born and killed. In multifiltered persistent
homology, in particular, in our 2–dimensional case, there is no simple barcode analogy,
and, as Carlsson and Zomorodian pointed out in [8], there is no complete discrete
invariant. Many authors have studied rank invariants in a module theory setting [8;
19]. A somewhat more elementary notion of persistent Betti number (PBN) functions
is presented in Cerri, Di Fabio, Ferri, Frosini and Landi [10, Definition 2.2]. These are
collections of functions f f̌;q W�C!N [1gq2Z,

f̌;q..a; b/; .a
0; b0//D rank Hq.i

..a;b/;.a0;b0///;

where
�C D f..a; b/; .a0; b0// 2R2

�R2
j .a; b/� .a0; b0/g;

and i ..a;b/;.a
0;b0// WM.a;b/ ,!M.a0;b0/ is the inclusion of sublevel sets.

For computational purposes, the authors of [10] use a reduction to one-dimensional
persistence diagrams via so called foliation method. It consists of applying the one-
dimensional rank invariant along the lines defined by positive coordinate vectors in
chosen finite grids. That method is restated as a fibred barcode in the context of
persistence modules by Lesnick and Wright [20, Section 1.5].

As we observed in Section 2 on our 2–Morse function examples, although there are
uncountably many singular points, the changes in topology can be finitely characterised.
They either occur when we cross an arc of the singularity Singv in the poset-increasing
direction, or when we cross a horizontal or vertical half-line passing through the
vertex .a; b/ of C.a;b/ and “kissing” the singularity. We will refer to both types of
components of Critv as to Pareto critical value arcs or, for short, Pareto arcs. Note
that in [28], the term Pareto set refers to a subset of Singp�M and critical intervals
to its components, while our Pareto arcs are the corresponding subsets of the extended
Pareto grid Critv � R2. There are finitely many homotopically distinct paths, with
M.a;b/ starting with an empty set and ending with the whole manifold. Each one can
give a different sequence of handle attachments creating new generators of homology
or cancelling previous ones, all giving H�.M / at the end of the day.

This observation leads to the notion of persistence paths which is a substitute for either
Cerri’s foliation method [10] or Lesnick and Wright fibred barcode [20]. It can be also
be viewed as a discrete analogy of Wan’s generalized gradient (whose choice is also
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Figure 15: Klein bottle projection, with Poincaré polynomials.

not unique) in [28]. Before we proceed, let us introduce some terminology. As far as
rank invariants or persistent Betti numbers are of concern, a convenient way to record
the homological information carried in sublevel sets is the Poincaré polynomial

P .t;M /D

nX
kD0

ˇk tk ;

where ˇk D rank Hk.M / and n is the dimension of M .

In Figure 3 and Figure 15, left, we see the Poincaré polynomials P .t;M.a;b// for points
.a; b/ located in regions bounded by Pareto arcs. We are also interested in increments
�P .t;H j / arising as we cross a Pareto arc increasingly in .a; b/. A j –handle can
either create a j generator (new component, creating a hole or a cavity) or kill a .j �1/

generator (merging components, filling a hole or a cavity). In the first case, we get
�P .t;H j /D tj , and in the second case we get �P .t;H j /D�tj�1. Thus the index
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of a handle can be read out from �P . If it is tk , we have a creating k–handle and if it
is �tk , we have a cancelling .kC1/–handle.

The term Pareto arc includes half-lines defined by quadrants C.a;b/. Crossing their
vertex .a; b/may create “multiple handles” where�P is not just one term. For example
in the vertex of fish tail visible in Figure 16, �P D�t C t2. A point at which a single
handle is attached will be called generic.

We choose a generic point .a; b/ on each Pareto arc and let H.a;b/ be the corresponding
handle. At this time, the choice is arbitrary but we may want to chose endpoints of an
arc, when we study metric sensitive barcodes.

We let T D Œ0; 1� and R D Œr1;R1�� Œr2;R2� be a fixed rectangle in R2 containing
f .M / in its interior.

Definition 3.1 Let f.ai ; bi/giD0;1;:::m �R be a sequence of generic points on Pareto
arcs such that M.a;b/ D ∅ for all .a; b/ downward-left of .a0; b0/, .aiC1; biC1/ can
be reached from .ai ; bi/ going upward-right through the region enclosed by the two
arcs, and M.am;bm/ DM . A persistence path is a continuous function � W I !R with
�.0/D .r1; r2/ and �.1/D .R1;R2/ which is nondecreasing in both coordinates, and
joins the points of the sequence.

It can be seen that one can find sequences on the arcs so to get piecewise linear
persistence (PL) paths with line segments between two consecutive points. This is
useful in showing that we get a discrete characterization. For simplicity of notation,
we let Hi DH.ai ;bi / and Mi DM.ai ;bi /. We have a linear filtration

M0 �M1 � � � � �Mm DM:

Figure 16, left, shows two persistence paths for the cupped sphere presented in
Example 2.5. The path displayed in dark green avoids the pocket, the one in orange
passes through it.

Note that [28] needs a no-cycle condition to apply the generalized gradient. Our
persistence paths can be defined even in the presence of Wan’s cycles, because they are
more restrictive than Wan’s admissible curves [28, Definition 6.3]: A persistence path
leaves a Pareto arc at the same point as it enters it. Along the path, there may be no
cycles, because it is increasing with respect to the poset relation.

We now shift our attention to a multidimensional analogy of the Morse inequalities. Our
results may be useful for the continuation of the work on the discrete multidimensional
Morse–Forman theory initiated in [1].
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0

1
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1Ct

1Ct2

Figure 16: Left: two persistence paths for the function in Example 2.5. Right:
their corresponding barcodes in rectangles marked with the same colour as
the corresponding path; ˇ0 barcodes displayed by green lines, ˇ1 by brown
lines, and ˇ2 by cyan lines.

The following result is an analogy of the Morse equation in the Conley index theory
[23; 25].

Theorem 3.2 (Morse–Conley equation for persistence paths) Let � be a persistence
path for ..ai ; bi//iD0;1;:::m and let cj be the number of j –handles associated to its
points. Then there exists a polynomial Q with nonnegative integer coefficients such that

(1)
nX

jD0

cj tj
D P .t;M /C .1C t/Q.t/:

Proof A direct consequence of the definition of �P and that of persistence path is

(2)
mX

iD0

�P .t;H.ai ;bi //D

nX
kD0

ˇk tk
D P .t;M /:

If all handles of � create new generators, then, in light of the preceding discussion, the
left-hand side of (2) is exactly the left-hand side of (1). Thus (1) holds with Q.t/D 0.
If a j –handle kills a .j � 1/ generator, then the sum on the left-hand side of (2)
misses two terms, tj�1 and tj , contributing the sum on the left-hand side of (1). By
adding all these missing terms to both sides of (2), we get (1) with Q built by terms
tj�1C tj D .1C t/tj�1.
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By taking t D�1 in (1), we get the following corollary.

Corollary 3.3 (Euler characteristics) For any persistence path �,

(3)
nX

jD0

.�1/j cj D �.M /;

where �.M /D
Pn

kD0.�1/kˇk is the Euler–Poincaré characteristic of M .

Equation (3) is a part of the set of classical Morse inequalities. Since two polynomials
are equal if and only if all their coefficients are equal, (1) also gives weak Morse
inequalities,

(4) cj � ǰ for all j D 1; 2; : : : n:

We conclude this section by deriving a classical result of Morse theory on strong
Morse inequalities. The reader is referred to the book by Milnor [22] for the classical
formulation. For the sake of completeness, we present a neat and short proof of an
unknown source we have been told about by Marian Mrozek.

Corollary 3.4 (strong Morse inequalities) For any persistence path � and any k � 0,

(5) ck � ck�1C ck�2C � � �˙ c0 � ˇk �ˇk�1Cˇk�2C � � �˙ˇ0:

Proof Knowing that cj D ǰ D 0 for all j > n, we can treat (1) as a power series
equation

(6)
1X

jD0

cj tj
D

1X
jD0

ǰ tj
C .1C t/Q.t/:

Multiplying both sides of (6) by
P1

iD0.�1/i t i , the power series inverse of .1C t/, we
get

1X
kD0

� kX
iD0

.�1/ick�i

�
tk
D

1X
kD0

� kX
iD0

.�1/iˇk�i

�
tk
CQ.t/:

Since two power series are equal if and only if all their coefficients are equal and the
coefficients of Q.t/ are nonnegative, we get (5).

Our Morse inequalities should be compared with the work of Wan [28]. Perhaps the
main difference between our work and his is that we convert functions f WM !R2

into families of filtrations of the manifold M . Wan uses essentially all of the Pareto
arcs to define his filtration, which is often larger than our filtrations. Moreover he
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requires special “acyclic” Morse 2–functions to even define a filtration of M , while
any Morse 2–function works for us.

We now turn our attention to the computability of persistent homology via persistence
paths. We associate pathwise barcodes to any persistence path � as follows. First, we
want to normalise lengths of persistence paths so to have them all of length 1. Given a
point .a; b/ 2 �.I/, let s.a; b/ be the euclidean distance from .r1; r2/ to .a; b/ along
the path � divided by the total length of �.

Definition 3.5 The �–barcode in homology of dimension k is a function on repre-
sentatives of the Hk generators, whose values are subintervals of Œ0; 1�. When an Hk

generator is born by a handle attachment at the point .ai ; bi/ and it is killed at the point
.aj ; bj / with i < j <m, the corresponding barcode interval is Œs.ai ; bi/; s.aj ; bj /�. The
lifetime of that generator is s.aj ; bj /� s.ai ; bi/. If a generator persists until the point
.R1;R2/ of the chosen rectangle, it will also persist if the values of .R1;R2/ increase.
Thus it is reasonable to declare that its lifetime is infinite and the corresponding barcode
interval is Œs.ai ; bi/;1/.

Figure 16, right, shows barcodes of the two persistence paths displayed on the right.
It is visible that the lifetime of the second generator of H0 created when crossing the
pocket is short and it may be null, if we choose the path in dark green that avoids the
pocket. Similarly, the lifetime of the H1 generator is short.

We shall now briefly discuss prospects for numerical implementations of pathwise
barcodes. We should emphasize that the aim of our paper is to only provide a theoretical
background for computation.

Following predecessors [8; 10] who set up computing methods for multifiltrations, we
should consider the family of all piecewise linear persistence paths � built on points
.ai ; bi/ in a given finite grid. However, that is a huge family and this choice is likely to
lead to computational complexity issues. The size of the family of such paths is most
likely similar to that of Young diagrams [13]. Moreover, the number of nodes to join by
paths, decisive for the size of the family, increases quadratically with grid subdivisions.

For pathwise barcodes, we postulate that it should be sufficient to consider a finite
representable family Rep.f / of persistence paths built of specific points on Pareto
curves: centre points, nearly lower-right and upper-left endpoints of Pareto curves, as
well as their intersections with horizontal and vertical lines passing through or touching
other endpoints. We claim that Rep.f / is a small and exhaustive representation.
Moreover, the size of Rep.f / does not increase with grid subdivisions.
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By exhaustive representation, we mean here that any additional paths give rise to
equivalent barcodes. That, in turn, means that their barcodes have the same number
of intervals for each homology dimension, they may vary by length but appear in the
same sequence according to birth and death dates.

We are conscious of the fact that, proceeding this way, we are missing the postulate
that the persistence should be computed blindly from data, without knowing the exact
manifold M and exact function f . But it may also be interesting to consider the case
when we have M and f given by formulas that enable computing singularities.

4 Extensions

When applying pathwise barcodes to functions which do not satisfy Wan’s no-cycle
property [28, Definitions 6.4 and 6.5], it would be interesting to see what is the
information carried by the barcodes of those persistence paths of Rep.f / which cross
and go about the cycles of f .

The filtration of R2 by quadrants C.a;b/ has a complementary filtration by quadrant
exteriors

E.a;b/ D f.x;y/ 2R2
j x � a or y � bg:

Provided the boundary of C.a;b/ is transverse to the singular points of f WM ! R2,
one has that f �1.C.a;b// is a manifold with corners. This allows us to use a Poincaré
duality isomorphism

Hk.f
�1.C.a;b///'H m�k.M; f �1.E.a;b///:

Given that quadrant exteriors are the union of three quadrants, this gives a fairly detailed
relationship between the persistent homologies of filtrations corresponding to the four
quadrant families:

Cf1�a;f2�b D C.a;b/; Cf1�a;f2�b; Cf1�a;f2�b; Cf1�a;f2�b:

This technique could be thought to be a strong parallel to the theory of trisections of
4–manifolds [14; 15] as developed by Gay and Kirby. It also gives a formal setup
analogous to extended persistence of Morse functions, considered in [12].

Another direction one could take to extrapolate this research would be using smooth
functions M !Rk for k > 2. This topic is of a great interest to the topological data
analysis community. The computational methods of multiparameter persistent homol-
ogy such as those in [1; 8; 9; 19] are dimension-independent but, on the other hand, they
do not have the same insight into the geometry of the encountered singularities as the

Algebraic & Geometric Topology, Volume 23 (2023)



Bifiltrations and persistence paths for 2–Morse functions 2923

one we present here for the R2–valued functions. There are a variety of useful “Morse
theory” type tools to describe the singularities of functions of this kind. The analogous
theory of multisections of manifolds is developed by Rubinstein and Tillman [24].

Yet another direction to undertake is the practical implementation of our suggested
method for computing pathwise barcodes on the basis of a representable family Rep.f /.
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