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The Devinatz–Hopkins theorem via algebraic geometry

ROK GREGORIC

We show how a continuous action of the Morava stabilizer group Gn on the Lubin–
Tate spectrum En, satisfying the conclusion E

hGn
n ' LK.n/S of the Devinatz–

Hopkins theorem, may be obtained by monodromy on the stack of oriented de-
formations of formal groups in the context of formal spectral algebraic geometry.

14A30, 14D15, 55P43, 55T15

A classical and computationally invaluable result in chromatic homotopy theory, the
Morava change-of-rings theorem — see for instance Devinatz [5] — identifies the second
page of the K.n/–local Adams spectral sequence for the Lubin–Tate spectrum En as
continuous group cohomology,

E
s;t
2
' Hs

cont.GnI�t .En//) �t�s.LK.n/S/:

A conceptual spectrum-level explanation for this isomorphism is given by the Devinatz–
Hopkins theorem [6]. It asserts the existence of a (suitably interpreted) continuous
action of the Morava stabilizer group Gn on the Lubin–Tate spectrum En, such that its
continuous homotopy fixed points are

(1) EhGn
n 'LK.n/S:

The proof of the equivalence (1) has by now become largely standard, using nilpotence
technology applied to the K.n/–local Amitsur complex of En, and ultimately stemming
from the key observation of Hopkins and others that the Adams spectral sequence of
En possesses a horizontal vanishing line. The somewhat less straightforward part is
instead identifying said Amitsur complex with the simplicial bar resolution of a suitably
interpreted continuous action of Gn on En. That was accomplished in a somewhat
ad hoc manner in [6], and in various contexts of continuous group actions of spectra
such as Behrens and Davis [2] and Quick [21]; though these approaches ostensibly
amount to enriching the construction from [6]. A formalization using the condensed
set technology of [23] to tackle continuity has also been announced by Clausen and
Scholze.
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License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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3016 Rok Gregoric

In contrast, we propose to side-step the issue of continuous actions altogether. Instead,
we exhibit the action in an appropriate context of formal spectral algebraic geometry.
Our results may be summarized as follows.

Theorem The Morava stabilizer group Gn admits a canonical action on the formal
spectral stack Spf.En/. For continuous homotopy fixed points of this action defined as
E

hGn
n WDO.Spf.En/=Gn/, there is a canonical equivalence E

hGn
n 'LK.n/S . Further-

more , the three resulting spectral sequences coincide:

(1) The descent spectral sequence for the structure sheaf on Spf.En/=Gn,

E
s;t
2
D Hs.Spf.En/=GnI�t .O//) �t�s.LK.n/S/:

(2) The homotopy fixed point spectral sequence for the Gn–action on En,

E
s;t
2
D Hs.BGnI�t .En//) �t�s.LK.n/S/:

(3) The K.n/–local Adams spectral sequence for En,

E
s;t
2
D Exts;t

��.LK.n/.En˝En//
.��.En/; ��.En//) �t�s.LK.n/S/:

Our approach is based on a theorem of Lurie [17, Theorem 5.1.5], identifying Spf.En/

with the moduli stack of oriented deformation of a height n formal group. We show
that the Morava stabilizer group action arises as an instance of monodromy actions on
de Rham spaces. To establish the above version of the Devinatz–Hopkins theorem in
our setting, we employ similar arguments to the analogous considerations in classical
formal algebraic geometry from Goerss [8, Chapter 7].

The computational underpinning of the proof (somewhat obscured in our account) is
the fundamental observation from [6] that the K.n/–local Adams spectral sequence
for En possesses a horizontal vanishing line. Ours is in that sense analogous to all
of the currently known approaches to the Devinatz–Hopkins theorem, including, to
the best of the author’s understanding, the forthcoming work of Clausen and Scholze.
The latter construct the continuous (or in their setting, more precisely, condensed)
Morava stabilizer group action similarly to us, in that they employ results1 from [17].

1Though unlike our account, where the algebrogeometric aspect of the results in [17] are center-stage, the
approach of Clausen and Scholze only relies on the more flexible functoriality of Lubin–Tate theory (in
particular, that its base can be taken to be an arbitrary perfect Fp–algebra as base, as opposed to only a
perfect field) afforded by Lurie’s construction, as compared to the traditional one by Goerss, Hopkins and
Miller.
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The Devinatz–Hopkins theorem via algebraic geometry 3017

In particular, we wish to make it clear that the majority of our proof of the Devinatz–
Hopkins theorem follows the same reasoning and insights as the original account
in [6].

In general, many of the results in this paper follow without much difficulty from the
existing literature. We nonetheless believe that a streamlined conceptual proof of the
Devinatz–Hopkins theorem, which this paper provides, is worthwhile. Other than in the
presentation, our primary contribution is a novel way to obtain the Morava stabilizer
group action by way of formal spectral algebraic geometry, building on Lurie’s work in
[15; 17]. Related applications of those results to topics in chromatic homotopy theory,
primarily concerning Gross–Hopkins duality, are considered by Devalapurkar [4].

Acknowledgements

I would like to thank Andrew Blumberg and David Ben-Zvi, without whose constant
support and encouragement this note would surely have never come to be. Thanks
also to Ben Antieau, David Gepner, Nat Stapleton, and especially Paul Goerss and the
referee, for offering helpful comments on the draft. Finally, I am grateful to Agnès
Beaudry, Mike Hill, Markus Pflaum, and Dylan Wilson, for organizing Chromatic
homotopy: journey to the frontier at UC Boulder in 2018, where I had my first chance
to really breathe in the fresh air of chromatic homotopy theory.

1 Background on formal spectral algebraic geometry

We begin by summarizing some notions and results from [15; 17] which are key for
the purpose of this note.

1.1 Adic E1–rings and formal SAG

From the functor of points perspective, formal spectral algebraic geometry, in the form
relevant to us and in [17] (but slightly differently from [15, Definition 8.1.1.5], where a
connectivity assumption is imposed throughout), concerns functors CAlgad

cpl! S.

Here CAlgad
cpl denotes the1–category of complete adic E1–rings in the sense of [17,

Definition 0.0.11]. That is, an object of CAlgad
cpl consists of an E1–ring A, together with

a topology on �0.A/ which admits a finitely generated ideal of definition I � �0.A/,
such that the topology on �0.A/ is equivalent to the I–adic topology, and finally such
that the E1–ring A is I–complete, in the sense of [14, Definition 7.2.3.22].
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3018 Rok Gregoric

Since the notion of completeness for E1–rings and modules over them features promi-
nently in this note, let us recall (an equivalent rephrasing of) the definition:

Definition 1.1 [15, Proposition 7.3.2.1, Corollary 7.3.3.3] Let A be an adic E1–ring
with an ideal of definition I � �0.A/. Then an A–module M is I–complete if for
every element a 2 I , the canonical map

M ! lim
 ��

n

M=an

is an equivalence of A–modules, where M=anDcofib.M an

�!M /. Let Modcplt
A
�ModA

denote the full subcategory spanned by I–complete A–modules. The adic E1–ring A

is complete if it is I–complete as a module over itself.

Given a complete adic E1–ring A in the sense discussed above, we define its formal
spectrum to be the corepresentable functor Spf.A/ W CAlgad

cpl! S given by

B 7!Mapcont
CAlg.A;B/ WDMapCAlg.A;B/�HomCAlg~ .�0.A/;�0.B// Homcont

CAlg~
.A;B/:

Of course, this (Yoneda) embedding .CAlgad
cpl/

op! Fun.CAlgad
cpl;S/ is fully faithful,

and its codomain is a convenient place to do formal spectral algebraic geometry.

1.2 Formal groups over E1–rings

As an instance of that motto, the theory of formal groups over E1–rings is developed
in [17, Chapter 1]. We give a slightly informal account, and refer to [loc. cit.] for a
precise and detailed account.

Definition 1.2 A formal group over an E1–ring A is an abelian group object in the
1–category of 1–dimensional fiber-smooth formal spectral A–schemes.

Remark 1.3 There are a number of caveats concerning the above definition:

(1) The notion of an abelian group object must be understood in the sense of Section 1.2
of [16]. That is to say, we must equip its Yoneda presheaf with a factorization through
the functor �1 WModcn

Z ! S, or equivalently, the forgetful functor T opAb! S. This
is a strictified version of the more familiar notion of a grouplike E1–algebra objects,
since the Yoneda presheaf is in the latter case asked to factor through �1 W Spcn! S,
or equivalently, the forgetful functor CMongp.S/! S.

(2) The requirement of fiber-smoothness on a formal A–scheme X is taken in the
sense of [15, Definition 11.2.3.1], and roughly amounts to asking for X to be étale-
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locally isomorphic to the formal affine space yAn
A
D Spf.AŒŒt1; : : : ; tn��/ (since we are

working in the 1–dimensional case in Definition 1.2, it suffices to take n D 1). In
particular, this implies that X is a flat over A. This differs from the notion of differential
smoothness in the sense of [15, Definition 11.2.2.2], which imposes conditions on the
cotangent complex LX=A, but is incompatible with flatness unless A is a Q–algebra.
Since we want ordinary formal groups over commutative rings to be special cases
of Definition 1.2, and they are indeed flat, we therefore have no choice but to use
fiber-smoothness instead of differential smoothness.

(3) Definition 1.2 is really correct as stated when the E1–ring A is connective. For a
nonconnective E1–ring A, we should instead define formal groups over A to be formal
groups in the above sense over the connective cover ��0.A/— see [17, Variant 1.6.2].
However, certain constructions associated to a formal group yG , for instance the E1–
algebra of functions O yG of [17, Notation 1.5.12] and Remark 1.6, depend on whether
we are considering it as existing over A or over ��0.A/. See the thorough treatment in
[17, Section 1.2] for precise details.

Example 1.4 The following are the only classes of formal groups that we will be
concerned with in this note:

� Over a commutative ring A, viewed as a discrete E1–ring, Definition 1.2
reproduces the usual meaning of (as always, 1–dimensional smooth) formal
groups over A.

� Let A be a complex periodic E1–ring, ie complex orientable and �2.A/ is a
locally free �0.A/ module of rank 1. Then the Quillen formal group of A is

yG Q
A
WD Spf.C �.CP1IA//;

which indeed gives rise to a formal group over A by [17, Section 4.1.3].

Formal groups over A form an1–category MFG.A/, and this construction is functorial
in A by base change:

Definition 1.5 Let f WA! B be a map of E1–rings, and yG a formal group over A.
The pullback of formal spectral schemes along Spec.f / W Spec.B/! Spec.A/ gives
rise to a formal group over B, which we denote by f � yG .

There is also another slightly different form of functoriality afforded to formal groups.
Sending

yG 7! yG 0
WD Spf.�0.O yG //
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gives rise to a functor MFG.A/!MFG.�0.A//. Informally, this sends a spectral
formal group to its underlying ordinary formal group.

Remark 1.6 When the E1–ring A is connective, the preceding construction is a
special case of Definition 1.5. Indeed, in that case there exists a map of E1–rings
t W A! �0.A/, and yG 0 ' t� yG . For a nonconnective E1–ring A on the other hand,
the connection between A and �0.A/ is only through the span A ��0.A/! �0.A/,
and so yG 7! yG 0 is not merely an instance of base change. This is closely related to
the subtleties alluded to in item (3) of Remark 1.3.

1.3 Orientations and deformations of formal groups

The class of formal groups singled out by the following definition is of special impor-
tance in relation to chromatic homotopy theory. Here an E1–ring A is called complex
periodic [15, Definition 4.1.8] if it is both complex orientable and weakly 2–periodic.

Definition 1.7 [17, Proposition 4.3.23] A formal group yG over an E1–ring A is
oriented if and only if A is complex periodic and yG ' yG Q

A
is its Quillen formal group.

We denote by Mor
FG.A/�MFG.A/ the subspace of oriented formal groups over A.

Remark 1.8 Though the above form is the most practical for our purposes, we would
be remiss not to summarize an equivalent but better-motivated approach to defining
oriented formal groups [17, Definition 4.3.9]. To any formal group yG over an E1–ring
A we may by [17, Sections 5.2.1–5.2.3] associate an A–module ! yG , its dualizing line,
and the analogue of the module of invariant differentials on a classical formal group.
An orientation of yG then amounts to an A–linear equivalence ! yG '†

�2.A/. This is
in spirit a 2–shifted analogue of the various notions of orientation in classical geometric
contexts, where it usually means some kind of trivialization of a bundle of volume
forms.

The space of deformations of yG0 over A is defined as

Def yG0
.A/ WD lim

��!
I

HomCAlg~.�; �0.A/=I/�MFG.�0.A/=I /MFG.A/;

with the colimit ranging over all the ideals of definition I � �0.A/. Informally, this
consists of a ring homomorphism f W �! �0.A/=I , a formal group yG over the E1–
ring A, and an isomorphism f � yG0 ' q� yG 0 of formal groups over �0.A/=I , where
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q W �0.A/! �0.A/=I is the quotient projection. Oriented deformations are defined
analogously as

Def yG0
.A/ WD lim

��!
I

HomCAlg~.�; �0.A/=I/�MFG.�0.A/=I /M
or
FG.A/:

Both of these construction respect pullback along maps of adic E1–rings, and as such
give rise to functors Def yG0

;Def or
yG0

W CAlgad
cpl! S.

The following theorem of Lurie, a cousin of the Goerss–Hopkins–Miller theorem, may
be taken as the definition of Lubin–Tate spectra, and is the bedrock of this note.

Theorem 1.9 [17, Theorem 5.1.5, Remark 6.0.7] Let yG0 be a formal group of finite
height over a perfect field � of characteristic p > 0. Let E.�; yG / be the Lubin–Tate
spectrum of yG0, viewed as an adic E1–ring with respect to the nth Landweber ideal
In � �0.E.�; yG0//. There is a natural equivalence

Spf.E.�; yG0//' Def or
yG0

in the1–category Fun.CAlgad
cpl;S/.

Remark 1.10 Lurie formulates his result (which also works over more general perfect
base rings than a field) in terms of deformations of p–divisible groups instead of formal
groups. This has the advantage of being more general, applying for instance also to
étale p–divisible groups, and is crucial in the follow-up paper [18] on Hopkins–Kuhn–
Ravenel character theory and transchromatic ambidexterity. Alas, for our purposes,
since all the p–divisible groups in sight would be connected, the analogue of Tate’s
theorem in [17, Section 2.3], allows us to restrict to formal groups instead. Ultimately
however, this is nothing more than an aesthetic preference, and this note could well
have been written with the functor MBT everywhere in place of MFG.

2 Morava stabilizer group action and fixed points

2.1 Complete Noetherian local E1–rings

For the remainder of this note, � will be a perfect field of characteristic p > 0. We
find it convenient to restrict to a smaller subcategory of CAlgad

cpl, consisting roughly of
complete Noetherian local E1–rings with residue field �.

Definition 2.1 Let CAlgcN
=�
� CAlgad

cpl denote the subcategory spanned by complete
adic E1–rings A for which the commutative ring �0.A/ is a local Noetherian ring
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with maximal ideal m, topologized with respect to the m–adic topology, and such that
there exists an abstract (ie nonspecified) isomorphism �0.A/=m' �.

Remark 2.2 The notation CAlgcN
=�

is potentially misleading. Indeed, unlike what
it may seem to indicate, said 1–category is not equivalent to a subcategory of the
overcategory CAlg=� . That would hold if we restricted to connective object, but we
cannot do so, since our primary interest rests with the nonconnective complex periodic
E1–rings.

Remark 2.3 Similarly to the preceding remark, the connective objects in CAlgcN
=�

are
not the Noetherian E1–rings in the sense of [14, Definition 7.2.4.30]. We could not
have used that notion of Noetherianness in the above definition, since it again only
applies to connective E1–rings. It would be possible to imitate such a definition, by also
imposing finiteness assumptions on the homotopy groups �i.A/ in Definition 2.1 for
i ¤ 0. But since we can make do without, we choose to only impose the (unavoidable)
�0–level assumption. That is to say, the notion of a complete Noetherian local E1–ring
from Definition 2.1 is only guaranteed to be adequate for the purposes of this paper.
For most other purposes in spectral algebraic geometry where a Noetherian assumption
might be desirable, stronger finiteness assumptions would probably need to be imposed.

From here on, we will consider the 1–category Fun.CAlgcN
=�
;S/ as the setting for

formal spectral algebraic geometry. In particular, we will implicitly restrict the domain
of the functor Spf.A/ to the subcategory CAlgcN

=�
� CAlgad

cpl for any adic E1–ring A.

Remark 2.4 The restriction functor Fun.CAlgad
cpl;S/ ! Fun.CAlgcN

=�
;S/, induced

from the subcategory inclusion CAlgcN
=�
� CAlgad

cpl, preserves both limits and colimits.
The Yoneda embedding .CAlgad

cpl/
op! Fun.CAlgad

cpl;S/ also preserves limits, and the
coproduct in the1–category CAlgad

cpl is given by the completed smash product of [14,
Corollary 7.3.5.2]. It follows that we have for any pair of complete adic E1–rings A

and B a canonical equivalence

Spf.A/�Spf.B/' Spf.A y̋ B/

in Fun.CAlgcN
=�
;S/. That is to say, restriction to complete Noetherian local E1–rings

does not change the products of affine formal spectral schemes.

The functors of the ring of functions O W Fun.CAlgcN
=�
;S/op ! CAlgad

cpl and the 1–
category of quasicoherent sheaves QCoh W Fun.CAlgcN

=�
;S/op! Cat1 are defined by
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right Kan extension from the subcategory of affines CAlgcN
=�
,! Fun.CAlgcN

=�
;S/op (ie

representable functors) on which they are defined as

O.Spf.A// WDA; QCoh.Spf.A// WDModcpl
A
:

For a detailed treatment of such an approach to quasicoherent sheaves (in a slightly
different but closely related setting), see [15, Section 6.2.2].

Remark 2.5 Because we are not equipping CAlgcN
=�

with a Grothendieck topology,
questions of descent are beyond our reach. Fortunately, as explained for QCoh in [15,
Proposition 6.2.3.1] (in only a slightly different setting), both O and QCoh are agnostic
regarding sheafification, making their definition unambiguous.

Remark 2.6 In defining the functors O and QCoh by Kan extension, we are being
slightly imprecise regarding set-theoretical considerations. The issue is that the category
CAlgcN

=�
is not small. This may be circumvented by the usual trick of universe enlarge-

ment, at the cost of eg the1–category QCoh.X / being not necessarily small. For a
precise treatment along those lines in a closely related setting, see [15, Section 6.2]. On
the other hand, all functors which we will ultimately be interested in will all be given
in explicit ways as small colimits of representables. In principle, we could in each
individual such case redefine the functors O and QCoh by indexing them on appropriate
small indexing categories, and verify post factum that the choice didn’t matter. With this
understanding, we will ignore questions of smallness, and set-theoretical technicalities
alike, from now on.

Noting that we may have equivalently replaced the1–category Cat1 with PrL in the
definition of quasicoherent sheaves (with the caveat of Remark 2.6 in mind), we see
that any map of functors f WX ! Y induces adjoint functors

f � W QCoh.Y /� QCoh.X / Wf�;

the familiar pullback and pushforward functoriality. In particular, we call pushforward
along the terminal map p WX !� global sections and denote �.X IF/ WD p�.F/ for
any F2QCoh.X /. For the structure sheaf FDOX , global sections �.X IOX /'O.X /
recover the ring of functions.

Remark 2.7 The pushforward functor f� W QCoh.X /! QCoh.Y / is not necessarily
very well behaved without some additional assumptions on the morphism f WX ! Y

(such as being quasicompact and separated); eg the Beck–Chevalley push–pull formula
for base change, and the projection formula may both fail in general. In particular, this
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“functor-of-points” pushforward it might in that case not coincide with a “ringed space”
pushforward, if such exists. See also [15, Warning 6.3.4.2].

Remark 2.8 It follows from the definition of global sections that there is a chain of
homotopy equivalences

�.X IF/'MapSp.S;p�.F//'MapQCoh.X /.p
�.S/;F/'MapQCoh.X /.OX ;F/:

As consequence, we cannot expect the global sections functor F 7!�.X IF/ to preserve
filtered colimits unless the structure sheaf OX is a compact object of the1–category
QCoh.X /. Since �.X I �/ D p� is a pushforward along the terminal map, this ties
into the more general ill-behavedness of the pushforward discussed in Remark 2.7.
Fortunately, such issues will not arise in the (rather simplistic) applications we discuss
in this paper.

2.2 A short digression on monodromy

In the proof of Proposition 2.12 in the next subsection, we will need a certain result,
which becomes particularly simple and natural when viewed in a slightly more general
context than strictly necessary for our purposes.

Recall that monodromy is classically understood to be the action of the fundamental
group �1.X;x/ of a base space X on the fiber Lx of a local systems L on X , acting
through parallel transport around loops. The following is a simple incarnation of that
idea in the setting of an1–topos, but with the notion of a “point” being understood in
the generalized sense of algebraic geometry.

Lemma 2.9 Let x W P !X be a morphism in an1–topos X .

(i) The “based loop space” �x.X / WD P �X P admits a canonical group structure
in the overtopos X=P , exhibiting it as an object �x.X / 2 Grp.X=P /. There is a
canonical equivalence of simplicial objects

B��x.X /
.P;P /' LC�.P x

�!X /

between its bar construction in X=P and the Čech nerve of x in X .

(ii) For any object Y 2X =X , we define its “fiber over x” through the pullback square

(2)

x�.Y / //

��

Y

��

P
x
// X

Algebraic & Geometric Topology, Volume 23 (2023)



The Devinatz–Hopkins theorem via algebraic geometry 3025

in X . This “fiber” x�.Y / 2 X =P admits a canonical �x.X /–action , whose bar
constriction in X =P is equivalent to the Čech nerve in X ,

B��x.X /
.P;x�.Y //' LC�.x�.Y /! Y /:

Proof Recall from [12, Section 6.1.2; 14, Proposition 2.4.2.5] that group objects and
group actions (or their common generalization, groupoid objects) in an1–topos are
completely and equivalently encoded by their bar constructions. Thus it is necessary
and sufficient to verify that the Čech complexes in question are of the appropriate forms
for a group object and group action respectively.

For (i), we rewrite the Čech complex of the morphism x as

LC�.x/' P �X � � � �X P„ ƒ‚ …
�C1

' .P �X P /�P � � � �P .P �X P /„ ƒ‚ …
�

'�x.X /�P � � � �P �x.X /„ ƒ‚ …
�

:

It follows clearly that it satisfies the Segal condition and exhibits �x.X / 2 Grp.X=P /.

For (ii), observe that we may compare the two Čech nerves in sight via (degreewise)
pullback of simplicial objects. Combining that with point (i), we get equivalences of
simplicial objects

LC�.x�.Y /! Y /' LC�.P !X /�X Y

' B��x.X /
.P;P /�X Y

' B��x.X /
.P;P �X Y /

' B��x.X /
.P;x�.Y //;

exhibiting the desired �x.X /–action on the fiber x�.Y /.

Remark 2.10 In the setting of Lemma 2.9, passage to geometric realizations from
(i) gives an equivalence B�x.X / ' X^x between the classifying space for �x.X /

(in the overtopos X=P ) and the so-called nilpotent completion of X at x, defined
as X^x D j

LC�.x/j. This is a not necessarily affine variant of the notion of nilpotent
completion of ring spectra, first introduced by Bousfield [3, Theorem 6.5]. When
x W P ! X is an effective epimorphism, we have X^x ' X . Then Lemma 2.9(ii)
shows that Y ' x�.Y /=�x.X /, generalizing the classical fact that a local system on a
connected base space is completely determined by its monodromy representation.

Remark 2.11 Let us take for X the presheaf1–topos Fun.CAlg;S/, the usual setting
for “functor of points” nonconnective spectral algebraic geometry (once again ignoring
questions of descent). An E1–ring A gives rise to the terminal map of nonconnective
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affines xA W Spec.A/ ! Spec.S/, which we may view as an A–point of Spec.S/.
It follows from Lemma 2.9(i) that the loop space �xA

.Spec.S// admits a group
structure over Spec.A/. That amounts to an appropriately interpreted (see [24] for a
thorough discussion of appropriate coalgebras in this setting) Hopf algebroid structure
on O.�xA

.Spec.S//'A˝A over A. Upon passage to homotopy groups, this recovers
the usual “generalized dual Steenrod algebra” Hopf algebroid

.��.A/; ��.A˝A//D .A�;A�A/:

Similarly, given any E1–ring A, the �xA
.Spec.S//–action on the fiber x�

A
.Spec.X //

described in Lemma 2.9(ii), gives rise on homotopy groups to the usual “generalized
Steenrod comodule” structure on ��.A˝X /DA�.X /. This hints at the relationship
between the monodromy construction of Lemma 2.9 and generalized Adams spectral
sequences, which we partly elucidate in Section 3.2, and in Remark 3.4 in a bit more
detail in the case of the Adams–Novikov spectral sequence.

2.3 Morava stabilizer group action on oriented deformations

Fix a formal group yG0 of finite height over � D Fp and let G.�; yG0/ be its (big, ie
extended) Morava stabilizer group, viewed as an algebraic group, and hence a functor
CAlgcN

=�
! S, as explained in [8, Remark 5.29] and reviewed in Remark 2.17.

Proposition 2.12 There exists a canonical action of the Morava stabilizer group
G.�; yG0/ on the oriented deformations Def or

yG0

in Fun.CAlgcN
=�
;S/, whose two-sided

bar construction is equivalent as a simplicial object in Fun.CAlgcN
=�
;S/,

LC�.Def or
yG0

!�/' B�
G.�; yG0/

.�;Def or
yG0

/;

to the Čech nerve of (the terminal map of ) Def or
yG0

.

Before embarking on the proof, let us outline its logical structure. We successively
reduce the statement to simpler ones, until we end up with an explicit verification.
The first reduction, from the oriented statement of Proposition 2.12 to a nonoriented
version, Lemma 2.13, is completely formal. The proof of Lemma 2.13 is where we
use the monodromy ideas from the previous subsection. Using them, or more precisely
Lemma 2.9, we are reduced to identifying the naturally occurring automorphism group
with the Morava stabilizer group. That is something of a classical observation, eg [13,
Lectrure 19] or [8, Theorem 7.18], and is the content of Lemma 2.16. Its proof, after
reducing from the 1–categorical to a classical 1–categorical setting, is an explicit
point-set-level comparison.
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Proof of Proposition 2.12 By the definition of oriented deformations,

(3) Def or
yG0

' Def yG0
�MFG Mor

FG:

The factor Mor
FG in this fibered product may be replaced with f yG Q

A
g when A is complex

oriented, and with ∅ when A is not. It follows from this observation that

LC�.Def or
yG0

!�/' LC�.Def yG0
!MFG/�MFG Mor

FG

as the base change of simplicial objects. Consequently, pulling back the equivalence of
simplicial objects from the next Lemma 2.13 along the inclusion Mor

FG!MFG gives
rise to a G.�; yG0/–action on Def or

yG0

with the desired bar construction.

Lemma 2.13 There exists a canonical action of the Morava stabilizer group G.�; yG0/

on the unoriented deformations Def yG0
in Fun.CAlgcN

=�
;S/, whose two-sided bar con-

struction is equivalent as a simplicial object in Fun.CAlgcN
=�
;S/,

LC�.Def yG0
!MFG/' B�

G.�; yG0/
.�;Def yG0

/;

to the Čech nerve of the map Def or
yG0

!MFG.

Proof Unlike oriented deformations, unoriented deformations of formal groups are as
a functor determined (as Kan extension) by its restriction to connective E1–rings by
[17, Proof of Theorem 3.4.1]. Therefore, let us implicitly restrict all functors to the
full subcategory .CAlgcN

=�
/cn � CAlgcN

=�
spanned by connective E1–rings for the rest

of this proof.

There, we have by [17, Proof of Proposition 3.4.3] a natural identification

Def yG0
' .Spec.�/=MFG/dR

with the relative de Rham space of the morphism Spec.�/!MFG classifying yG0.
Recall from [15, Definition 18.2.1.1] that the relative de Rham space of a map of
functors X ! Y is defined as the pullback

(4) .X=Y /dR 'XdR �YdR Y;

where the absolute de Rham space of a functor X is given by2 XdR.A/DX.�0.A/=m/.

2Restricting to the subcategory CAlgcN
=�
�CAlgad

cpl helps substantially here, as no colimiting over nilpotent

ideals of definition is necessary.
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Observe that we have at this point found ourselves in the setting of Lemma 2.9, with
the pullback square

Def yG0

//

��

MFG

��

Spec.�/dR // .MFG/dR

playing the role of (2). More precisely, we have

� an ambient1–topos Fun..CAlgcN
=�
/cn;S/,

� a “point” Spec.�/dR! .MFG/dR,

� an object MFG over the “base space” .MFG/dR,

� and its “fiber” Spec.�/dR �.MFG/dR MFG ' Def yG0
.

Lemma 2.9(i) thus exhibits the “based loop space”, which is the de Rham space
Aut. yG0/dR of

Spec.�/�MFG Spec.�/'� yG0
.MFG/' Aut. yG0/;

the automorphism group of the formal group yG0, as a group object in the overcategory
Fun..CAlgcN

=�
/cn;S/=Spec.�/dR . Thus Lemma 2.9(ii) equips the “fiber” Def yG0

with the
“monodromy” Aut. yG0/–action over Spec.�/dR, whose bar construction is

B�
Aut. yG0/dR

.Spec.�/dR;Def yG0
/' LC�.Def yG0

!MFG/:

In light of Lemma 2.16, this Aut. yG0/dR–action on the deformation (pre)stack Def yG0
in

the overcategory Fun..CAlgcN
=�
/cn;S/=Spec.�/dR is equivalent to a G.�; yG0/–action on it

in Fun..CAlgcN
=�
/cn;S/, exhibited on the level of bar constructions (see Remark 2.14)

by the equivalence

(5) B�
Aut. yG0/dR

.Spec.�/dR;Def yG0
/' B�

G.�; yG0/
.�;Def yG0

/:

Remark 2.14 We must clarify that the two bar constructions appearing on each side
of the equivalence (5) are formed in different1–categories. That is to say, the products
comprising the simplices on the left-hand side are all taken over Spec.�/dR, while on
the right-hand side, the products are absolute, ie taken over the terminal object �.

Remark 2.15 The de Rham space Spec.�/dR that we encountered above in the proof
of Lemma 2.13 is equivalent to the affine formal scheme Spf.W C.�//, where W C.�/

the E1–ring of spherical Witt vectors over �, as defined in [17, Example 5.2.7]. Indeed,
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in [17, Proof of Theorem 5.2.5] the spherical Witt vectors are defined to corepresent as
an affine formal scheme the relative de Rham space .Spec.�/=Spec.S//dR. But since
clearly Spec.S/ ' Spec.S/dR, it follows that .Spec.�/=Spec.S//dR ' Spec.�/dR, as
claimed. More concretely, the universal property of the spherical Witt vectors may be
written as

Mapcont
CAlg.W

C.�/;A/' lim
��!
I

HomCAlg~.�; �0.A/=I/

for any adic E1–ring A, and with the colimit ranging over all of the finitely generated
ideals of definition in �0.A/. Another characterization of it is that W C.�/ is a flat
p–complete E1–ring and �0.W

C.�//DW .�/ recovers the usual ring of (p–typical)
Witt vectors.

Lemma 2.16 There is a canonical equivalence Aut. yG0/dR'G.�; yG0/�Spf.W C.�//
of group objects in Fun..CAlgcN

=�
/cn;S/=Spf.W C.�//.

Proof By unwinding the definitions, we find for any connective A 2 CAlgcN
=�

that

Aut. yG0/dR.A/' Spec.�/.�0.A//=m/�MFG.�0.A/=m/ Spec.�/.�0.A/=m/

consists of a pair of maps f1; f2 W�!�0.A/=m and an isomorphism ' Wf �
1
yG0!f �

2
yG

of formal groups over �0.A/=m. In particular, it is a discrete space — indeed, this
follows from the fact that the ordinary moduli stack of formal groups,

MFGjCAlg~ W CAlg~! S;

is actually a 1–stack, ie a groupoid-valued functor CAlg~! ��1.S/ ,! S. Since the
functor Aut. yG0/dR amounts, as observed above, to passing to internal automorphisms
of this stack, and the essential image of the based loops functor � W ��1.S�/ ! S
belongs to the full subcategory of discrete spaces Set ' ��0.S/ ,! S, it is a set-
valued functor itself. In conclusion, the functor Aut. yG0/dR W .CAlgcN

=�
/cn! S factors

through Set ,! S in the target, and through �0 W .CAlgcN
=�
/cn ! .CAlgcN

=�
/~ in the

source. The same holds for G.�; yG0/ � Spec.�/dR by definition of the de Rham
space. Hence to prove the lemma, it suffices to exhibit an isomorphism between the
two functors Aut. yG0/dR and G.�; yG0/� Spec.�/dR as group objects in the ordinary
category Fun..CAlgcN

=�
/~;Set/=Spec.�/dR .

Let us therefore construct a natural transformation Aut. yG0/dR!G.�; yG0/�Spec.�/dR

as functors .CAlgcN
=�
/~! Set over Spf.W C.�// ' Spec.�/dR. Fix a complete Noe-

therian local commutative ring A with residue field �. Recall from the above discussion
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that elements of Aut. yG0/dR.A/ consist of triples .f1; f2; '/ as above, and the base
map Aut. yG0/dR.A/! Spec.�/dR.A/ is given by .f1; f2; '/ 7! f1. Thus fixing the
element f1 2 Spec.�/dR.A/ (since we wish to work over Spf.W C.�//' Spec.�/dR),
we obtain an element

.g;  / 2 Gal.�=Fp/ËAutFGrp.�/. yG0/DG.�; yG0/

as follows. Thanks to the hypothesis that A=m' �, the field map f1 may be abstractly
identified with a field endomorphism of � D Fp . Any such endomorphism must fix the
prime subfield Fp , and since the inclusion Fp � Fp is algebraic, this implies that it is
actually an automorphism. It follows that f1 W �!A=m is a field isomorphism, so we
can set g WD f �1

1
ıf2. We obtain the formal group isomorphism over � as

 W yG0
'
�! .f �1

1 /�f �2
yG0 ' g� yG0:

Sending .f1; f2; '/ 7! ..g; '/; f1/ gives the desired map of sets

Aut. yG0/dR.A/!G.�; yG0/�Spec.�/dR.A/:

It is clear from the description that this procedure is bijective, compatible with the
group structure, functorial in A, and compatible with the maps to Spec.�/dR; hence it
gives rise to an equivalence of functors as claimed.

Remark 2.17 The matter of viewing G.�; yG0/ as a profinite group scheme here comes
from the classical observation that topology coincides with the usual Zariski topology
on automorphisms. Indeed, as we noted in the proof, all the functors involved in
Lemma 2.16 factor through the functor �0 WCAlg!CAlg~, and are as such a matter of
classical algebraic geometry. In that context, see [8, Theorem 7.18], or [13, Lecture 19].

On the other hand, let us explain where the profinite structure on G.�; yG0/ is coming
from from the algebrogeometric perspective. Let us view the fixed formal group as a
functor yG0 W .CAlgArt

=�
/~! Set from Artinian local rings with residue field �; ie infini-

tesimal extensions of the point Spec.�/. Consider the subcategory Nil�n
=�
� .CAlgArt

=�
/~

of local Artinian rings with mnC1 D 0. Restriction and Kan extension back along this
inclusion produces a functor yG�n

0
W .CAlgArt

=�
/~! Set, which we may view as the nth

infinitesimal neighborhood; Goerss calls this the n–bud of the formal group yG0, see in
particular [8, Remark 3.24]. Since every ideal in an Artinian local ring is nilpotent, the
tower

Nil�0
=�
� Nil�1

=�
� Nil�2

=�
� Nil�3

=�
� � � � � .CAlgArt

=� /
~

Algebraic & Geometric Topology, Volume 23 (2023)



The Devinatz–Hopkins theorem via algebraic geometry 3031

is exhaustive and the canonical map lim
��!
yG�n

0
! yG0 is an equivalence. Furthermore,

any morphism of formal groups yG ! yG 0 induces a family of maps yG�n! yG 0�n for
all n� 0, which induces an isomorphism

G.�; yG0/D Aut. yG0/' lim
 ��

Aut. yG�n
0
/:

Each factor in this filtered limit is finite, recovering the usual profinite structure on the
Morava stabilizer group. In particular, this implies that the product

G.�; yG0/�Def or
yG0

' Spf
�
C �cont.G.�; yG0/IE.�; yG0//

�
is the formal spectrum of an incarnation of continuous E.�; yG0/–valued cochains on
the profinite group G.�; yG0/.

Remark 2.18 Let us indicate an alternative approach to proving Proposition 2.12.
Instead of using the identification (3), we can rather observe that we have for any
A 2 CAlgcN

=�
a natural equivalence

Def or
yG0

.A/' Def yG0
.�0.A//�MFG.�0.A//M

or
FG.A/:

In light of that, it suffices to establish an appropriate G.�; yG0/–action on unoriented
deformations, when all functors in sight are postcomposed with the functor A 7!�0.A/.
That involves only classical (ie nonspectral) algebraic geometry, and as such avoids
coherence issues. Therefore the desired bar construction claim follows inductively
from finding an appropriately equivariant equivalence

(6) Def yG0
�MFG Def yG0

'G.�; yG0/�Def yG0
;

with both sides restricted to the subcategory .CAlgcN
=�
/~ � CAlgcN

=�
of discrete objects.

Since any complete Noetherian local ring may be written as a filtered limit of Artinian
ones, and we are working in the “continuous” category, it further suffices to prove the
result upon the further restriction to local Artinian rings; see [8, Remark 7.3]. For that,
we can reference [8, Theorem 7.18].

There is one final small hitch: Goerss’s analogue of (6) takes the fiber product over a
moduli functor yH.n/D .MDn

FG =M
�n
FG /dR instead of over MFG. But since the forgetful

functor Def yG0
!MFG naturally factors through the substack inclusion yH.n/ ,!MFG,

this turns out not to effect the result. See [10, Section 3.5] for further discussion.
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2.4 The Devinatz–Hopkins theorem

As before, fix �DFp and let yG0 be of height n, (which specifies it up to isomorphism).
We denote by En and Gn the associated Lubin–Tate spectrum and Morava stabilizer
group, respectively. Proposition 2.12 equips Def or

yG0

'Spf.En/ with an action3 of Gn on
Def or

yG0

' Spf.En/ in the1–topos Fun.CAlgcN
=�
/. Let Spf.En/=Gn denote the quotient

of this action in this1–topos. We view its ring of functions

EhGn
n WDO.Spf.En/=Gn/

as the continuous homotopy fixed points of the corresponding action of Gn on the Lubin–
Tate spectrum En. See Remark 3.5 for some further justification of this terminology.

Theorem 2.19 (Devinatz–Hopkins) With continuous homotopy fixed points de-
fined as above , the initial map LK.n/S ! En in LK.n/ Sp induces an equivalence
E

hGn
n 'LK.n/S .

Proof By definition of the ring of functions, we have O.Spf.En//'En. Similarly,
for products we have O.Spf.En/

��/'E
y̋ �
n , where y̋ denotes the completed smash

product of [14, Corollary 7.3.5.2], ie the coproduct in the 1–category CAlgad
cpl of

complete adic E1–rings — see Remark 2.4. Therefore Proposition 2.12 implies that

EhGn
n 'O.Spf.En/

�.�C1//' Tot.E y̋ .�C1/
n /:

It follows from [17, Corollary 4.5.4] that completion in the1–category of En–modules
coincides with K.n/–localization, and so E

y̋ �
n 'LK.n/.E

˝�
n /. Thus it suffices to show

that LK.n/S !En induces an equivalence

(7) Tot.LK.n/.E
˝.�C1/
n //'LK.n/S:

That is a standard result, stemming from the nilpotence of LK.n/S in the1–category
LK.n/ ModEn

, and ultimately, the horizontal vanishing line in the K.n/–local Adams
spectral sequence for En; see for instance [6, Proposition AI.3]. But for completeness,
we sketch an argument anyway, following the account in [19].

The smashing product theorem of Hopkins and Ravenel [22, Theorem 7.5.6] asserts that
the Bousfield localization functor Ln WDLEn

is smashing, which, by Proposition 8.2.4

3Of course this is just the action of Gn on Spf.En/ induced by the identification of the Morava stabilizer
group as Gn ' Aut.En/ ' Aut.Spf.En//, as observed in [17, Remark 5.0.8]. But from our way of
obtaining it, its bar construction is more transparent.
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of [22], is equivalent to LnS being En–nilpotent. That is further equivalent, by
standard nilpotence technology, eg [13, Lectures 30 and 31], to the cosimplicial object
.E
˝.�C1/
n /, whose totalization is LnS , being pro-constant. Applying the functor LK.n/

to this cosimplicial object then gives the desired equivalence.

Remark 2.20 An explicit analysis of how the horizontal vanishing line in the K.n/–
local Adams spectral sequence for En gives rise to the equivalence (7) is given in [6,
Section 4 and Appendix I]. The argument that we gave, following [19], while phrased
slightly differently, is merely a repackaging of the same fundamental idea — indeed,
the proof of the Hopkins–Ravenel smashing product theorem is based on the existence
of a uniform vanishing line; see [20, Section 3.4] for a sketch and relationship to the
“standard nilpotence technology” referred to in the proof above.

Remark 2.21 The equivalence of Theorem 2.19 is a purely function-level state-
ment. Indeed, the quotient Spf.En/=Gn is not equivalent to the affine formal scheme
Spf.LK.n/S/. The value of Spf.En/=Gn on any noncomplex-periodic K.n/–local E1–
ring is the empty set, while the value of Spf.LK.n/S/ is contractible for all K.n/–local
E1–rings.

Despite the preceding remark, we may view quasicoherent sheaves on the quotient
Spf.En/=Gn, which are by definition a derived version of Morava modules, as a natural
incarnation in spectral formal algebraic geometry of the K.n/–local stable category.

Corollary 2.22 There is a canonical equivalence of symmetric monoidal1–categories

QCoh.Spf.En/=Gn/'LK.n/ Sp:

Proof It follows from the proof of Theorem 2.19 that

QCoh.Spf.En/=Gn/' Tot.Modcpl

E
y̋ .�C1/
n

/' Tot.LK.n/ Mod
LK.n/.E

˝.�C1/
n /

/;

which is equivalent to the K.n/–local stable1–category in [19, Proposition 10.10].

2.5 Analogue over a general base

At the cost of replacing the Morava stabilizer group with the more involved algebroge-
ometric group G WD Aut. yG0/dR, the contents of this section still hold after dropping
the assumption that � D Fp.
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Proposition 2.23 Let yG0 be a formal group of finite height over a perfect field
� of positive characteristic. Then there exists a canonical G–action on Def or

yG0

in
Fun.CAlgcN

=�
;S/=Spec.W C.�//, whose two-sided bar construction in said1–category is

equivalent as a simplicial object in the1–category Fun.CAlgcN
=�
;S/,

LC�.Def or
yG0

!�/' B�G
�
Spf.W C.�//;Def or

yG0

�
;

to the Čech nerve of (the terminal map of ) Def or
yG0

.

Proof The only step of the proof of Proposition 2.12 that employs the assumption
� D Fp is in the proof of Lemma 2.16. The rest of the argument, including the proof
of Lemma 2.13, goes through for any perfect field � of positive characteristic, giving
the stated result.

Proposition 2.23 equips Spf.E.�; yG // with a G–action, though this time we need to be
working in the relative setting over Spf.W C.�//. This may be viewed as an incarnation
of a G–action on the Lubin–Tate spectrum E.�; yG0/ in the1–category CAlgad

=W C.�/
.

Just as before, we obtain a workable definition of continuous homotopy fixed points by
setting

E.�; yG0/
hG
WDO

�
Spf.E.�; yG0//=G

�
;

and the analogue of the Devinatz–Hopkins theorem holds as follows.

Proposition 2.24 Let yG0 be a formal group of height n<1 over a perfect field � of
positive characteristic. With notation as above , the initial map LK.n/S !E.�; yG0/ in
LK.n/ Sp induces an equivalence of spectra E.�; yG0/

hG 'LK.n/S:

Proof The proof of Theorem 2.19 works just as well in this setting, provided we use
[11, Proposition 5.2.6] for the nilpotence claim.

Remark 2.25 As explained in [11, Notation 2.1.10], every Lubin–Tate spectrum
E.�; yG0/ gives rise to a Morava K–theory K.�; yG0/. It might seem like we should
have used the localization functor LK.�; yG0/ in Proposition 2.24, but alas this does
not matter, since even though the spectra K.�; yG0/ do depend on the base field and
formal group used to define them, the induced localization functor does not. By [11,
Remark 2.1.14], the Bousfield localization functor L

K.�; yG0/
'LK.n/ only depends on

the characteristic of the field � and the height n of the formal group yG0.

In particular, we obtain by the same proof as Corollary 2.22 a “derived Morava module”
presentation of the K.n/–local stable category for every height n formal group yG0 over
a perfect field � of positive characteristic.
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Corollary 2.26 Keeping all the notation from Proposition 2.24, there is a canonical
equivalence of symmetric monoidal1–categories ,

QCoh
�
Spf.E.�; yG0/=G/

�
'LK.n/ Sp:

3 Spectral sequences

The goal of this section is to prove a version of the Morava change-of-rings theorem,
identifying the K.n/–local Adams spectral sequence for En with the continuous fixed-
point spectral sequence for the Gn–action on En. The Devinatz–Hopkins Theorem 2.19
already guarantees that they converge to (filtrations on) the homotopy groups on the
same spectrum, but the actual comparison of the spectral sequences (and interpretation
of the second one) will take a little more work.

3.1 The descent spectral sequence

Unlike the fundamentally nonconnective Spf.En/ and its intimidating-looking quotient
Spf.En/=Gn, the classifying (pre)stack BGn D �=Gn is quite well behaved. In par-
ticular, it (or better, its sheafification; but since the difference between them does not
matter for quasicoherent sheaves or functions, we will freely switch between them) is
representable by a formal spectral stack which, while not quite Deligne–Mumford, is
nonetheless quite manageable.

For instance, QCoh.BGn/ admits an accessible t–structure by the (formal geometry
analogue of) [15, Proposition 6.2.5.8]. Similarly, the descent spectral sequence, a piece
of technology familiar from the theory of topological modular forms, applies to BGn.
The following proof is essentially a repetition of the one in [7, Chapter 5, Section 3],
but since the setting is slightly different, we have opted to spell it out.

Lemma 3.1 Let X W .CAlgcN
=�
/cn! S be a formal spectral fpqc stack4 that admits a

flat cover U !X , such that all the (nontrivial ) fiber products U �X � � ��X U are affine
formal spectral schemes. For any quasicoherent sheaf F on X , there exists a canonical
Adams-graded spectral sequence

E
s;t
2
D Hs.X I�t .F//) �t�s.�.X IF//;

called the descent spectral sequence.

4Here we are following [15], in that the absence of the adjective “nonconnective” automatically implies
connectivity.
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Proof Let U !X be a flat cover by an affine formal spectral scheme as postulated
in the statement of the lemma. It gives rise to a Čech nerve LC�.U ! X / and hence
a cosimplicial spectrum �. LC�.U !X /IFj LC �.U!X /

/ with totalization �.X IF/. We
claim that the Bousfield–Kan spectral sequence of this cosimplicial spectrum, see for
instance [14, Remark 1.2.4.4], is the desired spectral sequence.

It converges (albeit only conditionally) to the homotopy groups of the totalization of the
cosimplicial spectrum by (an opposite variant of) [14, Proposition 1.2.2.14]. Hence it re-
mains to show that the E2 page is of the desired form. If C � WFun.�;Ab/!Ch.Ab/�0

denotes the cochain complex associated to a cosimplicial abelian group5, then the second
page of the Bousfield–Kan spectral sequence of a cosimplicial spectrum M � may be
expressed as cochain complex cohomology,

E
s;t
2
D Hs.C �.�t .M

�///:

To apply this to the cosimplicial object in question, we must therefore determine the
homotopy groups

�t�. LC�.U !X /IFj LC �.U!X /
/' �t�.U �X � � � �X U If �.F//;

where f WU �X � � ��X U!X is the canonical map. Since U!X is flat by assumption,
the same holds for f , and so f � ı�t ' �t ıf

�— see [14, Proposition 7.2.2.13] for
the affine case, from which it follows for an arbitrary flat morphism by the yoga of [15,
Section 6.2.5]. Secondly, the fiber product U �X � � ��X U is affine by hypothesis, from
which it follows that its global sections functor is t–exact. Putting all that together, we
find that

�t�.U �X � � � �X U If �.F//' �
�
U �X � � � �X U If �.�t .F//

�
;

and so the E2 page of the spectral sequence in question is just the standard Čech coho-
mology procedure for computing the sth sheaf cohomology group of the quasicoherent
sheaf �t .F/ on X .

Remark 3.2 Though the approach using a cover that we sketched above will be the
most convenient for us in what follows, the descent spectral sequence does not depend
on that choice from the second page onwards. It may alternatively even be obtained
in an invariant way: the assumptions on the stack X ensure that QCoh.X / admits a
well-behaved t–structure. Then the spectral sequence associated to the filtered object

5This is the functor that participates in one direction of the Dold–Kan correspondence; see [14, Defini-
tion 1.2.3.8] for the opposite version.
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N.Z / 3 n 7! �.���n.X /IF/ 2 Sp by [14, Definition 1.2.2.9] again gives rise to the
descent spectral sequence after an appropriate reindexing; see [9, Construction 1.5.7]
for details.

3.2 The Adams spectral sequence

We wish to apply the descent spectral sequence on the quotient stack BGn, for which we
need a quasicoherent sheaf on it. Consider the map q W Spf.En/=Gn! BGn, induced
on quotients by the terminal projection p W Spf.En/ ! �. Using the pushforward
functionality of quasicoherent sheaves, we define the desired sheaf as

En WD q�.OSpf.En/=Gn
/ 2 QCoh.BGn/:

As we will need it in the subsequent proposition, let us identify the fiber of this
quasicoherent sheaf at the point i W �! �=Gn ' BGn. By invoking base change along
the pullback square

Spf.En/
p

//

��

�

i
��

Spf.En/=Gn
q
// BGn

we find this fiber to be

i�.En/' i�q�.OSpf.En/=Gn
/' p�.OSpf.En//'En:

Proposition 3.3 The descent spectral sequence for the quasicoherent sheaf En on
BGn is isomorphic to

E
s;t
2
D Exts;t

��.LK.n/.En˝En//
.��.En/; ��.En//) ��.LK.n/S/;

the K.n/–local Adams spectral sequence for En.

Proof Observe that both spectral sequences in question may be obtained as Bousfield–
Kan spectral sequences of certain cosimplicial spectra. Thus it suffices to exhibit an
equivalence between those.

For the descent spectral sequence, we choose the flat cover i W � ! BGn; indeed, this
is a cover by the usual yoga of classifying stacks, and it is flat thanks to the Morava
stabilizer group Gn being pro-étale and as such flat. Then the Čech nerve of i is
given by LC�.� ! BGn/' G��n ; and coincides with the bar construction of Gn. Let
p� WG��n !� denote the terminal map. Then it follows from the computation preceding
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the statement of the proposition that Fj LC�.�!BGn/
' p�

�
.En/; and so the cosimplicial

spectrum that gives rise to the relevant descent spectral sequence is �.G��Ip�
�
.En//;

with the cosimplicial structure inherited from the bar construction of Gn.

For the Adams spectral sequence, let us apply the functor O to the equivalence of
simplicial objects of Proposition 2.12. We obtain an equivalence of cosimplicial spectra

LK.n/.E
˝.�C1/
n /'O.G�n �Spf.En//:

The left-hand side (for recognizing which, we have made use of a calculation from the
proof of Theorem 2.19), gives rise to the K.n/–local Adams spectral sequence for En.
To tackle the left-hand side, consider the Cartesian diagram

G��n �Spf.En/
pr2
//

pr1

��

Spf.En/

p

��

G��n

p�
// �

Using base change along it, we have a series of equivalences

O.G��n �Spf.En//' �.G
��
n �Spf.En/IOG��n �Spf.En//

' �.G��n I .pr1/�pr�2.OSpf.En///

' �.G��n Ip
�
�
p�.OSpf.En///

' �.G��n Ip
�
�
.En//;

and because the cosimplicial structure comes at each step from the bar construction
on Gn, this is an equivalence of cosimplicial spectra. Since we already saw that the
thus-obtained cosimplicial spectrum gives rise to the descent spectral sequence for
BGn, we are done.

Remark 3.4 By working in a nonformal setting, we may argue similarly to the above
in order to obtain the Adams–Novikov spectral sequence as a special case of a descent
spectral sequence — this is also explained in [15, Remark 9.3.1.9]. Indeed, consider
the E1–ring MP, the periodic complex bordism spectrum. As we saw in Remark 2.11,
it gives rise to a “based loop space” �xMP.Spec.S// in nonconnective spectral stacks
over Spec.MP/. Let X denotes the classifying (pre)stack of this nonconnective spectral
group scheme. Its underlying ordinary stack is given by

X~ ' Spec.�0.MP//=Spec.�0.MP˝MP//'M~FG;
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which is identified with the ordinary stack of formal groups by a celebrated theorem of
Quillen. On the other hand, its (derived) E1–ring of functions is given by

O.X /' Tot.MP˝.�C1//D S^MP ' S;

which is by definition the MP–nilpotent completion of the sphere spectrum of [3], as
already discussed in Remark 2.10. This nilpotent completion is well-known to agree
with the sphere spectrum itself. Since the smash product MP˝MP is a flat MP–module
(see [17, Theorem 5.3.13]), a variant of Lemma 3.1 applies to the cover Spec.MP/!X .
The resulting descent spectral sequence converges to ��.S/, while by an argument
analogous to our proof of Proposition 3.3, its second page is

E
s;t
2
D Hs.M~FGI�t .OX //' Exts;t

��.MP˝MP/.��.MP/; ��.MP//;

viewable either as sheaf cohomology on the underlying ordinary stack, or as the Adams–
Novikov spectral sequence. See [9] (where the content of this remark is expanded upon
in [9, Section 2.6]) for a further development of these ideas.

3.3 Homotopy fixed-point spectral sequence

Let us say a few words about the interpretation of Proposition 3.3. We may view
QCoh.BGn/ as a version of continuous discrete representations of the Morava stabilizer
group over the sphere spectrum. From that perspective, the underlying spectrum of a
quasicoherent sheaf F on BGn is given by the fiber i�.F/DM (keeping the notation
i W � ! BGn from the previous subsection), and the sheaf structure on F witnesses the
Gn–action on M . The (continuous) fixed points of this action are incarnated as global
sections M hGn WD �.BGnIF/, and continuous group cohomology is given in terms of
sheaf cohomology as

Hi
cont.GnIM / WD Hi.BGnIF/' ��i.M

hGn/:

Under these identifications, the descent spectral sequence for BGn corresponds to the
fixed-point spectral sequence for Gn,

E
s;t
2
D Hs

cont.GnI�t .En//) �t�s.E
hGn
n /:

Remark 3.5 In line with the preceding discussion, the sheaf En on BGn encodes
a continuous Gn–action on the Lubin–Tate spectrum En. Its continuous homotopy
fixed-points, in the above sense, are given by

EhGn
n ' �.BGnIEn/' p�q�.OSpf.En/=Gn

/' �.Spf.En/=GnIOSpf.En/=Gn
/:
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That agrees with (and perhaps justifies) our definition in Section 2.4, and its use in the
Devinatz–Hopkins Theorem 2.19 in particular.

Remark 3.6 There exist a number of precise incarnations of the 1–category of
continuous Gn–spectra in the literature, eg of [2] or [21]. In each, the construction from
[6] is enhanced (relying heavily on Devinatz and Hopkins’s detailed study of finite
subgroup actions) to produce a version of En in the respective category. Instead, we
claim that QCoh.BGn/ should be viewed as an incarnation of continuous Gn–spectra,
sufficient for our purposes, but not intended to supplant the more sophisticated theories
mentioned above (a careful comparison with which we decline to carry out).

Remark 3.7 In spite of the preceding remark, let us observe that our model at least
gives rise to spectra with a Gn–action in the sense of [1, Definition 2.2], referred to there
as “a simple sense of continuity”. Indeed, in light of Remark 2.17, a Gn–action on M

in our sense gives rise to an augmented cosimplicial diagram M !C �cont.G
�.�C1/
n IM /.

In fact, our approach to continuous Gn–actions is, via the bar resolution BGn ' jG��n j,
essentially equivalent to the one of [1]. Their restriction to the K.n/–local setting is
mirrored in our setup by working in the setting of formal algebraic geometry, ie inside
the1–category Fun.CAlgcN

=�
;S/ instead of say Fun.CAlg;S/.

Remark 3.8 With M as in the previous remark, we find by unwinding the proof
of Proposition 3.3 that the descent spectral sequence for the corresponding sheaf on
BGn is obtained as the Bousfield–Kan spectral sequence of the cosimplicial object
C �cont.G

��
n IM /. That is also one traditional approach to defining the homotopy fixed-

point spectral sequence (for a compact Lie group, say), somewhat justifying our
identification of the two.

With all the notation in place, the following is a formal consequence of Proposition 3.3.

Corollary 3.9 (Morava’s change-of-rings isomorphism) The second page of the
K.n/–local Adams spectral sequence of the Lubin–Tate spectrum En may be expressed
as continuous group cohomology E

s;t
2
D Hs

cont.GnI�t .En//:

Remark 3.10 One difference between our approach and [6] is that they make use of
a form of Morava’s change-of-rings isomorphism from [5] to set up their theory. For
us, on the other hand, that result did not feed into the construction of E

hGn
n nor its

identification with LK.n/S , and we could instead derive it from our considerations.
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Of course, that is largely a cosmetic difference; Morava’s theorem, even if classically
phrased differently, ultimately boils down to algebrogeometric considerations regarding
the moduli of formal groups of the sort that we based our approach on.
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