Download this article
 Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Pseudo-Anosov homeomorphisms of punctured nonorientable surfaces with small stretch factor

Sayantan Khan, Caleb Partin and Rebecca R Winarski

Algebraic & Geometric Topology 23 (2023) 2823–2856
Bibliography
1 J W Aaber, N Dunfield, Closed surface bundles of least volume, Algebr. Geom. Topol. 10 (2010) 2315 MR2745673
2 I Agol, C J Leininger, D Margalit, Pseudo-Anosov stretch factors and homology of mapping tori, J. Lond. Math. Soc. 93 (2016) 664 MR3509958
3 J Aramayona, C J Leininger, J Souto, Injections of mapping class groups, Geom. Topol. 13 (2009) 2523 MR2529941
4 P Arnoux, J C Yoccoz, Construction de difféomorphismes pseudo-Anosov, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981) 75 MR610152
5 M Bauer, An upper bound for the least dilatation, Trans. Amer. Math. Soc. 330 (1992) 361 MR1094556
6 D Calegari, Foliations and the geometry of 3–manifolds, Oxford Univ. Press (2007) MR2327361
7 J H Cho, J Y Ham, The minimal dilatation of a genus-two surface, Experiment. Math. 17 (2008) 257 MR2455699
8 A Fathi, F Laudenbach, V Poénaru, Thurston’s work on surfaces, 48, Princeton Univ. Press (2012) MR3053012
9 D Fried, Flow equivalence, hyperbolic systems and a new zeta function for flows, Comment. Math. Helv. 57 (1982) 237 MR684116
10 D Fried, Transitive Anosov flows and pseudo-Anosov maps, Topology 22 (1983) 299 MR710103
11 J Y Ham, W T Song, The minimum dilatation of pseudo-Anosov 5–braids, Experiment. Math. 16 (2007) 167 MR2339273
12 E Hironaka, Small dilatation mapping classes coming from the simplest hyperbolic braid, Algebr. Geom. Topol. 10 (2010) 2041 MR2728483
13 E Hironaka, E Kin, A family of pseudo-Anosov braids with small dilatation, Algebr. Geom. Topol. 6 (2006) 699 MR2240913
14 S Hirose, E Kin, A construction of pseudo-Anosov braids with small normalized entropies, New York J. Math. 26 (2020) 562 MR4103001
15 N V Ivanov, Coefficients of expansion of pseudo-Anosov homeomorphisms, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 167 (1988) 111 MR964259
16 E Kin, M Takasawa, Pseudo-Anosovs on closed surfaces having small entropy and the Whitehead sister link exterior, J. Math. Soc. Japan 65 (2013) 411 MR3055592
17 E Kin, M Takasawa, The boundary of a fibered face of the magic 3–manifold and the asymptotic behavior of minimal pseudo-Anosov dilatations, Hiroshima Math. J. 46 (2016) 271 MR3614298
18 E Lanneau, J L Thiffeault, On the minimum dilatation of pseudo-Anosov homeromorphisms on surfaces of small genus, Ann. Inst. Fourier (Grenoble) 61 (2011) 105 MR2828128
19 C J Leininger, D Margalit, On the number and location of short geodesics in moduli space, J. Topol. 6 (2013) 30 MR3029420
20 L Liechti, B Strenner, Minimal pseudo-Anosov stretch factors on nonoriented surfaces, Algebr. Geom. Topol. 20 (2020) 451 MR4071380
21 M Loving, Least dilatation of pure surface braids, Algebr. Geom. Topol. 19 (2019) 941 MR3924180
22 S Matsumoto, Topological entropy and Thurston’s norm of atoroidal surface bundles over the circle, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987) 763 MR927609
23 C T McMullen, Polynomial invariants for fibered 3–manifolds and Teichmüller geodesics for foliations, Ann. Sci. École Norm. Sup. 33 (2000) 519 MR1832823
24 H Minakawa, Examples of pseudo-Anosov homeomorphisms with small dilatations, J. Math. Sci. Univ. Tokyo 13 (2006) 95 MR2277516
25 R C Penner, A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 310 (1988) 179 MR930079
26 R C Penner, Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991) 443 MR1068128
27 W T Song, K H Ko, J E Los, Entropies of braids, J. Knot Theory Ramifications 11 (2002) 647 MR1915500
28 W P Thurston, A norm for the homology of 3–manifolds, 339, Amer. Math. Soc. (1986) 99 MR823443
29 W P Thurston, Hyperbolic structures on 3–manifolds, II : Surface groups and 3–manifolds which fiber over the circle, preprint (1998) arXiv:math/9801045
30 C Y Tsai, The asymptotic behavior of least pseudo-Anosov dilatations, Geom. Topol. 13 (2009) 2253 MR2507119
31 A D Valdivia, Sequences of pseudo-Anosov mapping classes and their asymptotic behavior, New York J. Math. 18 (2012) 609 MR2967106
32 M Yazdi, Lower bound for dilatations, J. Topol. 11 (2018) 602 MR3830877
33 M Yazdi, Pseudo-Anosov maps with small stretch factors on punctured surfaces, Algebr. Geom. Topol. 20 (2020) 2095 MR4127091