Download this article
 Download this article For screen
For printing
Recent Issues

Volume 24
Issue 9, 4731–5219
Issue 8, 4139–4730
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Differential geometric invariants for time-reversal symmetric Bloch bundles, II: The low-dimensional “quaternionic” case

Giuseppe De Nittis and Kiyonori Gomi

Algebraic & Geometric Topology 23 (2023) 2925–2974
Bibliography
1 C Allday, V Puppe, Cohomological methods in transformation groups, 32, Cambridge Univ. Press (1993) MR1236839
2 Y Ando, L Fu, Topological crystalline insulators and topological superconductors: from concepts to materials, Annual Review of Condensed Matter Physics 6 (2015) 361
3 M F Atiyah, K–theory and reality, Quart. J. Math. Oxford Ser. 17 (1966) 367 MR206940
4 S Bunk, R J Szabo, Topological insulators and the Kane–Mele invariant : Obstruction and localization theory, Rev. Math. Phys. 32 (2020) 2050017 MR4121218
5 D Carpentier, P Delplace, M Fruchart, K Gawędzki, C Tauber, Construction and properties of a topological index for periodically driven time-reversal invariant 2D crystals, Nucl. Phys., B 896 (2015) 779
6 D Carpentier, P Delplace, M Fruchart, K Gawędzki, Topological index for periodically driven time-reversal invariant 2D systems, Phys. Rev. Lett. 114 (2015) 106806 MR3437519
7 G De Nittis, K Gomi, Classification of “real” Bloch-bundles : Topological quantum systems of type AI, J. Geom. Phys. 86 (2014) 303 MR3282332
8 G De Nittis, K Gomi, Classification of “quaternionic” Bloch-bundles : Topological quantum systems of type AII, Comm. Math. Phys. 339 (2015) 1 MR3366050
9 G De Nittis, K Gomi, Differential geometric invariants for time-reversal symmetric Bloch-bundles : the “real” case, J. Math. Phys. 57 (2016) 053506 MR3503088
10 G De Nittis, K Gomi, The cohomological nature of the Fu–Kane–Mele invariant, J. Geom. Phys. 124 (2018) 124 MR3754502
11 G De Nittis, K Gomi, The FKMM–invariant in low dimension, Lett. Math. Phys. 108 (2018) 1225 MR3785729
12 J L Dupont, Symplectic bundles and KR–theory, Math. Scand. 24 (1969) 27 MR254839
13 A M Essin, J E Moore, D Vanderbilt, Magnetoelectric polarizability and axion electrodynamics in crystalline insulators, Phys. Rev. Lett. 102 (2009) 146805
14 D Fiorenza, D Monaco, G Panati, 2 invariants of topological insulators as geometric obstructions, Comm. Math. Phys. 343 (2016) 1115 MR3488553
15 D S Freed, Classical Chern–Simons theory, I, Adv. Math. 113 (1995) 237 MR1337109
16 D S Freed, G W Moore, Twisted equivariant matter, Ann. Henri Poincaré 14 (2013) 1927 MR3119923
17 L Fu, C L Kane, Time reversal polarization and a Z2 adiabatic spin pump, Phys. Rev. B 74 (2006) 195312
18 L Fu, C L Kane, E J Mele, Topological insulators in three dimensions, Phys. Rev. Lett. 98 (2007) 106803
19 M Furuta, Y Kametani, H Matsue, N Minami, Stable-homotopy Seiberg–Witten invariants and Pin bordisms, UTMS preprint 2000-46 (2000)
20 K Gawędzki, Conformal field theory : A case study, from: "Conformal field theory" (editors Y Nutku, C Saclioglu, T Turgut), Front. Phys. 102, Perseus (2000) 55 MR1881386
21 K Gawędzki, 2d Fu–Kane–Mele invariant as Wess–Zumino action of the sewing matrix, Lett. Math. Phys. 107 (2017) 733 MR3623279
22 K Gawędzki, Bundle gerbes for topological insulators, from: "Advanced school on topological quantum field theory" (editors N Carqueville, P Sułkowski, R R Suszek), Banach Center Publ. 114, Polish Acad. Sci. Inst. Math. (2018) 145 MR3838093
23 K Gomi, A variant of K–theory and topological T-duality for real circle bundles, Comm. Math. Phys. 334 (2015) 923 MR3306608
24 G M Graf, M Porta, Bulk-edge correspondence for two-dimensional topological insulators, Comm. Math. Phys. 324 (2013) 851 MR3123539
25 M Z Hasan, C L Kane, Colloquium : Topological insulators, Rev. Mod. Phys. 82 (2010) 3045
26 A Hatcher, Algebraic topology, Cambridge Univ. Press (2002) MR1867354
27 W Y Hsiang, Cohomology theory of topological transformation groups, 85, Springer (1975) MR0423384
28 S Hu, Lecture notes on Chern–Simons–Witten theory, World Sci. (2001) MR1852998
29 D Husemoller, Fibre bundles, 20, Springer (1993) MR0370578
30 B Kahn, Construction de classes de Chern équivariantes pour un fibré vectoriel réel, Comm. Algebra 15 (1987) 695 MR877194
31 C L Kane, E J Mele, Z2 topological order and the quantum spin Hall effect, Phys. Rev. Lett. 95 (2005) 146802
32 R M Kaufmann, D Li, B Wehefritz-Kaufmann, Topological insulators and K–theory, preprint (2015) arXiv:1510.08001
33 S Kobayashi, Differential geometry of complex vector bundles, 15, Princeton Univ. Press (1987) MR909698
34 S Kobayashi, K Nomizu, Foundations of differential geometry, I, Interscience (1963) MR0152974
35 T Kohno, Conformal field theory and topology, 210, Amer. Math. Soc. (2002) MR1905659
36 P Kuchment, Floquet theory for partial differential equations, 60, Birkhäuser (1993) MR1232660
37 H B Lawson Jr., P Lima-Filho, M L Michelsohn, Algebraic cycles and the classical groups, II : Quaternionic cycles, Geom. Topol. 9 (2005) 1187 MR2174264
38 T Matumoto, On GCW complexes and a theorem of J H C Whitehead, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971) 363 MR345103
39 J P May, Equivariant homotopy and cohomology theory, 91, Amer. Math. Soc. (1996) MR1413302
40 J W Milnor, J D Stasheff, Characteristic classes, 76, Princeton Univ. Press (1974) MR0440554
41 D Monaco, C Tauber, Gauge-theoretic invariants for topological insulators : A bridge between Berry, Wess–Zumino, and Fu–Kane–Mele, Lett. Math. Phys. 107 (2017) 1315 MR3685175
42 G Panati, Triviality of Bloch and Bloch–Dirac bundles, Ann. Henri Poincaré 8 (2007) 995 MR2342883
43 A Pressley, G Segal, Loop groups, Oxford Univ. Press (1986) MR900587
44 X L Qi, T L Hughes, S C Zhang, Topological field theory of time-reversal invariant insulators, Phys. Rev. B 78 (2008) 195424
45 P F dos Santos, P Lima-Filho, Quaternionic algebraic cycles and reality, Trans. Amer. Math. Soc. 356 (2004) 4701 MR2084395
46 D J Thouless, M Kohmoto, M P Nightingale, M den Nijs, Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett. 49 (1982) 405
47 Z Wang, X L Qi, S C Zhang, Equivalent topological invariants of topological insulators, New Journal of Physics 12 (2010) 065007