Download this article
 Download this article For screen
For printing
Recent Issues

Volume 25
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
Leighton's theorem and regular cube complexes

Daniel J Woodhouse

Algebraic & Geometric Topology 23 (2023) 3395–3415
Abstract

Leighton’s graph covering theorem states that two finite graphs with common universal cover have a common finite cover. We generalize this to a large family of nonpositively curved special cube complexes that form a natural generalization of regular graphs. This family includes both hyperbolic and nonhyperbolic CAT(0) cube complexes.

Keywords
CAT(0) cube complexes, finite covering spaces
Mathematical Subject Classification
Primary: 20F65, 20F67
Secondary: 20E26, 20E42, 20F55
References
Publication
Received: 14 February 2022
Revised: 28 April 2022
Accepted: 19 May 2022
Published: 26 September 2023
Authors
Daniel J Woodhouse
University of Oxford
Oxford
United Kingdom
http://www.djwoodhouse.com

Open Access made possible by participating institutions via Subscribe to Open.