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Mod 2 power operations revisited

DYLAN WILSON

In this mostly expository note we take advantage of homotopical and algebraic
advances to give a modern account of power operations on the mod 2 homology of
E1–ring spectra. The main advance is a quick proof of the Adem relations utilizing
the Tate-valued Frobenius as a homotopical incarnation of the total power operation.
We also give a streamlined derivation of the action of power operations on the dual
Steenrod algebra.
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Introduction

As someone who entered college at about the time that Netflix started automatically
playing the next episode of a series, I cannot imagine discovering or verifying the
Adem relations using the tools available to Adem [1].1 I even find it hard to remember
the Adem and Nishida relations.

1It was precisely while trying and failing multiple times to prove the Adem relations in equivariant
homotopy theory that, in an act of true laziness, I stumbled upon the technique explained in this note.
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Luckily, there is a useful mnemonic device which utilizes the total power operation

Q.t/ WD
X
i2Z

Qi t i :

Here t is an indeterminate, and the operation Qi W A�! A�Ci acts on the homotopy
of any E1–F2–algebra A. The total power operation then produces a map

Q.t/ W A�! A�..t//:

We extend Q.t/ to a ring map

Q.t/ W A�..s//! A�Js; tKŒs�1; t�1�

by requiring that

Q.t/.s/D sC s2t�1:

With this convention, it is possible to restate the Adem relations, following Bullett and
Macdonald [5], Steiner [16], and Bisson and Joyal [3], as:

� Adem relations For any x 2 A�, Q.t/Q.s/x is symmetric in s and t .

The usual Adem relations are recovered using a trick with residues which we will
review in Section 4.3. Steiner’s proof that the above identity holds is to reduce it to one
of the expressions met in the proof of the Adem relations as in Steenrod [15, page 119]
and May [12, 4.7(e,g,i)].

In the case of Steenrod operations acting on the cohomology of a space X , there is
a more conceptual argument due to Segal [5, Section 4]. One can use the diagonal
map to produce a version of the total power operation taking values in H�.X �B†2/.
Indeed, this is one of the earlier constructions of Steenrod operations [15, Chapter VII].
The iterated total square then takes values in H�.X �B†2 �B†2/ D H�.X/Œs; t �
but factors through the total fourth power which takes values in H�.X �B†4/. The
automorphism swapping s and t arises as an inner automorphism of †4 so the formula
for the iterated square must be symmetric in s and t .

Our primary goal is to explain how the Tate diagonal (Section 2.3) on spectra allows for
a similar argument for general power operations. The reader could probably reconstruct
the argument themselves just from the observation that the total power operation is the
effect on homotopy of the (non–F2–linear) map of spectra

A �
�! .A˝F2

A/t†2 ! At†2 :

Algebraic & Geometric Topology, Volume 23 (2023)
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In fact, we take this as a definition and develop all the basic properties of power
operations efficiently from there. We hope that this note will give a mnemonic for the
proofs of the standard identities for power operations in much the same way that the
work of Steiner [16], Bisson and Joyal [3], and Baker [2] has provided mnemonics for
their statements.

Outline

In Sections 1 and 2 we review the facts we need about the Tate construction and the Tate
diagonal, following Nikolaus and Scholze [14]. In Section 3 we give three definitions
of the operations Qi : the classical one, one due to Lurie [10, Section 2.2], and one in
terms of the Tate-valued Frobenius. We then explain how to recover the first properties
of power operations.

In Section 4 we turn to the Adem relations. The key thing to prove is that having a
†4–equivariant map A˝4 ! A produces a lift of the iterated total power operation
through the Frobenius A! At†4 . This takes a little bit of work but the reader could
come up with the argument themselves if they remember to use the universal property
of the Tate diagonal amongst natural transformations of exact, lax symmetric monoidal
functors over and over again. Indeed, this proof is an excellent illustration of the
computational utility of establishing such universal properties in the first place.

Finally, in Section 5, we show how the Bisson–Joyal and Baker formulations of the
Nishida relations arise naturally from the perspective of the Tate-valued Frobenius. We
end by explaining how to recover Steinberger’s formulas [4, Section III.2] for the action
of power operations on the dual Steenrod algebra. This last step is mostly algebraic,
and essentially due to Bisson and Joyal, but we have included it for completeness.

Acknowledgements The author is grateful to Tom Bachmann for comments on an
earlier draft, and to the referee for careful reading and helpful suggestions.

1 The Tate construction

We review the Tate construction (Section 1.1) and its universal property (Section 1.3)
as well as the important Warwick duality (Section 1.2) of Greenlees [8] which allows
an alternative computation of the Tate construction. We end (Section 1.4) by spelling
out what happens in the case G D†2.

Algebraic & Geometric Topology, Volume 23 (2023)
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1.1 Definitions

Let G be a finite group and k an E1–ring, and denote by

ModhGk WD Psh.BGIModk/

the1–category of Borel G–modules. There is a fully faithful embedding

ModhGk !ModGk

from Borel G–modules to modules over k in genuine G–spectra whose essential image
consists of the Borel complete G–modules, ie those X such that X ! F.EGC; X/ is
an equivalence. Let F be a collection of subgroups closed under subconjugacy, and
EF the G–space characterized up to homotopy by the requirement

EFH D
�
� if H 2 F ;
¿ if H … F ;

and define fEF as the cofiber of EFC ! S0. Then the F–Tate spectrum of a Borel
G–spectrum can be computed as [7, page 443]

X tF D .fEF ^F.EGC; X//G ;
where the right-hand side is computed in genuine G–spectra.

It will be more convenient for us to think of the above as a computation and not a
definition. Instead, we opt to define the Tate construction by a universal property,
following [14].

To that end, let
.ModhGk /F�ind �ModhGk

be the smallest full, stable subcategory containing all objects which are left Kan
extended from diagrams BH ! Sp for some H 2 F .

Recall [14, Section I.3] that, associated to any exact functor F W ModhG
k
! E to a

presentable stable1–category E , there is a natural transformation

F ! LFF

which is initial amongst natural transformations to exact functors which annihilate the
subcategory .ModhG

k
/F�ind. Concretely, LFF is specified by the formula [14, I.3.3]

LFF.X/D .ModhGk /F�ind=XY colimF.cofib.Y !X//:

Algebraic & Geometric Topology, Volume 23 (2023)
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Definition 1.1.1 With notation as above, we define

.�/tF D LF ..�/
hG/ WModhGk !Modk :

More generally, if G �G0, we define

.�/tF D LF ..�/
hG/ WModhG

0

k !Mod
hWG0G

k

where WG0G DNG0G=G is the Weyl group of G in G0.

Example 1.1.2 When F consists only of the trivial subgroup, we denote X tF by X tG .
This can be computed as the cofiber of the trace map XhG!XhG .

Example 1.1.3 Suppose G � †n is a subgroup and let F D T be the family of
subgroups of G which do not act transitively on f1; : : : ; ng. When G D Cn this
coincides with the more commonly seen family of proper subgroups, and when GDCp
this coincides with the family consisting of only the trivial subgroup.

1.2 Warwick duality

We can dualize the construction in the previous section and define the opposite F–Tate
spectrum2 as

X t
opF
WD holim

..ModhG
k
/F�ind/X=3Y

fib.X ! Y /hG :

Greenlees proved [8, Section B] that this construction is not really new:

Theorem 1.2.1 (Warwick duality) There is a canonical equivalence

X t
opF
'†�1X tF :

In particular, we obtain extra functoriality: if F � F 0, then the original construction
produces a canonical map .�/tF

0

! .�/tF while the opposite construction, composed
with suspension, produces a map .�/tF ! .�/tF

0

.

1.3 Monoidal structure

We will make much use of the following excellent description of the lax symmetric
monoidal structure on the Tate construction.
2We stole this name from [6].

Algebraic & Geometric Topology, Volume 23 (2023)
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Proposition 1.3.1 There is a natural transformation of lax symmetric monoidal func-
tors

.�/hG! .�/tF

which is initial amongst natural transformations of lax symmetric monoidal functors
with target an exact functor that annihilates .ModhG

k
/F�ind.

This follows from the more general result [14, I.3.6] about the relationship between
Verdier quotients and lax symmetric monoidal structures.

1.4 An example

Let k be a field of characteristic 2. Then

��k
h†2 ' H��.B†2; k/D kJtK;

where t 2 ��1kh†2 is the Stiefel–Whitney class of the canonical line bundle. The Tate
construction has the effect of inverting t and we can compute

��k
t†2 D k..t//;

the algebra of Laurent series over k.

On the other side, the homotopy orbits kh†2
have a dual basis on homotopy

��kh†2
D kfe0; e1; : : :g;

where ei is the linear dual of t i . The trace map

kh†2
! kh†2

is zero on homotopy groups and so we have a short exact sequence

0! kJtK! k..t//! ��†kh†2
! 0

which identifies the last term as the quotient k..t//=kJtK. This provides another basis
for the homotopy of kh†2

, and the two are related by the correspondence

ei $ t�i�1:

Under this interpretation, the composite map

kt†2 !†kh†2
!†k

is given by sending a Laurent series g.t/D
P
ai t

i to the residue a�1.

Algebraic & Geometric Topology, Volume 23 (2023)
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Finally, Warwick duality in this context translates to the computation [9, 16.1]

†�1kt†2 D holim
n
.†�n�k/h†2

D holim
n

k ^ .RP1/�n� D holim
n

k ^RP1�n;

where � is the sign representation.

2 Tate powers

The source of power operations is the symmetry present on X˝n. In Section 2.1 we
review several constructions based on this symmetry. In Section 2.2 we explain how
the construction X 7! .X˝n/tT arises as a Goodwillie derivative; in particular this
construction is exact. In Section 2.3, following [14], we describe the spectral analog of
the diagonal map we will use when defining power operations.

2.1 Variants of extended powers

Let C be a symmetric monoidal1–category. Then there is a natural functor

C! Ch†n D Fun.B†n; C/
given as the composite

C ı
�! .C�n/h†n ! Ch†n

where the latter map is a choice of tensor product. In other words, for every X 2 C, the
object X˝n has a †n–action.

If C admits homotopy limits and colimits, we can form both a “symmetric” power of
an object and a “divided” power of an object. We do this more generally for a fixed
subgroup G �†n.

Definition 2.1.1 We define symmetric and divided power functors as

SymG.X/ WD .X˝n/hG ; �G.X/ WD .X˝n/hG :

Finally, if C DModk is the1–category of k–modules over an E1–ring k, then:

Definition 2.1.2 Let G �†n be a subgroup. We define the Tate power of X as

TG.X/ WD .X˝n/tT

where T is the family of nontransitive subgroups of G.

In each case we abbreviate G as n if G D†n.

Algebraic & Geometric Topology, Volume 23 (2023)
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2.2 Tate powers as a Goodwillie derivative

Let C and D be stable, presentable1–categories. Then the full subcategory

Funex.C;D/� Fun.C;D/

admits a left adjoint [11, 6.1.1.10], the 1–excisive approximation

P1 W Fun.C;D/! Funex.C;D/:

In the case where F.0/D 0, we may compute P1F as [11, 6.1.1.23 and 6.1.1.27]

P1F.X/D hocolim
n

�nDF.†
n
CX/:

I believe the following is well known but do not know a reference.

Proposition 2.2.1 With notation as in Section 2.1, there is an equivalence

P1�
G
' TG :

Proof Let V denote the standard representation of †n on Rn and V the reduced
standard representation. By the formula above,

P1�
G.X/D hocolim

j
�j�G.†jX/

' hocolim�j .†jVX˝n/h†n

' hocolim.†jVX˝n/h†n

' hocolim.SjV ^F.EGC; X˝n//G

' .S1V ^F.EGC; X˝n//G :

The last identification used that genuine fixed points commute with all homotopy limits
and colimits. Finally, observe that S1V is a model for fET .

The same argument computes the Goodwillie coderivative of SymG :

Proposition 2.2.2 The Goodwillie coderivative of SymG is ..�/˝n/t
opT D†�1TG .

This last observation motivates the excellent account of stable power operations given
by Glasman and Lawson [6].

2.3 The Tate diagonal

Recall the following result of Nikolaus [13, Corollary 6.9]:

Proposition 2.3.1 The forgetful functor U WModk! Sp is initial amongst exact , lax
symmetric monoidal functors to spectra.

Algebraic & Geometric Topology, Volume 23 (2023)
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In the previous section we identified TG as a Goodwillie derivative. In particular, TG
is exact. It also has a lax symmetric monoidal structure, being a composite of lax
symmetric monoidal functors. So we get the following:

Corollary 2.3.2 There is an essentially unique natural transformation of lax symmetric
monoidal functors U ! UTG .

We refer to this map �G WM ! TG.M/ as the Tate diagonal.

Remark 2.3.3 This is not the same as the Tate diagonal in [14] unless k D S0, since
we use the tensor product in Modk . Of course there is an evident relationship between
the two: the Tate diagonal above is just the composite

M ! .M^n/tT ! .M˝n/tT :

Warning 2.3.4 The Tate diagonal is not k–linear.

3 Power operations

We now fix a field k of characteristic 2 and let Modk be the1–category of k–module
(spectra). In Section 3.1 we serve up power operations three ways, and then verify they
agree in Section 3.5. In between we verify the first properties of power operations up
to the Cartan formula. We emphasize that this section does not show off the utility of
the approach via the Tate-valued Frobenius, but we have included the proofs since they
are still pleasant.

3.1 Three definitions of operations

First we specify the objects on which power operations will act.

Definition 3.1.1 We say that A 2Modk is equipped with a symmetric multiplication
if we have specified a map Sym2.A/! A of k–modules. Equivalently, if we have
specified a map A˝2! A in Mod

h†2

k
.

Remark 3.1.2 A k–module with a symmetric multiplication is the same as an object
of C.2;1/ in the notation of [12].

To give the classical construction of power operations we’ll need a computation.

Algebraic & Geometric Topology, Volume 23 (2023)
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Lemma 3.1.3 For any integer n there is a canonical equivalence

Sym2.†nk/'†2nkh†2
:

Proof The object .†nk/˝2D†nV k in Mod
h†2

k
corresponds to a map B†2!Mod

h†2

k

which is determined by a map

†2! Endk.†
2nk/' Endk.k; k/' k

of E1–monoids. The map factors through the units k�, but k has characteristic 2
and hence no nontrivial square roots of unity. So the action is trivial and the result
follows.

The following construction is the current standard definition of power operations.

Construction 3.1.4 (hands-on power operations) Let A be a k–module equipped
with a symmetric multiplication. Given x 2 �nA and i � n, define Qi .x/ 2 �nCiA as
the composite

SnCi
†2nei�n
�����!†2nkh†2

' Sym2.†nk/ Sym2.x/
�����! Sym2.A/! A:

This has the benefit of generalizing well to power operations for other cohomology
theories, but in the case of mod 2 cohomology there is a more uniform option. The
author learned this next approach from [10, Section 2.2] and has not found an earlier
reference, but a more recent and detailed account can be found in [6].

First we need a preliminary observation. Let T 02 WModk!Modk denote the left Kan
extension of the restriction of T2 to the full subcategory of compact objects. This
endomorphism commutes with all colimits and so — see [11, 7.1.2.4] — there is a
bimodule B and an equivalence T 02.M/'B˝M . By evaluating onM D k we deduce
that B D kt†2 as a left k–module. Notice, by construction, we have a natural map
B˝M ! T2.M/.

Construction 3.1.5 (stable power operations) Let A be a k–module equipped with a
symmetric multiplication. The element t�i�1 2 �iC1kt†2 extends to a right module
map †ik!†�1B . We now define Qi W†iA! A as the (non–k–linear!) composite

†iAD†ik˝A!†�1B˝A!†�1T2.A/! Sym2.A/! A:

This construction emphasizes the role of †�1kt†2 as acting on A, but we can also
record this information in a kind of coaction. For that we first need a computation.

Algebraic & Geometric Topology, Volume 23 (2023)
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Lemma 3.1.6 For any k–module M equipped with the trivial †2–action , there is a
canonical equivalence of ��kt†2–modules

��M
t†2 'M�..t//:

Proof It suffices to prove ��M h†2 'M�JtK. From the skeletal filtration on B†2,

M h†2 ' holimF.skjB†2; k/˝M

and ��F.skjB†2; k/˝M DM�Œt �=tjC1. The transition maps are surjective so there
is no lim1 term in the Milnor exact sequence and the result follows.

Construction 3.1.7 (Tate-valued Frobenius) Let A be a k–module equipped with a
symmetric multiplication. Define the total power operation as the composite

Q.t/ W A
�2
��! T2.A/D .A

˝2/t†2 ! At†2 :

We then define Qi W A!†�iA as the composite

A! At†2
t�i�1

���!†�i�1At†2 !†�iAh†2
!†�iA:

In Section 3.5 we will verify that the two definitions of the endomorphismQi W†iA!A

coincide and that each induce the operation Qi W �nA! �nCiA on homotopy. For now
we will assume this compatibility.

Remark 3.1.8 (naturality of Frobenius) The Tate-valued Frobenius can be defined
for any spectrum equipped with a symmetric multiplication, as the composite

A! .A^A/t†2 ! At†2 :

Since the k–module Tate diagonal factors through the spectrum Tate diagonal, we learn
that the Tate-valued Frobenius only depends on the underlying E1–ring. In particular,
the Tate-valued Frobenius is natural for maps A! B of E1–rings, independent of
any compatibility with k–module structures.

3.2 First properties

The first properties follow easily from the Tate-valued Frobenius description, with the
exception of the squaring property, which is most readily seen through the classical
definition.

Proposition 3.2.1 The operations Qi satisfy the following properties:

(i) Additivity Qi .xCy/DQi .x/CQi .y/.

Algebraic & Geometric Topology, Volume 23 (2023)
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(ii) Suspension �Qi .x/DQi .�x/.

(iii) Squaring Qjxj.x/D x2.

(iv) Instability Qi .x/D 0 if i < jxj.

(v) Action on cohomology If A D F.X; k/, where X is a pointed space , then
Qi .x/D 0 for i > 0 and Q0.x/D x.

Proof (i) Additivity Since Qi is induced by a map of spectra, it is automatically
additive.

(ii) Suspension The Tate diagonal is a natural transformation of exact functors, so
�2;�A'��2. Exactness of T2 then ensures that�T2.A/!T2.�A/ is an equivalence,
and composing with the multiplication on �A identifies �Q.t/ with the total power
operation for �A, which was to be shown.

(iii) Squaring Using Construction 3.1.4, observe that Qjxj.x/ is the image of the
bottom class in Sym2.†nk/, which is the left vertical arrow in the diagram

†nk˝†nk

��

x˝x
// M ˝M

��

Sym2.†nk/ // Sym2.M/

The result follows by chasing the diagram clockwise.

(iv) Instability By (ii) we may replace A by �jxj�iA and thereby reduce to the case
that AD�B and i D jxj. By (iii), Qix D x2, but the multiplication on �B is always
trivial, since S1! S1 ^S1 is null.

(v) Action on cohomology By naturality we may replace X withK.k; n/ and x with
the fundamental class. The vanishing now follows for degree reasons. To check that
Q0.x/D x we may reduce, by naturality, to the case X D Sn and then, by stability, to
X D S0. The result now follows from the equivalence F.S0; k/D k.

3.3 Cartan formula

IfA andA0 are equipped with symmetric multiplications thenA˝A0 inherits a canonical
symmetric multiplication as well. In this case we have an external Cartan formula:

Proposition 3.3.1 (Cartan formula)

Q.t/.x˝y/DQ.t/.x/˝Q.t/.y/ 2 .A˝A0/..t//:

Algebraic & Geometric Topology, Volume 23 (2023)
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Proof The formula is equivalent to commutativity of the square

A˝A0 // T2.A/˝T2.A
0/ //

��

At†2 ˝ .A0/t†2

��

A˝A0 // T2.A˝A
0/ // .A˝A0/t†2

The left square commutes because the Tate diagonal is a transformation of lax symmetric
monoidal functors. The right-hand square commutes by naturality of the lax structure
map

.�/t†2 ˝ .�/t†2 ! .�˝�/t†2

applied to .A˝A0/˝2 ' A˝2˝A
0˝2! A˝A0.

Corollary 3.3.2 Qn.x˝y/D
X

iCjDn

Qi .x/˝Qj .y/.

As a corollary of the proof, we see:

Corollary 3.3.3 If A˝A! A is a map of objects equipped with symmetric multi-
plications , then Q.t/ W A! At†2 is also a map of objects equipped with symmetric
multiplications.

3.4 An example

We revisit our example kt†2 , but to avoid confusion we change the name of the
generator: kt†2

� D k..s//. From the equivalence kh†2 D F.B†2C; k/ together with
properties (iii), (iv), and (v), we see that

Q.t/.s/D sC s2t�1:

The Cartan formula now determines the behavior of Q.t/ in general:

Q.t/
X
i

ais
i
D

X
i

ai .sC s
2t�1/i :

3.5 Comparing the definitions

Let B denote the bimodule from Construction 3.1.5, which is equivalent to kt†2 as a
left k–module. Let k! B extend 1 2 �0kt†2 as a right module map.

Lemma 3.5.1 The composite

A! B˝A! T2.A/

above is equivalent to the Tate diagonal �2.

Algebraic & Geometric Topology, Volume 23 (2023)
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Proof Indeed, first observe that by the universal property of spectra [11, 1.4.2.23],

�1 W Funex.Modk; Sp/
'
�! Funlex.Modk; Spaces/:

Now let U WModk! Sp be the forgetful functor. Then �1U is corepresented by k,
so the Yoneda lemma applied to the previous observation implies that

MapFunex.Modk ;Sp/
.U; UT2/'�

1kt†2 :

Since the Tate diagonal is a transformation of lax symmetric monoidal functors, the
transformation U ! UT2 evaluates on k to the unit k! kt†2 . Combining this with
the previous observation we learn that the Tate diagonal is the unique transformation
U ! UT which corresponds to the element 1 2 �0kt†2 .

Thus the map
A! B˝A! T2.A/! At†2

coincides with the Tate-valued Frobenius. Now observe that the last three terms are left
modules over kt†2 , so multiplication by t�i�1 and naturality of .�/t†2 !†.�/h†2

gives a commutative diagram

A //

$$

B˝A //

��

T2.A/ //

��

At†2

��

†�i�1B˝A // †�i�1T2.A/ //

��

†�i�1At†2

��

†�iSym2.A/ // †�iA

Chasing the diagram around clockwise gives the definition of Qi in terms of the total
power operation. Chasing the diagram around counterclockwise gives the definition of
Qi in terms of Construction 3.1.5. So these two constructions agree.

Now we compare with the classical construction. The equivalence .†nk/˝2 '†2nk
in Mod

h†2

k
gives a commutative diagram

†�1T2.†
nk/ //

'

��

Sym2.†nk/

'

��

†2n�1kt†2 // †2nkh†2

Algebraic & Geometric Topology, Volume 23 (2023)
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Since the bottom horizontal map is surjective on homotopy, so is the top, and we see that
†2nei�n on the lower right corresponds to t�i�1y on the top left, where y 2 �n†nk
is the generator. Now let x W Sn! A be a class and form the diagram

S iCn
t�i�1y

//

t�i�1x ((

†�1T2.†
nk/ // Sym2.†nk/

��

†�1T2.A/ // Sym2.A/

Traversing clockwise gives Qi .x/ as in Construction 3.1.4 and traversing counterclock-
wise gives the image of x under Qi as in Construction 3.1.5, and this completes the
argument.

4 Adem relations

The Adem relations arise from relating the iterated total power operation to a total fourth
power operation. In Section 4.1 we first explain how to lift the iterated total power
operation to an intermediate Tate spectrum. In Section 4.2 we show that the existence
of extra symmetry on iterated multiplication allows us to factor further through a total
fourth power operation. This implies a version of the Adem relations as an identity
between formal Laurent series in two variables, and in Section 4.3 we essentially
perform the maneuver from [5] to recover the usual Adem relations.

For notational ease we adopt the following convention in this section:

Convention 4.0.1 If G �†n is a subgroup, and T denotes the family of nontransitive
subgroups of G, then we denote .�/tT by .�/�G .

4.1 Iterated power operations

Suppose A is a k–module equipped with a symmetric multiplication. Iterating the
multiplication gives a map

A˝4! A

which need not admit an †4–equivariant structure. However, it can be made †2 o†2–
equivariant, so we may define a map

A! T†2o†2
.A/! A�†2o†2 :

Our first goal is to show that this lifts the iterated total power operation.

Algebraic & Geometric Topology, Volume 23 (2023)
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Proposition 4.1.1 Let A be a k–module equipped with a symmetric multiplication.
Then there is a canonical commutative diagram

A�†2o†2

��

A
Q.t/ıQ.s/

//

77

.At†2/t†2

Proof First consider the diagram

T2.A/ //

��

T2.T2.A// //

��

..A˝4/t†2/t†2

��

At†2 // T2.A
t†2/ // .At†2/t†2

The first square commutes by naturality of the Tate diagonal applied to the map
T2.A/! A. The second square commutes by naturality of the lax structure map for
.�/t†2 .

It follows that Q.t/ ıQ.s/ can be written as the composite

A! T2.T2.A//! ..A˝4/t†2/t†2 ! .At†2/t†2 :

Now consider both .�/�†2o†2 and ..�/t†2/t†2 as exact functors Mod
h†4

k
! Modk .

We have a natural transformation

.�/h†2o†2 ! .�/h†2�†2 D ..�/h†2/h†2 ! ..�/t†2/t†2 ;

where the first map is induced by the inclusion

†2 �†2! .†2 �†2/Ì†2 D†2 o†2

given by the diagonal on the first factor. By the universal property of the Tate con-
struction (Section 1.1), we get a natural transformation .�/�†2o†2 ! ..�/t†2/t†2 . In
particular, applied to the multiplication map A˝4!A, we get a commutative diagram

T†2o†2
.A/ //

��

A�†2o†2

��

..A˝4/t†2/t†2 // .At†2/t†2

Finally, the composite

�†2o†2 ! �†2�†2 ' �2 ı�2! T2 ıT2

Algebraic & Geometric Topology, Volume 23 (2023)
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yields a natural transformation T†2o†2
!T2ıT2 from the universal property of T†2o†2

as the Goodwillie derivative of �†2o†2 . The diagram

T†2o†2

�� ''

T2 ıT2 // ...�/˝4/t†2/t†2

commutes by the same universal property, and the result follows.

4.2 Adem objects

For the Adem relations to hold we need the symmetric multiplication to satisfy an extra
condition.

Definition 4.2.1 We say that a k–module A equipped with a symmetric multiplication
is an Adem object if there exists a map Sym4.A/! A such that the diagram

Sym2.Sym2.A//

��

// Sym2.A/

��

Sym4.A/ // A

commutes up to homotopy.

Proposition 4.2.2 If A is an Adem object , then we have a commutative diagram

A�†4

��

A�†2o†2

��

A
Q.t/ıQ.s/

//

77

>>

.At†2/t†2

Proof By Proposition 4.1.1, the bottom triangle commutes. Factor the top triangle as

T4.A/ //

��

A�†4

��

A //

;;

T†2o†2
.A/ // A�†2o†2

Algebraic & Geometric Topology, Volume 23 (2023)
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The triangle commutes because each arrow is a transformation of exact, lax symmetric
monoidal functors, and U WModk! Sp is initial amongst such functors (Proposition
2.3.1). The square commutes by the definition of an Adem object, ie the structure of a
†4–equivariant map A˝4! A refining the given .†2 o†2/–equivariant structure.

Theorem 4.2.3 (Adem relations) If A is an Adem object and x 2 ��A is an element ,
then Q.t/.Q.s/x/ is symmetric in the variables s and t . Explicitly,X

i;j

.QiQjx/.sC s2t�1/j t i D
X
i;j

.QiQjx/.t C t2s�1/j si :

Proof By Proposition 4.2.2, the iterated total power operation factors through A�†4

and the operation which swaps s and t arises from an inner automorphism of †4 which
thus acts trivially on the Tate construction, whence the claim. The explicit formula
follows from the basic properties of power operations, the Cartan formula, and the
computation in Section 3.4.

4.3 Residues and relations

Now we recall how to recover the individual Adem relations using the power series
identity above.

Proposition 4.3.1 Let A be an Adem object and x 2 A� a homotopy class. Then

QiQj .x/D
X
`

�`�j�1
2`�i

�
QiCj�`Q`.x/:

Proof In the previous section we showedX
j

Q.t/.Qjx/.sC s2t�1/j D
X
k;j

.QkQjx/.t C t2s�1/j sk :

Let uD sC s2t�1 and observe that this is composition invertible as a power series in
s with coefficients in k..t//. Now,

Q.t/.Qjx/D
X
i

.QiQjx/t i

is the coefficient of uj on the left-hand side, so we would like to compute the coefficient
of uj on the right-hand side. It will be convenient to reindex the right-hand side, for
fixed j , as X

i;`

.QiCj�`Q`x/.t C t2s�1/`siCj�`:
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Observe that duD ds since 2D 0 in k, and hence

res.u�j�1.QiCj�`Q`x/.t C t2s�1/`siCj�`du/

D res.u�j�1.QiCj�`Q`x/.t C t2s�1/`siCj�`ds/:

Fixing i and ` and writing uD st�1.t C s/ and .t C t2s�1/D s�1t .t C s/, we have

u�j�1.t C t2s�1/`siCj�` D t`CjC1si�2`�1.t C s/`�j�1:

The coefficient of s�1 in the previous expression is then�`�j�1
2`�i

�
t i

and the result follows.

5 Relationship to the Steenrod algebra

In this section we restrict to the case k D F2 for ease of exposition. In Section 5.1 we
recall the Steenrod coaction on the Tate spectrum, then in Section 5.2 we use this to
give a succinct proof of the Nishida relations. Finally, in Section 5.3 we show how
this determines the action of Q.t/ on the dual Steenrod algebra, following an idea of
Bisson and Joyal.

5.1 Coaction on the Tate spectrum

The map k D S0 ^ k! k ^ k gives rise to a map kt†2 ! .k ^ k/t†2 if we equip the
source and target with trivial †2–action.

This induces a completed coaction

 R W k..t//!A�..t//:

More generally, for any spectrum X , the composite

k ^X 'X ^ k D S0 ^X ^ k! k ^X ^ k

gives a completed coaction  R WH�.X/..t//! .H�.X/˝A�/..t//. Now recall that
Milnor defined generators3 of the dual Steenrod algebra by the identity

 R.t/D
X

�i t
2i

:

3We are following Milnor’s convention and not the more recent trend of using �i to denote the conjugates
of Milnor’s generators.
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5.2 Nishida relations

The easier version of the Nishida relations in this context is in terms of the coaction.

Theorem 5.2.1 (Bisson–Joyal, Baker) Let X be a spectrum equipped with an equi-
variant symmetric multiplication X^2

h†2
!X . ThenX

i

 R.Q
ix/t i DQ. N�.t// R.x/ 2 .H�X ˝A�/..t//:

Proof The right coaction k ^X ! .k ^X/˝k .k ^ k/ is a map of spectra equipped
with symmetric multiplications (though it is not a map of k–modules equipped with
symmetric multiplications). By Remark 3.1.8 this yields a commutative diagram

k ^X
 R

//

��

.k ^X/˝k .k ^ k/

��

.k ^X/t†2

. R/
t†2

// ..k ^X/˝k .k ^ k//
t†2

The bottom map is the completed coaction defined in the previous subsection. Thus,

 R.Q.t/x/DQ.t/. R.x//:

Since  R is a ring map, and  R.t/D �.t/, this becomesX
 R.Q

ix/�.t/i DQ.t/. R.x//:

Now substitute the conjugate series N�.t/ for t and use the relation �. N�.t//D t .

5.3 Action on the dual Steenrod algebra

The following description of the action of the Qi on A� is essentially that of Bisson
and Joyal [3, Section 1, Proposition 6].

Theorem 5.3.1 (Bisson–Joyal) The total power operation on the Milnor generators
�i is determined implicitly by the identity

�.s/C �.s/2�.t/�1 D
X
i

.Q.t/�i /.s
2i

C s2
iC1

t�2
i

/;(1)

t2
n

Q.t/�n D

� X
i�nC1

�i t
2i

�
C �.t/�1

�X
i�n

�2i t
2iC1

�
:(2)
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Proof Write ��kh†2 D kJsK. Then

 R.Q.t/s/DQ.t/ R.s/:

Now use the identities Q.t/s D sC s2t�1 and  R.s/D �.s/. Comparing coefficients
for s2

n

gives a recursion for Q.t/�n starting with Q.t/�0 DQ.t/1D 1 and (2) solves
the recursion.

It is not difficult to extract the earlier results of Steinberger [4, Section III.2].

Corollary 5.3.2 (Steinberger) For i � 2, Q2
i�2�1 D N�i .

Proof From Theorem 5.3.1(2) above in the case nD 1,

Q.t/�1 D t
�1
C �1C �.t/

�1:

So, for i � 2, change of variables and a quick computation gives

Q2
i�2�1 D res.t�2

iC1�.t/�1dt/D res. N�.u/�2
iC1u�1du/D N�i :

Corollary 5.3.3 (Steinberger) We have Q2
i

�i D �iC1C �
2
i �1 and Q2

i N�i D N�iC1.

Proof The case i D 0 is evident, so assume i � 1. The coefficient of t0s2
iC1

on the
right-hand side of Theorem 5.3.1(1) is visibly Q2

i

�i CQ
0.�i /DQ

2i

�i . The constant
term of �.t/�1 is �1, so the coefficient of t0s2

iC1

on the left-hand side is �iC1C �2i �1.
The other identity follows from this one by induction and the defining relation for
conjugation.
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