Download this article
 Download this article For screen
For printing
Recent Issues

Volume 25
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Differential geometric invariants for time-reversal symmetric Bloch bundles, II: The low-dimensional “quaternionic” case

Giuseppe De Nittis and Kiyonori Gomi

Algebraic & Geometric Topology 23 (2023) 2925–2974
Bibliography
1 C Allday, V Puppe, Cohomological methods in transformation groups, 32, Cambridge Univ. Press (1993) MR1236839
2 Y Ando, L Fu, Topological crystalline insulators and topological superconductors: from concepts to materials, Annual Review of Condensed Matter Physics 6 (2015) 361
3 M F Atiyah, K–theory and reality, Quart. J. Math. Oxford Ser. 17 (1966) 367 MR206940
4 S Bunk, R J Szabo, Topological insulators and the Kane–Mele invariant : Obstruction and localization theory, Rev. Math. Phys. 32 (2020) 2050017 MR4121218
5 D Carpentier, P Delplace, M Fruchart, K Gawędzki, C Tauber, Construction and properties of a topological index for periodically driven time-reversal invariant 2D crystals, Nucl. Phys., B 896 (2015) 779
6 D Carpentier, P Delplace, M Fruchart, K Gawędzki, Topological index for periodically driven time-reversal invariant 2D systems, Phys. Rev. Lett. 114 (2015) 106806 MR3437519
7 G De Nittis, K Gomi, Classification of “real” Bloch-bundles : Topological quantum systems of type AI, J. Geom. Phys. 86 (2014) 303 MR3282332
8 G De Nittis, K Gomi, Classification of “quaternionic” Bloch-bundles : Topological quantum systems of type AII, Comm. Math. Phys. 339 (2015) 1 MR3366050
9 G De Nittis, K Gomi, Differential geometric invariants for time-reversal symmetric Bloch-bundles : the “real” case, J. Math. Phys. 57 (2016) 053506 MR3503088
10 G De Nittis, K Gomi, The cohomological nature of the Fu–Kane–Mele invariant, J. Geom. Phys. 124 (2018) 124 MR3754502
11 G De Nittis, K Gomi, The FKMM–invariant in low dimension, Lett. Math. Phys. 108 (2018) 1225 MR3785729
12 J L Dupont, Symplectic bundles and KR–theory, Math. Scand. 24 (1969) 27 MR254839
13 A M Essin, J E Moore, D Vanderbilt, Magnetoelectric polarizability and axion electrodynamics in crystalline insulators, Phys. Rev. Lett. 102 (2009) 146805
14 D Fiorenza, D Monaco, G Panati, 2 invariants of topological insulators as geometric obstructions, Comm. Math. Phys. 343 (2016) 1115 MR3488553
15 D S Freed, Classical Chern–Simons theory, I, Adv. Math. 113 (1995) 237 MR1337109
16 D S Freed, G W Moore, Twisted equivariant matter, Ann. Henri Poincaré 14 (2013) 1927 MR3119923
17 L Fu, C L Kane, Time reversal polarization and a Z2 adiabatic spin pump, Phys. Rev. B 74 (2006) 195312
18 L Fu, C L Kane, E J Mele, Topological insulators in three dimensions, Phys. Rev. Lett. 98 (2007) 106803
19 M Furuta, Y Kametani, H Matsue, N Minami, Stable-homotopy Seiberg–Witten invariants and Pin bordisms, UTMS preprint 2000-46 (2000)
20 K Gawędzki, Conformal field theory : A case study, from: "Conformal field theory" (editors Y Nutku, C Saclioglu, T Turgut), Front. Phys. 102, Perseus (2000) 55 MR1881386
21 K Gawędzki, 2d Fu–Kane–Mele invariant as Wess–Zumino action of the sewing matrix, Lett. Math. Phys. 107 (2017) 733 MR3623279
22 K Gawędzki, Bundle gerbes for topological insulators, from: "Advanced school on topological quantum field theory" (editors N Carqueville, P Sułkowski, R R Suszek), Banach Center Publ. 114, Polish Acad. Sci. Inst. Math. (2018) 145 MR3838093
23 K Gomi, A variant of K–theory and topological T-duality for real circle bundles, Comm. Math. Phys. 334 (2015) 923 MR3306608
24 G M Graf, M Porta, Bulk-edge correspondence for two-dimensional topological insulators, Comm. Math. Phys. 324 (2013) 851 MR3123539
25 M Z Hasan, C L Kane, Colloquium : Topological insulators, Rev. Mod. Phys. 82 (2010) 3045
26 A Hatcher, Algebraic topology, Cambridge Univ. Press (2002) MR1867354
27 W Y Hsiang, Cohomology theory of topological transformation groups, 85, Springer (1975) MR0423384
28 S Hu, Lecture notes on Chern–Simons–Witten theory, World Sci. (2001) MR1852998
29 D Husemoller, Fibre bundles, 20, Springer (1993) MR0370578
30 B Kahn, Construction de classes de Chern équivariantes pour un fibré vectoriel réel, Comm. Algebra 15 (1987) 695 MR877194
31 C L Kane, E J Mele, Z2 topological order and the quantum spin Hall effect, Phys. Rev. Lett. 95 (2005) 146802
32 R M Kaufmann, D Li, B Wehefritz-Kaufmann, Topological insulators and K–theory, preprint (2015) arXiv:1510.08001
33 S Kobayashi, Differential geometry of complex vector bundles, 15, Princeton Univ. Press (1987) MR909698
34 S Kobayashi, K Nomizu, Foundations of differential geometry, I, Interscience (1963) MR0152974
35 T Kohno, Conformal field theory and topology, 210, Amer. Math. Soc. (2002) MR1905659
36 P Kuchment, Floquet theory for partial differential equations, 60, Birkhäuser (1993) MR1232660
37 H B Lawson Jr., P Lima-Filho, M L Michelsohn, Algebraic cycles and the classical groups, II : Quaternionic cycles, Geom. Topol. 9 (2005) 1187 MR2174264
38 T Matumoto, On GCW complexes and a theorem of J H C Whitehead, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971) 363 MR345103
39 J P May, Equivariant homotopy and cohomology theory, 91, Amer. Math. Soc. (1996) MR1413302
40 J W Milnor, J D Stasheff, Characteristic classes, 76, Princeton Univ. Press (1974) MR0440554
41 D Monaco, C Tauber, Gauge-theoretic invariants for topological insulators : A bridge between Berry, Wess–Zumino, and Fu–Kane–Mele, Lett. Math. Phys. 107 (2017) 1315 MR3685175
42 G Panati, Triviality of Bloch and Bloch–Dirac bundles, Ann. Henri Poincaré 8 (2007) 995 MR2342883
43 A Pressley, G Segal, Loop groups, Oxford Univ. Press (1986) MR900587
44 X L Qi, T L Hughes, S C Zhang, Topological field theory of time-reversal invariant insulators, Phys. Rev. B 78 (2008) 195424
45 P F dos Santos, P Lima-Filho, Quaternionic algebraic cycles and reality, Trans. Amer. Math. Soc. 356 (2004) 4701 MR2084395
46 D J Thouless, M Kohmoto, M P Nightingale, M den Nijs, Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett. 49 (1982) 405
47 Z Wang, X L Qi, S C Zhang, Equivalent topological invariants of topological insulators, New Journal of Physics 12 (2010) 065007