Download this article
 Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Pseudo-Anosov homeomorphisms of punctured nonorientable surfaces with small stretch factor

Sayantan Khan, Caleb Partin and Rebecca R Winarski

Algebraic & Geometric Topology 23 (2023) 2823–2856
Bibliography
1 J W Aaber, N Dunfield, Closed surface bundles of least volume, Algebr. Geom. Topol. 10 (2010) 2315 MR2745673
2 I Agol, C J Leininger, D Margalit, Pseudo-Anosov stretch factors and homology of mapping tori, J. Lond. Math. Soc. 93 (2016) 664 MR3509958
3 J Aramayona, C J Leininger, J Souto, Injections of mapping class groups, Geom. Topol. 13 (2009) 2523 MR2529941
4 P Arnoux, J C Yoccoz, Construction de difféomorphismes pseudo-Anosov, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981) 75 MR610152
5 M Bauer, An upper bound for the least dilatation, Trans. Amer. Math. Soc. 330 (1992) 361 MR1094556
6 D Calegari, Foliations and the geometry of 3–manifolds, Oxford Univ. Press (2007) MR2327361
7 J H Cho, J Y Ham, The minimal dilatation of a genus-two surface, Experiment. Math. 17 (2008) 257 MR2455699
8 A Fathi, F Laudenbach, V Poénaru, Thurston’s work on surfaces, 48, Princeton Univ. Press (2012) MR3053012
9 D Fried, Flow equivalence, hyperbolic systems and a new zeta function for flows, Comment. Math. Helv. 57 (1982) 237 MR684116
10 D Fried, Transitive Anosov flows and pseudo-Anosov maps, Topology 22 (1983) 299 MR710103
11 J Y Ham, W T Song, The minimum dilatation of pseudo-Anosov 5–braids, Experiment. Math. 16 (2007) 167 MR2339273
12 E Hironaka, Small dilatation mapping classes coming from the simplest hyperbolic braid, Algebr. Geom. Topol. 10 (2010) 2041 MR2728483
13 E Hironaka, E Kin, A family of pseudo-Anosov braids with small dilatation, Algebr. Geom. Topol. 6 (2006) 699 MR2240913
14 S Hirose, E Kin, A construction of pseudo-Anosov braids with small normalized entropies, New York J. Math. 26 (2020) 562 MR4103001
15 N V Ivanov, Coefficients of expansion of pseudo-Anosov homeomorphisms, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 167 (1988) 111 MR964259
16 E Kin, M Takasawa, Pseudo-Anosovs on closed surfaces having small entropy and the Whitehead sister link exterior, J. Math. Soc. Japan 65 (2013) 411 MR3055592
17 E Kin, M Takasawa, The boundary of a fibered face of the magic 3–manifold and the asymptotic behavior of minimal pseudo-Anosov dilatations, Hiroshima Math. J. 46 (2016) 271 MR3614298
18 E Lanneau, J L Thiffeault, On the minimum dilatation of pseudo-Anosov homeromorphisms on surfaces of small genus, Ann. Inst. Fourier (Grenoble) 61 (2011) 105 MR2828128
19 C J Leininger, D Margalit, On the number and location of short geodesics in moduli space, J. Topol. 6 (2013) 30 MR3029420
20 L Liechti, B Strenner, Minimal pseudo-Anosov stretch factors on nonoriented surfaces, Algebr. Geom. Topol. 20 (2020) 451 MR4071380
21 M Loving, Least dilatation of pure surface braids, Algebr. Geom. Topol. 19 (2019) 941 MR3924180
22 S Matsumoto, Topological entropy and Thurston’s norm of atoroidal surface bundles over the circle, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987) 763 MR927609
23 C T McMullen, Polynomial invariants for fibered 3–manifolds and Teichmüller geodesics for foliations, Ann. Sci. École Norm. Sup. 33 (2000) 519 MR1832823
24 H Minakawa, Examples of pseudo-Anosov homeomorphisms with small dilatations, J. Math. Sci. Univ. Tokyo 13 (2006) 95 MR2277516
25 R C Penner, A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 310 (1988) 179 MR930079
26 R C Penner, Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991) 443 MR1068128
27 W T Song, K H Ko, J E Los, Entropies of braids, J. Knot Theory Ramifications 11 (2002) 647 MR1915500
28 W P Thurston, A norm for the homology of 3–manifolds, 339, Amer. Math. Soc. (1986) 99 MR823443
29 W P Thurston, Hyperbolic structures on 3–manifolds, II : Surface groups and 3–manifolds which fiber over the circle, preprint (1998) arXiv:math/9801045
30 C Y Tsai, The asymptotic behavior of least pseudo-Anosov dilatations, Geom. Topol. 13 (2009) 2253 MR2507119
31 A D Valdivia, Sequences of pseudo-Anosov mapping classes and their asymptotic behavior, New York J. Math. 18 (2012) 609 MR2967106
32 M Yazdi, Lower bound for dilatations, J. Topol. 11 (2018) 602 MR3830877
33 M Yazdi, Pseudo-Anosov maps with small stretch factors on punctured surfaces, Algebr. Geom. Topol. 20 (2020) 2095 MR4127091