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This paper is devoted to the construction of differential geometric invariants for the
classification of “quaternionic” vector bundles. Provided that the base space is a
smooth manifold of dimension two or three endowed with an involution that leaves
fixed only a finite number of points, it is possible to prove that the Wess—Zumino
term and the Chern—Simons invariant yield topological invariants able to distinguish
between inequivalent realizations of “quaternionic” structures. This is a nontrivial
generalization of results previously known only in the case of tori with time-reversal
involution.

57R22; 53A55, 53C80, 55N25

1 Introduction

The present paper continues the study of the classification of “quaternionic” vector
bundles started in [8; 10; 11]. The main novelty with respect to the previous papers
consists of the use of differential geometric invariants to classify inequivalent isomor-
phism classes of “quaternionic” structures. In this sense, as expressed by the title, this
paper represents a continuation of [9] where differential geometric techniques have
been used to classify “real” vector bundles.

At a topological level, “quaternionic” vector bundles, or Q—bundles for short, are
complex vector bundles defined over spaces with involution and endowed with a further
structure at the level of the total space. An involution T on a topological space X is a
homeomorphism of period 2, ie 72 = Idy. The pair (X, t) will be called an involutive
space. The fixed point set of the involutive space (X, 7) is by definition

X' :={xeX|t(x)=x}
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A Q-bundle over (X, 7) is a pair (€, ®), where ‘€ — X denotes the underlying complex
vector bundle and ®: € — € is an antilinear map which covers the action of t on the
base space and such that ®2 acts fiberwise as multiplication by —1. A more precise
description is given in Definition 2.2. Q-bundles were introduced for the first time
by JL Dupont in [12] (under the name of symplectic vector bundles). They form a
category of topological objects which is significantly different from the category of
complex vector bundles. For this reason the problem of the classification of Q—bundles
over a given involutive space requires the use of tools which are structurally different
from those typically used in the classification of complex vector bundles. The aim
of the present work is to define differential geometric invariants able to distinguish
the elements of Vec’é (X, t), where the latter symbol denotes the set of isomorphism
classes of rank m Q-bundles over (X, 7).

The interest for the classification of Q—bundles has increased in the last years because
of the connection with the study of topological insulators. Although this work does
not focus on the theory of topological insulators — the interested reader is referred
to the recent reviews by Ando and Fu [2] and Hasan and Kane [25] —it is worth
mentioning that the first example of topological effects in condensed matter related to a
“quaternionic” structure dates back to the seminal works by L Fu, CL Kane and E J Mele
[18; 31]. The existence of distinguished topological phases for the so-called Kane—Mele
model is the result of the simultaneous presence of two symmetries. The first symmetry
is given by the invariance of the system under spatial translations. This fact allows
the use of the Bloch—Floquet theory — see Kuchment [36] — for the analysis of the
spectral properties of the system. As a result, a well-established procedure provides
the construction of a vector bundle, usually known as Bloch bundle, from each gapped
energy band of the system. Even though the details of the construction of the Bloch
bundle will be omitted in this work — the interested reader is referred to Panati [42]
or the authors [7, Section 2] —it is important to remark that the Bloch bundle is a
complex vector bundle over the torus T¢ ~ R¢ /(27 Z)?. The integer d represents the
dimensionality of the system and the physically relevant dimensions are d = 2, 3. The
second crucial ingredient for the topology of the Kane—Mele model is the fermionic (or
odd) time-reversal symmetry (TRS). In terms of the Bloch bundle the TRS translates
into the involution vrg: T — T¢ of the base space given by

Rk, .. kg) == (ks —kg)

and into an antilinear map © of the total space such that ® = —1 fiberwise. Therefore,
one concludes that the different topological phases of the Kane—Mele model are labeled
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by the inequivalent realization of Q—bundles over the torus T¢ with involution rrg,
namely by the distinct elements of Vecg (']I‘d, TTR).

The classification of the topological phases of the Kane—Mele model given in [18; 31]
is summarized by

Z» ifd =2,

Zry® (Z2)* ifd =3,

where Z, := {£1} is the cyclic group of order 2 presented in multiplicative notation.

(1-1) Vec (T7, tre) =

The topological classification (1-1) has been rigorously derived with the use of different
techniques in various papers — see eg [8], Fiorenza, Monaco and Panati [14], and Graf
and Porta [24] — and generalized to any (low-dimensional) involutive space (X, ) by
Lawson, Lima-Filho, Michelsohn and dos Santos [37; 45] and in [10; 11], independently.
However, the topological classification based on the construction of homotopy invariants
(such as characteristic classes) has the disadvantage of being difficult to compute. For
this reason one is naturally inclined to look for different types of invariants.

A special role in the classification of complex vector bundles is played by the Chern
classes. The latter, in view of the Chern—Weil homomorphism, can be represented
via differential forms and integrated over suitable cocycles. The resulting Chern
numbers are enough to provide a complete classification of complex vector bundles
in several situations of interest in condensed matter. This is, for instance, the case
of the quantum Hall effect and the related TKNN numbers; see Thouless, Kohmoto,
Nightingale and den Nijs [46]. Using this observation as Ariadne’s thread, one expects
to find differential and integral invariants able to classify Q—bundles at least under
some reasonable hypotheses. Indeed, “gauge-theoretic invariants” have already been
used to reproduce the classification (1-1). The first pioneering works in this direction
are Essin, Moore and Vanderbilt [13], Fu and Kane [17], and Qi, Hughes, Wang and
Zhang [44; 47], where the Chern—Simons field theory has been used to relate the
topological phases of the Kane—Mele model in 2 4 1 and 3 4 1 space-time dimensions
with integral quantities like the (time-reversal) polarization. Afterwards, these results
have been revisited and put in a solid mathematical background in various works like
Carpentier, Delplace, Fruchart, Gawedzki, Monaco and Tauber [6; 5; 21; 22; 41], Freed
and Moore [16], and Kaufmann, Li and Wehefritz-Kaufmann [32], just to mention
some of them. If one ignores the differences due to the use of distinct mathematical
techniques, it is possible to recognize a common outcome from all the papers listed
above: the topological phases of the two-dimensional Kane—-Mele model are governed
by the Wess—Zumino term [15; 20; 21] while in the three-dimensional case the relevant
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object is the Chern—Simons invariant [15; 21; 28]. The present work is inspired by
the latter consideration and it aims to provide a general and rigorous description of
the relation between the classification of Q—bundle and the Wess—Zumino term, or the
Chern—Simons invariant. The main achievements are presented below.

The two-dimensional case will be described first. In this case the relevant family of
base spaces is restricted by the following:

Definition 1.1 (oriented two-dimensional FKMM-manifold) An oriented two-dimen-
sional FKMM-manifold is an involutive space (X, t) subject to the following condi-
tions:

(') X is an oriented two-dimensional compact Hausdorff manifold without boundary.
(b’) The involution t preserves the manifold structure and the orientation.

(¢’) The fixed point set 3% # & consists of a finite collection of points.

Let us point out that manifold structure in (b’) shall be eventually assumed to be a
smooth one as is stated at the beginning of Section 3. An example of oriented two-
dimensional FKMM-manifold is provided by the torus T2 with the involution 71g.
The set of oriented two-dimensional FKMM-manifolds forms a subclass of the FKMM-
spaces defined in Definition 2.8 below. Q-bundles over these spaces are completely
classified by a characteristic class called FKMM—invariant; see Theorem 2.9.

The crucial result for the classification of Q—bundles over two-dimensional FKMM-—
manifolds is expressed by the chain of isomorphisms

(1-2) Vg (2. 1) £ [£.SUQ@)]z,/[E. UD]z, 2 Zo.

The first isomorphism 77 is essentially proved in Theorem 2.13 for m = 1 and justified
in Remark 2.16 for every m € N. Elements of [X, SU (2)]z, are Z,—homotopy classes
of Z,—equivariant maps £: ¥ — SU(2) constrained by the equivariance condition
E(r(x)) =&(x)"! forall x € =. The set [Z, U(1)]z, consists of Z»-homotopy classes
of Z,—equivariant maps ¢: X — U (1) such that ¢ (z(x)) = ¢ (x) = ¢(x) L. The action
of [X,U(1)]z, over [X,SU(2)]z, is specified in the statement of Theorem 2.13. The
second isomorphism 1, is described in Section 2.7 and is given by the composition of
two identifications: The first isomorphism,

[2.SU@)]z,/[%. U]z, 2 Map(Z™, {1})/[S. U]z,
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proved in Proposition 2.18, shows that the “new” description of Q—bundles in terms of
maps £: X — SU (2) agrees with the “old” description in terms of the FKMM-invariant
given in Proposition 2.10. The second identification,

Map(S7. {£1})/[S. U(1)]z, =~ Z,.

is described in Theorem 2.11 and it is induced by the product sign map (also known as
the Fu—Kane—Mele index).

The isomorphism 77 in (1-2) expresses the fact that an element of Veczgm (X, 1) can be
completely identified with an equivariant map &: X — SU(2) that, in many situations,
can be built explicitly; see Remark 2.19. Therefore, the relevant question is whether
there is a way to access directly the isomorphism 7, from the knowledge of the classi-
fying map & without passing through the FKMM-—invariant and the product sign map.
The answer is positive. First of all it is important to point out that, without loss of
generality, the map £ can be chosen smooth. This allows us to define the Wess—Zumino

term

(1-3) WZs(E) = —

—— | Tr(E'-dé)® mod Z,

i [, THE B mo

where Xy is any compact three-dimensional oriented manifold whose boundary coin-
cides with ¥ and £: Xy — SU(2) is any smooth extension of &; see Definition 3.16

for more details. The first main result of this paper is:

Theorem 1.2 Let (2, t) be an oriented two-dimensional FKMM-manifold in the
sense of Definition 1.1. Let (€,®) be a Q-bundle of rank 2m over (X, t) and
& € Map(2,SU(2))z, any map which represents (€, ®) in the sense of the isomor-
phism 1y in (1-2). Then the map

Vecsz(E, 1) 3 [(€, ©)] —» 2220 ¢ 7,

provides a realization of the isomorphism Veczgm (X,7) > Z5 in (1-2).

The proof of Theorem 1.2 is postponed to Section 3.6. Theorem 1.2 clearly applies
to the classification of Q—bundles over the involutive torus (T2, 1), reproducing in
this way results already existing in the literature. In this regard the result [21, (2.9)],
previously announced in [22, I1.25, page 19], deserves a special mention. The latter is in
agreement with Theorem 1.2 above in view of the equality e27VZz(W) — i27WZx(§)
(justified by the Polyakov—Wiegmann formula, see Lemma 3.17) where the map w
employed in [22] is related to the map & of Theorem 1.2 by the relation w = £Q, with

0 the constant matrix in (2-2). However, it is worth pointing out that the validity of
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Theorem 1.2 goes far beyond the standard case (TZ, 7rr). For instance, Theorem 1.2
extends the classification of Q—bundles over Riemann surfaces of genus g endowed
with an orientation-preserving involution with a finite set of fixed points [8, Appendix A]
and this application seems to be new in the literature.

In order to describe the three-dimensional case it is worth mentioning that any Q—bundle
(¢, ®) over the involutive space (X, t) can be equivalently described by a principal
Q-bundle (P, @) over the same base space (see Section 3.1) and that for principal
Q-bundles there exists a notion of equivariant Q—connection (see Section 3.2). Given a
Q-—connection w € 2 1Q (?,u(2m)) one can define the associated Chern—Simons 3—form

. 1 2
CS(w):= 8]T—2TI'((I) Adw + ga) AN /\C())
and the intrinsic Chern—Simons invariant

(1-4) s(P, 0) := / s*CS(w) mod Z
X

as specified in Definitions 3.9 and 3.14. Remarkably, under the hypotheses stipulated
in Proposition 3.12, the quantity in the right-hand side of (1-4) turns out to be inde-
pendent of the choice of the invariant connection w or of the global section s: X — %,
and therefore defines an invariant for the underlying principal Q-bundle (9, (:)), or
equivalently for the associated Q—bundle (€, ®).

Let us recall that when (X, 7) is a three-dimensional FKMM-manifold in the sense of
Definition 2.8, Proposition 2.10 applies and we have an isomorphism

Ve (X. 1) = Map(X 7, {£1})/[X, U(1)]z, forall meN.

In the formula above, Map(X T, {£1}) ~ Z>'X"| denotes the set of maps from X7 to
{£1} (recall that X* is a set of finitely many points). The group action of [X, U(1)]z,
on Map(X®, {+£1}) is given by multiplication and restriction. The map « which imple-
ments the isomorphism is the FKMM-invariant; see Section 2.3. Given a Q—bundle
(€, ®) over (X, 1), its FKMM-—invariant x (¢, ®) can be represented in terms of a map
¢ € Map(X°®, {£1}) and one can use the product sign map to define the so-called
strong Fu—Kane—Mele index

(1-5) k(€.0):=T[p]l = [] o)) eZa

x;€XT

It turns out that the definition above is well-posed in the sense that x5(€, ®) only
depends on the equivalence class of ¢ in Map(X*, {£1})/[X, U(1)]z,; hence it defines
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a topological invariant for (€, ®). This fact is a consequence of the second main result
of this paper:

Theorem 1.3 Let (X, t) be a three-dimensional FKMM--manifold in the sense of
Definition 2.8 such that X© # &. Assume in addition that:

(e) X is oriented and t reverses the orientation.
Let (€, ®) be a Q—-bundle over (X, t) with FKMM-invariant
k(€,0) € Map(X ™, {£1})/[X, U(D]z,

according to Proposition 2.10. For a given representative ¢ € Map(X®,{£1}) of
k(€,®), let T1[¢] be as in (1-5). Then, independent of the choice of ¢,

(1—6) eiZJTCS(@’,@) — H[¢],

where (P, (:)) is the principal Q-bundle associated to (€,®) and cs(%P, @) is the
intrinsic Chern—Simons invariant of Definition 3.14.

The proof of Theorem 1.3 is postponed to Section 3.7. Along with Corollary 3.32, it
expresses the fact that the strong index

1-7) Ks(%, @) — ei27rc5(?/‘>,@)

is a topological invariant which allows us to, at least partially, classify Q—bundles.
In the case of the involutive torus (T3, 1r) described by (1-1) the invariant (€, ®)
takes values in the first (strong) summand of Z, @ (Z5)3. For a more recent review of
the topological interpretation of the (strong) Fu—Kane—Mele index we refer to [4].

Theorems 1.2 and 1.3 show that the differential geometric gauge invariants (1-3) and
(1-4) can be used as tools for the classification of Q—bundles in dimension two and
three, provided that the base space meets some restrictive conditions. The results
contained in Theorems 1.2 and 1.3 are valid for base spaces which are much more
general than the involutive tori (T4, t1R) usually considered in literature. However,
these results are still not completely satisfactory in view of the restrictions on the nature
of the base space that we need to assume. There are two questions which are still open,
and that it would be interesting to answer: Is it possible to extend Theorems 1.2 and 1.3
to involutive base spaces (X, t) such that X" is a submanifold of dimension bigger
than zero? In the case of Theorem 1.2, is it possible to construct the classifying map &
directly from the projection which represents the Q—bundle in K—theory without relying

on the use of a predetermined global frame?

Algebraic & Geometric Topology, Volume 23 (2023)



2932 Giuseppe De Nittis and Kiyonori Gomi

Acknowledgements De Nittis is supported by the grant FONDECYT regular 2019,
1190204. Gomi is supported by the JSPS KAKENHI grant 15K04871. The authors
wish to thank Krzysztof Gawedzki for very useful discussions. De Nittis wants to thank
the Erwin Schrodinger International Institute for Mathematics and Physics (ESI) of
Vienna where the results described in this paper were presented for the first time during
the thematic program Topological phases of quantum matter held in 2014.

2 “Quaternionic” vector bundles from a topological
perspective

In this section base spaces will be considered only from a topological point of view.
Henceforth, we will assume that:

Assumption 2.1 (Z,—CW-complex) X is a topological space which admits the
structure of a Z,—CW-complex. The dimension d of X is, by definition, the maximal
dimension of its cells, and X is called low-dimensional if 0 < d < 3.

For the sake of completeness, let us recall that an involutive space (X, 7) has the
structure of a Z,—CW-complex if it admits a skeleton decomposition given by gluing
cells of different dimension in ascending order, and the involution permutes the cells.
For a precise definition of the notion of Z,-CW-complex the reader can refer to [7,
Section 4.5] or [1; 38]. Assumption 2.1 allows the space X to have several disconnected
components. However, in the case of multiple components, we will tacitly assume that
vector bundles built over X possess fibers of constant rank on the whole base space.
Let us recall that a space with a CW—complex structure is automatically Hausdorff and
paracompact, and it is compact exactly when it is constructed out of a finite number of
cells [26]. Almost all the examples considered in this paper will concern spaces with a
finite CW—complex structure.

2.1 Basic facts about ‘“quaternionic” vector bundles

In this section we recall some basic facts about the topological category of “quaternionic”
vector bundles. Furthermore, the necessary notation for the description of the various
results will be fixed. We refer to [8; 10; 11; 12] for a more systematic presentation of
the subject.
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Definition 2.2 (“quaternionic” vector bundles) A “quaternionic” vector bundle, or
Q-bundle, over (X, 7) is a complex vector bundle 7 : € — X endowed with a homeo-
morphism ®: € — € such that

(Q1) the projection 7 is equivariant in the sense that 1 o ® =t o 17;
(02) O is antilinear on each fiber, ic @(Ap) = AO(p) forall A € C and p € €, where
A is the complex conjugate of A;

(03) ©2 acts fiberwise as multiplication by —1, namely ®2|%x = —lg,.

Let us recall that it is always possible to endow € with an (essentially unique) equivariant
Hermitian metric m with respect to which ® is an antiunitary map between conjugate
fibers [8, Proposition 2.5]. The equivariance is expressed by

m(O(p1),. O(p2)) =m(p2, p1) forall (p1, p2) €€ x5 €,
where € x5 € := {(p1, p2) € € x€ | m(p1) = w(p2)}.

A vector bundle morphism between two vector bundles 7 : € — X and ’: ¢’ — X over
the same base space is a continuous map f : € — ¢’ which is fiber preserving in the sense
that 7 = 7’ o f and that restricts to a linear map on each fiber f|:€x — €/.. Complex
vector bundles over X together with vector bundle morphisms define a category. The
symbol Vecg:(X) is used to denote the set of equivalence classes of isomorphic vector
bundles of rank m. From these data, it is possible to define a category of Q—bundles
and Q-morphisms. A Q—morphism between two Q-bundles (¢, ®) and (€', ®') over
the same involutive space (X, 7) is a vector bundle morphism f commuting with the
involutions, ie f o® = ®’o f. The set of equivalence classes of isomorphic Q—bundles
of rank m over (X, t) will be denoted by Vec’g (X, 7).

Remark 2.3 (“real” vector bundles) By changing condition (Q3) in Definition 2.2 to

(R) ©2 acts fiberwise as the multiplication by 1, namely ©2|¢, = l¢_,

one ends in the category of “real” vector bundles, or R—bundles. The set of isomorphism
classes of rank m R-bundles over the involutive space (X, 7) is denoted by Vec’z (X, 7).
For more details we refer to [3; 7].

In the case of a trivial involutive space (X, Idy), one has bijections
2-1) VeCZQm (X,1dy) >~ Vecpp(X), Vecg(X,Idx) >~ Vecg(X), meN,

where Vecy (X) is the set of equivalence classes of vector bundles over X with typical
fiber F" and H denotes the skew field of quaternions. The first isomorphism in (2-1)
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is proved in [12] — see also [8, Proposition 2.2] — while the proof of the second is
provided in [3] — see also [7, Proposition 4.5]. These two results justify the names
“quaternionic” and “real” for the related categories.

Let x € X and €5 >~ C™ be the related fiber. In this case the restriction ®l¢, = J
defines an antilinear map J : €, — €y such that J 2 = —1¢,. Said differently, the
fibers € over fixed points x € X* are endowed with a quaternionic structure; see [8,
Remark 2.1]. This fact has an important consequence [8, Proposition 2.1]:

Proposition 2.4 If X* £ &, then every Q—bundle over (X, T) has even rank.

The set VecZQm (X, 7) is nonempty since it contains at least the trivial element in the
“quaternionic” category. The rank 2m product Q—bundle over the involutive space
(X, 7) is the complex vector bundle

X xC?™ X
endowed with the product Q—structure
Bo(x,v) = (t(x), Q¥), (x,v)e X xC",
where the matrix Q is given by

0 -1

1
0 —1

(2-2) Q:( )®M= 5

1 0 0 _1

1 0

A “quaternionic” vector bundle is called Q—trivial if it is isomorphic to the product
QO-bundle.

A section of a complex vector bundle 7 : '€ — X is a continuous map s: X — € such that
mos =Idy. The set I'(€) of sections of € has the structure of a left C (X )-module with
multiplication given by the pointwise product ( fs)(x) := f(x)s(x) forany f € C(X)
and s € I'(€) and for all x € X. If (€, ®) is a O-bundle over (X, 7) then I'(€) is
endowed with a natural antilinear antiinvolution 7g: I'(€) — I'(€) given by

19(s) :=®osorT.
The compatibility with the C(X)-module structure is given by

t0(fs) =w(ftels). feC(X). sel(@),
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where the antilinear involution 7«: C(X) — C(X) is defined by () (x) := f(z(x)).
The triviality of a “quaternionic” vector bundle can be characterized in terms of global
Q—frames of sections [8, Definition 2.1 and Theorem 2.1].

2.2 Stable range in low dimension

The stable rank condition for vector bundles expresses the pretty general fact that the
nontrivial topology can be concentrated in a subvector bundle of minimal rank. This
minimal value depends on the dimensionality of the base space and on the category
of vector bundles under consideration. For complex (as well as real or quaternionic)
vector bundles the stable rank condition is a well-known result; see eg [29, Chapter 9,
Theorem 1.2]. The proof of the latter is based on an “obstruction-type argument” which
provides the construction of a certain maximal number of global sections [29, Chapter 2,
Theorem 7.1].

The latter argument can be generalized to vector bundles over spaces with involution
by means of the notion of Z,—CW-complex [1; 38] —see also [7, Section 4.5]. A Z,—
CW-complex is a CW—complex with a Z,—action that permutes the cells. The action
of Z» on each cell is either trivial or free. Since this construction is modeled after the
usual definition of CW—complex, just by replacing “points” with “Z,—points”, (almost)
all topological and homological properties valid for CW—complexes have their natural
counterpart in the equivariant setting. The use of this technique is essential for the
determination of the stable rank condition in the case of R—bundles [7, Theorem 4.25]
and Q-bundles [10, Theorems 4.2 and 4.5].

In this section we recall the results about the stable range for R—bundles and (even
rank) Q-bundles over low-dimensional base spaces. Indeed, these are the only cases
of interest in the present work.

Theorem 2.5 (stable condition in low dimension) Let (X, t) be an involutive space
such that X has a finite 7Z,-CW-complex decomposition of dimension d . Assume that
X7 is discrete. Then:

e Stable condition for R—bundles For all m € N,

Vecz (X, 1) =0 ifd =0,1,
Ve (X, 1) =~ Veck(X,7) if2<d<3.
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¢ Stable condition for Q-bundles For all m € N,
Vecy™(X,7) =0 ifd=0,1,
VeCZQm(X,r):VeCZQ(X,I) if2<d <5.

In particular, under the hypotheses of validity of Theorem 2.5, the dimensions d =0, 1
are trivial since in these cases only the trivial R— and Q-bundles (up to isomorphism)
exist. In the cases d = 2, 3, which are the really interesting cases for this work, it is
enough to study the sets Vec}-‘,(X ,7) and VCCZQ (X, 7).

2.3 The FKMM-invariant

Q-bundles can be classified, at least partially, by means of a characteristic class called
FKMM-—invariant. This topological object was first introduced in [19] and then studied
and generalized in [8; 10; 11]. In this section we review the main properties of the
FKMM-invariant.

Let (X, t) be an involutive space and X¥ C X its fixed point subset. In order to
introduce the FKMM-invariant one needs the equivariant Borel cohomology group of
(X, 7) with coefficients in the local system Z(1); ie

(2-3) Hy (X.Z(1)) i= H*(X~z, Z(1)).
More precisely, each equivariant cohomology group H éz (X,Z(1)) is given by the
singular cohomology group H/ (X, Z(1)) of the homotopy quotient

Xor:= X xS/ (1 X 0s0),

where O is the antipodal map on the infinite sphere S°°. The local system Z(1)
over (X, 7) can be identified with the product space Z(1) >~ X x Z made equivariant
by the Z,—action (x,[) — (t(x),—I). The fixed point subset X* is closed in X and
t—invariant. The inclusion 7: X* < X extends to an inclusionz: X* < X of the
respective homotopy quotients. The relative equivariant cohomology can be defined as

usual by the identification
Hp (X|XT.Z(1)) := H*(Xc| X%, Z(1)).

~T?

For a more detailed description of equivariant Borel cohomology we refer to Section 3.1
of [8].

The FKMM-invariant is a map
(2-4) k: Vecg" (X, 1) —> Hy (X|X",Z(1))
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which associates the isomorphism class [(€, ®)] of the Q-bundle (¢, ®) to a coho-
mology class x (€, ®) in the relative equivariant cohomology group H %2 (X| X7, Z(1)).
The construction of the map « was first described in [8, Section 3.3] and then generalized
in [10, Section 2.5]. In this section we will skip the details of the construction of the
FKMM-invariant and we will focus only on the relevant properties of the map (2-4):

(a) Isomorphic Q-bundles define the same FKMM-—invariant.

(b) The FKMM-invariant is natural with respect to equivariant maps.

(c) If (¢,®)is Q-trivial, then x (€, ®) = 0.

(d) The FKMM-invariant is additive with respect to the Whitney sum and the abelian
structure of H %2 (X|X7,Z(1)). More precisely,

k(€1 €2, 01 @ 02) =k(€1,01)  k(€2,02)

for each pair of Q—bundles (€1, ®;) and (€é,, ®3) over the same involutive
space (X, 7).

For the justification of these properties we refer to [10, Section 2.6].

2.4 Topological classification over low-dimensional FKMM-spaces

The FKMM-invariant is an extremely efficient tool for the classification of Q—bundles
in low dimensions. The first observation is that, in great generality, the FKMM-invariant
is injective in low dimensions, ie when the base space has dimension 0 < d < 3. More
precisely, as a consequence of [10, Theorems 4.7 and 4.9] one has that:

Theorem 2.6 (injectivity in low dimensions) Let (X, t) be an involutive space of
dimensiond =0, 1, 2, 3 which satisfies Assumption 2.1. Then the map (2-4) is injective.

This result suggests that in low dimensions the invariant ¥ can be used to label in-
equivalent classes of Q-bundles by means of elements of the cohomology group
H %2 (X| X7, Z(1)). The next natural question is about the surjectivity of the map «.
In this case it is possible to provide a general positive answer only if 0 <d < 2. As
proved in [11, Corollary 4.2 and Proposition 4.9] one has that:

Theorem 2.7 (surjectivity in dimension two) Let (X, t) be an involutive space of
dimension d = 2 which satisfies Assumption 2.1. Then

Vecsz(X’ = H%Z(X|Xf, Z(1)) forall m € N,

namely the map (2-4) is bijective.
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Theorem 2.7 can be juxtaposed with the stable condition described in Theorem 2.5,
Vecy(X.7) =0 forall me Nifd =0.1,
to obtain a complete classification of Q—bundles in dimension d =0, 1, 2.

In the case d = 3, the surjectivity of the FKMM-—invariant can be recovered by requiring
some extra properties for the base space (X, 7). In the next part of this work we will
mainly focus on spaces of the following type:

Definition 2.8 (FKMM-manifold) An involutive space (X, t) is called an FKMM-
manifold if

(a) X is a compact Hausdorff manifold without boundary;
(b) the involution t preserves the manifold structure;
(c) the fixed point set X T consists at most of a finite collection of points;

(d) Hz (X,Z(1)) =0.

Let us observe that an involutive space (X, t) which fulfills conditions (a) and (b)
in Definition 2.8 is a closed manifold which automatically admits the structure of a
Z,—CW-complex; see eg [39, Theorem 3.6]. Then an FKMM-manifold meets all
the requirements stated in Assumption 2.1. The conditions (c) and (d) are the crucial
ingredients for the definition of a topological FKMM-space according to the original
definition [8, Definition 1.1]. The requirement of a manifold structure has a twofold
justification: first of all it allows the use of a technical tool (the slice theorem) in the
proof of the crucial result [11, Proposition 4.13]; second, the main aim of this work is
the study of the classification of Q-bundles over involutive manifolds (see Section 3).
The manifold structure and the map t are tacitly assumed to be of some given regularity
(eg C" or smooth). The next result provides the topological classification of Q—bundles
over low-dimensional FKMM-manifolds.

Theorem 2.9 (classification of FKMM-manifolds) Let (X, t) be an FKMM-mani-
fold of dimension 0 < d < 3. Then, forallm € N,

Veeg"(X.71) =0 ifd=0,1,
Vecy"(X.7) ~ Hz (X|XT.Z(1)) ifd =2.3,

and the isomorphism (in the nontrivial cases) is given by the FKMM-—invariant k .
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The cases d = 0, 1 are a consequence of the stable condition described in Theorem 2.5.
The case d = 2 follows from Theorem 2.7. Finally the new case d = 3 is proved in
[11, Proposition 4.13].

Let us observe that Theorem 2.9 also holds trivially in the case of a free involution,
that is, when X* = &. In this case, as a consequence of condition (d) in Definition 2.8
one has that Héz (X|@,Z)) ~ H%z (X,Z(1)) = 0. Therefore, as a consequence
of Theorem 2.9, one concludes that an FKMM-manifold with free involution only
supports the trivial Q-bundle. In order to focus on the nontrivial situations we will
assume henceforth that d = 2,3 and X* # @.

When (X, 7) is an FKMM-manifold, the cohomology group H%Z(X |XT,Z(1)) has
an explicit representation in terms of equivalence classes of maps. As proved in [8,
Lemma 3.1] one has the isomorphism

(2-5) Hz, (X|XT,Z(1)) >~ Map(X ", {£1})/[X, U(1)]z,.

where Map(X®, {£1}) ~ 7> is the set of maps from X° to {1} (recall that X*
is a set of finitely many points) and [X, U(1)]z, denotes the set of classes of Z,—
homotopy equivalent equivariant maps between the involutive space (X, 7) and the
group U (1) endowed with the involution given by complex conjugation. The group
action of [X, U(1)]z, on Map(X?, {£1}) is given by restriction and multiplication.
More precisely, let [u] € [X, U(1)]z, and s € Map(X*, {£1}). Then the action of [u]
on s is given by [u](s) := u|x< - 5. By combining Theorem 2.9 with the isomorphism
(2-5) one gets the following result:

Proposition 2.10 Let (X, t) be an FKMM-manifold of dimension d = 2,3 and
assume that X' # &. Then, the FKMM-invariant « induces the isomorphism

VeczQ’"(X, 1) >~ Map(X*,{£1})/[X,U()]z, forall m e N.
In summary, the content of Theorem 2.9 and Proposition 2.10 is the following: Every

Q-bundle (¢, ®) over an FKMM-space (X, t) of dimension d =2, 3 such that X* # &
is classified by its FKMM-invariant « (€, ®). The latter can be represented as a map

5(¢,0)- X' — {:I:l}

modulo the (right) multiplication by the restriction over X of an equivariant function
u: X — U(1). The map s, @) is called the canonical section associated to (€, ®) and
its construction is described in [8, Section 3.2] or [10, Section 2.2].
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2.5 The Fu-Kane-Mele index

Let us focus on the nontrivial case of an FKMM-manifold (X, t) of dimension d =2, 3
such that X' # @. At the end of last section we observed that every Q—bundle (€, ®)
over (X, 7) is classified by the canonical section s¢¢ @) € Map(X®, {£1}) modulo the
action (multiplication and restriction) of an equivariant map u: X — U(1). Clearly
(€, ®) is equivalently classified by any other map ¢ € Map(X7*, {£1}) in the same
equivalence class of s(¢ @), namely by any representative of

[sce,0)] € Map(X ™, {£1})/[X, U(1)]z,.

Consider now the product sign map

(2-6) IT: Map(X©, {£1}) — {£1}

defined by

@2-7) @)= [] ¢(). ¢eMap(X®, {£1}).
ijXT

The value I1(¢) is called the Fu—Kane—Mele index of ¢. There is no reason to suspect
a priori that the Fu—Kane—Mele index is well defined on the equivalence classes
in Map(X°®,{£1})/[X,U(1)]z,. In fact, if ¢; and ¢, were two representatives of
the same class [¢] € Map(X*, {£1})/[X, U(1)]z, related by an equivariant function
u: X — U(1) which takes an odd number of times the value —1 on X7, then one
would have that [1[¢1] = —TI1[¢>]. For this reason the following result, proved in [8,
Proposition 4.5 and Theorem 4.2] is quite surprising, at first glance, from a topological
point of view.

Theorem 2.11 (Fu-Kane-Mele formula, d = 2) Let (X, t) be an oriented two-
dimensional FKMM-manitold in the sense of Definition 1.1. Then (X, t) is an FKMM-
manifold according to Definition 2.8. Moreover,

(2-8) HZ,(XIXT,Z(1)) = Zs,

where 7., is identified with the multiplicative group {£1}. Moreover, any Q—bundle
(€, ®) over (X, t) is classified by the FKMM-invariant x (€, ®) € {1} which can
be computed by « (€, ®) = I1(¢), where I1 is the product sign map (2-6) and ¢ is

any representative of the class [s(¢ @)] € Map(X*,{£1})/[X, U(1)]z, of the canonical
section.

Proof (sketch) Clearly conditions (a’), (b") and (¢’) of Definition 1.1 imply conditions
(a), (b) and (c) of Definition 2.8. Moreover, Proposition 4.4 of [8] assures that (a’), (b’)
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and (¢") imply condition (d) of Definition 2.8, ie H %2()( ,Z.(1)) = 0 along with isomor-
phism (2-8). The rest of the claim is proved in [8, Proposition 4.5 and Theorem 4.2]. O

As a byproduct of Theorem 2.11 one has that the Fu—Kane—Mele index is unambiguously
defined on the whole equivalence class [s( @)], and the Q-bundle (€, ®) is classified,
up to isomorphism, by the sign I1(¢) € {£1} where ¢ € Map(X*, {£1}) is any map
which differs from s @) by the multiplication with the restriction of an equivariant
map u: X — U(1).

Although with some differences, the next result pairs Theorem 2.11 in dimension d = 3.
It can be considered one of the main achievements of this work.

Theorem 2.12 (Fu-Kane-Mele formula, d = 3) Let (X, ) be an FKMM-manifold
of dimension d = 3 with X* # &. Assume in addition that:

(e) X is oriented and t reverses the orientation.

Let (¢, ®) be a Q-bundle over (X, t) with FKMM-invariant k (¢, ®) represented by
the class [s,0)] € Map(X®,{£1})/[X, U(1)]z, according to Proposition 2.10. Then
the sign

(2-9) ks(€, 0) := T[]

is independent of the choice of the representative ¢ € [s(, @)] and provides a topological
invariant for (€, ©).

Theorem 2.12 is a direct consequence of Theorem 1.3, which will be proved in
Section 3.7. It is worth noting that even though Theorems 2.11 and 2.12 seem to be of
topological nature, they need the manifold structure of X. In particular, Theorem 1.3
relies on differential geometric techniques.

In general the quantity x5(€, ®) in Theorem 2.12 does not completely specify the
FKMM-—invariant of (€, ®), but only a part of it. We refer to «5(€, ®) as the strong
component of the FKMM-—invariant.

2.6 Alternative presentation of “quaternionic’’ vector bundles in low
dimensions

This section is focused on an alternative description of rank 2 Q-bundles over low-
dimensional involutive spaces (X, t) such that H %2 (X,Z(1)) = 0. It is worth mention-
ing that under these conditions the complex vector bundle underlying each Q—-bundle
is necessarily trivial [8, Proposition 4.1].
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Let Map(X,SU(2)) be the space of (smooth) maps from X into SU(2). Given

& € Map(X,SU(2)), let T*& be the map defined by t*£(x) := &((x)) for all x € X.

The space of equivariant maps from X into SU (2) is defined by

(2-10) Map(X,SU(2))z, := {§ € Map(X,SU(2)) | t*6 = £},

The set of Z,—homotopy classes of Z,—equivariant maps will be denoted by
[X.SU®2)]z,.

Let us consider also the groups

Map(X, U(2))z, := {¥ € Map(X, U(2)) | det(z*y) = det(¥)},

Map(X, U(1))z, := {¢ € Map(X, U(1)) | t*¢ = ¢},

where ¥ and ¢ are the complex conjugates of ¥ and ¢, respectively, and the group

2-11)

structures are given by pointwise multiplication. The related sets of equivalence classes
under Z,-homotopy are denoted by [X, U (2)]’Zz and [X, U(1)]z,, respectively.

By construction one has an inclusion Map(X,SU(2))z, C Map(X, U(2))/Zz. More-
over, the group Map(X, U(Z))/Z2 acts on Map(X,SU(2))z, as follows: given ¥ €
Map(X, IU(2))/Z2 let Gy be the automorphism of Map(X, SU (2))z, given by

(2-12) Gy (§) ==~y HEQY Q. §eMap(X.SU2)z,

where Q is the (size 2 x 2) matrix (2-2). In fact, given that

det(t*y 1) = det(t*y) ™! = det(y) "L,

it follows that det(Gy, (€)) = det(§) = 1. Moreover, the equality TGy (£§) = Gy (§) !
follows from a direct calculation along with the equality Q& = gQ valid for maps with
values in SU (2).

The main aim of this section is to prove the following result:

Theorem 2.13 Let (X, t) be an involutive space of dimension 0 < d < 2 satisfying
Assumption 2.1. Assume in addition that Héz (X,Z(1)) =0 in the case d = 2. Then
there is a natural bijection

Vecp (X, 1) ~ [X.SUQ2)]z,/[X. U(D]z,.

where the action of [X, U(1)]z, on [X,SU(2)]z, is defined as follows: given [¢] in
[X,U(1)]z,, let L{g) be the automorphism of [X,SU(2)]z, defined by

Lig) (€] := [(T:)(Z) (1)) ; ((1) 2)]
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We start with a couple of preliminary results which are valid in dimension 0 < d < 3.

Lemma 2.14 Let (X, 7) be a low-dimensional involutive space satisfying Assumption
2.1. Assume in addition that H%z (X,Z(1)) = 0 in the case d = 2, 3. Then there is a
natural bijection

(2-13) Vecp (X, 7) >~ Map(X, SU(2))z,/Map(X, U(2))7,

where the action of Map(X, U (2))’Z2 on Map(X,SU(2))z, is given by the automor-
phisms (2-12).

Proof Let 7:€ — X be arank 2 Q-bundle. The low-dimensionality of the base
space implies that the underlying complex vector bundle € is isomorphic to the product
bundle X x C? [8, Proposition 4.1]. The induced Q—structure ® on X x C? is then
expressed through a function £: X — U(2) of the form ©: (x,v) — (t(x), £(x)Qv)
and the “quaternionic” condition is guaranteed by the constraint t*§ = —Q§ “10. Let
us introduce the subset

Map(X, U(2))z, := {£ e Map(X,U(2)) | t*& = —Q& "' Q} C Map(X, U (2)).

Two Q-structures © and ® on X x C2, induced respectively by the maps £ and &’ in
Map(X, U(2))z,, are isomorphic if there exists a map ¥ € Map(X, U(2)) such that
t*YE Q =EQ. Consider the action of Map(X, U (2)) on Map(X, U (2)) 7., defined as
follows: for any ¥ € Map(X, U(2)) let Gy, be the automorphism of Map(X, U(2))z,
given by the formula (2-12). From the argument above it follows that

Vecy (X, 1) >~ Map(X, U(2))z,/Map(X, U(2))

where the equivalence relation is induced by the action of the automorphisms Gy, .
Since H %2 (X, Z(1)) = 0 by hypothesis, any “real” line bundle over X is automatically
trivial [30]. This applies in particular to the determinant line bundle of the Q—bundle
(€, ®). The triviality of the “real” structure (x,u) — (t(x),det(§)(x)u) on X x C
implies the existence of a map ¢: X — U(1) such that det(§) = t*¢¢. Consider the
map ¥ € Map(X, U(2)) given by

_ (¢ 0
ww=("0"1).
A direct computation shows that
(2-14) det(Gy, (§)) = det(t* o) ! det(£) det(o) ' = 1.

As a result, it is possible to choose £ € Map(X, U(2))z, N Map(X,SU(2)) as the
representative for the element of VCCZQ (X, 7). Since it holds that —Q&Q = & for maps
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with values in SU (2), one has that the intersection Map(X, U (2))z, "Map(X, SU(2))
coincides with the set Map(X, SU(2))z, as described by (2-10). Finally, it is straight-
forward to see that Map(X, IU(Z))/Z2 described by (2-11) is the maximal subgroup of
Map(X, U(2))z, preserving such representatives. |

Lemma 2.15 Under the hypotheses of Lemma 2.14 there is a natural bijection

(2-15) Vech (X, 1) ~ [X,SUQ)]z,/[X. U7,

Proof Consider the natural surjection onto the equivalence classes
w:Map(X,SU(Q2))z, — [X.SUQ2)]z,.

The action of Map(X, U (2))’Zz on Map(X,SU(2))z, given by (2-12) induces an action
of the group [X, [U(Z)]/Zz on [X,SU(2)]z,. Under these actions, @ is equivariant, and
one gets

Vee (X. 7) = Map(X. SU(2)z, /Map(X. U(2), Z> [X.SUQ@)lz, /[X. U@)ly,.
The latter is a bijection. Indeed, given § € Map(X,SU(2))z,, let €¢¢ = X x C? be the
Q-bundle of rank 2 with Q—structure given by (x, v) — (t(x), £(x) Q). In view of

the homotopy property of Q—bundles [8, Theorem 2.3], if § and &’ are Z,—homotopy
equivalent, then €¢ and € are isomorphic. a

We are now in position to complete the proof of Theorem 2.13. For this purpose the
restriction to dimensions d < 2 will be crucial.

Proof of Theorem 2.13 We will begin with the case m = 1. Consider the exact
sequence

1> [X,SUQ)] - [X. U@z, <5 [X. U]z, > 1
where 1 is induced by the natural inclusion Map(X, SU (2)) — Map(X, [U(2))’Zz and

det stands for the determinant. The latter sequence is right-split in view of the map
s: (X, U()]z, = [X, IU(Z)]’Zz induced (with a slight abuse of notation) by

(2-16) Map(X,U(1))z, > ¢ +—> (g’ (1)) € Map(X, U(2))z,.

Indeed, it is straightforward to check det o s = Id. Consequently, one has a group
isomorphism
[X. U]z, = [X.SU@)]x[X. U(D)]z,.

where x denotes the semidirect product. Since 73 (SU(2)) =0if k£ =0, 1, 2, it follows
that [X, SU (2)] = 0 whenever X has dimension 0 < d < 2. In these three cases, the
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isomorphism above reduces to [X, IU(2)]’Zz ~ [X,U(1)]z, and the combination of the
action G described by (2-12) with the homomorphism s in (2-16) produces the action
L of [X,U(1)]z, on [X,SU(2)]z, as described in the claim. In view of the stable
rank condition described in Theorem 2.5, the bijection generalizes to

Vecg™(X.7) ~ [X.SU©2)z,/[X. U(1)]z,. meN

and this concludes the proof for the general case. |

Remark 2.16 (higher rank case) A representative map £: X — SU (2) for a given
Q-bundle (€, ®) of rank 2m can be constructed in this way: The Q-structure of
(¢, ®) is coded in an equivariant map &’: X — SU (2m) which, for instance, can be
constructed from a global frame according to the prescription described in Remark 2.19.
The stable rank condition implies that £’ can be always reduced to the form

(80
E - (O ]1@2(111—1))

up to conjugation with an equivariant map with values in U (2m). The reduced map
&: X — SU(2) obtained in this way provides a representative of the Q-bundle (¢, ®)
as an element of the group [X,SU(2)]z,/[X, U(1)]z,.

2.7 The FKMM-invariant for oriented two-dimensional
FKMM-manifolds

Throughout this section we will assume that the pair (X, t) is an oriented two-
dimensional FKMM-manifold in the sense of Definition 1.1. The use of the letter X
instead of X is motivated to easier connect the results discussed here with the theory
developed in Section 3.4 and 3.6

When (X, 7) is an oriented two-dimensional FKMM-manifold, two presentations for
VeCZQ (X, 7) are available. The first description,

Vech (2. 1) > Map(E°, {£1})/[Z, U(D)]z,.
was proved in Proposition 2.10 and uses the FKMM-invariant. The second presentation,
Vech (2, 7) = [£,SUQ)]z,/[Z, U(1)]z,,
comes from Theorem 2.13. Therefore, there must exist an isomorphism of groups

[E’ SU(Z)]Zz/[Ev U(l)]Zz = MaP(EI’ {il})/[z’ U(l)]Zz
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which associates the map § € Map(X, SU(2))z, with the FKMM-invariant of the O—
bundle € classified by £. Such a map can be constructed by means of the Pfaffian Pf;
see Proposition 2.18.

The evaluation of a map § € Map(X, SU(2))z, on a fixed point x € X7 is an element
of SU(2) which satisfies £(x) = £(x)™!. This implies that £(x) = +1¢2 if x € X7.
Moreover, every matrix &(x) € SU (2) satisfies the identity Q£ (x) = £(x) Q. Then, on
a fixed point x € X7, the matrix £(x)Q = £+ turns out to be skew-symmetric and
the Pfaffian Pf(&(x) Q) is well defined. In particular one has that

—Pf(S(X)Q)= +1 ifé(x):—Fﬂ(cz,

-1 ifé(x) =—1¢e2.
This suggests st