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Partial Torelli groups and homological stability

ANDREW PUTMAN

We prove a homological stability theorem for the subgroup of the mapping class
group acting as the identity on some fixed portion of the first homology group of
the surface. We also prove a similar theorem for the subgroup of the mapping
class group preserving a fixed map from the fundamental group to a finite group,
which can be viewed as a mapping class group version of a theorem of Ellenberg,
Venkatesh and Westerland about braid groups. These results require studying various
simplicial complexes formed by subsurfaces of the surface, generalizing work of
Hatcher and Vogtmann.

57K20

1 Introduction

Let †b
g be an oriented genus-g surface with b boundary components. The mapping

class group Mod.†b
g/ is the group of isotopy classes of orientation-preserving homeo-

morphisms of †b
g that fix @†b

g pointwise. Harer [11] proved that Mod.†b
g/ satisfies

homological stability. More precisely, an orientation-preserving embedding †b
g ,!†b0

g0

induces a map Mod.†b
g/!Mod.†b0

g0/ that extends mapping classes by the identity,
and Harer’s theorem says that the induced map Hk.Mod.†b

g//! Hk.Mod.†b0

g0// is
an isomorphism if g� k.

Torelli The group Mod.†b
g/ acts on H1.†

b
g/. For b � 1, the algebraic intersection

pairing on H1.†
b
g/ is a Mod.†b

g/–invariant symplectic form. We thus get a map
Mod.†b

g/! Sp2g.Z/ whose kernel I.†b
g/ is the Torelli group. The group I.†b

g/

is not homologically stable; indeed, Johnson [16] showed that H1.I.†b
g// does not

stabilize. Church and Farb’s work on representation stability [4] connects this to the
Sp2g.Z/–action on Hk.I.†b

g// induced by the conjugation action of Mod.†b
g/. Much

recent work on Hk.I.†b
g// focuses on this action; see Boldsen and Hauge Dollerup [2],

Kassabov and Putman [18] and Miller, Patzt and Wilson [21].

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution
License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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3418 Andrew Putman

Partial Torelli We show that homological stability can be restored by enlarging the
Torelli group to the group acting trivially on some fixed portion of homology. As an
illustration of our results, we begin by describing them in a very special case. Fix a
symplectic basis fa1; b1; : : : ; ag; bgg for H1.†

1
g/ in the usual way:

� � �

a1 a2 ag

b1 b2 bg

For 0 � h � g, define I.†1
g; h/ to be the subgroup of Mod.†1

g/ fixing all elements
of fa1; b1; : : : ; ah; bhg. These groups interpolate between Mod.†1

g/ and I.†1
g/ in the

sense that

I.†1
g/D I.†1

g;g/� I.†1
g;g� 1/� I.†1

g;g� 2/� � � � � I.†1
g; 0/DMod.†1

g/:

They were introduced by Bestvina, Bux and Margalit [1]; see especially [1, Conjec-
ture 1.2]. For a fixed h� 1, we have an increasing chain of groups

(1-1) I.†1
h; h/� I.†1

hC1; h/� I.†1
hC2; h/� � � � ;

where I.†1
g; h/ is embedded in I.†1

gC1
; h/ via

� � �

a1 a2 ag

b1 b2 bg

� � �

a1 a2

b1 b2

ag

bg

agC1

bgC1

Our main theorem shows that (1-1) satisfies homological stability: for h; k � 1, we have

Hk.I.†1
g; h//Š Hk.I.†1

gC1; h//

for g � .2hC 2/kC .4hC 2/.

Homology markings To state our more general result, we need the notion of a
homology marking. Let A be a finitely generated abelian group. An A–homology
marking on †1

g is a homomorphism � W H1.†
1
g/!A. Associated to this is a partial

Torelli group

I.†1
g; �/D ff 2Mod.†1

g/ j �.f .x//D �.x/ for all x 2 H1.†
1
g/g:

Example 1.1 If AD H1.†
1
g/ and �D id, then I.†1

g; �/D I.†1
g/.

Algebraic & Geometric Topology, Volume 23 (2023)



Partial Torelli groups and homological stability 3419

Example 1.2 If A D H1.†
1
gIZ=`/ and � W H1.†

1
g/ ! A is the projection, then

I.†1
g; �/ is the level-` subgroup of Mod.†1

g/, ie the kernel of the action of Mod.†1
g/

on H1.†
1
gIZ=`/.

Example 1.3 Let A be a symplectic subspace of H1.†
1
g/, ie a subspace with H1.†

1
g/D

A˚A?, where? is defined via the intersection form. Such an A is of the form AŠZ2h

for some h� 0, called the genus of A. If � W H1.†
1
g/!A is the projection, then

I.†1
g; �/D ff 2Mod.†1

g/ j f .x/D x for all x 2Ag:

If A has genus h, then I.†1
g; �/Š I.†1

g; h/.

Stability Our first main theorem is a homological stability theorem for the groups
I.†1

g; �/. Define the stabilization to †1
gC1

of an A–homology marking � on †1
g to

be the following A–homology marking �0 on †1
gC1

. Embed †1
g in †1

gC1
just like we

did above:

†1
g

� � � � � �

This identifies H1.†
1
g/ with a symplectic subspace of H1.†

1
gC1

/, so H1.†
1
gC1

/ D

H1.†
1
g/˚H1.†

1
g/
?. Let �0 W H1.†

1
gC1

/!A be the composition

H1.†
1
gC1/D H1.†

1
g/˚H1.†

1
g/
?
! H1.†

1
g/

�
�!A;

where the first arrow is the orthogonal projection. The map Mod.†1
g/!Mod.†1

gC1
/

induced by the above embedding restricts to a map I.†1
g; �/! I.†1

gC1
; �0/, called

the stabilization map. For a finitely generated abelian group A, let rk.A/ denote the
minimum size of a generating set1 for A. Our main theorem is as follows:

Theorem A Let A be a finitely generated abelian group , � an A–homology marking
on †1

g, and �0 its stabilization to †1
gC1

. The map Hk.I.†1
g; �//! Hk.I.†1

gC1
; �0//

induced by the stabilization map I.†1
g; �/ ! I.†1

gC1
; �0/ is an isomorphism if

g� .rk.A/C2/kC.2 rk.A/C2/ and a surjection if gD .rk.A/C2/kC.2 rk.A/C1/.
1Equivalently, rk.A/ is the maximum n� 0 such that A is the direct sum of n cyclic subgroups. There are
several different commonly used definitions of the rank of an abelian group, and we emphasize that our
rk.A/ is not the maximum n such that A contains a subgroup isomorphic to Zn. In particular, rk.Z=`/D 1

for `� 2, and rk.A/D 0 if and only if AD 0.

Algebraic & Geometric Topology, Volume 23 (2023)



3420 Andrew Putman

Closed surface trouble Harer’s stability theorem implies that the map Mod.†1
g/!

Mod.†g/ arising from gluing a disc to @†1
g induces an isomorphism on Hk for g� k.

One might expect a similar result to hold for the partial Torelli groups. Unfortunately,
this is completely false. In Section 7, we will prove that it fails even for H1 for
A–homology markings satisfying a mild nondegeneracy condition called symplectic
nondegeneracy. One special case of this is the following. For 1 � h � g, define
I.†g; h/ just like I.†1

g; h/, so we have a surjection I.†1
g; h/! I.†g; h/.

Theorem B For h� g with g� 3 and h� 2, the map H1.I.†1
g; h//!H1.I.†g; h//

is not an isomorphism.

The proof uses an extension of the Johnson homomorphism to the partial Torelli groups
that was constructed by Broaddus, Farb and Putman [3].

Multiple boundary components In addition to Theorem A, which concerns surfaces
with one boundary component, we have a theorem for surfaces with multiple boundary
components. The correct statement here is a bit subtle, since the phenomenon underlying
Theorem B also obstructs many obvious kinds of generalizations. The purpose of having
a generalization like this is to understand how the partial Torelli groups restrict to
subsurfaces, which turns out to be fundamental in the author’s forthcoming work on the
cohomology of the moduli space of curves with level structures [23]. Here is an example
of the kind of result we prove; in fact, this is precisely the special case needed in [23].

Example 1.4 Consider an A–homology marking � on †1
g. For some h � 1, let

�0 be its stabilization to †1
gCh

. Consider the following subsurfaces S Š †1Ch
g and

S 0 Š†1C2h
g of †1

gCh
:

S

� � � � � �

†1
g S 0†1

g

� � � � � �

Both S and S 0 include the entire shaded subsurface (including †1
g). The inclusions

S ,! †1
gCh

and S 0 ,! †1
gCh

induce homomorphisms � W Mod.S/! Mod.†1
gCh

/

and  W Mod.S 0/ ! Mod.†1
gCh

/. Then define I.S; �0/ D ��1.I.†1
gCh

; �0// and
I.S 0; �0/ D  �1.I.†1

gCh
; �0//. Be warned: while it turns out that I.S; �0/ can be

defined using the action of Mod.S/ on H1.S/, the group I.S 0; �0/ cannot be defined
using only H1.S

0/. Then our theorem will show that the map

Hk.I.S; �0//! Hk.I.S 0; �0//

Algebraic & Geometric Topology, Volume 23 (2023)



Partial Torelli groups and homological stability 3421

is an isomorphism if the genus of S (namely g) is at least .rk.A/C2/kC.2 rk.A/C2/.
However, except in degenerate cases, the maps

H1.I.†1
g; �//! H1.I.S; �0// and H1.I.S; �0//! H1.I.†1

gCh; �
0//

are never isomorphisms, no matter how large g is.

In the above example, we defined the partial Torelli groups on surfaces with multiple
boundary components in an ad hoc way. Correctly formulating our theorem requires
a more intrinsic definition, and we define a category of “homology-marked surfaces”
with multiple boundary components that is inspired by the author’s work on the Torelli
group on surfaces with multiple boundary components in [22].

Nonabelian markings We also have a theorem for nonabelian markings, whose
definition is as follows.2 Fix a basepoint � 2 @†1

g. For a group ƒ, a ƒ–marking on †1
g

is a group homomorphism � W �1.†
1
g;�/!ƒ. If ƒ is abelian, then this is equivalent

to a ƒ–homology marking on †1
g. Given a ƒ–marking � W �1.†

1
g;�/!ƒ, define the

associated partial Torelli group via the formula

I.†1
g; �/D ff 2Mod.†1

g/ j �.f .x//D �.x/ for all x 2 �1.†
1
g;�/g:

Again, this reduces to our previous definition if ƒ is abelian.

Nonabelian stabilization Let � be a ƒ–marking on †1
g. Due to basepoint issues,

stabilizing � to †1
gC1

is a little more complicated than the case of homology markings.
Let � 2 @†1

g and �0 2 @†1
gC1

be the basepoints. Embed †1
g into †1

gC1
as in

� � �

†1
g

� � �

Let �, � and S Š†1
1

be as in

� � �

S

�
�

2I am not sure who first defined this concept. Related things appear eg in work of Dunfield and Thurston [6]
and Ivanov [13].

Algebraic & Geometric Topology, Volume 23 (2023)



3422 Andrew Putman

Letting �00 2 @S be the basepoint of S as above, the paths � and � induce injective
homomorphisms

�1.†
1
g;�/ ,! �1.†

1
gC1;�

0/ and �1.S;�
00/ ,! �1.†

1
gC1;�

0/

taking x 2 �1.†
1
g;�/ to � �x ���1 2 �1.†

1
gC1

;�0/ and y 2 �1.S;�
00/ to � �y � ��1 2

�1.†
1
gC1

;�0/. Identifying �1.†
1
g;�/ and �1.S;�

00/ with the corresponding subgroups
of �1.†

1
gC1

;�0/, we have a free product decomposition

�1.†
1
gC1;�

0/D �1.†
1
g;�/ ? �1.S;�

00/:

Then define the stabilization �0 W �1.†
1
gC1

;�0/ ! ƒ of � W �1.†
1
g;�/ ! ƒ to be

the composition

�1.†
1
gC1;�

0/D �1.†
1
g;�/ ? �1.S;�

00/! �1.†
1
g;�/

�
�!ƒ;

where the first arrow quotients out by the normal closure of �1.S;�
00/. As in the abelian

setting, the map Mod.†1
g/!Mod.†1

gC1
/ induced by our embedding †1

g ,! †1
gC1

restricts to a map I.†1
g; �/! I.†1

gC1
; �0/, which we will call the stabilization map.

Nonabelian stability Our main theorem about this is as follows. It can be viewed
as an analogue for the mapping class group of a theorem of Ellenberg, Venkatesh and
Westerland [7, Theorem 6.1] concerning braid groups and Hurwitz spaces.

Theorem C Let ƒ be a finite group , � a ƒ–marking on †1
g, and �0 its stabilization

to †1
gC1

. The map Hk.I.†1
g; �//! Hk.I.†1

gC1
; �0// induced by the stabilization

map I.†1
g; �/! I.†1

gC1
; �0/ is an isomorphism if g � .jƒjC 2/kC .2jƒjC 2/ and

a surjection if g D .jƒjC 2/kC .2jƒjC 1/.

Remark 1.5 Ellenberg,Venkatesh and Westerland’s main application in [7] of their
stability result concerns point-counting in Hurwitz spaces via the Weil conjectures.
Unfortunately, the vast amount of unknown unstable cohomology precludes such
applications here.

Remark 1.6 If ƒ is a finite abelian group, then Theorems A and C give a similar kind
of stability, but the bounds in Theorem A are much stronger.

Remark 1.7 Because of basepoint issues, stating a version of Theorem C on surfaces
with multiple boundary components would be rather technical, and unlike for Theorem A
we do not know any potential applications of such a result. We thus do not pursue this
kind of generalization of Theorem C.

Algebraic & Geometric Topology, Volume 23 (2023)
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Proof techniques There is an enormous literature on homological stability theorems,
starting with unpublished work of Quillen on GLn.Fp/. A standard proof technique has
emerged that first appeared in its modern formulation in work of van der Kallen [17].
Consider a sequence of groups

(1-2) G0 �G1 �G2 � � � �

that we want to prove enjoys homological stability, ie Hk.Gn�1/ŠHk.Gn/ for n� k.
To compute Hk.Gn/, we would need a contractible simplicial complex on which Gn

acts freely. Since we are only interested in the low-degree homology groups, we can
weaken contractibility to high connectivity. The key insight for homological stability
is that since we only want to compare Hk.Gn/ with the homology of previous groups
in (1-2), what we want is not a free action but one whose stabilizer subgroups are
related to the previous groups.

Machine There are many variants on the above machine. For proving homological
stability for the groups Gn in (1-2), the easiest version requires simplicial complexes
Xn upon which Gn acts with the following three properties:

� The connectivity of Xn goes to1 as n 7!1.

� For 0 � k � n � 1, the Gn–stabilizer of a k–simplex of Xn is conjugate to
Gn�k�1.

� The group Gn acts transitively on the k–simplices of Xn for all k � 0.

Some additional technical hypotheses are needed; we will review these in Section 3.1.
Hatcher and Vogtmann [12] constructed such Xn for the mapping class group. Our
proof of Theorem A is inspired by their work, so we start by describing a variant of it.

Subsurface complex For h� 1, the complex of genus-h subsurfaces of †b
g, denoted

by Sh.†
b
g/, is the simplicial complex whose k–simplices are sets f�0; : : : ; �kg of isotopy

classes of orientation-preserving embeddings �i W †1
h
! †b

g that can be isotoped so
that, for 0 � i < j � k, the subsurfaces �i.†1

h
/ and �j .†1

h
/ are disjoint. The group

Mod.†b
g/ acts on Sh.†

b
g/. However, it turns out that this is not quite the right complex

for homological stability.

Tethered subsurfaces Let �.†1
h
/ be the result of gluing the interval Œ0; 1� to †1

h
by

identifying 1 2 Œ0; 1� with a point of @†1
h
. The subset Œ0; 1�� �.†1

h
/ is the tether and

0 2 Œ0; 1� � �.†1
h
/ the initial point of the tether. Let I � @†b

g be a finite disjoint
union of open intervals. An I–tethered genus-h subsurface of †b

g is an embedding

Algebraic & Geometric Topology, Volume 23 (2023)



3424 Andrew Putman

� W �.†1
h
/!†b

g taking the initial point of the tether to a point of I whose restriction to
†1

h
preserves the orientation. For instance, here is an I–tethered genus-2 subsurface:

I

Tethered subsurface complex The complex of I–tethered genus-h subsurfaces of†b
g,

denoted by T Sh.†
b
g; I/, is the simplicial complex whose k–simplices are collections

f�0; : : : ; �kg of isotopy classes of I–tethered genus-h subsurfaces of †b
g that can be

realized disjointly. These isotopies are allowed to move the images of the initial points
of the tethers within I , so the tethers can be slid past each other and made disjoint. For
instance, here is a 2–simplex in T S1.†

1
5
; I/:

High connectivity The complexes S1.†
b
g/ and T S1.†

b
g; I/ are closely related to

complexes that were introduced by Hatcher and Vogtmann [12], and it follows easily
from their work that they are 1

2
.g�3/–connected (see Putman and Sam [24, proof of

Theorem 6.25] for details). We generalize this as follows:

Theorem D Consider g � h� 1 and b � 0.

� The complex Sh.†
b
g/ is .g�.2hC1//=.hC1/–connected.

� Assume that b � 1, and let I � @†b
g be a finite disjoint union of open intervals.

The complex T Sh.†
b
g; I/ is .g�.2hC1//=.hC1/–connected.

Remark 1.8 Our convention is that a space is .�1/–connected if it is nonempty.
Using this convention, the genus bounds for .�1/–connectivity and 0–connectivity in
Theorem D are sharp. We do not know whether they are sharp for higher connectivity.

Remark 1.9 Hatcher and Vogtmann’s proof in [12] that S1.†
b
g/ and T S1.†

b
g; I/

are 1
2
.g�3/–connected is closely connected to their proof that the separating curve

complex is 1
2
.g�3/–connected. Looijenga [20] later showed that the separating curve

complex is .g�3/–connected. Unfortunately, his techniques do not appear to give an
improvement to Theorem D.

Algebraic & Geometric Topology, Volume 23 (2023)
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Remark 1.10 In applications to homological stability, we will only use complexes
made out of genus-1 subsurfaces. However, the more general result of Theorem D will
be needed for the proof even of the hD 1 case of Theorem E below.

Mod stability Consider the groups

(1-3) Mod.†1
1/�Mod.†1

2/�Mod.†1
3/� � � � :

Let I � @†1
g be an open interval. The group Mod.†1

g/ acts on T S1.†
1
g; I/, and this

complex has all three properties needed by the machine to prove homological stability
for (1-3):

� As we said above, T S1.†
1
g; I/ is 1

2
.g�3/–connected.

� The Mod.†1
g/–stabilizer of a k–simplex f�0; : : : ; �kg of T S1.†

1
g; I/ is the mapping

class group of the complement of a regular neighborhood of

@†1
g [ �0.�.†

1
1//[ � � � [ �k.�.†

1
1//:

See here:

regular
nbhd

This complement is homeomorphic to †1
g�k�1

, so this stabilizer is isomorphic to
Mod.†1

g�k�1
/. All such subsurface mapping class groups are conjugate; this follows

from the change of coordinates principle of Farb and Margalit [8, Section 1.3.2].

� Another application of the change of coordinates principle shows that Mod.†1
g/

acts transitively on the k–simplices of T S1.†
1
g; I/.

Partial Torelli problem A first idea for proving homological stability for the partial
Torelli groups I.†1

g; �/ is to consider their actions on T S1.†
1
g; I/. Unfortunately, this

does not work. The fundamental problem is that I.†1
g; �/ does not act transitively on

the k–simplices of T S1.†
1
g; I/; indeed, it does not even act transitively on the vertices.

For A–homology markings �, the issue is that, for an I–tethered torus � W �.†1
1
/!†1

g

and f 2 I.†1
g; �/, the compositions

H1.†
1
1/ŠH1.�.†

1
1//

���!H1.†
1
g/

�
�!A; H1.†

1
1/ŠH1.�.†

1
1//

.f ı�/�
����!H1.†

1
g/

�
�!A

will be the same, but the functions � ı �� W H1.�.†
1
1
//!A need not be the same for

different tethered tori. A similar issue arises in the nonabelian setting. To fix this, we
use a subcomplex of T S1.†

1
g; I/ that is adapted to �.
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Remark 1.11 The stabilizers are also wrong, but fixing the transitivity will also fix this.

Vanishing surfaces For an A–homology marking � on †1
g, define T Sh.†

1
g; I; �/ to

be the full subcomplex of T Sh.†
1
g; I/ spanned by vertices � such that the composition

H1.�.†
1
h//

���! H1.†
1
g/

�
�!A

is the zero map. We will show that I.†1
g; �/ acts transitively on the k–simplices of

T S1.†
1
g; I; �/, at least for k not too large. However, there is a problem: a priori the

subcomplex T S1.†
1
g; I; �/ of T S1.†

1
g; I/ might not be highly connected. Our third

main theorem says that in fact it is
�
g�.2 rk.A/C3/

�
=.rk.A/C2/–connected. More

generally, we prove the following:

Theorem E Let A be a finitely generated abelian group , let � be an A–homology
marking on †1

g, and let I � @†1
g be a finite disjoint union of open intervals. Then the

complex T Sh.†
1
g; I; �/ is

�
g�.2 rk.A/C2hC1/

�
=.rk.A/ChC1/–connected.

We also prove a similar theorem in the nonabelian setting.

Outline We start in Section 2 by proving Theorem D. We then prove Theorems A, C,
and E in Section 3. Next, in Section 4 we define a category of homology-marked
surfaces with multiple boundary components. In Section 5 we use our category to
state and prove Theorem F, which generalizes Theorem A to surfaces with multiple
boundary components. This proof depends on a stabilization result which is proved in
Section 6. We close with Section 7, which proves Theorem B.

Conventions Throughout this paper, A denotes a fixed finitely generated abelian group
and ƒ is a fixed finite group. We also fix a basepoint � 2 @†1

g.
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Allen Hatcher for pointing out a confusing typo. I also want to thank the referee for
their very careful reading of the paper and many helpful suggestions. This work was
supported in part by NSF grant DMS-1811322

2 The complex of subsurfaces

This section is devoted to the proof of Theorem D, which asserts that Sh.†
b
g/ and

T Sh.†
b
g; I/ are highly connected. There are three parts: Section 2.1 contains a

technical result about fibers of maps, Section 2.2 discusses “link arguments”, and
Section 2.3 proves Theorem D.
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2.1 Fibers of maps

Our proofs will require a technical tool:

Homotopy theory conventions A space X is said to be n–connected if, for k � n, all
maps Sk!X extend to maps DkC1!X . Since S�1D∅ and D0 is a single point, a
space is .�1/–connected precisely when it is nonempty. A map  WX ! Y of spaces is
an n–homotopy equivalence if, for all 0� k � n, the induced map ŒSk ;X �! ŒSk ;Y �

on unbased homotopy classes of maps out of Sk is a bijection. This is equivalent to
saying that the induced map on �k is a bijection for each choice of basepoint.

Relative fibers If  WX ! Y is a map of simplicial complexes, � is a simplex of Y ,
and � 0 is a face of � , then denote by Fib .� 0; �/ the subcomplex of X consisting of
all simplices �0 of X such that

�  .�0/ is a face of � 0, and

� there exists a simplex � of X such that �0 is a face of � and  .�/D � .

For instance, consider the following map, where  takes each 1–simplex � 0i to � 0 (with
the specified orientation) and each 2–simplex �i to � :

� 0� 05� 02� 01 � 04

�2 ��1 �3

� 03

‰

The relative fiber Fib .� 0; �/ then consists of � 0
1

and � 0
2

and � 0
3

(but not � 0
4

or � 0
5
).

Fiber lemma With these definitions, we have the following lemma:

Lemma 2.1 Let  WX!Y be a map of simplicial complexes. For some n� 0, assume
the space Fib .� 0; �/ is n–connected for all simplices � of Y and all faces � 0 of � .
Then  is an n–homotopy equivalence.

Proof Replacing Y by its .nC1/–skeleton YnC1 and X by �1.YnC1/, we can assume
that Y is finite dimensional. The proof will be by induction on mD dim.Y /. The base
case mD 0 is trivial, since in that case Y is a discrete set of points and our assumptions
imply that the fiber over each of these points is n–connected. Assume now that m� 1.
The key step in the proof is the following claim:

Claim Assume that Y is the union of a subcomplex Y 0 and an m–simplex � with
� \ Y 0 D @� . Define X 0 D  �1.Y 0/, and assume that  W X ! Y restricts to an
n–homotopy equivalence  0 WX 0! Y 0. Then  is an n–homotopy equivalence.
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Proof Let X 00 D Fib .�; �/. In other words, X 00 consists of all simplices of X

mapping surjectively onto � , along with their faces. We thus have X D X 0 [X 00.
By assumption, X 00 is n–connected, which implies that  restricts to an n–homotopy
equivalence  00 W X 00 ! � . Define Z D X 0 \ X 00. The map  restricts to a map
 Z WZ! @� .

We now come to the key observation: the space Z is precisely the subcomplex of
X consisting of the union of the subcomplexes Fib .� 0; �/ as � 0 ranges over all
simplices of @� . Moreover, for all simplices � 0 of @� and all faces � 00 of � 0, we have
Fib Z

.� 00; � 0/D Fib .� 00; �/, and thus by assumption Fib Z
.� 00; � 0/ is n–connected.

We can therefore apply our inductive hypothesis to see that  Z WZ! @� Š Sm�1 is
an n–homotopy equivalence.

Summing up, we have X D X 0 [ X 00 and Y D Y 0 [ � . The map  restricts to
n–homotopy equivalences

 0 WX 0! Y 0;  00 WX 00! �; and  Z WX
0
\X 00 DZ! @� D Y 0\ �;

and induces a map between the Mayer–Vietoris exact sequences associated to the
decompositions X DX 0[X 00 and Y D Y 0[ � :

� � � // Hk.X
0\X 00/ //

��

Hk.X
0/˚Hk.X

00/ //

��

Hk.X / //

��

� � �

� � � // Hk.Y
0\ �/ // Hk.Y

0/˚Hk.�/ // Hk.Y / // � � �

Other than the maps Hk.X /! Hk.Y /, the vertical maps in this commutative diagram
are isomorphisms for k � n, so by the five lemma the maps Hk.X /! Hk.Y / are
also isomorphisms for k � n. This implies in particular that the map X ! Y is
0–connected, and thus induces a bijection between path-components. If n � 1, then
a similar argument on each path component using the Seifert–van Kampen theorem
shows that the map  W X ! Y induces an isomorphism on �1 for each choice of
basepoint. This allows us to identify local coefficient systems on Y with local coefficient
systems on X , and for each local coefficient system A on Y we can run the above
Mayer–Vietoris argument on homology with coefficients in A to prove that the map
 W Hk.X IA/! Hk.Y IA/ is an isomorphism for k � n. Applying the nonsimply
connected version of Whitehead’s theorem [5, Theorem 6.71], we deduce that the map
X ! Y is an n–homotopy equivalence, as desired.

Repeatedly applying this claim, we see that the lemma holds for m–dimensional Y

with finitely many m–simplices.
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The general case reduces to the case where Y has finitely many m–simplices as follows.
Consider some 0� k � n. Our goal is to prove that the map ŒSk ;X �! ŒSk ;Y � induced
by  is a bijection. The proofs that it is injective and surjective are similar compactness
arguments, so we give the details for surjectivity and leave injectivity to the reader.

Consider a map f W Sk ! Y . By compactness, f .Sk/ lies in a subcomplex of Y 0

of Y containing the .m�1/–skeleton and finitely many m–simplices. Letting X 0 D

 �1.Y 0/, we know that the map ŒSk ;X 0�! ŒSk ;Y 0� is a bijection, so there exists
some Qf W Sk ! X 0 such that  ı Qf W Sk ! Y 0 is homotopic to f . It follows that the
map ŒSk ;X �! ŒSk ;Y � induced by  is surjective, as desired.

Corollary 2.2 Let  W X ! Y be a map of simplicial complexes. For some n � 0,
assume

� Y is n–connected , and
� all .nC1/–simplices of Y are in the image of  , and
� for all simplices � of Y whose dimension is at most n and all faces � 0 of � , the

space Fib .� 0; �/ is n–connected.

Then X is n–connected.

Proof Let Y 0 be the n–skeleton of Y and X 0 D  �1.Y 0/, so X 0 contains the n–
skeleton of X . Let  0 W X 0 ! Y 0 be the restriction of  to X 0. Our assumptions
allow us to apply Lemma 2.1 to  0, so  0 is an n–homotopy equivalence. Since Y

is n–connected the space Y 0 is .n�1/–connected, so this implies that X 0 and thus X

are .n�1/–connected. We also know that the induced map  0 W �n.X
0/! �n.Y

0/ is
an isomorphism. Since Y is n–connected, attaching the .nC1/–simplices of Y to Y 0

kills �n.Y
0/. By assumption, for each of these .nC1/–simplices � of Y there is an

.nC1/–simplex Q� of X such that  . Q�/ D � . It follows that the element of �n.Y
0/

represented by @� ! Y 0 lifts to the element of �n.X
0/ represented by @ Q� !X 0. We

conclude that attaching to X 0 the .nC1/–simplices of X that do not already lie in X 0

kills �n.X
0/, which implies that �n.X /D 0, as desired.

2.2 Link arguments

Let X be a simplicial complex and let Y �X be a subcomplex. This section is devoted
to a result of Hatcher and Vogtmann [12] that gives conditions under which the pair
.X;Y / is n–connected, ie �k.X;Y / D 0 for 0 � k � n. The idea is to identify a
collection B of “bad simplices” of X that characterize Y in the sense that a simplex
lies in Y precisely when none of its faces lie in B. We then have to understand the local
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topology of Y around a simplex of B. To that end, if B is a collection of simplices of X

and � 2 B, then define G.X; �;B/ to be the subcomplex of X consisting of simplices
� 0 satisfying:

� The join � � � 0 is a simplex of X , ie � 0 is a simplex in the link of � .

� If � 00 is a face of � � � 0 such that � 00 2 B, then � 00 � � .

Hatcher and Vogtmann’s result is then as follows.

Proposition 2.3 [12, Proposition 2.1] Let Y be a subcomplex of a simplicial complex
X and assume that there exists a collection B of simplices of X satisfying , for some
n� 0:

(i) A simplex of X lies in Y if and only if none of its faces lie in B.

(ii) If �1; �2 2 B are such that �1[�2 is a simplex of X , then �1[�2 2 B. Here �1

and �2 might share vertices , so �1[ �2 might not be the join �1 � �2.

(iii) For all k–dimensional � 2 B, the complex G.X; �;B/ is .n�k�1/–connected.

Then the pair .X;Y / is n–connected.

As an illustration of how Proposition 2.3 might be used, we use it to prove the following
result (which will in fact be how we use that proposition in all but two cases).

Corollary 2.4 Let X be a simplicial complex and let Y;Y 0 � X be disjoint full
subcomplexes such that every vertex of X lies in either Y or Y 0. For some n � 0,
assume that for all k–dimensional simplices � of Y 0 the intersection of Y with the link
of � is .n�k�1/–connected. Then the pair .X;Y / is n–connected.

Proof We will verify the hypotheses of Proposition 2.3 for the set B of all simplices
of Y 0. Since Y is a full subcomplex of X and all vertices of X lie in either Y or Y 0,
a simplex of X lies in Y if and only if none of its vertices lie in Y 0. Hypothesis (i)
follows. Hypothesis (ii) is immediate from the fact that Y 0 is a full subcomplex of X .
As for hypothesis (iii), it is immediate from the definitions that, for a simplex � 2 B,
the complex G.X; �;B/ is precisely the intersection of the link of � with Y .

2.3 Subsurface complexes

Proof of Theorem D The proofs for Sh.†
b
g/ and T Sh.†

b
g; I/ are similar. Keeping

track of the tethers introduces a few complications, so we will give the details for
T Sh.†

b
g; I/ and leave Sh.†

b
g/ to the reader.
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The proof that T Sh.†
b
g; I/ is .g�.2hC1//=.hC1/–connected will be by induction

on h. The base case h D 1 is [24, Theorem 6.25], which we remark shows how to
derive it from a closely related result of Hatcher and Vogtmann [12]. For the inductive
step, assume that T Sh.†

b
g; I/ is .g�.2hC1//=.hC1/–connected. We will prove that

T ShC1.†
b
g; I/ is .g�.2hC3//=.hC2/–connected.

Let �.†1
h
; †1

1
/ be the space obtained from �.†1

h
/t†1

1
by gluing in an interval Œ0; 1�

with 0 being attached to a point of @†1
h

different from the attaching point of the tether
in �.†1

h
/ and 1 being attached to a point of @†1

1
:

free
tether

attaching
tether

The tether in �.†1
h
/ will be called the free tether and the interval connecting �.†1

h
/ to

†1
1

will be called the attaching tether. The points 0 of the two tethers will be called
their initial points and the points 1 will be called their endpoints.

Given an embedding �.†1
h
; †1

1
/! †b

g taking the initial point of the free tether to a
point of I , thickening up the attaching tether gives an I–tethered †1

hC1
:

In fact, there is a bijection between isotopy classes of orientation-preserving I–tethered
†1

hC1
in †b

g and isotopy classes of embeddings �.†1
h
; †1

1
/!†b

g whose restrictions to
†1

h
and †1

1
preserve the orientation and which take the initial point of the free tether to

a point of I . For short, we will call these orientation-preserving I–tethered �.†1
h
; †1

1
/

in †b
g. We remark that this is slightly awkward terminology, since the free tether is part

of �.†1
h
; †1

1
/, while on the other hand we previously talked about I–tethered †1

hC1

with the tether implicit. By the above, we can regard T ShC1.†
b
g; I/ as being the

simplicial complex whose k–simplices are collections f�0; : : : ; �kg of isotopy classes
of orientation-preserving I–tethered �.†1

h
; †1

1
/ in †b

g that can be realized so that their
images are disjoint.

We now define an auxiliary space. Let X be the simplicial complex whose k–simplices
are collections f�0; : : : ; �kg of isotopy classes of orientation-preserving I–tethered
�.†1

h
; †1

1
/ in †b

g that can be realized so that, for all distinct 0� i; j � k:

� Either �i j�.†1
h
/ D �j j�.†1

h
/, or the images under �i and �j of �.†1

h
/ are disjoint.
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� If �i j�.†1
h
/ D �j j�.†1

h
/, then the images under �i and �j of †1

1
together with the

attaching tether are disjoint, except for the initial point of the attaching tether.

� If the images under �i and �j of �.†1
h
/ are disjoint, then the images under �i and

�j of �.†1
h
; †1

1
/ are disjoint.

For instance, here is a 3–simplex of X for g D 9, b D 1 and hD 2:

We have T ShC1.†
b
g; I/ � X . The next claim says that X enjoys the connectivity

property we are trying to prove for T ShC1.†
b
g; I/:

Claim X is .g�.2hC3//=.hC2/–connected.

Proof Let WX!T Sh.†
b
g; I/ be the map that takes a vertex � W�.†1

h
; †1

1
/!†b

g of X

to the vertex �j�.†1
h
/ W �.†

1
h
/!†b

g of T Sh.†
b
g; I/. We prove that WX!T Sh.†

b
g; I/

satisfies the conditions of Corollary 2.2 for nD .g� .2hC3//=.hC2/. Once we have
done this, Corollary 2.2 will show that X is n–connected, as desired.

The first condition is that T Sh.†
b
g; I/ is n–connected. In fact, our inductive hypothesis

says that it is .g�.2hC1//=.hC1/–connected, which is even stronger.

The second condition says that all .nC1/–simplices of T Sh.†
b
g; I/ are in the image

of  . The map  is Mod.†b
g/–equivariant, and by the change of coordinates principle

from [8, Section 1.3.2] the actions of Mod.†b
g/ on T ShC1.†

b
g; I/ and T Sh.†

b
g; I/

are transitive on k–simplices for all k. To prove the second condition, therefore, it is
enough to show that T ShC1.†

b
g; I/�X contains an .nC1/–simplex. Such a simplex

contains nC 2 disjoint copies of �.†1
h
; †1

1
/. Since

.nC2/.hC1/D

�
g�.2hC3/

hC2
C2

�
.hC1/D

�
g�.2hC3/

hC2

�
.hC1/C2.hC1/

< .g�.2hC3//C2.hC1/D g�1< g;

there is enough room on †b
g to find these nC 2 disjoint copies of �.†1

h
; †1

1
/.

The final condition says that, for all simplices � of T Sh.†
b
g; I/ whose dimension is at

most n and all faces � 0 of � , the space Fib .� 0; �/, defined right before Lemma 2.1,
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is n–connected. Recall that Fib .� 0; �/ is the subcomplex of X consisting of all
simplices �0 of X such that

(i)  .�0/ is a face of � 0, and

(ii) there exists a simplex � of X such that �0 is a face of � and  .�/D � .

Write
� 0 D f�0; : : : ; �m0g and � D f�0; : : : ; �m0 ; : : : ; �mg;

so 0 � m0 � m � n. We will illustrate all our constructions here with the following
running example, where � 0 D f�0; �1g and � D f�0; �1; �2g:

�1

�2

�0

The left side of the following depicts a 2–simplex of X lying in Fib .� 0; �/ and the
right side depicts a 2–simplex of X that does not lie in Fib .� 0; �/:

The issue with the simplex �0 on the right is that there is not enough genus remaining
on the surface to find a simplex � of X satisfying condition (ii) above. For the simplex
�0 on the left, the desired simplex � is as follows:

To understand the connectivity of Fib .� 0; �/, we must relate it to a complex we
already understand. Let † be the surface obtained by first removing the interior of

�0.†
1
h/[ � � � [ �m.†

1
h/
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from†b
g and then cutting open the result along the images of the tethers. In our running

example, † is obtained as follows:

�1

�2

�0

We thus have † Š †b
g�.mC1/h

. For 0 � i � m0, let Ji � @† be an open interval in
�i.@†

1
h
/ containing the image of the point on @†1

h
to which the attaching tether is

attached when forming �.†1
h
; †1

1
/. Set J D J1[ � � � [Jm0 .

The complex Fib .� 0; �/ is isomorphic to a subcomplex T S 0
1
.†;J / of T S1.†;J /.

In our running example, the simplex of Fib .� 0; �/ on the left-hand side corresponds
to the simplex of T S1.†;J / on the right-hand side:

J0

J1

The different tethers in a simplex of Fib .� 0; �/�X that meet at a point of �i.@†1
h
/ are

“spread out” in Ji so as to be disjoint. The reason that Fib .� 0; �/ is only isomorphic
to a subcomplex T S 0

1
.†;J / of T S1.†;J / and not the whole thing is that it only

corresponds to simplices where there is enough genus remaining to ensure condition (ii)
above holds.

Recall that m0 and m satisfy 0�m0 �m� n. As we noted in the first paragraph, the
connectivity of T S1.†;J / is at least

1
2
.g� .mC 1/h� 3/� 1

2
.g� .nC 1/h� 3/:

To prove that connectivity of T S 0
1
.†;J / is at least nD .g� .2hC 3//=.hC 2/, it is

enough to prove that

�
1
2
.g� .nC 1/h� 3/� n, and

� T S 0
1
.†;J / contains the .nC1/–skeleton of T S1.†;J /.
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For the first fact, we calculate as follows:

1

2
.g�.nC1/h�3/D

1

2

�
g�

�
g�.2hC3/

hC2
C1

�
h�3

�
D

gC 1
2
h2�h�3

hC2
�

g�2h�3

hC2
:

Here the final inequality follows from 1
2
h2� h� �2h, which holds for h� 0.

For the second, consider a simplex fj0; : : : ; j`g of the .nC1/–skeleton of T S1.†;J /.
Let †0 be the surface obtained by first removing the interior of

j0.†
1
1/[ � � � [ j`.†

1
1/

from †Š†b
g�.mC1/h

and then cutting open the result along the images of the tethers.
It follows that

†0 Š†b
g�.mC1/h�.`C1/:

In the worst case, where the corresponding simplex �0 of X maps to a vertex of � 0, we
need at least m genus remaining to complete �0 to a simplex mapping to � . In other
words, what we must prove is that

g� .mC 1/h� .`C 1/�m:

Since our simplex lies in the .nC1/–skeleton, we have ` � nC 1. Also, m � n. It
follows that it is enough to prove that

g� .nC 1/h� .nC 2/� n:

Rearranging this, we get
g� h� 2

hC 2
� n:

This follows from the fact that nD .g� .2hC 3//=.hC 2/.

We now use this to prove the desired connectivity property for T ShC1.†
b
g; I/.

Claim T ShC1.†
b
g; I/ is .g�.2hC3//=.hC2/–connected.

Proof We prove that T ShC1.†
b
g; I/ is n–connected for�1�n� .g�.2hC3//=.hC2/

by induction on n. The base case nD�1 simply asserts that T ShC1.†
b
g; I/ is nonempty

when .g� .2hC3//=.hC2/��1. This condition is equivalent to g � hC1, in which
case T ShC1.†

b
g; I/¤∅ is obvious.

Assume now that 0 � n � .g � .2h C 3//=.h C 2/ and that, for all surfaces †b0

g0

and all finite disjoint unions of open intervals I 0 � @†b0

g0 , the space T ShC1.†
b0

g0 ; I
0/

is n0–connected for n0 D minfn� 1; .g0 � .2hC 3//=.hC 2/g. We must prove that
Y WD T ShC1.†

b
g; I/ is n–connected.
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We know that X is n–connected, so to prove that its subcomplex Y is n–connected
it is enough to prove that the pair .X;Y / is .nC1/–connected. We do this using
Proposition 2.3. For this, we must identify a set B of “bad simplices” of X and verify
the three hypotheses of the proposition. Define B to be the set of all simplices � of X

such that, for all vertices v of � , there exists another vertex v0 of � such that the edge
fv; v0g of � does not lie in Y D T ShC1.†

b
g; I/.

We now verify the hypotheses of Proposition 2.3. The first two are easy:

(i) A simplex of X lies in Y D T ShC1.†
b
g; I/ if and only if none of its faces lie

in B, which is obvious.

(ii) If �1; �2 2 B are such that �1[ �2 is a simplex of X , then �1[ �2 2 B, which
again is obvious.

The only thing left to check is (iii), which says that, for all k–dimensional � 2 B, the
complex G.X; �;B/ has connectivity at least .nC 1/� k � 1D n� k.

Write � Df�0; : : : ; �kg. Let †0 be the surface obtained by first removing the interiors of

�0.†
1
h t†

1
1/[ � � � [ �k.†

1
h t†

1
1/

from †b
g and then cutting open the result along the images of the free and attaching

tethers:

I 0

I 0

The surface †0 is connected, and when cutting along the free and attaching tethers the
open set I � @†b

g is divided into a finer collection I 0 of open segments (as in the above
example). Examining its definition in Section 2.2, we see that

G.X; �;B/Š T ShC1.†
0; I 0/:

We must prove that T ShC1.†
0; I 0/ is .n�k/–connected. Let g0 be the genus of †0.

Since k�1, we have n�k<n, so our inductive hypothesis will say that T ShC1.†
0; I 0/

is .n�k/–connected if we can prove that n� k � .g0� .2hC 3//=.hC 2/.

This requires estimating g0. The most naive such estimate of g0 is

g0 � g� .kC 1/.hC 1/:
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This is a poor estimate since it does not use the fact that � 2 B, which implies that
every genus-h surface contributing to this estimate is at least double-counted. Taking
this into account, we see that in fact

g0 � g� 1
2
.kC 1/h� .kC 1/D g� 1

2
.kC 1/.hC 2/:

This implies that

g0� .2hC 3/

hC 2
�

g� .2hC 3/

hC 2
�

1
2
.kC 1/.hC 2/

hC 2
� n� 1

2
.kC 1/� n� k;

where the final inequality uses the fact that k � 1.

This completes the proof of Theorem D.

3 Stability for surfaces with one boundary component

In this section we prove Theorems A and C. The outline is as follows. In Section 3.1,
we discuss the homological stability machine. In Sections 3.2 and 3.3 we prove a
number of preliminary results needed to apply this machine. Our proof of Theorem E
(and its nonabelian analogue) is in Section 3.3.2. Finally, in Section 3.4 we prove
Theorems A and C.

3.1 The stability machine

We now introduce the standard homological stability machine. This is discussed in
many places, but the account in [12, Section 1] is particularly convenient for our
purposes. We remark that our results could also be proved using the framework of [19]
(which generalizes [25]), but since it would not simplify our proofs we decided not to
use that framework.

Semisimplicial sets The natural setting for the machine is that of semisimplicial sets,
whose definition we now briefly recall. For more details see [9], which calls them
�–sets. Let � be the category with objects the sets Œk� D f0; : : : ; kg for k � 0 and
whose morphisms Œk�! Œ`� are the strictly increasing functions. A semisimplicial set
is a contravariant functor X from � to the category of sets. The k–simplices of X

are the image Xk of Œk� 2�. The maps X`!Xk corresponding to the �–morphisms
Œk�! Œ`� are called the face maps.

Geometric properties A semisimplicial set X has a geometric realization jX j obtained
by taking standard k–simplices for each element of Xk and then gluing these simplices
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together using the face maps. Whenever we talk about topological properties of a
semisimplicial set, we are referring to its geometric realization. An action of a group G

on a semisimplicial set X consists of actions of G on each Xn that commute with the
face maps. This induces an action of G on jX j.

The machine The version of the homological stability machine we need is as follows.
In it, the indexing is chosen so that the complex X1 upon which G1 acts is connected.

Theorem 3.1 Let
G0 �G1 �G2 � � � �

be an increasing sequence of groups. For each n � 1, let Xn be a semisimplicial set
upon which Gn acts. Assume , for some c � 2, that the following hold :

(1) The space Xn is .n�1/=c–connected.

(2) For all 0 � i < n, the group Gn�i�1 is the Gn–stabilizer of some i–simplex
of Xn.

(3) For all 0� i < n, the group Gn acts transitively on the i–simplices of Xn.

(4) For all n� cC1 and all 1–simplices e of Xn whose boundary consists of vertices
v and v0, there exists some �2Gn such that �.v/D v0 and such that � commutes
with all elements of .Gn/e.

Then , for k � 1, the map Hk.Gn�1/! Hk.Gn/ is an isomorphism for n� ckC 1 and
a surjection for nD ck.

Proof This is proved exactly like [12, Theorem 1.1].

3.2 Stabilizing and destabilizing markings

We next discuss the process of stabilizing and destabilizing markings. Recall that A is
a fixed finitely generated abelian group and ƒ is a fixed finite group.

Stabilizing and destabilizing, abelian If � is an A–homology marking on †1
g and

†1
g ,! †1

g0 is an embedding, then we can define the stabilization to †1
g0 of � just

like we did in the introduction. Namely, H1.†g/ can be identified with a symplectic
subspace of H1.†g0/, so

H1.†g0/D H1.†
1
g/˚H1.†

1
g/
?;
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where the? is with respect to the algebraic intersection pairing. Define the stabilization
�0 W H1.†

1
g0/!A of � to be the composition

H1.†
1
g0/D H1.†

1
g/˚H1.†

1
g/
?
! H1.†

1
g/

�
�!A;

where the first arrow is the orthogonal projection. We also say� is a destabilization of�0.

Stabilizing and destabilizing, nonabelian Now let � be a ƒ–marking on †1
g and

†1
g ,! †1

g0 be an embedding. Defining the stabilization of � to †1
g0 is subtle since

there is not a canonical3 way to stabilize. We thus need to make some auxiliary choices.

Let � 2 @†1
g and �0 2 @†1

g0 be the basepoints. Let S be a subsurface of †1
g0 n Int.†1

g/

with S Š†1
g0�g. Choose a basepoint �00 2 @S , and let � and � be embedded paths in

†1
g0 n Int.†1

g [S/ connecting � to �0 and �00, respectively. Assume that � and � are
disjoint aside from their initial points:

†1
g

� � �

�
�

S
� � �

The paths � and � induce injective homomorphisms

�1.†
1
g;�/ ,! �1.†

1
g0 ;�

0/ and �1.S;�
00/ ,! �1.†

1
g0 ;�

0/

taking x 2 �1.†
1
g;�/ to � � x � ��1 2 �1.†

1
g0 ;�

0/ and y 2 �1.S;�
00/ to � � y � ��1 2

�1.†
1
g0 ;�

0/. Identifying �1.†
1
g;�/ and �1.S;�

00/ with the corresponding subgroups
of �1.†

1
g0 ;�

0/, we have a free product decomposition

�1.†
1
g0 ;�

0/D �1.†
1
g;�/ ? �1.S;�

00/:

Define �0 W �1.†
1
g0 ;�

0/!ƒ to be the composition

�1.†
1
g0 ;�

0/D �1.†
1
g;�/ ? �1.S;�

00/! �1.†
1
g;�/

�
�!ƒ;

where the first arrow quotients out by the normal closure of �1.S;�
00/.

A different choice of � would change the subgroup �1.S;�
00/ of �1.†

1
g0 ;�

0/ to a
conjugate subgroup, so would not change �0. It follows that �0 only depends on the
pair .S; �/, and we will call �0 the .S; �/–stabilization of � to †1

g0 . If we do not want
to specify .S; �/ we will just say that �0 is a stabilization of �, but be warned that
different choices of .S; �/ will lead to different stabilizations. We will also say that �
is a destabilization of �0 with destabilization data .S; �/.

3In the introduction, we made a very specific choice when we stabilized a ƒ–marking on †1
g to †1

gC1
.
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Remark 3.2 The choice of S is more important than the choice of �. Indeed, changing
� would have the effect of conjugating �0 by an element of ƒ. This would not affect
the associated partial Torelli group I.†1

g0 ; �
0/.

Maps between partial Torelli groups Let � be either an A–homology marking or a
ƒ–marking on †1

g, let †1
g ,!†1

g0 be an embedding, and let �0 be a stabilization of �
to †1

g0 . The embedding †1
g ,!†1

g0 induces an injective map Mod.†1
g/!Mod.†1

g0/

on mapping class groups, and from our definitions it is clear that this restricts to a map
I.†1

g; �/! I.†1
g0 ; �

0/ between the associated partial Torelli groups. In fact:

Lemma 3.3 Suppose that � is either an A–homology marking or a ƒ–marking on †1
g,

that †1
g ,! †1

g0 is an embedding , and that �0 is a stabilization of � to †1
g0 . Let

� WMod.†1
g/!Mod.†1

g0/ be the map induced by †1
g ,!†1

g0 . Then

I.†1
g; �/D f� 2Mod.†1

g/ j �.�/ 2 I.†
1
g0 ; �

0/g:

Proof This is immediate.

Vanishing surfaces Recall that the rank rk.A/ of the finitely generated abelian group
A is the minimum size of a generating set for A. Consider a subsurface S of †1

g. For
an A–homology marking � on †1

g, we say that � vanishes on S if � vanishes on the
image of H1.S/ in H1.†

1
g/. Similarly, for a ƒ–marking �, we say that � vanishes

on S if �.x/D 1 for all x 2 �1.†
1
g;�/ that are freely homotopic to a loop in S . Here

� 2 @†1
g is our fixed basepoint.

Proposition 3.4 Consider some g; h� 1.

� Let � be an A–homology marking on †1
g, and assume that g � rk.A/Ch. Then

there exists an embedding S ,!†1
g with S Š†1

h
such that � vanishes on S .

� Let � be a ƒ–marking on †1
g, and assume that g � jƒjC h. Then there exists

an embedding S ,!†1
g with S Š†1

h
such that � vanishes on S .

Proof of Proposition 3.4 for A–homology markings Consider a symplectic subspace
U of H1.†

1
g/, ie a subgroup such that H1.†

1
g/ D U ˚ U?, where the ? is with

respect to the algebraic intersection pairing. Such a U is of the form U Š Z2k for an
integer k � 0, called the genus of U . Every genus-h symplectic subspace U of H1.†

1
g/

can be written as U D H1.S/ for some subsurface S of †1
g satisfying S Š†1

h
; see eg

[15, Lemma 9]. The proposition is thus equivalent to the purely algebraic Lemma 3.5.
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Lemma 3.5 Let V Š Z2g be a free abelian group equipped with a symplectic form
!.� ;� / and let � WV !A be a group homomorphism. Assume that g� rk.A/Ch for
some h�1. There then exists a genus-h symplectic subspace U of V such that �jU D0.

Proof Without loss of generality, � is surjective and A ¤ 0. Also, increasing h if
necessary, we can assume that g D rk.A/Ch. We will prove the “dual” statement that
there exists a genus-rk.A/ symplectic subspace W of V such that �jW ? D 0. The
desired U is then U DW ?. The proof will be by induction on rk.A/. The base case
is rk.A/D 1, so A is cyclic. We can factor � as

V
Q�
�� Z!A:

By definition, !.� ;� / identifies V with its dual, Hom.V;Z/. There thus exists some
a 2 V such that Q�.x/D !.a;x/ for all x 2 V . Pick b 2 V with !.a; b/D 1 and let
W D ha; bi. Then W is a genus-1 symplectic subspace and

W ? � ker.!.a;�//D ker. Q�/� ker.�/;
as desired.

Now assume that rk.A/ > 1 and that the lemma is true for all smaller ranks. We can
then find a short exact sequence

0!A0!A
�
�!A00! 0

such that 0< rk.A0/< rk.A/ and rk.A00/Crk.A0/D rk.A/. By our inductive hypothesis,
there exists a genus-rk.A00/ symplectic subspace W 00 of V such that .� ı�/j.W 00/? D 0.
Set V 0D .W 00/?, so V 0 is a symplectic subspace of V and the image of �0 WD�jV 0 lies
in A0. Our inductive hypothesis implies that there is a genus-rk.A0/ symplectic subspace
W 0 of V 0 such that �0j.W 0/? D 0. Setting W DW 0˚W 00, we have that W is a genus
rk.A0/C rk.A00/D rk.A/ symplectic subspace of V such that �jW ? D 0, as desired.

Proof of Proposition 3.4 for ƒ–markings The proposition is a small variant of a
result of Dunfield and Thurston [6, Proposition 6.16] — the only difference is that their
result is for closed surfaces, while we need to deal with †1

g. However, the exact same
proof works, so we omit the details.

Deeply destabilizing Proposition 3.4 has the following corollary:

Corollary 3.6 Consider some g0 � 1.

� Let �0 be an A–homology marking on †1
g0 . Assume that g0 > rk.A/, and let

g D rk.A/. Then there exists an embedding †1
g ,! †1

g0 and an A–homology
marking � on †1

g such that � is a destabilization of �0.
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� Let �0 be a ƒ–marking on †1
g0 . Assume that g0 > jƒj, and let g D jƒj. Then

there exists an embedding †1
g ,!†1

g0 and a ƒ–marking � on †1
g such that � is

a destabilization of �0.

Proof The proofs for A–homology markings and ƒ–markings are similar, so we give
the details for ƒ–markings (which are slightly more complicated). Let �0 2 @†1

g0 be
the basepoint. By Proposition 3.4, we can find a subsurface S ,!†1

g0 with S Š†1
g0�g

such that �0 vanishes on S . Pick

� an embedding †1
g ,!†1

g0 that is disjoint from S , as well as a basepoint �2 @†1
g,

� an embedded path � in †1
g0 n Int.†1

g [S/ connecting �0 to �.

Define � W �1.†
1
g;�/!ƒ via the formula

�.x/D �0.� �x ���1/ for x 2 �1.†
1
g;�/:

It is immediate from the definitions that �0 is the .S; �/–stabilization of � to †1
g0 .

3.3 Vanishing surfaces

This section constructs the semisimplicial sets we need to apply Theorem 3.1 to the
partial Torelli groups.

3.3.1 Vanishing surfaces: definition and basic properties We define the complexes
separately for A–homology markings and ƒ–markings.

Vanishing subsurfaces, abelian We start by recalling the definition of the complex
of vanishing subsurfaces for a homology marking from the introduction. Let � be an
A–homology marking on †1

g. Then define Sh.†
1
g; �/ to be the full subcomplex of

Sh.†
1
g/ spanned by vertices � W†1

h
!†1

g such that � vanishes on †1
h

in the sense of
Section 3.2. The group I.†1

g; �/ acts on Sh.†
1
g; �/. Similarly, if I � @†1

g is a finite
disjoint union of open intervals, then define T Sh.†

1
g; I; �/ to be the full subcomplex

of T Sh.†
1
g; I/ spanned by vertices � W �.†1

h
/!†1

g whose restriction to †1
h

is a vertex
of Sh.†

1
g; �/. Again, the group I.†1

g; �/ acts on T Sh.†
1
g; I; �/.

Vanishing subsurfaces, nonabelian Let � be a ƒ–marking on †1
g. Then define

Sh.†
1
g; �/ to be the full subcomplex of Sh.†

1
g/ spanned by vertices � W †1

h
! †1

g

such that � vanishes on †1
h

in the sense of Section 3.2. The group I.†1
g; �/ acts

on Sh.†
1
g; �/. Similarly, if I � @†1

g is a finite disjoint union of open intervals, then
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define T Sh.†
1
g; I; �/ to be the full subcomplex of T Sh.†

1
g; I/ spanned by vertices

� W �.†1
h
/! †1

g whose restriction to †1
h

is a vertex of Sh.†
1
g; �/. Again, the group

I.†1
g; �/ acts on T Sh.†

1
g; I; �/.

Semisimplicial In the rest of this section, let � be either an A–homology marking
or a ƒ–marking on †1

g and let I � @†1
g be a single interval. We claim then that

T Sh.†
1
g; I; �/ is naturally a semisimplicial set. The key point here is that its simplices

f�0; : : : ; �kg possess a natural ordering based on the order their tethers leave I .

Stabilizers The Mod.†1
g/–stabilizers of simplices of Sh.†

1
g/ are poorly behaved. The

issue is that mapping classes can permute their vertices arbitrarily (which is not possible
for T Sh.†

1
g; I/ since mapping classes must preserve the order in which the tethers

leave I ). This prevents their stabilizers from being mapping class groups of subsurfaces.
For T Sh.†

1
g; I/, however, this issue does not occur, and the Mod.†1

g/–stabilizer of a
simplex f�0; : : : ; �kg of T Sh.†

1
g; I/ equals Mod.†/, where † is the complement of

an open regular neighborhood of

@†1
g [ �0.�.†

1
h//[ � � � [ �k.�.†

1
h//:

We will call the complement of this open neighborhood the stabilizer subsurface of the
simplex. See here, where the stabilizer subsurface is the complement of the shaded
region:

regular
nbhd

homotope

The I.†1
g; �/ version of this is the following lemma:

Lemma 3.7 Let � be either an A–homology marking or a ƒ–marking on †1
g, let

I � @†1
g be an open interval , and let � be a k–simplex of T Sh.†

1
g; I; �/. Let

†Š†1
g�.kC1/h

be the stabilizer subsurface of � . Then there exists a marking �0 of
the same type as � (either an A–homology marking or a ƒ–marking) on † such that
�0 is a destabilization of � and such that the I.†1

g; �/–stabilizer of � is I.†;�0/.

Proof The proofs for A–homology markings and ƒ–markings are similar, so we will
give the details for ƒ–markings. Let � 2 @†1

g and �0 2 @† be basepoints. Write
� D f�0; : : : ; �kg. For 0� i � k, let Si D �i.†

1
h
/. Let S be a subsurface of †1

g n Int.†/
such that S contains each Si and S Š †1

.kC1/h
, and let � be an embedded path in
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†1
g n Int.†[S/ connecting � to �0:

† �
S

Define �0 W �1.†;�0/!ƒ via the formula

�0.x/D �.� �x ��
�1/ for x 2 �1.†;�0/:

It follows from the definitions that � is the .S; �/–stabilization of �0. Since the
Mod.†1

g/–stabilizer of � is Mod.†/, it follows that the I.†1
g; �/–stabilizer of � is

Mod.†/\ I.†1
g; �/, which by Lemma 3.3 is I.†;�0/.

3.3.2 Vanishing surfaces: high connectivity The following theorem subsumes
Theorem E:

Theorem 3.8 Fix g�h� 1 and let I � @†1
g be a finite disjoint union of open intervals.

� Let � be an A–homology marking on †1
g. The complexes Sh.†

1
g; �/ and

T Sh.†
1
g; I; �/ are both

�
g�.2 rk.A/C2hC1/

�
=.rk.A/ChC1/–connected.

� Let � be a ƒ–marking on †1
g. The complexes Sh.†

1
g; �/ and T Sh.†

1
g; I; �/

are both .g�.2jƒjC2hC1//=.jƒjChC1/–connected.

Proof The proofs for A–homology markings andƒ–markings are identical, so we will
give the details forƒ–markings. Also, the proofs that Sh.†

b
g; �/ and T Sh.†

b
g; I; �/ are

.g�.2jƒjC2hC1//=.jƒjChC1/–connected are similar. Keeping track of the tethers
introduces a few complications, so we will give the details for T Sh.†

b
g; I; �/ and

leave Sh.†
b
g; �/ to the reader.

We start by defining an auxiliary space. Let X be the simplicial complex whose vertices
are the union of the vertices of the complexes T Sh.†

1
g; I; �/ and T S jƒjCh.†

1
g; I/

and whose simplices are collections f�0; : : : ; �kg of vertices that can be isotoped so
that their images are disjoint. Both T Sh.†

1
g; I; �/ and T S jƒjCh.†

1
g; I/ are thus full

subcomplexes of X .

We now prove that X enjoys the connectivity property we are trying to prove for
T Sh.†

b
g; I; �/:

Claim The space X is .g�.2jƒjC2hC1//=.jƒjChC1/–connected.
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Proof Set n D .g � .2jƒj C 2hC 1//=.jƒj C hC 1/, Y D T S jƒjCh.†
1
g; I/ and

Y 0 D T Sh.†
1
g; I; �/. Theorem D says that Y is n–connected, so it is enough to prove

that the pair .X;Y / is n–connected. To do this, we apply Corollary 2.4. This requires,
letting � be a k–dimensional simplex of Y 0 D T Sh.†

1
g; I; �/ and L be the link of �

in X , showing that L\Y is .n�k�1/–connected.

Write � Df�0; : : : ; �kg. Let †0 be the surface obtained by first removing the interiors of

�0.†
1
h/[ � � � [ �k.†

1
h/

from †1
g and then cutting open the result along the images of the tethers:

I 0

I 0

I 0

The surface †0 is connected, and when cutting along the tethers the open set I � @†1
g

is divided into a finer collection I 0 of open segments (as in the above example). Then

L\Y Š T S jƒjCh.†
0; I 0/;

so we must prove that T S jƒjCh.†
0; I 0/ is .n�k�1/–connected. Letting g0 be the genus

of †0, Theorem D says that T S jƒjCh.†
0; I 0/ is .g0�.2jƒjC2hC1//=.jƒjChC1/–

connected, so what we must prove is that

n� k � 1�
g0� .2jƒjC 2hC 1/

jƒjC hC 1
:

Examining the construction of†0, we see that g0Dg�.kC1/h. We now calculate that

g0� .2jƒjC 2hC 1/

jƒjC hC 1
D

g� .2jƒjC 2hC 1/

jƒjC hC 1
�

.kC 1/h

jƒjC hC 1
� n� .kC 1/:

To complete the proof, it is enough to construct a retraction r W X ! T Sh.†
1
g; I; �/.

For a vertex � of X , we define r.�/ as follows. If � is a vertex of T Sh.†
1
g; I; �/, then

r.�/D �. If instead � is a vertex of T S jƒjCh.†
1
g; I/, then Proposition 3.4 implies that

we can find a subsurface †1
h
,! �.†jƒjCh/ such that � vanishes on †1

h
. Define r.�/ to

be the vertex of T Sh.†
1
g; I; �/ obtained by adjoining the tether of � and an arbitrary

arc in �.†1
jƒjCh

/ connecting the boundary to †1
h
:

�
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Of course, r.�/ depends on various choices, but we simply make an arbitrary choice. It is
clear that this extends over the simplices of X to give a retract r WX!T Sh.†

1
g; I; �/.

3.3.3 Vanishing surfaces: transitivity The last fact about the complex of vanishing
surfaces we will need is as follows:

Lemma 3.9 Fix g � h� 1 and let I � @†1
g be an open interval.

� Let � be an A–homology marking on †1
g. The group I.†1

g; �/ acts transitively
on the k–simplices of T Sh.†

1
g; I; �/ if g � 2hC 2 rk.A/C 1C kh.

� Let � be a ƒ–marking on †1
g. The group I.†1

g; �/ acts transitively on the
k–simplices of T Sh.†

1
g; I; �/ if g � 2hC 2jƒjC 1C kh.

Proof The proofs for A–homology markings and ƒ–markings are identical, so we
will give the details for ƒ–markings. The proof will be by induction on k. We start
with the base case k D 0.

Claim If g � 2hC 2jƒj C 1, then I.†1
g; �/ acts transitively on the 0–simplices of

T Sh.†
1
g; I; �/.

Proof In this case, Theorem 3.8 says that T Sh.†
1
g; I; �/ is connected, so it is enough

to prove that if �0 and �1 are vertices of T Sh.†
1
g; I; �/ that are connected by an edge,

then there exists some f 2 I.†1
g; �/ taking �0 to �1. Let † be the stabilizer subsurface

of the edge f�0; �1g, and let S0 D �0.†
1
h
/ and S1 D �1.†

1
h
/. Let S , �, �0 and �1 be as

follows:

� S is a subsurface of †1
g n Int.†/ containing S0 and S1 and satisfying S Š†1

2h
.

� � is an embedded path in †1
g n Int.†[S/ connecting a point of I to a basepoint

of S lying in @S .

� For i D 0; 1, we have that �i is an embedded arc in S n Int.S0[S1/ connecting
the basepoint in @S to a basepoint in Si lying in @Si .

� For i D 0; 1, the path � � �i is isotopic to the tether of �i while keeping its initial
point in I and its terminal point fixed.

See here:4

†

S
S0 S1

�0
�1 �

4In this figure �0 and �1 are disjoint, aside from their initial points. This can always be achieved, but is
not needed for our proof.
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It follows that there exists a ƒ–marking �0 on † and some � such that � is the
.S; �/–stabilization of �0.

Using the change of coordinates principle from [8, Section 1.3.2], we find F 2Mod.S/
taking S0 [ �0 to something isotopic to S1 [ �1. This isotopy will fix the common
initial point of �0 and �1. Let f 2 Mod.†1

g/ be the image of F under the map
Mod.S/! Mod.†1

g/. Since f is supported on S , we have f 2 I.†1
g; �/, and by

construction we have f .�0/D �1.

Now assume that k > 0 and that the theorem is true for simplices of dimension k � 1.
For some g � 2hC 2jƒj C 1C kh, let � be a ƒ–marking on †1

g and I � @†1
g be

an open interval. Consider k–simplices � and � 0 of T Sh.†
1
g; I; �/. Enumerate these

simplices using the natural ordering discussed above:

(3-1) � D f�0; : : : ; �kg and � 0 D f�00; : : : ; �
0
kg:

We want to find some f 2 I.†1
g; �/ such that f .�/ D � 0. By the base case k D 0,

there exists some f0 2 I.†1
g; �/ such that f .�0/D �00. Replacing � by f .�/, we can

assume that �0 D �00.

Define
�1 D f�1; : : : ; �kg and � 01 D f�

0
1; : : : ; �

0
kg:

Both �1 and � 0
1

are .k�1/–simplices in the link of the vertex �0, and our goal is to find
an element f1 in the I.†1

g; �/–stabilizer of �0 such that f1.�1/D �
0
1
.

Let †0 be the stabilizer subsurface of �0 and let �0 be the ƒ–marking on †0 given
by Lemma 3.7, so the I.†1

g; �/–stabilizer of �0 is I.†0; �0/. The surface †0 can be
constructed by removing the interior of �0.†1

h
/ and then cutting open the result along

the tether:

�0 �2
I 00

I 0

�1

We thus have†0Š†1
g�h

. Cutting along the tether divides the interval I �@†1
g into two

disjoint intervals I 0; I 00 � @†0, and the link of �0 in T Sh.†
1
g; I; �/ can be identified

with T Sh.†
0; I 0tI 00; �0/. Identifying �1 and � 0

1
with simplices in T Sh.†

0; I 0tI 00; �0/,
the key observation is that, since we enumerated the simplices in (3-1) using the order
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coming from I , we have (possibly flipping I 0 and I 00) that �1; �
0
1
� T Sh.†

0; I 0; �0/.
Since †0 Š†1

g�h
and

g� h� .2hC 2jƒjC 1C kh/� hD 2hC 2jƒjC 1C .k � 1/h;

we can apply our inductive hypothesis and find some f1 2 I.†0; �0/ with f1.�1/D �
0
1
,

as desired.

3.4 Proof of stability for surfaces with one boundary component

Proof of Theorems A and C The proofs of the two theorems are identical, so we will
give the details for Theorem C. We start by recalling the statement and introducing
some notation. Let ƒ be a nontrivial finite group, let � be a ƒ–marking on †1

g, and let
�0 be the stabilization of � to †1

gC1
in the sense of the introduction.5 Setting

c D jƒjC 2 and d D 2jƒjC 2;

we want to prove that the map Hk.I.†1
g; �//! Hk.I.†1

gC1
; �0// induced by the

stabilization map I.†1
g; �/! I.†1

gC1
; �0/ is an isomorphism if g � ck C d and a

surjection if gD ckCd�1. We will prove this using Theorem 3.1. This requires fitting
I.†1

g; �/ ,! I.†1
gC1

; �0/ into an increasing sequence of group fGng and constructing
appropriate simplicial complexes.

Corollary 3.6 says that there exists an embedding †1
jƒj
,!†1

g and a ƒ–marking �jƒj
on †1

jƒj
such that �jƒj is a destabilization of �. The embedding †1

jƒj
,!†1

g can be
factored into a sequence of embeddings

†1
jƒj ,!†1

jƒjC1 ,! � � � ,!†1
g;

which can then be continued to

†1
jƒj ,!†1

jƒjC1 ,! � � � ,!†1
g ,!†1

gC1 ,!†1
gC2 ,! � � � :

As in the following figure, we can break up the destabilization data .S; �/ for the
destabilization �jƒj of � into stabilization data .Sh; �h/ for jƒj C 1 � h � g, where
.Sh; �h/ allows us to stabilize from †1

h�1
to †1

h
:

� � �

†1
jƒj

�

S � � �

†1
jƒj

5This uses a specific choice of stabilization data .S; �/.
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Starting with �jƒj, for hC1� jƒj � g inductively let �h be the .Sh; �h/–stabilization
of �h�1 on †1

h�1
to �h on †1

h
. By construction, �g D �. Continue stabilizing (now

using the choice of stabilization data from the introduction) to define �h on †1
h

for
h� gC 1, so �gC1 D �

0.

We have thus fit our partial Torelli groups into an increasing sequence of groups

I.†1
jƒj; �jƒj/� I.†1

jƒjC1; �jƒjC1/� I.†1
jƒjC2; �jƒjC2/� � � � :

For h� jƒj, let Ih� @†
1
h

be an open interval. Theorem 3.8 says that T S1.†
1
h
; Ih; �h/

is .h�.dC1//=c–connected, where c and d are as defined in the first paragraph.

For n� 0, let

Gn D I.†dCn; �dCn/ and Xn D T S1.†dCn; IdCn; �dCn/:

For this to make sense, we must have d C n� jƒj, which follows from

d C nD 2jƒjC 2C n� jƒj:

We thus have an increasing sequence of groups

G0 �G1 �G2 � � � �

with Gn acting on Xn. The indexing convention here is chosen so that X1 is 0–connected,
and more generally so that Xn is .n�1/=c–connected, as in Theorem 3.1. Our goal is
to prove that the map Hk.Gn�1/! Hk.Gn/ is an isomorphism for n� ckC 1 and a
surjection for nD ck, which will follow from Theorem 3.1 once we check its conditions.

� The first is that Xn is .n�1/=c–connected, which follows from Theorem 3.8.

� The second is that, for 0 � i < n, the group Gn�i�1 is the Gn–stabilizer of some
i–simplex of Xn, which follows from Lemma 3.7 via the following picture:

stabilizer
subsurface

� � � � � � � � � � � �

� The third is that, for all 0� i < n, the group Gn acts transitively on the i–simplices
of Xn, which follows from Lemma 3.9. For transitivity on the i–simplices this lemma
requires that the genus g D d C n used to define Gn D I.†dCn; �dCn/ satisfies
g � 3C 2jƒjC i , which follows from the fact that

d C nD .2jƒjC 2/C n� .2jƒjC 2/C .i C 1/D 3C 2jƒjC i:
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� The fourth is that, for all n � cC 1 and all 1–simplices e of Xn whose boundary
consists of vertices v and v0, there exists some �2Gn such that �.v/D v0 and such that
� commutes with all elements of .Gn/e. This actually does not require the condition
n � c C 1. Let † be the stabilizer subsurface of e, so by Lemma 3.7 the stabilizer
.Gn/e consists of mapping classes supported on †. The surface †1

dCn
n Int.†/ is

diffeomorphic to †2
2

(as in the picture above), and in particular is connected. The
change of coordinates principle from [8, Section 1.3.2] implies that we can find a
mapping class � supported on †1

dCn
n Int.†/ taking the tethered torus v to v0. This �

clearly lies in Gn and commutes with .Gn/e.

4 Homology-marked partitioned surfaces

We now turn to partial Torelli groups on surfaces with multiple boundary components.
Unfortunately, this introduces genuine difficulties in the proofs, so quite a bit more
technical setup is needed. This section contains the categorical framework we will
need to even state our result.

Let Surf be the category whose objects are compact connected oriented surfaces with
boundary and whose morphisms are orientation-preserving embeddings. There is a
functor from Surf to groups taking † 2 Surf to Mod.†/ and a morphism † ,! †0

to the map Mod.†/!Mod.†0/ that extends mapping classes by the identity. In this
section, we augment Surf to construct a new category PSurf on which we can define
partial Torelli groups. This is done in two steps: in Section 4.1 we define the category
PSurf along with a “partitioned homology functor”, and in Section 4.2 we discuss
homology markings and construct their associated partial Torelli groups.

4.1 The category PSurf

We start with the partitioned surface category, which was introduced in [22].

Motivation This category captures aspects of the homology of a larger surface in
which our surface is embedded. For instance, consider the following embedding of a
genus-3 surface † with six boundary components into †1

7
:

x

y z

†
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For f 2Mod.†/, the action of f on H1.†/ does not determine the action of f on
H1.†

1
7
/. The issue is that we also need to know the action of f on Œx�; Œy�; Œz�2H1.†

1
7
/.

The portions of these homology classes that live on † are arcs connecting boundary
components, so we must consider relative homology groups that incorporate such arcs.
However, we do not want to allow all arcs connecting boundary components, since
some of these cannot be completed to loops in the larger ambient surface.

Category To that end, we define a category PSurf whose objects are pairs .†;P/:

� † is a compact connected oriented surface with boundary.
� P is a partition of the components of @†.

The partition P tells us which boundary components are allowed to be connected by
arcs. The morphisms in PSurf from .†;P/ to .†0;P 0/ are orientation-preserving
embeddings † ,!†0 compatible with the partitions P and P 0 in the following sense.
For a component S of†0nInt.†/, let BS (resp. B0

S
) denote the set of components of @†

(resp. @†0) that lie in S . In the degenerate case where S Š S1 (so S is a component
of @† and @†0), we have BS D B0

S
. Our compatibility requirements are then that

� each BS is a subset of some p 2 P , and
� for all p0 2P 0 and all @0

1
; @0

2
2p0 such that @0

1
2B0

S1
and @0

2
2B0

S2
with S1¤S2,

there exists some p 2 P such that BS1
[BS2

� p.

Example 4.1 Let † D †6
0
, P D ff@1; @2; @3; @4g; f@5; @6gg, †0 D †3

3
and P 0 D

ff@0
1
; @0

2
g; f@0

3
gg. Here are two embeddings .†;P/ ,! .†0;P 0/ that are not PSurf–

morphisms and one that is:

@0
1

@03

@0
2

@1 @2 @3 @4

@5 @6

@0
1
@0

2

@03

@0
1

@0
3

@02

We remark that the difference between the second and third embedding is the labeling
of the boundary components.

Partitioned homology Consider some .†;P/ 2 PSurf. Say that components @1

and @2 of @† are P–adjacent if there exists some p 2 P with @1; @2 2 p. Define
HP

1 .†; @†/ to be the subgroup of the relative homology group H1.†; @†/ spanned
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by the homology classes of oriented closed curves and arcs connecting P–adjacent
boundary components. The group Mod.†/ acts on HP

1 .†; @†/.

Remark 4.2 This is slightly different from the partitioned homology group defined
in [22], which was not functorial. The Torelli groups defined via the above homology
groups are thus different from those in [22].

Functoriality The assignment

.†;P/ 7! HP
1 .†; @†/

is a contravariant functor from PSurf to abelian groups. To see this, consider a PSurf–
morphism � W .†;P/! .†0;P 0/. Identify † with its image under �. We then have
maps

H1.†
0; @†0/! H1.†

0; †0 n Int.†// Š�! H1.†; @†/;

where the second map is the excision isomorphism. From the definition of a PSurf–
morphism, it follows immediately that this composition restricts to a map

�� W HP0
1 .†

0; @†0/! HP
1 .†; @†/:

Example 4.3 Let † D †4
0

and †0 D †3
4
. Let P (resp. P 0) be the partition of the

components of @† (resp. @†0) consisting of a single partition element containing all the
boundary components. The following picture shows a PSurf–morphism � W .†;P/!
.†0;P 0/ along with x1;x2 2 HP0

1 .†
0; @†0/ and ��.x1/; �

�.x2/ 2 HP
1 .†; @†/:

x1

x2

��.x1/

��.x2/

y

To simplify the picture we do not indicate the orientations of the curves/arcs. The above
picture also shows an element y 2 HP

1 .†; @†/ that is not in the image of ��.

Example 4.4 Let†D†4
0

and†0D†2. Let f@1; : : : ; @4g be the boundary components
of†, and let PDff@1; @2g; f@3; @4gg and P 0D∅. The following picture shows a PSurf–
morphism � W .†;P/! .†0;P 0/ along with x 2 HP0

1 .†
0; @†0/ and ��.x/ 2 HP

1 .†; @†/:

@1

x
@2

@3

@4 ��.x/
D
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As it is initially drawn, ��.x/ does not appear to be in HP
1 .†; @†/ since it is a pair

of arcs connecting boundary components that are not P–adjacent; however, as the
figure shows, this pair of arcs is homologous to a pair of arcs connecting boundary
components that are P–adjacent.

Action on partitioned homology The mapping class group is a covariant functor
from Surf to groups, while the partitioned homology group is a contravariant functor
from PSurf to abelian groups. They are related by the following “push-pull” formula:

Lemma 4.5 Let � W .†;P/! .†0;P 0/ be a PSurf–morphism , �� WMod.†/!Mod.†0/
be the induced map on mapping class groups and �� W HP0

1 .†
0; @†0/! HP

1 .†; @†/ be
the induced map on partitioned homology groups. Then

��.��.f /.x
0//D f .��.x0// for f 2Mod.†/ and x0 2 HP0

1 .†
0; @†0/:

Proof This is obvious.

4.2 Homology markings on PSurf

Recall that A is a fixed finitely generated abelian group.

Markings and partial Torelli groups Consider .†;P/ 2 PSurf. An A–homology
marking on .†;P/ is a homomorphism � W HP

1 .†; @†/! A. The associated partial
Torelli group is

I.†;P; �/D ff 2Mod.†/ j �.f .x//D �.x/ for all x 2 HP
1 .†; @†/g:

Stabilizations If � W .†;P/! .†0;P 0/ is a PSurf–morphism and � is an A–homology
marking on .†;P/, then the stabilization of � to .†0;P 0/ is the composition

HP0
1 .†

0; @†0/ �
�

�! HP
1 .†; @†/

�
�!A:

Lemma 4.6 Let � W .†;P/! .†0;P 0/ be a PSurf–morphism , � be an A–homology
marking on .†;P/,�0 be the stabilization of � to .†0;P 0/, and �� WMod.†/!Mod.†0/
be the induced map. Then ��.I.†;P; �//� I.†0;P 0; �0/.

Proof Let �� W HP0
1 .†

0; @†0/! HP
1 .†; @†/ be the induced map. For f 2 I.†;P; �/

and x0 2 HP0
1 .†

0; @†0/, we have

�0.��.f /.x
0//D �

�
��.��.f /.x

0//
�
D �

�
f .��.x0//

�
D �.��.x0//D �0.x0/:

Here the second equality follows from Lemma 4.5 and the third from the fact that
f 2 I.†;P; �/. The lemma follows.
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5 Stability for surfaces with multiple boundary components

In this section, we state our stability theorem for the partial Torelli groups on surfaces
with multiple boundary components and reduce this theorem to a result that will be
proved in the next section using the homological stability machine. The statement of
our result is in Section 5.1 and the reductions are in Sections 5.2, 5.3 and 5.4.

5.1 Statement of result

To get around the issues with closed surfaces underlying Theorem B from Section 1,
we will need to impose some conditions on our stabilization maps.

Support If � is an A–homology marking on .†;P/ 2 PSurf, we say that � is
supported on a genus-h symplectic subsurface if there exists a PSurf–morphism
.†0;P 0/! .†;P/ with †0 Š †1

h
and an A–homology marking �0 on .†0;P 0/ such

that � is the stabilization of �0 to .†;P/. If there exists some h � 1 such that �
is supported on a genus-h symplectic subsurface, then we will simply say that � is
supported on a symplectic subsurface.

Remark 5.1 Not all A–homology markings are supported on a symplectic subsurface.
Indeed, letting @1 and @2 be P–adjacent boundary components of †, this condition
implies that we can find an arc ˛ connecting @1 to @2 such that �.Œ˛�/D 0; see here:

support

@1

@2

˛

It is easy to construct A–homology markings not satisfying this property; for instance,
let A D zH0.@†/ and let � W HP

1 .†; @†/ ! A be the restriction to HP
1 .†; @†/ of

the boundary map H1.†; @†/! zH0.@†/. We will later show that this is the only
obstruction; see Lemma 6.2 below.

Partition bijectivity Consider a PSurf–morphism .†;P/! .†0;P 0/. Identify †
with its image in †0. We will call this morphism partition-bijective if the following
holds for all p 2 P:

� Let S be the union of the components of †0 n Int.†/ that contain a boundary
component in p. Then there exists a unique p0 2 P 0 such that p0 consists of the
components of S \ @†0.
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This condition implies in particular that S contains components of @†0. It rules out
two kinds of morphisms:

� The first is morphisms where, for some p 2 P , the union of the components of
†0 n Int.†/ that contain a boundary component in p contains no components of @†0.
See here:

@1

@2

Here p D f@1; @2g.

� The second is morphisms where a single p 2 P “splits” into multiple elements of
P 0 like this:

@01

@02

@

Here p D f@g and P 0 contains both f@0
1
g and f@0

2
g.

Main theorem With this definition, we have the following theorem:

Theorem F Let � be an A–homology marking on .†;P/ 2 PSurf that is supported
on a symplectic subsurface. Let .†;P/! .†0;P 0/ be a partition-bijective PSurf–
morphism and let �0 be the stabilization of � to .†0;P 0/. Then the induced map
Hk.I.†;P; �//! Hk.I.†0;P 0; �0// is an isomorphism if the genus of † is at least
.rk.A/C 2/kC .2 rk.A/C 2/.

Remark 5.2 Theorem F does not assert that the map is a surjection if the genus
of † is at least .rk.A/ C 2/k C .2 rk.A/ C 1/. We do not know if this is true —
while an appropriate surjectivity statement will follow from our invocation of the
homological stability machine, this will only cover certain special kinds of morphisms
.†;P/! .†0;P 0/, the “double boundary stabilizations”, and the general case will be
reduced to these special morphisms in a fairly involved way.

Counterexamples We do not know whether or not the condition in Theorem F that �
be supported on a symplectic subsurface is necessary. However, the condition that the
morphism be partition-bijective is necessary. Indeed, in Section 7 we will prove the
following theorem. The condition of being symplectically nondegenerate in it will be
defined in that section; it is satisfied by most interesting homology markings.

Theorem 5.3 Let � be a symplectically nondegenerate A–homology marking on
.†;P/ 2 PSurf that is supported on a symplectic subsurface. Let .†;P/! .†0;P 0/
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be a non-partition-bijective PSurf–morphism and let �0 be the stabilization of � to
.†0;P 0/. Assume that the genus of † is at least 3 rk.A/C 4. Then the induced map
H1.I.†;P; �//! H1.I.†0;P 0; �0// is not an isomorphism.

Remark 5.4 The map is frequently not an isomorphism, even when the genus of † is
smaller. We use the genus assumption in Theorem 5.3 so we can apply Theorem F to
change† and†0 so as to put ourselves in a situation where the phenomenon underlying
Theorem B occurs.

5.2 Reduction I: open cappings

In this section, we reduce Theorem F to certain kinds of PSurf–morphisms called open
cappings, whose definition is below.

Open cappings An open capping is a PSurf–morphism .†;P/! .†0;P 0/ such that
the following holds for all p 2 P:

� Let S be the union of the components of †0 n Int.†/ that contain a boundary
component in p. Then S is connected and S\@†0 consists of a single component.

Unraveling the definition of a PSurf–morphism, this implies that P 0 is the discrete
partition, that is, the partition P 0Dff@0g j @0 is a component of @†0g. See the following
example, where P D ff@1; @2g; f@3; @4gg:

@1

@2

@3

@4

By definition, an open capping is partition-bijective.

Remark 5.5 In [22], a capping is defined similarly to an open capping, but where †0

is closed and @S is simply an element of P .

Reduction The following is a special case of Theorem F:

Proposition 5.6 Let � be an A–homology marking on .†;P/ 2 PSurf that is sup-
ported on a symplectic subsurface. Let .†;P/! .†0;P 0/ be an open capping and let
�0 be the stabilization of � to .†0;P 0/. Then the induced map

Hk.I.†;P; �//! Hk.I.†0;P 0; �0//

is an isomorphism if the genus of † is at least .rk.A/C 2/kC .2 rk.A/C 2/.

The proof of Proposition 5.6 begins in Section 5.3. First, we use it to deduce Theorem F:
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Proof of Theorem F, assuming Proposition 5.6 We start by recalling the statement
of the theorem. Let � be an A–homology marking on .†;P/2 PSurf that is supported
on a symplectic subsurface. Let .†;P/! .†0;P 0/ be a partition-bijective PSurf–
morphism and let �0 be the stabilization of � to .†0;P 0/. Assume that the genus of
† is at least .rk.A/C 2/kC .2 rk.A/C 2/. Our goal is to prove that the induced map
Hk.I.†;P; �//! Hk.I.†0;P 0; �0// is an isomorphism.

Identify † with its image in †0. The proof has two cases. Recall that the discrete
partition of the boundary components of a surface S is ff@g j @ is a component of @Sg.

Case 1 P is the discrete partition of †.

Let S1; : : : ;Sb be the components of †0 n Int.†/. For each 1� i � b, let BSi
be the

components of @† that are contained in Si and let B0
Si

be the components of @†0 that
are contained in Si . Then:

� Since P is the discrete partition, each BSi
is a one-element set containing a

single boundary component of †, and P D fBS1
; : : : ;BSb

g.

� Since the morphism .†;P/ ! .†0;P 0/ is partition-bijective, each B0
Si

is a
nonempty set of boundary components of †0, and P 0 D fB0

S1
; : : : ;B0

Sb
g.

See the following figure, where†Š†3
1

with the discrete partition PDff@1g;f@2g;f@3gg

and †0 Š†6
1

with the partition P 0 D ff@0
1
g; f@0

2
; @0

3
g; f@0

4
; @0

5
; @0

6
gg:

open
capping

†00†0

@0
1

@0
2

@0
3

@04

@0
5

@0
6

†

@1

@2 @3

As in that figure, let .†0;P 0/ ! .†00;P 00/ be an open capping and let �00 be the
stabilization of �0 to .†00;P 00/. It follows from the above that the composition

.†;P/! .†0;P 0/! .†00;P 00/

is also an open capping. We remark that this can fail if P is not the discrete partition.
For instance, consider the morphisms .†;P/! .†0;P 0/ and .†0;P 0/! .†00;P 00/ in
the following figure, where P D ff@1; @2gg, P 0 D ff@0

1
gg and P 00 D ff@00

1
gg:

open
capping

@1

@2

† †0
@01

†00
@001
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We have maps

Hk.I.†;P; �//! Hk.I.†0;P 0; �0//! Hk.I.†00;P 00; �00//:

Proposition 5.6 implies that

Hk.I.†;P; �//! Hk.I.†00;P 00; �00//; Hk.I.†0;P 0; �0//! Hk.I.†00;P 00; �00//

are isomorphisms. We conclude that the map

Hk.I.†;P; �//! Hk.I.†0;P 0; �0//

is an isomorphism, as desired.

Case 2 P is not the discrete partition of @†.

Since � is supported on a symplectic subsurface, we can find a PSurf–morphism
.†00;P 00/! .†;P/ with †00Š†1

h
and an A–homology marking �00 on .†00;P 00/ such

that � is the stabilization of �00 to .†;P/. We can factor .†00;P 00/! .†;P/ as

.†00;P 00/! .†000;P 000/! .†;P/

so that †000 has the same genus as †, P 000 is the discrete partition of @†000, and
.†000;P 000/! .†;P/ is partition-bijective; see here:

†00

†000

In this example, P consists of three sets of boundary components (the ones on the left,
right, and top). Let �000 be the stabilization of �00 to .†000;P 000/. We have maps

Hk.I.†000;P 000; �000//! Hk.I.†;P; �//! Hk.I.†0;P 0; �0//:

Case 1 implies that the maps

Hk.I.†000;P 000;�000//!Hk.I.†;P;�//; Hk.I.†000;P 000;�000//!Hk.I.†0;P 0;�0//

are isomorphisms. We conclude that the map

Hk.I.†;P; �//! Hk.I.†0;P 0; �0//

is an isomorphism, as desired.
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5.3 Reduction II: boundary stabilizations

In this section we reduce Proposition 5.6 to showing that certain kinds of PSurf–
morphisms, called increasing boundary stabilizations and decreasing boundary stabi-
lizations, induce isomorphisms on homology.

Increasing boundary stabilization Let .†;P/ 2 PSurf. An increasing boundary
stabilization of .†;P/ is a PSurf–morphism .†;P/! .†0;P 0/ constructed as follows.
Let @ be a component of @† and let p 2 P be the partition element with @ 2 p. Also,
let @†3

0
D f@0

1
; @0

2
; @0

3
g.

� †0 is obtained by attaching †3
0

to † by gluing @0
1
�†3

0
to @�†.

� P 0 is obtained from P by replacing p with p0 D .p n f@g/[f@0
2
; @0

3
g.

See here:

† @
@02

@0
3

In Section 5.4, we will prove the following.

Proposition 5.7 Let � be an A–homology marking on .†;P/ 2 PSurf that is sup-
ported on a symplectic subsurface. Let .†;P/! .†0;P 0/ be an increasing boundary
stabilization and let �0 be the stabilization of � to .†0;P 0/. Then the induced map
Hk.I.†;P; �//! Hk.I.†0;P 0; �0// is an isomorphism if the genus of † is at least
.rk.A/C 2/kC .2 rk.A/C 2/.

Decreasing boundary stabilization Let .†;P/ 2 PSurf. A decreasing boundary
stabilization of .†;P/ is a PSurf–morphism .†;P/! .†0;P 0/ constructed as follows.
Let @1 and @2 be distinct components of @† that both lie in some p 2 P , and let
@†3

0
D f@0

1
; @0

2
; @0

3
g.

� †0 is obtained by attaching†3
0

to† by gluing @0
1

and @0
2

to @1 and @2, respectively.

� P 0 is obtained from P by replacing p with p0 D .p n f@1; @2g/[f@
0
3
g.

See here:
@1

@2†

@03

In Section 5.4, we will prove the following:
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Proposition 5.8 Let � be an A–homology marking on .†;P/ 2 PSurf that is sup-
ported on a symplectic subsurface. Let .†;P/! .†0;P 0/ be a decreasing boundary
stabilization and let �0 be the stabilization of � to .†0;P 0/. Then the induced map
Hk.I.†;P; �//! Hk.I.†0;P 0; �0// is an isomorphism if the genus of † is at least
.rk.A/C 2/kC .2 rk.A/C 2/.

Deriving Proposition 5.6 As we said above, we will prove Propositions 5.7 and 5.8
in Section 5.4. Here we will explain how to use them to prove Proposition 5.6.

Proof of Proposition 5.6, assuming Propositions 5.7 and 5.8 It is geometrically clear
that an open capping .†;P/! .†0;P 0/ can be factored as a composition of increasing
boundary stabilizations and decreasing boundary stabilizations. For instance,

can be factored as

The proposition follows.

5.4 Reduction III: double boundary stabilizations

In this section, we adapt a beautiful idea of Hatcher and Vogtmann [12] to show how
to reduce our two different boundary stabilizations (increasing and decreasing) to a
single kind of stabilization called a double boundary stabilization.

Double boundary stabilization Let .†;P/2PSurf. A double boundary stabilization
of .†;P/ is a PSurf–morphism .†;P/! .†0;P 0/ constructed as follows. Let @1

and @2 be components of @† that lie in a single element p 2 P . Also, let @†4
0
D

f@0
1
; @0

2
; @0

3
; @0

4
g.

� †0 is obtained by attaching †0;4 to † by gluing @0
1

and @0
2

to @1 and @2,
respectively.

� P 0 is obtained from P by replacing p with p0 D .p n f@1; @2g/[f@
0
3
; @0

4
g.
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See here:
@1

† @2

@0
3

@0
4

In Section 6, we will use the homological stability machine to prove the following:

Proposition 5.9 Let � be an A–homology marking on .†;P/ 2 PSurf that is sup-
ported on a symplectic subsurface. Let .†;P/ ! .†0;P 0/ be a double boundary
stabilization and let �0 be the stabilization of � to .†0;P 0/. Then the induced map

Hk.I.†;P; �//! Hk.I.†0;P 0; �0//

is an isomorphism if the genus of † is at least .rk.A/C 2/k C .2 rk.A/C 2/ and a
surjection if the genus of † is .rk.A/C 2/kC .2 rk.A/C 1/.

Deriving Propositions 5.7 and 5.8 As we said above, we will prove Proposition 5.9
in Section 6. Here we will explain how to use it to prove Propositions 5.7 and 5.8.

Proof of Proposition 5.7, assuming Proposition 5.9 We start by recalling the
statement. Consider an increasing boundary stabilization .†;P/ ! .†0;P 0/. Let
� be an A–homology marking on .†;P/ that is supported on a symplectic sub-
surface and let �0 be the stabilization of � to .†0;P 0/. Assume that the genus of
† is at least .rk.A/C 2/k C .2 rk.A/C 2/. We must prove that the induced map
Hk.I.†;P; �//! Hk.I.†0;P 0; �0// is an isomorphism.

The first observation is that the map I.†;P; �/! I.†0;P 0; �0/ is split injective via a
splitting map I.†0;P 0; �0/! I.†;P; �/ induced by gluing a disc to one of the two
components of @†0 n @†:

† †0
deformation

retract

The map Hk.I.†;P; �// ! Hk.I.†0;P 0; �0// is thus injective, so it is enough to
prove that it is surjective.

Combining the fact that� is supported on a symplectic subsurface with Corollary 3.6, we
see that � is in fact supported on a symplectic subsurface of genus at most rk.A/. Since
the genus of† is greater than rk.A/, this implies that we can find a decreasing boundary
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stabilization .†00;P 00/! .†;P/ and an A–homology marking �00 on .†00;P 00/ that is
supported on a symplectic subsurface such that � is the stabilization of �00 to .†;P/
and such that the composition

.†00;P 00/! .†;P/! .†0;P 0/

is a double boundary stabilization; see here:

† †0 †00

The genus of†00 is one less than that of†, and so is at least .rk.A/C2/kC.2 rk.A/C1/.
We can thus apply Proposition 5.9 to deduce that the composition

Hk.I.†00;P 00; �00//! Hk.I.†;P; �//! Hk.I.†0;P 0; �0//

is surjective, and thus that the map Hk.I.†;P; �//! Hk.I.†0;P 0; �0// is surjective,
as desired.

Proof of Proposition 5.8, assuming Proposition 5.9 We start by recalling the
statement. Consider a decreasing boundary stabilization .†;P/ ! .†0;P 0/. Let
� be an A–homology marking on .†;P/ that is supported on a symplectic sub-
surface and let �0 be the stabilization of � to .†0;P 0/. Assume that the genus of
† is at least .rk.A/C 2/k C .2 rk.A/C 2/. We must prove that the induced map
Hk.I.†;P; �//! Hk.I.†0;P 0; �0// is an isomorphism.

Let @0 be the component of @†0 that is not a component of @†. As in the following
picture, we can construct an increasing boundary stabilization .†0;P 0/! .†00;P 00/
that attaches a 3–holed torus to @0 such that the composition

.†;P/! .†0;P 0/! .†00;P 00/

is a double boundary stabilization:

†0 †00
†

Let �00 be the stabilization of �0 to .†00;P 00/. We then have maps

(5-1) Hk.I.†;P; �//! Hk.I.†0;P 0; �0//! Hk.I.†00;P 00; �00//:
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Proposition 5.9 implies that the composition (5-1) is an isomorphism, and Proposition 5.7
implies that Hk.I.†0;P 0; �0//!Hk.I.†00;P 00; �00// is an isomorphism. We conclude
that Hk.I.†;P; �//! Hk.I.†0;P 0; �0// is an isomorphism, as desired.

6 Double boundary stabilization

Adapting an argument due to Hatcher and Vogtmann [12], we will prove Proposition 5.9
by studying a complex of “order-preserving double-tethered loops” whose vertex-
stabilizers yield double boundary stabilizations:

regular
nbhd

We will require that the homology classes of both the loop and the “double-tether”
arc vanish under the homology marking. Getting the loop to vanish will be an easy
variant on the argument we used for vanishing surfaces in Section 3.3.2, but getting
the double-tether to vanish is harder and will require new ideas. We will build up the
complex in three stages (tethered vanishing loops, then double-tethered vanishing loops,
and then finally order-preserving double-tethered vanishing loops) in Section 6.3–6.7.
These five sections are preceded by two technical sections: Section 6.1 gives a necessary
and sufficient condition for an A–homology marking to be supported on a symplectic
subsurface, and Section 6.2 is about destabilizing A–homology markings. After all this
is complete, we prove Proposition 5.9 in Section 6.8.

6.1 Identifying markings supported on a symplectic subsurface

Consider some .†;P/ 2 PSurf. In this section, we give a necessary and sufficient
condition for an A–homology marking on .†;P/ to be supported on a symplectic
subsurface. This requires some preliminary definitions (which will also be used later).

Intersection map Let q be a finite set of oriented simple closed curves on † and
let ZŒq� be the set of formal Z–linear combinations of elements of q. Define the
q–intersection map to be the map iq W HP

1 .†; @†/! ZŒq� defined as follows. Let

!† W H1.†; @†/�H1.†/! Z

be the algebraic intersection pairing. For x 2 HP
1 .†; @†/, we then set

iq.x/D
X
2q

!†.x; Œ �/ � :
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Total boundary map For a set q as above, define

zZŒq�D

�X
2q

c �  2 ZŒq�
ˇ̌̌ X
2q

c D 0

�
:

Consider p 2 P . Each boundary component @ 2 p is a simple closed curve on †,
and the orientation on † induces an orientation on @ such that Int.†/ lies to the left
of @. We thus have the map ip W HP

1 .†; @†/! ZŒp�. Since HP
1 .†; @†/ is generated

by the homology classes of oriented loops and arcs connecting P–adjacent boundary
components, the image of ip is zZŒp�. Define

zZP D
M
p2P

zZŒp�:

The total boundary map of .†;P/ is the map iP WHP
1 .†; @†/!

zZP obtained by taking
the direct sum of all the ip for p 2 P .

Remark 6.1 Each zZŒp� naturally lies in zH0.@†/, and the total boundary map can be
identified with the restriction to HP

1 .†; @†/ of the usual boundary map H1.†; @†/!

zH0.@†/.

Symplectic support Now consider an A–homology marking � on .†;P/. Back
in Remark 5.1, we observed that a necessary condition for � to be supported on a
symplectic subsurface is that iP.ker.�//D zZP . The following lemma says that this
condition is also sufficient:

Lemma 6.2 Let � be an A–homology marking on .†;P/ 2 PSurf. Then � is
supported on a symplectic subsurface if and only if iP.ker.�//D zZP .

Proof The nontrivial direction is that if iP.ker.�//D zZP , then � is supported on a
symplectic subsurface, so that is what we prove. Write

P D ff@1
1; : : : ; @

1
k1
g; f@2

1; : : : ; @
2
k2
g; : : : ; f@n

1; : : : ; @
n
kn
gg:

Below we will prove that, for all 1� i � n and 1� j < ki , we can find embedded arcs
˛ij satisfying

� ˛ij connects @i
j to @i

jC1
,

� the ˛ij are pairwise disjoint, and

� �.Œ˛ij �/D 0 for all i and j .
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Letting g be the genus of†, we can then find a subsurface†0 of† that is homeomorphic
to †1

g such that †0 is disjoint from @† and the ˛ij ; see here:

†0@1
1

@1
2

@2
1

@2
2

@2
3

@3
1

˛11

˛21 ˛22

Let P 0 D f@†0g, so .†0;P 0/! .†;P/ is a PSurf–morphism. It is easy to see that we
can find an A–homology marking �0 on .†0;P 0/ such that � is the stabilization of �0 to
.†;P/; see Lemma 6.3 for a more general result that implies this. The lemma follows.

It remains to find the ˛ij . The assumptions in the lemma imply that, for 1 � i � n

and 1� j < ki , we can find arcs ˛ij (not necessarily embedded or pairwise disjoint)
satisfying

� ˛ij connects @i
j to @i

jC1
, and

� �.Œ˛ij �/D 0 for all i and j .

Homotoping the ˛ij , we can assume that their endpoints are disjoint from each other,
their interiors lie in the interior of †, and all intersections and self-intersections are
transverse. Choose these ˛ij so as to minimize the number of intersections and self-
intersections. We claim that the ˛ij are then all embedded and pairwise disjoint from
each other. Assume otherwise. Let ˛i0;j0

be the first element of the ordered list

˛11; ˛12; : : : ; ˛1;k1�1; ˛21; : : : ; ˛2;k2�1; ˛31; : : : ; ˛n;kn�1

that intersects either itself or one of the other ˛ij . As in the following picture, we
can then “slide” the first intersection of ˛i0;j0

off of the union of the @i0

j and ˛i0;j

with j � j0:

˛i0;1 ˛i0;2

˛i0;3 slide

Since the homology classes of all the @i
j are in the kernel of �, this does not change the

value of any of the �.Œ˛ij �/, but it does eliminate one of the intersections, contradicting
the minimality of this number.
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6.2 Destabilizing homology-marked partitioned surfaces

Consider .†;P/ 2 PSurf. This section is devoted to “destabilizing” A–homology
markings on .†;P/ to subsurfaces.

Existence Let � be an A–homology marking on .†;P/ and let .†0;P 0/! .†;P/ be
a PSurf–morphism. One obvious necessary condition for there to exist an A–homology
marking �0 on .†0;P 0/ whose stabilization to .†;P/ is � is that � must vanish on
elements of HP

1 .†; @†/ supported on † n†0. This condition is also sufficient:

Lemma 6.3 Let � be an A–homology marking on .†;P/2 PSurf and let .†0;P 0/!
.†;P/ be a PSurf–morphism. Then there exists an A–homology marking �0 on
.†0;P 0/whose stabilization to .†;P/ is� if and only if �.x/D0 for all x2HP

1 .†;@†/

supported on † n†0.

Proof The nontrivial assertion here is that, if �.x/ D 0 for all x 2 HP
1 .†; @†/

supported on †n†0, then �0 exists, so this is what we prove. Let � W .†0;P 0/! .†;P/
be the inclusion. We want to show that � W HP

1 .†; @†/!A factors through

�� W HP
1 .†; @†/! HP0

1 .†
0; @†0/:

The cokernel of �� is obviously free abelian. It is thus enough to prove that � vanishes
on ker.��/. To do this, we will show that ker.��/ is generated by elements supported
on † n†0. The map �� is the restriction to HP

1 .†; @†/ of the composition

H1.†; @†/
f
�! H1.†;† n Int.†0// Š�! H1.†

0; @†0/:

It is thus enough to show that all elements of ker.f / are supported on †n†0. The long
exact sequence in homology for the triple .†;† n Int.†0/; @†/ implies that ker.f / is
generated by the image of

H1.† n Int.†0/; @†/! H1.†; @†/:

The desired result follows.

P–simple subsurfaces We now study when destabilizations of markings supported
on symplectic subsurfaces are supported on symplectic subsurfaces. Rather than prove
the most general result possible, we will focus on the case of P–simple subsurfaces
of †, which are subsurfaces †0 satisfying (see Example 6.4 below):

� †0 is connected.

� The closure S of † n†0 is connected.
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� The set of components of @S can be partitioned into two disjoint nonempty
subsets q and q0 as follows:

– The elements of q0 all lie in the interior of †, and are thus components
of @†0. These will be called the interior boundary components.

– The elements of q are components of @† n @†0 lying in a single p 2 P .
These will be called the exterior boundary components.

Given a P–simple subsurface †0 of †, the induced partition P 0 of the components
of @†0 is obtained from P by replacing p with .p n q/[ q0, where p, q and q0 are as
above. The map .†0;P 0/! .†;P/ is clearly a PSurf–morphism.

Example 6.4 Let †D†5
8

and P D ff@1; @2; @3g; f@4; @5gg. Consider the following
shaded subsurface †0 of †:

†0

@1

@2

@3

@5

@4

@03@02

@0
1

S

The subsurface †0 is a P–simple subsurface with interior boundary components q0 D

f@0
1
; @0

2
; @0

3
g, exterior boundary components q D f@1; @2g, and induced partition P 0 D

ff@0
1
; @0

2
; @0

3
; @3g; f@4; @5gg.

Closed markings and intersection maps We now introduce some notation needed to
state our result. Let .†;P/ 2 PSurf and let � be an A–homology marking on .†;P/.
The associated closed marking on .†;P/ is the map O� W H1.†/! A defined via the
composition

H1.†/! HP
1 .†; @†/

�
�!A:

Also, for a finite set q of oriented simple closed curves on †, define the closed q–
intersection map to be the map Oiq W H1.†/! ZŒq� defined via the composition

H1.†/! HP
1 .†; @†/

iq
�! ZŒq�:

If the elements of q are disjoint and their union bounds a subsurface on one side (with
respect to the orientations on the curves of q), then the image of Oiq lies in zZŒq�.

Destabilizing and symplectic support With the above notation, we have the following
lemma:
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Lemma 6.5 Let � be an A–homology marking on .†;P/ that is supported on a
symplectic subsurface. Let †0 be a P–simple subsurface of † with induced partition
P 0 and let �0 be an A–homology marking on .†0;P 0/ whose stabilization to .†;P/
is �. Assume the following:

� Let q0 be the interior boundary components of †0 and let O� W H1.†/!A be the
closed marking associated to �. Orient each @0 2 q0 so that †0 lies to its left.
Then Oiq0.ker. O�//D zZŒq0�.

Then �0 is supported on a symplectic subsurface.

Proof By Lemma 6.2, we must prove that the map

iP0 W HP 0
1 .†

0; @†0/! zZP0

takes ker.�0/ onto zZP0 . Below we will prove two facts:

� zZŒq0�� iP0.ker.�0//.
� Letting � W .†0;P 0/! .†;P/ be the inclusion and �� WHP

1 .†; @†/!HP0
1 .†

0; @†0/

be the induced map, there exists a surjection ˇ W zZP� zZP0=zZŒq0� such that the
diagram

(6-1)

HP
1 .†; @†/

iP
//

��

��

zZP

ˇ
����

HP0
1 .†

0; @†0/
iP0
// zZP0

�
// // zZP0=zZŒq0�

commutes.

Assume these, for the moment. Since zZŒq0�� iP0.ker.�0//, to prove iP0.ker.�0//D zZP0

it is enough to prove that �
�
iP0.ker.�0//

�
D zZP0=zZŒq0�. Since � is supported on a

symplectic subsurface, Lemma 6.2 says that iP.ker.�//D zZP , so

(6-2) �
�
iP0
�
��.ker.�//

��
D ˇ

�
iP.ker.�//

�
D ˇ.zZP/D zZP0=zZŒq

0�:

Since � is the stabilization of �0 to .†;P/, by definition we have � D �0 ı ��, so
��.ker.�//� ker.�0/. Plugging this into (6-2), we get that

�
�
iP0.ker.�0//

�
D zZP0=zZŒq

0�;

as desired.

It remains to prove the above two facts. We start with the first. Since elements of
H1.†/ can be represented by cycles that are disjoint from all components of @†, the
image of the composition

H1.†/! HP
1 .†; @†/

��
�! HP0

1 .†
0; @†0/

iP0��! zZP 0
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must lie in zZŒq0� � zZP 0 . From its definition, it is clear that this composition in fact
equals Oiq0 . Our hypothesis about Oiq0 thus implies that

zZŒq0�� iP0
�
��.ker.�//

�
� iP 0.ker.�0//;

as desired. Here we are using the fact (already observed in the previous paragraph) that
��.ker.�//� ker.�0/.

We now construct ˇ W zZP� zZP 0=zZŒq0�. Let q be the exterior boundary components
of †0. Write P D fp1; : : : ;pkg with q � p1. Setting p0

1
D .p1 n q/[ q0, we then have

P 0 D fp0
1
;p2; : : : ;pkg. Thus

zZP D zZŒp1�˚

kM
iD2

zZŒpi � and zZP0=zZŒq
0�D zZŒp01�=

zZŒq0�˚
kM

iD2

zZŒpi �:

On the zZŒpi � summand for 2� i � k, the map ˇ is the identity. On the zZŒp1� summand,
the map ˇ is the restriction to zZŒp1� of the map

ZŒp1�D ZŒp1 n q�˚ZŒq�! ZŒp1 n q�˚ZŒq0�=zZŒq0�D zZŒp01�=
zZŒq0�

that is the identity on ZŒp1 n q� and takes every element of q to the generator of
ZŒq0�=zZŒq0� Š Z. This map ˇ is clearly a surjection. The fact that (6-1) commutes
follows from the fact that an arc in † from a component @1 of @† to a component @2

of @† with @1 and @2 both lying in some pi has the following algebraic intersection
number with the union of the components of q:

� 0 if i � 2, if i D 1 and @1; @2 2 p1 n q, or if i D 1 and @1; @2 2 q,

� 1 if i D 1, @1 2 p1 n q and @2 2 q,

� �1 if i D 1, @2 2 q and @1 2 p1 n q.

The reason for this is that each time the arc crosses from †0 to S it adds C1 to its
total intersection with q, while each time it crosses from S to †0 it adds �1 to its total
intersection with q. See the following figure, where † is shaded and S is unshaded:

The lemma follows.
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6.3 The complex of tethered vanishing loops

We now begin our long trek to the complex of order-preserving double-tethered vanish-
ing loops, starting with the complex of tethered vanishing loops. The definition takes
several steps.

Tethered loops Define �.S1/ to be the result of gluing 1 2 Œ0; 1� to a point of S1.
The subset Œ0; 1� 2 �.S1/ is the tether and 0 2 Œ0; 1�� �.S1/ is the initial point of the
tether. For a surface † 2 Surf and a finite disjoint union of open intervals I � @†, an
I–tethered loop in † is an embedding � W �.S1/!† such that

� � takes the initial point of the tether to a point of I , and

� orienting �.S1/ using the natural orientation of S1, the image �.Œ0; 1�/ of the
tether approaches �.S1/ from its right.

Complex of tethered loops For a surface †2 Surf and a finite disjoint union of open
intervals I � @†, the complex of I–tethered loops on †, denoted by T L.†; I/, is the
simplicial complex whose k–simplices are collections f�0; : : : ; �kg of isotopy classes
of I–tethered loops on † that can be realized so as to be disjoint and not separate †:

This complex was introduced by Hatcher and Vogtmann [12], who proved that if † has
genus g then T L.†; I/ is 1

2
.g�3/–connected; see [12, Proposition 5.1].

Complex of tethered vanishing loops Let � be an A–homology marking on .†;P/2
PSurf and let I �@† be a finite disjoint union of open intervals. Define T L.†; I;P; �/
to be the subcomplex of T L.†; I/ consisting of k–simplices f�0; : : : ; �kg satisfying
the following conditions. For 0 � i � k, let i be the oriented loop .�i/jS1 . Set
� D f0; : : : ; kg. As in Section 6.2, let O� W H1.†/ ! A be the closed marking
associated to � and let Oi� W H1.†/! ZŒ�� be the closed �–intersection map. We then
require that O�.Œi �/D 0 for all 0� i � k and that Oi�.ker. O�//D ZŒ��.

Remark 6.6 This last condition might seem a little unmotivated, but is needed to
ensure that the stabilizer of our simplex is supported on a symplectic subsurface (at least
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in favorable situations). It clearly always holds when � is supported on a symplectic
subsurface that is disjoint from the images of all the �i . This is best illustrated by an
example:

support
0 1

2

support
ı0 ı1 ı2

If � D f0; 1; 2g and ı0; ı1; ı2 are as shown, then O�.Œıi �/D 0 and Oi�.Œıi �/D i for
0� i � 2, which implies that Oi�.ker. O�//D ZŒ��.

High connectivity Our main topological theorem about T L.†; I;P; �/ is as follows:

Theorem 6.7 Let � be an A–homology marking on .†;P/ 2 PSurf, I � @† be a
finite disjoint union of open intervals , and g be the genus of †. Then T L.†; I;P; �/
is
�
g�.2 rk.A/C3/

�
=.rk.A/C2/–connected.

Proof The proof is very similar to that of Theorem 3.8. We start by defining an
auxiliary space. Let X be the simplicial complex whose vertices are the union of the
vertices of the spaces T L.†; I;P; �/ and T Srk.A/C1.†; I/ and whose simplices are
collections � of vertices such that:

� The vertices in � (which are embeddings of either �.S1/ or �.†1
rk.A/C1

/ into †)
can be homotoped so that their images are disjoint and do not separate †.

� Let � 0 � � be the subset consisting of vertices of T L.†; I;P; �/. Then � 0 is a
simplex of T L.†; I;P; �/.

Both T L.†; I;P; �/ and T Srk.A/C1.†; I/ are subcomplexes of X .

The subcomplex T Srk.A/C1.†; I/ of X is
�
g�.2 rk.A/C3/

�
=.rk.A/C2/–connected

by Theorem D. An argument using Corollary 2.4 identical to the one in the proof of
Theorem 3.8 shows that this implies that X is

�
g�.2 rk.A/C3/

�
=.rk.A/C2/–connected.

As in the proof of Theorem 3.8, this implies that it is enough to construct a retraction
r WX ! T L.†; I;P; �/.

For a vertex � of X , we define r.�/ as follows. If � is a vertex of T L.†; I;P; �/, then
r.�/ D �. If instead � is a vertex of T Srk.A/C1.†; I/, then we do the following. Let
O� WH1.†/!A be the closed marking associated to �. Define �0 WH1.†

1
rk.A/C1

/!A

to be the composition

H1.†
1
rk.A/C1/Š H1.�.†

1
rk.A/C1//

��
�! H1.†/

O�
�!A:
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Proposition 3.4 implies that there exists a subsurface S �†1
rk.A/C1

with S Š†1
1

and
�0jH1.S/ D 0. Let ˛ be a nonseparating oriented simple closed curve in S . Define r.�/

to be the vertex of T L.†; I;P; �/ obtained by adjoining the tether of � and an arbitrary
arc in �.†1

rk.A/C1
/ to �.˛/; see here:

�

�.S/

�.˛/

To see that this is actually a vertex of T L.†; I;P; �/, observe that by construction

O�.Œ�.˛/�/D 0; ��.H1.S//� ker. O�/ and Oif�.˛/g
�
��.H1.S//

�
D �.˛/:

Of course, r.�/ depends on various choices, but we simply make an arbitrary choice.

To complete the proof, we must show that r extends over the simplices of X . Let �
be a simplex of X . Enumerate the vertices of � as f�0; : : : ; �k ; �00; : : : ; �

0
`
g, where the �i

are vertices of T L.†; I;P; �/ and the �0j are vertices of T Srk.A/C1.†; I/. We must
prove that

r.�/D f�0; : : : ; �k ; r.�
0
0/; : : : ; r.�

0
`/g

is a simplex of T L.†; I;P; �/. The images of the vertices in r.�/ can clearly be homo-
toped so as to be disjoint, so the only thing we must prove is the following. For 0� i �k

and 0� j � `, let i D �i jS1 and  0j D �
0
j jS1 . Setting � D f0; : : : ; k ; 

0
0
; : : : ;  0

`
g, we

have to show that Oi�.ker. O�//DZŒ��. Setting �1Df0; : : : ; kg and �2Df
0
0
; : : : ;  0

`
g,

we will show that �1 and �2 are both contained in Oi�.ker. O�//.

We start with �2. By construction, for 0� j � ` there exists a subsurface Sj of † with
Sj Š†

1
1

such that

�  0j � Sj , and

� the Sj are disjoint from each other and from all the i , and

� regarding H1.Sj / as a subgroup of H1.†/, we have H1.Sj /� ker. O�/.

Since Oi�.H1.Sj //D 
0

j , we have  0j 2 Oi�.ker. O�//, as desired.

It remains to show that�1�
Oi�.ker. O�//. Since f�0;: : :;�kg is a simplex of T L.†;I;P;�/,

by definition we have Oi�1
.ker. O�// D ZŒ�1�. For some 0 � i � k, let x 2 ker. O�/ be

such that Oi�1
.x/D i . We then have Oi�.x/D i C z with z 2 ZŒ�2�. Since we already

showed that ZŒ�2�� Oi�.ker. O�//, we conclude that i 2
Oi�.ker. O�//, as desired.
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6.4 The complex of double-tethered vanishing loops

The definition of the complex of double-tethered vanishing loops takes several steps.

Double-tethered loops Define �2.S1/ to be the result of gluing 1 2 Œ0; 2� to S1. We
will call Œ0; 2� � �2.S1/ the double tether; the point 0 2 Œ0; 2� is the double tether’s
initial point and 2 2 Œ0; 2� is its terminal point. For a surface † 2 Surf and finite
disjoint unions of open intervals I;J � @† with I \J D∅, an .I;J /–double-tethered
loop in † is an embedding � W �2.S1/!† where

� � takes the initial point of the double tether to a point of I and the terminal point
of the double tether to a point of J , and

� orienting �.S1/ using the natural orientation of S1, the image �.Œ0; 1�/ approaches
�.S1/ from its right and the image �.Œ1; 2�/ leaves �.S1/ from its left.

See here:
J

I

We remark that right now we allow boundary components that contain components of
both I and J , but later when we discuss double-tethered vanishing loops our hypotheses
will exclude this possibility.

Complex of double-tethered loops For a surface † 2 Surf and finite disjoint unions
of open intervals I;J � @† with I \ J D∅, the complex of .I;J /–double-tethered
loops on †, denoted by DT L.†; I;J /, is the simplicial complex whose k–simplices
are collections f�0; : : : ; �kg of isotopy classes of .I;J /–double-tethered loops on †
that can be realized so as to be disjoint and not separate †. See here:

I J

This complex was introduced by Hatcher and Vogtmann [12], who proved that if † has
genus g then, like T L.†; I/, it is 1

2
.g�3/–connected; see [12, Proposition 5.2].

P–adjacency Consider .†;P/ 2 PSurf and let I;J � @† be finite disjoint unions of
open intervals with I \J D∅. Recall that components @ and @0 of @† are said to be
P–adjacent if there exists some p 2 P such that @; @0 2 p. We will say that I and J are
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P–adjacent if, for all components @I and @J of @† such that @I contains a component
of I and @J contains a component of J , the components @I and @J are distinct and
P–adjacent.

Complex of double-tethered vanishing loops Let � be an A–homology marking
on .†;P/ 2 PSurf and let I;J � @† be P–adjacent disjoint unions of open intervals
with I \ J D ∅. In particular, there are no boundary components of † containing
components of both I and J . Define DT L.†; I;J;P; �/ to be the subcomplex of
DT L.†; I;J / consisting of k–simplices f�0; : : : ; �kg satisfying the following condi-
tions. Let O� W H1.†/!A be the closed marking associated to �.

� For 0 � i � k, let i be the oriented loop .�i/jS1 and ˛i be the oriented arc
.�i/jŒ0;2�. We then require that O�.Œ�i �/D 0 and �.Œ˛i �/D 0. This second condition
makes sense since I and J are P–adjacent.

� Set � D f0; : : : ; kg. We then require that Oi�.ker. O�//D ZŒ��.

Identifying �.S1/ with the union of Œ0; 1� and S1 in �2.S1/, these conditions imply
that f.�0/j�.S1/; : : : ; .�k/j�.S1/g is a simplex of T L.†; I;P; �/.

6.5 The complex of mixed-tethered vanishing loops

Our main theorem about the complex of double-tethered vanishing loops says that it is
highly connected. We will prove this in Section 6.6 below. This section is devoted to
an intermediate complex that will play a technical role in that proof.

Complex of mixed-tethered vanishing loops Let � be an A–homology marking on
.†;P/ 2 PSurf and let I;J � @† be P–adjacent disjoint unions of open intervals
with I \ J D ∅. Let O� W H1.†/! A be the closed marking associated to �. De-
fine MT L.†; I;J;P; �/ to be the simplicial complex whose k–simplices are sets
f�0; : : : ; �kg, where each �i is the isotopy class of either an I–tethered loop or an
.I;J /–double-tethered loop and where the following conditions are satisfied:

� The �i can be realized so that their images are disjoint and do not separate †.

� For 0� i �k, let i be the oriented loop .�i/jS1 . We then require that O�.Œi �/D 0.

� For 0� i �k such that �i is an .I;J /–double-tethered loop, let ˛i be the oriented
arc .�i/jŒ0;2�. We then require that �.Œ˛i �/D 0.

� Set � D f0; : : : ; kg. We then require that Oi�.ker. O�//D ZŒ��.

These conditions ensure that both DT L.†; I;J;P; �/ and T L.†; I;P; �/ are full
subcomplexes of MT L.†; I;J;P; �/.
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Links Our first task will be to identify links in MT L.†; I;J;P; �/.

Lemma 6.8 Let � be an A–homology marking on .†;P/ 2 PSurf. Let I;J � @†

be P–adjacent finite disjoint unions of open intervals with I \J D∅. Finally, let �
be a k–simplex of MT L.†; I;J;P; �/. Then there exists some .†0;P 0/ 2 PSurf, an
A–homology marking �0 on .†0;P 0/, and P 0–adjacent finite disjoint unions of open
intervals I 0;J 0 � @†0 with I 0\J 0 D∅ such that :

� The link of � is isomorphic to MT L.†0; I 0;J 0;P 0; �0/. Moreover , the in-
tersections of the link of � with T L.†; I;P; �/ and DT L.†; I;J;P; �/ are
T L.†0; I 0;P 0; �0/ and DT L.†0; I 0;J 0;P 0; �0/, respectively.

� If † is a genus-g surface , then †0 is a genus-.g� k � 1/ surface.
� If � is supported on a symplectic subsurface , then so is �0.

Proof It is enough to deal with the case where � has dimension 0; the general case
will then follow by applying the dimension 0 case repeatedly. We thus can assume that
� D f�g, where � is either an I–tethered loop or an .I;J /–double-tethered loop. The
two cases are similar, so we will give the details for when � is an .I;J /–double-tethered
loop. Let †0 be the result of cutting † open along the image of �:

I
J

I 0

I 0

J 0

J 0

We remark that the fact that I and J are P–adjacent implies that the initial and terminal
points of the double tether are on distinct boundary components.

By isotoping †0 into the interior of†, we can regard†0 as a P–simple subsurface of †:

Let P 0 be the induced partition of the components of @†0. By Lemma 6.3, there exists
an A–homology marking �0 on .†0;P 0/ such that � is the stabilization of �0 to .†;P/.

As is clear from the above figure, when forming †0 the sets I and J are divided into
finer collections I 0 and J 0 of open intervals in @†0 such that the link of � is isomorphic
to MT L.†0; I 0;J 0;P 0; �0/. By construction, †0 has genus g� 1. The only thing that
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remains to be proved is that if � is supported on a symplectic subsurface, then so
is �0. Letting O� W H1.†/! A be the closed marking associated to � and q be the
interior boundary components of †0 (as in the definition of a P–simple subsurface in
Section 6.2), Lemma 6.5 says that it is enough to prove that Oiq.ker. O�//D zZŒq�.

Let  D �jS1 . Since � is a vertex of MT L.†; I;J;P; �/, there exists some x 2 ker. O�/
such that Oi .x/ D  . By construction, we have q D f1; 2g, where 1 (resp. 2) is
obtained by band-summing  with a component of @† containing a component of I

(resp. J ). The orientations on the i are such that 1 is homologous in H1.†; @†/ to
 and 2 is homologous to � . It follows that Oiq.x/D 1� 2, which generates zZŒq�.
The lemma follows.

Completing a tethered loop to a double-tethered loop As a first application of
Lemma 6.8 (or, rather, its proof), we prove the following:

Lemma 6.9 Let � be an A–homology marking on .†;P/ 2 PSurf that is supported
on a symplectic subsurface. Let I;J � @† be P–adjacent finite disjoint unions of open
intervals with I \ J D ∅. Then , for all vertices � of T L.†; I;P; �/, there exists a
vertex O� of DT L.†; I;J;P; �/ such that O�j�.S1/ D �.

Proof Let .†0;P 0/ and I 0, J 0 and �0 be the output of applying Lemma 6.8 to the
0–simplex f�g of T L.†; I;P; �/�MT L.†; I;J;P; �/. The A–homology marking
�0 on .†0;P 0/ is thus supported on a symplectic subsurface. As in the following figure,
it is enough to find an embedded arc ˛ in †0 connecting the endpoint p0 of the tether
of � to a point of J such that �0.Œ˛�/D 0:

J

I
p0

†0J

I �

J

I

˛

Since �0 is supported on a symplectic subsurface, Lemma 6.2 implies that there exists
an immersed arc ˛ (not necessarily embedded) connecting p0 to a point of J such that
�0.Œ˛�/D 0. Choose ˛ so as to have the fewest possible self-intersections. Then ˛ is
embedded; indeed, if it has a self-intersection, then as in the following figure we can
“comb” its first self-intersection over the component of @†0 containing p0:

p0 ˛
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This has the effect of removing a self-intersection from ˛, but since �0 vanishes on all
components of @†0 it does not change the fact that �0.Œ˛�/D 0. The lemma follows.

High connectivity We close this section by proving that MT L.†; I;J;P; �/ is
highly connected.

Theorem 6.10 Let � be an A–homology marking on .†;P/ 2 PSurf. Let I;J � @†

be P–adjacent finite disjoint unions of open intervals with I \J D∅ and let g be the
genus of †. Then MT L.†; I;J;P; �/ is

�
g�.2 rk.A/C3/

�
=.rk.A/C2/–connected.

Proof Set nD
�
g� .2 rk.A/C 3/

�
=.rk.A/C 2/ and

X DMT L.†;I;J;P;�/; Y DT L.†;I;J;P;�/ and Y 0DDT L.†;I;J;P;�/:

Theorem 6.7 says that Y is n–connected, so it is enough to prove that the pair .X;Y /
is n–connected. To do this, we will apply Corollary 2.4. This requires showing the
following. Let � be a k–dimensional simplex of Y 0 and let L be the link of � in X .
Then we must show that L\Y is .n�k�1/–connected.

Lemma 6.8 says that L\Y Š T L.†0; I 0;J 0;P 0; �0/, where †0, I 0, J 0, P 0 and �0 are
as follows:

� .†0;P 0/ 2 PSurf with †0 a genus-.g�k�1/ surface.

� �0 is an A–homology marking on .†0;P 0/.
� I 0;J 0 � @†0 are P 0–adjacent finite disjoint unions of open intervals satisfying

I 0\J 0 D∅.

Theorem 6.7 thus says that L\Y is n0–connected for

n0 D
g0� .2 rk.A/C 3/

rk.A/C 2
D

g� .2 rk.A/C 3/

rk.A/C 2
�

kC 1

rk.A/C 2
� n� k � 1:

6.6 High connectivity of the complex of double-tethered vanishing loops

In this section, we finally prove that the complex of double-tethered vanishing loops is
highly connected:

Theorem 6.11 Let � be an A–homology marking on .†;P/2PSurf that is supported
on a symplectic subsurface. Let I;J � @† be P–adjacent finite disjoint unions of open
intervals with I \ J D ∅ and let g be the genus of †. Then DT L.†; I;J;P; �/ is�
g�.2 rk.A/C3/

�
=.rk.A/C2/–connected.
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The proof of Theorem 6.11 requires the following lemma. Say that a simplicial map
f WM !X between simplicial complexes is locally injective if f j� is injective for all
simplices � of M .

Lemma 6.12 Let M be a compact n–dimensional manifold (possibly with boundary)
equipped with a combinatorial triangulation , let X be a simplicial complex, and let
f WM !X be a simplicial map. Assume

� f j@M is locally injective ,
� for all simplices � of X , the link of � in X is .n�dim.�/�2/–connected.

Then after possibly subdividing simplices of M lying in its interior , f is homotopic
through maps fixing @M to a simplicial map f 0 WM !X that is locally injective.

Proof We remark that the proof of this is very similar to Hatcher and Vogtmann’s
proof of Proposition 2.3 above, though it seems hard to deduce it from that proposition.
This result is also related to [10, Theorem 2.4].

The proof will be by induction on n. The base case n D 0 is trivial, so assume that
n> 0 and that the result is true for all smaller dimensions. Call a simplex � of M a
noninjective simplex if, for all vertices v of � , there exists a vertex v0 of � with v ¤ v0

but f .v/ D f .v0/. If M has no noninjective simplices, then we are done. Assume,
therefore, that M has noninjective simplices, and let � be a noninjective simplex of M

whose dimension is as large as possible. Since no simplices of @M are noninjective,
the simplex � does not lie in @M . Letting L � M be the link of � , this implies
that L Š Sn�dim.�/�1. Letting L0 be the link of f .�/ in X , the maximality of the
dimension of � implies two things:

� f .L/�L0.
� The restriction of f to L is locally injective.

Our assumptions imply that L0 has connectivity at least

n� dim.f .�//� 2� n� .dim.�/� 1/� 2D n� dim.�/� 1:

Here we are using the fact that f j� is not injective. We can thus extend f jL to a map

F WDn�dim.�/
!L0

that is simplicial with respect to some combinatorial triangulation of Dn�dim.�/ that
restricts to LŠSn�dim.�/�1 on @Dn�dim.�/. Since dim.�/�1 and F j@Dn�dim.�/Df jL

is locally injective, we can apply our inductive hypothesis to F and ensure that F is
locally injective. The star S of � is isomorphic to the join � �L. Subdividing M
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and homotoping f , we can replace S �Dn�dim.�/ with @� �Dn�dim.�/ and f jS with
f j@� �F . Here are pictures of this operation for nD 2 and dim.�/ 2 f0; 1; 2g; on the
left-hand side is S , and on the right-hand side is @� �Dn�dim.�/:

���

In doing this, we have eliminated the noninjective simplex � without introducing any
new noninjective simplices. Repeating this over and over again, we can eliminate all
noninjective simplices, and we are done.

Proof of Theorem 6.11 We will prove by induction on n that DT L.†; I;J;P; �/ is
n–connected for�1�n�

�
g�.2 rk.A/C3/

�
=.rk.A/C2/. The base case simply asserts

that DT L.†; I;J;P; �/ is nonempty when
�
g� .2 rk.A/C3/

�
=.rk.A/C2/��1. In

this case, Theorem 6.7 asserts that T L.†; I;P; �/¤∅, and thus Lemma 6.9 implies
that DT L.†; I;J;P; �/¤∅, as desired.

Assume now that 0 � n �
�
g � .2 rk.A/C 3/

�
=.rk.A/C 2/ and that all complexes

DT L.†0; I 0;J 0;P 0; �0/ as in the theorem are n0–connected for

n0 Dmin
�

n� 1;
g0� .2 rk.A/C 3/

rk.A/C 2

�
;

where g0 is the genus of †0. We must prove that DT L.†; I;J;P; �/ is n–connected.

Set X DMT L.†; I;J;P; �/. The complex DT L.†; I;J;P; �/ that we want to show
is n–connected is a subcomplex of X , and Theorem 6.10 says that the connectivity
of X is at least

g� .2 rk.A/C 3/

rk.A/C 2
� n:

Define Y to be the subcomplex of X consisting of simplices containing at most one
vertex of T L.†; I;P; �/, so

DT L.†; I;J;P; �/¨ Y ¨X:

The first step is as follows.

Claim 1 The complex Y is n–connected.

Proof We know that X is n–connected, so to prove that its subcomplex Y is n–
connected it is enough to prove that the pair .X;Y / is .nC1/–connected. We will do
this using Proposition 2.3. For this, we must identify a set B of “bad simplices” of
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X and verify the three hypotheses of the proposition. Define B to be the set of all
simplices of T L.†; I;P; �/�X whose dimension is at least 1.

We now verify the hypotheses of Proposition 2.3. The first two are easy:

(i) A simplex of X lies in Y if and only if none of its faces lie in B, which is
obvious.

(ii) If �1; �2 2 B are such that �1[ �2 is a simplex of X , then �1[ �2 2 B, which
again is obvious.

The only thing left to check is (iii), which says that for all k–dimensional � 2 B, the
complex G.X; �;B/ has connectivity at least .nC 1/� k � 1D n� k.

Let L be the link of � in X . Examining its definition in Section 2.2, we see that

G.X; �;B/ŠL\DT L.†; I;J;P; �/:

Lemma 6.8 says that L\DT L.†; I;J;P; �/ Š DT L.†0; I 0;J 0;P 0; �0/, where †0,
I 0, J 0, P 0 and �0 are as follows:

� .†0;P 0/ 2 PSurf with †0 a genus g0 D g� k � 1 surface.

� �0 is an A–homology marking on .†0;P 0/ that is supported on a symplectic
subsurface.

� I 0;J 0 � @†0 are P 0–adjacent finite disjoint unions of open intervals satisfying
I 0\J 0 D∅.

Our goal is thus to show that DT L.†0; I 0;J 0;P 0; �0/ is .n�k/–connected. Our induc-
tive hypothesis shows that DT L.†0; I 0;J 0;P 0; �0/ is n0–connected for

n0 Dmin
�

n� 1;
g0� .2 rk.A/C 3/

rk.A/C 2

�
Dmin

�
n� 1;

g� .2 rk.A/C 3/

rk.A/C 2
�

kC 1

rk.A/C 2

�
�min

˚
n� 1; n� 1

2
.kC 1/

	
� n� k:

Here we are using the fact that, by the definition of B, we have k � 1, and thus
k � 1

2
.kC 1/.

This allows us to fill n–spheres in DT L.†; I;J;P; �/ with .nC1/–discs in Y . We
will modify these .nC1/–discs so that they lie in DT L.†; I;J;P; �/. For technical
reasons, we will need our spheres and discs to be locally injective. That this is possible
is the content of the following two steps.
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Claim 2 Equip the n–sphere Sn with a combinatorial triangulation and let f W Sn!

DT L.†; I;J;P; �/ be a simplicial map. Then after possibly subdividing Sn, the map
f is homotopic to a locally injective simplicial map.

Proof By Lemma 6.12, this will follow if we can show that, for all k–simplices � of
DT L.†; I;J;P; �/, the link L of � is .n�k�2/–connected. Applying Lemma 6.8,
we see that LŠ DT L.†0; I 0;J 0;P 0; �0/, where †0, I 0, J 0, P 0 and �0 are as follows:

� .†0;P 0/ 2 PSurf with †0 a genus g0 D g� k � 1 surface.

� �0 is an A–homology marking on .†0;P 0/ that is supported on a symplectic
subsurface.

� I 0;J 0 � @†0 are P 0–adjacent finite disjoint unions of open intervals satisfying
I 0\J 0 D∅.

Our inductive hypothesis thus says that LŠDT L.†0; I 0;J 0;P 0; �0/ is n0–connected for

n0 Dmin
�

n� 1;
g0� .2 rk.A/C 3/

rk.A/C 2

�
Dmin

�
n� 1;

g� .2 rk.A/C 3/

rk.A/C 2
�

kC 1

rk.A/C 2

�
�min

�
n� 1; n�

kC 1

rk.A/C 2

�
� n� k � 2;

as desired.

Claim 3 Equip the n–sphere Sn with a combinatorial triangulation and let f WSn!Y

be a locally injective simplicial map that extends to a simplicial map of a combinatorial
triangulation of DnC1. Then there exists a combinatorial triangulation of DnC1 that
restricts to our given triangulation on @DnC1 D Sn and a locally injective simplicial
map F WDnC1! Y such that F j@DnC1 D f .

Proof By Lemma 6.12, this will follow if we can show that, for all k–simplices � of Y ,
the link L of � is .n�k�1/–connected. As temporary notation, write Y .†; I;J;P; �/
for Y . By Lemma 6.8, we have either

LŠ DT L.†0; I 0;J 0;P 0; �0/ or LŠ Y .†0; I 0;J 0;P 0; �0/;

depending on whether or not � contains a vertex of T L.†; I;P; �/. Here †0, I 0, J 0,
P 0 and �0 are as follows:

� .†0;P 0/ 2 PSurf with †0 a genus g0 D g� k � 1 surface.

� �0 is an A–homology marking on .†0;P 0/ supported on a symplectic subsurface.

� I 0;J 0 � @†0 are P 0–adjacent finite disjoint unions of open intervals satisfying
I 0\J 0 D∅.
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Applying either our inductive hypothesis or Claim 1, we see that L is n0–connected for

n0 Dmin
�

n� 1;
g0� .2 rk.A/C 3/

rk.A/C 2

�
Dmin

�
n� 1;

g� .2 rk.A/C 3/

rk.A/C 2
�

kC 1

rk.A/C 2

�
�min

�
n� 1; n�

kC 1

rk.A/C 2

�
� n� k � 1;

as desired.

We now finally turn to proving that DT L.†; I;J;P; �/ is n–connected. Our induc-
tive hypothesis says that it is .n�1/–connected, so it is enough to prove that every
continuous map f W Sn! DT L.†; I;J;P; �/ can be extended to a continuous map
F W DnC1 ! DT L.†; I;J;P; �/. Using simplicial approximation, we can assume
that f is simplicial with respect to a combinatorial triangulation of Sn. Next, using
Claim 2 we can ensure that f is locally injective. The complex DT L.†; I;J;P; �/
is a subcomplex of Y and Claim 1 says that Y is n–connected, so we can extend
f to a continuous map F W DnC1 ! Y , which by the relative version of simplicial
approximation we can ensure is simplicial with respect to a combinatorial triangulation
of DnC1 that restricts to our given triangulation on Sn. Finally, applying Claim 3 we
can ensure that F is locally injective.

If F does not map any vertices of DnC1 to T L.†; I;P; �/, then the image of F

lies in DT L.†; I;J;P; �/ and we are done. Assume, therefore, that x is a vertex of
DnC1 such that F.x/ is a vertex � W �.S1/! † of T L.†; I;P; �/. Let L � DnC1

be the link of x and let L � Y be the link of �D F.x/. Since F is locally injective,
we have F.L/ � L. Also, since simplices of Y can contain at most one vertex of
T L.†; I;P; �/, we have L� DT L.†; I;J;P; �/.

By Lemma 6.9, we can find a vertex O� W �2.S1/!† of DT L.†; I;J;P; �/ such that
O�j�.S1/ D �. Let yL be the link of O� in DT L.†; I;J;P; �/, so yL � L. As we said
above, we have F.L/ � L. If F.L/ � yL, then we could redefine F to take x to O�
instead of �. Repeating this process would modify F so that its image would lie in
DT L.†; I;J;P; �/, and we would be done.

Unfortunately, it might not be the case that F.L/ � yL. We will therefore have to
perform a more complicated modification to F . Since L � DnC1 is the link of the
vertex x and x does not lie in @DnC1, we have LŠ Sn. Recall that

F.L/� L� DT L.†; I;J;P; �/:
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Among all simplicial maps

G WL! L� DT L.†; I;J;P; �/

that are homotopic to F jL through maps Sn! DT L.†; I;J;P; �/, pick the one that
minimizes the total number of intersections between the image of O� W �2.S1/!† and
the images of G.y/ W �2.S1/!† as y ranges over the vertices of L.

Below in Claim 4 we will prove that with this choice there are in fact no such intersec-
tions, and thus the image G.L/ lies in the link yL of O� in DT L.†; I;J;P; �/. Letting
� denote the join, we can then replace the restriction of F to the subset

x �LŠ pt�Sn
ŠDnC1

of DnC1 with the following two pieces:

� The first is an annular region that is a combinatorial triangulation of Sn � Œ0; 1�,
both of whose boundary components are L. On this region, F maps to a
homotopy from F jL to G.

� The second is the cone x �LŠ pt�SnŠDnC1, on which F is defined to equal
G on L and to take x to O�.

See the following figure, where the shaded region is the homotopy from F jL to G:

�

F jL
G

O�

homotopy

This redefines F so that F.x/D O� without introducing any other vertices mapping to
vertices of T L.†; I;J;P; �/, completing the proof.

It remains to prove the aforementioned claim about G WL! L� DT L.†; I;J;P; �/.

Claim 4 For all vertices y of L, we can choose a representative of G.y/ W �2.S1/!†

whose image is disjoint from the image of O� W �2.S1/!†.

Proof Assume otherwise. Since the image of G lies in the link L of �, we can
choose representatives of the G.y/ for y 2 L that are disjoint from the image of
� W �.S1/!†. Pick these representatives so that their intersections with the image of
O�jŒ1;2� W Œ1; 2�!† are transverse and all distinct. Let y be the vertex of L such that the
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image of � WDG.y/ W �2.S1/!† intersects the image of O�jŒ1;2� W Œ1; 2�!† in the first
of these intersection points (enumerated from O�.1/ to O�.2/).

The argument is slightly different depending on whether this intersection point is
contained in the image under � W �2.S1/!† of Œ0; 1�, S1 or Œ1; 2�. We will give the
details for when this intersection point is contained in �.S1/; the other cases are similar.

As in the following figure, let �0 W �2.S1/!† be the result of “sliding” the intersection
point of � in question across �.S1/ via the initial segment of �.Œ1; 2�/:

�0

� � ��

O�

The image of �0 intersects the image of O� in one fewer place than the image of �. Define

G0 WL! L� DT L.†; I;J;P; �/

to be the map which equals G except at the vertex y, where G0.y/D �0 instead of �.
It is easy to see that G0 is indeed a simplicial map. Since the image of �0 intersects
the image of O� in one fewer place than the image of �, to derive a contradiction to the
minimality of the total number of these intersections it is enough to prove that G and
G0 are homotopic through maps landing in DT L.†; I;J;P; �/.

Define L0 Š Sn�1 to be the link of y in Sn, define L� to be the link of � in
DT L.†; I;J;P; �/, and define L�0 to be the link of �0 in DT L.†; I;J;P; �/. We
have GjL0 D G0jL0 , and the image G.L0/D G0.L0/ lies in L� \L�0 . Below we will
prove that the map GjL0 WL

0! L� \L�0 can be homotoped to a constant map. This
will imply that G and G0 are homotopic through maps lying in DT L.†; I;J;P; �/
via a homotopy like the one in this figure:

via homotopy like this:

y with G0.y/D �0

y with G.y/D �

L0
homotopic

L0

This figure depicts the case nD 1; pictured is a fragment of LŠ S1, along with the
vertex y and L0 Š S0.
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Since L0 Š Sn�1, to prove that the map GjL0 W L
0! L� \L�0 can be homotoped to

a constant map, it is enough to prove that L� \L�0 is .n�1/–connected. Define � to
be the union of �.�2.S1//, �.S1/, and the portion of the arc of �.Œ1; 2�/ connecting
�.0/ 2 �.S1/ to a point of �.S1/; see here:

� � ��

O�

�

The images of both � and �0 are contained in a regular neighborhood of �. Let †0 be the
surface obtained by cutting open † along �. The surface †0 thus has genus g0 D g� 2.
Moreover, an argument identical to that in the proof of Lemma 6.8 shows that there
exist a partition P 0 of the components of @†0, an A–homology marking �0 on .†0;P 0/,
and P 0–adjacent finite disjoint unions of open intervals I 0;J 0 � @†0 with I 0\J 0 D∅
such that

� L� \L�0 ŠMT L.†0; I 0;J 0;P 0; �0/,

� �0 is supported on a symplectic subsurface.

Our inductive hypothesis thus says that L� \ L�0 ŠMT L.†0; I 0;J 0;P 0; �0/ is n0–
connected for

n0 Dmin
�

n� 1;
g0� .2 rk.A/C 3/

rk.A/C 2

�
Dmin

�
n� 1;

g� .2 rk.A/C 3/

rk.A/C 2
�

2

rk.A/C 2

�
�min

�
n� 1; n�

2

rk.A/C 2

�
D n� 1;

as desired.

This completes the proof of Theorem 6.11.

6.7 The complex of order-preserving double-tethered vanishing loops

We finally come to the complex of order-preserving double-tethered vanishing loops.

Complex of order-preserving double-tethered loops Let † 2 Surf be a surface
and let I;J � @† be disjoint open intervals. Orient I so that † lies on its right and
J so that † lies on its left. These two orientations induce two natural orderings on
simplices of DT L.†; I;J /. The complex of order-preserving .I;J /–double-tethered
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loops, denoted by ODT L.†; I;J /, is the subcomplex of DT L.†; I;J / consisting of
simplices such that these two orderings agree. Here is an example of such a simplex:

J

I

The complex ODT L.†; I;J / was introduced by Hatcher and Vogtmann [12], who
proved that if † has genus g then (like T L.†; I/ and DT L.†; I;J /) it is 1

2
.g�3/–

connected; see [12, Proposition 5.3].

Complex of order-preserving double-tethered vanishing loops Let � be an A–
homology marking on .†;P/ 2 PSurf and let I;J � @† be disjoint P–adjacent
open intervals in @†. Define the complex ODT L.†; I;J;P; �/ to be the intersection
of DT L.†; I;J;P; �/ with ODT L.†; I;J /. The orientations on I and J endow
ODT L.†; I;J;P; �/ with a natural ordering on its simplices, and thus with the
structure of a semisimplicial set.

High connectivity The following theorem asserts that ODT L.†; I;J;P; �/ has the
same connectivity that Theorem 6.11 says DT L.†; I;J;P; �/ enjoys.

Theorem 6.13 Let � be an A–homology marking on .†;P/2PSurf that is supported
on a symplectic subsurface. Let I;J � @† be P–adjacent disjoint open intervals and
let g be the genus of †. Then ODT L.†; I;J;P; �/ is

�
g�.2 rk.A/C3/

�
=.rk.A/C2/–

connected.

Proof In [12, Proposition 5.3], Hatcher and Vogtmann show how to derive the fact that
ODT L.†; I;J / is 1

2
.g�3/–connected from the fact that DT L.†; I;J / is 1

2
.g�3/–

connected. Their argument works word-for-word to prove this theorem.

Stabilizers In the remainder of this section, we will be interested in the case where
I and J are open intervals in distinct components @I and @J of @† (much of what
we say will also hold if @I D @J , but the pictures would be a bit different). The
Mod.†/–stabilizer of a simplex � D f�0; : : : ; �kg of ODT L.†; I;J / is the mapping
class group of the complement †0 of an open regular neighborhood of

@I [ @J [ �0.�
2.S1//[ � � � [ �k.�

2.S1//:
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We will call this the stabilizer subsurface of � . See here:

regular
nbhd

†0

If @I and @J are P–adjacent, then the surface †0 is a P–simple subsurface of †, and
thus has an induced partition P 0. The following lemma records some of its properties
if � is a simplex of ODT L.†; I;P; �/ for an A–homology marking � on .†;P/:

Lemma 6.14 Let � be an A–homology marking on .†;P/ and let I and J be
open intervals in distinct P–adjacent components of @†. Let � be a simplex of
ODT L.†; I;J;P; �/, let †0 be its stabilizer subsurface , and let P 0 be the induced
partition of @†0. Then there exists an A–homology marking �0 on .†0;P 0/ such that �
is the stabilization of �0. Moreover , if � is supported on a symplectic subsurface then
so is �0.

Proof The proof is identical to that of Lemma 6.8.

Transitivity The final fact we need about these complexes is as follows:

Lemma 6.15 Let � be an A–homology marking on .†;P/ 2 PSurf that is supported
on a symplectic subsurface and let I and J be open intervals in distinct P–adjacent
components of @†. The group I.†;P; �/ acts transitively on the k–simplices of
ODT L.†; I;J;P; �/ if the genus of † is at least 2 rk.A/C 3C k.

Proof Just like in the proof of Lemma 3.9, this will be by induction on k. In fact, once
we prove the base case k D 0, the inductive step is handled exactly like Lemma 3.9, so
we will only give the details for k D 0.

Assume that the genus of † is at least 2 rk.A/C 3. Theorem 6.13 then implies that
ODT L.†; I;J;P; �/ is connected, so to prove that I.†;P; �/ acts transitively on its
vertices it is enough to prove that if �0; �1 W �2.S1/! † are vertices that are joined
by an edge, then there exists some f 2 I.†;P; �/ such that f .�0/ D �1. Let †0 be
the stabilizer subsurface of f�0; �1g and let P 0 be the induced partition of @†0. By
Lemma 6.14, there exists an A–homology marking �0 on .†0;P 0/ that is supported on
a symplectic subsurface such that � is the stabilization of �0 to .†;P/. Let S Š†1

h

be a subsurface of †0 on which �0 is supported.
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The change of coordinates principle from [8, Section 1.3.2] implies that there is a
mapping class f 0 on †0 n Int.S/ with f 0.�0/D �1. Let f 2Mod.†/ be the result of
extending f 0 over S by the identity. Since� is supported on S , we have f 2I.†;P; �/
and f .�0/D �1, as desired.

6.8 The double boundary stabilization proof

We now prove Proposition 5.9.

Proof of Proposition 5.9 We start by recalling the statement and introducing some
notation. Let � be an A–homology marking on .†;P/ 2 PSurf that is supported on a
symplectic subsurface. Let .†;P/! .†0;P 0/ be a double boundary stabilization and
let �0 be the stabilization of � to .†0;P 0/. Setting

c D rk.A/C 2 and d D 2 rk.A/C 2;

we want to prove that the induced map Hk.I.†;P; �//! Hk.I.†0;P 0; �0// is an
isomorphism if the genus of † is at least ckC d and a surjection if the genus of † is
ckCd � 1. We will prove this using Theorem 3.1. This requires fitting I.†;P; �/!
I.†0;P 0; �0/ into an increasing sequence of group fGng and constructing appropriate
simplicial complexes.

As notation, let .Sg;Pg/D .†;P/, �gD�, .SgC1;PgC1/D .†
0;P 0/ and �gC1D�

0.
In a double boundary stabilization like .Sg;Pg/ ! .SgC1;PgC1/, two boundary
components of†4

0
are glued to two boundary components of Sg to form SgC1. We will

call the two boundary components of Sg to which†4
0

is glued the attaching components
and the two components of @†4

0
\ @SgC1 the new components.

By assumption, �g is supported on a genus-h symplectic subsurface for some h, ie
there exists a PSurf–morphism .T;PT /! .Sg;Pg/ with T Š†1

h
and an A–homology

marking �T on .T;PT / such that �g is the stabilization of �T to .Sg;Pg/. Applying
Corollary 3.6 to �T , we can assume without loss of generality that h� rk.A/. We can
then factor .T;PT /! .Sg;Pg/ into an increasing sequence of subsurfaces

.T;PT /! .Sh;Ph/! .ShC1;PhC1/! � � � ! .Sg;Pg/

such that

(i) each Sr has genus r ,

(ii) each .Sr ;Pr /! .SrC1;PrC1/ is a double boundary stabilization, and

(iii) for r > h, the attaching components of .Sr ;Pr /! .SrC1;PrC1/ equal the new
components of .Sr�1;Pr�1/! .Sr ;Pr /.
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See here:

S4 S5 S6S3
T

This can then be continued indefinitely to form an increasing sequence of subsurfaces

.T;PT /! .Sh;Ph/! � � � ! .Sg;Pg/! .SgC1;PgC1/! .SgC2;PgC2/! � � �

satisfying (i)–(iii). Here .SgC1;PgC1/ is as defined above. For r � h, let �r be
the stabilization of �T to .Sr ; �r /. This agrees with our previous definitions of �g

and �gC1.

We thus have an increasing sequence of groups

I.Sh;Ph; �h/� I.ShC1;PhC1; �hC1/� I.S1
hC2;PhC2; �hC2/� � � � :

For r � h, let Ir ;Jr � @Sr be open intervals in the two attaching components for
.Sr ;Pr /! .SrC1;PrC1/. According to Theorem 6.13, ODT L.Sr ; Ir ;Jr ;Pr ; �r / is
.r�.dC1//=c–connected (where c and d are as defined in the first paragraph).

For n� 0, let

GnDI.SdCn;PdCn; �dCn/ and XnDODT L.SdCn; IdCn;JdCn;PdCn; �dCn/:

For this to make sense, we must have d C n� h, which follows from

d C nD 2 rk.A/C 2C n� rk.A/� h:

We thus have an increasing sequence of groups

G0 �G1 �G2 � � � �

with Gn acting on Xn. The indexing convention here is chosen so that X1 is 0–connected,
and more generally so that Xn is .n�1/=c–connected, as in Theorem 3.1. Our goal
is to prove that the map Hk.Gn�1/ ! Hk.Gn/ is an isomorphism for n � ck C 1

and a surjection for nD ck, which will follow from Theorem 3.1 once we check its
conditions:

(1) The first is that Xn is .n�1/=c–connected, which follows from Theorem 6.13.

(2) The second is that, for 0� i < n, the group Gn�i�1 is the Gn–stabilizer of some
i–simplex of Xn, which follows from Lemma 6.14 via the following picture:
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� � �

:::

:::

stabilizer
subsurface

� � �

(3) The third is that, for all 0� i < n, the group Gn acts transitively on the i–simplices
of Xn, which follows from Lemma 6.15.

(4) The fourth is that, for all n� cC 1 and all 1–simplices e of Xn whose boundary
consists of vertices v and v0, there exists some � 2 Gn such that �.v/D v0 and such
that � commutes with all elements of .Gn/e. Let S 0 be the stabilizer subsurface of e,
so by Lemma 6.14 the stabilizer .Gn/e consists of mapping classes supported on S 0.
The surface SdCn n Int.S 0/ is diffeomorphic to †4

1
(as in the picture above), and in

particular is connected. The change of coordinates principle from [8, Section 1.3.2]
implies that we can find a mapping class � supported on SdCn n Int.S 0/ taking the
double-tethered loop v to v0. Lemma 6.14 implies that �dCn can be destabilized to an
A–homology marking on S 0 (with respect to an appropriate partition) that is supported
on a symplectic subsurface. This implies that � lies in Gn D I.SdCn;PdCn; �dCn/

and commutes with .Gn/e.

7 Nonstability

This section concerns situations where homological stability does not occur. The
highlights are the proofs of Theorems B and 5.3.

Disc-pushing subgroup Let†2Surf be a surface and let @ be a component of @†. Let
y† be the result of gluing a disc to @. The embedding † ,! y† induces a homomorphism
Mod.†/ ! Mod.y†/, which is easily seen to be surjective. Its kernel, denoted by
DP.@/, is the disc-pushing subgroup and is isomorphic to the fundamental group of
the unit tangent bundle U y† of y†; see [8, Section 4.2.5]. Elements of DP.@/ “push” @
around paths in y† while allowing it to rotate.

Disc-pushing and partial Torelli If @ is the single component of @†1
g, then DP.@/�

Mod.†1
g/ is contained in the Torelli group I.†1

g/, and thus is also contained in
I.†1

g; �/ for any A–homology marking � on †1
g. he following lemma generalizes this

to the partial Torelli groups on surfaces with multiple boundary components:

Algebraic & Geometric Topology, Volume 23 (2023)



Partial Torelli groups and homological stability 3491

Lemma 7.1 Let � be an A–homology marking on .†;P/ 2 PSurf and let @ be a
component of @† such that f@g 2 P . Then DP.@/� I.†;P; �/.

Proof Let f 2 DP.@/ and let x 2 HP
1 .†; @†/. It is enough to prove that f .x/D x.

Let y† be the result of gluing a disc to @ and let yP D P n ff@gg. We thus have a PSurf–
morphism � W .†;P/! .y†; yP/. Since the homology classes of arcs connecting @ to
other components of @† do not contribute to HP

1 .†; @†/, the map �� W HyP1 .y†; @y†/!
HP

1 .†; @†/ is a surjection (in fact, it is an isomorphism, but we will not need this). We
can thus write x D ��. Ox/ for some Ox 2 HyP1 .y†; @y†/. Since

f 2 DP.@/D ker.Mod.†/ ���!Mod.y†//;

we clearly have ��.f /. Ox/D Ox, so Lemma 4.5 implies that

x D ��. Ox/D ��.��.f /. Ox//D f .�
�. Ox//D f .x/;

as desired.

Johnson homomorphism Fix some g � 2 and let H D H1.†
1
g/. The Johnson

homomorphism [14] is an important homomorphism � W I.†1
g/!

V3
H . Letting @ be

the single component of @†1
g, it interacts with the disc-pushing subgroup DP.@/ Š

�1.U†g/ in the following way. Let ! 2
V2

H be the symplectic element, ie the element
corresponding to the algebraic intersection pairing under the isomorphism�V2

H
��
Š
V2

H� Š
V2

H;

where we identify H with its dual H� via Poincaré duality. We then have an injection
H ,!

V3
H taking h 2H to h^!. The restriction of � to DP.@/ is the composition

DP.@/Š �1.U†g/! �1.†g/!H �^!
���!

V3
H:

Symplectic nondegeneracy Let � be an A–homology marking on .†;P/ 2 PSurf.
The �–symplectic element !� 2

V2
A is as follows. Let H be the quotient of H1.†/ by

the subgroup generated by the loops around the boundary components. Since H is the
first homology group of the closed surface obtained by gluing discs to all components
of @†, there is a symplectic element ! 2

V2
H . The closed marking O� W H1.†/!A

factors through a homomorphism H !A, and !� is the image of ! 2
V2

H under the
induced map

V2
H !

V2
A. We then have a map A!

V3
A taking a 2A to a^!�.

We will say that � is symplectically nondegenerate if this map is nonzero.

Example 7.2 Let V be a symplectic subspace of H1.†
1
g/, so H1.†

1
g/D V ˚V ?, and

let � W H1.†
1
g/! V be the orthogonal projection. We claim that � is symplectically

nondegenerate if and only if V has genus at least 2. Indeed, !� 2
V2

V equals the
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symplectic element arising from the symplectic form on V , and the map V !
V3

V

taking v 2V to v^!� is nonzero precisely when V has genus at least 2. We remark that
if V has genus 0 or 1 then

V3
V D0, so the map V !

V3
V is automatically the zero map.

Partial Johnson homomorphism The homomorphism given by the following lemma
is a version of the Johnson homomorphism for the partial Torelli groups:

Lemma 7.3 Let � be an symplectically nondegenerate A–homology marking on
.†;P/ 2 PSurf and let @ be a component of @† such that f@g 2 P (and thus by
Lemma 7.1 such that DP.@/ � I.†;P; �/). Then there exists a homomorphism
� W I.†;P; �/! H3.A/ whose restriction to DP.@/ is nontrivial.

Remark 7.4 The target group H3.A/ contains
V3

A, though sometimes it is a bit larger.

Proof of Lemma 7.3 Let †0 be the result of gluing discs to all components of @†
except for @, let P 0 D ff@gg, and let �0 be the stabilization of � to .†0;P 0/. From their
definitions, the �0–symplectic element !�0 2

V2
A is the same as the �–symplectic

element !� 2
V2

A, so �0 is symplectically nondegenerate. In [3, Theorem 5.8],
Broaddus, Farb and Putman construct a homomorphism

� 0 W I.†0;P 0; �0/! H3.A/:

We remark that their notation is a little different from ours — the group W in the
statement of [3, Theorem 5.8] should be taken to be W D ker.�0/. Let DP0.@/ be
the disc-pushing subgroup of I.†0;P 0; �0/, let y†0 be the result of gluing a disc to the
component @ of @†0, and let O�0 W H1.†

0/!A be the closed marking associated to �0.
One of the characteristic properties of � 0 is that its restriction to DP0.@/ is

DP0.@/D �1.U y†
0/! �1.y†

0/! H1.y†
0/D H1.†

0/
O�0
�!A

�^!�0
�����!

V3
A ,! H3.A/:

In particular, since �0 is symplectically nondegenerate, the restriction of � 0 to DP0.@/
is nontrivial. Let � W I.†;P; �/ ! H3.A/ be the composition of � 0 with the map
I.†;P; �/! I.†0;P 0; �0/. The restriction of this latter map to DP.@/ is a surjection
DP.@/! DP0.@/, so the restriction of � to DP.@/ is nontrivial, as desired.

Closing up surfaces and nonstability In light of Example 7.2 above, the following
theorem generalizes Theorem B:

Theorem 7.5 Let � be a symplectically nondegenerate A–homology marking on
.†;P/, let .†;P/! .†0;P 0/ be a PSurf–morphism , and let �0 be the stabilization
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of � to .†0;P 0/. Assume there is a component @ of @† with f@g 2 P whose image in
†0 bounds a disc. Then the map H1.I.†;P; �//! H1.I.†0;P 0; �0// is not injective.

Proof Lemma 7.1 implies that DP.@/ � I.†;P; �/, and Lemma 7.3 implies that
there exists a homomorphism from I.†;P; �/ to an abelian group whose restriction
to DP.@/ is nontrivial. Since

DP.@/� ker.I.†;P; �/! I.†0;P 0; �0//;

this implies that the induced map on abelianizations is not injective, as desired.

General nonstability We now prove Theorem 5.3.

Proof of Theorem 5.3 We start by recalling what we must prove. Let � be a sym-
plectically nondegenerate A–homology marking on .†;P/ 2 PSurf that is supported
on a symplectic subsurface. Let .†;P/! .†0;P 0/ be a non-partition-bijective PSurf–
morphism and let �0 be the stabilization of � to .†0;P 0/. Assume that the genus of
† is at least 3 rk.A/C 4. We must prove that the induced map H1.I.†;P; �//!
H1.I.†0;P 0; �0// is not an isomorphism. We will ultimately prove this by reducing it
to Theorem 7.5 above.

Identify † with its image in †0. We start with the following reduction. Recall that, for
a surface S , the discrete partition of the components of @S is

ff@g j @ is a component of @Sg:

Claim We can assume without loss of generality that P and P 0 are the discrete
partitions of the components of @† and @†0 and that the genera of † and †0 are equal.

Proof We do this in three steps:

� First, let .†0;P 0/! .†00;P 00/ be an open capping (see Section 5.2; this implies in
particular that P 00 is the discrete partition of @†00) and let �00 be the stabilization of �0

to .†00;P 00/. Since open cappings are partition-bijective, Theorem F implies that the
map H1.I.†0;P 0; �0//! H1.I.†00;P 00; �00// is an isomorphism. The composition

.†;P/! .†0;P 0/! .†00;P 00/

is still not partition-bijective, so replacing .†0;P 0/ and �0 with .†00;P 00/ and �00, we
can assume without loss of generality that P 0 is the discrete partition of @†0.

� Next, just like in Case 2 of the proof of Theorem F in Section 5.2, we can use
the fact that � is supported on a symplectic subsurface to find a partition-bijective
PSurf–morphism .†000;P 000/! .†;P/ and an A–homology marking �000 on .†000;P 000/
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such that � is the stabilization of �000 to .†;P/, such that P 000 is the discrete partition
of @†000, and such that the genera of †000 and † are the same. Theorem F implies that
the map H1.I.†000;P 000; �000//!H1.I.†;P; �// is an isomorphism. The composition

.†000;P 000/! .†;P/! .†0;P 0/

is still not partition-bijective, so replacing .†;P/ and � with .†000;P 000/ and �000, we
can assume without loss of generality that P is the discrete partition of @†.

� We have now ensured that P and P 0 are the discrete partitions, and it remains to
show that we can ensure that the genera of † and †0 are the same. As in the following
picture, we can factor .†;P/! .†0;P 0/ into

.†;P/! .†.4/;P.4//! .†0;P 0/;

where .†;P/! .†.4/;P.4// is partition-bijective, where P.4/ is the discrete partition
of @†.4/, and where the genera of †.4/ and †0 are the same:

††0 †0

†0

†.4/

Theorem F implies that the map H1.I.†;P//!H1

�
I.†.4/;P.4//

�
is an isomorphism.

Since the map .†.4/;P.4//! .†0;P 0/ is still not partition-bijective, we can replace
.†;P/ with .†.4/;P.4// and ensure that the genera of † and †0 are the same.

Since the genera of † and †0 are the same, all components of †0 n† are genus-0
surfaces intersecting † in a single boundary component. If any of these components
are discs, then Theorem 7.5 implies that the map H1.I.†;P; �//!H1.I.†0;P 0; �0//
is not injective, and we are done. We can thus assume that no components of †0 n†
are discs. Furthermore, if any of these components are annuli, then we can deformation
retract †0 over them without changing anything; doing this, we can assume that none
of them are annuli.

It follows that all the components of †0 n† are genus-0 surfaces with at least three
boundary components intersecting† in a single boundary component. Let f@1; : : : ; @kg

be a set of components of @†0 containing precisely one component in each component
of †0 n†. Let †00 be the result of gluing discs to all components of †0 except for
the @i , let P 00 be the discrete partition of @†00 (so in particular f@ig 2 P 00 for all i ), and
let �00 be the stabilization of �0 to .†00;P 00/. All components of †00 n† are annuli, so
†00 deformation retracts to †0.

Algebraic & Geometric Topology, Volume 23 (2023)



Partial Torelli groups and homological stability 3495

From this, we see that the composition

I.†;P; �/! I.†0;P 0; �0/! I.†00;P 00; �00/

is an isomorphism, and thus the composition

(7-1) H1.I.†;P; �//! H1.I.†0;P 0; �0//! H1.I.†00;P 00; �00//

is also an isomorphism. Since P 0 is the discrete partition and at least one disc was
glued to a component of @†0 when we formed †00, Theorem 7.5 implies that the map
H1.I.†0;P 0; �0//! H1.I.†00;P 00; �00// is not injective. Since the composition (7-1)
is an isomorphism, we conclude that the map H1.I.†;P; �//! H1.I.†0;P 0; �0// is
not surjective, and we are done.
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On symplectic fillings of small Seifert 3–manifolds

HAKHO CHOI

JONGIL PARK

We investigate the minimal symplectic fillings of small Seifert 3–manifolds with
a canonical contact structure. As a result, we list all minimal symplectic fillings
using curve configurations for small Seifert 3–manifolds satisfying certain conditions.
Furthermore, we also demonstrate that every such a minimal symplectic filling is
obtained by a sequence of rational blowdowns from the minimal resolution of the
corresponding weighted homogeneous complex surface singularity.

53D05, 57R17; 32S25

1 Introduction

One of the fundamental problems in symplectic 4–manifold topology is to classify
symplectic fillings of certain 3–manifolds equipped with a natural contact structure.
Among them, researchers have long studied symplectic fillings of the link of a normal
complex surface singularity. Note that the link of a normal surface singularity carries
a canonical contact structure also known as the Milnor fillable contact structure. For
example, P Lisca [8], M Bhupal and K Ono [1], and H Park, J Park, D Shin and
G Urzúa [12] completely classified all minimal symplectic fillings of lens spaces and
certain small Seifert 3–manifolds coming from the link of quotient surface singularities.
L Starkston [16] also investigated minimal symplectic fillings of the link of some
weighted homogeneous surface singularities.

On the one hand, topologists working on 4–manifold topology are also interested in
finding a surgical interpretation for symplectic fillings of a given 3–manifold. More
specifically, one may ask whether there is any surgical description of those fillings. In
fact, it has been known that rational blowdown surgery, introduced by R Fintushel and
R Stern [5] and generalized by the second author [14] and A Stipsicz, Z Szabó and
J Wahl [18], is a powerful tool to answer this question. For example, for the link of
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Figure 1: Surgery diagram of Y and its associated plumbing graph � .

quotient surface singularities equipped with a canonical contact structure, it was proven
that every minimal symplectic filling is obtained by a sequence of rational blowdowns
from the minimal resolution of the singularity; see Bhupal and Ozbagci [2], Choi
and Park [4]. On the other hand, L Starkston [17] showed that there are symplectic
fillings of some Seifert 3–manifolds that cannot be obtained by a sequence of rational
blowdowns from the minimal resolution of the singularity. Note that Seifert 3–manifolds
can be viewed as the link of weighted homogeneous surface singularities. Hence, it
is an intriguing question as to which Seifert 3–manifolds have a rational blowdown
interpretation for their minimal symplectic fillings.

In this paper, we investigate the minimal symplectic fillings of small Seifert 3–manifolds
over the 2–sphere satisfying certain conditions. By a small Seifert (fibered) 3–manifold,
we assume that it admits at most 3 singular fibers when it is considered as an S1–
fibration over the 2–sphere. In general, a Seifert 3–manifold as an S1–fibration over a
Riemann surface can have any number of singular fibers. We denote a small Seifert
3–manifold Y by Y .�bI .˛1; ˇ1/; .˛2; ˇ2/; .˛3; ˇ3// whose surgery diagram is given
in Figure 1 and which is also given as a boundary of a plumbing 4–manifold of disk
bundles of 2–spheres according to the graph � in Figure 1. The integers bij � 2 in
Figure 1 are uniquely determined by the continued fraction

˛i

ˇi
D Œbi1; bi2; : : : ; biri

�D bi1�
1

bi2�
1

� � ��
1

biri

:

If the intersection matrix of a plumbing graph � is negative definite, which is always
true for b�3, then there is a canonical contact structure on Y induced from a symplectic
structure of the plumbing 4–manifold, where each vertex corresponds to a symplectic
2–sphere and each edge represents an orthogonal intersection between the symplectic
2–spheres; see Gay and Stipsicz [7]. Furthermore, the canonical contact structure
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on Y is contactomorphic to the contact structure defined by the complex tangency of
a complex structure on the link of the corresponding singularity, which is called the
Milnor fillable contact structure; see Park and Stipsicz [13].

This paper aims to classify all possible list of minimal symplectic fillings of small
Seifert 3–manifolds satisfying certain conditions, and to prove that every such a minimal
symplectic filling is obtained by a sequence of rational blowdowns from the minimal
resolution of the corresponding weighted homogeneous surface singularity, as it is
true for a quotient surface singularity. Our strategy is as follows. For a given minimal
symplectic filling W of Y .�bI .˛1; ˇ1/; .˛2; ˇ2/; .˛3; ˇ3//with b�4, we glue W with
a concave cap K to get a closed symplectic 4–manifold X . Then, since the concave cap
K always contains an embedded .C1/ 2–sphere corresponding the central vertex, X is a
rational symplectic 4–manifold by McDuff [9]. Furthermore, the adjunction formula and
intersection data impose a constraint on the homological data of K in X ŠCP2]N CP2.
Under blowdowns along all exceptional 2–spheres away from the .C1/ 2–sphere in
X ŠCP2]N CP2, the concave cap K becomes a neighborhood of symplectic 2–spheres
which are isotopic to b number of complex lines through symplectic 2–spheres in CP2;
see Starkston [16; 17] for details. Since the symplectic deformation type of W ŠX nK

is determined by the isotopy class of a symplectic embedding of K within a fixed
homological embedding, we investigate a symplectic embedding of K using a curve
configuration corresponding to W , which consists of strands representing irreducible
components of K and exceptional 2–spheres intersecting them (Definition 3.1 and
Figure 5). Since the curve configuration corresponding to W determines a symplectic
embedding of K, we can recover all minimal symplectic fillings by investigating all
possible curve configurations of Y . Sometimes, we find a certain chain of symplectic
2–spheres lying in W , which can be rationally blowing down, from the homological
data of K. Note that by rationally blowing down the chain of symplectic 2–spheres
lying in W , we obtain another minimal symplectic W 0 from W . In this case, we keep
track of changes in the homological data of K so that we get a curve configuration of
W 0 from that of W . Finally, by analyzing the effect of rational blowdown surgery on
the curve configuration of minimal symplectic fillings, we obtain our main result.

Theorem 1.1 For a small Seifert 3–manifold Y .�bI .˛1; ˇ1/; .˛2; ˇ2/; .˛3; ˇ3// with
its canonical contact structure and b � 4, all minimal symplectic fillings of Y are listed
explicitly by curve configurations. Furthermore , they are also obtained by a sequence
of rational blowdowns from the minimal resolution of the corresponding weighted
homogeneous surface singularity.
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Remark L Starkston [16] originally described a general scheme for how to obtain
minimal symplectic fillings from given homological data of an embedding of the cap and
got some results in special cases. L Starkston [17] also showed that the isotopy type of
a symplectic line arrangement is uniquely (up to deformation equivalence) determined
by its intersection data in the cases that multi-intersection points of a symplectic
line arrangement satisfy some mild conditions, which contain the cases appearing in
Proposition 3.4. Thus, by combining Propositions 3.3 and 3.4 with Starkston’s result
[17, Proposition 4.2], we conclude that there exists at most one minimal symplectic
filling for each possible curve configuration. Then we prove in Section 4 that every
such a curve configuration gives the corresponding minimal symplectic filling, which
implies the first statement in Theorem 1.1 above.

Acknowledgements The authors would like to thank the referees for their valuable
comments. Jongil Park was supported by Samsung Science and Technology Foundation
under Project Number SSTF-BA1602-02 and by the National Research Foundation of
Korea (NRF) Grant 2020R1A5A1016126 funded by the Korea government. He also
holds a joint appointment in the Research Institute of Mathematics, SNU.

2 Preliminaries

2.1 Weighted homogeneous surface singularities and Seifert 3–manifolds

We briefly recall some basics of weighted homogeneous surface singularities and
Seifert 3–manifolds; see [10] for details. Suppose that .w0; : : : ; wn/ are nonzero
rational numbers. A polynomial f .z0; : : : ; zn/ is called weighted homogeneous of type
.w0; : : : ; wn/ if it can be expressed as a linear combination of monomials z

i0

0
� � � z

in
n

for which
i0

w 0
C

i1

w 1
C � � �C

in

w n
D 1:

Equivalently, there exist nonzero integers .q0; : : : ; qn/ and a positive integer d satis-
fying f .tq0z0; : : : t

qnzn/D tdf .z0; : : : ; zn/. Then, a weighted homogeneous surface
singularity .X; 0/ is a normal surface singularity that is defined as the zero loci of
weighted homogeneous polynomials of the same type. Note that there is a natural
C�–action given by

t � .z0; : : : ; zn/D .t
q0z0; : : : ; t

qnzn/;
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with a single fixed point 0 2X . This C�–action induces a fixed-point-free S1 �C�

action on the link L WDX \ @B of the singularity, where B is a small ball centered at
the origin. Hence, the link L is a Seifert fibered 3–manifold over a genus g Riemann
surface, denoted by Y .�bIgI .˛1; ˇ1/; .˛2; ˇ2/; : : : ; .˛k ; ˇk// for some integers b, ˛i

and ˇi with 0< ˇi < ˛i and .˛i ; ˇi/D 1. Note that k is the number of singular fibers,
and there is an associated star-shaped plumbing graph �: the central vertex has genus g

and weight �b, and each vertex in k arms has genus 0 and weight �bij uniquely
determined by the continued fraction

˛i

ˇi
D Œbi1; bi2; : : : ; biri

�D bi1�
1

bi2�
1

� � ��
1

biri

with bij �2. For example, Figure 1 shows the case of gD0 and kD3, which is called a
small Seifert (fibered) 3–manifold. By P Orlik and P Wagreich [11], it is well known that
the plumbing graph � is a dual graph of the minimal resolution of .X; 0/. Conversely,
if the intersection matrix of � is negative definite, there is a weighted homogeneous
surface singularity whose dual graph of the minimal resolution is �; see [15]. Note
that a Seifert 3–manifold Y , as a boundary of a plumbed 4–manifold according to � ,
inherits a canonical contact structure providing that each vertex represents a symplectic
2–sphere, all intersections between them are orthogonal, and the intersection matrix
of � is negative definite; see [7]. Furthermore, if the Seifert 3–manifold Y can be
viewed as the link L of a weighted homogeneous surface singularity, then the canonical
contact structure above is contactomorphic to the Milnor fillable contact structure,
which is given by TL\JTL; see [13].

2.2 Rational blowdowns and symplectic fillings

Rational blowdown surgery, first introduced by R Fintushel and R Stern [5], is one of
the most powerful cut-and-paste techniques. It replaces a certain linear plumbing Cp

of disk bundles over a 2–sphere whose boundary is a lens space L.p2;p � 1/ with
a rational homology 4–ball Bp which has the same boundary. Later, Fintushel and
Stern’s rational blowdown surgery was generalized by J Park [14] using a configuration
Cp;q obtained by linear plumbing disk bundles over a 2–sphere according to the dual

� � �
�.pC 2/ �2 �2 �2

Figure 2: Linear plumbing Cp .
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Figure 3: Plumbing graph �p;q;r .

resolution graph of L.p2;pq�1/, which also bounds a rational homology 4–ball Bp;q .
In the case of a symplectic 4–manifold .X; !/, rational blowdown surgery can be
performed in the symplectic category: if all 2–spheres in the plumbing graph are
symplectically embedded and their intersections are !–orthogonal, then the surgered
4–manifold Xp;q D .X �Cp;q/[Bp;q also admits a symplectic structure induced from
the symplectic structure of X ; see [19; 20]. In fact, the rational homology 4–ball
Bp;q admits a symplectic structure compatible with the canonical contact structure
on the boundary L.p2;pq � 1/. More generally, in addition to the linear plumbing
of 2–spheres, there is a plumbing of 2–spheres according to star-shaped plumbing
graphs with 3 or 4 legs admitting a symplectic rational homology 4–ball; see [18; 3].
That is, the corresponding Seifert 3–manifold Y .�b; .˛1; ˇ1/; .˛2; ˇ2/; .˛3; ˇ3//, or
Y .�b; .˛1; ˇ1/; .˛2; ˇ2/; .˛3; ˇ3/; .˛4; ˇ4// with a canonical contact structure, has
a minimal symplectic filling whose rational homology is isomorphic to that of the
4–ball [6]. For example, a plumbing graph �p;q;r in Figure 3 can be rationally blown
down. We will use this later in the proof of the main theorem.

As rational blowdown surgery does not affect the symplectic structure near the boundary,
if there is a plumbing of disk bundles over symplectically embedded 2–spheres that can
be rationally blown down, then one can obtain another symplectic filling by replacing
the plumbing with a rational homology 4–ball. In the case of the link of quotient surface
singularities, it was proven [2; 4] that every minimal symplectic filling is obtained by a
sequence of rational blowdowns from the minimal resolution of the singularity, which is
diffeomorphic to a plumbing of disk bundles over symplectically embedded 2–spheres.
First, they constructed a genus-0 or genus-1 Lefschetz fibration X on each minimal
symplectic filling of the link of a quotient surface singularity. Suppose that w1 and w2

are two words consisting of right-handed Dehn twists along curves in a generic fiber,
which represent the same element in the mapping class group of the generic fiber. If the
monodromy factorization of X is given by w1 �w

0, one can construct another Lefschetz
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fibration X 0 whose monodromy factorization is given by w2 �w
0. The operation of

replacing w1 with w2 is called a monodromy substitution. Next, they showed that the
monodromy factorization of each minimal symplectic filling of the link of a quotient
surface singularity is obtained by a sequence of monodromy substitutions from that of
the minimal resolution. Furthermore, these monodromy substitutions can be interpreted
as rational blowdown surgeries topologically. Note that all rational blowdown surgeries
mentioned here are linear: a certain linear chain Cp;q of 2–spheres is replaced with a
rational homology 4–ball.

2.3 Minimal symplectic fillings of a small Seifert 3–manifold

In this subsection, we briefly review Starkston’s results [16; 17] for minimal symplectic
fillings of a small Seifert fibered 3–manifold Y .�bI .˛1; ˇ1/; .˛2; ˇ2/; .˛3; ˇ3// with
b � 4. The condition b � 4 on the weight (equivalently, degree) of a central vertex of
the plumbing graph � ensures that one can always choose a concave cap K, which is
also star-shaped, with a .C1/ central 2–sphere and b� 4 arms, each of which consists
of a single .�1/ 2–sphere as in Figure 4. Here Œai1; ai2; : : : ; aini

� denotes a dual
continued fraction of Œbi1; bi2; : : : ; biri

�; that is, ˛i=.˛i � ˇi/ D Œai1; ai2; : : : ; aini
�

while ˛i=ˇi D Œbi1; bi2; : : : ; biri
�.

For a given minimal symplectic filling W of Y , we glue W and K along Y to get
a closed symplectic 4–manifold X . Then, the existence of a .C1/ 2–sphere implies
that X is a rational symplectic 4–manifold and, after a finite number of blowdowns,
X becomes CP2 and the .C1/ 2–sphere in K becomes a complex line CP1

�CP2;
see McDuff [9] for details. Under these circumstances, it is natural to ask the following
question: What is the image of K in CP2 under blowdowns? In the case that K is linear,
which means that the corresponding Y is a lens space, Lisca showed that the image of K

is two symplectic 2–spheres in CP2, each of which is homologous to CP1
� CP2.

� � �

b� 4
:::

:::
:::

C1
�a11 �a21 �a31 �1 �1

�a12 �a22 �a32

�a1n1
�a2n2

�a3n3

Figure 4: Concave cap K.
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By analyzing the proof of Lisca’s result [8, Theorem 4.2], Starkston [16] showed that
the image of K is b symplectic 2–spheres in CP2, each of which is homologous to
CP1

�CP2. For the complete classification of minimal symplectic fillings of Y , one
needs to classify the isotopy classes of these b symplectic 2–spheres, which are called
symplectic line arrangements. Since all these spheres are J–holomorphic for some
J tamed by the standard Kähler form of CP2 and are homologous to CP1

� CP2,
they intersect each other at a single point for each pair of 2–spheres. Note that these
intersection points need not be all distinct. These intersection data of a symplectic line
arrangement are determined by the homological data of K, which also have constraints
from the adjunction formula. In [17], Starkston showed that symplectic line arrange-
ments with certain types of intersections are isotopic to complex line arrangements, that
is, the corresponding b symplectic 2–spheres are isotopic (through symplectic spheres)
to b complex lines in CP2. For example, Starkston classified minimal symplectic
fillings by an explicit computation of all possible homological embeddings of K for
some families of Seifert fibered spaces; see [16, Sections 3 and 4.4; 17, Section 5].

3 Strategy for the main theorem

As we saw in the previous section, for each minimal symplectic filling W of Y , we
obtain a rational symplectic 4–manifold X which is symplectomorphic to CP2]N CP2

for some integer N by gluing K to W along Y . Conversely, given an embedding of a
concave cap K into CP2 ]N CP2, we obtain a symplectic filling W of Y by taking a
complement of K in CP2 ]N CP2. So the classification of minimal symplectic fillings
of Y is equivalent to the classification of the embeddings of K into CP2 ]N CP2 for
some N . Hence, in order to investigate minimal symplectic fillings W of Y , we first
introduce two notions, homological data and curve configuration of the corresponding
embedding of K, which are defined as follows.

Definition 3.1 Suppose that W is a minimal symplectic filling of a small Seifert
3–manifold Y equipped with a concave cap K. Then we have an embedding of K into
a rational symplectic 4–manifold X ŠCP2 ]N CP2 such that the .C1/ 2–sphere in
K is identified with CP1

�CP2. Let l be a homology class represented by a complex
line CP1 in CP2 and ei be homology classes of exceptional spheres coming from
blowups. Then fl; e1; : : : ; eN g becomes a basis for H2.X IZ/, so that the homology
class of each irreducible component of K can be expressed in terms of this basis, which
we call the homological data of K for W .

Algebraic & Geometric Topology, Volume 23 (2023)
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Note that K is symplectically embedded in X ŠCP2]N CP2 and each irreducible com-
ponent of K can be assumed to be J–holomorphic for some J tamed by standard Kähler
form on X . Then there is a sequence of blowdowns from X to CP2 and we can find a J–
holomorphic exceptional sphere†i whose homology class is ei disjoint from the central
.C1/ 2–sphere of K at each stage of blowing down. Because of the J–holomorphic
condition and homological restrictions from the adjunction formula together with
intersection data of K, the exceptional sphere†i intersects positively at most once with
the image of an irreducible component of K or is one of the image of irreducible com-
ponents of K; see [8, Proposition 4.4]. In particular, for each image Cj of irreducible
components of K, the intersection number between ei and ŒCj � lies in f�1; 0; 1g.

As mentioned in the previous section, we finally get a symplectic line arrangement
in CP2 which consists of J–holomorphic 2–spheres, each of which is the image
of the first component of each arm under blowdowns. The intersection data of the
symplectic line arrangement are determined by the homological data of K, so that it can
be represented as a configuration of strands: each strand represents a J–holomorphic
2–sphere of a symplectic line arrangement in CP2, while the intersection of two
strands represents a geometric intersection of two 2–spheres. Then, starting from the
configuration of the symplectic line arrangement, we can draw a configuration C of
strands with degrees by blowups according to the homological data of K until we get
K in the configuration. Here the degree of each strand in C means a self-intersection
number of the strand. To be more precise, when we blow up a point p on a strand
in a configuration, we introduce a new strand with degree �1 to the point p so that
we resolve intersection of strands at p and we decrease the degree of the strands
containing p by one. Hence the configuration C , which represents the total transform
of a symplectic line arrangement, contains strands representing irreducible components
of K and exceptional .�1/ 2–spheres intersecting with the irreducible components. We
say that two configurations C1 and C2 for W are equivalent if there is a bijective map
between .�1/ strands preserving intersections with the irreducible components of K.

Definition 3.2 If there are no strands with degree less than or equal to �2 in C except
for irreducible components of K, we call the configuration C the curve configuration
of a minimal symplectic filling W .

Remark A curve configuration C of W consists of strands representing irreducible
components of K and exceptional 2–spheres intersecting the irreducible components
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�3 �2 �5 �4 �2

�2

�3 �2 �2 �1

�2 �2

�3

C1

Figure 5: Plumbing graph � and curve configuration for corresponding con-
cave cap K.

of K. We denote the exceptional 2–spheres by dash-dotted strands. See Figure 5 for
example.

Remark We often use the terminology configuration of strands when we deal with
an intermediate configuration between a symplectic line arrangement and a curve
configuration, or a configuration containing K but with strands with degree less than
or equal to �2 other than irreducible components of K.

Proposition 3.3 For given homological data of K for W , there is a unique curve
configuration C up to equivalence.

Proof Since each strand in a curve configuration C represents a J–holomorphic
2–sphere for some J tamed by standard Kähler form on X Š CP2 ] N CP2, all
intersections between the strands represent positive geometric intersections between the
corresponding J–holomorphic 2–spheres. Note that there is at most one intersection
point between any two strands due to homological restrictions. Furthermore, if ei is a
homology class of an exceptional 2–sphere satisfying ei �ŒCj �2f0; 1g for any irreducible
component Cj of K, then there is a .�1/ strand Li in C whose homology class is ei ;
otherwise, there is a blowup on the strand Li so that the proper transform of Li becomes
an irreducible component Cj of K whose intersection with ei is �1, contradicting the
assumption. Hence there is a .�1/ strand Li representing a J–holomorphic exceptional
sphere †i whose homology class is ei in C if and only if ei � ŒCj � 2 f0; 1g for any
irreducible component Cj of K.

Let C and C 0 be two curve configurations for a fixed homological data of K for W .
Then, the numbers of .�1/ strands in C and C 0 are equal to the number of ei satisfying
the condition ei � ŒCj � 2 f0; 1g for any irreducible component Cj of K. Hence we
can construct a desired bijection between the .�1/ strands by finding correspondence
between such ei and .�1/ strands in two curve configurations.
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� � � � � �

Figure 6: Symplectic line arrangements.

Now, we investigate minimal symplectic fillings of a given small Seifert 3–manifold Y

by analyzing all the possible curve configurations. For this, we first determine all
possible symplectic line arrangements.

Proposition 3.4 For minimal symplectic fillings of a small Seifert fibered 3–manifold
Y .�bI .˛1; ˇ1/; .˛2; ˇ2/; .˛3; ˇ3// with b � 4, there are only two possible intersection
relations of symplectic line arrangements , which can be drawn as in Figure 6.

Proof Since Y is a small Seifert 3–manifolds with b � 4, we can always choose a
concave cap K with a .C1/ central 2–sphere and b�4 arms, each of which consists of
a single .�1/ 2–sphere as in Figure 4. Furthermore, since the blowdowns are disjoint
from the central 2–sphere in K, each of b � 1 arms in K descends to a single .C1/

J–holomorphic 2–sphere intersecting at a distinct point with an image of the central
2–sphere of K under the blowdowns. Let C1;C2; : : : ;Cb�4 be the images of b � 4

many .�1/ 2–spheres in K under the blowdowns. Then they should have a common
intersection point in CP2: otherwise, we have distinct two points p and q on some
Ci such that Ci intersects Cj and Ck at p and q, respectively. Let r be an intersection
point of Cj and Ck . Then any J–holomorphic 2–sphere coming from an arm of K

other than C1; : : :Cb�4 must pass two of p; q and r , which is a contradiction.

If b � 6, a similar argument shows that there is at most one J–holomorphic 2–sphere
coming from an arm of K intersecting at a different point from the common intersection
point p with Ci , which proves the proposition.

Ci

CjCk

p

q

r

Figure 7: Configuration for Ci , Cj and Ck .
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In the case of b � 5, we can easily check that Figure 6 gives all possible symplectic
line arrangements: if b D 5, then there is only one C1 coming from .�1/ 2–sphere
from K. Recall that there are at most two intersection points on C1. If there is only one
intersection point on C1, then we get the left-hand figure in Figure 6. If there are two
intersection points p and q on C1, then two of three J–holomorphic 2–spheres coming
from the arms of K other than C1 pass p, and the other passes q (or vice versa), so that
we get the right-hand figure in Figure 6. For b D 4 case, we have only three strands in
a figure for a symplectic line arrangement except the strand from .C1/ 2–sphere so
that we have only two possibilities.

Next, for the complete classification of minimal symplectic fillings of Y , we need to
consider the isotopy classes of embeddings of K with a fixed homological data in
X ŠCP2]N CP2. By blowing down J–holomorphic 2–spheres, it descends to isotopic
types of corresponding symplectic line arrangement in CP2. By [17, Propositions
4.1 and 4.2], two symplectic line arrangements in Figure 6 are actually isotopic to
complex line arrangements through symplectic configurations, which means that there
is a unique minimal symplectic filling up to symplectic deformation equivalence for
each possible choice of homological data of K. Since a choice of homological data
of K gives a unique curve configuration C up to equivalence by Proposition 3.3, we
analyze minimal symplectic fillings of a small Seifert 3–manifold Y by considering all
possible curve configurations obtained from the complex line arrangements in Figure 6.

As previously mentioned, in the case of quotient surface singularities that include all lens
spaces and some small Seifert 3–manifolds, every minimal symplectic filling is obtained
by linear rational blowdown surgeries from the minimal resolution of the corresponding
singularity. However, this is not true anymore for small Seifert 3–manifolds in general.
For example, a rational homology 4–ball of �p;q;r in Figure 3 might not be obtained
by linear rational blowdown surgeries. Nevertheless, many cases such as b � 5 are
in fact obtained by linear rational blowdowns from their minimal resolutions. For the
case of b D 4, one might need 3–legged rational blowdown surgeries to get a minimal
symplectic filling. Hence, it is natural to prove the two cases b� 5 and bD 4 separately.

3.1 The case b � 5

We consider all possible curve configurations coming from two complex line arrange-
ments in Figure 6 which can be divided into three types. First, we need to blow up
all intersection points in the line arrangements so that we get two configurations as

Algebraic & Geometric Topology, Volume 23 (2023)
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�1

C1

0 0 0 0 �1 �1 �1

C1

Figure 8: Blowups of the line arrangements.

in Figure 8. There are two possibilities for a strand representing exceptional sphere
in intermediate configurations coming from blowups: to blow up some intersection
points, or not. Once we blow up an intersection point on a strand representing an
exceptional sphere †, which means the proper transform of † becomes an irreducible
component of K, we should blow up all the intersection points except one intersection
point because each strand intersecting the strand for † become irreducible components
of distinct arms in K. We can also blow up the last intersection point we did not blow
up to get another curve configuration, but it is not necessary in general.

If we do blow up an intersection point on the dash-dotted strand of the left-hand side
of Figure 8, we get the configuration on the left-hand side of Figure 9. When we start
with two configurations in Figure 9, we can assume without loss of generality that the
first three arms become essential arms in K, which consist of strands with degree less
than or equal to �2. Since the degree of the other arms is already �1, we can only
blow up e1 and e2 among dotted exceptional strands. In conclusion, we can divide all
the possible curve configurations into following three types:

� Type A Curve configurations obtained from Figure 8, left, without blowing up
the exceptional strand.

c

e1

e2

�1 �1 �1

C1

c

e1

e2

�1 �1 �1

C1

Figure 9: Two configurations.
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� Type B Curve configurations obtained from Figure 9, left or right, by blowing
up at most one ei , with 1� i � 2.

� Type C Curve configurations obtained from Figure 9, left or right, by blowing
up both e1 and e2.

3.2 The case bD 4

We divide all curve configurations for b D 4 into the following two cases:

� Curve configurations of types A, B or, C as in the b � 5 case.

� Type D Curve configurations obtained from Figure 9, right, by blowing up all
exceptional .�1/ strands.

Then, since we can deal with the first case using the same argument in the b � 5 case, it
suffices to prove the type D case whose corresponding curve configurations come from
some configurations Cp;q;r in Figure 22, which are obtained from the right-hand figure
in Figure 9; see Section 4.4 for details. The main difference between the b D 4 case
and the b � 5 case is that one can use all three exceptional 2–spheres to get a concave
cap K for bD 4, while one can use only e1 and e2 for b � 5 from the right-hand figure
in Figure 9.

4 Proof of main theorem

In this section, for a given possible curve configuration C , we show that there is
a sequence of rational blowdowns from the minimal resolution zM to the minimal
symplectic filling W of Y corresponding to C . Since any minimal symplectic filling of
a lens space is obtained by a sequence of rational blowdowns from a linear plumbing
which is the minimal resolution corresponding to the lens space [2], it suffices to
construct a sequence of curve configurations C D C0;C1; : : : ;Cn such that each
minimal symplectic filling Wi corresponding to Ci is obtained from WiC1 by replacing
a certain linear plumbing Li with its minimal symplectic filling. Here Cn denotes a
curve configuration for the minimal resolution zM . As previously mentioned, since
our possible symplectic line arrangements are isotopic to complex line arrangements,
it suffices to work in complex category with a symplectic form ! coming from the
standard Kähler form on CP2. In order to show that there is a symplectic embedding
of Li in WiC1, we construct a configuration C 0

iC1
of strands, which is not a curve
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configuration for WiC1, from a complex line arrangement by blowups with the same
homological data of K for WiC1 so that we have Li disjoint from K in C 0

iC1
. Since we

work in complex category, each strand in C 0
iC1

can be considered as a complex rational
curve in a rational surface X while the intersections between strands represent positive
geometric intersections between the corresponding rational curves. This observation
implies that Li is symplectically embedded in WiC1.

Now we introduce the notion of standard blowups, which frequently appears in the
construction of Wi from WiC1. Let K and K0 be two star-shaped plumbing graphs
having the same number of arms together with a .C1/ central vertex, and let �aij

for 1 � j � ni and �a0ij for 1 � j � n0i be the weights (equivalently, degrees) of
the j th vertex in the i th arm of K and K0, respectively. We say K0 � K if n0i � ni

and a0ij � aij for any i and j except for a0in0
i
< ain0

i
in the case of n0i < ni . The

condition K0 �K guarantees that we can obtain a configuration of strands representing
K by blowups from a configuration representing K0 in the following way: we blow up
nonintersection points of the last component of each i th arm in K0 consecutively until
we get ni components, and then we blow up each component at nonintersection points
to get the right weights.

Definition 4.1 Let C 0 be a configuration of strands obtained from a complex line ar-
rangement by blowups containing a star-shaped plumbing graph K0 with a homological
data. If K0 �K and the degree of all strands in C 0 nK0 is �1, then we can obtain a
curve configuration zC 0 from C 0 by blowing up at nonintersection points only. In this
case, we say that the curve configuration zC 0 is obtained by standard blowups from C 0.

Remark With given homological data of K0 in C 0, the standard blowups induce a
unique homological data of K for zC 0: Let e be a homology class of an exceptional
sphere coming from blowing-ups from C 0 to zC 0. Since we blow up nonintersection
points, e appears in at most two ŒC i1

j1
� and ŒC i2

j2
�, where C i

j denotes the j th component
in the i th arm of K. Moreover, if e appears in two ŒC i1

j1
� and ŒC i2

j2
�, then i1 D i2 D i

and j2 D j1C 1 with e � ŒC i
j1
�D 1 and e � ŒC i

j1C1
�D�1.

For a given star-shaped plumbing graph K0 � K, in general if n0i < ni for some i ,
where n0i and ni are the number of components in i th arm of K0 and K respectively,
there are possibly other ways of blowing up to get the i th arm of K from that of K0.
Let C 0 be a configuration of strands containing K0 �K as in Definition 4.1. Assume
furthermore that n0i < ni for some i . Let zC 0 be a curve configuration obtained from C 0

by standard blowups. Then we get the following three fundamental lemmas.
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�a0
in0

i

� 1

�1

�ain0
i

�ain0
i
C1

�aini

�br

�br�1

�b1

:::

:::

Figure 10: Finding an embedding of L.

Lemma 4.2 Let C be a curve configuration for K, and let W be the minimal sym-
plectic filling of Y corresponding to C . Suppose C 0 is a configuration for K0 � K

such that the standard blowups zC 0 of C 0 differs from C only in the components C i
j for

n0i � j � ni . Let zW denote the minimal symplectic filling of Y corresponding to zC 0.
Then there is a symplectically embedded linear plumbing L of 2–spheres determined by
Œb1; b2; : : : ; br � in zW such that W is obtained by zW by replacing the plumbing L with
some minimal filling WL of the lens space boundary of the linear plumbing L. Further ,
Œb1; b2; : : : ; br � is the dual of Œ.ain0

i
�a0in0

i
/; ain0

i
C1; ain0

i
C2; : : : ; aini

�, where �aij and
�a0ij are the weights of the j th component in the i th arm of K and K0, respectively.

Proof We can assume that ain0
i
� a0in0

i
� 2 because the way of blowing up from the

i th arm of K0 to that of K remains the same when we replace K0 with K00, where K00

is obtained from K0 by blowing up the last component of the i th arm.

First we show that there is a symplectic linear embedding L in zW . Let S be a
configuration of strands containing K obtained as follows. We blow up the last
component in the i th arm of K0 in C 0 at a nonintersection point so that we have
two consecutive strands of degree �a0in0

i
� 1 and �1. Since the continued fraction

Œb1; b2; : : : ; br � is dual to Œ.ain0
i
�a0in0

i
/; ain0

i
C1; ain0

i
C2; : : : aini

� by the definition of L,
we obtain a linear chain of strands containing the rest of the i th arm in K and L from
the two strands by blowing up consecutively at intersection points as in Figure 10,
so that there is an embedding L in the complement of K in a rational surface X .
Furthermore, since we started from the same homological data of K0 in C 0 and since a
blowup for C 0 to S either increases the number of components or decreases the degree
of an irreducible component of K, the homological data of K for both zC 0 and S are
the same, so that there is a symplectic embedding L in zW .
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Before we examine the effect of replacing L with its minimal symplectic filling WL,
we briefly review the classification of minimal symplectic fillings of lens space, which
can be found in [1] and [8]. For notational convenience, we denote a linear plumbing
graph and a lens space determined the plumbing graph by the same L. For a lens
space L given by Œb1; b2; : : : ; br �, we can choose a concave cap KL of the form

C1 �a1C1 �a2 �an

where Œa1; a2; : : : ; an� is a dual continued fraction of Œb1; b2; : : : ; br �. Suppose XL Š

CP2 ]N0CP2 is a rational symplectic 4–manifold obtained by gluing two plumbings
according to L and KL whose second homology class is generated by flg [E D

fE1; : : : ;EN0
g. Then, for a given minimal symplectic filling WL of L, we get a

rational symplectic 4–manifold XWL
ŠCP2 ]N CP2 by gluing WL and KL and the

image of KL under blowing down is isotopic to two complex lines in CP2, which
means that a minimal symplectic filling of L is determined by a choice of homological
data of KL in CP2 ]N CP2 for some N . Hence, we draw a curve configuration CWL

for WL starting from a configuration of two .C1/ strands in CP2 by blowing-ups
with only one .C1/ strand. This observation shows that the effect of replacing L

in XL with WL is the following: We have another rational symplectic 4–manifold
XWL

ŠCP2 ]N CP2 and the second homology classes in the complement of L are
changed so that

l! l and ŒLi �
E
! ŒLi �

e for 1� i � n;

where ŒLi �
E and ŒLi �

e are homology classes of irreducible components of KL in terms
of flg[E D fE1; : : : ;EN0

g and flg[ e D fe1; : : : ; eN g respectively.

Let ŒC i
j �

C and ŒC i
j �

C 0

be homology classes of C i
j in C and C 0 respectively. Note

that C is a curve configuration completed from the last .�a0
in0

i

/ strand in the i th arm
of K0 by blowups without using any other strand in C 0. If we blow up in the same
ways starting with a single .C1/ strand instead of .�a0

in0
i

/ strand, we get a curve
configuration CWL

containing KL. Hence there is a minimal symplectic filling WL of
L whose homological data of KL in XWL

.DWL [KL/Š CP2 ]N CP2 are given
by ŒLj � D ŒC

i
n0

i
Cj�1

�C except for ŒL0� D l and ŒL1� D l C ŒC i
n0

i
�C � ŒC i

n0
i
�C

0

, where
eD fe1; : : : ; eN g is homology classes of exceptional spheres coming from the blowups
from C 0 to C .

Finally, we show that the minimal symplectic filling W corresponding to C is given
by . zW n L/ [WL. Suppose X 0 is a rational symplectic 4–manifold obtained by
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blowups from a complex line arrangement so that it contains C 0. We take a small
Darboux neighborhood B0 of a disk D in C i

n0
i

of K0 so that B0 is disjoint from any
other irreducible components of K0. Now we arrange all the blowups from C 0 to C

inside B0 and let B be blowups of B0. Then we have a symplectic embedding of K in
X D .X 0 nB0/[B and homological data of K that agrees with C . Furthermore, B nK

is symplectic deformation equivalent to WL: consider two complex lines in CP2 and a
symplectic embedding of B0 such that the image of D in C i

n0
i

is a disk in one complex
line and B0 is disjoint from the other complex line. By the construction of B, there is
a symplectic embedding of KL in .CP2

nB0/[B, where the first component of KL

is the complex line in .CP2
nB0/ and the complement of KL in .CP2

nB0/[B is
symplectic deformation equivalent to WL. Since the complement of a neighborhood
of CP1 in CP2 is a ball, B nK D B nKL is also symplectic deformation equivalent
to WL. Note that K D .K\ .X 0 nB0//[ .K\B/D .K0 nB0/[ .K\B/. Hence

W DX nK D ..X 0 nB0/ nK/[ .B nK/Š .X 0 n .K0[B0//[WL:

By a similar argument, zW Š .X 0 n .K0[B0//[L, so that W is obtained from zW by
replacing L by WL.

Assume furthermore that there is a .�1/ curve intersecting both C i
n0

i
and another

irreducible component C k
l

of K0 in C 0. Then there is a slight modification of the
Lemma 4.2, involving two arms of K.

Lemma 4.3 Suppose that there is a .�1/ curve E intersecting C i
n0

i
and C k

l
of K0

in C 0 with a0
kl
< akl . If the standard blowup zC 0 of C 0 differs from C only in C k

l

and components C i
j for n0i � j � ni , then there is a symplectically embedded linear

plumbing L�W , described in Figure 11, such that W is obtained by zW by replacing
the plumbing L with some minimal filling WL. Furthermore , Œb1; b2; : : : ; br � is the dual
of Œ.ain0

i
� a0in0

i
/C 1; ain0

i
C1; ain0

i
C2; : : : ; aini

�, where �aij and �a0ij are the weights
of the j th component in the i th arm of K and K0, respectively.

Proof The proof is similar to that of Lemma 4.2 except for blowups at two intersection
points of E in C 0 to find an embedding L. That is, we construct a configuration S of
strands containing K, as in Figure 12, whose homological data is equal to that of zC 0,
so that there is a symplectic embedding of L in zW .

Next, by viewing L as a two-legged plumbing graph with a degree .�b1 � 1/ of a
central vertex, we get a concave cap KL as in Figure 11: starting from the zero section
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�b1� 1

�2

�2

�2

�b2

�b3

�br

akl � a0kl � 1

:::

C1

a0kl � akl

a0in0
i
� ain0

i

�ain0
i
C1

�aini

Figure 11: A plumbing graph of L and its concave cap KL.

and infinity section together with two generic fibers of Fb1�1, we construct arms
corresponding to Œ�2; : : : ;�2� and Œ�b2; : : : ;�br �. Then, by consecutive blowups at
intersection points of the proper transform of zero section and the arm corresponding
to Œ�b2; : : : ;�br �, we get a concave cap KL for L. As before, for a given minimal
symplectic filling of L, we get a rational symplectic 4–manifold by gluing KL along
L and the image of KL in CP2 under blowing down is three complex lines in CP2

intersecting generically, implying that any curve configuration for KL is obtained from
blowing up at an intersection point between two complex lines in CP2. Therefore,
using blowup data from C 0 to C (Figure 13), we get a minimal symplectic filling WL

of L.

Suppose that X 0 is a rational symplectic 4–manifold containing C 00, obtained from C 0

by blowing down E, and let B0 be a small Darboux neighborhood of the intersection
point coming from the blowing down. Then a similar argument as in Lemma 4.2 above
shows that the minimal symplectic filling W corresponding to C is obtained from zW

by replacing L with WL.

�1 E

�a0kl �a0in0
i

�1 �2 �2
� � �
�2

�akl �a0in0
iakl � a0kl

�2 �2
� � �
�2

�b1� 1

�b2

� � �
�br

�aini

� � �
�ain0

i
C1

�akl
�ain0

i

akl � a0kl � 1

Figure 12: Embedding of L to zW .
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�1

�a0kl �a0in0
i

:::

:::

�akl �ain0
i

�ain0
i
C1

�aini

�1

C1

0 0

:::

:::

C1

a0kl � akl

a0in0
i
� ain0

i
�ain0

i
C1

�aini

Figure 13: Top: blowups from C 0 to C . Bottom: curve configuration for WL.

Assume that C 0 is a curve configuration containing K0 �K corresponding to a mini-
mal symplectic filling W 0 of another small Seifert 3–manifold Y 0 and zC 0 is a curve
configuration obtained from C 0 by standard blowups. Then we can describe a minimal
symplectic filling zW of Y corresponding to zC 0 explicitly.

Lemma 4.4 Under the assumption above , there is a symplectically embedded plumb-
ing of 2–spheres � 0 in the minimal resolution zM such that a minimal symplectic filling
zW of Y corresponding to zC 0 is obtained from zM by replacing � 0 with W 0.

Proof Let K0 be a plumbing graph determined by black strands in the left-hand side
of Figure 8. Clearly, K0 �K so that there is a curve configuration C zM obtained by
standard blowups from Figure 8, left. We first show that the curve configuration C zM

corresponds to the minimal resolution zM . Recall that a concave cap K in Figure 4 can
be found in [18; 16]: Starting from the zero and infinity sections with b � 1 generic
fibers of a Hirzebruch surface F1 which can be drawn as the left-hand side in Figure 8,
we blow up intersection points of generic fibers and the infinity section so that we have
a .�b/ rational curve which corresponds to the central vertex of the minimal resolution
graph � . Then, we obtain a linear chain of strands containing both i th arm of K and
� from two .�1/ strands by blowups, as in Figure 14, bottom. As a result, we have a
configuration S zM containing both � and K disjointly, so that the complement of K in
a rational surface XY is the minimal resolution zM and K is a concave cap for Y . By
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C1

0 0 0 0 � � � 0 !

C1

�b

�1 �1 �1 �1 �1

� � �

�1 �1 �1 �1 �1

�1

�1

�ai1

�ai2

�ain1

�biri

�biri�1

�bi1

:::

:::

Figure 14: Top: blowing up Hirzebruch surface F1. Bottom: construction of
each arm in K and � .

using the same argument as in the proof of Lemma 4.2 above, we conclude that C zM is
a curve configuration for zM .

In the same way, we could get a configuration S� 0 of strands containing both K0 and a
plumbing graph � 0 so that the complement of K0 in the resulting rational symplectic
4–manifold XY 0 ŠCP2 ]M CP2 is a plumbing of 2–spheres according to � 0. Note
that M�1 is the number of blowups in the standard blowups from the left-hand side of
Figure 8 to K0. Since K0 �K, we obtain a configuration S 0zM of strands containing
� 0 and K disjointly from S� 0 by standard blowups at nonintersection points in the
last component of each i th arm of K0. Let X D XY 0 ]N CP2 be a resulting rational
symplectic 4–manifold. Then X Š XY D

zM [K, since the number of blowups in
the standard blowups from the left-hand side of Figure 8 to K is equal to the sum of
numbers of blowups for the left-hand side of Figure 8 to K0, and K0 to K. Furthermore,
the homological data of K in S 0zM is also equal to that of C zM . Hence a plumbing graph
� 0 is symplectically embedded in zM .

If there is a sequence of blowups from a configuration of strands representing K0 to K,
then we have a corresponding symplectic cobordism Z from Y 0 to Y because the
total transform of K0 is still a concave cap for Y 0 while K is a concave cap for Y .
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In particular, if C 0 is a curve configuration for a minimal symplectic filling W 0, then
we get a curve configuration C for a minimal filling W by the sequence of blowups
from K0 to K and W DW 0[Z. In the case of standard blowups from K0 to K, we
can deduce from the construction of S 0zM that the corresponding cobordism is equal
to zM n� 0. Hence we have zW DW 0 [ . zM n� 0/, so that zW is obtained from zM by
replacing � 0 with W 0.

4.1 Proof for type A

For a curve configuration C of type A, we want to show that the corresponding minimal
symplectic filling W is obtained from the minimal resolution zM by replacing each
arm in the resolution graph � with its minimal symplectic filling. Since we already
know in the proof of Lemma 4.4 above that a curve configuration C zM , which is
obtained from the left-hand side of Figure 8 by standard blowups, corresponds to zM by
repeatedly applying Lemma 4.2 with K0 as in the left-hand side of Figure 8 so that the
corresponding L is one of three arms in � , we conclude that all minimal symplectic
fillings corresponding to a curve configuration C of type A are obtained by a sequence
of rational blowdowns from the minimal resolution zM .

The following example illustrates this case.

Example 4.1 Let Y be a small Seifert 3–manifold whose associated plumbing graph
and concave cap are shown in Figure 15, top. Then, there are two curve configurations
of type A as in Figure 15, bottom. Of course, there exist other curve configurations of
type B and C for minimal symplectic fillings of Y , which will be treated in Example 4.2
and Example 4.3 later. Note that each dash-dotted strand represents an exceptional 2–
sphere, that is, a 2–sphere with self-intersection �1. We omit the degree of irreducible
components of the concave cap for the sake of convenience in the figure. The bottom left
curve configuration in Figure 15 is obtained by standard blowups from that of Figure 8,
which means that the corresponding minimal filling is the minimal resolution. Note
that only the third arm in the plumbing graph � has a nontrivial minimal symplectic
filling that is obtained by rationally blowing down the .�4/ 2–sphere. Using Lisca’s
description of the minimal symplectic fillings of lens spaces, we obtain the bottom right
curve configuration in Figure 15, which represents a minimal symplectic filling obtained
from the minimal resolution by rationally blowing down the .�4/ 2–sphere in the
third arm.
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�3 �2 �5 �4 �2

�2

C1
�3 �2 �2 �1

�2 �2

�3

C1 C1

Figure 15: Top: plumbing graph � , and its concave cap K. Bottom: two
curve configurations in Example 4.1.

4.2 Proof for type B

For a curve configuration C of type B, we want to show that the corresponding minimal
symplectic filling W is obtained from the minimal resolution zM by replacing disjoint
subgraphs in the resolution graph � with their minimal symplectic filling. By reindexing
if needed, we assume that the first and the second arms of the configurations in Figure 9
become the first and the second arm of K in C , respectively, and the proper transform
of e2 is not an irreducible component of K. Since we do not use e2 during the blowups,
we can get the first and the second arm of K, so that the homological data for the
irreducible components in these arms agrees with that of C , from the configurations
in Figure 9 leaving the third single .�1/ arm unchanged. Hence we arrange the order
of blowups from a configuration in Figure 9 to C so that we have an intermediate
configuration C 0 of strands containing K0 �K as in Figure 16. Note that the degree of
strands in C 0 nK0 is all �1. If we choose a linear plumbing graph

L0 D
�b1r1 �b11 �b �b21 �b2r2

to be a subgraph of � as a two-legged plumbing graph with the .�b/ central vertex, then
K0 gives a concave cap of L0 and C 0 is a curve configuration for a minimal symplectic
filling WL0 of L0.

Let C1 be a curve configuration obtained by standard blowups from C 0. Then, by
Lemma 4.4, the curve configuration C1 corresponds to a minimal symplectic filling W1,
which is obtained from the minimal resolution zM by replacing L0 with WL0 . Further-
more, since Œa31; a32; : : : ; a3n3

�D Œ2; : : : ; 2; c1C 1; c2; : : : ; ck �, where Œc1; c2; : : : ; ck �
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� � �

b� 3

:::
:::

C1
�a11 �a21 �1 �1 �1
�a12 �a22

�a1n1
�a2n2

Figure 16: Concave cap K0 for linear subgraph of � .

is the dual of Œb32; b33; : : : ; b3r3
�, by Lemma 4.2 with L as a linear chain determined by

Œb32; b33; : : : ; b3r3
�, we conclude that the minimal symplectic filling W corresponding

to C is obtained from W1 by replacing L with its minimal symplectic filling. Hence
the desired minimal symplectic filling W is obtained from zM by replacing disjoint
linear subgraphs

�b1r1 �b11 �b �b21 �b2r2 and
�b32 �b33 �b3r3

of � with their minimal symplectic fillings, so that there is a sequence of rational
blowdowns from zM to W .

The following example illustrates the curve configurations of type B.

Example 4.2 We again consider a small Seifert 3–manifold Y used in Example 4.1.
Since the left-hand configuration without exceptional 2–spheres in Figure 17 gives a
concave cap of a lens space determined by a subgraph

�3 �2 �5 �2

of � , it gives a minimal symplectic filling WL of the lens space L.39; 16/. Then, by
blowups at points lying on the third arm different from the intersection point with the
exceptional curve e, we get an embedding of a concave cap K of Y as in the right-hand
curve configuration C1 of Figure 17, which gives a minimal symplectic filling W1 of Y .
Furthermore, since there is a unique minimal symplectic filling of lens space L.2; 1/

corresponding to the .�2/ 2–sphere in the third arm of � , W1 is obtained from the
minimal symplectic filling WL. In fact, there are three more minimal symplectic fillings
of Y which are of type B — see Figure 17 for the corresponding curve configurations.
Note that the curve configuration C1 for W1 in Figure 17 comes from the right-hand
configuration in Figure 9 and the curve c becomes a component of the first arm of K in
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e

�1

C1

�1

C1

C2

�1
C1

C3

�1
C1

C4

�1
C1

Figure 17: Top: curve configuration C1 for W1. Bottom: curve configurations
for other symplectic fillings of Y .

the top right of Figure 15. Similarly, the curve configuration Ci for Wi .2� i � 4/ is
also obtained from the right-hand configuration in Figure 9. One can easily check that
each Wi is obtained from the minimal resolution of Y by a linear rational blowdown
surgery: explicitly, W2, W3 and W4 are obtained by rationally blowing down along
subgraphs

�2 �5
;
�5 �2 and �3 �2 �5 �4 �2

in � , respectively. And W1 is also obtained by rationally blowing down along

�3 �5 �2
;

which is embedded in another plumbing

�3 �2 �5 �2
:

4.3 Proof for type C

For a minimal symplectic filling W corresponding to a curve configuration C of type C,
we want to find a curve configuration C1 of type B such that there is a symplectically
embedded linear chain L of 2–spheres (that is not visible in �) in W1 corresponding
to C1 so that W is obtained from W1 by replacing L with its minimal symplectic
filling WL.
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:::

e2

e

:::
:::

:::

C1
�a11 �a21 �1
�a12 �a22

�a0
1n

C 1
n

�a1n1
�a2n2

e2

:::
:::

e

C1
�a0

11
�a21 �1
�a22

�a1n1
�a2n2

Figure 18: Part of intermediate configuration C 0.

By reindexing if needed, we may assume that the first and the second arm of configura-
tions in Figure 9 become that of K respectively, and the proper transform of e2 becomes
an irreducible component in the third arm of K after blowups. For convenience, we omit
in figures all exceptional .�1/ strands that intersect only one irreducible component of
the corresponding concave cap K.

Now, by blowups at intersection points of e1 consecutively, we get the first and the
second arm so that the homological data for the irreducible components in these arms
agrees with that of C except for one irreducible component, say C 1

n , of the first arm of
K leaving the third single .�1/ arm unchanged. Note that there is only one exceptional
strand e connecting the first and the second arm as in Figure 18 because we blow up at
intersection points of e1 to get the first and the second arm of K. Hence we can arrange
a sequence of blowups from a configuration in Figure 9 to a curve configuration C of
type C so that we have an intermediate configuration C 0 of strands as in Figure 18: The
left-hand/right-hand figures comes from the left-hand/right-hand figures in Figure 9,
respectively. For simplicity, we only explain a curve configuration coming from the
left-hand side in Figure 9. In contrast to the type B case, we have a .�a0

1n
/ strand with

a1n > a0
1n

in C 0 because we need to blow up at the intersection point of e2 and c in
Figure 9, which becomes the .�a1n/ strand in the curve configuration C at the top of
Figure 19. Let C1 be a curve configuration obtained from C 0 by standard blowups and
W1 be a minimal symplectic filling of Y corresponding to C1. Then, by Lemma 4.3,
there is a symplectic embedding L in W1 so that W is obtained from W1 by replacing
L with its minimal symplectic filling WL, where L is a plumbing graph at the bottom
of Figure 19. Since a curve configuration C1 for W1 is of type B, there is a sequence
of rational blowdowns from zM to W as desired.
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:::
:::

e

:::
:::

:::

C1
�a11 �a21 �a31

�a12 �a22 �a32

C 1
n
�a1n

�a1n1
�a2n2

�a3n3

:::
:::

:::

e

C1
�a11 �a21 �a31

�a22 �a32

�a1n1
�a2n2

�a3n3

�b31� 1

�2

�2

�2

�b32

�b33

�b3r3

a1n� a01n� 1

Figure 19: Top: part of curve configuration C for W . Bottom: a plumbing
graph of L.

The following example illustrates this case.

Example 4.3 We consider a minimal symplectic filling W5 of Y in Example 4.1,
represented by a curve configuration C5 in Figure 20. The curve configuration C5 is
obtained from the right-hand configuration in Figure 9, and the proper transforms of e1

and e2 are irreducible components of the concave cap K. Thus, as in the proof, we can
find an intermediate configuration C 0 between the right-hand configuration in Figure 9
and C5. Then it is easy to check that the homological data for standard blowups zC 0 of
C 0 and that of C1 is equal; see Figures 17 and 20. From the proof of Lemma 4.3, we

e

�1�1

C1

C 0

C 2
1

C 3
1

C 4
1

C 1
2

�1

C1

C 1
1

C 3
2C 3

3

C5

Figure 20: Curve configuration C5 for symplectic filling W5 of Y .
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can explicitly check that there is a symplectic embedding of

L1 D
�5 �2

to W1 in Example 4.2, and W5 is obtained by rationally blowing it down: let C
j
i be

the i th component of the j th arm in K. Then the homological data of K for W1 in
X DW1[K ŠCP2 ] 10CP2 is given by

ŒC0�D l;

ŒC 1
1 �D l � e2� e3� e4� e5; ŒC 1

2 �D e2� e6;

ŒC 2
1 �D l � e1� e2� e6;

ŒC 3
1 �D l � e1� e3� e7; ŒC 3

2 �D e7� e8; ŒC 3
3 �D e8� e9� e10;

ŒC 4
1 �D l � e1� e4;

where C0 is the central .C1/ 2–sphere of K, l is the homology class representing the
complex line in CP2, and ei is the homology class of each exceptional 2–sphere. As
in the proof of Lemma 4.3, we can find a symplectic embedding of

LD
�5 �2

to W1�X whose homological data is given by e3�e5�e7�e8�e9 and e9�e10; refer
to Figure 21, top. There are two minimal symplectic fillings of L whose corresponding
curve configurations are as in Figure 21, bottom. Note that the first figure represents a
linear plumbing while the second figure represents a rational homology 4–ball.

Hence, if we rationally blow down L from XLDL[KLŠCP2 ]6CP2, then we get
a new rational symplectic 4–manifold X 0

L
ŠCP2 ] 4CP2, and the homological data

of KL changes as follows:
l! l;

l � e1� e2! l �E1�E2;

e2� e3!E2�E3;

e3� e4!E3�E4;

e4� e5� e6!E1�E2�E3:

Here ei and Ei denote the homology classes of exceptional spheres in XL and X 0
L

.
Note that the homological data of L in XL is given by e1 � e2 � e3 � e4 � e5 and
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e

�1 �1

C1

�5

�2

�2

�1

C1

�5 �2

�2

�3

�1

C1

C1

�1

�2

�2

�3

C1

�1

�2

�2

�3

Figure 21: Top: embedding of L1 in W1. Bottom: two curve configurations
for YL.

e5�e6. Therefore, if we see X as XL ]4CP2, we get X 0ŠCP2 ]8CP2 by rationally
blowing down L from X , and the homological data of KL is changed by

l! l;

l � e3� e5! l �E1�E2;

e5� e7!E2�E3;

e7� e8!E3�E4;

e8� e9� e10!E1�E2�E3;

where e1; e2; e4; e6 and E1;E2;E3;E4 represent the standard exceptional 2–spheres
in X 0 Š CP2 ] 8CP2. Therefore, the new homological data for the concave cap K,
which give the right-hand curve configuration in Figure 20, are as follows:

ŒC0�D l;

ŒC 1
1 �D l � e2� e4�E1�E2; ŒC 1

2 �D e2� e6;

ŒC 2
1 �D l � e1� e2� e6;

ŒC 3
1 �D l � e1�E1�E3; ŒC 3

2 �DE3�E4; ŒC 3
3 �DE1�E2�E3;

ŒC 4
1 �D l � e1� e4:
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Remark We investigated all possible curve configurations for a small Seifert 3–
manifold Y with b � 5 in the proof of the main theorem. As a result, we can find
all minimal symplectic fillings of Y via corresponding curve configurations. For
example, a complete list of minimal symplectic fillings of Y in Example 4.1 are given
by Examples 4.1–4.3.

4.4 Proof for type D

We start to prove this case for a curve configuration coming from C0;0;0. Note that C0;0;0

itself is a curve configuration containing K0;0;0 corresponding to rational homology
ball filling of �0;0;0 in Figure 3. By repeatedly blowing up at intersection points
between exceptional strands and the first component of each arm, we can get a curve
configuration Cp;q;r containing Kp;q;r corresponding to a rational homology ball filling
of �p;q;r as in Figure 22. For notational convenience, we denote three exceptional
strands in each Cp;q;r by the same ei with i 2Z3 so that ei intersects the last component
of i th arm and the first component of .iC1/st arm of Kp;q;r . Let C�1;�1;�1 be the
right-hand figure of Figure 9 and Cp;q;�1 be a configuration of strands obtained from
Cp;q;0 by blowing down e2 in Figure 22. Then Cp;q;�1 contains Kp;q;�1, which is the
proper transform of Kp;q;0 under blowing down.

Proposition 4.5 For a curve configuration C coming from C0;0;0, there is a curve
configuration Ca;b;c containing Ka;b;c with a; b; c � �1 such that

(i) there is a sequence of blowups from Ca;b;c to C ,

(ii) there is either no blowup at ei or blowups at both intersection points on ei during
the sequence of blowups ,

(iii) there is no blowup at intersection points of Ka;b;c .

C1

�2 �2 �2

�2

e1
�2

e2

e3 �2

C1

�.r C 2/ �.pC 2/ �.qC 2/

: : :

pC 1

e1

: : :

qC 1

e2

e3
r C 1

Figure 22: Curve configurations C0;0;0 and Cp;q;r .

Algebraic & Geometric Topology, Volume 23 (2023)



On symplectic fillings of small Seifert 3–manifolds 3527

:::
.n1� 1/

�.n1� 1/

e1

:::
.n1� 1/

�n1

�1

�3

:::

:::

.n1� 1/

.p� n1/

�p

�1

�3

Figure 23: Part of the blowups from Cn1�3;n2�3;n3�3 to C 0.

Proof Since there are no strands with degree � �2 in C except for irreducible
components of K, each irreducible component of K0;0;0 in C0;0;0 should become an
irreducible component of K under blowups from C0;0;0 to C . Hence, in order to get C

from C0;0;0 by blowups ei , we should blow up at either two intersection points of ei with
arms or an intersection point of ei with the .iC1/st arm only. Note that we get Cp;q;r

containing Kp;q;r by blowups the latter case repeatedly. Hence, by rearranging the order
of blowups from C0;0;0 to a curve configuration C , we may assume that C is obtained
from Cp;q;r with p; q; r � 0 and there are no more blowups at an intersection point of
ei with the .iC1/st arm only. Since the configuration Cp;q;r clearly satisfies conditions
(i) and (ii), we are done if there is no blowup at intersection points of Kp;q;r in Cp;q;r .

If there are blowups at intersection points of Kp;q;r in Cp;q;r to C , then we will find
another Ca;b;c with a � p, b � q and c � r satisfying conditions (i)–(iii) as follows.
Let xi be the first intersection point in the i th arm of Kp;q;r among the intersection
points to be blown up, and C 0 be a configuration of strands obtained by blowing up
at xi for 1 � i � 3. For notational convenience, we denote exceptional strands in
Cp;q;r and the proper transform of ei in C 0 by the same ei . There is a unique .�1/

exceptional strand in each i th arm of K0 in C 0, which is the ni
th component of the i th

arm with ni � 2, where K0 is the total transform of Kp;q;r . Then we claim that there
is a sequence of blowups from Cn1�3;n2�3;n3�3 to C 0: we blow up two intersection
points of ei simultaneously, and then we blow up at the intersection point between the
exceptional .�1/ strand and the first component of the .iC1/st arm consecutively to
get C 0; for example, see Figure 23 for the first arm. We see from the construction that
a configuration Cn1�3;n2�3;n3�3 satisfies conditions (i) and (ii). Moreover, since xi is
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�3 �4 �2 �3

�3

�4

�2

C1
�2 �2 �3

�2 �3

�2

�3

�2

Figure 24: Plumbing graph � and its concave cap K.

the uppermost point among the intersection points to be blown up, there is no blowup
at intersection points of Kn1�3;n2�3;n3�3 during the blowups from Cn1�3;n2�3;n3�3

to C . Therefore Cn1�3;n2�3;n3�3 is a desired curve configuration Ca;b;c .

Since Ka;b;c �K (guaranteed by condition (ii) in Proposition 4.5), there is a curve
configuration C1 of Y obtained from Ca;b;c by standard blowups. If one of a; b; c

is �1, then the curve configuration C1 is of type B or type C, so that there is a sequence
of rational blowdowns from zM to the minimal symplectic filling W1 corresponding
to C1. If all a; b; c � 0, then W1 is obtained from zM by replacing �a;b;c with its
rational homology ball filling by Lemma 4.4. On the other hand, conditions (ii) and
(iii) in Proposition 4.5 guarantee that there is a sequence of rational blowdowns from
W1 to the minimal symplectic filling W corresponding to C by using Lemma 4.2 or
Lemma 4.3 repeatedly.

We end this section by giving an example of minimal symplectic fillings involving
3–legged rational blowdown surgery.

Example 4.4 Let Y be a small Seifert 3–manifold whose minimal resolution graph �
and concave cap K are given by Figure 24. We consider two minimal symplectic fillings
W1 and W2 of Y whose respective curve configurations are given by Figure 25, top and
bottom. Note that the curve configuration in Figure 25, top, is obtained from C0;0;0 by
standard blowups. Thus, as in the proof, W1 is obtained from the minimal resolution
by rationally blowing down �0;0;0. Let us denote v0 by a central vertex and vj

i by i th

vertex of the j th arm in � . Then, v0; v
1
1
; v2

1
and v3

1
C v3

2
give a symplectic embedding

of �0;0;0 to the minimal resolution. A computation similar to that of Example 4.3 shows
that there is a symplectic embedding L of

�5 �2

to W1, and W2 is obtained from W1 by rationally blowing down L.
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C1

�2 �2 �2

�2

e1
�2

e2

e3 �2

C1

C1

�2 �2 �2

�2

e1
�2

e2

e3 �2

C1

Figure 25: Top: curve configuration for W1. Bottom: curve configuration for W2.
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Milnor–Witt motivic cohomology of
complements of hyperplane arrangements

KEYAO PENG

We compute the (total) Milnor–Witt motivic cohomology of the complement of a
hyperplane arrangement in an affine space as an algebra with given generators and
relations. We also obtain some corollaries by realization to classical cohomology.

14C25, 14F42, 19E15

1 Introduction

Let K be a perfect field of characteristic different from 2, and let U � ANK be the
complement of a finite union of hyperplanes. For K D R, the cohomology ring
H�sing.U.R/;Z/ is just the direct sum of Z corresponding to each regions (connected
components), and those regions form a poset. In the special case when the hyperplanes
arise from a root system, the resulting poset is the corresponding Weyl group with
the weak Bruhat order. In general, the poset of regions is ranked by the number of
separating hyperplanes and its Möbius function has been computed; see Edelman [8].

For any essentially smooth scheme X over K and any integers p; q 2 Z, one can
define the Milnor–Witt (MW) motivic cohomology groups Hp;q

MW.X;Z/ introduced
by Bachmann, Calmès, Déglise, Fasel and Østvær [1]. There are homomorphisms
(functorial in X ), for any p; q 2 Z,

H
p;q
MW.X;Z/!H

p;q
M .X;Z/;

where the right-hand side denotes the ordinary motivic cohomology of Voevodsky.

As illustrated by the list of properties in the following section, the Milnor–Witt motivic
cohomology groups behave in a fashion similar to ordinary motivic cohomology groups,
but there are crucial differences (for instance, there are no reasonable Chern classes).

© 2023 The Author, under license to MSP (Mathematical Sciences Publishers). Distributed under
the Creative Commons Attribution License 4.0 (CC BY). Open Access made possible by subscribing
institutions via Subscribe to Open.
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In this paper, we compute the total Milnor–Witt cohomology ring of the complement
of a hyperplane arrangement in affine spaces HMW.U / using methods very similar to
Chatzistamatiou [4], with some necessary modifications. To state our main result, we
first recall a few facts.

Let R be a commutative ring. The Milnor–Witt K–theory of R is defined to be the
graded algebra freely generated by elements of degree 1 of the form Œa� with a 2R�

and an element � in degree �1, subject to the relations

(1) Œa�Œ1� a�D 0 for any a such that a; 1� a 2R� n f1g;

(2) Œab�D Œa�C Œb�C �Œa�Œb� for any a; b 2R�;

(3) �Œa�D Œa�� for any a 2R�;

(4) �.2C �Œ�1�/D 0.

It defines a presheaf on the category of schemes over a perfect field K via X 7!
KMW
� .O.X//. On the other hand, one can also consider the Milnor–Witt motivic

cohomology (bigraded) presheaf

X 7!HMW.X/ WD
M
p;q

H
p;q
MW.X;Z/:

By Déglise and Fasel [7, Theorem 4.2.2], there is a morphism of presheaves

s W
M
n2Z

KMW
n .�/!

M
n2Z

H
n;n
MW.�;Z/�HMW.X/;

which specializes to the above isomorphism if X D Spec.F /, where F is a finitely
generated field extension of K; see Calmès and Fasel [3].

Theorem 1.1 LetK be a perfect field of characteristic different from 2 and let U �ANK
be the complement of a finite union of hyperplanes. There is an isomorphism of
HMW.K/–algebras

HMW.K/fGm.U /g=JU ŠHMW.U /

defined by mapping .f / 2Gm.U / to the class Œf � in H 1;1
MW.U;Z/ corresponding to f

under s. Here , HMW.K/fGm.U /g is the free (associative) graded HMW.K/–algebra
generated by Gm.U / in degree .1; 1/ and JU is the ideal generated by the elements

(1) .f /� Œf � if f 2K� �Gm.U /;

(2) .f /C .g/C �.f /.g/� .fg/ if f; g 2Gm.U /;

(3) .f1/.f2/ � � � .ft / for any f1; : : : ; ft 2Gm.U / such that
Pt
iD1 fi D 1;

(4) .f /2� Œ�1�.f / if f 2Gm.U /.
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As indicated above, this theorem and its proof are inspired by the computation of the
(ordinary) motivic cohomology of U in [4]. We can recover the main theorem [4,
Theorem 3.5] of the motivic cohomology case by taking � D 0. As a corollary, we
obtain the following result:

Corollary 1.2 Let U �ANK be the complement of a finite union of hyperplanes. The
isomorphism of Theorem 1.1 induces an isomorphismM

n2Z

KMW
n .K/fGm.U /g=JU !

M
n2Z

H
n;n
MW.U;Z/:

We do not know if the left-hand side coincides with KMW
� .U /. To conclude, we spend

a few lines on the real realization homomorphism

HMW.U;Z/!H�sing.U.R/;Z/

when U is over K D R. We prove in particular that both sides have essentially the
same generators, and that the map is surjective.

Conventions The base field K is assumed to be perfect and of characteristic not 2.
For a scheme X over K, we write HMW.X/ for the total MW motivic cohomology
ring

L
p;q2ZH

p;q
MW.X;Z/.

For each f 2Gm.U /, we use .f / to indicate the corresponding generator in the corre-
sponding free algebra (eg KMW

n .K/fGm.U /g) and Œf � to indicate the corresponding
element in the cohomology group (eg H 1;1

MW.U;Z/).

2 Milnor–Witt motivic cohomology

In this section, we define Milnor–Witt motivic cohomology and state some properties
that will be used in the proof of Theorem 1.1. We start with the (big) category of
motives eDM.K/ WDeDMNis.K;Z/ defined in [7, Definition 3.3.2] and the functor�M W Sm=K!eDM.K/:

The category eDM.K/ is symmetric monoidal [7, Proposition 3.3.4] with unit 1 D�M.Spec.K//. For any integers p; q 2 Z, we obtain MW motivic cohomology groups

H
p;q
MW.X;Z/ WD HomfDM.K/.

�M.X/; 1.q/Œp�/:

By [7, Proposition 4.1.2], motivic cohomology groups can be computed as the Zariski
hypercohomology groups of explicit complexes of sheaves.
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We will make use of the following property of eDM.K/. First, we note that eDM.K/ is
also a triangulated category.

Proposition 2.1 (Gysin triangle) Let X be a smooth K–scheme , let Z � X be a
smooth closed subscheme of codimension c and let U D X nZ. Suppose that the
normal cone NXZ admits a trivialization � W NXZ Š Z �Ac . Then there is a Gysin
triangle �M.U /! �M.X/! �M.Z/.c/Œ2c� C1�!;

where the last two arrows depend on the choice of �.

Proof We have an adjunction of triangulated categories

SH.K/� eDM.K/

obtained by combining the adjunction of [6, Section 4.1] and the classical Dold–Kan
correspondence (eg [5, 5.3.35]). Here, SH.K/ is the stable homotopy category of
smooth schemes over K. The functor SH.K/!eDM.K/ being exact, the statement
follows for instance from [13, Chapter 3, Theorem 2.23].

Furthermore, the Milnor–Witt motivic cohomology groups satisfy most of the formal
properties of ordinary motivic cohomology and were computed in a few situations:

(1) If q � 1, there are canonical isomorphisms

H
p;q
MW.X;Z/ŠH

p�q
Nis .X;K MW

q /ŠH
p�q
Zar .X;K MW

q /

where K MW
q is the unramified Milnor–Witt K–theory sheaf (in weight q) introduced

in [12].

(2) IfL=K is a finitely generated field extension there are isomorphismsHn;n
MW.L;Z/Š

KMW
n .L/ fitting in a commutative diagram, for any n 2 Z,

H
n;n
MW.L;Z/

� //

��

KMW
n .L/

��

H
n;n
M .L;Z/ � // KMn .L/

where KMn .L/ is the (nth) Milnor K–theory group of L, the bottom horizontal map
is the isomorphism of Suslin, Nesterenko and Totaro, and the right-hand vertical map
is the natural homomorphism from Milnor–Witt K–theory to Milnor K–theory. This
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result has the following consequence: the Milnor–Witt motivic cohomology groups are
computed via an explicit complex of Nisnevich sheaves zZ.q/ for any integer q 2 Z.
The above result shows that there is a morphism of complexes of sheaves

zZ.q/!KMW
q Œ�q�;

where the right-hand side is the complex whose only nontrivial sheaf is KMW
q in

degree �q. For any essentially smooth scheme X over K, this yields group homomor-
phisms

H
p;q
MW.X;Z/!Hp�q.X;K MW

q /;

which are compatible with the ring structure on both sides. In the particular case pD 2n
and q D n for some n 2 Z, we obtain isomorphisms (functorial in X )

H
2n;n
MW .X;Z/ ��! fCHn.X/;

where the right-hand term is the nth Chow–Witt group of X (defined in [2; 9]). Again,
these isomorphisms fit into commutative diagrams

H
2n;n
MW .X;Z/ � //

��

fCHn.X/

��

H
2n;n
M .X;Z/ � // CHn.X/

where the right-hand vertical homomorphism is the natural map from Chow–Witt
groups to Chow groups.

(3) The total Milnor–Witt motivic cohomology has Borel classes for symplectic
bundles [15] but in general the projective bundle theorem fails [14].

(4) If X is a smooth scheme over R, there are two interesting realization maps. On
the one hand, one may consider the composite

H
p;q
MW.X;Z/!H

p;q
M .X;Z/!H

p
sing.X.C/;Z/;

where the right-hand map is the complex realization map. On the other hand, one may
also consider the composite

H
p;q
MW.X;Z/!Hp�q.X;K MW

q /!Hp�q.X; Iq/!H
p�q
sing .X.R/;Z/;

where Iq is the unramified sheaf associated to the qth power of the fundamental
ideal in the Witt ring, K MW

q ! Iq is the canonical projection and Hp�q.X; Iq/!

H
p�q
sing .X.R/;Z/ is Jacobson’s signature map [11].
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We note here that these two realization maps show that Milnor–Witt motivic cohomology
is in some sense the analogue of both the singular cohomology of the complex and the
real points of X.

3 Basic structure of the cohomology ring

Let V be an affine space, ie V ŠANK for some N 2N. We consider finite families I
of hyperplanes in V (which we suppose are distinct). We denote by jI j the cardinality
of I and set U VI WD V n

�S
Y2I Y

�
, and simply write UNI when V D ANK . For any

hyperplane Y, we put IY WD fYi \Y j Yi 2 I; Yi ¤ Y g.

Proposition 3.1 Let V and I be as above. We have�M.U VI /Š
M
j2J

1.nj /Œnj �

for some set J and integers nj � 0.

Proof We proceed by induction on the dimension N of V and jI j. If jI j D 0, then�M.U VI /D
�M.V /Š 1 and we are done. So let jI j � 1 and Y 2 I. The Gysin triangle

reads as

(3-1) �M.U VI /!
�M.U VInfY g/

�
�! �M.U YIY

/.1/Œ2� C1�!:

If � D 0, then the triangle is split and consequently we obtain an isomorphism

(3-2) �M.U VI /Š
�M.U VInfY g/˚

�M.U YIY
/.1/Œ1�:

Since jI n fY gj < jI j and dim.Y /D dim.V /� 1, we conclude by induction that the
right-hand side has the correct form. We are then reduced to showing that � D 0.

By induction,

� 2 HomfDM.K/.
�M.U VInfY g/;

�M.U YIY
/.1/Œ2�/

Š

M
j;k

HomfDM.K/.1.nj /Œnj �;1.mk/ŒmkC 1�/

for some integers nj ;mk�0, so it suffices to prove that HomfDM.K/.1;1.m/ŒmC1�/D0
for any m 2 Z to conclude. Now,

HomfDM.K/.1;1.m/ŒmC 1�/DH
mC1;m
MW .K;Z/

and the latter is trivial by [7, Proposition 4.1.2 and proof of Theorem 4.2.4].
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As an immediate corollary, we obtain the following result:

Corollary 3.2 The motivic cohomology HMW.U
V
I / is a finitely generated , free

HMW.K/–module.

To obtain more precise results, we now study the Gysin (split) triangle (3-1) in more
detail. We can rewrite it as

�M.U YIY
/.1/Œ1�

ˇY

�! �M.U VI /
˛Y

�! �M.U VInfY g/
0
�!

and therefore we obtain the short (split) exact sequence, in which the morphisms are
induced by the first two morphisms in the triangle,

(3-3) 0!
M
p;q

H
p;q
MW.U

V
InfY g;Z/

˛Y
��!

M
p;q

H
p;q
MW.U

V
I ;Z/

ˇY
��!

M
p;q

H
p�1;q�1
MW .U YIY

;Z/! 0:

The inclusion Y � V yields a morphism U YIY
! U V

InfY g
and therefore a morphism

� W �M.U YIY
/! �M.U V

InfY g
/. The global section f of V corresponding to the equation

of Y becomes invertible inU VI and therefore yields a morphism Œf � W �M.U VI /!1.1/Œ1�
corresponding to the class Œf � 2H 1;1

MW.U
V
I ;Z/ given by the morphism

s W
M
n2Z

KMW
n .�/!

M
n2Z

H
n;n
MW.�;Z/:

Lemma 3.3 The following diagram commutes:

�M.U YIY
/.1/Œ1�

ˇY

��

�.1/Œ1�
// �M.U V

InfY g
/.1/Œ1�

�M.U VI / �
// �M.U VI /˝

�M.U VI /

˛Y˝Œf �

OO

Proof The commutative diagram of schemes

U VI
//

��

U V
InfY g

.Id;f /
��

U V
InfY g

�Gm
// U V
InfY g

�A1K
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yields a morphism of Gysin triangles and thus a commutative diagram

�M.U YIY
/.1/Œ1�

ˇY

//

�.1/Œ1�

��

�M.U VI /
˛Y

//

��

�M.U V
InfY g

/ //

��

� � �

�M.U V
InfY g

/.1/Œ1� // �M.U V
InfY g

�Gm/ //

��

�M.U V
InfY g

�A1K/
// � � �

�M.U V
InfY g

/.1/Œ1�

in which the map �M.U V
InfY g

�Gm/! �M.U V
InfY g

/.1/Œ1� is just the projection. We
conclude by observing that the middle vertical composite is just .˛Y ˝ Œf �/ ı�.

We may now prove the main result of this section.

Proposition 3.4 The cohomology ring HMW.U / is generated by the classes of units
in U as an HMW.K/–algebra. In particular , the homomorphism

s W
M
n2Z

KMW
n .U /!

M
n2Z

H
n;n
MW.U;Z/

is surjective.

Proof We again prove the result by induction on jI j and the dimension of V, the case
jI j D 0 being obvious. Suppose then that the result holds for U YIY

and U V
InfY g

and
consider the split sequence (3-3). For any x 2HMW.U /DHMW.U

V
I /, we have that

ˇY� .x/ 2 HMW.U
Y
IY
/ is in the subalgebra generated by fŒf � j f 2 Gm.U

Y
IY
/g and �.

For any f1; : : : ; fn 2Gm.U
V
InfY g

/, Lemma 3.3 yields

ˇY�
�
Œ.f1/jUV

I
� � � � Œ.fn/jUV

I
� � Œt �

�
D Œ.f1/jUY

IY

� � � � Œ.fn/jUY
IY

�:

The map Gm.U
V
InfY g

/!Gm.U
Y
IY
/ being surjective, it follows that there exists x0 2

HMW.U
V
I / in the subalgebra generated by units such that ˇY� .x � x

0/ D 0. Thus,
x� x0 D ˛�.y/ for some y 2HMW.U

V
InfY g

/ and the result follows from the fact that
˛� is just induced by the inclusion U VI � U

V
InfY g

.

4 Relations in the cohomology ring

The purpose of this section is to prove that the relations of Theorem 1.1 hold in
HMW.U /. The first two relations are obviously satisfied since the homomorphism is
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induced by the ring homomorphism

s W
M
n2Z

KMW
n .U /!

M
n2Z

H
n;n
MW.U;Z/:

Recall now that the last two relations are

(3) Œf1�Œf2� � � � Œft � if fi 2Gm.U / for any i and
Pt
iD1 fi D 1;

(4) Œf �2� Œ�1�Œf � if f 2Gm.U /.

We will prove that they are equal to 0 in HMW.U /. Actually, it will be more convenient
to work with the following relations, where � WD �h�1i D �1� �Œ�1�:

(30) R.f0; : : : ; ft /, defined by

tX
iD0

�tCi Œf0� � � �bŒfi � � � � Œft �

C

X
0�i0<���<ik�t

.�1/kŒ�1�kŒf0� � � �bŒfi0 � � � � bŒfik � � � � Œft �

for fi 2Gm.U / such that
Pt
iD0 fi D 0.

(40) Anticommutativity Œf �Œg�� �Œg�Œf �.

Lemma 4.1 The two groups of relations are equivalent in HMW.U /.

Proof We first assume that (3) and (4) are satisfied. Since (1) and (2) are satisfied, we
have Œ�f �D Œ�1�Ch�1iŒf �. As (4) is satisfied and Œ�1�D �Œ�1� in KMW

� .K/,

Œ�f �Œf �D Œ�1�Œf �Ch�1iŒf �2 D �.Œ�1�Œf �� Œf �2/D 0

and then Œfg�Œ�fg� D Œf �Œg� C �Œg�Œf � for any g; f 2 Gm.U / by [12, proof of
Lemma 3.7]. Suppose next that

Pt
iD0 fi D 0, so that

Pt
iD1 fi=.�f0/D 1. Combining

(3) and the anticommutativity law, we obtain

0D Œ1�D Œf �1j �Chf �1j iŒfj � (by (2)),(4-1) �
�fi

fj

�
D hf �1j iŒ�fi �C Œf

�1
j �(4-2)

D hf �1j i.Œ�fi �� Œfj �/ (by (4-1))

D hf �1j i.h�1iŒfi �C Œ�1�� Œfj �/;
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.Œf0�� Œ�1�/
k
D

kX
iD0

�k
i

�
Œ�1�k�i Œf0�

i(4-3)

D

� k�1X
iD0

�k
i

��
Œ�1�k�1Œf0�C .�1/

kŒ�1�k (by (4))

D .�1/k�1Œ�1�k�1Œf0�C .�1/
kŒ�1�k

and

0 D .�hf0i/
t

�
�f1

f0

��
�f2

f0

�
� � �

�
�ft

f0

�
(by (3))

D
�
Œf0�� Œ�1�� h�1iŒf1�

�
� � �
�
Œf0�� Œ�1�� h�1iŒft �

�
(by (4-2))

D �tbŒf0�Œf1� � � � Œft �C
tX
iD1

�t�1Œf1� � � �bŒfi �.Œf0�� Œ�1�/ � � � Œft �

C

X
i<j

.Œf0�� Œ�1�/
2Œf1� � � �bŒfi � � � �bŒfj � � � � Œft �C � � �

D

tX
iD0

�tCi Œf0� � � �bŒfi � � � � Œft �

C

X
0�i0<���<ik�t

.�1/kŒ�1�kŒf0� � � �bŒfi0 � � � � bŒfik � � � � Œft � (by (4-3))

DR.f0; : : : ; ft /:

Conversely, suppose that (30) and (40) hold. A direct calculation shows that

R.�1; f1; : : : ; ft /D .�h�1i/
t Œf1� � � � Œft �D �

t Œf1� � � � Œft �;

and consequently that (3) also holds. For every field K ¤ F2, we have 1C aC b D 0
for some a; b ¤ 0 and it follows from Œ�a�Œ�b�D 0 in KMW

� .K/ that

R.f; af; bf /DR.f; af; bf /� Œ�a�Œ�b�DR.f; af; bf /�
h
�
af

f

ih
�
bf

f

i
DR.f; af; bf /� .h�1iŒaf �C Œ�1�� Œf �/.h�1iŒbf �C Œ�1�� Œf �/

D�Œ�1�Œf �C Œ�1�2� .Œf �� Œ�1�/2 D Œ�1�Œf �� Œf �2:

Remark 4.2 The following properties of the relations R and anticommutativity hold:

(1) For any a; b 2Gm.U /, we have Œa=b�D�hb�1iR.b;�a/.
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(2) For any f0; : : : ; ft 2Gm.U /, by direct computation, we have

R.f0; : : : ; ft /� �
i Œfi �R.f0; : : : ; Ofi ; : : : ; ft /D P.f0; : : : ; Ofi ; : : : ; ft /

for some polynomial P. This uses the anticommutativity and the fact that
Œ�1�D �j Œ�1� for any j � 0 in the computation.

(3) For any f0; : : : ; ft 2 K� such that
Pt
iD0 fi D 0, we have R.f0; : : : ; ft /D 0

in KMW
� .K/.

The following lemma will prove useful in the proof of the main theorem:

Lemma 4.3 Any morphism � W �M.U VI /! T in eDM.K/ such that

�M.U YIY
/.1/Œ1�

ˇY

�! �M.U VI /
�
�! T

is trivial for every Y 2 I factors through �M.K/, ie there is a morphism  W �M.K/! T

such that the diagram �M.U VI /

��

�
// T

�M.K/

 

<<

is commutative.

Proof We prove as usual the result by induction on jI j, the result being trivial if
jI j D 0, ie if U VI ŠANK . By assumption, � factors through �M.U V

InfY g
/, ie we have a

commutative diagram �M.U VI /
˛Y
//

�
&&

�M.U V
InfY g

/

�0

��

T

For H 2 I 0 D I n fY g, we have an associated Gysin morphism ˇH W �M.UHIH
/.1/Œ1�!�M.U VI / which induces a commutative diagram

�M.UHIH
/.1/Œ1�

˛Y .1/Œ1�

��

ˇH

// �M.U VI /

˛Y

��

�
// T

�M.UH
I 0H
/.1/Œ1�

ˇH

// �M.U VI 0 /

�0

==
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in which the morphism ˛Y .1/Œ1� on the left is split surjective. It follows that

�0 ıˇ
H
ı˛Y .1/Œ1�D � ıˇH D 0

implies �0 ıˇH D 0. We conclude by induction.

Proposition 4.4 Let S be an essentially smooth K–scheme and let fi 2 Gm.S/ be
such that

Pt
iD0 fi D 0. Then

R.f0; : : : ; ft /D 0 in HMW.S/:

Proof The global sections f0; : : : ; ft yield a morphism j D .f0; : : : ; ft / W S!AtC1K

which restricts to a morphism j W S!UHI , where H �AtC1K is given by
Pt
iD0 xi D 0

and I D ffx1D 0g; : : : ; fxt D 0gg. Since R.f0; : : : ; ft /D j �.R.x0; : : : ; xt //, we can
reduce the proposition to the case S D UHI .

For any xj , we set Yj WD fxj D 0g �H and we obtain a Gysin morphism

ǰ W �M.U
Yj

IYj

/.1/Œ1�! �M.UHI /

and a composite

�M.U
Yj

IYj

/.1/Œ1� ǰ
�! �M.UHI /

R.x0;:::;xt /
��������! 1.t/Œt �:

By Remark 4.2 and Lemma 3.3,

R.x0; : : : ; xt / ı ǰ

D .�j Œxj �R.x0; : : : ; Oxj ; : : : ; xt /CP.x0; : : : ; Oxj ; : : : ; xt // ı ǰ

D �j .Œxj �R.x0; : : : ; Oxj ; : : : ; xt // ı ǰ CP.x0; : : : ; Oxj ; : : : ; xt / ı j̨ ı ǰ

D �jR.x0j
U

Yj
IYj

; : : : ; Oxj ; : : : ; xt j
U

Yj
IYj

/:

As R.f;�f / D 0 for f 2 Gm.S/ by Remark 4.2, we obtain by induction that
R.x0; : : : ; xt / ı ǰ D 0 for any j D 0; : : : ; t . Applying Lemma 4.3, we obtain a
commutative diagram

�M.UHI /

��

R.x0;:::;xt /
// 1.t/Œt �

�M.K/

 

66
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As char.K/ ¤ 2, UHI has a K–rational point .�0; : : : ; �t / 2 AtC1K , and we obtain a
diagram �M.K/

u
��

R.�0;:::;�t /

))�M.UHI /

��

R.x0;:::;xt /
// 1.t/Œt �

�M.K/

 

55

The vertical composite being the identity,  DR.�0; : : : ; �t /, and the latter is trivial
by the relations in Milnor–Witt K–theory.

Applying Lemma 4.1, we obtain the following corollary:

Corollary 4.5 Let S be an essentially smooth K–scheme.

(1) For any f1; : : : ; ft 2Gm.S/ such that
Pt
iD1 fi D 1, we have

Œf1�Œf2� � � � Œft �D 0 2HMW.S/:

(2) For any f 2Gm.S/, we have Œf �2� Œ�1�Œf �D 0 in HMW.S/.

5 Proof of the main theorem

In this section, we prove Theorem 1.1. We denote by JU � HMW.K/fGm.U /g the
ideal generated by the relations

(1) .f /� Œf � for f 2K� �Gm.U /;

(2) .f /C .g/C �.f /.g/� .fg/ for f; g 2Gm.U /;

(3) .f1/.f2/ � � � .ft / for any f1; : : : ; ft 2Gm.U / such that
Pt
iD1 fi D 1;

(4) .f /2� Œ�1�.f / for f 2Gm.U /.

By Lemma 4.1, JU �HMW.K/fGm.U /g is in fact generated by

(1) .f /� Œf � for f 2K� �Gm.U /;

(2) .f /C .g/C �.f /.g/� .fg/ for f; g 2Gm.U /;

(30) Anticommutativity .f /.g/� �.g/.f / for any f; g 2Gm.U /;
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(40) R.f0; : : : ; ft /, given by
tX
iD0

�tCi .f0/ � � �b.fi / � � � .ft /

C

X
0�i0<���<ik�t

.�1/kŒ�1�k.f0/ � � � b.fi0/ � � � b.fik / � � � .ft /

for any f0; : : : ; ft 2Gm.U / such that
Pt
iD0 fi D 0.

In view of Corollary 4.5, the morphism HMW.K/fGm.U /g ! HMW.U / defined by
.f / 7! Œf � induces a morphism of HMW.K/–algebras

� WHMW.K/fGm.U /g=JU !HMW.U /:

Now, choose linear polynomials �1; : : : ; �s that define the hyperplanes Yi 2 I and let
J 0U �HMW.K/fGm.U /g be the ideal generated by the relations (1), (2), (30) and (40)
for elements of the form fj D �j�ij or fj D �j for �j 2K� and �ij 2 f�1; : : : ; �sg.
We have a string of surjective morphisms of HMW.K/–algebras

HMW.K/fGm.U /g=J
0
U !HMW.K/fGm.U /g=JU

�
�!HMW.U /;

whose composite we denote by �0.

Theorem 5.1 The morphism of HMW.K/–algebras

HMW.K/fGm.U /g=JU
�
�!HMW.U /

is an isomorphism.

Proof It suffices to prove that �0 is an isomorphism. To see this, we work again by
induction on jI j. If jI j D 0, then U ŠANK for some N 2N. By homotopy invariance,
we have to prove that the map

�0 WHMW.K/fGm.K/g=J
0
K !HMW.K/

is an isomorphism. Now, the morphism of HMW.K/–algebras

HMW.K/!HMW.K/fGm.K/g=J
0
K

is surjective by relation (1). Its composite with �0 is the identity and we conclude in
that case.

Assume now that Y 2 I is defined by �1 D 0 and that we have isomorphisms

HMW.K/fGm.U
V
I 0 /g=J

0

UV
I 0

��!HMW.U
V
I 0 /;

HMW.K/fGm.U
Y
IY
/g=J 0

UY
IY

��!HMW.U
Y
IY
/:
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The morphism U VI ! U VI 0 induces a morphism Gm.U
V
I 0 / ! Gm.U

V
I / and then a

commutative diagram

HMW.K/fGm.U
V
I 0 /g=J

0

UV
I 0

z̨
��

Š
oo

HMW.K/fGm.U
V
I /g=J

0

UV
I

�0
oo

ž

��

HMW.K/fGm.U
Y
IY
/g=J 0

UY
IY

Š
oo

0

��

HMW.U
V
I 0 /

˛Y
�
��

HMW.U
V
I /

ˇY
�
��

HMW.U
Y
IY
/

��

0

in which ž is the unique lift of ˇY� ı� and the right column is exact. We are thus reduced
to proving that the left vertical sequence is short exact to conclude. It is straightforward
to check that z̨ is injective and ž is surjective. Moreover, the commutativity of the
diagram and the fact that ˇY� ı ˛

Y
� D 0 imply that ž ı z̨ D 0, so we are left to prove

exactness in the middle.

Let x 2HMW.K/fGm.U
V
I /g=J

0
UV

I
. The group Gm.U

V
I / being generated by Gm.U

V
I 0 /

and �1, we may use relations (2) and (4) to see that x D .�1/z̨.x1/ C z̨.x0/ in
HMW.K/fGm.U

V
I /g=J

0
UV

I
. By Lemma 3.3, we get ž.x/D Q�.x1/, where Q� is induced

by the restriction Gm.U
V
I 0 / ! Gm.U

Y
IY
/. Consequently, we need to prove that, if

Q�.x1/D 0, then .�1/z̨.x1/ is in the image of z̨. With this in mind, we now prove that
the kernel of Q� is generated by elements of the form

R.f0; : : : ; ft /;

where fj D ��ij with ij > 1 or fj D � and
Pt
iD0 fi jUY

IY
D 0. Denote by L0 the ideal

of HMW.K/fGm.U
V
I 0 /g generated by such elements. By construction, the restriction

induces a homomorphism
L0CJ 0

UV
I 0
! J 0

UY
IY

;

which is surjective. Indeed, relations (1), (2) and (30) can be lifted using the fact that
the map Gm.U

V
I 0 /!Gm.U

Y
IY
/ is surjective, while an element satisfying relation (4)

with every fj of the form fj D �j�ij or fj D �j for �j 2K� (with ij ¤ 1) lifts to an

Algebraic & Geometric Topology, Volume 23 (2023)



3546 Keyao Peng

element in L0. As in [4, proof of Theorem 3.5], we see that the kernel of the group
homomorphism Gm.U

V
I 0 /!Gm.U

Y
IY
/ is generated by elements of the form

(1) ��i=�j with i and j such that Y1\Yi D Y1\Yj and �D .�j /jY1
=.�i /jY1

;

(2) ��i , where i is such that Y1\Yi D∅ and �D 1=.�i /jY1
.

Remark 4.2 yields �
� ��i

�j

�
D�h��1j iR.�j ;�� ��i /� L

0;

while Œ��i �D�R.�1; ���i /�L0 showing that ker.Gm.U
V
I 0 /!Gm.U

Y
IY
//�L0CJ 0UV

I 0
.

We deduce that ker.Q�/D L0.

We now conclude. If Q�.x1/ D 0, then x1 2 L0 and we may suppose that x1 D
R.f0; : : : ; ft / for f0; : : : ; ft such that

Pt
iD0 fi jUY

IY
D 0. It follows that

Pt
iD0 fi D

���1 for�2K. If�D0, there is nothing to do. Otherwise, useR.��1;f0; : : : ;ft /D0
and Remark 4.2 to get

.�1/z̨.x1/D .��1/z̨.x1/� h�1i.�/z̨.x1/

D .��1/z̨.x1/CR.��1; f0; : : : ; ft /� h�1i.�/z̨.x1/

D z̨.P.f0; : : : ; ft //� z̨.h�1i.�/x1/ 2 image.z̨/:

Corollary 5.2 The graded ring isomorphism of Theorem 5.1 induces an isomorphismM
n2Z

KMW
n .K/fGm.U /g=JU !

M
n2Z

H
n;n
MW.U;Z/:

Proof Notice that the ideal JU of Theorem 5.1 is homogeneous, and it follows thatL
n2ZH

n;n
MW.U;Z/ can be computed as H�;�MW.K/fGm.U /g=JU , where H�;�MW.K/ is

the diagonal of HMW.K/.

6 Combinatorial description

In this section, we fix an affine space V D ANK , a family of hyperplanes I and we
set U WD UNI . We let Q.U / be the cokernel of the group homomorphism Gm.K/!

Gm.U /, and we observe that the divisor map

Gm.U /
div
�!

M
Yi2I

Z �Yi

in ANK induces an isomorphism Q.U / Š
L
Yi2I

Z � Yi . We consider the exterior
algebra ƒZQ.U / and write ƒZŒ��=2�Q.U / WD ZŒ��=2�˝Z ƒZQ.U /. The abelian
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group Q.U / being free, the ZŒ��=2�–module ƒZŒ��=2�Q.U / is also free, with usual
basis. To provide a combinatorial description of HMW.U /, we will have to slightly
modify the definition of the divisor map above, in order to incorporate the action of �.
We then define a map

Gm.U /
ediv
�!ƒZŒ��=2�Q.U /

as follows:

(1) If f D �� or f D �, where � 2Gm.K/ and � is a linear polynomial as above,
then fdiv.f /D div.f /.

(2) If f; g 2Gm.U /, then fdiv.fg/Dfdiv.f /Cfdiv.g/C � �fdiv.f /^fdiv.g/.

Lemma 6.1 The map fdiv is well defined.

Proof We first notice that fdiv.fg/Dfdiv.gf /, sincefdiv.fg/�fdiv.gf /D ��fdiv.f /^fdiv.g/���fdiv.g/^fdiv.f /D 2��fdiv.f /^fdiv.g/D 0:

Let f1; f2; g1; g2 2 Gm.U / be such that f1g1 D f2g2. Let Y 2 I be such that
fi D Y

ni �f 0i with divY .f 0i /D 0 and gi D Y mi �g0i with divY .g0i /D 0 for i D 1; 2 and
mi ; ni 2 Z. We getfdiv.f1g1/D .m1Cn1/ �Y Cfdiv.f 01g

0
1/C .m1Cn1/�.Y ^

fdiv.f 01g
0
1//;fdiv.f2g2/D .m2Cn2/ �Y Cfdiv.f 02g

0
2/C .m2Cn2/�.Y ^

fdiv.f 02g
0
2//:

As ƒZŒ��=2�Q.U / is free with usual basis, we deduce that fdiv.f 02g
0
2/ D

fdiv.f 01g
0
1/,

which allows us to conclude by induction on the number of nontrivial factors in the
decomposition of f1g1.

Now let LU �ƒZŒ��=2�Q.U / be the ideal generated by the elements

(1) Y1 ^ � � � ^Ys for Yi 2 I such that Y1\ � � � \Ys D∅;

(2)
Ps
jD1.�1/

kY1 ^ � � � ^ yYj ^ � � � ^Ys for Yi 2 I such that Y1\ � � � \Ys ¤∅ and
codim.Y1\ � � � \Ys/ < s.

As a consequence of Lemma 6.1, the map fdiv induces a morphism of ZŒ��=2�–algebras

 W .ZŒ��=2�/fGm.U /g !ƒZŒ��=2�Q.U /=LU :

It is now time to introduce the ring

A0.U / WDK
MW
� .K/fGm.U /g=

�
JU CK

�
�KMW
� .K/fGm.U /g

�
:

As � D �1 � Œ�1�� � �1 in A0.U /, it follows that A0.U / is an exterior algebra.
Moreover, the coefficient ringKMW

� .K/ can be reduced toKMW
� .K/=.K��KMW

� .K//Š

ZŒ��=2�.

Algebraic & Geometric Topology, Volume 23 (2023)



3548 Keyao Peng

Proposition 6.2 The morphism of ZŒ��=2�–algebras

 W ZŒ��=2�fGm.U /g !ƒZŒ��=2�Q.U /=LU

induces an isomorphism

‰ W A0.U /!ƒZŒ��=2�Q.U /=LU :

Proof We first prove that ‰ is well defined, which amounts to showing that the image
of JU is contained in LU . For f 2K�, we have Œf � 2K� �KMW

� .K/fGm.U /g andfdiv.f /D 0, showing that the first relation is satisfied. The second relation is satisfied by
definition of fdiv, while relation (30) is satisfied as ƒZŒ��=2�Q.U /=LU is an exterior al-
gebra. As in the proof of Theorem 5.1, we are then left with elements of J 0U , ie elements
of the form R.f0; : : : ; ft / for

Pt
iD0 fi D 0, where fj D �j�j or fj D �j . Modulo

K� �KMW
� .K/fGm.U /g, we have R.f0; : : : ; ft / �

Pt
iD0.�1/

tCi Œf0� � � �bŒfi � � � � Œft �
and we just need to prove that

˛ WD .�1/t .R.f0; : : : ; ft //D

tX
iD0

.�1/ifdiv.f0/^ � � � ^
2fdiv.fi /^ � � � ^fdiv.ft /

is an element of LU . Note that, if there are more than two constant functions among
the fj , ˛ would be trivial. Suppose that f0D�0 is the only constant, and let fj D�j�j
with kernel Yj 2 I, so that ˛ D Y1 ^ � � � ^ Yt . Since

Pt
jD1 �j�j D��0 ¤ 0, we can

easily get that Y1\� � �\Yt D∅ and ˛D Y1^� � �^Yt 2LU . In the case where none of
the fj is constant, ˛ D

Pt
iD0.�1/

iY0 ^ � � � ^ yYi ^ � � � ^Yt . And, for every i , we havePt
jD0;j¤i �j�j D��i�i , which means Yi � Y0\ � � � \ yYi \ � � � \Yt D Y0\ � � � \Yt .

If Y0\ � � � \Yt D∅, so is Y0\ � � � \ yYi \ � � � \Yt , thus Y0 ^ � � � ^ yYi ^ � � � ^Yt 2 LU ;
otherwise, codim.Y0\ � � � \Yt /D codim.Y0\ � � � \ yYi \ � � � \Yt /� t < t C 1, which
just fits the condition (2) of LU . This proves that ‰ is well defined.

To prove that ‰ is an isomorphism, we construct the inverse map by

ˆ WƒZŒ��=2�Q.U /=LU ! A0.U /; Yi 7! .�i /

and prove that it is well defined. As above, we just need to discuss elements of LU .
If Y1 \ � � � \ Ys D ∅, then we can find �i 2 K� such that

P
i �i�i D 1, and thus

.�1/ � � � .�s/� .�1�1/ � � � .�s�s/D 0 in A0.U /. In the case codim.Y1\ � � � \Ys/ < s,
we have

P
i �i�i D 0 for some �i 2 K�. Then

Ps
iD1.�1/

i .�1/ � � �b.�i / � � � .�s/ �
.�1/s�1R.�1�1; : : : ; �s�s/ D 0 in A0.U /. This shows that the inverse map is well
defined.
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The following corollary shows that the rank of the free HMW.K/–module HMW.U / is
exactly the same as the rank of the freeHM .K/–moduleHM .U / [4, Proposition 3.11]:

Corollary 6.3 The rank of the free HMW.K/–module HMW.U / is equal to the rank
of the free module ƒZQ.U /=LU .

Proof It is clear that rkZŒ��=2�.ƒZŒ��=2�Q.U /=LU /D rkZ.ƒZQ.U /=LU /. As all
generators in HMW.U / are from H

p;p
MW .U;Z/, we have

rkHMW.K/.HMW.U //D rkKMW
� .K/

�M
n2Z

H
n;n
MW.U;Z/

�
D rkZŒ��=2�.A0.U //:

7 I–cohomology and singular cohomology

In ordinary motivic cohomology theory, we have a realization functor to the topological
cohomology of complex points. This yields the following comparative result:

Proposition 7.1 [4, Proposition 3.9] In the case K DC, there is an isomorphism of
ringsM

n

H
n;n
M .U;Q/˝HM .K/K

M
� .K/=K

�
�KM� .K/

Š�!

M
n

Hn
sing.U.C/;Q/:

In this section, we provide an analogue for the singular cohomology of the real points
of the complement of a hyperplane arrangement defined over R. We start with some
results about the I–cohomology [9].

As recalled in Section 2, we have natural homomorphisms from Milnor–Witt motivic
cohomology to I�–cohomology

H
p;q
MW.X;Z/!Hp�q.X;K MW

q /!Hp�q.X; Iq/

which induce a ring homomorphism HMW.X/ !
L
r;qH

r.X; Iq/ (where Iq D

K MW
q D W for q < 0). In case X D Spec.K/, we obtain in particular a ring ho-

momorphism HMW.K/!
L
r;qH

r.K; Iq/D
L
q2Z I

q.K/.

Proposition 7.2 The morphism of
L
q2Z I

q.K/–algebras

j WHMW.U /˝HMW.K/

�M
q2Z

I q.K/

�
!

M
r;q

H r.U; Iq/

is an isomorphism. Moreover , H r.U; Iq/D 0 for r ¤ 0.
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Proof We write HMW.U /˝ I for the graded ring HMW.U /˝HMW.K/

�L
q I

q.K/
�
.

We follow the same induction process as in the proof of the main theorem. When
jI j D 0, we only need to consider Spec.K/ by homotopy invariance, and the result is
trivial.

Assume now that Y 2 I and that we have isomorphisms for U VI 0 and U YIY
. Notice that,

for I–cohomology, we still have a Gysin long exact sequence [9, remarque 9.3.5]. The
proof of the main theorem yields the commutative diagram

0

��

HMW.U
V
I 0 /˝ I

��

Š
oo

HMW.U
V
I /˝ I

��

j
oo

HMW.U
Y
IY
/˝ I

��

Š
oo

0

L
qH
�1.U YIY

; Iq�1/

��L
qH

0.U VI 0 ; I
q/

��L
qH

0.U VI ; I
q/

��L
qH

0.U YIY
; Iq�1/

��L
qH

1.U VI 0 ; I
q/

By our assumption, H�1.U YIY
; Iq�1/ and H 1.U VI 0 ; I

q/ are both 0, so the right column
is also short exact. We conclude that j is an isomorphism as well. The same argument
implies that H r.U VI ; I

q/D 0 for r ¤ 0.

The analogue of Corollary 3.2 in this setting then reads as follows:

Corollary 7.3 There is a finite set J and integers nj � 0 for any j 2 J such that

H 0.U VI ; I
q/Š

M
j2J

I q�nj .K/bj

as a free
L
q I

q.K/–module with basis elements bj 2H 0.U VI ; I
nj /.

Proof Every step is the same as in Proposition 3.1, except the splitting, which comes
from the identification with HMW.U

V
I /˝ I.

As in [11; 10], we can compute the cohomology of the real spectrum using I–
cohomology.
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Proposition 7.4 [10, Proposition 3.6] The signature map induces an isomorphism

H r
�
X;Colim

q�0
Iq
� sign1
����!H r

sing.Sper.X/;Z/;

where Sper.X/ is the real spectrum. In particular ,

Colim
q�0

I q.K/ŠH 0
sing.Sper.K/;Z/:

In our case, since U is always noetherian and Colimq�0 is filtered, we have a canonical
isomorphism

(7-1) H r
�
U;Colim

q�0
Iq
�
Š Colim

q�0
H r.U; Iq/:

Combining with Corollary 7.3, we obtain the following proposition:

Proposition 7.5 There exists an integer N > 0 such that

H 0.U VI ; I
N /˝L

q�0 I
q.K/H

0
sing.Sper.K/;Z/ 2

�N sign
�����!H 0

sing.Sper.U VI /;Z/

is an isomorphism. Moreover , H r
sing.Sper.U VI /;Z/D 0 for r ¤ 0.

Proof By (7-1), we can rewrite the right-hand side as Colimq�0H 0.U VI ; I
q/. Ap-

plying Corollary 7.3, we get

Colim
q�0

�M
j2J

I q�nj .K/bj

�
Š

M
j2J

�
Colim
q�0

I q�nj .K/bj
�
Š

M
j2J

H 0
sing.Sper.K/;Z/bj :

Let N 2N be such that N � nj for all j 2 J. Using again Corollary 7.3,

H 0.U VI ; I
N /Š

M
j2J

IN�nj .K/bj ;

which impliesM
j2J

IN�nj .K/bj ˝
L

q�0 I
q.K/H

0
sing.Sper.K/;Z/Š

M
j2J

H 0
sing.Sper.K/;Z/bj

since, for every j, we have N � nj � 0. That proves the first part, while the second
part is trivial.

Taking K D R, we have H 0
sing.R;Z/ D Z and we recover the classical result for

complements of hyperplane arrangements

H 0.U VI ; I
N /

2�N sign
�����!
Š

H 0
sing.U

V
I .R/;Z/Š

M
Ri2 connected components

ZfRig:
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1 Introduction

The basic tenet of Waldhausen’s philosophy of brave new algebra is to replace known
notions for commutative rings by corresponding notions for E1–ring spectra. These
days replacing the integers by the sphere spectrum is no longer so brave and new,
but rather a well-established principle. In extension, we might want to find and study
E1–analogues of other prominent rings as well. The aim of the present paper is to do
this for rings of holomorphic modular forms with respect to congruence subgroups of
SL2.Z/.

Topological analogues of modular forms for SL2.Z/ itself were already introduced
about twenty years ago. Indeed, Goerss, Hopkins and Miller introduced three spectra
TMF, Tmf and tmf of topological modular forms. Recall that the rings M�.SL2.Z/IZ/
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and zM�.SL2.Z/IZ/ of holomorphic and meromorphic integral modular forms can
be defined as the global sections H 0.MellI!

˝�/ and H 0.MellI!
˝�/ of powers of a

certain line bundle ! on the compactified and uncompactified moduli stack of elliptic
curves, respectively.1 In analogy, TMF is defined as the global sections of a sheaf Otop

of E1–ring spectra on Mell with �2kOtop Š !˝k and Tmf as the global sections of
an analogous sheaf on Mell. The edge maps of the resulting descent spectral sequences
take the form of homomorphisms

�2�TMF! zM�.SL2.Z/IZ/ and �2�Tmf!M�.SL2.Z/IZ/:

The former morphism is an isomorphism after base change to Z
�

1
6

�
(while taking higher

cohomology of !˝� into account at the primes 2 and 3) and thus TMF can be really
seen as the rightful analogue of zM .SL2.Z/IZ/. In contrast, ��Tmf has torsion-free
summands in negative degree, whereas M�.SL2.Z/;Z/ is concentrated in nonnegative
degrees. The solution is to define tmf simply as the connective cover ��0Tmf, and one
can show that indeed �2�tmf

�
1
6

�
is isomorphic to M�.SL2.Z/;Z

�
1
6

�
/. We mention

that one of the motivations for constructing tmf was lifting the Witten genus to a map
of E1–ring spectra M String ! tmf as achieved in Ando, Hopkins and Rezk [1].
For applications to the stable homotopy groups of spheres and exotic spheres, see for
instance Hopkins and Mahowald [23], Behrens, Hill, Hopkins and Mahowald [3], Wang
and Xu [46] and Isaksen, Wang and Xu [25].

In number theory, it is very common not only to consider modular forms with respect to
SL2.Z/, but also to congruence subgroups of these; the most important being �D�0.n/,
�1.n/ or �.n/. Algebrogeometrically, such modular forms can be defined as sections of
the pullback of!˝� to compactifications M.�/ of stacks classifying generalized elliptic
curves with certain level structures (see eg Deligne and Rapoport [6], Diamond and
Im [7], Conrad [5] and the author’s [36]); for example, M.�1.n// classifies generalized
elliptic curves with a chosen point of order n whose multiples intersect every irreducible
component of every geometric fiber. Hill and Lawson [17] defined sheaves of E1–ring
spectra on these stacks and obtained spectra Tmf.�/, as their global sections, and
TMF.�/, by restriction to the loci of smooth elliptic curves. The latter spectra are good
topological analogues of the rings zM .�IZŒ1=n�/ of meromorphic modular forms in

1The terms meromorphic and holomorphic come from the corresponding analytic definitions, where
one demands that the given function on the upper half-plane can be continued meromorphically and
holomorphically, respectively, to the cusp(s). The former kind of modular form is also sometimes called
weakly holomorphic.
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the sense that ��TMF.�/ is isomorphic to this ring if � is �1.n/ or �.n/ (with n� 2)
and, if we invert 6, also in the case � D �0.n/.

In contrast, neither Tmf.�/ nor its connective cover ��0Tmf.�/ are in general good
analogues of the ring of holomorphic modular forms M.�IZŒ1=n�/, even in the nice
case of � D �1.n/ and n � 2. Writing Tmf1.n/ for Tmf.�1.n//, the reason is that
H 1.M.�1.n//I!/ and thus �1Tmf1.n/ is nontrivial in general (with nD 23 being the
first example), while this contribution does not occur in M.�IZŒ1=n�/. Following an
idea of Lawson, we define a connective version tmf1.n/ by “artificially” removing �1,
while still retaining the E1–structure on tmf1.n/. The following will be proven as
Theorems 2.12 and 2.22.

Theorem 1.1 There is an essentially unique connective E1–ring spectrum tmf1.n/

with an E1–ring map tmf1.n/! Tmf1.n/ that identifies the homotopy groups of the
source with M.�1.n/IZŒ1=n�/.

Moreover , the involution of M.�1.n// sending a point of order n on the universal
elliptic curve to its negative defines on tmf1.n/ the structure of a genuine C2–spectrum.
Its slices in the sense of Hill , Hopkins and Ravenel [16] are trivial in odd degrees and
can be explicitly identified in even degrees.

The analogous theorem also works to define tmf.n/, but tmf0.n/ we define only in
certain cases since in the general case it is not yet clear what the “correct” definition is.
The spectrum tmf.n/ has been further investigated in [21, Theorem 3.14], where a
criterion for the nonvanishing of its Tate spectrum is proven.

One of the principal motivations for the consideration of tmf1.n/ is its connection to
the Hirzebruch level-n genera MU�!M.�1.n/IZŒ1=n�/. They specialize for nD 2

to the classic Ochanine elliptic genus and have similar rigidity properties in general;
see Hirzebruch, Berger and Jung [20]. We will prove the following as Theorem 3.6.

Theorem 1.2 For every n � 2, there is a ring map MU ! tmf1.n/ realizing on
homotopy groups the Hirzebruch level-n–genus. Moreover , this map refines to a map
MUR! tmf1.n/ of C2–spectra.

We have two further classes of results on the spectra tmf1.n/ and their cousins. The
first is the following compactness result, contained in Theorem 4.4 and Corollary 4.6.

Algebraic & Geometric Topology, Volume 23 (2023)
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Theorem 1.3 The tmfŒ1=n�–modules tmf0.n/, tmf1.n/ and tmf.n/ are perfect , ie they
are compact objects in the module category , in the cases they are defined. In particular ,
their Fp–cohomologies are finitely presented over the Steenrod algebra and thus their
p–completions are fp-spectra in the sense of Mahowald and Rezk [33].

By a result of Kuhn [28, Theorem 1.7] this implies, for example, that the Hurewicz image
of ��tmf.�/ Š ���

1tmf.�/ in H�.�
1tmf.�/IFp/ is finite-dimensional, where

tmf.�/ denotes either tmf0.n/, tmf1.n/ or tmf.n/. We also note that in contrast to the
theorem, tmf1.n/ will not be a perfect tmf0.n/–module in general. We also show that
tmf0.n/, tmf1.n/ and tmf.n/ are faithful as tmfŒ1=n�–modules, answering a question
of Höning and Richter [21, page 21].

The second result is a variant of the decomposition results of the author [37], which we
state in this introduction only at the prime 2 and for tmf1.n/, and which will be proven
as Theorem 5.6.

Theorem 1.4 Let n> 1 be odd. If one can lift every weight-1 modular form for �1.n/

over F2 to a form of the same weight and level over Z.2/, we have a C2–equivariant
splitting

tmf1.n/.2/ '
M

i

†ni�tmf1.3/.2/;

where � denotes the real regular representation of C2.

In the author’s earlier work [36, Appendix C], it is shown that for 1 < n < 65 odd
indeed every weight-1 modular form for �1.n/ over F2 lifts to a form of the same
weight and level over Z.2/, while for nD 65 it does not. See also [36, Remark 3.14]
for a further discussion of this condition.

Conventions and notation

All notions are to be understood suitably derived or1–categorical. This means that
pushout means either a pushout in the respective1–category or a homotopy pushout
in the underlying model category. We will use ˝ for the (derived) smash product. Note
that this coincides with the coproduct in the1–category CAlg of E1–ring spectra.

When we use G–spectra, we will always mean genuine G–spectra. The notations ��k

and ��k denote the k–(co)connective cover of a spectrum and we use the same notation
for the slice-(co)connective covers of a G–spectrum. Furthermore, we denote by S

Algebraic & Geometric Topology, Volume 23 (2023)
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the sphere (G–)spectrum. In some parts of this article, we have the opportunity to use
RO.C2/–graded homotopy groups of C2–spectra. We will use the notation � for the
sign representation and � or C for the regular representation of C2.

We will use the notations TMF1.n/ and TMF.�1.n// interchangeably and similarly in
related contexts.

Acknowledgements

I want to thank Tyler Lawson for explaining to me the idea of how to construct a
connective model for TMF1.n/, and for the sketch of an argument that tmf1.3/ is not
perfect as a tmf0.3/–module. It is also a pleasure to acknowledge the influence and
encouragement of Mike Hill. Furthermore I want to thank Eva Höning and Birgit
Richter for their interest and remarks on a preliminary version, and the referee for their
extensive comments.

Finally, I want to thank the Hausdorff Institute for hospitality in 2015 when part of this
work was undertaken. Apologies for the subsequent delay in publication.

2 The construction of connective topological modular forms

The aim of this section is to construct connective spectra tmf.�/ of topological modular
forms and thereby prove Theorem 1.1. Here � denotes a congruence subgroup � in
the following sense, which is a bit more restrictive than the standard definition.

Definition 2.1 We call � � SL2.Z/ a congruence subgroup of level n if � D �.n/ or
�1.n/� � � �0.n/.2

As explained in [17; 37, Section 2.1], we can associate with every such � a (non-
connective and nonperiodic) E1–ring spectrum Tmf.�/. (See also [44, Theorem 5.2]
for the case of �.n/.) These arise as global sections of sheaves of E1–ring spectra Otop

on stacks M.�/ classifying generalized elliptic curves with certain level structures;
the details will not be important for the purposes of this article, but see for instance
[6; 5; 45; 36]. Our goal in this section is to construct a nice connective version tmf.�/
for Tmf.�/. For this, we will fix a localization ZS of the integers and restrict mostly
to tame congruence subgroups.

2We refer to [8] for background on the congruence subgroups �1.n/, �.n/ and �0.n/ and their relationship
to moduli of elliptic curves. This material though is barely necessary for the present paper, as we use the
congruence subgroups primarily as notation.
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Definition 2.2 We say that a congruence subgroup � of level n is tame with respect
to ZS if n � 2 and n is invertible in ZS ; in the case �1.n/ � � � �0.n/ we demand
additionally that gcd.6; Œ� W �1.n/�/ is invertible in ZS .3

The definition ensures that the order of every automorphism of a point in M.�/ is
invertible and thus the stack is of cohomological dimension one. As explained in
[37, Section 2.1], in this case ����0Tmf.�/ is concentrated in even degrees except for
�1Tmf.�/, which might be nonzero. (The smallest n for which this happens is 23.)
Moreover, the even homotopy groups of Tmf.�/ are precisely isomorphic to the ring
of holomorphic modular forms M.�IZŒ1=n�/.

Following the lead of [29, Proposition 11.1] (and additional explanations by its author),
we will first describe a general procedure to kill �1 for E1–rings that applies to
��0Tmf.�/ for � tame. We will then present a C2–equivariant refinement that helps
to define a nice version of tmf.�/ also in some nontame cases; see Construction 2.24.
We note that our techniques are only necessary if �1Tmf.�/ is nontrivial as otherwise
the usual connective cover defines a perfectly good version of tmf.�/.

2.1 The nonequivariant argument

Let R be a connective E1–ring spectrum with �0R an étale extension of ZS , a
localization of Z, and � �1D 0; here, �2�1S is the Hopf element and 12�0R the unit.
(The relevant example for us is RD ��0Tmf.�/S with �0RDZS if �1.n/����0.n/

and �0RD ZS Œ�n� if � D �.n/.) We want to construct a map R0!R of E1–ring
spectra which is injective on �� and with cokernel �1R. In the following, we localize
everything implicitly at the set S — so Z really means ZS , etc.

Let A first be a general E1–ring spectrum. For an A–module M , we denote by

PA.M /'A˚M ˚ .M˝A2/h†2
˚ � � �

the free unital E1–A–algebra on M ; cf [32, Example 3.1.3.14].

Definition 2.3 Let x W†kA!A be an A–linear map. We define its E1–cone C A.x/

as the pushout A˝PA.†kA/A of E1–ring spectra. Here, the first map PA.†
kA/!A

is the free E1–map on x, while the second arises from applying PA to the unique map
†kA! 0.
3As the quotient �0.n/=�1.n/ is .Z=n/�, the latter condition reduces to gcd.6; '.n// being invertible in
the case � D �0.n/. Thus we require that 2 is invertible and also 3 if n is divisible by a prime of the form
3kC 1 or by 9.
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Note that if B is an E1–A–algebra, we have C A.x/˝AB'C B.x/. Writing the usual
cone C.x/ as the pushout At†kA˚A A in A–modules produces a map C.x/!C A.x/

via the inclusion A˚†kA!PA.†kA/ of the first two summands and the identity idA.

Lemma 2.4 If x D 0, the canonical map C.x/ ! C A.x/ is split as a map of A–
modules.

Proof The pushout square

.2.5/

A˚†kA //

��

A

��

A // C.0/'A˚†kC1A

arises from the pushout square

.2.6/

†kA //

��

0

��

0 // †kC1A

via the functor ModA! CAlgA of square-zero extension. In particular, it is a diagram
of E1–A–algebras. As the E1–pushout square (P) defining C A.0/ arises from (2.6)
as well, but via PA, we see that the square (2.5) receives a map from the square (P). The
resulting map C A.0/! C.0/ defines a splitting of C.0/! C A.0/ by the universal
property of the pushout square (2.5).

We will apply our general consideration to the connective E1–ring spectrum R we
have fixed. As � is zero in ��R, we obtain an E1–map C S.�/!R. This induces an
E1–map ��1C S.�/! ��1R; see [16, Proposition 4.35].

Lemma 2.7 The 1–coconnective cover ��1C S.�/ is equivalent to HZ.

Proof We claim that the canonical map C.�/ ! C S.�/ is 2–connected. By the
Hurewicz theorem, we can test this after tensoring with HZ and thus it suffices to show
that the resulting map C.�˝HZ/! C H Z.�˝HZ/ is 2–connected. But �˝HZ

agrees with the 0–map †HZ!HZ. Thus, we have to show that

HZ˚†2HZ!C H Z.�˝HZ/'PH Z†2HZ'HZ˚†2HZ˚.†4HZ/hC2
˚� � �

is 2–connected. As noted above, the map is split injective and thus must be indeed an
isomorphism on �i even for i � 3.

Algebraic & Geometric Topology, Volume 23 (2023)
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The inclusion of 1–truncated connective E1–ring spectra into all connective E1–ring
spectra admits a left adjoint by [31, Proposition 5.5.6.18; 32, Proposition 7.1.3.14]. By
[32, Proposition 7.1.3.15(3)], it agrees with ��1 on underlying spectra.

By [32, Theorem 7.5.0.6], we can extend the E1–map HZD ��1C S.�/! ��1R to
an E1–map H�0R! ��1R since the map Z! �0R is étale. Define now R0 via the
homotopy pullback square

.2.8/

R0 //

��

H�0R

��

R // ��1R

This construction provides the existence part of the following proposition.

Proposition 2.9 Let R be a connective E1–ring spectrum such that �0R is an étale
extension of a localization ZS of the integers and � � 1D 0 in �1R. Then there exists a
morphism R0!R of E1–ring spectra inducing an isomorphism on �i for i ¤ 1 and
satisfying �1R0 D 0. Moreover , for every other R00!R with these properties , there is
an equivalence R00!R0 of E1–ring spectra over R.

Proof It remains to show uniqueness. We localize again everything implicitly at S . We
first note that the map HZ! ��1R constructed above is actually the unique E1–map
with this source and target. Indeed, for connectivity reasons, we have an equivalence
of mapping spaces MapCAlg.HZ; ��1R/ ' MapCAlg.C

S.�/; ��1R/. The latter is
equivalent to the space of nullhomotopies of � in ��1R, ie MapSp.†

2S; ��1R/' �.
Using that thus ��1R has an essentially unique structure of an HZ–E1–algebra, we
deduce again from [32, Theorem 7.5.0.6] that the space of E1–maps from H�0R to
��1R is equivalent to the set of ring homomorphisms �0R! �0R.

Given now R00!R as in the proposition, we obtain a map R00! ��1R00'H�0R!

��1R. We see that R00 arises as a pullback of a diagram of the same shape as (2.8), but
possibly with a map H�0R! ��1R inducing a different isomorphism f on �0 than
the identity. The paragraph above implies that using the map f on H�0R we obtain
an equivalence between the cospans constructing R0 and R00 and thus between R0 and
R00 over R.

To apply this to topological modular forms, we need the following two lemmas.
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Lemma 2.10 Let � be a tame congruence subgroup with respect to a localization ZS .
Then � is zero in �1Tmf.�/S .

Proof According to [37, Proposition 2.5], the descent spectral sequence

H s.M.�/I!˝t /) �2t�sTmf.�/

for Tmf.�/S is concentrated in lines 0 and 1. Thus �1Tmf.�/S Š H 1.M.�/S I!/

and it suffices to show that the image of � in H 1.M.�/S I!/ is trivial. This is the
content of [36, Proposition 2.16] unless �1.n/¨ � ¨ �0.n/. For the remainder of the
proof, assume that we are in this case and set G D �=�1.n/.

We will argue that the map

H 1.M.�/.2/I!/!H 1.M.�1.n/.2/I!/

is isomorphic to the inclusion of G–invariants. As � vanishes in the target, this will
imply the vanishing of � in the source.

The map M.�1.n//.2/!M.�/.2/ induces a map

c W X D ŒM.�1.n//.2/=G�!M.�/.2/

from the stack quotient. Denote the pullback of ! to X also by !. By [37, Lemma A.2],
the induced map H 1.M.�/.2/I!/! H 1.X I!/ is an isomorphism. Moreover, the
descent spectral sequence

H i.GIH j .M.�1.n//.2/I!//)H iCj .X I!/

is concentrated in the zero-line since the order of G is invertible in Z.2/ by the tameness
of � . Thus,

H 1.M.�/.2/I!/ŠH 1.X I!/!H 1.M.�1.n/.2/I!/

is indeed the inclusion of G–invariants.

Lemma 2.11 Let � be a tame congruence subgroup with respect to a localization ZS .
Then �0Tmf.�/Š ZS if �1.n/� � � �0.n/ and �0Tmf.�/Š ZS Œ�n� if � D �.n/.

Proof As recalled above, we have �0Tmf.�/ŠH 0.M.�/IOM.�//. In the cases that
�D�0.n/; �1.n/ or �.n/ the computation of this group is classical and can be found for
instance in [36, Proposition 2.13]. The case of �1.n/¨�¨�0.n/ follows by identifying
H 0.M.�/IOM.�//with H 0.M.�/IOM.�//

�=�1.n/ again using [37, Lemma A.2].
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This allows us to use Proposition 2.9 to define tmf.�/S in the tame case by killing �1

from ��0Tmf.�/S . Summarizing we obtain:

Theorem 2.12 For every set of primes S and every congruence subgroup � that is tame
with respect to ZS , there is up to equivalence a unique connective E1–ring spectrum
tmf.�/S with an E1–ring map tmf.�/S ! Tmf.�/S that identifies the homotopy
groups of the source with the ring of holomorphic modular forms M.�IZS /.

Formally, we could also apply this procedure in some nontame cases (for instance if we
localize away from 2), but the author knows of no reason to regard these constructions
in these cases as “correct”.

Notation 2.13 We will use the abbreviations

tmf1.n/D tmf.�1.n//; tmf0.n/D tmf.�0.n//; tmf.n/D tmf.�.n//;

when these make sense.

Remark 2.14 For every ring spectrum R, we can consider the stack XR associated to
the graded Hopf algebroid .MU2�.R/; .MU˝MU/2�.R//. If R is complex orientable,
this coincides with the stack quotient ŒSpec�2�R=Gm�. In [38, Definition 5.5] we
introduced cubic versions M1.n/cub and M0.n/cub of the moduli stacks M.�1.n//

and M.�0.n//. These come with a finite morphism to the moduli stack Mcub of cubic
curves, where we allow arbitrary Weierstraß equations. In [38, Theorem 5.19] we
showed that M1.n/cub ' ŒM.�1.n/IZŒ1=n�/=Gm� for n� 2. In combination, we see
that Xtmf1.n/ 'M1.n/cub for n� 2. In the case nD 1, the corresponding equivalence
Xtmf 'Mcub has a quite different character and was shown in [34]. Whether there are
equivalences Xtmf0.n/ 'M0.n/cub for a suitable definition of tmf0.n/ remains open,
to the knowledge of the author, even for nD 3.

2.2 The C2–equivariant argument

All the stacks M.�/ come with an involution induced from postcomposing the level
structure with the Œ�1�–automorphism of the elliptic curve. As explained in Remark 2.15,
this induces a C2–action on Tmf.�/. Our goal in this subsection is to define suitable C2–
spectra tmf.�/ in the tame case. This will allow us to construct an E1–ring spectrum
tmf.�/ also if there is just a tame subgroup � 0 � � of index 2; see Construction 2.24.
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Remark 2.15 The goal of this remark is to clarify the construction of the C2–action
on Tmf.�/ sketched above.

Denote the automorphism of M.�/ described above by t . As t commutes with the
forgetful map pr WM.�/!Mell, this defines a C2–action inside the slice category
.Stacks=Mell/

ét;op of stacks étale over Mell. We will use a lax commutative triangle

.Stacks=Mell/
ét;op .Stacks=Mell/

log-ét;op

CAlg.Sp/
Otop

N

Otop

Here, the diagonal arrows are the Goerss–Hopkins–Miller and Hill–Lawson sheaves of
ring spectra. The horizontal arrow N is a normalization construction; see for example
[22, Proposition 2.27]. The canonical map Otop.N.U //! Otop.U / for U !Mell

étale comes from the fact that U � N.U / is an open substack and the Hill–Lawson
sheaf restricts to the Goerss–Hopkins–Miller sheaf.

Applying the left diagonal arrow to .M.�/; t/ gives a C2–action on TMF.�/. Doing the
same with the composite of the right diagonal arrow and the horizontal arrow produces
the C2–action on Tmf.�/. Moreover, we obtain a C2–map Tmf.�/! TMF.�/.

As explained in [37, Example 6.12], the C2–action induced by t on TMF.�/ is
equivalent to the one induced by the C2–action in .Stacks=Mell/

ét;op given by idM.�/

on M.�/, but choosing the Œ�1�–isomorphism between the elliptic curves classified by
pr and pr idM.�/. This C2–action induces multiplication by �1 on the pullback of !
to M.�/: indeed, the Œ�1�–automorphism of an elliptic curve induces multiplication
by �1 on the sheaf of differentials. Moreover, pr classifies precisely the pullback of
the universal elliptic curve Euni and ! is the restriction of �1

Euni=Mell
to Mell along the

zero section.

Thus, if � is tame, it implies that C2 acts by .�1/k on �2kTMF.�/ŠH 0.M.�/I!˝k/.
Since �2kTmf.�/ injects in the tame case into �2kTMF.�/, the same is true for
�2kTmf.�/.

The action t can be trivial, eg for � D �0.n/ or �.2/. This forces �2kTmf.�/D 0 for
k odd in these cases (as t acts both by 1 and �1 and the groups are torsion-free). This
corresponds to the classical fact that there are no modular forms of odd weight if �id
is in � .
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In the following we will use standard notation from equivariant homotopy theory.
In particular, for an inner product space V with G–action, we denote by S.V / the
unit sphere and by SV the 1–point compactification as G–spaces. We denote by
aD a� W S

0! S� the inclusion for � the real sign representation of C2.

The Hopf map defines a C2–map x� W S.C2/! SC , where C2 acts on C via complex
conjugation. This stabilizes to an element in �C2

� S, which restricts to � 2 �e
1
S.

Lemma 2.16 The homotopy groups �C2
� .S/ and �C2

��S are infinite cyclic and gener-
ated by x� and a, respectively.

Proof For �C2
� .S/, this is proven as formula (8.1) in [2]. (Note that they use the nota-

tion �s
p;q for our �C2

p�Cq.S/.) Proposition 7.0 in op. cit. implies that the homomorphism

�
C2
��S! �0S, taking a map S!†�S to its geometric fixed points is an isomorphism.

Taking fixed points of the map a clearly gives the identity map S0! S0, which yields
the result.

In the following, we denote by ��i the slice coconnective cover, by ��i the slice
connective cover and by �i D ��i��i the i th slice for C2–spectra. We refer to [16] for
background about the slice filtration. We denote by HZ the C2–Eilenberg–Mac Lane
spectrum for the constant Mackey functor Z.

Lemma 2.17 We have an equivalence ��1C x�'HZ.

Proof It suffices to show that the first slice of C x� is null and the zeroth slice is HZ. As
shown in [16] and summarized in [18, Section 2.4], this is implied by the calculations
�0C x�Š Z and ��C x�D 0. These follows easily by the long exact sequence arising
from the cofiber sequence

S�
x�
�! S0

! C x�

and the computations of �C2
��S, �C2

0
S and �C2

� .S/ above, using also that �C2

�1
S� D0.

The following lemma is a C2–slice analogue of Lewis’s equivariant Hurewicz theorem
[30, Theorem 2.1]. Recall that a C2–spectrum is k–slice connected if and only if
��kX D 0.

Lemma 2.18 A connective C2–spectrum X is k–slice connected if and only if HZ˝X

is k–slice connected.

Spelled out, the latter condition is equivalent to H V .X IZ/D �V .HZ˝X /D 0 for
all C2–representations V of the form i� or i�� 1 with jV j � k.
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Proof If X is k–slice connected, the same is true for HZ ˝ X . For the con-
verse, assume that H

C2

V
.X IZ/ D 0 for all C2–representations V of the form i�

or i� � 1 with jV j � k. By induction on k, we can assume that X is .k�1/–
slice connected and we need to show that �kX D 0 to deduce that X is indeed
k–slice connected. Let W be 1

2
k� if k is even and 1

2
.k C 1/� � 1 if k is odd. As

��kC1X and its suspension are k–slice connected, the direction discussed above shows
H W .��kC1X IZ/DH W .†��kC1X IZ/D 0. Thus,

0DH W .X IZ/!H W .�kX IZ/

is an isomorphism. As summarized in [18, Section 2.4], the slice �kX is of the
form SW ˝HM for some Mackey functor M and we deduce that H 0.HM IZ/Š

H W .�kX IZ/D 0.

We know that �0SDHZ. As HM is (slice) connective, a similar argument to before
shows that

M Š �0.S˝HM /Š �0.HZ˝HM /DH 0.HM IZ/D 0:

Thus, �kX D 0, as was to be shown.

For an element x 2 �
C2

k
S, we can define a (naive) C2–equivariant E1–cone C S.x/

as in the nonequivariant situation in the preceding subsection. The arguments for the
following two results are quite analogous to those of the preceding section, so we allow
ourselves to be brief.

Lemma 2.19 The map C.x�/! C S.x�/ is slice-2–connected.

Proof By Lemma 2.18 it suffices to check that C.x�/ ˝ HZ ! C S.x�/ ˝ HZ is
slice-2–connected. Since ��HZD 0 and thus x� becomes zero in HZ, this agrees with

HZ˚†�HZ! C H Z.†HZ/' PH Z†�HZ

'HZ˚†�HZ˚ .†2�HZ/hC2
˚ � � � :

Analogously to Lemma 2.4, the map is split injective and thus indeed slice-2–connected
(even slice-3–connected).

Together with Lemma 2.17 this implies that ��1C S.x�/'HZ. To deduce the analogue
of Proposition 2.9, we will need one more categorical result.
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Lemma 2.20 Let G be a finite group and SpG be the 1–category of G–spectra.
Denote by Sp�0

G
the full subcategory of connective G–spectra and by SpŒ0;k�

G
that of

connective and slice-k–truncated G–spectra. Then the inclusion

CAlg.SpŒ0;k�
G

/! CAlg.SpG/

admits for every k � 0 a left adjoint , which agrees on the level of underlying G–spectra
with the slice truncation ��k .

Proof Connective G–spectra form a presentable1–category with compact generators
the †1G=HC. We obtain SpŒ0;k�

G
by localizing Sp�0

G
at the collection S of maps

C ! 0 for C a slice cell of dimension greater than k. By [31, Proposition 5.5.4.15],
SpŒ0;k�

G
is presentable again.

If X is connective and Y � kC 1 in the slice filtration, then by [16, Proposition 4.26]
X ˝ Y � kC 1. Thus, ��k is compatible with ˝ in the following sense: if X ! Y

in Sp�0
G

induces an equivalence ��kX ! ��kY , then ��k.X ˝Z/! ��k.Y ˝Z/ is
an equivalence for every Z 2 Sp�0

G
. By [32, Proposition 2.2.1.9], SpŒ0;k�G inherits the

structure of a symmetric monoidal1–category from Sp�0
G

and ��k is strong symmetric
monoidal, while the inclusion SpŒ0;k�

G
! Sp�0

G
is lax symmetric monoidal. The same

proposition gives that the resulting maps

.SpŒ0;k�
G

/˝! .Sp�0
G
/˝ and .Sp�0

G
/˝! .SpŒ0;k�

G
/˝

of1–operads are adjoint. Since commutative algebras in such an1–operad C˝ are
defined as sections of C˝ ! NFin� as maps of operads, we see that the resulting
maps between CAlg.SpŒ0;k�

G
/ and CAlg.Sp�0

G
/ are indeed adjoint. Here, we use the

characterization of an adjunction given by [42], namely the existence of a unit and
counit, satisfying the triangle identities up to homotopy.

Proposition 2.21 Let R be a connective E1–ring C2–spectrum with �C2

0
DZS being

a localization of Z and x� D 0 2 �
C2
� R. Then there is an E1–ring C2–spectrum R0

with an E1–map R0!R inducing an equivalence on slices in degree 0 and degrees
at least 2 and such that �1R0 D 0. Moreover , for every other R00 ! R with these
properties , there is an equivalence R00!R0 of E1–ring C2–spectra over R.

Proof Since x� is zero in R, we obtain a map C S.x�/S ! R! ��1R of E1–ring
C2–spectra, which factors over HZS D ��1C S.x�/S . Define now R0 via the homotopy
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pullback square
R0 //

��

HZS

��

R // ��1R

The proof of uniqueness is analogous to Proposition 2.9.

To formulate the consequences for tmf.�/, we want to recall from [18] that a C2–
spectrum E is strongly even if its odd slices vanish and its even slices are of the form
Sk�˝HA or, equivalently, if �k�E is constant and �k��1E D 0.

Theorem 2.22 For every set of primes S and every congruence subgroup �1.n/ �

� � �0.n/ that is tame with respect to ZS , we can define a strongly even connective
E1–ring C2–spectrum tmf.�/S with an E1–ring C2–map tmf.�/S ! Tmf.�/S that
identifies the underlying homotopy groups of the source with M.�IZS /.

Proof Equip Tmf.�/' Tmf.�/E.C2/C with the cofree structure of a C2–spectrum.
We claim that

(1) x� 2 �C2
� ��0Tmf.�/ is zero,

(2) the only odd slice of ��0Tmf.�/ is �1, and

(3) the even slices of Tmf.�/ are of the form Sk�˝HA.

Given these claims, applying Proposition 2.21 to R D ��0Tmf.�/ yields the C2–
spectrum R0 D tmf.�/ with the required properties: the first claim implies that we can
apply Proposition 2.21, while the other two ensure that tmf.�/ is strongly even.

For proving the claims, we will distinguish the (overlapping) cases that 1
2
2 ZS and

that � is tame for Z.2/.

For the first claim, note that �C2
� ��0Tmf.�/ Š �C2

� Tmf.�/ (eg since S� is a slice
cell). The restriction map �C2

� Tmf.�/! �1Tmf.�/ is an injection: if 1
2
2 ZS , this

follows from the homotopy fixed points spectral sequence; else, use the line after (6.15)
in [37]. Since x� restricts to � 2 �1Tmf.�/, Lemma 2.10 implies thus the vanishing
of x�.

If � is tame for Z.2/, Theorem 6.16 of [37] yields the last two claims. If 1
2
2 S ,

we obtain �C2

k��1
Tmf.�/ D 0 by the homotopy fixed point spectral sequence since
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�2k�1Tmf.�/ D 0 for k > 1 by [37, Section 2.1]. This yields the second claim by
[18, Proposition 2.9]. For the third claim it is enough to show that �k�Tmf.�/ are
constant Mackey functors; see [18, Proposition 2.13]. This follows again from the
homotopy fixed point spectral sequence and the fact that the C2–action on �k�Tmf.�/
is trivial: indeed, C2 acts by .�1/k on �2kTmf.�/ (see Remark 2.15) and the presence
of k� twists the action by the same sign.

Remark 2.23 The case that � D �0.n/ is not excluded in the previous theorem, but
one easily checks that �0.n/ can only be tame if 1

2
2ZS . In this case, we obtain simply

the cofree C2–spectrum of tmf0.n/S with the trivial action.

Construction 2.24 Given � 0 � � � �0.n/ with � 0 tame with respect to ZS and
�=� 0 Š C2, we can extend our previous definition by defining tmf.�/S as tmf.� 0/C2

S

(so for example tmf0.3/D tmf1.3/
C2 as in [18]). If � itself is already tame, then 1

2
2ZS .

One then easily computes (eg with the slice spectral sequence) that ��tmf.� 0/C2

S
Š

��tmf.�/S and one can use the uniqueness part of Theorem 2.12 to identify our new
definition with the previous one.

Remark 2.25 In the setting of Construction 2.24, the map tmf.�/! ��0Tmf.�/ is
an isomorphism in �� for �� 2 even if � is not tame. Indeed, the cofiber of tmf.� 0/!
��0Tmf.� 0/ is the target’s first slice and thus by [37, Theorem 6.16] equivalent to
†�HM , where M is the constant Mackey functor on H 1.M.� 0/S I!/Š �1Tmf.� 0/.
We directly observe that the nonequivariant homotopy groups of †�HM vanish in
degrees at least 2. Moreover the cofiber sequence .C2/C! S0! S� induces a long
exact sequence

�e
kHM ! �

C2

k
HM ! �

C2

k��
HM ! �e

k�1HM
tr
�! �

C2

k�1
HM;

which implies that �C2

k
†�HM D�

C2

k��
HM D 0 for k � 2 and actually also for kD 1

if tr is injective, ie if �1Tmf.� 0/ has no 2–torsion. Thus, tmf.�/! ��0Tmf.�/ is
indeed an isomorphism in �� for � � 2, and even for � D 1 if �1Tmf.� 0/ has no
2–torsion.

3 Realization of Hirzebruch’s level-n genus

In the previous section we defined ring spectra tmf1.n/ D tmf.�1.n//. The spectra
tmf1.n/ are even for n� 2 and thus complex orientable. We want to show that there is
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a complex orientation for tmf1.n/ such that the corresponding map

MU2�! tmf1.n/2� ŠM.�1.n/IZŒ1=n�/

agrees with the level-n genus introduced by Hirzebruch [19] and Witten [48] and
studied for instance in [27; 11; 15; 47]. We recall its definition below. For this purpose
it will be convenient to use algebrogeometric language, for which we recall first the
following set of definitions.

Definition 3.1 A formal group over a base scheme S is a Zariski sheaf F WSchop
S
!Ab

that Zariski locally on an affine open U DSpec R�S is isomorphic to Spf RŒŒt ��. The R–
modules RŒŒt �� glue to the structure sheaf OF on S and the R–modules .RŒŒt ��=t/�dt glue
to the line bundle !F=S .4 An invariant differential of a formal group F is a trivialization
of !F=S . A coordinate is a section s of OF that is of the form a0t C a1t2C � � � with
a0 2R� for every local trivialization F jSpec R Š Spf RŒŒx��.

Remark 3.2 There are different ways to state the definition of a formal group, for
example as an abelian group object in one-dimensional formal Lie varieties; see
[12, Definitions 1.29 and 2.2]. To compare them, note that our formal groups are
automatically fpqc sheaves since Spf RŒŒt �� is an fpqc sheaf. On the other hand, a
trivialization of the sheaf of differentials of a one-dimensional formal Lie variety over
Spec R determines an equivalence to Spf RŒŒt ��, and such trivializations exist Zariski
locally.

We note that the differential ds of a coordinate s of a formal group F is an invariant
differential of F , sending a0tCa1t2C� � � to a0 dt locally. If S DSpec R, a coordinate
of F is equivalent datum to an isomorphism F Š Spf RŒŒs��.

Recall that given an arbitrary even ring spectrum E, a complex orientation is an element
in zE2.CP1/ restricting to 12 zE2.CP1/ after a homeomorphism CP1

ŠS2 is chosen.
The formal spectrum Spf E2�.CP1/ is a formal group over Spec E2�.pt/ and the
line bundle ! corresponds to zE�.CP1/; it thus comes with a canonical invariant
differential corresponding to 1 2 zE2.CP1/. A complex orientation is thus a coordi-
nate of Spf E2�.CP1/ in degree � D 1 whose differential is the canonical invariant
differential.

4If p W C ! S is a (generalized) elliptic curve and F is the formal completion of E , this agrees with
!C=S D p��

1
C=S

.
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We want to apply this to E D tmf1.n/ for n� 2. Essentially by construction, the maps

�2�tmf1.n/! �2�Tmf1.n/!H 0.M1.n/I!
˝�

C=M1.n/
/

are isomorphisms, where C is the universal generalized elliptic curve over M1.n/. For
convenience, let M1

1
.n/ be the relative spectrum

SpecM1.n/

�M
!˝�C=M1.n/

�
;

which is the total space of the Gm–torsor associated with !C=M1.n/
, ie classifies

generalized elliptic curves with a point of exact order n and an invariant differential.
The resulting morphism

M1
1.n/! Spec H 0.M1

1IOM1
1
.n//Š Spec H 0.M1I!

˝�

C=M1.n/
/Š Spec�2�tmf1.n/

is an open immersion, whose image is covered by the nonvanishing loci of c4 and �;
see [38, Proposition 3.5]. We denote by C the pullback of C to M1

1
.n/. Since

tmf1.n/Œc4�
�1
' Tmf1.n/Œc

�1
4 � and tmf1.n/Œ�

�1�' Tmf1.n/Œ�
�1�

are elliptic cohomology theories, their formal groups are identified with the restric-
tions of yC to the nonvanishing loci of c4 and �, respectively, and as a result yC be-
comes identified with the restriction of Spf tmf1.n/

2�.CP1/ to M1
1
.n/. As M1

1
.n/�

Spec�2�tmf1.n/ induces an isomorphism on global sections of the structure sheaf,
coordinates on Spf tmf1.n/

2�.CP1/ are in bijection with those on yC and one checks
that the canonical invariant differential on the former corresponds to the canonical
invariant differential on the latter. Summarizing we obtain:

Lemma 3.3 Complex orientations MU! tmf1.n/ are in bijection with coordinates
of yC, which are homogeneous of degree one and have the canonical invariant differential
as differential.

The Hirzebruch genus relies on a specific such coordinate, which we will construct
momentarily. Basically we will follow [20, Chapter 7], but present a more algebro-
geometric approach and give an independent treatment. The key point is the existence of
a certain meromorphic function on a cover of a given generalized elliptic curve. To the
purpose of constructing this function, recall that every section P into the smooth part
of a generalized elliptic curve C !S is an effective Cartier divisor [26, Lemma 1.2.2],
ie the kernel OC .�.P // of OC!P�OS is a line bundle. Given any linear combination
of sections Pi , we denote by OC

�P
i ni.Pi/

�
the corresponding tensor product of line

bundles.
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Lemma 3.4 Let n� 2 and S be a ZŒ1=n�–scheme. Furthermore let C=S be a general-
ized elliptic curve with zero-section e W S ! C and a chosen point P W S ! C of exact
order n in the smooth locus.

(a) The pullback of e�OC ..P /� .e// to S is canonically isomorphic to !C=S D

e��1
C=S

.

(b) Let � be an invariant differential on C . Then there exists a unique meromorphic
function h on C with an n–fold zero at e and an n–fold pole at P as the only
pole whose restriction along e coincides with �n under the identification of the
previous part.

(c) There exists a degree-n étale cover q W C 0! C by a generalized elliptic curve
and a meromorphic function f on C 0 with f n D q�h.

Proof (a) Note that OC .�.e// is the ideal sheaf associated to the closed immersion e

and the pullback e�OC ..P /�.e// coincides with OC .�.e//=OC .�.e//
2 viewed as an

OS –module. Indeed, we can cover S by opens of the form U \S , where U Š Spec R

is an affine open in C not intersecting the image of P . The section e corresponds
to an element s 2 R and U \S Š Spec S=s. Then e�OC ..P /� .e//.U \S/ is the
S=s–module sS˝S S=s, which is canonically isomorphic to the S=s–module sS=s2S .

For example, by [14, Proposition II.8.12], we obtain a canonical surjective map

OC .�.e//=OC .�.e//
2
! e��1

C=S D !C=S

between line bundles, which is hence an isomorphism.

(b) Consider the line bundle OC .n.P / � n.e//. Note that n � P � n � e D e as
points on C . By [26, Theorem 2.1.2] in the case that C is an elliptic curve, and by
[6, Proposition II.2.7] for generalized elliptic curves, we deduce that OC .n.P /�n.e//

is the pullback of a line bundle L on S . By part (a), L D e�p�L D !˝n
C=S

. By
[6, Proposition II.1.6], we see that the canonical map

!˝n
C=S
! p�p

�!˝n
C=S
Š p�OC .n.P /� n.e//

is an isomorphism. Thus

�.OC .n.P /� n.e///Š �.!˝n
C=S

/;

where the isomorphism can be identified with the pullback along e. Thus, there is a
unique section h of OC .n.P /� n.e// whose image is �n.

(c) Consider the �n–torsor q WC 0!C associated with the problem of extracting an nth

root out of q�h as a section of q�OC ..P /�.e//, in other words the�n–torsor associated
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with the pair (h, OC ..P /� .e//) in the sense of [39, page 125]. By construction, the
required root f exists on C 0. By [6, Proposition II.1.17], C 0 has the structure of a
generalized elliptic curve provided that we can lift e to C 0 and C 0!S has geometrically
connected fibers. For the first point, it suffices to provide a section of C 0 �C S ! S ,
ie to provide an nth root of e�h. Under the identification of part (a), this is provided
by �. For the second point, we assume that S D Spec K with K algebraically closed
of characteristic not dividing n and that C 0 is not connected. The stabilizer of a
component C 0

0
must be of the form �m with m< n, and thus C 0 Š C 0

0
��m

�n. The
�m–torsor C 0

0
is hence associated with a pair .g;OC ..P /� .e/// such that gn=m D h.

The section g provides a trivialization of OC .m.P /�m.e//. This implies m �P D e

on C 0 [6, Corollaire II.2.4], in contradiction with P being of exact order n.

Construction 3.5 Let C be the universal generalized elliptic curve with a point of exact
order n over M1

1
.n/. It comes, by definition, with a canonical invariant differential �.

From the preceding lemma, we obtain an n–fold étale cover q W C0! C together with a
meromorphic function f on C0 whose pullback along a lift of e agrees with �. This
function f provides a coordinate for yC0 Š yC. Moreover, note that f is uniquely
determined by the requirements in the lemma because C0 is irreducible (since M1

1
.n/

is irreducible and the locus of smoothness of C0 in it is dense) and thus every other
nth root of h would have to differ by a root of unity, resulting in a different pullback
to M1

1
.n/.

Pulling the orientation induced from f back along a map Spec C!M1.n/ classifying
.C=ƒ; 1=n; dz/ results exactly in the coordinate and orientation chosen in [20].

Theorem 3.6 For every n� 2, there is a unique complex orientation of MU! tmf1.n/

realizing on homotopy groups the Hirzebruch genus. Moreover , this can be uniquely
refined to a morphism MUR! tmf1.n/ of C2–ring spectra.

Proof The first part follows from Lemma 3.3 as the Hirzebruch genus is given by a
coordinate on the formal group associated with the universal generalized elliptic curve
on M1

1
.n/. For the second point, we recall from [24, Theorem 2.25] that C2–ring

morphisms MUR! tmf1.n/ are in bijection with Real orientations of tmf1.n/, ie a lift
of a complex orientation to a class tmf1.n/

�
C2
.CP1/. As CP1 can be built by cells

in dimensions k�, the strong-evenness of tmf1.n/ from Theorem 2.22 implies that the
forgetful map

tmf1.n/
�
C2
.CP1/! tmf1.n/

2.CP1/
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is an isomorphism; thus every complex orientation of tmf1.n/ refines to a unique Real
orientation.

Remark 3.7 In [11], Franke already gave a related but different algebrogeometric
treatment of the Hirzebruch genus.

Remark 3.8 After the first version of this article became available, Senger has shown
in [43] that the map MU! tmf1.n/ actually refines to one of E1–ring spectra. He
also gives a reformulation of our treatment above in terms of ‚1–structures.

4 Compactness, formality and faithfulness of tmf.�/

Given a (tame) congruence subgroup of level n, we will show that tmf.�/ is a faithful
and perfect tmfŒ1=n�–module. In contrast, for example, tmf1.3/ will not be a perfect
tmf0.3/–module, not even rationally. The latter result relies on tmf0.3/Q being formal
(ie multiplicatively a graded Eilenberg–Mac Lane spectrum), a result we prove in greater
generality in a subsection on its own.

4.1 All tmf.�/ are perfect

Recall that for an A1–ring spectrum R, a perfect R–module is a compact object in the
1–category of left R–modules. Equivalently, the1–category of perfect R–modules
is the smallest stable 1–subcategory of all left R–modules that contains R and is
closed under retracts. The goal of this section is to show that the spectra tmf.�/, in the
cases we defined them, are perfect tmfŒ1=n�–modules. The key technical tool is the
following proposition.

Proposition 4.1 Let R be an A1–ring spectrum such that

(1) �0R is regular noetherian ,

(2) all �nR are finitely generated �0R–modules , and

(3) H�0R is perfect as a ��0R–module.

Let furthermore M be a perfect R–module. Then ��kM is a perfect ��0R–module for
every k 2 Z.

Lemma 4.2 With notation as in the statement of the proposition , let X be a ��0R–
module with only finitely many nontrivial homotopy groups , all finitely generated
over �0R. Then X is a perfect ��0R–module.
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Proof By induction, we can reduce to the case that ��X is concentrated in a single
degree n. Then X DH�nX acquires the structure of a H�0R–module and it is perfect
as such because �0R is regular noetherian and �nX is finitely generated. As H�0R

is perfect over ��0R, the same is thus true for X .

Proof of Proposition 4.1 Let M be a perfect R–module. As the truth of the conclusion
of the proposition is clearly preserved under retracts in M and also clear for M D 0,
we can assume by induction that we have a cofiber sequence

†lR!N !M !†lC1R

where ��kN is a perfect ��0R–module for all k 2 Z. Taking ��l on the first two
objects gives a diagram

†l��0R

��

// ��lN

��

// M 0

��

// †lC1��0R

��

†lR // N // M // †lC1R

of cofiber sequences. As ��lN is a perfect ��0R–module, so is M 0. Clearly, we have
��lC1M 0 ' ��lC1M . As the fiber of ��lC1M 0!M 0 fulfills the conditions of the
previous lemma, ��lC1M is perfect as a ��0R–module.

For a general k 2 Z, we make a case distinction: assume first that k � l C 1. Then the
fiber of ��kM ! ��lC1M is perfect by the previous lemma; hence ��kM is perfect
as well. If k � l C 1, consider the fiber of ��lC1M ! ��kM instead.

To apply Proposition 4.1 to topological modular forms, we need the following lemma.

Lemma 4.3 For every n � 1, the tmfŒ1=n�–module H�0tmfŒ1=n� D HZŒ1=n� is
perfect.

Proof If 2jn, there is a 3–cell complex X such that tmfŒ1=n�˝X ' tmf1.2/Œ1=n�;
see [34, Theorem 4.13]. We have ��tmf1.2/Œ1=n�D ZŒ1=n�Œb2; b4�. Killing b2 and b4

gives HZŒ1=n�. Thus, HZŒ1=n� is a perfect tmf1.2/Œ1=n�–module and hence also a
perfect tmfŒ1=n�–module.

If 3jn, there is an 8–cell complex X such that tmfŒ1=n�˝ X ' tmf1.3/Œ1=n�; see
[34, Theorem 4.10]. We have ��tmf1.3/Œ1=n� D ZŒ1=n�Œa1; a3�. Killing a1 and a3

gives HZŒ1=n� and thus HZŒ1=n� is also a perfect tmfŒ1=n�–module in this case.

Algebraic & Geometric Topology, Volume 23 (2023)



Connective models for topological modular forms of level n 3575

For the general case, let Xi be a collection of tmfŒ1=n�–modules. Consider

ˆk W

M
i

HomtmfŒ1=n�

�
HZ

h
1

n

i
;Xi

h
1

k

i�
! HomtmfŒ1=n�

�
HZ

h
1

n

i
;
M

i

Xi

h
1

k

i�
:

If k D 2; 3 or 6, then ˆk is an equivalence by the previous results. As for every
spectrum X , there is a cofiber sequence

†�1X
�

1
6

�
!X !X

�
1
2

�
˚X

�
1
3

�
!X

�
1
6

�
and there is a cofiber sequence of maps between mapping spectra

†�1 fib.ˆ6/! fib.ˆ1/! fib.ˆ2˚ˆ3/! fib.ˆ6/:

It follows that ˆ1 is an equivalence as well and that HZŒ1=n� is a perfect tmfŒ1=n�–
module.

Theorem 4.4 Let � be a congruence subgroup of level n, which is tame or has a
subgroup � 0 � � of index 2 with � 0 tame. Then tmf.�/ is a perfect tmfŒ1=n�–module.

The same conclusion holds without the tameness hypothesis for any tmfŒ1=n�–module R

with a map R ! ��0Tmf.�/ whose fiber has finitely generated homotopy groups
over ZŒ1=n�, concentrated in finitely many degrees.

Proof According to [37, Proposition 2.12] the TmfŒ1=n�–module Tmf.�/ is perfect.
All �kTmfŒ1=n� are finitely generated ZŒ1=n�–modules. Furthermore, H�0tmfŒ1=n�D

HZŒ1=n� is a perfect tmfŒ1=n�–module by the previous lemma. This implies that
��0Tmf.�/ is a perfect tmfŒ1=n�–module by Proposition 4.1.

For any R as in the statement of the theorem, R is thus perfect as well, by Lemma 4.2.
To see that tmf.�/ satisfies the hypotheses on R, note first that every H s.M.�/I!˝t / is
a finitely generated ZŒ1=n�–module for every s and t since M.�/ is proper over ZŒ1=n�.
If � is tame, the cofiber of tmf.�/! ��0Tmf.�/ is by construction H�1Tmf.�/ and
�1Tmf.�/ŠH 1.M.�/I!/. If there is a tame subgroup � 0�� of index 2, the cofiber
tmf.�/! ��0Tmf.�/ agrees with †�HM for M the constant Mackey functor on
H 1.M.� 0/I!/ by Remark 2.25. The exact sequence given in the same remark implies
that the homotopy groups of †�HM are concentrated in degrees 0 and 1 and are
finitely generated ZŒ1=n�–modules.

We recall from [33] that a connective p–complete spectrum X is called an fp-spectrum
if H�.X IFp/ is finitely presented as a comodule over the dual Steenrod algebra. They
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show in [33, Proposition 3.2] that, equivalently, there is a finite spectrum F with
nontrivial Fp–homology such that the total group ��.X ˝F / is finite. The following
proposition can be deduced from the known Fp–(co)homology of tmf (see for example
[41, Section 21]) and was already noted in [33] for p D 2. We prefer to give a less
computational proof though.

Proposition 4.5 The p–completion of tmf is an fp-spectrum for all primes p.

Proof We implicitly p–localize. For p ¤ 3, [34, Theorem 4.10] implies the existence
of a finite spectrum W with nontrivial Fp–homology such that tmf˝W ' tmf1.3/.
Choose a complex V such that BP�V Š BP�=.p

k0 ; v
k1

1
; v

k2

2
/ with k0; k1 and k2

positive integers. As TMF1.3/ is Landweber exact, the sequence p; v1; v2 and hence
the sequence pk0 ; v

k1

1
; v

k2

2
is regular on ��TMF1.3/. Since ��tmf1.3/DZ.p/Œa1; a3�

is an integral domain, the sequence is also regular on ��tmf1.3/. Thus,

��tmf˝W ˝V Š ��tmf1.3/˝V Š ��tmf1.3/=.p
k0 ; a

k1

1
; a

k2

3
/

is a finitely generated Z=pk0–algebra and of Krull dimension 0. Hence it is of finite
length as a Z=pk0–module, and thus finite.

Essentially the same argument works for p D 3 if we choose instead a complex W 0

with tmf˝W 0 ' tmf1.2/ as in [34, Theorem 4.13].

Corollary 4.6 The p–completion of tmf.�/ for a congruence subgroup � of level n

and p not dividing n is an fp-spectrum.

For implications involving duality we refer to [33] and for an implication for the
Hurewicz image in H�.�

1tmf.�/IFp/ to [28, Theorem 1.7].

4.2 All tmf.�/Q are formal

The goal of this section is to show that the E1–rings tmf.�/Q are formal. While this
statement is interesting in its own right, we also need it for further pursuing compactness
questions in the following subsection. We begin with the following consequence of
Goerss–Hopkins obstruction theory.

Proposition 4.7 Let A and B be E1–HQ–algebras such that ��A is smooth as a
Q–algebra. Then

�i MapCAlg.A;B/Š

�
HomgrCRings.��A; ��B/ if i D 0;

Hom��A.�
1
��A=Q; ��CiB/ if i > 0;

where for �i with i > 0 a basepoint is chosen if a map A! B exists.
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Proof According to [13, Section 4] or [40, Section 6] with E D HQ, there is an
obstruction theory for lifting a morphism ��A!��B to a morphism A!B, where the
obstructions lie in ExtnC1;n

��A
.LE1
��A=Q; ��B/, where LE1 denotes the E1–cotangent

complex. As we are working rationally, this coincides with other forms of the cotangent
complexes. In particular, we obtain from the smoothness of ��A that LE1

��A=Q is
isomorphic to �1

��A=Q concentrated in degree 0, which again by smoothness is a
projective ��A–module. Thus the Ext-groups vanish and there is no obstruction to
lifting a morphism ��A! ��B to a morphism A! B. The same sources provide
a spectral sequence computing ��MapCAlg.A;B/, which collapses by a similar Ext-
calculation and gives the result.

Proposition 4.8 Let X be a smooth Deligne–Mumford stacks over Q and O an
even-periodic sheaf of E1–ring spectra on X such that �0O Š OX and the �iOX

are quasicoherent. Assume further that H iC1.X I�iO/D 0 for all even i � 1. Then
O is formal , ie equivalent to the (sheafification of the pre)sheaf H��O of graded
Eilenberg–Mac Lane spectra.

Proof Note first that .X ;O/ actually defines a nonconnective spectral Deligne–
Mumford stack and in particular O is hypercomplete; see eg [37, Lemma B.2]. Set
O0 D H��O. Choosing an étale hypercover U� ! X by affines, we can compute
MapCAlgX .O;O

0/ as the totalization of the cosimplicial diagram

M �
DMapCAlg.O.U�/;O

0.U�//:

We observe using Proposition 4.7 that �0�0M � agrees with the set of ring morphisms
��O! ��O0, in which we can pick an isomorphism f0. By [4, Sections 5.2 and 2.4],
the vanishing of � iC1�iM

� ŠH iC1.X ; �iO/ for i � 1 suffices to lift f0 to a multi-
plicative map O!O0, which is automatically an equivalence.

Corollary 4.9 For all M.�/ the rationalized Goerss–Hopkins–Miller–Hill–Lawson
sheaf Otop is formal.

Proof We can apply the previous proposition, as M.�/Q has cohomological dimen-
sion one. (See eg [36, Proposition 2.4(4)].)

Remark 4.10 In the original account of the construction of Otop on Mell in [9], Otop
Q is

actually formal by construction. Our argument shows that this choice was necessary,
not only for Mell, but also for M.�/. (The former was shown in a different manner
already in [17, Proposition 4.47].)
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Proposition 4.11 Let � be a congruence group. Then the E1–rings tmf.�/Q are
formal.

Proof Set RDH.H 0.M.�/; ��O
top
Q //. We want to construct an equivalence between

R and tmf.�/Q. By the preceding corollary, we know that Otop
Q on M.�/ is formal.

In particular this provides us with compatible maps R!Otop.U /Q for all affines U

étale over M.�/. Taking the homotopy limit, we obtain a map R! Tmf.�/Q. The
uniqueness part of Theorem 2.12 identifies R with tmf.�/Q.

4.3 Not all tmf.�/ are perfect

While we have seen above that tmf.�/ for a congruence group of level n is always
perfect as a tmfŒ1=n�–module, we will see in this subsection that it is not necessarily
compact as a tmf.� 0/Œ1=n�–module for � � � 0. The author learned this argument from
Tyler Lawson.

Lemma 4.12 For RD tmf.�/Q, the R–module H�0R can only be perfect if ��R is
regular.

Proof By [10, Theorem 19.1, Corollary 19.5 and Theorem 19.12], ��R is regular if
and only if the graded Q–vector space Tor��R

� .�0R; �0R/ is concentrated in finitely
many dimensions. Because R is formal by Proposition 4.11, this Tor agrees with
��.H�0R˝R H�0R/. Clearly, H�0R being a perfect R–module would imply the
finite-dimensionality of this quantity.

It is actually very rare that ��tmf.�/Q ŠM�.�IQ/ is regular. One of the few ex-
ceptions is � D �1.3/, where we obtain the ring QŒa1; a3�. In contrast for � D �0.3/,
we obtain its C2–fixed points, ie QŒa2

1
; a2

3
; a1a3�ŠQŒx;y; z�=xz � y2, which is not

regular. Thus, HQ is a perfect tmf1.3/–module, but is by the previous lemma not a
perfect tmf0.3/Q–module. We obtain:

Proposition 4.13 The tmf0.3/–module tmf1.3/ is not perfect , not even rationally.

4.4 All tmf.�/ are faithful

The goal of this section is to show that if � is a congruence subgroup of level n, then
tmf.�/ is (if defined) a faithful tmfŒ1=n�–module, ie tensoring with it is conservative.
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Lemma 4.14 For every congruence subgroup � of level n, the TmfŒ1=n�–module
Tmf.�/ is faithful.

Proof By [35], the derived stack .Mell;Otop/ is 0–affine, ie the global sections functor

� W QCoh.Mell;Otop/!ModTmf

is a symmetric monoidal equivalence and the same holds after inverting n. Thus our
claim is equivalent to showing that tensoring with f�O

top
M.�/

for f WM.�/!Mell;ZŒ1=n�

is conservative on QCoh.Mell;Otop/. This can be checked étale locally, where f�O
top
M.�/

is free of positive rank as f is finite and flat (see eg [36, Proposition 2.4]) and of
positive rank everywhere (as Mell;ZŒ1=n� is irreducible and M.�/ not empty).

In the following we fix a congruence subgroup � and a multiplicatively closed subset
S of Z such that tmf.�/S is defined (ie � is tame or of index 2 in a tame �).

Proposition 4.15 The tmfS –module tmf.�/S is faithful for every congruence sub-
group � .

Proof Let M 2ModtmfS
with M˝tmfS

tmf.�/S D0. It suffices to show that M.p/D0

for all p not in S . Consider the case p D 2 and localize everything implicitly at 2.
As tmf1.3/ is faithful over tmf (see [34, Theorem 4.10]), it suffices to show that
M 0 DM ˝tmf tmf1.3/ vanishes. Our assumption implies

.M ˝tmf Tmf/˝Tmf Tmf.�/D 0;

so by the faithfulness of Tmf.�/ also M˝tmfTmfD0. Thus, M 0˝tmf1.3/ Tmf1.3/D 0.
Moreover, tmf.�/˝tmf HZ is a faithful HZ–module as its �0 is a faithful Z–module.
Thus M 0˝tmf1.3/HZ'M ˝tmf HZD 0.

Recall now that ��tmf1.3/Š ZŒa1; a3�. The map tmf1.3/Œa
�1
i �! Tmf1.3/Œa

�1
i � is an

equivalence for i D 1; 3 since the cofiber of tmf1.3/! Tmf1.3/ is coconnective. Thus
the considerations above imply that M 0Œa�1

1
�;M 0Œa�1

3
� and M 0=.a1; a3/ all vanish,

which implies the vanishing of M 0.

The argument for p D 3 is similar with tmf1.2/ in place of tmf1.3/ and for p > 3 we
can use tmf itself as ��tmf

�
1
6

�
Š Z

�
1
6

�
Œc4; c6� is a polynomial ring.
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5 Splittings

Our goal in this setting is to show that tmf1.n/ often splits p–locally into small pieces.

Fixing a natural number n� 2 and a prime p not dividing n, we will work throughout
this section implicitly p–locally. We demand that M.�1.n/;Z.p//!M.�1.n/IFp/ is
surjective. In general, this is a subtle condition, but it is for example always fulfilled
if n � 28; see [36, Remark 3.14]. Equivalently, we can ask that H 1.M1.n/I!/ Š

�1Tmf1.n/ does not have p–torsion. We note that this leaves plenty of cases where
�1Tmf1.n/¤ 0 and hence tmf1.n/ is not the naive connective cover of Tmf1.n/, of
which the smallest is nD 23.

By Theorem 1.3 of [37], we have a splitting

.5.1/ Tmf1.n/'
M

i

†2ni R

of Tmf–modules, where R is Tmf1.3/, Tmf1.2/ or Tmf, depending on whether the
prime p is 2, 3 or bigger than 3. In this splitting all ni are nonnegative.

Theorem 5.2 Under the conditions as above , we have a splitting

tmf1.n/'
M

i

†2ni r;

where r D ��0R.

Proof Consider the composition

f W
M

i

†2ni r !
M

i

��0†
2ni R! ��0Tmf1.n/:

Here, the second map is just the connective cover of (5.1) (using that ��0 commutes
with direct sums) and the first map is the direct sum of the maps

†2ni r ' ��2ni
†2ni R! ��0†

2ni R:

Since all negative homotopy of R is in odd degrees, we see that f is an isomorphism
on even homotopy groups. Moreover, the source has only homotopy groups in even
degrees.

Recall that we defined tmf1.n/ as a pullback

tmf1.n/ //

��

HZ

��

��0Tmf1.n/ // �Œ0;1�Tmf1.n/

Algebraic & Geometric Topology, Volume 23 (2023)



Connective models for topological modular forms of level n 3581

where we still localize implicitly everywhere at p. This implies a fiber sequence

tmf1.n/! ��0Tmf1.n/!†H�1Tmf1.n/:

To factor f over tmf1.n/, it is enough to show that H 1.†2ni r IA/ D 0 with any
coefficients A. This is clear anyhow for ni � 1, so assume ni D 0. We know that
�Œ0;1�r 'HZ and we have H 1.HZIA/ŠH 1.SIA/D 0 (as the cofiber of S!HZ

is 1–connected).

Now ��tmf1.n/ is concentrated in even degrees and tmf1.n/! ��0Tmf1.n/ induces
a ��–isomorphism in even degrees. In total, we see that f induces an isomorphism
on ��.

Remark 5.3 The condition that �1Tmf1.n/ŠH 1.M1.n/I!/ does not have p–torsion
is actually necessary in the preceding theorem. One can indeed show that Tmf1.n/

can be recovered as tmf1.n/˝tmf Tmf. Thus a p–local tmf–linear splitting of tmf1.n/

into shifted copies of r implies a p–local splitting of Tmf1.n/ into copies of R. As the
latter has torsion-free homotopy groups, such a splitting can indeed only occur if the
homotopy groups of Tmf1.n/ are p–torsion-free as well.

We now fix p D 2 and are thus assuming that �1Tmf1.n/ Š H 1.M1.n/I!/ does
not have 2–torsion — this is true for all odd 2 � n < 65 by [36, Remark 3.14], for
example. In this setting we also want to prove connective versions of the C2–equivariant
refinement

.5.4/ Tmf1.n/.2/ 'C2

M
i

†ni�Tmf1.3/.2/

of (5.1) given in [37, Theorem 6.19], where � is the regular representation of C2. We
need the following lemma:

Lemma 5.5 Let A be an abelian group without 2–torsion , and denote by A the
corresponding constant C2–Mackey functor. Then �C2

��HAŠA˝Z=2, and the map

ŒHZ; †�HA�C2
�C2

0
��!A˝Z=2

is an isomorphism.

Proof Smashing the fundamental cofiber sequence

.C2/C! S0
! S� !†.C2/C
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with S�� and mapping out of it yields an exact sequence

�e
�1HA �C2

��HA �
C2

0
HA �e

0HA:

The rightmost arrow can be identified with the transfer trD 2 WA!A of the constant
Mackey functor, while �e

�1
HAD 0. We obtain �C2

��HAŠA˝Z=2 as claimed.

To finish the proof, we recall from Section 2.2 that ��1C x�'HZ. As †�HA� 1 in
the slice filtration, this implies that ŒHZ; †�HA�C2 Š ŒC x�;†�HA�C2 . This sits in a
long exact sequence

0D �
C2

1
HA! ŒC x�;†�HA�! �C2

��HA! �
C2

0
HADA:

As A does not have 2–torsion and we have shown above that �C2
��HAŠA˝Z=2, the

result follows.

Theorem 5.6 Assuming that n� 3 is odd and H 1.M1.n/I!/ does not have 2–torsion ,
we have 2–locally a C2–equivariant splitting

tmf1.n/'
M

i

†ni�tmf1.3/:

Proof We localize everywhere implicitly at 2 and consider the mapM
i

†ni�tmf1.3/!
M

i

��0†
ni�Tmf1.3/

��0ˆ
���! ��0Tmf1.n/;

for a chosen C2–equivalence ˆ between
L

i †
ni�Tmf1.3/ and Tmf1.n/. We have a

fiber sequence
tmf1.n/! ��0Tmf1.n/!†�HA;

where A D H 1.M1.n/I!/ since by [37, Theorem 6.16], †�HA is the 1–slice of
Tmf1.n/. On �C2

0
this induces (using Lemma 5.5) a short exact sequence

.5.7/ 0! Z! �
C2

0
Tmf1.n/

r
�!A˝Z=2! 0:

The composite
L
†ni�tmf1.3/!†�HA factors over the 1–slice coconnective cover

of the source, which agrees with HZ since there is precisely one ni equaling 0 (by
considering nonequivariant homotopy groups). Using Lemma 5.5 again, the resulting
map HZ!†�HA is null if and only if the image r.ˆ.1// of ˆ.1/ in A˝Z=2 is 0.

We want to show that we can change ˆ so that this is true. Using ˆ, the C2–spectrum
Tmf1.n/ gets the structure of a Tmf1.3/–module. Thus, Tmf1.3/–module maps
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LN
iD0†

ni�Tmf1.3/!Tmf1.n/ correspond to a sequence of classes xi 2�
C2
ni�Tmf1.n/

by considering the images of 12�
C2
ni�†

ni�Tmf1.3/. Denote the sequence corresponding
to ˆ by e0; : : : ; eN . By possibly reordering, we can assume n0 D 0. We construct a
new map ˆ0 W

LN
iD0†

ni�Tmf1.3/! Tmf1.n/ corresponding to x0;x1; : : : ;xN with
xi D ei for i > 0, and x0 corresponding to the image of u 2 Z in (5.7), where u maps
to resC2

e .e0/ along the isomorphism Z Š �e
0

tmf1.n/ ! �e
0

Tmf1.n/. As ˆ0 and ˆ
induce the same map on underlying homotopy groups, the map ˆ0 is an equivalence.
By construction, r.x0/D 0.

Thus the mapM
i

†ni�tmf1.3/!
M

i

��0†
ni�tmf1.3/

��0ˆ
0

���! ��0Tmf1.n/

factors indeed over tmf1.n/. As before, the map †ni�tmf1.3/! tmf1.n/ induces an
isomorphism on underlying homotopy groups. Both source and target are strongly even
and thus the map is a C2–equivariant equivalence by [18, Lemma 3.4].
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Asymptotic dimension of graphs of groups
and one-relator groups
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We prove a new inequality for the asymptotic dimension of HNN-extensions. We
deduce that the asymptotic dimension of every finitely generated one-relator group is
at most two, confirming a conjecture of A Dranishnikov. As corollaries we calculate
the exact asymptotic dimension of right-angled Artin groups and we give a new upper
bound for the asymptotic dimension of fundamental groups of graphs of groups.
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1 Introduction

In 1993, M Gromov introduced the notion of the asymptotic dimension of metric spaces
(see [12]) as an invariant of finitely generated groups. It can be shown that if two
metric spaces are quasi-isometric then they have the same asymptotic dimension. The
asymptotic dimension asdimX of a metric space X is defined by: asdimX � n if and
only if, for every R>0, there exists a uniformly bounded covering U of X such that the
R–multiplicity of U is smaller than or equal to nC 1 (ie every R–ball in X intersects
at most nC1 elements of U). There are many equivalent ways to define the asymptotic
dimension of a metric space. It turns out that the asymptotic dimension of an infinite
tree is 1 and the asymptotic dimension of En is n.
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In 1998, the asymptotic dimension achieved particular prominence in geometric group
theory after the publication of a paper of Guoliang Yu (see [24]) which proved the
Novikov higher signature conjecture for manifolds whose fundamental group has finite
asymptotic dimension. Unfortunately, not all finitely presented groups have finite
asymptotic dimension. For example, Thompson’s group F has infinite asymptotic
dimension since it contains Zn for all n. However, we know for many classes of groups
that they have finite asymptotic dimension. For instance, hyperbolic, relative hyper-
bolic, mapping class groups of surfaces and one-relator groups have finite asymptotic
dimension (see G Bell and A Dranishnikov [3], Bestvina, Bromberg and Fujiwara [6],
Osin [18] and D Matsnev [17]). The exact computation of the asymptotic dimension of
groups or finding the optimal upper bound is more delicate. Another remarkable result
is that of Buyalo and Lebedeva (see [7]), where in 2006 they established the equality,
for hyperbolic groups,

asdimG D dim @1GC 1:

The inequalities of Bell and Dranishnikov (see [2; 9]) play a key role in finding an
upper bound for the asymptotic dimension of groups. However, in some cases the
upper bounds that the inequalities of Bell and Dranishnikov provide us are quite far
from being optimal. An example is the asymptotic dimension of one-relator groups.

We prove some new inequalities that can be a useful tool for the computation of
the asymptotic dimension of groups. As an application we give the optimal upper
bound for the asymptotic dimension of one-relator groups which was conjectured by
Dranishnikov. As a further corollary we calculate the exact asymptotic dimension of any
right-angled Artin group (Theorem 1.2) — this has been proven earlier by N Wright [23]
by different methods.

The first inequality and one of the main results we prove is the following:

Theorem 1.1 Let G�N be an HNN-extension of the finitely generated group G
over N . Then

asdimG�N �maxfasdimG; asdimN C 1g:

Next, we calculate the asymptotic dimension of the right-angled Artin groups. To be
more precise, let � be a finite simplicial graph. We denote by A.�/ the right-angled
Artin group (RAAG) associated to the graph � . We set

Sim.�/Dmaxfn W � contains the 1–skeleton of the standard .n�1/–simplex �n�1g:

Then by applying Theorem 1.1 we obtain the following:

Algebraic & Geometric Topology, Volume 23 (2023)
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Theorem 1.2 Let � be a finite simplicial graph. Then

asdimA.�/D Sim.�/:

In 2005, Bell and Dranishnikov (see [4]) gave a proof that the asymptotic dimension of
one-relator groups is finite and also gave an upper bound, namely the length of the relator
plus one. LetGDhS jri be a finitely generated one-relator group such that jr jDn. Then

asdimG � nC 1:

To prove this upper bound, Bell and Dranishnikov used an inequality for the asymptotic
dimension of HNN-extensions; see [2]. In particular, let G be a finitely generated
group and let N be a subgroup of G. Then

asdimG�N � asdimGC 1:

In 2006, Matsnev (see [17]) proved a sharper upper bound for the asymptotic dimension
of one-relator groups: if G D hS j ri is a one-relator group, then

asdimG �
˙
1
2

length.r/
�
:

Here by dae (a 2R) we denote the minimal integer greater than or equal to a.

Applying Theorem 1.1, we answer a conjecture of Dranishnikov (see [8]) giving the
optimal upper bound for the asymptotic dimension of one-relator groups.

Theorem 1.3 Let G be a finitely generated one-relator group. Then

asdimG � 2:

We note that R C Lyndon (see [14]) has shown that the cohomological dimension of
a torsion-free one-relator group is smaller than or equal to 2. Our result can be seen
as a large-scale analog of this. We note that the large-scale geometry of one-relator
groups can be quite complicated; for example, one-relator groups can have very large
isoperimetric functions; see eg Platonov [19].

It is worth noting that L Sledd showed that the Assouad–Nagata dimension of any
finitely generated C 0

�
1
6

�
group is at most two; see [20].

Theorem 1.3 combined with the results of M Kapovich and B Kleiner (see [13]) leads
us to a description of the boundary of hyperbolic one-relator groups.

We determine also the one-relator groups that have asymptotic dimension exactly
two. We prove that every infinite finitely generated one-relator group G that is not a
free group or a free product of a free group and a finite cyclic group has asymptotic
dimension equal to 2 (Proposition 3.5). We obtain the following:

Algebraic & Geometric Topology, Volume 23 (2023)
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Corollary Let G be finitely generated freely indecomposable one-relator group which
is not cyclic. Then

asdimG D 2:

Moreover, we describe the finitely generated one-relator groups:

Corollary Let G be a finitely generated one-relator group. Then one of the following
is true:

(i) G is finite cyclic , and asdimG D 0.

(ii) G is a nontrivial free group or a free product of a nontrivial free group and a
finite cyclic group , and asdimG D 1.

(iii) G is an infinite freely indecomposable not cyclic group or a free product of a
nontrivial free group and an infinite freely indecomposable not cyclic group , and
asdimG D 2.

Using Theorem 1.1 and an inequality of Dranishnikov about the asymptotic dimension
of amalgamated products (see [9]) we obtain a more general theorem for the asymptotic
dimension of fundamental groups of graphs of groups:

Theorem 1.4 Let .G; Y / be a finite graph of groups with vertex groups fGv W v 2 Y 0g
and edge groups fGe W e 2 Y 1Cg. Then

asdim�1.G; Y;T /� max
v2Y 0;e2Y 1

C

fasdimGv; asdimGeC 1g:

Using the previous theorem, we can obtain, for example, that the asymptotic dimension
of a graph of surface groups (with genus� 2) with free edge groups is two. Theorem 1.4
says that the asymptotic dimension doesn’t jump as long as there exists a vertex group
with asymptotic dimension greater than the asymptotic dimension of any edge group.

The paper is organized as follows. In Section 2 we prove the inequality for the
asymptotic dimension of HNN-extensions. In Section 2.1 we compute the asymptotic
dimension of RAAGs. Next, in Section 3 we give the optimal upper bound for the
asymptotic dimension of one-relator groups. In Section 3.1 we describe the one-relator
groups with asymptotic dimension 0, 1 and 2. In Section 4 a new upper bound for the
asymptotic dimension of graphs of groups is obtained.

Acknowledgments I would like to thank Panos Papasoglu for his valuable advice
during the development of this research work. I owe my deepest gratitude to anonymous
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thanks to Mark Hagen and Richard Wade for their very useful comments.

2 Asymptotic dimension of HNN-extensions

Let X be a metric space and U a covering of X . We say that the covering U is d–
bounded or d–uniformly bounded if supU2UfdiamU g � d . The Lebesgue number
L.U/ of the covering U is

L.U/D supf� W if A�X with diamA� � then there exists U 2 U such that A�U g:

We recall that the order ord.U/ of the cover U is the smallest number n (if it exists) such
that each point of the space belongs to at most n sets in the cover. For a metric space X ,
we say that .r; d/–dimX � n if, for r > 0, there exists a d–bounded cover U of X with
ord.U/� nC 1 and with Lebesgue number L.U/ > r . We refer to such a cover as an
.r; d/–cover of X . The following proposition is due to Bell and Dranishnikov (see [2]):

Proposition 2.1 For a metric space X , asdimX � n if and only if there exists a
function d.r/ such that .r; d.r//–dimX � n for all r > 0.

We recall that the family Xi of subsets of X satisfies the inequality asdimXi � n

uniformly if, for every R > 0, there exists a D–bounded covering Ui of Xi with
R–mult.Ui /� nC 1 for every i . For the proofs of Theorems 2.2 and 2.3 see [1].

Theorem 2.2 (infinite union theorem) Let X D
S
a Xa be a metric space where the

family fXag satisfies the inequality asdimXa � n uniformly. Suppose further that , for
every r >0, there is a subset Yr �X with asdimYr �n, so that d.XanYr ; XbnYr/� r
whenever Xa ¤Xb . Then asdimX � n.

Theorem 2.3 (finite union theorem) For every metric space presented as a finite
union X D

S
i Xi ,

asdimX DmaxfasdimXig:

A partition of a metric space X is a presentation as a union X D
S
i Wi such that

Int.Wi /\ Int.Wj /D¿ whenever i ¤ j . We denote by @Wi the topological boundary
of Wi and by Int.Wi / the topological interior. We have that @W \ Int.W /D¿. The
boundary can be written as

@Wi D fx 2X W d.x;Wi /D d.x;X nWi /D 0g:

For the proof of the following theorem see [9]:
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Theorem 2.4 (partition theorem) Let X be a geodesic metric space. Suppose that for
every R > 0 there is d > 0 and a partition X D

S
i Wi with asdimWi � n uniformly

in i and such that .R; d/–dim
�S

i @Wi
�
� n� 1, where @Wi is taken with the metric

restricted from X . Then asdimX � n.

LetG be a finitely generated group,N a subgroup ofG and � WN!G a monomorphism.
We set G DG�N , the HNN-extension of G over the subgroup N with respect to the
monomorphism �. We fix a finite generating set S for the group G. Then the set
SDS[ft; t�1g is a finite generating set for the groupG and we setC.G/DCay.G; S/,
its Cayley graph.

Normal forms for HNN-extensions There are two types of normal forms for HNN-
extensions: the right normal form and the left normal form. We use both.

Right normal form Let SN and S�.N/ be sets of representatives of right cosets of
G=N and of G=�.N /, respectively. Then every w 2 G has a unique normal form
wD gt�1s1t

�2s2 � � � t
�ksk where g 2G, �i 2 f�1; 1g, if �i D 1 then si 2SN , if �i D�1

then si 2 S�.N/, and if si D 1 then �i�iC1 > 0. We say that the length of the right
normal form of w is k.

Left normal form Let NS and �.N/S be sets of representatives of left cosets of
G=N and of G=�.N /, respectively. Then every w 2 G has a unique normal form
w D s1t

�1s2t
�2 � � � skt

�kg where g 2 G, �i 2 f�1; 1g, if �i D 1 then si 2�.N/ S , if
�i D�1 then si 2N S , and if si D 1 then �i�1�i > 0. We say that the length of the left
normal form of w is k.

We observe that the lengths of the right and the left normal form of an element coincide,
and denote this length by l.w/.

Convention When we write a normal form we mean the right normal form, unless
otherwise stated.

The group G D G�N acts on its Bass–Serre tree T . There is a natural projection
� WG�N ! T defined by the action: �.g/D gG.

Lemma 2.5 The map � WG! T extends to a simplicial map from the Cayley graph ,
� W C.G; S/! T , which is 1–Lipschitz.

Proof Let g 2 G and s 2 S . Then the vertex g is mapped to the vertex �.g/ D
�.gs/DgG. If s2S , then the edge Œg; gs� is mapped to the vertex �.g/D�.gs/DgG.
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G

xG

G

x

�

Figure 1: An illustration of the projection � W C.G; S/! T .

If s 2 ft; t�1g, without loss of generality we may assume that s D t , and so the edge
Œg; gs� is mapped to the edge Œ�.g/; �.gs/�D ŒgG; gtG� of T .

We observe that the simplicial map � W C.G/! T is 1–Lipschitz.

The base vertex G separates T into two parts, T� nG and TC nG, where

��1.TC/Dfw2G W if wDgt�1s1t
�2s2 � � � t

�ksk is the normal form of w then �1D1g

and similarly

��1.T�/

D fw 2G W if w D gt�1s1t
�2s2 � � � t

�ksk is the normal form of w then �1 D�1g:

We note that both TC nG and T� nG are unions of connected components of T and
��1.TC/ and ��1.T�/ are unions of connected components of C.G/. See Figure 2
for an illustration of T� and TC.

G

TCT�

tt�1

Figure 2: An illustration of TC and T�.
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G

u

T u

G

u

Bu2

Figure 3: Left: an illustration of T u. Right: an illustration of Bur , where r D 2.

We consider the Bass–Serre tree T as a metric space with the simplicial metric Nd . If Y
is a graph, we denote by Y 0 or V.Y / the vertices of Y . For u2T 0 we denote by juj the
distance to the vertex with label G. We note that the distance of the vertex wG from G

in the Bass–Serre tree T equals the length l.w/ of the normal form of w, jwGj D l.w/.

We recall that a full subgraph of a graph � is a subgraph formed from a subset of
vertices V and from all of the edges that have both endpoints in the subset V . If A is
a subgraph of � we define the edge closure E.A/ of A to be the full subgraph of �
formed from V.A/. Obviously, V.E.A//D V.A/.

We fix some notation on the Bass–Serre tree T and on the Cayley graph.

In the tree T We denote by BTr the r–ball in T centered at G (r 2 N). There is
a partial order on vertices of T defined by setting v � u if and only if v lies in the
geodesic segment ŒG; u� joining the base vertex G with u. For u 2 T 0 of nonzero level
(ie u¤G) and r > 0, we set

T u DE.fv 2 T 0 W u� vg/; Bur DE.fv 2 T
u
W jvj � jujC rg/:

For every vertex u 2 T 0 represented by a coset guG, we have Bur D guB
T
r \T

u. We
also observe that Bur DE.fv 2 T

u W Nd.v; u/� rg/. See Figure 3 for an illustration of
the sets T u and Bur

In the Cayley graph For R 2N, let

MR D fg 2G W dist.g;N [�.N //DRg:

Letting uD guG, we set Mu
R D guMR \�

�1.T u/. We observe that �.Mu
R/ � B

u
R

since � is 1–Lipschitz.
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G

ER

G

MR

Figure 4: Left: an illustration of ER. Right: an illustration of MR.

Letting uD guG, we set ER DE
�
NR.N [�.N //

�
and

EuR D guER \�
�1.T u/:

Obviously, Mu
R �E

u
R � �

�1.BuR).

Convention We associate every u 2 T 0 to an element gu 2G such that

(i) uD guG, and

(ii) if the left normal form of gu is s1t�1s2t
�2 � � � skt

�kg then g D 1G .

We see that in this way we may define a bijective map from T 0 to the set GT which
consists of the elements of G such that conditions (i) and (ii) hold.

Proposition 2.6 If 4 < 4R � r and the distinct vertices u; u0 2 T 0, satisfy juj; ju0j 2
fnr W n 2Ng, then

d.Mu
R;M

u0

R /� 2R:

Proof We distinguish two cases. See the left and right parts of Figure 5 for cases 1
and 2, respectively.

Case 1 (juj ¤ ju0j) Recall that every path  in C.G/ projects to a path �./ in the
tree T . Then, since

Mu
R D guMR \�

�1.T u/� ��1.BuR/; Mu0

R D gu0MR \�
�1.T u

0

/� ��1.Bu
0

R /

and � is 1–Lipschitz,

d.Mu
R;M

u0

R /�
Nd.BuR; B

u0

R /� r �R � 3R:
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G

M u
R

MR

guG

r

G

M u
R

guG

M u0

R

gu0G

r

Figure 5: Left: an illustration of Case 1 of Proposition 2.6, where u0 D G.
Right: an illustration of Case 2 of Proposition 2.6.

Case 2 (juj D ju0j with u¤ u0) Denote by �0 the last vertex of the common geodesic
segment ŒG; �0� of the geodesics ŒG; u� and ŒG; u0�. Observe that Nd.u; �0/; Nd.u0; �0/�1.
Let x 2Mu

R, y 2Mu0

R and let  be a geodesic from x to y. Then the path �./ passes

G

Q2

G

��1.B2/

Figure 6: Left: an illustration of Qm, for mD 2 (Proposition 2.8). We note
that Qm D V.��1.Br //. Right: an illustration of ��1.Br /, where r D 2.
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through the vertices u, u0 and �0, so the geodesic  intersects both gu.N [�.N // and
gu0.N [�.N //. Hence

d.x; y/� dist
�
x; gu.N [�.N //

�
C dist

�
y; gu0.N [�.N //

�
C length.Œ�0; u0�/

C length.Œ�0; u�/

�RCRC 2D 2.RC 1/:

For w 2 G�N , we denote by kwk the distance from w to 1G in the Cayley graph
Cay.G; S/.

Lemma 2.7 Let w D gt�1s1t
�2s2 � � � t

�ksk be the normal form of w. Then

kwk � d.sk; N / if �k D 1 and kwk � d.sk; �.N // if �k D�1:

Proof Without loss of generality we assume that �k D 1. Let

w D

� m0Y
i0D1

si0

�
t�1

� m1Y
i1D1

si1

�
t�2 � � � t

� mkY
ikD1

sik

�
be a shortest presentation of w in the alphabet S (we note that sij … ft; t

�1g). We setQmj

ijD1
sij D gj for every j 2 f1; : : : ; kg. Then wD gt�1g1t

�2s2 � � � tgk Dw0tgk . The
first step when we rewrite w in normal form starting from the previous presentation is
to write gk D nsk (where n 2N ). Then

kwk � kgkk D knskk D d.nsk; 1/D d.sk; n
�1/� d.sk; N /:

We note that there exists an amalgamated product analog of the following proposition,
proved by Dranishnikov in [9]:

Proposition 2.8 Suppose that asdimG � n. Let

Qm D fw 2G W l.w/�mg:

Then asdimQm � n, for every m 2N.

Proof We set P� D fw 2G W l.w/D �g. It is enough to show that asdimP� � n, for
every � 2N. Indeed, since

Qm D

m[
iD0

Pi ;

by the finite union theorem we obtain that asdimQm � n.

Claim For � 2N we have asdimP� � n.
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Proof We use induction on �. We have P0 DG, so asdimP0 � n. We observe that
P� � P��1tG [P��1t

�1G. Using the finite union theorem it suffices to show that
asdim.P�\P��1tG/� n and asdim.P�\P��1t�1G/� n; we show the first.

To show that asdimP�\P��1tG � n, we use the infinite union theorem. For r > 0
we set Yr D P��1tNr.N /. We claim that

Yr �NrC1.P��1/:

Indeed, if z 2Yr then zD z0tz1, where z0 2P��1 and z1 2Nr.N /. Since z1 2Nr.N /,
there exists n 2N with d.n; z1/� r. So z D z0tnn�1z1 D z0�.n/tn�1z1, and

d.z; P��1/� d.z; z0�.n//D ktn
�1z1k � ktkCkt

�1z1k � 1C r:

Hence Yr and P��1 are quasi-isomorphic, so asdimYr � n.

We consider the family xtG where x 2 P��1. For xtG ¤ ytG, we have

d.xtG nYr ; ytG nYr/D d.xtg; yth/D kg
�1t�1x�1ythk;

where g; h2GnNr.N /. The first step when we rewrite g�1t�1x�1yth in normal form
is to make the substitution hD nsk , where n 2N and sk 2 SN , so g�1t�1x�1ythD
g�1t�1x�1y�.n/tsk . Since h 2G nNr.N /, we have kskk D kn�1hk � d.h;N /� r .

By Lemma 2.7 we obtain that kg�1t�1x�1y�.n/tskk � kskk � r .

Finally, by observing that xtG and G are isometric, we deduce that asdim.xtG/� n
uniformly. Since all the conditions of the infinite union theorem hold,

asdim.P�\P��1tG/� n

for every � 2N.

We observe that E.Qm/D ��1.BTm/ and Qm DG \��1.BTm/.

For w 2G, we set T w D T �.w/, where �.w/D wG.

We note that there was an attempt to prove the following theorem in [16], however,
there is a gap in that proof. We give a few details about this gap right after the proof of
Theorem 2.9.

Theorem 2.9 Let G�N be an HNN-extension of the finitely generated group G
over N . Then

asdimG�N �maxfasdimG; asdimN C 1g:
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G

Vr

Figure 7: An illustration of Vr .

Proof Let nDmaxfasdimG; asdimN C1g. We denote by � WC.G; S/! T the map
of Lemma 2.5. We recall that we denote by l.g/ the length of the normal form of g.

We use the partition theorem (Theorem 2.4). LetR; r 2N be such thatR>1 and r >4R.

We set

Ur DE

��
��1.BTr�1/\E

�
fg 2G W d.g;N [�.N //�Rg

��
[

� [
u2@BT

r

EuR

��
;

where EuR D guE
�
NR.N [�.N //

�
\��1.T u/. We recall that

MR D fg 2G W d.g;N [�.N //DRg:

Let AR be the collection of the edges between the elements of MR �Ur . We have that
AR � Ur . We define Vr to be the set obtained by removing the interior of the edges of
AR from Ur . Formally,

Vr D Ur n finterior.e/ W e 2 ARg:

See Figure 7 for an illustration of Vr . We observe that Ur and Vr are subgraphs of
C.G/, @Ur D @Vr and Vr \G DUr \G. Obviously,

S
u2@BT

r
EuR � Vr . We also have

Vr\GD
�
G\��1.BTr�1/\E

�
fg 2G W d.g;N [�.N //�Rg

��
[

�
G\

[
u2@BT

r

EuR

�
:

To be more precise, Vr \G consists of those wx 2G such that d.w;N [�.N //�R
and, if wD g0t�1g1 � � � t

�kgk is the normal form of w, then either k � r�1, or gk D 1
and k D r , while, if x ¤ 1, then k D r , gk D 1 and d.x;N [�.N //�R.
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For every vertex u 2 T 0 satisfying juj 2 fnr W n 2Ng, we define

V ur D guVr \�
�1.T u/:

Obviously, the sets V ur are subgraphs of C.G/ and V ur ª G. We observe that Vr �
��1.BTrCR/, so V ur ��

�1.BurCR/. Obviously, for every h such that hDg1t�1g2 � � � t
�r

is the left normal form of h, u� guhG and jujC r D jguhGj, we have that

.guMR \�
�1.T guG//[ .guhMR \�

�1.T guhG//� V ur :

We also observe that
guMR \�

�1.T guG/� @V ur ;

which can also be written as

Mu
R DM

guG
R � @V ur :

We set V Gr D Vr .

Consider the partition

(1) C.G/D ��1.T /D

� [
juj2fnrWn2NC[f0gg

V ur

�
[E

�
NR.N [�.N //

�
:

We set
Z D

� [
juj2fnrWn2NCg[f0g

@V ur

�
[ @E

�
NR.N [�.N //

�
:

Observe that if V ur \ V
v
r ¤ ¿, then either u � v and juj C r D jvj or u � v and

jvjC r D juj. If V ur \V
v
r ¤¿ is such that u� v and jujC r D jvj, then

V ur \V
v
r DM

v
R:

We deduce that

Z D

� [
juj2fnrWn2NCg

Mu
R

�
[MR:

We will show that there exists d > 0 such that .R; d/–dimZ � n� 1. Since MR is
quasi-isometric to NR.N [ �.N //, which is quasi-isometric to N [ �.N /, we have
that asdimMR � n�1. Then for R> 0 there exists an .R; d/–covering U of MR with
ord.U/� n. In view of Proposition 2.6, the covering

V D U [
[

juj2fnrWn2NCg

.guU \Mu
R/

is an .R; d/–covering of Z with ord.V/� n. We conclude that .R; d/–dimZ � n� 1.
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Next, we will show that asdimV ur � n and asdimNR.N [�.N //� n uniformly. This
will complete our proof, since all the conditions of the partition theorem are satisfied.
It suffices to show that asdimV ur � n uniformly and

asdimNR.N [�.N //� n:

We observe that Vr � ��1.BTrCR/ � N1.QrCR/, so by Proposition 2.8 we have
that asdimV ur � n. Since there are at most two isometric classes for the sets V ur
(for u ¤ G) of our partition, we conclude that asdimV ur � n uniformly. Finally,
asdimNR.N [�.N //� n� 1 since NR.N [�.N // is quasi-isometric to N [�.N /.

By the partition theorem (Theorem 2.4), asdimC.G/D asdim��1.T /� n.

We now give a few details about the gap we found in [16]. We use the same notation
as on pages 2276–2279 of [16]. We are not going to redefine all the symbols we
use. We consider the HNN-extension A�C D hSA j RA; ct D tf .c/i with respect
to a monomorphism f . The idea was to construct a partition for ��1.K1/. The
building block of this partition is the set Vr DXC\

�T
jujDr X

u
�

�
, where uD guC are

vertices of K1.

The problem is that the set Vr is empty when the index ŒA WC � is at least 2. One can find
two vertices u and v of K1 (where juj D jvj D r) such that Xv�\X

u
� D¿. To see that,

one must investigate how the dual graph K behaves under translations. For example,
KuDguK1 when gu (where u is a vertex ofK1) has a normal form ending with t , while
Ku D guK0 when gu (where u is a vertex of K1) has a normal form ending with t�1.

2.1 Right-angled Artin groups

We use the following theorem of Bell, Dranishnikov and J Keesling; see [5].

Theorem 2.10 If A and B are finitely generated groups then

asdimA�B DmaxfasdimA; asdimBg:

Let � be a finite simplicial graph with n vertices. The right-angled Artin group (RAAG)
A.�/ associated to the graph � has the presentation

A.�/D hfsu W u 2 V.�/g j fŒsu; sv� W Œu; v� 2E.�/gi:

By Œsu; sv�D susvs�1u s�1v we mean the commutator. We set

Val.�/Dmaxfvalency.u/ W u 2 V.�/g:
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By valency.u/ of a vertex u we denote the number of edges incident to the vertex u.
Clearly Val.�/� rank.A.�//� 1.

If � is a simplicial graph, we denote by 1–skel.�/ the 1–skeleton of � . Recall that a
full subgraph of a graph � is a subgraph formed from a subset of vertices V and from
all of the edges that have both endpoints in the subset V .

Conventions Let � be simplicial graph, u 2 V.�/ and e 2E.�/. We denote by

(i) � n fug the full subgraph of � formed from V.�/ n fug,

(ii) � n e the subgraph of � such that V.� n e/D V.�/ and E.� n e/DE.�/ n feg.

Lemma 2.11 Let � be a finite simplicial graph. Then

asdimA.�/� Val.�/C 1:

Proof By Theorem 2.10, it suffices to prove Lemma 2.11 for connected simplicial
graphs, so assume � is a connected simplicial graph. We use induction on rank.A.�//.
For rank.A.�//D 1 we have that A.�/ is Z, so the statement holds. We assume that
the statement holds for every k � n and we show that it holds for nC1 (for nC1� 2).

Let � be a simplicial graph with nC1 vertices. We remove a vertex u from the graph �
such that valency.u/D Val.�/D m � 1. Let’s denote by vi (for i 2 f1; : : : ; mg) the
vertices of � which are adjacent to u. We set � 0D�nfug. Obviously, Val.� 0/�Val.�/.
We denote by Y the full subgraph of � formed from fv1; : : : ; vmg.

We observe that the RAAG A.�/ is an HNN-extension of the RAAG A.� 0/. To be
more precise, we have that

A.�/D A.� 0/�A.Y / :

By Theorem 2.9 we obtain that

asdimA.�/�maxfasdimA.� 0/; asdimA.Y /C 1g:

We observe that Val.Y /�Val.�/�1, so by the inductive hypothesis (rank.A.Y //� n),

asdimA.Y /� Val.Y /C 1� Val.�/:

Since rankA.� 0/D n, again by the inductive hypothesis, we deduce that

asdimA.� 0/� Val.� 0/C 1� Val.�/C 1:

Combining the three previous inequalities, we obtain

asdimA.�/�maxfVal.�/C 1;Val.�/C 1g D Val.�/C 1:
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Using the previous lemma we can compute the exact asymptotic dimension of A.�/.
We note that this has already been computed by Wright [23] using different methods.

We set

Sim.�/Dmaxfn W � contains the 1–skeleton of the standard .n�1/–simplex �n�1g:

Obviously if � 0 � � , then Sim.� 0/� Sim.�/.

Theorem 2.12 Let � be a finite simplicial graph. Then

asdimA.�/D Sim.�/:

Proof By Theorem 2.10, it suffices to prove Theorem 2.12 for connected simplicial
graphs, so assume � is a connected simplicial graph.

Claim 1 Sim.�/� asdimA.�/.

Proof Let Sim.�/D n. We observe that Zn D A.Sn�1/� A.�/. It follows that

nD asdim Zn � asdimA.�/:

Claim 2 asdimA.�/� Sim.�/.

Proof We use induction on rank.A.�//. For rank.A.�//D 1 we have that A.�/ is Z,
so the statement holds. We assume that the statement holds for every r�m, and we show
that holds for mC1 as well. Let � be a connected simplicial graph with mC1 vertices.

Let Sim.�/D n. Then � contains the 1–skeleton of the standard .n�1/–simplex Sn�1
(where Sn�1 D 1–skel.�n�1//.

Case 1 (� D Sn�1/ Then mC 1D n, so by Lemma 2.11 we have asdimA.Sn�1/�

Val.Sn�1/C 1. By observing that Val.Sn�1/D n� 1, we obtain that

asdimA.Sn�1/� nD Sim.�/:

Case 2 (Sn�1 ¤ �) We will remove a vertex u 2 V.Sn�1/. Let’s denote by vi (for
i 2f1; : : : ; kg) the vertices of � which are adjacent to u. We set � 0D�nfug. Obviously
Sim.� 0/� n. We denote by Y the full subgraph of � formed from fv1; : : : ; vkg.

We observe that the RAAG A.�/ is an HNN-extension of the RAAG A.� 0/. To be
more precise,

A.�/D A.� 0/�A.Y / :

By Theorem 2.9 we obtain that

(2) asdimA.�/�maxfasdimA.� 0/; asdimA.Y /C 1g:
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Since Sim.� 0/� n and rank.� 0/�m, by the inductive assumption

(3) asdimA.� 0/� Sim.� 0/� n:

We observe that Sim.Y /� n� 1 and rank.Y /�m. Then by the inductive hypothesis
we obtain

(4) asdimA.Y /C 1� Sim.Y /C 1� n:

by (2), (3) and (4) we conclude that

asdimA.�/� nD Sim.�/:

3 Asymptotic dimension of one-relator groups

Theorem 3.1 Let G be a finitely generated one-relator group. Then

asdimG � 2:

Proof Let G D hS j ri be a presentation of G where S is finite and r is a cyclically
reduced word in S [S�1. To omit trivial cases, we assume that S contains at least two
elements and jr j>0 (we denote by jr j the length of the relator r in the free group F.S/).

We may assume that every letter of S appears in r . Otherwise our groupG is isomorphic
to a free product H � F of a finitely generated one-relator group H with relator r
and generating set SH � S consisting of all letters which appear in r and a free
group F with generating set the remaining letters of S . We recall that the asymptotic
dimension of any finitely generated nonabelian free group is equal to one. Then
asdimG DmaxfasdimH; asdimF g DmaxfasdimH; 1g; see [2].

We denote by �r.s/ the exponent sum of a letter s 2 S in a word r , and by ocr.s/ the
minimum number of the positions of appearance of the elements of the set

fsk for some 0¤ k 2 Zg

in a cyclically reduced word r . For example, if r D abcab10a�2c�1, then ocr.a/D 3,
ocr.b/D 2, ocr.c/D 2 and �r.c/D 0.

We observe that, if there exists b 2 S such that ocr.b/D 1, then the group G is free
(see [15, Theorem 5.1, page 198]), so asdimG D 1. From now on we assume that, for
every s 2 S , we have that ocr.s/� 2 (so jr j � 4).

The proof is by induction on the length of r . We observe that if jr j D 4 then the
statement of the theorem holds, since by the result of Matsnev [17] we have that
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asdimG � 1
2
bjr jc D 4

2
D 2 (where b�c is the floor function). We assume that the

statement of the theorem holds for all one-relator groups with relator length smaller
than or equal to jr j � 1.

We follow the arguments from the book of Lyndon and Schupp (see [15, Theorem 5.1,
page 198]) and the book of Wise (see [22, Construction 18.5]). We distinguish two cases.

Case 1 (there exists a letter a 2 S such that �r.a/ D 0) We shall exhibit G as an
HNN-extension of a one-relator group G1 whose defining relator has shorter length
than r , over a finitely generated free subgroup F . Let S D faD s1; s2; s3; s4; : : : ; skg.
Set s.j /i D a

j sia
�j for j 2 Z and for k � i � 2. Rewrite r , scanning it from left to

right and changing any occurrence of aj si to s.j /i aj , collecting the powers of adjacent
a–letters together and continuing with the leftmost occurrence of a or its inverse in the
modified word. We denote by r 0 the modified word in terms of s.j /i . We note that by
doing this we make at least one cancellation of a and its inverse. The resulting word r 0,
which represents r in terms of s.j /i and their inverses, has length at most jr j � 2. For
example, if r D as2s3as42a

�2s3 then r 0 D s.1/2 s
.1/
3 .s

.2/
2 /4s

.0/
3 .

Let m and M be the minimal and the maximal superscripts, respectively, of all s.j /i
(for i � 2) occurring in r 0. To be more precise,

mDminfj W s.j /i occurs in r 0g and M Dmaxfj W s.j /i occurs in r 0g:

Continuing our example, mD 0 and M D 2.

Claim 1.1 In Case 1 we have M �m> 0 and m� 0�M .

We may assume, replacing r with a suitable permutation if necessary, that r begins with
ak for some k ¤ 0. Then we can write r D akswantz, where k; n¤ 0, a … fs; tg � S
and both a and a�1 do not appear in the word z (ocz.a/D 0). Then we observe that the
letter s has as superscript k in the word r 0 while t has as superscript 0 in the word r 0.
Since k ¤ 0, we have that M �m> 0. This completes the proof of Claim 1.1.

Claim 1.2 The group G has a presentation

hfa;s
.j /
i W iD2; : : : ;k; j Dm;: : : ;M g jfr

0;as
.j 0/
i a�1.s

.j 0C1/
i /�1 Wj 0Dm;: : : ;M�1gi:

To verify the claim, let H be the group defined by the presentation given above. The
map � WG!H defined by

a 7! a; si 7! s
.0/
i
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is a homomorphism since �.r/D r 0. On the other hand, the map  WH!G defined by

a 7! a; s
.j /
i 7! aj sia

�j

is also a homomorphism since all relators of H are sent to 1G .

It is easy to verify that ı� is the identity map ofG. The homomorphism �ı WH!H

maps a 7! a, s.0/i 7! si 7! s
.0/
i and s.j /i 7! aj sia

�j 7! aj s
.0/
i a�j . Now we show that

s
.j /
i D a

j s
.0/
i a�j . We have

a1s
.0/
i a�1 D s

.1/
i ; a1s

.1/
i a�1 D s

.2/
i ; : : : a1s

.j�1/
i a�1 D s

.j /
i :

Combining these equations s.j /i D a
1s
.j�1/
i a�1 D a2s

.j�2/
i a�2 D � � � D aj s

.0/
i a�j ,

so � ı D idH .

Since � ı and  ı� are the identity maps on H and G, respectively, we deduce that
� is an isomorphism. This completes the proof of Claim 1.2.

We set
G1 D hfs

.j /
i W i D 2; : : : ; k; j Dm; : : : ;M g j r

0
i;

and note that there exists a letter sim 2 S such that s.m/im
appears in r 0 and a letter

siM 2 S such that s.M/
iM

appears in r 0.

Let F and ƒ be the subgroups of G1 generated by

X D fs
.j /
i W i D 2; : : : ; k; j Dm; : : : ;M � 1g

and
Y D fs

.j /
i W i D 2; : : : ; k; j DmC 1; : : : ;M g;

respectively.

Claim 1.3 The groups F and ƒ are free subgroups of G1.

This claim follows by the Freiheitssatz (see [15, Theorem 5.1, page 198]); since X
omits a generator of G1 occurring in r 0 (this is the letter s.M/

iM
) the subgroup F is free.

The same holds for ƒ, since Y omits the letter s.m/im
.

Claim 1.4 We have that G 'G1�F .

In particular, the map s.j /i 7! s
.jC1/
i from X to Y extends to an isomorphism from F

to ƒ. Thus H is exhibited as the HNN-extension of G1 over the finitely generated free
group F using a as a stable letter. Since G 'H (Claim 1.2),

G 'G1�F :
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By the fact that jr 0j < jr j and the inductive assumption we have that asdimG1 � 2.
To conclude, we apply the inequality for HNN-extensions (Theorem 2.9): asdimG �

maxfasdimG1; asdimF C 1g DmaxfasdimG1; 2g D 2.

Case 2 (j�r.s/j � 1 for every letter s 2 S) Let S D faD s1; b D s2; s3; s4; : : : ; skg
and S1D ft; x; si W 3� i � kg. We consider the homomorphism between the free group
F.S/ and the free group F.S1/

(5) � W a 7! t��r .b/x; b 7! t�r .a/; si 7! si for 3� i � k:

We set
� D hS1 j r.t; x; s3; : : : ; sk/i;

where we denote by r.t; x; s3; : : : ; sk/ the modified word in terms of t , x and si for
3� i � k which is obtained from r when we replace a generator s with �.s/. Then �
induces a homomorphism

� WG! �:

The following claim shows that the homomorphism � is actually a monomorphism
into � , so we have an embedding of G into � via �:

Claim 2.1 The homomorphism � WG! � is a monomorphism.

Proof We set S2 D fa; t; si W 3 � i � kg and S1 D fx; t; si W 3 � i � kg. We define
g W F.S/! F.S2/ and f W F.S2/! F.S1/ by

g W a 7! a; b 7! t�r .a/; si 7! si for 3� i � k;
and

f W a 7! t��r .b/x; t 7! t; si 7! si for 3� i � k:

We set r2 D g.r/, G2 D hS2 j r2i and r1 D f ı g.r/ D r.t; x; s3; : : : ; sk/, and we
observe that � D hS1 j r1i. Then g induces a homomorphism Ng W G 7! G2 and f
induces a homomorphism Nf WG2 7! � . Obviously, � D Nf ı Ng.

We can easily see that Nf is an isomorphism. Indeed, the homomorphism  W �!G2

given by
x 7! t�r .b/a; t 7! t; si 7! si for 3� i � k

is the inverse homomorphism of Nf .

It is enough to prove that Ng is a monomorphism. This follows by the fact that the
group G2 is the amalgamated product G �Z hti, where Z D h�i, and  1.�/ D b

and  2.�/D t�r .a/ are the corresponding monomorphisms. We can see that Ng is the
inclusion of G into the amalgamated product, so Ng is injective.
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We denote by r.t; x; s3; : : : ; sk/ the modified word in terms of t , x and si for 3� i � k
which can be obtained from r when we replace a generator s with �.s/ and p with
the cyclically reduced r.t; x; s3; : : : ; sk/. We observe that �p.t/D 0 and that x occurs
in p.

If the letter t occurs in the word p, from Case 1 we have that � is an HNN-extension of
some group H over a free subgroup F , namely � DH�F . As in Case 1, by assuming
that p starts with t or t�1 we introduce new variables s.j /i D t

j si t
�j . Using these

variables, we rewrite p as a word w, eliminating all occurrences of t and its inverse.
Then we observe that jwj � jr j�1. By using the inductive assumption for w we obtain

asdimG � asdim� � 2:

If the letter t does not occur in the word p, we observe that

jpj � jr j � 1:

Then
� D hti �� 0;

where
� 0 D hfx; si W i D 3; : : : ; kg j pi:

Since asdim.G1 �G2/DmaxfasdimG1; asdimG2g holds (see [2]) we have that

asdim� Dmaxf1; asdim� 0g:

Then, by the inductive assumption for p, asdim� 0 � 2. Finally, we conclude that

asdimG � asdim� � 2:

3.1 One-relator groups with asymptotic dimension two

We recall that a nontrivial group H is freely indecomposable if H cannot be expressed
as a free product of two nontrivial groups.

A natural question derived from Theorem 3.1 is which one-relator groups have asymp-
totic dimension two. In this subsection, we will show that the asymptotic dimension of
every finitely generated one-relator group that is not a free group or a free product of a
free group and a finite cyclic group is exactly two.

We will use Propositions 3.2 and 3.3 from [10] and [21], respectively.

Proposition 3.2 Let G be an infinite finitely generated one-relator group with torsion.
If G has more than one end , then G is a free product of a nontrivial free group and a
freely indecomposable one-relator group.
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Proposition 3.3 Let G be a torsion-free infinite finitely generated group. If G is
virtually free , then it is free.

Lemma 3.4 Let G be an infinite finitely generated one-relator group that is not a
free group or a free product of a nontrivial free group and a freely indecomposable
one-relator group. Then G is not virtually free.

Proof If G has torsion, by Proposition 3.2 G has exactly one end, so G cannot be
virtually free. If G is torsion free, by Proposition 3.3 we obtain that G is free and this
is a contradiction by the assumption of the lemma.

We note that every finite one-relator group is cyclic. To see this, it is enough to observe
that every one-relator group with at least two generators has infinite abelianization.

The following proposition is the main result of this subsection:

Proposition 3.5 Let G be a finitely generated one-relator group that is not a free group
or a free product of a free group and a finite cyclic group. Then

asdimG D 2:

Proof By Theorem 3.1, asdimG � 2. If G is finite then it is cyclic. If G is infinite,
1� asdimG. By a theorem of T Gentimis [11], asdimGD 1 if and only ifG is virtually
free. We assume that G is an infinite virtually free group. So, if G is torsion free, then
by Proposition 3.3 we obtain that G is free. If G has torsion, then, by Lemma 3.4,
G is a free product of a nontrivial free group and a freely indecomposable one-relator
group G1. Observe that, if G1 is an infinite noncyclic group, then by the same lemma
G1 is not virtually free, so G is not virtually free either, which is a contradiction. We
conclude that asdimG D 2.

Corollary Let G be a finitely generated freely indecomposable one-relator group
which is not cyclic. Then

asdimG D 2:

Proposition 3.6 [15, Proposition 5.13, page 107] LetGDhx1; : : : ; xn jri be a finitely
generated one-relator group , where r is of minimal length under Aut.F.fx1; : : : ; xng//
and contains exactly the generators x1; : : : ; xk for some k with 0 � k � n. Then
G is isomorphic to the free product G1 �G2, where G1 D hx1; : : : ; xk j ri is freely
indecomposable and G2 is free with basis fxkC1; : : : ; xng.
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The above results combine to give the following corollary, which describes the finitely
generated one-relator groups:

Corollary Let G be a finitely generated one-relator group. Then one of the following
is true:

(i) G is finite cyclic , and asdimG D 0.

(ii) G is a nontrivial free group or a free product of a nontrivial free group and a
finite cyclic group , and asdimG D 1.

(iii) G is an infinite freely indecomposable not cyclic group or a free product of a
nontrivial free group and an infinite freely indecomposable noncyclic group , and
asdimG D 2.

We can further describe the boundaries of hyperbolic one-relator groups. We recall the
following result of Buyalo and Lebedeva (see [7]) for hyperbolic groups:

asdimG D dim @1GC 1:

Let G be an infinite finitely generated hyperbolic one-relator group that is not virtually
free. By Gentimis [11] we obtain that asdimG ¤ 1, so asdimG D 2. Using the
previous equality we obtain that G has one-dimensional boundary. Applying a theorem
of Kapovich and Kleiner (see [13]) we can describe the boundaries of hyperbolic
one-relator groups:

Proposition 3.7 Let G be a hyperbolic one-relator group. Then asdimG D 0; 1or 2.

(i) If asdimG D 0, then G is finite.

(ii) If asdimG D 1, then G is virtually free and the boundary is a Cantor set.

(iii) If asdimG D 2, providing that G does not split over a virtually cyclic subgroup ,
then one of the following holds:

(a) @1G is a Menger curve.

(b) @1G is a Sierpinski carpet.

(c) @1G is homeomorphic to S1.

4 Graphs of groups

We will prove a general theorem for the asymptotic dimension of fundamental groups
of finite graphs of groups.

Algebraic & Geometric Topology, Volume 23 (2023)



Asymptotic dimension of graphs of groups and one-relator groups 3611

Theorem 4.1 Let .G; Y / be a finite graph of groups with vertex groups fGv W v 2 Y 0g
and edge groups fGe W e 2 Y 1Cg. Then

asdim�1.G; Y;T /� max
v2Y 0;e2Y 1

C

fasdimGv; asdimGeC 1g:

Proof We use induction on the number #E.Y / of edges of the graph Y . For #E.Y /D1
we distinguish two cases. The first case is when the fundamental group �1.G; Y;T / is
an amalgamated product. Here the theorem follows by the inequality of Dranishnikov
(see [9])

asdimA�C B �maxfasdimA; asdimB; asdimC C 1g:

The second case is when the fundamental group �1.G; Y;T / is an HNN-extension.
Here the theorem follows by Theorem 2.9.

We assume that the theorem holds for E.Y / � m. Let .G; Y / be a finite graph of
groups with #E.Y /DmC 1. We denote by T a maximal tree of Y .

We distinguish two cases:

Case 1 (Y D T ) We remove a terminal edge e0 D Œv; u� from the graph Y so that
the full subgraph of Y , denoted by � and formed from the vertices V.Y / n fug, is
connected. We observe that � is also a tree, which we denote by T 0.

Then �1.G; Y;T / D �1.G; �;T 0/ �Ge0 Gu, so by the inequality for amalgamated
products of Dranishnikov (see [9]),

asdim�1.G; Y;T /�maxfasdim�1.G; �;T
0/; asdimGu; asdimGe0 C 1g:

Since #E.�/Dm, by the inductive assumption we obtain that

asdim�1.G; �;T
0/� max

v2Y 0nfug;e2Y 1
C
nfe0g

fasdimGv; asdimGeC 1g;

so
asdim�1.G; Y;T /� max

v2Y 0;e2Y 1
C

fasdimGv; asdimGeC 1g:

Case 2 (T ¤ Y ) We remove from Y an edge e0 D Œv; u� which doesn’t belong
to T . Since the tree T is a maximal tree of Y and e0 62E.T /, we have that the graph
� D Y n e0 is connected and T � � . Then �1.G; Y;T /D �1.G; �;T /�Ge0 , so by the
inequality for HNN-extensions (Theorem 2.9) we have

asdim�1.G; Y;T /�maxfasdim�1.G; �;T /; asdimGe0 C 1g:
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Since #E.�/Dm, by the inductive assumption

asdim�1.G; �;T /� max
v2Y 0;e2Y 1

C
nfe0g

fasdimGv; asdimGeC 1g;

so
asdim�1.G; Y;T /� max

v2Y 0;e2Y 1
C

fasdimGv; asdimGeC 1g:

We obtain as a corollary the following:

Proposition 4.2 Let .G;Y / be a finite graph of groups with vertex groups fGv Wv2Y 0g
and edge groups fGe W e 2 Y 1Cg. We assume that

max
e2Y 1

C

fasdimGeg< max
v2Y 0
fasdimGvg D n:

Then asdim�1.G; Y;T /D n.

As a corollary of Proposition 4.2, the asymptotic dimension of a graph of one-ended
hyperbolic groups with n–dimensional boundary with free edge groups is nC 1.
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Pressure metrics for deformation spaces of
quasifuchsian groups with parabolics
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We produce a mapping class group–invariant pressure metric on the space QF.S/ of
quasiconformal deformations of a cofinite-area fuchsian group uniformizing S. Our
pressure metric arises from an analytic pressure form on QF.S/ which is degenerate
only on pure bending vectors on the fuchsian locus. Our techniques also show that
the Hausdorff dimension of the limit set varies analytically.
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1 Introduction

We construct a pressure metric on the quasifuchsian space QF.S/ of quasiconformal
deformations, within PSL.2;C/, of a fuchsian group � in PSL.2;R/ whose quotient
H2=� has finite area and is homeomorphic to the interior of a compact surface S. Our
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3616 Harrison Bray, Richard Canary and Lien-Yung Kao

pressure metric is a mapping class group–invariant path metric which is a Riemannian
metric on the complement of the submanifold of fuchsian representations. Our metric
and its construction generalize work of Bridgeman [9], in which H2=� is a closed
surface.

McMullen [30] initiated the study of pressure metrics, by constructing a pressure
metric on the Teichmüller space of a closed surface. His pressure metric is one way
of formalizing Thurston’s notion of constructing a metric on Teichmüller space as the
“Hessian of the length of a random geodesic” (see also Wolpert [48], Bonahon [4]
and Fathi and Flaminio [18]) and like Thurston’s metric it agrees with the classical
Weil–Petersson metric (up to scalar multiplication). Subsequently, Bridgeman [9]
constructed a pressure metric on quasifuchsian space, Bridgeman, Canary, Labourie
and Sambarino [10] constructed pressure metrics on deformation spaces of Anosov
representations, and Pollicott and Sharp [33] constructed pressure metrics on spaces of
metric graphs (see also Kao [21]). The main tool in the construction of these pressure
metrics is the thermodynamic formalism for topologically transitive Anosov flows with
compact support and their associated well-behaved finite Markov codings.

The major obstruction to extending the constructions of pressure metrics to deformation
spaces of geometrically finite (rather than convex cocompact) Kleinian groups and
related settings is that the support of the recurrent portion of the geodesic flow is
not compact and hence there is not a well-behaved finite Markov coding. Mauldin
and Urbański [29] and Sarig [39] extended the thermodynamical formalism to the
setting of topologically mixing Markov shifts with countable alphabet and the BIP
property. In the case of finite-area hyperbolic surfaces, Stadlbauer [42] and Ledrappier
and Sarig [27] construct and study a topologically mixing countable Markov coding
with the BIP property for the recurrent portion of the geodesic flow of the surface. In
previous work, Kao [23] showed how to adapt the thermodynamic formalism in the
setting of the Stadlbauer–Ledrappier–Sarig coding to construct pressure metrics on
Teichmüller spaces of punctured surfaces.

We adapt the techniques developed by Bridgeman [9] and Kao [23] into our setting to
construct a pressure metric which can again be naturally interpreted as the Hessian of
the (renormalized) length of a random geodesic.

Theorem 9.1 If S is a compact surface with nonempty boundary , the pressure form
P on QF.S/ induces a Mod.S/–invariant path metric , which is an analytic Riemannian
metric on the complement of the fuchsian locus.

Algebraic & Geometric Topology, Volume 23 (2023)
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Moreover , if v 2 T�.QF.S//, then P .v; v/D 0 if and only if � is fuchsian and v is a
pure bending vector.

The control obtained from the thermodynamic formalism allows us to see that the
topological entropy of the geodesic flow of the quasifuchsian hyperbolic 3–manifold
varies analytically over QF.S/. We recall that the topological entropy h.�/ of � is
the exponential growth rate of the number of closed orbits of the geodesic flow of
N� DH3=�.�/ of length at most T. More precisely, if

RT .�/D fŒ � 2 Œ�� j 0< `�. /� T g;

where Œ�� is the collection of conjugacy classes in � and `�. / is the translation length
of the action of �. / on H3, then the topological entropy is given by

h.�/D lim
T!1

#RT .�/

T
:

Sullivan [45] showed that the topological entropy and the Hausdorff dimension of
the limit set agree for quasifuchsian groups. So we see that the Hausdorff dimension
of the limit set varies analytically over QF.S/, generalizing a result of Ruelle [36]
for quasifuchsian deformation spaces of closed surfaces. Schapira and Tapie [40,
Theorem 6.2] previously established that the entropy is C 1 on QF.S/ and computed
its derivative (as a special case of a much more general result).

Corollary 5.3 If S is a compact surface with nonempty boundary , then the Hausdorff
dimension of the limit set varies analytically over QF.S/.

Concretely, the pressure form P at a representation �0 is the Hessian of the renormalized
pressure intersection J.�0; � / at �0. The pressure intersection of �; � 2QF.S/ is given
by

I.�; �/D lim
T!1

1

jRT .�/j

X
Œ �2RT .�/

`�. /

`�. /

and the renormalized pressure intersection is given by

J.�; �/D
h.�/

h.�/
lim

T!1

1

jRT .�/j

X
Œ �2RT .�/

`�. /

`�. /
:

The pressure intersection was first defined by Burger [12] for pairs of convex cocompact
fuchsian representations. Schapira and Tapie [40] defined an intersection function for
negatively curved manifolds with an entropy gap at infinity, by generalizing the geodesic
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stretch considered by Knieper [26] in the compact setting. Their definition applies in
a much more general framework, but agrees with our notion in this setting; see [40,
Proposition 2.17].

Let .†C; �/ be the Stadlbauer–Ledrappier–Sarig coding of a fuchsian group � giving a
finite-area uniformization of S. If �2QF.S/, we construct a roof function �� W†C!R

whose periods are translation lengths of elements of �.�/. The key technical work
in the paper is a careful analysis of these roof functions. In particular, we show that
they vary analytically over QF.S/; see Proposition 3.1. If P is the Gurevich pressure
function (on the space of all well-behaved roof functions), then the topological entropy
h.�/ of � is the unique solution of P .�t��/ D 0. Our actual working definition of
the intersection function will be expressed in terms of equilibrium states on †C for
the functions �h.�/��, but we will show in Theorem 10.3 that this thermodynamical
definition agrees with the more geometric definition given above.

Following Burger [12], if �; � 2 QF.S/, we define the Manhattan curve

C.�; �/D f.a; b/ j a; b � 0; aC b > 0 and P .�a�� � b��/D 0g:

The following result generalizes work of Burger [12] and Kao [22]:

Theorem (Theorems 6.1 and 10.3) If S is a compact surface with nonempty bound-
ary and �; � 2 QF.S/, then C.�; �/

(1) is a closed subsegment of an analytic curve ,

(2) has endpoints .h.�/; 0/ and .0; h.�//, and

(3) is strictly convex, unless � and � are conjugate in Isom.H3/.

Moreover , the tangent line to C.�; �/ at .h.�/; 0/ has slope �I.�; �/.

We use Theorem 6.1 in our proof of a rigidity result for the renormalized pressure
intersection (see Corollary 7.2) and in our proof that pressure intersection is analytic
on QF.S/�QF.S/ (see Proposition 7.1). We also use it to obtain a rigidity theorem
for weighted entropy in the spirit of the Bishop–Steger rigidity theorem for fuchsian
groups; see [3]. If a; b > 0 and �; � 2 QF.S/, we define the weighted entropy

ha;b.�; �/D lim 1

T
#fŒ � 2 Œ�� j 0< a`.�. //C b`.�. //� T g:

Corollary 6.3 If S is a compact surface with nonempty boundary, �; � 2 QF.S/ and
a; b > 0, then

ha;b.�; �/�
h.�/h.�/

bh.�/C ah.�/

with equality if and only if �D �.
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Other viewpoints If � 2 QF.S/, then N� DH3=�.�/ is a geometrically finite hy-
perbolic 3–manifold. As such, its dynamics may be analyzed using techniques from
dynamics which do not rely on symbolic dynamics. For example, it naturally fits into
the frameworks for geometrically finite, negatively curved manifolds developed by
Dal’bo, Otal and Peigné [14], negatively curved Riemannian manifolds with bounded
geometry as studied by Paulin, Pollicott and Schapira [32], and negatively curved
manifolds with an entropy gap at infinity as studied by Schapira and Tapie [40]. In
particular, the existence of equilibrium states and their continuous variation in our
setting also follows from the work of Schapira and Tapie [40].

Since all the geodesic flows of manifolds in QF.S/ are Hölder orbit equivalent, one
should be able to think of them all as arising from an analytically varying family
of Hölder potential functions on the geodesic flow of a fixed hyperbolic 3–manifold.
However, for the construction of the pressure metric it will be necessary to know that
the pressure function is at least twice differentiable. Results of this form do not yet
seem to be available without symbolic dynamics. We have therefore chosen to develop
the theory entirely from the viewpoint of the coding throughout the paper.

Iommi, Riquelme and Velozo [20] have previously used the Dal’bo–Peigné coding [16]
to study negatively curved manifolds of extended Schottky type. These manifolds
include the hyperbolic 3–manifolds associated to all quasiconformal deformations of
finitely generated fuchsian groups whose quotients have infinite area. In particular,
they perform a phase transition analysis and show the existence and uniqueness of
equilibrium states in their setting. The symbolic approach to phase transition analysis
can be traced back to Iommi and Jordan [19]. Riquelme and Velozo [34] work in a
more general setting which includes quasifuchsian groups with parabolics, but without
a coding, and obtain a phase transition analysis for the pressure function as well as the
existence of equilibrium measures.
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2 Background

2.1 Quasifuchsian space

Let S be a compact orientable surface with nonempty boundary and suppose that
� � PSL.2;R/ is a discrete torsion-free group such that H2=� is a finite-area hy-
perbolic surface homeomorphic to the interior of S. We say that � W � ! PSL.2;C/

is quasifuchsian if there exists a quasiconformal homeomorphism � W yC ! yC such
that �. / D ���1 for all  2 � . Equivalently, � is quasifuchsian if and only if
there is an orientation-preserving bilipschitz homeomorphism from N� DH3=�.�/ to
N DH3=� in the homotopy class determined by � (see Douady and Earle [17]). Let
QC.�/ � Hom.�;PSL.2;C// denote the space of all quasifuchsian representations.
We recall — see Maskit [28, Theorem 2] — that � W �! PSL.2;C/ is quasifuchsian if
and only if � is discrete and faithful, �.@S/ is parabolic and �.�/ preserves a Jordan
curve in yC.

The quasifuchsian space is given by

QF.S/D QC.�/=PSL.2;C/�X.S/D Homtp.�;PSL.2;C//==PSL.2;C/;

where Homtp.�;PSL.2;C// is the space of type-preserving representations of � into
PSL.2;C/ (ie representations taking parabolic elements of � to parabolic elements of
PSL.2;C/). We call X.S/ the relative character variety and it has the structure of a
projective variety. The space QF.S/ is a smooth open subset of X.S/, so is naturally
a complex analytic manifold. (See Kapovich [24, Section 4.3] for details.) Bers [2]
showed that QF.S/ admits a natural identification with T .S/� T .S/, where T .S/ is
the Teichmüller space of S.

If � 2 QC.�/ and � is a quasiconformal map such that �. /D ���1 for all  2 � ,
then � restricts to a �–equivariant map �� Wƒ.�/!ƒ.�.�//, where ƒ.�.�// is the
limit set of �.�/, ie the smallest closed �.�/–invariant subset of yC. Notice that, since
�� is �–equivariant, it must take the attracting fixed point C of a hyperbolic element
 2 � to the attracting fixed point �. /C of �. /. Since attracting fixed points of
hyperbolic elements are dense in ƒ.�/, �� depends only on � (and not on the choice
of quasiconformally conjugating map �). We now record well-known fundamental
properties of this limit map.

Lemma 2.1 If � 2QC.�/, then there exists a �–equivariant bi-Hölder continuous map

�� Wƒ.�/!ƒ.�.�//:

Moreover , if x 2ƒ.�/, then ��.x/ varies complex analytically over QC.�/.
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Proof Since each �� is the restriction of a quasiconformal map � W yC ! yC and
quasiconformal maps are bi-Hölder (see [1, Theorem 10.3.2]), �� is also bi-Hölder.

Suppose that f�zgz2� is a complex analytic family of representations in QC.�/
parametrized by the unit disk �. Sullivan [46, Theorem 1] showed that there is a
continuous map F W ƒ.�/��! yC such that, if z 2 �, then F. � ; z/ D ��z

, and, if
x 2 ƒ.�/, then F.x; � / varies holomorphically in z. Hartogs’ theorem then implies
that ��.x/ varies complex analytically over all of QC.�/.

2.2 Countable Markov shifts

A two-sided countable Markov shift with countable alphabet A and transition matrix
T 2 f0; 1gA�A is the set

†D fx D .xi/ 2AZ
j txi xiC1

D 1 for all i 2 Zg

equipped with a shift map � W†!† which takes .xi/i2Z to .xiC1/i2Z. Notice that
the shift simply moves the letter in place i into place i � 1, ie it shifts every letter one
place to the left.

Associated to any two-sided countable Markov shift † is the one-sided countable
Markov shift

†C D fx D .xi/ 2AN
j txi xiC1

D 1 for all i 2Ng

equipped with a shift map � W †C! †C which takes .xi/i2N to .xiC1/i2N . In this
case, the shift deletes the letter x1 and moves every other letter one place to the left.
There is a natural projection map pC W †! †C given by pC.x/ D xC D .xi/i2N ,
which simply forgets all the terms to the left of x1. Notice that pC ı � D � ıpC. We
will work entirely with one-sided shifts, except in the final section.

One says that .†C; �/ is topologically mixing if, for all a; b 2 A, there exists N D

N.a; b/ such that, if n�N, then there exists x 2† such that x1 D a and xn D b. The
shift .†C; �/ has the big images and preimages property (BIP) if there exists a finite
subset B�A such that, if a2A, then there exists b0; b1 2B such that tb0;aD 1D ta;b1

.

Given a one-sided countable Markov shift .†C; �/ and a function g W†C!R, let

Vn.g/D supfjg.x/�g.y/j W x;y 2†C; xi D yi for all 1� i � ng
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be the nth variation of g. We say that g is locally Hölder continuous if there exists
C > 0 and � 2 .0; 1/ such that

Vn.g/� C�n

for all n 2N. We say that two locally Hölder continuous functions f W†C!R and
g W †C ! R are cohomologous if there exists a locally Hölder continuous function
h W†C!R such that

f �g D h� h ı �:

Sarig [37] considers the associated Gurevich pressure of a locally Hölder continuous
function g W†C!R, given by

P .g/D lim
n!1

1

n
log

X
x2Fixn

x1Da

eSng.x/

for some (any) a 2A where

Sn.g/.x/D

nX
iD1

g.� i.x//

is the ergodic sum and Fixn
D fx 2†C j �n.x/D xg. The pressure of a locally Hölder

continuous function f need not be finite, but Mauldin and Urbański [29] provide the
following characterization of when P .f / is finite:

Theorem 2.2 (Mauldin and Urbański [29, Theorem 2.1.9]) Suppose that .†C; �/ is
a one-sided countable Markov shift which has BIP and is topologically mixing. If f is
locally Hölder continuous , then P .f / is finite if and only if

Z1.f /D
X
a2A

esupff .x/Wx1Dag <C1:

A Borel probability measure m on †C is said to be a Gibbs state for a locally Hölder
continuous function g W†C!R if there exists a constant B > 1 and C 2R such that

1

B
�

m.Œa1; : : : ; an�/

eSng.x/�nC
� B

for all x 2 Œa1; : : : ; an�g, where Œa1; : : : ; an� is the cylinder consisting of all x 2 †C

such that xi D ai for all 1� i � n. Sarig [39, Theorem 4.9] shows that a locally Hölder
continuous function f on a topologically mixing one-sided countable Markov shift
with BIP such that P .f / is finite admits a Gibbs state �f . Mauldin and Urbański [29,
Theorem 2.2.4] show that, if a locally Hölder continuous function f on a topologically
mixing one-sided countable Markov shift with BIP admits a Gibbs state, then f admits
a unique shift-invariant Gibbs state. We summarize their work in the statement below:
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Theorem 2.3 [29, Theorem 2.2.4; 39, Theorem 4.9] Suppose that .†C; �/ is a
one-sided countable Markov shift which has BIP and is topologically mixing. If f is
locally Hölder continuous and P .f / is finite , then f admits a unique shift-invariant
Gibbs state �f .

The transfer operator is a central tool in the thermodynamic formalism. Recall that the
transfer operator Lf W C b.†C/! C b.†C/ of a locally Hölder continuous function f
over †C is defined by

Lf .g/.x/D
X

y2��1.x/

ef .y/g.y/ for all x 2†C:

If .†C; �/ is topologically mixing and has the BIP property, � is a Borel probability
measure for †C and .Lf /�.�/D eP.f /� (where .Lf /� is the dual of transfer operator),
then � is a Gibbs state for f ; see Mauldin and Urbański [29, Theorem 2.3.3].

A �–invariant Borel probability measure m on †C is said to be an equilibrium measure
for a locally Hölder continuous function g W†C!R if

P .g/D h� .m/C
Z
†C

g dm;

where h� .m/ is the measure-theoretic entropy of � with respect to the measure m.
Mauldin and Urbański [29] give a criterion guaranteeing the existence of a unique
equilibrium state:

Theorem 2.4 [29, Theorem 2.2.9] Suppose that .†C; �/ is a one-sided countable
Markov shift which has BIP and is topologically mixing. If f is locally Hölder
continuous , �f is a shift-invariant Gibbs state for f and �

R
f d�f <C1, then �f is

the unique equilibrium measure for f.

We say that fgu W †
C ! Rgu2M is a real analytic family if M is a real analytic

manifold and, for all x 2†C, u! gu.x/ is a real analytic function on M. Mauldin
and Urbański [29, Theorem 2.6.12 and Propositions 2.6.13 and 2.6.14] — see also
Sarig [38, Corollary 4; 39, Theorems 5.10 and 5.13] — prove real analyticity properties
of the pressure function and evaluate its derivatives. We summarize their results in
Theorem 2.5. Here the variance of a locally Hölder continuous function f W†C!R

with respect to a probability measure m on †C is given by

Var.f;m/D lim
n!1

1

n

Z
†C

Sn

��
f �

Z
†C
f dm

�2 �
dm:
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Theorem 2.5 (Mauldin–Urbański, Sarig) Suppose that .†C; �/ is a one-sided count-
able Markov shift which has BIP and is topologically mixing. If fgu W†

C!Rgu2M

is a real analytic family of locally Hölder continuous functions such that P .gu/ <1

for all u, then u! P .gu/ is real analytic.

Moreover , if v 2 Tu0
M and there exists a neighborhood U of u0 in M such that

�
R
†C gu dmgu0

<1 if u 2 U, then

DvP .gu/D
Z
†C

Dv.gu.x// dmgu0

and
D2
vP .gu/D Var.Dvgu;mgu0

/C
Z
†C

D2
vgu dmgu0

;

where mgu0
is the unique equilibrium state for gu0

.

2.3 The Stadlbauer–Ledrappier–Sarig coding

Stadlbauer [42] and Ledrappier and Sarig [27] describe a one-sided countable Markov
shift .†C; �/ with alphabet A which encodes the recurrent portion of the geodesic
flow on T 1.H2=�/. In this section, we will sketch the construction of this coding and
recall its crucial properties.

They begin with the classical coding of a free group, as described by Bowen and
Series [7]. One begins with a fundamental domain D0 for a free convex cocompact
fuchsian group � , containing the origin in the Poincaré disk model, all of whose
vertices lie in @H2, such that the set S of face pairings of D0 is a minimal symmetric
generating set for � . One then labels any translate  .D0/ by the group element  .
Any geodesic ray rz beginning at the origin and ending at z 2ƒ.�/ passes through an
infinite sequence of translates, so we get a sequence c.z/D .k/k2N . One may then
turn this into an infinite sequence in S by considering b.z/ D .k

�1
k�1

/k2N (where
we adopt the convention that 0 D id.) If � is convex cocompact, this produces a
well-behaved one-sided Markov shift .†CBS; �/ with finite alphabet S. The obvious map
! W†CBS!ƒ.�/ which takes b.z/ to z is Hölder and .†CBS; �/ encodes the recurrent
portion of the geodesic flow of H2=� .

If one attempts to implement this procedure when � is not convex cocompact, then
one must omit all geodesic rays which end at a parabolic fixed point and there is no
natural way to do this from a coding perspective. Moreover, if one simply restricts ! to
the allowable words then ! will not be Hölder in this case. (To see that ! will not be
Hölder, choose x;y 2†CBS so that xi D yi D ˛ for all 1� i � n, where ˛ is a parabolic
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face pairing, and xnC1 ¤ ynC1; then d
†
C
BS
.x;y/ D e�n, while d@H2.!.x/; !.y// is

comparable to 1=n2.)

Roughly, the Stadlbauer–Ledrappier–Sarig coding begins with c.z/D .k/ and clumps
together all terms in b.z/D .k

�1
k�1

/ which lie in a subword which is a high power of
a parabolic element. One must then append to our alphabet all powers of minimal word
length parabolic elements and disallow infinite words beginning or ending in infinitely
repeating parabolic elements. When � is geometrically finite, but not of cofinite area,
Dal’bo and Peigné [16] implemented this process to powerful effect for geometrically
finite fuchsian groups with infinite-area quotients. However, when � has cofinite area,
the actual description is more intricate. The states Stadlbauer, Ledrappier and Sarig
use record a finite amount of information about both the past and the future of the
trajectory.

Let C be the collection of all freely reduced words in S which have minimal word length
in their conjugacy class and generate a maximal parabolic subgroup of � . Notice that
the minimal word length representative of a conjugacy class of ˛ is unique up to cyclic
permutation. (One may in fact choose D0 so that all but one pair of parabolic elements
of C is conjugate to a face pairing.) Since there are only finitely many conjugacy classes
of maximal parabolic subgroups of � , C is finite. They then choose a sufficiently large
even number 2N so that the length of every element of C divides 2N and let C� be
the collection of powers of elements of C of length exactly 2N. (One may assume that
two elements of C� share a subword of length at least 2 if and only if they are cyclic
permutations of one another.)

Let A1 be the set of all strings .b0; b1; : : : ; b2N / in S such that b0b1 � � � b2N is freely
reduced in S and such that neither b1b2 � � � b2N nor b0b1 � � � b2N�1 lies in C�. Let A2

be the set of all freely reduced strings of the form .b; ws; w1; : : : ; wk�1; c/, where
w D w1 � � �w2N 2 C�, b 2 S �fw2N g, 1� k � 2N, s � 1 and c 2 S �fwkg.

Let ADA1[A2 and define functions

r WA!N and G WA! �

by letting r.a/ D 1 if a 2 A1 and r.b; ws; w1; : : : ; wk�1; c/ D s C 1 otherwise. If
aD .b0; b1; : : : ; b2N / 2 A1, then G.a/D b1. If aD .b; ws; w1 � � �wk�1; c/, then let
G.a/D ws�1w1 � � �wkC1. Notice that, by construction, if n 2N, then

#.r�1.n//� #.C�/.#.S/2/.2N /:
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So, r�1.n/ is always nonempty and there exists D such that r�1.n/ has size at most D

for all n 2N, ie there are at most D states associated to each positive integer.

Given a geodesic ray rz beginning at the origin and ending at a point z in the set ƒc.�/

of points in the limit set which are not parabolic fixed points, let c.z/D .k/k2N be the
sequence of elements of � which record the translates of D0 through which rz passes.
Let b.z/D .bk.z//D .k

�1
k�1

/ 2 SN . We then associate to rz a finite collection of
infinite words in SN[f0g, by allowing b0 to be any element of S such that b0b1 � � � b2N

does not lie in C�.

Suppose we have a word .bk/k2N[f0g arising from the previous construction. If
.b0; b1; : : : ; b2N / 2A1, then let x1 D .b0; b1; : : : ; b2N / and shift .bi/ rightward by 1
to compute x2. If not, let x1 be the unique substring of b0b1 � � � bk � � � which begins
at b0 and is an element of A2. Then x1 D .b0; w

s; w1 � � �wk�1; bv/ for some w 2 C�,
s 2N and vD 2N sCk�1. In this case, we shift .bi/ rightward by 2N.s�1/CkC1

to compute x2. One then simply proceeds iteratively. By construction, if xi 2A2, then
xiC1 must lie in A1.

Examples If � uniformizes a once-punctured torus, then S D f˛; ˛�1; ˇ; ˇ�1g is a
minimal symmetric generating set for � and

C D
˚
˛ˇ˛�1ˇ�1; ˇ˛�1ˇ�1˛; ˛�1ˇ�1˛ˇ; ˇ�1˛ˇ˛�1; ˇ˛ˇ�1˛�1; ˛ˇ�1˛�1ˇ;

ˇ�1˛�1ˇ˛; ˛�1ˇ˛ˇ�1
	
:

If � uniformizes a four times–punctured sphere, then one may choose D0 so that
S D f˛; ˛�1; ˇ; ˇ�1; ; �1g and

CDf˛;˛�1;ˇ;ˇ�1;;�1;˛ˇ;ˇ˛;˛ˇ;�1ˇ�1˛�1;ˇ�1˛�1�1;˛�1�1ˇ�1
g:

The following proposition encodes crucial properties of the coding:

Proposition 2.6 (Ledrappier and Sarig [27, Lemma 2.1] and Stadlbauer [42]) Suppose
that H2=� is a finite-area hyperbolic surface , then .†C; �/ is topologically mixing ,
has the big images and preimages property (BIP ), and there exists a locally Hölder
continuous finite-to-one map

! W†C!ƒ.�/

such that !.x/D lim.G.x1/ � � �G.xn//.0/ and !.x/DG.x1/!.�.x//. Moreover , if
 is a hyperbolic element of � , then there exists x 2 Fixn for some n 2N, unique up
to cyclic permutation , such that  is conjugate to G.x1/ � � �G.xn/.
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Notice that every element of A can be preceded and succeeded by some element of A1,
so .†C; �/ clearly has BIP. The topological mixing property is similarly easy to see
directly from the definition, so the main claim of this proposition is that ! is locally
Hölder continuous.

Another crucial property of the coding is that the translates of the origin associated to
the Stadlbauer–Ledrappier–Sarig coding approach points in the limit set conically (see
property (1) on page 15 in Ledrappier and Sarig [27]).

Lemma 2.7 (Ledrappier and Sarig [27, property (1) on page 15]) Given y 2 H2,
there exists L> 0 such that , if x 2†C and n 2N, then

d.G.x1/G.x2/ � � �G.xn/.0/;
�����!

y!.x//�L:

Since the proof of Lemma 2.7 appears in the middle of a rather technical discussion
in [27], we will sketch a proof in our language. Choose a compact subset yK of H2=�

so that its complement is a collection of cusp regions bounded by curves which are
images of horocycles in H2. Without loss of generality we may assume that y is
the origin in the Poincaré disk model for H2. Notice that, if the portion of

�����!

b!.x/

between s.D0/ and sCt .D0/ lies entirely in the complement of the preimage of yK,
and t > s, then sCt

�1
s is a subword of a power of an element in C. Let K be the

intersection of the preimage of yK with D0. Notice that we may assume that y 2K

(by perhaps enlarging yK). Suppose the last 2N C 1 letters of xn are br � � � brC2N ,
then

�����!

0!.x/ intersects one of r .K/; : : : ; rC2N .K/ (since otherwise br � � � brC2N�1

or brC1 � � � brC2NC1 would lie in C�, which is disallowed). But then

d.G.x1/ � � �G.xn/.y/;
�����!

y!.x//�RC diam.K/;

where
RDmax

˚
d.y; .s1 � � � sp/.y// j si 2 S; p 2 f1; : : : ; 2N g

	
:

3 Roof functions for quasifuchsian groups

If � 2 QC.�/, we define a roof function �� W†C!R by setting

��.x/D B��.!.x//
�
b0; �.G.x1//.b0/

�
;

where b0 D .0; 0; 1/ and Bz.x;y/ is the Busemann function based at z 2 @H3 which
measures the signed distance between the horoballs based at z through x and y. In the
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Poincaré upper half-space model, we write the Busemann function explicitly as

yBz.p; q/D log
jp� zj2h.p/

jq� zj2h.q/
;

where z 2 C � @H3, p; q 2 H3 and h.p/ is the Euclidean height of p above the
complex plane, and yB1.p; q/D h.p/=h.q/.

It follows from the cocycle property of the Busemann function that

Sm��.x/D

m�1X
iD0

��.�
i.x//D B��.!.x//

�
b0; �.G.x1/ � � �G.xm//.b0/

�
:

In particular, if x D .x1; : : : ;xm/ 2†
C, then

Sm��.x/D `�.G.x1/ � � �G.xm//:

We say that the roof function �� is eventually positive if there exists C > 0 and N 2N

such that, if n�N and x 2†C, then Sn��.x/� C.

The following lemma records crucial properties of our roof functions. It generalizes
similar results of Ledrappier and Sarig [27, Lemmas 2.2 and 3.1] in the fuchsian setting.

Proposition 3.1 The family f��g�2QC.�/ of roof functions is a real analytic family of
locally Hölder continuous , eventually positive functions.

Moreover , if � 2 QC.�/, then there exists C� > 0 and R� > 0 such that

2 log r.x1/�C� � ��.x/� 2 log r.x1/CC�

and
jSn��.x/� d.b0;G.x1/ � � �G.xn/.b0//j �R�

for all x 2†C and n 2N.

Proof Since ��.q/ varies complex analytically in � for all q 2ƒ.�/, by Lemma 2.1,
and Bz.b0;y/ is real analytic in z 2 yC and y 2H3, we see that ��.x/ varies analytically
over QC.�/ for all x 2†C.

Recall — see Douady and Earle [17] — that there exists K D K.�/ > 1 and a �–
equivariant K–bilipschitz map � WH2!H3 such that �.y0/ D b0, where y0 is the
origin in the disk model for H2. Therefore, if L is the constant from Lemma 2.7
and x 2 †C, then �.G.x1/ � � �G.xn//.b0/ lies within KL of the K–bilipschitz ray
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�.
������!

y0!.x//. The fellow-traveler property for H3 implies that there exists RDR.K/>0

such that any K–bilipschitz geodesic ray lies a Hausdorff distance at most R from the
geodesic ray with the same endpoints. Therefore, if M DKLCR, then, for all n 2N,

d
�
�.G.x1/ � � �G.xn//.b0/;

����������!

b0��.!.x//
�
�M:

We next obtain our claimed bounds on the roof function. If x 2†C, then

j��.x/j � d
�
�.G.x1//.b0/; b0

�
;

so, if a 2A, there exists Ca such that, if x1D a, then j��.x/j �Ca. Since our alphabet
is infinite, our work is not done.

If w 2 C�, we may normalize so that �.w/.z/ D z C 1 and b0 D .0; 0; bw/ in the
upper half-space model for H3. If z 2C � @H3 and r > 0, we let B.z; r/ denote the
Euclidean ball of radius r about z in C. Since ga has length at most 2N C 1 in the
alphabet S, we may define

cw Dmaxfj�.ga/.b0/j WG.a/D w
sga for some a 2A2g;

where j�.ga/.b0/j is the Euclidean distance from �.ga/.b0/ to 0D .0; 0; 0/. Suppose
that x 2 †C, r.x1/ � 2 and G.x1/ D wsga, where s D r.a/ � 2. By definition,
�.ga/.b0/ 2 B.0; cw/, so

�.wsga/.b0/D �.w
s/.�.ga/.b0// 2 �.w

s/.B.0; cw//D B.s; cw/:

Let S D maxfeM cw W w 2 C�g. If s > S, then b0 does not lie in B.s; eM cw/, but
����������!

b0��.!.x// passes through B.s; eM cw/, which implies that ��.!.x// 2 B.s; eM cw/.
It then follows from our formula for the Busemann function that

��.x/D log
jb0� ��.!.x//j

2h.�.wsga/.b0//

j�.wsga/.b0/� ��.!.x//j2h.b0/

� log
.b2
wC .sC eM cw/

2/h.�.ga/.b0//

h.�.ga/.b0//2bw
D log

b2
wC .sC eM cw/

2

h.�.ga/.b0//bw
:

Similarly,

��.x/� log
.b2
wC .s� eLcw/

2/h.�.ga/.b0//�
h.�.ga/.b0//2C e2M c2

w

�
bw

:

Since there are only finitely many choices of ga, it is easy to see that there exists Cw

such that

2 log r.x1/�Cw � ��.x/� 2 log r.x1/CCw
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whenever x 2 †C, r.x1/ > S C 2 and G.x1/ D w
sga. Since there are only finitely

many w in C� and only finitely many words a with r.a/ � S C 2, we see that there
exists C� such that

2 log r.x1/�C� � ��.x/� 2 log r.x1/CC�

for all x 2†C.

We next show that �� is locally Hölder continuous. Since ! is locally Hölder continuous,
there exists A and ˛ > 0 such that, if x;y 2†C and xi D yi for 1� i � n, then

d.!.x/; !.y//�Ae�˛n:

Since �� is Hölder, there exists C and ˇ > 0 such that d.��.z/; ��.w//� Cd.z; w/ˇ

for all z; w 2ƒ.�/, so

d
�
��.!.x//; ��.!.y//

�
� CAˇe�˛ˇn:

If a 2A, then let

Da D sup
�ˇ̌̌̌
@

@z

ˇ̌̌
zDz0

Bz

�
b0; �.G.a//.b0/

�ˇ̌̌̌
W z0 D ��.!.x// and x1 D a

�
;

so
supfj��.x/� ��.y/j W x;y 2 Œa;x2; : : : ;xn�g �DaCAˇe�˛ˇn:

However, the best general estimate one can have on Da is O.r.a//, so we will have to
dig a little deeper.

We again work in the upper half-space model, and assume that r.a/ > S C 2 and
G.a/D wsga, where s D r.a/� 2 and normalize as before so that �.w/.z/D zC 1.
We then map the limit set into the boundary of the upper half-space model by setting
y�� D T ı ��, where T is a conformal automorphism which takes the Poincaré ball
model to the upper half-space model and takes the fixed point of �.w/ to1. Notice
that T is Kw–bilipschitz on T �1.B.0; eM cw//. Therefore, if x;y 2 Œa;x2; : : : ;xn�,
then

jy��.x/� y��.y/D jy��.w
�s.x//� y��.w

�s.x//j �KwCAˇe�˛ˇ.n�1/:

Moreover, there exists Dw such thatˇ̌̌̌
@

@z

ˇ̌̌
zDz0

yBz

�
b0; �.G.a//.b0/

�ˇ̌̌̌
�Dw

if z0 2 �.w/
s.B.0; eM cw//, so

supfj��.x/� ��.y/j W x;y 2 Œa;x2; : : : ;xn�g �KwDwCAˇe�˛ˇ.n�1/:
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Since there are only finitely many a where r.a/�SC2 and only finitely many choices
of w, our bounds are uniform over A and so �� is locally Hölder continuous.

It remains to check that �� is eventually positive. Since

d
�
�.n/.b0/;

����������!

b0��.!.x//
�
�M

for all n 2N, we see that

jSn��.x/� d.b0;G.x1/ � � �G.xn/.b0//j � 2M DR�:

Since the set
B D f 2 � j d.�. /.b0/; b0/� 2R�g

is finite, there exists yN such that, if  has word length at least yN (in the generators,
given S), then  does not lie in B. Therefore, if n� yN and x 2†C, then Sn��.x/ >

R� > 0. Thus, �� is eventually positive.

It is a standard feature of the thermodynamic formalism that one may replace an
eventually positive roof function by a roof function which is strictly positive and
cohomologous to the original roof function. (For a statement and proof which includes
the current situation, see [8, Lemma 3.3].)

Corollary 3.2 If � 2 QC.�/, there exists a locally Hölder continuous function y�� and
c > 0 such that y��.x/� c for all x 2†C and y�� is cohomologous to ��.

4 Phase transition analysis

We begin by extending Kao’s phase transition analysis — see Kao [23, Theorem 4.1] —
which characterizes which linear combinations of a pair of roof functions have finite
pressure. The primary use of this analysis will be in the case of a single roof function,
ie when aD 1 and bD 0. However, we will use the full force of this result in the proof
of our Manhattan curve theorem; see Theorem 6.1.

Theorem 4.1 If �; � 2 QC.�/, t 2R and aC b > 0, then P .�t.a��C b��// is finite
if and only if t > 1=2.aC b/. Moreover , P .�t.a��C b��// is monotone decreasing
and analytic in t on .1=2.aC b/;1/, and

lim
t!1=2.aCb/C

P .�t.a��C b��//DC1:

If , in addition , a; b � 0, then

lim
t!1

P .�t.a��C b��//D�1:
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Riquelme and Velozo [34, Theorem 1.4] previously established results closely related to
Theorem 4.1 in the more general setting of negatively curved manifolds with bounded
geometry.

Proof Recall from Theorem 2.2 that, since �t.a��Cb��/ is locally Hölder continuous
and .†C; �/ is a one-sided, topologically mixing countable Markov shift with BIP,
P .�t.a��Cb��// is finite if and only if Z1.�t.a��Cb��// <C1. Since there exists
D 2N such that #r�1.n/�D for all n 2N, Proposition 3.1 implies that

Z1.�t.a��C b��//�D

1X
nD1

e�t.aCb/.2 log n�maxfC� ;C�g/;

so P .�t.a��C b��// <C1 if t > 1=2.aC b/. Similarly, since r�1.n/ is nonempty
if n� 1, we see that

Z1.�t.a��C b��//�

1X
nD1

e�t.aCb/.2 log nCmaxfC� ;C�g/;

so P .�t.a��C b��//DC1 if t � 1=2.aC b/ and

lim
t!1=2.aCb/C

Z1.�t.a��C b��//DC1:

It follows from the definition that P .�t.a��C b��// is monotone decreasing in t and
Theorem 2.5 implies that it is analytic in t on .1=2.aC b/;1/. In the proof of [29,
Theorem 2.1.9], Mauldin and Urbański show that, given a locally Hölder continuous
function f on a one-sided countable Markov shift which is topologically mixing and
has property BIP, there exist constants q; s;M;m> 0 such that, for any n 2N,

nCs.n�1/X
iDn

Zi.f /> e�MC.M�m/n

qn�1
Z1.f /

n;

where, if En is the set of allowable words of length n in A, then

Zn.f /D
X
w2En

esupfSnf .x/jxiDwi for all 1�i�ng and lim 1

n
log Zn.f /D P .f /:

It follows that, for all n, there exists A > 0 and On 2 Œn; n C s.n � 1/� such that
Z On �AnZ1.f /

n, so P .f /� .1=.1C s//Z1.f /� log A. Therefore,

lim
t!1=2.aCb/C

P .�t.a��C b��//DC1:
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If a; b � 0 and x 2 Fixn, then Sn.a��C b��/.x/ > 0, so, if t > 1, thenX
x2Fixn

x1Da

eSn.�t.a��Cb��//.x/ �
1

t

X
x2Fixn

x1Da

eSn.�a���b��/.x/

since ct � .1=t/c if 0� c � 1 and t > 1. Therefore,

P .�t.a��C b��//� P .�a�� � b��/� log t;

so limt!1 P .�t.a��C b��//D�1.

5 Entropy and Hausdorff dimension

Theorem 4.1 implies that, if � 2 QC.�/, then there is a unique solution h.�/ > 1
2

to
P .�h.�/��/D 0. This unique solution h.�/ is the topological entropy of �; see the
discussion in Kao [23, Section 5]. Theorem 2.5 and the implicit function theorem then
imply that h.�/ varies analytically over QC.�/, generalizing a result of Ruelle [36]
in the convex cocompact case. Since the entropy h.�/ is invariant under conjugation,
we obtain analyticity of entropy over QF.S/. We recall that Schapira and Tapie
[40, Theorem 6.2] previously established that the entropy is C 1 on QF.S/.

Theorem 5.1 If S is a compact hyperbolic surface with nonempty boundary, then the
topological entropy varies analytically over QF.S/.

Sullivan [45] showed that the topological entropy h.�/ agrees with the Hausdorff
dimension of the limit set ƒ.�.�//.

Theorem 5.2 (Sullivan [45; 47]) If � 2 QC.�/, then its topological entropy h.�/ is
the exponential growth rate of the number of closed geodesics of length less than T in
N� DH3=�.�/. Moreover , h.�/ is the Hausdorff dimension of the limit set ƒ.�.�//.

Theorems 5.1 and 5.2 together imply that the Hausdorff dimension of the limit set
varies analytically.

Corollary 5.3 The Hausdorff dimension of ƒ.�.�// varies analytically over QC.�/.

Remarks (1) Sullivan [47] also showed that h.�/ is the critical exponent of the
Poincaré series

Q�.s/D
X
2�

e�sd.b0;�. /.b0//;

ie Q�.s/ diverges if s < h.�/ and converges if s > h.�/.
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(2) Bowen [6] showed that, if � 2 QF.S/ and S is a closed surface, then h.�/� 1,
with equality if and only if � is fuchsian. Sullivan [44, page 66] — see also
Xie [49] — observed that Bowen’s rigidity result extends to the case when H2=�

has finite area.

6 Manhattan curves

If �; � 2 QC.�/, we define, following Burger [12], the Manhattan curve

C.�; �/D f.a; b/ 2D j P .�a�� � b��/D 0g;

where DD f.a; b/ 2R2 j a; b � 0 and .a; b/¤ .0; 0/g. Notice that, since the Gurevich
pressure is defined in terms of lengths of closed geodesics, if y� is conjugate (or complex
conjugate) to � and y� is conjugate (or complex conjugate) to �, then C.�; �/D C.y�; y�/.

One may give an alternative characterization by noticing that P .�ab� � b��/D 0 if
and only if

ha;b.�; �/D lim 1

T
log #fŒ � 2 Œ�� j 0< a`�. /C b`�. /� T g D 1;

where Œ�� is the collection of conjugacy classes in � . Moreover, ha;b.�; �/ is also the
critical exponent of

Qa;b
�;�.s/D

X
2�

e�s.ad.0;�. /.0//Cbd.0;�. /.0///

(see Kao [22, Theorem 4.8, Remark 4.9 and Lemma 4.10]).

Theorem 6.1 If �; � 2 QC.�/, then C.�; �/

(1) is a closed subsegment of an analytic curve ,

(2) has endpoints .h.�/; 0/ and .0; h.�//, and

(3) is strictly convex, unless � and � are conjugate in Isom.H3/.

Moreover , the tangent line to C.�; �/ at .h.�/; 0/ has slope

�

R
�� dm�h.�/��R
�� dm�h.�/��

:

Burger [12] established Theorem 6.1 for convex cocompact fuchsian groups, with
the exception of the analyticity of the Manhattan curve, which was established by
Sharp [41].
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Notice that, if � and � are conjugate in Isom.H3/, then �� D ��, so C.�; �/ is a straight
line. We will need the following technical result in the proof of Theorem 6.1:

Lemma 6.2 If �; �; � 2 QC.�/, 2.aC b/ > 1 and P .�a�� � b��/ D 0, then there
exists a unique equilibrium state m�a���b�� for �a�� � b�� and

0<
Z
†C
�� dm�a���b�� <C1:

Proof Notice that, since P .�a���b��/D0, there exists a unique shift-invariant Gibbs
state m�a���b�� for �a�� � b��; see Theorem 2.3. However, by [29, Lemma 2.2.8],Z

†C
a��C b�� dm�a���b�� <C1

if and only if X
s2A

I.a��C b��; s/e
I.�a���b��;s/ <1;

where I.f; s/D infff .x/ j x 2†; x1 D sg. But, by Proposition 3.1,X
a2A

inf.a��C b��jŒa�/e
inf.�a���b��jŒa�/

�D
X
n2N

.jajC�CjbjC�C 2.aC b/ log n/ejajC�CjbjC��2.aCb/ log n

DDejajC�CjbjC�
X
n2N

jajC�CjbjC�C 2.aC b/ log n

n2.aCb/
;

which converges, since 2.aC b/ > 1. Theorem 2.4 then implies that dm�a���b�� is
the unique equilibrium state for �a�� � b��.

Proposition 3.1 implies that there exists B > 1 such that, if n is large enough, then

1

B
�

�� .x/

a��.x/C b��.x/
� B

for all x 2†C such that r.x1/ > n. (For example, if log n> 4 maxfaC�CbC�;C� ; 1g,
then we may choose BD 8.aCb/:) Since �� is locally Hölder continuous, it is bounded
on the remainder of †C. Therefore, since

R
†C a��C b�� dm�a���b�� <C1, we see

that Z
†C
�� dm�a���b�� <C1:

Now notice that, since �� is cohomologous to a positive function y�� , by Corollary 3.2,Z
†C
�� dm�a���b�� D

Z
†C
y�� dm�a���b�� > 0:
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Proof of Theorem 6.1 Recall that t D h.�/ is the unique solution to P .�t��/D 0

(see the discussion at the beginning of Section 5). So, the intersection of the Manhattan
curve with the boundary of D consists of the points .h.�/; 0/ and .0; h.�//.

Let
yD D

˚
.a; b/ 2R2

j aC b > 1
2

	
:

Theorem 4.1 implies that P is finite on yD. Lemma 6.2 implies that, if a; b 2 yD and
P .�a�� � b��/D 0, then there is an equilibrium state m�a���b�� for �a�� � b�� and
that

R
†C �� dm�a���b�� is finite for all � 2 QC.�/. Theorem 2.5 then implies that

@

@a
P .�a�� � b��/D

Z
†C
��� dm�a���b�� ;

@

@b
P .�a�� � b��/D

Z
†C
��� dm�a���b�� :

Since
R
†C ��� dm�a���b�� and

R
†C ��� dm�a���b�� are both nonzero, P is a sub-

mersion on yD. Since P is analytic on yD, the implicit function theorem then implies
that

yC.�; �/D f.a; b/ 2 yD j P .�a�� � b��/D 0g

is an analytic curve and that, if .a; b/ 2 C.�; �/, then the slope of the tangent line
to C.�; �/ at .a; b/ is given by

c.a; b/D�

R
†C �� dm�a���b��R
†C �� dm�a���b��

:

Notice that C.�; �/ is the lower boundary of the region

yC.�; �/D f.a; b/ jQa;b
�;�.1/ <1g:

The Hölder inequality implies that, if .a; b/; .c; d/ 2 yC.�; �/ and t 2 Œ0; 1�, then

QtaC.1�t/c;tbC.1�t/d
�;� �Q.a; b/tQ.c; d/1�t ;

so yC.�; �/ is convex. Therefore, C.�; �/ is convex.

A convex analytic curve is strictly convex if and only if it is not a line, so it remains to
show that � and � are conjugate in Isom.H3/ if C.�; �/ is a straight line. So suppose
that C.�; �/ is a straight line with slope c D�h.�/=h.�/. In particular,

(1)
h.�/

h.�/
D�c D�c.h.�/; 0/D

R
†C �� dm�h.�/��R
†C �� dm�h.�/��

D�c.0; h.�//D

R
†C �� dm�h.�/��R
†C �� dm�h.�/��

:
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By definition,
h.m�h.�/��/� h.�/

Z
†C
�� dm�h.�/�� D 0;

so, applying (1), we see that

h.m�h.�/��/� h.�/
Z
†C
�� dm�h.�/��

D h.�/
Z
†C
�� dm�h.�/�� � h.�/

Z
†C
�� dm�h.�/��

D 0:

Since P .�h.�/��/ D 0, this implies that m�h.�/�� is an equilibrium measure for
�h.�/��. Therefore, by uniqueness of equilibrium measures, m�h.�/�� D m�h.�/�� .
Sarig [39, Theorem 4.8] showed that this only happens when �h.�/�� and �h.�/��

are cohomologous, so the Livsic theorem [39, Theorem 1.1] (see also Mauldin and
Urbański [29, Theorem 2.2.7]) implies that

`�. /D
h.�/

h.�/
`�. /

for all  2 � . Kim [25, Theorem 3] proved that, if `�. /D c`�. / for all  2 � , then
� and � are conjugate in Isom.H3/.

As a nearly immediate corollary, one obtains a generalization of the rigidity results of
Bishop and Steger [3] and Burger [12]:

Corollary 6.3 If �; � 2 QC.�/ and .a; b/ 2D, then

ha;b.�; �/�
h.�/h.�/

bh.�/C ah.�/

with equality if and only if � and � are conjugate in Isom.H3/.

7 Pressure intersection

We define the pressure intersection on QC.�/�QC.�/, given by

I.�; �/D

R
†C �� dm�h.�/��R
†C �� dm�h.�/��

:

It follows from Lemma 6.2 that I.�; �/ is well defined. We also define a renormalized
pressure intersection

J.�; �/D
h.�/

h.�/
I.�; �/:

We notice that the pressure intersection and renormalized pressure intersection vary
analytically in � and �.
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Proposition 7.1 Both I.�; �/ and J.�; �/ vary analytically over QC.�/�QC.�/.

Proof By Theorem 4.1, Proposition 3.1 and Theorem 2.5, P D P .�a�� � b��/ is
analytic on

RD f.�; �; .a; b/; t/ 2 QC.�/�QC.�/� yDg:

Since we observed, in the proof of Theorem 6.1, that the restriction of P to f�g�f�g� yD
is a submersion for all �; � 2 QC.�/, P itself is a submersion, and V D P�1.0/\R

is an analytic submanifold of R of codimension one. Then �I.�; �/ is the slope of
the tangent line to V \f.�; �/� yDg at the point

�
�; �; .h.�/; 0/

�
, so I.�; �/ is analytic.

Theorem 5.1 then implies that J.�; �/ is analytic.

We obtain the following rigidity theorem as a consequence of Theorem 6.1. The
inequality portion of this result was previously established by Schapira and Tapie [40,
Corollary 3.17].

Corollary 7.2 If �; � 2 QC.�/, then

J.�; �/� 1

with equality if and only if � and � are conjugate in Isom.H3/.

Proof Recall that the slope c D c.h.�/; 0/ of C.�; �/ at .h.�/; 0/ is given by

c D�

R
†C �� dm�h.�/��R
†C �� dm�h.�/��

D�I.�; �/:

However, by Theorem 6.1,
c � �

h.�/

h.�/

with equality if and only if � and � are conjugate in Isom.H3/. Our corollary follows
immediately.

8 The pressure form

We may define an analytic section s W QF.S/! QC.�/ so that s.Œ��/ is an element of
the conjugacy class of �. Choose coprime hyperbolic elements ˛ and ˇ in � and let
s.�/ be the unique element of Œ�� such that s.�/.˛/ has attracting fixed point 0 and
repelling fixed point1 and s.�/.ˇ/ has attracting fixed point 1. This will allow us to
abuse notation and regard QF.S/ as a subset of QC.�/.
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Following Bridgeman [9] and McMullen [30], we define an analytic pressure form P

on the tangent bundle T QF.S/ of QF.S/, by letting

PTŒ��QF.S/ D s�
�
Hess

�
J.s.�/; � /

�ˇ̌
Ts.�/s.QF.S//

�
;

which we rewrite with our abuse of notation as

PT�QF.S/ D Hess.J.�; � //:

Corollary 7.2 implies that P is nonnegative, ie P .v; v/� 0 for all v 2 T QF.S/.

Since P is nonnegative, we can define a path pseudometric on QF.S/ by setting

dP .�; �/D inf
nZ 1

0

p
P . 0.t/;  0.t// dt

o
;

where the infimum is taken over all smooth paths in QF.S/ joining � to �.

We now derive a standard criterion for when a tangent vector is degenerate with respect
to P ; see also [11, Corollary 2.5; 10, Lemma 9.3].

Lemma 8.1 If v 2 T�QF.S/, then P .v; v/D 0 if and only if

Dv.h` /D 0

for all  2 � .

Proof Let H0 denote the space of pressure-zero, locally Hölder continuous functions
on †C. We have a well-defined thermodynamic mapping  W QF.S/!H0 given by
 .�/D�h.s.�//�s.�/. Notice that, by Proposition 3.1 and Theorem 5.1,  .QF.S//
is a real analytic family.

Suppose that f�tgt2.��;�/ is a one-parameter analytic family in QF.S/ and v D P�0.
Then

d2

dt2

ˇ̌̌̌
tD0

J.�0; �t /D
d2

dt2

�R
†C  .�t / dm .�0/R
†C  .�0/ dm .�0/

�
D

R
†C
R 0 dm .�0/R

†C  .�0/ dm .�0/

;

where
R 0 D

d2

dt2

ˇ̌̌̌
tD0

 .�t /:

Theorem 2.5 implies that

0D
d2

dt2

ˇ̌̌̌
tD0

P . .t//D Var. P 0;m .0//C
Z
†C
R 0 dm .�0/;

where
P 0 D

d

dt

ˇ̌̌
tD0

 .�t /;
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so
d2

dt2

ˇ̌̌̌
tD0

J.�0; �t /D�
Var. P 0;m .0//R
†C  .�0/ dm .�0/

:

Recall — see Sarig [39, Theorem 5.12] — that Var. P 0;m .0//D 0 if and only if P 0 is
cohomologous to a constant function C. On the other hand, since P . t /D 0 for all t ,
the formula for the derivative of the pressure function gives that

0D
d

dt

ˇ̌̌
tD0

P . t /D
Z
†C
P 0 dm .�0/;

so C must equal 0. However, P 0 is cohomologous to 0 if and only if, for all x 2 Fixn

and all n,

0D Sn
P 0.x/D

d

dt

ˇ̌̌
tD0

Sn t .x/D
d

dt

ˇ̌̌
tD0

.h.�t /`G.x1/���G.xn/.�t //

(see [39, Theorem 1.1]). Moreover, for every hyperbolic element  2 � , there exists
x 2 Fixn (for some n) such that  is conjugate to G.x1/ � � �G.xn/, so ` .�t / D

`G.x1/���G.xn/.�t / for all t . If  2 � is not hyperbolic, then ` .�t /D 0 for all t , so

d

dt

ˇ̌̌
tD0

.h.�t /` .�t //D 0

in every case. Therefore, P 0 is cohomologous to 0 if and only if

d

dt

ˇ̌̌
tD0

.h.�t /` .�t //D 0

for all  2 � .

9 Main theorem

We recall that a quasifuchsian representation � W �! PSL.2;C/ is said to be fuchsian
if it is conjugate into PSL.2;R/, ie there exists A 2 PSL.2;C/ such that A�. /A�1 2

PSL.2;R/ for all  2 � . The fuchsian locus F.S/� QF.S/ is the set of (conjugacy
classes of) fuchsian representations.

We say that v 2 T�QF.S/ is a pure bending vector if v D @�t=@t , �D �0 is fuchsian
and ��t is the complex conjugate of �t for all t . Since the fuchsian locus F.S/ is the
fixed-point set of the action of complex conjugation on QF.S/ and the collection of
pure bending vectors at a point in F.S/ is half-dimensional, one gets a decomposition

T�QF.S/D T�F.S/˚B�;
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where B� is the space of pure bending vectors at �. If v is a pure bending vector at
� 2F.S/, then v is tangent to a path obtained by bending � by a (signed) angle t along
some measured lamination � (see Bonahon [5, Section 2] for details).

We are finally ready to show that our pressure form is degenerate only along pure
bending vectors.

Theorem 9.1 If S is a compact hyperbolic surface with nonempty boundary, then the
pressure form P defines an Mod.S/–invariant path metric dP on QF.S/ which is an
analytic Riemannian metric except on the fuchsian locus.

Moreover , if v 2 T�.QF.S//, then P .v; v/D 0 if and only if � is fuchsian and v is a
pure bending vector.

Proof If v is a pure bending vector, then we may write v D P�0, where ��t is the
complex conjugate of �t for all t , so h` .�t / is an even function for all  2� . Therefore,
Dvh` D 0 for all  2 � , so Lemma 8.1 implies that P .v; v/D 0.

Our main work is the following converse:

Proposition 9.2 Suppose that v 2 T�QF.S/. If P .v; v/ D 0 and v ¤ 0, then v is a
pure bending vector.

Recall — see [10, Lemma 13.1] — that, if a Riemannian metric on a manifold M is
nondegenerate on the complement of a submanifold N of codimension at least one and
the restriction of the Riemannian metric to TN is nondegenerate, then the associated
path pseudometric is a metric. We will see in Corollary 10.4 that the pressure metric is
mapping class group–invariant. Our theorem then follows from Proposition 9.2 and
the fact, established by Kao [23], that P is nondegenerate on the tangent space to the
fuchsian locus.

Proof of Proposition 9.2 Now suppose that v 2 T�QF.S/ and P .v; v/D 0. One first
observes, following Bridgeman [9], that, since, by Lemma 8.1, Dv.h` /D 0 for all
 2 � ,

(2) Dv` D k` .�/

for all  2 � , where k D�Dvh=h.�/.

If  2 � , then one can locally define analytic functions tr .�/ and � .�/ which
are the trace and eigenvalue of largest modulus of (some lift of) �. /. Notice that
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` .�/D 2 log j� .�/j, so we can express our degeneracy criterion (2) as

(3) Dv log j� j D k log j� .�/j

for all  2 � .

We observe that Lemma 7.4 of Bridgeman [9] goes through nearly immediately in our
setting. We state the portion of his lemma we will need and provide a brief sketch of
the proof for the reader’s convenience.

Lemma 9.3 [9, Lemma 7.4] If P .v; v/D 0, v 2 T�QF.S/, v ¤ 0 and  2 � , then
� .�/

2 and tr .�/2 are both real.

Moreover , if Dvtr˛ ¤ 0, then Re.Dv�˛=�˛.�//D 0.

Proof Suppose first that Dv tr˛ ¤ 0. Since

Dv.tr˛/DDv�˛

�
�2
˛ � 1

�2
˛

�
;

we may conclude that Dv�˛ ¤ 0. Choose  2 � so that  is hyperbolic and does not
commute with ˛. Bridgeman then normalizes (the lifts) so that

�.˛/D

�
�˛ 0

0 ��1
˛

�
and �. /D

�
a b

c d

�
;

where a, b, c and d are all functions defined on a neighborhood of � such that a and d

are nonzero. He then computes that

log j�˛n j D n log j� jC log jajCRe
�
��2n
˛

�
ad � 1

a2

��
CO.j��4n

˛ j/:

He differentiates this equation and applies (3) to conclude that

(4) Re
�

Dv�˛

�˛.�/

�
a.�/ d.�/� 1

a.�/2

��
D 0:

A final analysis, which breaks down into the consideration of the cases where the
argument of �2

˛.�/ is rational or irrational, yields that �˛.�/2 is real. Since tr2
˛ D

�2
˛C 2C��2

˛ , we conclude that tr2
˛.�/ is real.

One may further differentiate the equation

tr˛n D a�n
˛C d��n

a

to conclude that
lim

Dv tr˛n

n�˛.�/n
D

a.�/Dv�˛

�˛.�/
;
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so Dv tr˛n ¤ 0 is nonzero for all large enough n. Therefore, by the above paragraph,

tr2
˛n .�/D a.�/2�˛.�/

2n
C 2ad.�/C d.�/2�˛.�/

�2n

is real for all large enough n. Taking limits allows one to conclude that a.�/2, d.�/2

and a.�/d.�/ are real. Equation (4) then yields that Re.Dv�˛=�˛.�// D 0. This
completes the proof when Dv tr˛ ¤ 0.

Now suppose that Dv tr D 0. If  is parabolic, � .�/2 D 1 and tr2
 .�/D 4, which are

both real, so we may suppose that  is hyperbolic. Since there are finitely many elements
f˛1; : : : ; ˛ng of � such that � 2 QF.S/ is determined by ftr˛1

.�/2; : : : ; tr˛n
.�/2g—

see [13, Lemma 2.5] — and trace functions are analytic, there exists ˛ 2 � such that
Dv tr˛ ¤ 0. The above analysis then yields that a.�/2, d.�/2 and a.�/d.�/ are all real.
Therefore,

tr .�/2 D a.�/2C 2a.�/d.�/C d.�/2 D � .�/
2
C 2C� .�/

�2

is real. So, we may conclude that � .�/2 is real in this case as well.

Since v ¤ 0, there exists ˛ 2 � such that Dv tr˛ ¤ 0 and

Re
�

Dv�˛

�˛.�/

�
D

Dvj�˛j

j�˛.�/j
DDv log j�˛j;

equation (3) and Lemma 9.3 imply that

k D
Dv log j�˛j
log j�˛.�/j

D 0:

Therefore, Dv` D 0 for all  2 � .

Notice that, since tr .�/2 is real for all  2 � , �.�/ lies in a proper (real) Zariski
closed subset of PSL.2;C/, so is not Zariski dense. However, since the Zariski closure
of �.�/ is a Lie subgroup, it must be conjugate to a subgroup of either PSL.2;R/

or the index two extension of PSL.2;R/ obtained by appending z!�z. Since � is
quasifuchsian, its limit set ƒ.�.�// is a Jordan curve and no element of �.�/ can
exchange the two components of its complement. Therefore, � is fuchsian. (We note
that this is the only place where our argument differs significantly from Bridgeman’s.
It replaces his rather technical [9, Lemma 15].)

We can then write v D v1C v2, where v1 2 T�F.S/ and v2 is a pure bending vector.
Since v2 is a pure bending vector,

0DDv` DDv1
` CDv2

` DDv1
`
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for all  2 � . But, since v1 2 T�F.S/ and there are finitely many curves whose length
functions provide analytic parameters for F.S/, this implies that v1 D 0. Therefore,
v D v2 is a pure bending vector.

10 Patterson–Sullivan measures

In this section, we observe that the equilibrium state m�h.�/�� is a normalized pullback
of the Patterson–Sullivan measure on ƒ.�.�//. We use this to give a more geometric
interpretation of the pressure intersection of two quasifuchsian representations, and
hence a geometric formulation of the pressure form.

Sullivan [43; 45] generalized Patterson’s construction [31] for fuchsian groups to define
a probability measure �� supported onƒ.�.�//, called the Patterson–Sullivan measure.
This measure satisfies the quasi-invariance property

(5) d�.�. /.z//D eh.�/Bz .b0;�. /
�1.b0// d��.z/

for all z 2 ƒ.�.�// and  2 � . Sullivan showed that �� is a scalar multiple of the
h.�/–dimensional Hausdorff measure on @H3 (with respect to the metric obtained from
its identification with T 1

b0
.H3/).

Let y�� D .�� ı!/��� be the pullback of the Patterson–Sullivan measure to †C. Our
normalization will involve the Gromov product with respect to b0, which is defined to
be

(6) hz; wi D 1
2
.Bz.b0;p/CBw.b0;p//

for any pair z and w of distinct points in @H3, where p is some (any) point on the
geodesic joining z to w. One may check that, for all ˛ 2 �.�/ and z; w 2ƒ.�.�//,

h˛.z/; ˛.w/i D hz; wi � 1
2

�
Bz.b0; ˛

�1.b0//CBw.b0; ˛
�1.b0//

�
:

If x 2†C, let
ƒ.�.�//x D f��.!.y

�// j y 2†; yC D xg;

where † is the two-sided Markov shift associated to †C and y� D .y�1
1�i
/i2N . Notice

that each ƒ.�.�//x is open in ƒ.�.�//. Furthermore, there are only finitely many
different sets which arise asƒ.�.�//x for some x 2†C, sinceƒ.�.�//x depends only
on x1 and, if r.x1/ � 3 and x1 D .b0; w

s; w1; : : : ; wk�1/, then ƒ.�.�//x depends
only on b0 and w. Let H� W†

C! .0;1/ be defined by

H�.x/D
Z
ƒ.�.�//x

e2h.�/h��.!.x//;zi d��.z/:
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Notice thatƒ.�.�//x is disjoint from ��.Ix/, where Ix is the component of @H2�@D0

containing !.x/, so e2h.�/h��.!.x//;zib0 is bounded on ƒ.�.�//x . In particular, H�.x/

is finite for all x. Since ! is locally Hölder continuous and �� is Hölder, H� is locally
Hölder continuous.

We now show that H� is the normalization of the pullback y�� of Patterson–Sullivan
measure which gives the equilibrium measure for �h.�/��. Dal’bo and Peigné [16,
Proposition V.3] obtain an analogous result for negatively curved manifolds whose
fundamental groups “act like” geometrically finite fuchsian groups of coinfinite area
(see also Dal’bo and Peigné [15, Corollary II.5]).

Proposition 10.1 If S is a compact surface with nonempty boundary and � 2 QF.S/,
then the equilibrium state of �h.�/�� on †C is a scalar multiple of H� y��.

Proof Let ˛.�;x/D �.G.x1//
�1 and notice that

˛.�;x/
�
��.!.x//

�
D ��

�
!.�.x//

�
and ˛.�;x/

�
ƒ.�.�//x

�
Dƒ.�.�//�.x/:

The quasi-invariance of Patterson–Sullivan measure implies that

d y�.�.y//

d y�.y/
D

d��
�
˛.�;x/

�
��.!.y//

��
d��

�
��.!.y//

� D eh.�/B.��.!/.y//.b0;˛.�;x/
�1.b0//:

We first check that H� y�� is shift-invariant:

H�.�.x//d y��.�.x//

D

�Z
ƒ.�.�//�.x/

e2h.�/h��.!.�.x///;wi d��.w/
�

d��
�
��
�
!.�.x//

��
D

�Z
ƒ.�.�//�.x/

e2h.�/h˛.�;x/.��.!.x///;˛.�;x/.v/i d��.˛.�;x/.v//
�

� d��
�
˛.�;x/

�
��.!.x//

��
D

�Z
ƒ.�.�//x

e2h.�/h��.!.x//;vie�h.�/.B��.!.x//.b0;˛.�;x/
�1.b0//CBv.b0;˛.�;x/

�1.b0///

� eh.�/Bv.b0;˛.�;x/
�1.b0// d��.v/

�
eh.�/B��.!.x//.b0;˛.�;x/

�1.b0// d��
�
��.!.x//

�
D

�Z
ƒ.�.�//x

e2h.�/h��.!.x//;vi d��.v/
�

d��
�
��.!.x//

�
DH�.x/ d y��.x/:

So H� y�� is shift-invariant.
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Now we check that y�� is a (scalar multiple of a) Gibbs state for �h.�/��. We recall,
from [29, Theorem 2.3.3], that it suffices to check that y�� is an eigenmeasure for the
dual of the transfer operator L�h.�/�� . If g W†C!R is bounded and continuous, thenZ

†C
L�h.�/�� .g/.x/ d y��.x/D

Z
†C

� P
y2��1.x/

e�h.�/��.y/g.y/
�

d y��.x/

D

Z
†C

e�h.�/��.y/g.y/ d y��.�.y//

D

Z
†C

g.y/ d y��.y/:

Therefore, y�� is a (scalar multiple of a) Gibbs state for �h.�/��.

Finally, we observe that H� is bounded above. If p is a vertex of D0, then, by
construction, there exists a neighborhood Up of p such that, if !.x/ 2 Up, then
there exists w 2 C� such that x1 D .b; !

s; w1; : : : ; wk�1; c/ for some s � 2. Recall
that we require that b ¤ w2N and c ¤ wk . Observe that w1 is the face pairing
of the edge of D0 associated to Ix and that w2N is the inverse of the face pairing
associated to the other edge E of @D0 which ends at p. So, if I is the interval in
@H2 � @D0 bounded by E, then ƒ.�.�//x is disjoint from ��.Ix [ I/. Therefore,
H� is uniformly bounded on !�1.Up/ (since e2h.�/h��.!.x//;zib0 is uniformly bounded
for all z 2 ƒ.�.�//x � ƒ.�.�// � ��.I [ Ix/). However, D0 has finitely many
vertices fp1; : : : ;png and H� is clearly bounded above if !.x/ 2 @H2�

S
Upi

(since
again e2h.�/h��.!.x//;zib0 is uniformly bounded for all z 2ƒ.�.�//x �ƒ.�.�//�Ix).
Therefore, H� is bounded above on †C.

Since every multiple of a Gibbs state for �h.�/�� by a continuous function which
is bounded between positive constants is also a (scalar multiple of a) Gibbs state for
�h.�/�� (see [29, Remark 2.2.1]), we see that H� y�� is a shift-invariant Gibbs state
and hence an equilibrium measure for �h.�/�� (see Theorem 2.4).

If � 2 QC.�/, let N� DH3=�.�/ be the quasifuchsian 3–manifold and let T 1.N�/
nw

denote the nonwandering portion of its geodesic flow. The Hopf parametrization
provides a homeomorphism

H W T 1.N�/
nw
!�D

��
ƒ.�.�//�ƒ.�.�//��

�
�R

�
=�:

Let
†y�� D f.x; t/ W x 2†; 0� t 6 y��.xC/g=�;

where .x; ��.xC//� .�.x/; 0/, be the suspension flow over † with roof function y��.
Recall that y�� W†C! .0;1/ is a positive function cohomologous to ��.
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The Stadlbauer–Ledrappier–Sarig coding map ! for †C extends to a continuous
injective coding map

y! W†!ƒ.�/�ƒ.�/

given by y!.x/D .!.xC/; !.x�//, where xC D .xi/i2N and x� D .x�1
1�i
/i2N . One

then has a continuous injective map

� W†y�� !�

which is the quotient of the map z� W†�R!
�
ƒ.�.�//�ƒ.�.�//��

�
�R given by

z�.x; t/D ..�� � ��/y!.x/; t/:

(The image of � is the complement of all flow lines which do not exit cusps of N� and
has full measure in �.) The map � conjugates the suspension flow to the geodesic flow
on its image, ie � ı�t D �t ı � for all t 2R on �.†y�� /.

The Bowen–Margulis–Sullivan measure m
�
BM on � can be described by its lift to z�,

which is given by

zm
�
BM.z; w; t/D e2h.�/hz;wib0 d��.z/ d��.w/ dt:

The Bowen–Margulis–Sullivan measure m
�
BM is finite and ergodic (see Sullivan [45,

Theorem 3]) and equidistributed on closed geodesics (see Roblin [35, théorème 5.1.1]
or Paulin, Pollicott and Schapira [32, Theorem 9.11].)

Corollary 10.2 Suppose that F W .†C/y�� !R is a bounded continuous function and
yF W†y�� !R is given by yF .x; t/D F.xC; t/. ThenR

�
yF ı ��1 dm

�
BMR

� dm
�
BM

D

R
†C

�R y��.xC/
0

F.x; t/ dt
�

dm�h.�/��R
†C ��.x

C/ dm�h.�/y��

:

Proof Let

yRD f.y!.x/; t/ 2ƒ.�.�//�ƒ.�.�//�R j x 2†; t 2 Œ0; y��.x
C/�g

be a fundamental domain for the action of � on
�
ƒ.�.�//�ƒ.�.�//��

�
�R and let

RD f.!.xC/; t/ 2ƒ.�.�//�R j xC 2†C; t 2 Œ0; y��.x
C/�g:
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By Proposition 10.1,Z
�

yF ı ��1 dm
�
BM D

Z
yR

yF ı ��1eh.�/2hz;wib0 d��.z/ d��.w/ dt

D

Z
R

F.!�1.z/; t/
�Z
ƒ.�.�//

eh.�/2hz;wib0 d��.w/
�

d��.z/ dt

D

Z
R

F.!�1.z/; t/H�.z/ d��.z/ dt

D

Z
ƒ.�.�//

�Z y��.!�1.z//

0
F.!�1.z/; t/ dt

�
H�.z/ d��.z/

D

Z
†C

�Z y��.xC/
0

F.xC; t/ dt
�

dm�h.�/�� .xC/:

In particular, if we consider F � 1, then we see that

kdm
�
BMk D

Z
�

dm
�
BM D

Z
†C

�Z y��.xC/
0

dt
�

dm�h.�/�� .xC/

D

Z
†C
��.x

C/ dm�h.�/�� ;

so our result follows.

Let
�T .�/D

1

jRT .�/j

X
Œ �2RT .�/

ıŒ �

`�. /
;

where ıŒ � is the Dirac measure on the closed orbit associated to Œ � and

RT .�/D fŒ � 2 Œ�1.S/� j 0< `�. /� T g:

(If  Dˇn for n>1 and ˇ is indivisible, then ıŒ �=`�. /DnıŒˇ�=`�.ˇ
n/D ıŒˇ�=`�.ˇ/.)

Since the Bowen–Margulis measure m
�
BM is equidistributed on closed geodesics,

f�T .�/g converges to m
�
BM=km

�
BMk weakly (in the dual to the space of bounded

continuous functions) as T !1.

We finally obtain the promised geometric form for the pressure intersection. We may
thus think of the pressure intersection, in the spirit of Thurston, as the Hessian of the
length of a random geodesic.

Theorem 10.3 Suppose that S is a compact surface with nonempty boundary , X D

H2=� is a finite-area surface homeomorphic to the interior of S, and � 2 QF.S/. If
fng � � and fı�.n/=`�.n/g converges weakly to m

�
BM=km

�
BMk, then

I.�; �/D lim
n!1

`�.n/

`�.n/
:
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Moreover ,
I.�; �/D lim

T!1

1

jRT .�/j

X
Œ �2RT .�/

`�. /

`�. /
:

Proof Let f�ng be a sequence of finite collections of elements of Œ�� such that�
�.�n/D

1

j�nj

X
Œ �2�n

ıŒ �

`�. /

�
converges weakly to m

�
BM=km

�
BMk. As in [23, Definition 3.9], consider the bounded

continuous function  W†y�� !R given by

 .x; t/ 7!
y��.x/

y��.x/
f

�
t

y��.x/

�
for all t 2 Œ0; y��.x/�;

where f W Œ0; 1�! R is a smooth function such that f .0/ D f .1/ D 0; f .t/ > 0 for
0< t < 1, and

R 1
0 f .t/ dt D 1. ThenZ

�

y ı ��1 d�.�n/D
1

j�nj

X
Œ �2�n

`�. /

`�. /
;

where y .x; t/D  .xC; t/ for all x 2†. So, by Corollary 10.2,�
1

j�nj

X
Œ �2�n

`�.n/

`�.n/

�
converges toR

�
y ı ��1 dm

�
BM

km
�
BMk

D

R
†C.y��.x/=y��.x//

�R y��.x/
0

f .t=y��.x// dt
�

dm�h.�/��R
†C y��.x/ dm�h.�/��

D

R
†C y�� dm�h.�/��R
†C y�� dm�h.�/��

D

R
†C �� dm�h.�/��R
†C �� dm�h.�/��

:

As a consequence, we obtain a geometric presentation of the pressure form which
allows us to easily see that the pressure metric is mapping class group–invariant.

Corollary 10.4 If S is a compact surface with nonempty boundary and �0 2 QF.S/,
then

P jT�0
QF.S/ D Hess.J.�0; �//D Hess

�
h.�/

h.�0/
lim

T!1

1

jRT .�0/j

X
Œ �2RT .�0/

`�. /

`�0
. /

�
:

Moreover , the pressure metric is mapping class group–invariant.
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Proof The expression for the pressure form follows immediately from the defini-
tion and Theorem 10.3. Now observe that, if � 2 Mod.S/ and � 2 QF.S/, then
�.�/ D � ı ��, so `�. / D `�.�/.��. //. Therefore, RT .�.�// D ��.RT .�//, so
jRT .�/j D jRT .�.�//j for all T, which implies that h.�/ D h.�.�//. We can also
check that

I.�0; �/D lim
T!1

1

jRT .�0/j

X
Œ �2RT .�0/

`�. /

`�0
. /

D lim
T!1

1

jRT .�0/j

X
Œ �2RT .�/

`�.�/.��. //

`�.�0/.��. //

D lim
T!1

1

jRT .�.�0//j

X
Œ �2RT .�.�0//

`�.�/. /

`�.�0/. /

D I.�.�0/; �.�//:

Therefore, J.�0; �/D J.�.�0/; �.�// for all � 2Mod.S/ and �0; � 2 QF.S/, so the
renormalized pressure intersection is mapping class group–invariant, so the pressure
metric is mapping class group–invariant.
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1 Introduction

In their memoir [32] Hovey and Strickland studied the categories of K.n/–local and
En–local spectra in great detail. Here K.n/ is the nth Morava K–theory; the spectrum
whose homotopy groups are the graded field

K.n/� Š FpŒv
˙1
n �; jvnj D 2.p

n
� 1/

and En is the nth Lubin–Tate spectrum, or Morava E–theory, with

.En/� ŠW.Fpn/ŒŒu1; : : : ; un�1��Œu
˙1�; jui j D 0; juj D 2:

As explained in the introduction of [32], the Morava K–theories are the prime field
objects in the stable homotopy category — for a way to make that precise, see Hopkins
and Smith [27], or more specifically, Balmer [4, Corollary 9.5] — and are one of the
fundamental objects in the chromatic approach to stable homotopy theory.

A deep result of Hopkins and Ravenel [48] is that Bousfield localization with respect
to En is smashing, which simplifies the study of the category of En–local spectra
considerably. On the other hand, localization with respect to K.n/ is not smashing [32,
Lemma 8.1], and the monoidal unit LK.n/S0 2 SpK.n/ is dualizable, but not compact.
In the language of tensor-triangulated geometry, SpK.n/ is a nonrigidly compactly
generated category. Because of this, much of the work in [32] is therefore dedicated to
understanding the more complicated category of K.n/–local spectra.

By a Bousfield class argument, the category of En–local spectra is equivalent to the
category of .K.0/_ � � � _K.n//–local spectra. In this paper we study the categories of
.K.k/_ � � � _K.n//–local spectra for 0� k � n, which were suggested as “interesting
to investigate” by Hovey and Strickland; see the remark after Corollary B.9 in [32].
We write Lk;n for the associated Bousfield localization functor. As we shall see, when
k ¤ 0, the category Spk;n of .K.k/_ � � � _K.n//–local spectra behaves much like
the category SpK.n/ D Spn;n of K.n/–local spectra. For example, it is an example
of a nonrigidly compactly generated category; as soon as k ¤ 0, the monoidal unit
Lk;nS

0 2 Spk;n is dualizable, but not compact. However, the categories Spk;n for
k ¤ n are in some sense more complicated than the case k D n; for example, SpK.n/
has no nontrivial (co)localizing subcategories, while this is not true for Spk;n as long
as k ¤ n.
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1A Contents of the paper

We now describe the contents of the paper in more detail. We begin with a study
of Bousfield classes, constructing some other spectra which are Bousfield equivalent
to K.k/ _ � � � _K.n/. In particular, we show that there is a Bousfield equivalence
between a localized quotient of BP , denoted by E.n; Jk/, and K.k/ _ � � � _K.n/.
For this reason, as well as brevity, we often say that X is E.n; Jk/–local, instead of
.K.k/_ � � � _K.n//–local.

As was already noted by Hovey and Strickland [32, Corollary B.9], Spk;n is an algebraic
stable homotopy theory in the sense of Hovey, Palmieri and Strickland [30] with compact
generator Lk;nF.k/, the localization of a finite spectrum of type k. We investigate
some consequences of this; for example, analogous to Hovey and Strickland’s formulas
for LK.n/X , in Proposition 2.24, we prove some formulas for Lk;nX in terms of towers
of finite type k Moore spectra. Some of these results had previously been obtained by
the author and Barthel and Valenzuela [11].

In Section 3 we investigate the tensor-triangulated geometry of Spk;n. We begin by
characterizing the compact objects in Spk;n, culminating in Theorem 3.8 which is a
natural extension of Hovey and Strickland’s results in the cases kD0; n. A classification
of the thick ideals of Sp!k;n is an almost immediate consequence of this classification;
see Theorem 3.16 for the precise result. Of course, here we rely on the deep thick
subcategory theorem in stable homotopy [27] and its consequences. Finally, we classify
the localizing and colocalizing subcategories of Spk;n in Theorem 3.33. We obtain the
following.

Theorem 1.1 There is an order-preserving bijection between (co)localizing subcate-
gories of Spk;n and subsets of fk; : : : ; ng. Moreover , the map that sends a localizing
subcategory C of Spk;n to its left orthogonal C? induces a bijection between the
set of localizing and colocalizing subcategories of Spk;n. The inverse map sends a
colocalizing subcategory U to its right orthogonal ?U .

We also compute the Bousfield lattice of Spk;n (Proposition 3.39) and show that a form
of the telescope conjecture holds (Theorem 3.46).

In Section 4 we show that, as a consequence of the Hopkins–Ravenel smash product
theorem, the commutative algebra object En 2 Spk;n is descendable, in the sense
of Mathew [41]. This has a number of immediate consequences. For example, it
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implies the existence of a strongly convergent Adams-type spectral sequence, which
we call the E.n; Jk/–local En–Adams spectral sequence, computing ��.Lk;nX/ for
any spectrum X . Moreover, descendability implies this collapses with a horizontal
vanishing line at a finite stage (independent of X ). In the case of X D S0 it is known
that, in the cases k D 0 and k D n, this vanishing line already occurs on the E2–page
so long as p� n. In order to generalize this result, we first show that when X D S0,
the E2–term of the E.n; Jk/–local En–Adams spectral sequence spectral sequence
can be given as the inverse limit of certain Ext groups computed in the category of
.En/�En–comodules; see Proposition 4.16 for the precise result. We are then able to
utilize a chromatic spectral sequence and Morava’s change of rings theorem to show
the following (Theorem 4.24):

Theorem 1.2 Suppose p� 1 does not divide kC s for 0� s � n� k (for example , if
p > nC 1), then in the E2–term of the E.n; Jk/–local En–Adams spectral sequence
converging to Lk;nS0, we have Es;t2 D 0 for s > n2Cn� k.

In the case k D 0, this recovers a result of Hovey and Sadofsky [31, Theorem 5.1].

As noted previously, so long as k¤ 0, the categories of dualizable and compact spectra
do not coincide in Spk;n; every compact spectrum is dualizable, but the converse does
not hold, with the unit Lk;nS0 being an example. In Section 5 we study the category of
dualizable objects in Spk;n. As a consequence of descendability, we show thatX 2Spk;n
is dualizable if and only ifLk;n.En^X/ is dualizable in the category ofE.n; Jk/–local
En–modules. In turn, we show that this holds if and only if Lk;n.En^X/ is dualizable
(equivalently, compact) in the category of En–modules. We deduce that X 2 Spk;n is
dualizable if and only if its Morava module .Ek;n/_� .X/ WD��Lk;n.En^X/ is finitely
generated as an .En/�–module; see Theorem 5.11. This generalizes a result of Hovey
and Strickland, but even in this case our proof differs from theirs.

It is an observation of Hopkins that the Picard group of invertible K.n/–local spectra
is an interesting object to study; see Hopkins, Mahowald and Sadofsky [26]. Likewise,
Hovey and Sadofsky [31] have studied the Picard group of E.n/–local spectra. In
Section 6 we study the Picard group Pick;n of E.n; Jk/–local spectra. Our first result,
which is a consequence of descent, is that X 2 Spk;n is invertible if and only if its
Morava module .Ek;n/_� .X/ is free of rank 1. We then study the Picard spectrum —
see Mathew and Stojanoska [44] — of the category Spk;n. Using descent again, we
construct a spectral sequence whose abutment for �0 is exactly Pick;n. The existence of
this spectral sequence in the case k D n is folklore. We say that this spectral sequence
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is algebraic if the only nonzero terms in the spectral sequence occur in filtration degree
0 and 1. Using Theorem 1.2 we deduce the following result (Theorem 6.8). In the case
k D n, this is a theorem of Pstrągowski [45].

Theorem 1.3 If 2p�2� n2Cn�k and p�1 does not divide kCs for 0� s � n�k,
then Pick;n is algebraic. For example , this holds if 2p� 2 > n2Cn.

There is an interesting element in the K.n/–local Picard group, namely the Brown–
Comenetz dual of the monochromatic sphere [32, Theorem 10.2]. In Section 7 we
extend Brown–Comenetz duality to the E.n; Jk/–local category. We do not know
when the Brown–Comenetz dual of the monochromatic sphere defines an element of
Pick;n; this is not true when k D 0, and we provide a series of equivalent conditions
for the general case in Proposition 7.10.

The case n D 2 and k D 1

The first example that has essentially not been studied in the literature is when nD 2
and k D 1, ie the category of .K.1/_K.2//–local spectra. In Section 5B we give a
computation of the Balmer spectrum of .K.1/_K.2//–locally dualizable spectra. For
this, we recall that Hovey and Strickland have conjectured a description of the Balmer
spectrum Spc.Spdual

K.n/
/ of dualizable objects in K.n/–local spectra [32, page 61]. This

was investigated by the author, along with Barthel and Naumann, in [10]. This admits a
natural generalization to Spdual

k;n
. For i �n, let Di denote the category ofX 2Spdual

k;n
such

that X is a retract of Y ^Z for some Y 2 Spdual
k;n

and some finite spectrum Z of type
at least i . We also set DnC1 D .0/. The conjecture is that these exhaust all the thick
tensor-ideals of Spdual

k;n
. We show in Theorem 5.21 that if this holds K.n/–locally (ie in

Spdual
n;n ), then it holds for all Spdual

k;n
. In particular, since it is known to hold K.2/–locally

by [10, Theorem 4.15], we obtain the following; see Corollary 5.22.

Theorem 1.4 The Balmer spectrum of K.1/_K.2/–locally dualizable spectra

Spc.Spdual
1;2 /D fD1;D2;D3g

with topology determined by fDj g D fDi j i � j g. In particular , if C is a thick
tensor-ideal of Spdual

1;2 , then C D Dk for 0� k � 3.

Conventions and notation

We let hXi denote the Bousfield class of a spectrum X . The smallest thick tensor-
ideal containing an object A will be denoted by thick˝hAi (it will always be clear
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in which category this thick subcategory should be taken in). Likewise, the smallest
thick (resp. localizing) subcategory containing an object A will be written as Thick.A/
(resp. Loc.A/).

Acknowledgements

It goes without saying that this paper owes a tremendous intellectual debt to Hovey
and Strickland, in particular for the wonderful manuscript [32]. We also thank Neil
Strickland for a helpful conversation, as well as his comments on a draft version of this
document.

2 The category of Spk;n–local spectra

2A Chromatic spectra

We begin by introducing some of the main spectra that we will be interested in.

Definition 2.1 Let BP denote the Brown–Peterson homotopy ring spectrum with
coefficient ring

BP� Š Z.p/Œv1; v2; : : : �

with jvi j D 2.pi � 1/.

Remark 2.2 The classes vi are not intrinsically defined, and so the definition ofBP de-
pends on a choice of sequence of generators; for example, they could be the Hazewinkel
generators or the Araki generators. However, the ideals In D .p; v1; : : : ; vn�1/ for
0� n�1 do not depend on this choice.

By taking quotients and localizations of BP — for example, using the theory of
structured ring spectra [19, Chapter V] — we can form new homotopy ring spectra.
In particular, let Jk denote a fixed invariant regular sequence pi0 ; vi11 ; : : : ; v

ik�1

k�1
of

length k. Then we can form the homotopy associative ring spectrum BPJk with

.BPJk/� Š BP�=Jk :

These were first studied by Johnson and Yosimura [35]. A detailed study on the product
structure one obtains via this method can be found in [51].

Definition 2.3 We let E.n; Jk/ for n� k denote the Landweber exact spectrum with

E.n; Jk/� Š v
�1
n ..BPJk/�=.vnC1; vnC2; : : : //:
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Here Landweber exact means over BPJk (as studied by Yosimura [56]), that is, there
is an isomorphism

E.n; Jk/�.X/Š .BPJk/�.X/˝BP�=Jk
E.n; Jk/�:

Example 2.4 If k D 0 (so that Jk is the trivial sequence), then E.n; J0/ ' E.n/,
Johnson–Wilson theory. For the other extreme, if Jn D p; v1; : : : ; vn�1, then BPJn is
the spectrum known as P.n/, and E.n; Jn/'K.n/ is Morava K–theory [32].

Definition 2.5 For k � n <1, we let Spk;n � Sp denote the full subcategory of
.K.k/_K.kC 1/_ � � � _K.n//–local spectra.

Lemma 2.6 The inclusion Spk;n ,! Sp has a left adjoint Lk;n, and Spk;n is a pre-
sentable , stable1–category.

Proof This is a consequence of [39, Proposition 5.5.4.15].

Remark 2.7 The category Spk;n and localization functor Lk;n only depend on the
Bousfield class hK.k/_ � � � _K.n/i.

Notation 2.8 We will follow standard conventions and write Sp0;n as Spn and Spn;n
as SpK.n/. Similarly, the corresponding Bousfield localization functors will be denoted
by L0;n D Ln and Ln;n D LK.n/, respectively.

Remark 2.9 By [46, Theorem 2.1] we have hE.n/i D hK.0/_ � � � _K.n/i. In fact,
let E be a BP –module spectrum that is Landweber exact over BP , and is vn–periodic,
in the sense that vn 2 BP� maps to a unit in E�=.p; v1; : : : ; vn�1/. Then Hovey has
shown that hEi D hK.0/_ � � � _K.n/i [28, Corollary 1.12]. In particular, this applies
to the Lubin–Tate E–theory spectrum En — see [49] — with

.En/� ŠW.Fpn/ŒŒu1; : : : ; un�1��Œu
˙1�

or the completed version of E–theory used in [32] with

E� Š .E.n/�/
^
In
Š ZpŒv1; : : : ; vn�1; v

˙1
n �^In

:

2B Bousfield decomposition

In the previous section we introduced the spectra E.n; Jk/ for n� k and an invariant
regular sequence pi0 ; : : : ; vik�1

k�1
of length k. We now give Bousfield decompositions

for E.n; Jk/–local spectra.

Algebraic & Geometric Topology, Volume 23 (2023)
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Proposition 2.10 There are equivalences of Bousfield classes:

(1) (Johnson–Yosimura) hv�1n BPJki D hE.n; Jk/i.

(2) (Yosimura) hE.n; Jk/i D
Wn
iDkhK.i/i.

(3) hEn=Iki D
Wn
iDkhK.i/i.

Proof Part (1) is [35, Corollary 4.11]. Part (2) can be deduced from [57] as we now
explain. First, by [57, Corollary 1.3 and Proposition 1.4] along with (1),

hE.n; Jk/i D hv
�1
n BPJki D hLnBPJki D

n_
iDk

hv�1i P.i/i:

By [57, Corollary 1.8] we have hv�1i P.i/i D hK.i/i, and hence (2) follows. For (3),
we first note that by the thick subcategory theorem hEn=Iki D hEn ^F.k/i for some
finite type k spectrum. Since En D

Wn
iD0K.i/, (3) then follows from the definition of

a type k spectrum.

Remark 2.11 In other words, the category of E.n; Jk/–local spectra is equivalent
to the category of K.k/_ � � �K.n/–local spectra. Note that this implies this category
only depends on the length of the sequence, and not the integers i0; : : : ; in�1. We will
therefore sometimes say that a spectrum X is E.n; Jk/–local if X 2 Spk;n.

2C Algebraic stable homotopy categories

We now begin by recalling the basics on algebraic stable homotopy theories; see [30]
in the triangulated setting.

Definition 2.12 A stable homotopy theory is a presentable, symmetric monoidal
stable1–category .C;˝; 1/ where the tensor product commutes with all colimits. It
is algebraic if there is a set G of compact objects such that the smallest localizing
subcategory of C containing all G 2 G is C itself.

Remark 2.13 The assumptions on C imply that it the functor �^Y has a right adjoint
F.Y;�/, ie the symmetric monoidal structure on C is closed.

Remark 2.14 The associated homotopy category Ho.C/ is then an algebraic stable
homotopy theory in the sense of [30]. We note that compactness can be checked at the
level of the homotopy category; see [40, Remark 1.4.4.3].

Applying [32, Corollary B.9; 30, Theorem 3.5.1], we have the following.
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Proposition 2.15 (Hovey, Palmieri and Strickland) Spk;n is an algebraic stable
homotopy category with compact generator Lk;nF.k/. The symmetric monoidal
structure in Spk;n is given by

X x̂ Y WD Lk;n.X ^Y /:

Colimits are computed by taking the colimit in spectra and then applying Lk;n, while
function objects and limits are computed in the category of spectra.

Remark 2.16 The most difficult part of the above proposition is that Lk;nF.k/ is
a compact generator of Spk;n. Indeed, one must show that the conditions of [32,
Proposition B.7] are satisfied and to do this, one at some point needs to invoke the
thick subcategory theorem [27], or one its consequences (such as the Hopkins–Ravenel
smash product theorem [48]).

Remark 2.17 The localization Ln D L0;n is smashing (that is LnX ' LnS0 ^X)
by the Hopkins–Ravenel smash product theorem [48] and in this case X x̂ Y 'X ^Y .
However, if k ¤ 0, then localization Lk;n is not smashing as the following lemma
shows, and so X x̂ Y 6'X ^Y in general.

Lemma 2.18 If k¤ 0, thenLk;n is not smashing , andLk;nS0 is not compact in Spk;n.

Proof We first claim that hLk;nS0i D hE.n/i. To see this, note that we have ring
maps LnS0! Lk;nS

0! LK.n/S
0, so hLK.n/S0i � hLk;nS0i � hLnS0i. However,

hLK.n/S
0i D hLnS

0i D hE.n/i [32, Corollary 5.3], so these inequalities are actually
equalities, and all three are Bousfield equivalent to E.n/.

Suppose now that Lk;n were smashing, so that hLk;nS0i D
Wn
iDkhK.i/i; see [46,

Proposition 1.27]. Then, since hE.n/i �
Wn
iDkhK.i/i as soon as k ¤ 0, we have

obtained a contradiction.

The second part is then a consequence of [30, Theorem 3.5.2].

Remark 2.19 Using the periodicity theorem of Hopkins and Smith [27], Hovey and
Strickland [32, Section 4] constructed a sequence of ideals fIj gj �m�E0 and type k
spectra fMk.j /gj with the following properties (see also [7, Remark 2.1]):

(1) IjC1 � Ij and \j Ij D 0;

(2) E0=Ij is finite; and
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(3) E�.Mk.j // Š E�=Ij and there are spectrum maps q WMk.j C 1/!Mk.j /

realizing the quotient E�=Mk.j C 1/!E�=Mk.j /.

We call such a tower fMk.j /gj a tower of generalized Moore spectrum of type k.

Remark 2.20 The tower as above is constructed in the homotopy category of spectra.
However, as explained in [27, page 9, equation (15)], such sequential diagrams can
always be lifted to a sequence of cofibrations between cofibrant objects, and in particular
to a diagram in the1–category of spectra (the point is that such diagrams have no
nontrivial homotopy coherence data). Then, the (co)limit in the1–categorical sense,
agrees with the homotopy (co)limit used in [30, Definitions 2.2.3 and 2.2.10].

Notation 2.21 We write Mk;nX for the fiber of the localization map LnX!Lk�1X .
By definition, we set M0;n D Ln.

Lemma 2.22 We have an equality of Bousfield classes

hMk;nS
0
i D

n_
iDk

hK.i/i:

Proof Recall that, by definition, there is a cofiber sequence

Ck�1S
0
! S0! Lk�1S

0:

Applying Ln to this and using LiLj ' Lmin.i;j / we see that

Mk;nS
0
' LnCk�1S

0
' Ck�1LnS

0;

where the last equivalence follows as both functors are smashing. It follows from [32,
Proposition 5.3] that hMk;nS

0i D
Wn
iDkhK.i/i as claimed.

Remark 2.23 In [32, Proposition 7.10(e)] Hovey and Strickland give a formula for
LK.n/X in terms of towers of generalized Moore spectra. We show now that their
proof extends to Lk;nX .

Proposition 2.24 There are equivalences

Lk;nX ' LF.k/LnX ' lim
 ��
j

.LnX ^Mk.j //' F.Mk;nS
0; LnX/;

where the limit is taken over a tower fMk.j /g of generalized Moore spectra of type k.

Proof We first note that Lk�1X ' LnLk�1X ' LnL
f

k�1
X , the latter by Corollary

6.10 of [32]. It follows that Mk;nX ' LnC
f

k�1
X , where C f

k�1
is the acyclization
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functor associated to Lf
k�1

. By [32, Proposition 7.10(a)] (and Remark 2.20) C f
k�1

X '

lim
��!j

D.Mk.j //^X , so Mk;nX ' lim
��!j

D.Mk.j //^LnX . It follows that

lim
 ��
j

.LnX ^Mk.j //' F.Mk;nS
0; LnX/:

Moreover, by [32, Proposition 7.10(a)] this is equivalent to LF.k/LnX .

To finish the proof, we will show that Lk;nX ' LF.k/LnX . First, note that X !
LnX is an LnS0–equivalence, and LnX ! LF.k/LnX is an F.k/–equivalence, so
X ! LF.k/LnX is an LnS0 ^ F.k/–equivalence. But LnS0 ^ F.k/ ' LnF.k/

and hLnF.k/i D
Wn
iDkhK.i/i [32, Proposition 5.3]. Therefore X ! LF.k/LnX

is a .K.k/_ � � � _K.n//–equivalence, and we only need show that LF.k/LnX is
.K.k/_ � � � _K.n//–local. But LF.k/LnX ' F.Mk;nS

0; LnX/ and so it follows
from Lemma 2.22 that LF.k/LnX is .K.k/_ � � � _K.n//–local. We conclude that
Lk;nX ' LF.k/LnX , as required.

Remark 2.25 The equivalence

Lk;nX ' lim
 ��
j

.LnX ^Mk.j //

has also been obtained in [11, Proposition 6.21] using the theory and complete and
torsion objects in a stable 1–category. The next result is also contained in [11,
Corollary 6.17].

Proposition 2.26 For any spectrum X there is a pullback square

LnX Lk;nX

Lk�1X Lk�1Lk;nX

Proof This is a standard consequence of the Bousfield decomposition

hE.n/i D hE.k� 1/i _ hE.n; Jk/i

using for example [13, Proposition 2.2] (or, in the1–categorical setting, see [1]).

Remark 2.27 Use [13, Proposition 2.2] one can deduce various other chromatic
fracture squares. For example, we have a pullback square

Lk;nX Lk;hX

LhC1;nX Lk;hLhC1;nX

for k � h� n� 1.
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Remark 2.28 These types of iterated chromatic localizations have been investigated
by Bellumat and Strickland [53]. Results such as the chromatic fracture square can be
recovered from their work; however we do not investigate this in detail.

Corollary 2.29 Suppose Mj is a generalized Moore spectrum of type at least k. Then
LnMj ' Lk;nMj .

Proof By definition, Lk�1Mj ' �, and so by the pullback square of Proposition 2.26
we must show that Lk�1Lk;nMj is contractible. Because Mj is a finite complex, this
is equivalent to Lk�1..Lk;nS0/^Mj /' �, and the result follows.

Definition 2.30 Let Mk;n denote the essential image of the functor Mk;n W Sp! Sp.

Theorem 2.31 For any spectrum X , we have natural equivalences

Mk;nLk;nX 'Mk;nX; Lk;nX ' Lk;nMk;nX:

It follows that there is an equivalence of categories Mk;n ' Spk;n given by Lk;n, with
inverse given by Mk;n.

Proof The proof of Hovey and Strickland in the case k D n generalizes essentially
without change.

By definition, Mk;nX fits into a cofiber sequence

Mk;nX ! LnX ! Lk�1X;

so applying Lk;n gives a cofiber sequence

Lk;nMk;nX ! Lk;nLnX ! Lk;nLk�1X:

But hE.k�1/iD
Wk�1
iD0 hK.k/i, soLk;nLk�1X'0, while clearlyLk;nLnX'Lk;nX .

It follows that Lk;nMk;nX ' Lk;nX .

Using Proposition 2.24, Lk;nX ' F.Mk;nS
0; LnX/, and so applying F.�; LnX/ to

the defining cofiber sequence for Mk;nS
0 we obtain a cofiber sequence

F.Lk�1S
0; LnX/! F.LnS

0; LnX/! F.Mk;nS
0; LnX/;

or, equivalently,
F.Lk�1S

0; LnX/! LnX ! Lk;nX:

It is easy to check that F.Lk�1S0; LnX/ is E.k�1/–local, and so by Lemma 2.22 we
have Mk;nF.Lk�1S

0; LnX/'�. It follows that Mk;nLnX 'Mk;nX 'Mk;nLk;nX

as claimed.
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Remark 2.32 Once again, this result was obtained (by different methods) in [11,
Proposition 6.21].

3 Thick subcategories and (co)localizing subcategories

In this section we compute the thick subcategories of compact objects in Spk;n and
(co)localizing subcategories of Spk;n. When k D 0 or k D n both results have been
obtained by Hovey and Strickland. Along the way we give a classification of the
compact objects in Spk;n.

3A Compact objects in Spk;n

In this section we characterize the compact objects in Spk;n. We will use this in the
next section to compute the thick subcategories of Sp!k;n.

We begin by recalling the notions of thick and (co)localizing subcategories.

Definition 3.1 Let .C;^; 1/ be an algebraic stable homotopy category, and let D be a
full, stable subcategory.

(1) D is called thick if it is closed under extensions and retracts.

(2) D is called localizing if it is thick and closed under arbitrary colimits.

(3) D is called colocalizing if it is thick and closed under arbitrary limits.

(4) D is a tensor-ideal if X 2 C and Y 2 D implies X ^Y 2 D.

(5) D is a coideal if X 2 C and Y 2 D implies F.X; Y / 2 D.

We will also speak of localizing (or thick) tensor-ideals and colocalizing coideals.

Remark 3.2 In Spn the dualizable and compact objects coincide, and are precisely
those that lie in the thick subcategory generated by the tensor unit LnS0. In categories
whose tensor unit is not compact, such as Spk;n for k ¤ 0, the dualizable and compact
objects do not coincide — for example, the tensor unit is always dualizable, but is not
compact (Lemma 2.18). In [32] Hovey and Strickland gave numerous characterizations
of compact objects in SpK.n/. In this section we extend some of these characterizations
to Spk;n. We first recall the concept of a nilpotent object in a symmetric monoidal
category.

Definition 3.3 We say that X is R–nilpotent if X lies in the thick ˝–ideal generated
by R, ie X 2 Thick˝hRi.
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Lemma 3.4 The category of En=Ik–nilpotent spectra is the same in Spk;n, Spn
and Sp.

Proof Using that hEn=Iki D hE.n; Jk/i (Proposition 2.10) we see that En=Ik ^X
is always E.n; Jk/–local, from which the result easily follows.

Remark 3.5 In other words, we can talk unambiguously about the category of En=Ik–
nilpotent spectra.

We will also need the following generalization of [32, Lemma 6.15].

Lemma 3.6 If X is a finite spectrum of type at least k, then LnX ' Lk;nX is
En=Ik–nilpotent.

Proof The argument is only a slight adaptation of that given by Hovey and Strickland.
By a thick subcategory argument, we can assume that X DMk is a generalized Moore
spectrum of type k. By [48], LnS0 2 thick˝hEni, and it follows that LnS0 ^Mk '

LnMk 2 thick˝hEn^Mki. But it is easy to see that thick˝hEn^Mki' thick˝hEn=Iki
and we are done.

Remark 3.7 The fact thatLnS0 2 thick˝hEni is equivalent to the claim thatEn 2Spn
is descendable, a condition we investigate further in Section 4A.

The compact objects in Spk;n can be characterized in the following ways, partially
generalizing [32, Theorem 8.5]. We note that every compact object in Spk;n is auto-
matically dualizable by [30, Theorem 2.1.3]; we investigate the dualizable objects in
Spk;n in more detail in Section 5.

Theorem 3.8 The following are equivalent for X 2 Spk;n:

(1) X is compact.

(2) X 2 thickhLnF.k/i.

(3) X is a retract of LnX 0 ' Lk;nX 0 for a finite spectrum X 0 of type at least k.

(4) X is a retract of Y ^X 0, where Y is dualizable and X 0 is a finite spectrum of
type at least k.

(5) X is dualizable and En=Ik–nilpotent.

The category Sp!k;n � Spdual
k;n

is thick. Moreover , if X 2 Sp!k;n and Y 2 Spdual
k;n

, then
X ^Y; F.X; Y / and F.Y;X/ lie in Sp!k;n. In particular , F.X;Lk;nS0/ 2 Sp!n .
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Proof The equivalence of (1) and (2) is [30, Theorem 2.1.3] along with Proposition 2.15.
Item (3) implies (2) because every finite spectrum of type at least k lies in the thick
subcategory generated by F.k/. That (1) implies (3) is the same as given by Hovey
and Strickland [32, Theorem 8.5]. Namely, suppose that X 2 Spk;n is compact. By
Proposition 2.24, X ' lim

��!j
.X ^DMk.j //, so ŒX;X� ' lim

��!j
ŒX;X ^DMk.j /�. In

particular, X is a retract of Y WD X ^DMk.j /. We claim that such a Y is compact
in Spn. Indeed, let fZig be a filtered diagram of En–local spectra. Then we have
equivalences

ŒY; lim
��!
i

Zi �� ' ŒX;LnMk.j /^ lim
��!
i

Zi ��

'
�
X;Lk;n lim

��!
i

.Mk.j /^Zi /
�
�

' lim
 ��
i

ŒX;Mk.j /^Zi ��

' lim
 ��
i

ŒY;Zi ��:

The first and last equivalence follow by adjunction, the second because hLnMk.j /i DWn
iDkhK.i/i [32, Proposition 5.3], so

LnMk.j /^ lim
��!
i

Zi ' LnMk.j /^Lk;n lim
��!
i

Zi ' Lk;n lim
��!
i

.Mk.j /^Zi /;

while the third equivalence follows because X 2 Sp!k;n by assumption and because
Lk;n lim

��!i
is the colimit in Spk;n. We have K.i/�Y D 0 for i < k and so Corollary 6.11

of [32] implies that Y , and hence X , is a retract of LnZ 'Lk;nZ for a finite spectrum
Z of type at least k. This shows that (1), (2) and (3) are equivalent.

Assume now that (4) holds. Note that Y ^X 0 isE.n; Jk/–local, and moreover Y ^X 0'
Y ^Lk;nX

0, where Lk;nX 0 2 Sp!k;n. By [30, Theorem 2.1.3] the smash product of a
dualizable and compact object is compact, and so X is a retract of a compact E.n; Jk/–
local spectrum, and thus is also compact; ie (1) holds.

To see that (3) implies (5), we use a thick subcategory argument to reduce to the case
that X DLnMk 'Lk;nMk is a localized generalized Moore spectrum of type k. Such
an X is clearly dualizable and is additionally En=Ik–nilpotent by Lemma 3.6.

Now suppose that X satisfies (5). Following Hovey and Strickland [32, Proof of
Corollary 12.16] let J be the collection of spectra Z 2 Spk;n such that Z is a module
over a generalized Moore spectrum of type i (for a fixed i with k � i � n). By [32,
Proposition 4.17], J forms an ideal. Because K.i/^Z is nonzero and a wedge of sus-
pensions of K.i/, J contains the ideal of K.i/–nilpotent spectra. Moreover, it follows
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from the Bousfield decomposition hEn=IkiD
Wn
iDkhK.i/i thatK.i/^En=Ik¤ 0, and

so thick˝hK.i/i � thick˝hEn=Iki; ie every K.i/–nilpotent spectrum (for k � i � n)
is also En=Ik–nilpotent. In particular, X 2J , so X is retract of a spectrum of the form
Y ^X where Y is a generalized Moore spectrum of type i , and thus (4) holds.

Finally, we prove the subsidiary claims. It is immediate from (2) that Sp!k;n � Spdual
k;n

is thick, and it is an ideal by [30, Theorem 2.1.3(a)]. Because generalized Moore
spectra are self-dual — see [32, Proposition 4.18] — (c) implies that Sp!k;n is closed
under Spanier–Whitehead duality. Therefore, F.X; Y / ' F.X;Lk;nS

0/ x̂ Y and
F.Y;X/'X x̂ F.Y;Lk;nS

0/ lie in Sp!k;n.

Remark 3.9 When k D 0, then X is compact if and only if X is dualizable [32,
Theorem 6.2]. To reconcile this with (5) of the previous theorem, we note that every
spectrum X 2 Spn is En=I0 'En–nilpotent [48, Theorem 5.3].

3B The thick subcategory theorem

We now give a thick subcategory theorem for Sp!k;n. As we shall see, given Theorem 3.8
this is an immediate consequence of the classification of thick subcategories of Sp!n ,
which ultimately relies on the Devinatz–Hopkins–Smith nilpotence theorem.

Definition 3.10 For 0� j �nC1 let Cj denote the thick subcategory of Spn consisting
of all compact spectra X such that K.i/�X D 0 for all i < j ; ie

Cj D fX 2 Sp!n jK.i/�X D 0 for all i < j g:

Remark 3.11 By [32, Proposition 6.8], we equivalently have

Cj D fX 2 Sp!n jK.j � 1/�X D 0g:

Remark 3.12 We have

C0 © C1 © � � �© CnC1 D .0/;

and moreover LnF.j / is in Cj , but not CjC1.

We now present the result of Hovey and Strickland [32, Theorem 6.9].

Theorem 3.13 (Hovey–Strickland) If C is a thick subcategory of Sp!n , then C D Cj
for some j such that 0� j � nC 1.

Remark 3.14 This result can be restated in terms of the Balmer spectrum of Sp!n [3].
In particular,

Spc.Sp!n /Š fC1; : : : ; CnC1g
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with topology determined by the closure operator fCj g D fCi j i � j g. This is in fact
equivalent to Theorem 3.13, essentially by the same argument as in [10, Proposition 3.5].

The Balmer support of X 2 Sp!n , defined in [3, Definition 2.1], is given by

supp.X/D fP 2 Spc.Sp!n / jX … Pg:

Note that X … Cj if and only if K.j � 1/�X ¤ 0. Therefore, by Theorem 3.13,

supp.X/D fi 2 f0; : : : ; ng jK.i/�X ¤ 0g D fi 2 f0; : : : ; ng jK.i/^X ¤ 0g:

For a thick subcategory J , we define supp.J / D
S
X2J supp.X/. Then, Balmer’s

classification result [3, Theorem 4.10] shows that there is a bijection

fthick subcategories of Sp!n g
�

supp��! fspecialization closed subsets of {0; : : : ; n}g:

with the topology on {0; : : : ; n} determined by fkg D fk; kC 1; : : : ; ng, with inverse
given by sending a specialization closed subset Y to fX 2 Sp!n j supp.X/� Y g. Note
that there are exactly nC2 such specialization closed subsets, namely ∅ and the subsets
fk; : : : ; ng for k D 0; : : : ; n. The thick subcategory CnC1 corresponds to ∅ under this
bijection, while Ck corresponds to fk; : : : ; ng for 0� k � n.

Given the classification of compact E.n; Jk/–local spectra in Theorem 3.8, we deduce
the following.

Lemma 3.15 The category of compact E.n; Jk/–local spectra , Sp!k;n, is equivalent to
the thick subcategory Ck � Sp!n .

Proof By [32, Corollary 6.11] ifX 2 Ck , thenX is a retract ofLnY 'Lk;nY for some
finite spectrum Y of type of least k. Then X is a compact E.n; Jk/–local spectrum
by Theorem 3.8. Conversely, if X is a compact E.n; Jk/–local spectrum, then X
is a retract of LnY ' Lk;nY for Y a finite spectrum Y of type of least k, again by
Theorem 3.8. Therefore K.i/�X D 0 for i < k and X 2 Ck .

Theorem 3.16 (thick subcategory theorem) There is a bijection

fthick subcategories of Sp!k;ng
�

supp��! fspecialization closed subsets of fk; : : : ; ngg;

with inverse given by sending a specialization closed subset Y to

fX 2 Sp!k;n j supp.X/� Y g:

In particular , if C is a thick subcategory of Sp!k;n, then C D Cj for some j such that
k � j � nC 1.
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Proof This follows by combining Theorem 3.13 and Lemma 3.15.

Remark 3.17 Note that Sp!k;n is not a tensor-triangulated category when k ¤ 0, as
it does not have a tensor unit. Therefore, we cannot speak of the Balmer spectrum
of Sp!k;n.

We also have a nilpotence theorem.

Proposition 3.18 Let X 2 Sp!k;n, and u W†dX ! X a self-map such that K.i/�u is
nilpotent for k � i � n. Then u is nilpotent ; ie the j –fold composite

u ı � � � ıu W†jdX !X

is trivial for large enough j .

Proof In light of Lemma 3.15, this follows from [32, Corollary 6.6].

3C Localizing and colocalizing subcategories

In this section we calculate the (co)localizing (co)ideals of Spk;n. We first observe that
every (co)localizing subcategory is automatically a (co)ideal, so it suffices in fact to
concentrate on (co)localizing subcategories.

Lemma 3.19 Every (co)localizing subcategory of Spk;n is a (co)ideal.

Proof We prove the case of localizing subcategories — the case of colocalizing sub-
categories is similar.1 To that end, let C � Spk;n be a localizing subcategory, and
consider the collection DD fX 2 Sp jX x̂ C � Cg. This is a localizing subcategory of
Sp containing S, and hence DD Sp itself. It follows that C is a localizing ideal.

Remark 3.20 We remind the reader that 1 is not compact in Spk;n unless k D 0 (see
Lemma 2.18). Therefore, in all other cases, 1 is a noncompact generator of Spk;n.

Notation 3.21 Throughout this section we let QD fk; : : : ; ng.

We begin by defining a notion of support and cosupport in Spk;n, extending the notion
of support defined previously for Sp!n .

Definition 3.22 For a spectrum X 2 Spk;n, we define the support and cosupport of X
by

supp.X/D fi 2Q jK.i/^X ¤ 0g; cosupp.X/D fi 2Q j F.K.i/; X/¤ 0g:
1We thank Neil Strickland for providing this argument, which simplifies a previous argument.
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Example 3.23 Because K.i/^K.j /D 0 if i ¤ j , and K.i/^K.i/¤ 0 [46, Theorem
2.1], we have

supp.K.i//D i

for i 2Q. On the other hand, K.i/�K.j /D HomK.i/�.K.i/�K.j /;K.i/�/, and so

cosupp.K.i//D i

as well.

Remark 3.24 The notion of support is slightly ambiguous, as objects can live in
multiple categories. For example LK.n/S0 2 Spi;n for all 0 � i � n, and in fact has
different support in each category. However, it should also be clear in which category
we are considering the support.

Remark 3.25 Because K.i/^X is always K.i/–local, we equivalently have

supp.X/D fi 2Q jK.i/ x̂ X ¤ 0g:

Remark 3.26 In [32, Definition 6.7] Hovey and Strickland define the support of an
object by

suppHS.X/D fi jK.i/^X ¤ 0g:

By definition then, supp.X/D suppHS.X/\Q.

Support and cosupport are well behaved with respect to products and function objects
in Spk;n.

Lemma 3.27 For any X; Y 2 Spk;n there are equalities

supp.X x̂ Y /D supp.X/\ supp.Y /; cosupp.F.X; Y //D supp.X/\ cosupp.Y /:

Proof Because K.i/^X is always K.i/–local, K.i/^ .X x̂ Y / ' K.i/^X ^ Y ,
and it is clear that supp.X x̂ Y /� supp.X/\ supp.Y /. The converse follows because
K.i/� is a graded field; ifK.i/^X^Y '� then eitherK.i/^X '� orK.i/^Y '�.

For the cosupport, suppose i 2 cosupp.F.X; Y //, ie F.K.i/; F.X; Y // ¤ 0. By
adjunction we must have F.K.i/ ^ X; Y / ¤ 0 as well as F.X; F.K.i/; Y // ¤ 0,
so that K.i/ ^ X ¤ 0 and F.K.i/; Y / ¤ 0. This shows that cosupp.F.X; Y // �
supp.X/\ cosupp.Y /. For the converse, let i 2 supp.X/\ cosupp.Y /, and consider
F.K.i/; F.X; Y //' F.K.i/^X; Y /. Because i 2 supp.X/, and K.i/� is a graded
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field, K.i/ ^ X is a wedge of suspensions of K.i/, and it suffices to show that
F.K.i/; Y / 6' 0, which is precisely the statement that i 2 cosupp.Y /. Therefore,
i 2 cosupp.F.X; Y //, as required.

Notation 3.28 For an arbitrary collection C of objects we set

supp.C/D
[
X2C

supp.X/; cosupp.C/D
[
X2C

cosupp.X/:

For a subset T �Q we also define

supp�1.T /D fX 2 Spk;n j supp.X/� T g;

cosupp�1.T /D fX 2 Spk;n j cosupp.X/� T g:

Lemma 3.29 For a subset T � Q, supp�1.T / and cosupp�1.T / are localizing and
colocalizing subcategories of Spk;n, respectively.

Proof We simply note that

supp�1.T /D fX 2 Spk;n jK.i/^X D 0 for all i 2Q n T g;

cosupp�1.T /D fX 2 Spk;n j F.K.i/; X/' 0 for all i 2Q n T g;

which are clearly (co)localizing subcategories of Spk;n.

We thus obtain maps

flocalizing subcategories of Spk;ng
supp

//

supp�1

oo fsubsets of Qg;(3-1)

fcolocalizing subcategories of Spk;ng
cosupp

//

cosupp�1

oo fsubsets of Qg:(3-2)

We will see that these are bijections. We need the following local–global principle,
which is a slight variant of that given by Hovey and Strickland [32, Proposition 6.18].

Proposition 3.30 (local–global principle) For any X 2 Spk;n,

X 2 LocSpk;n
.X/D LocSpk;n

.K.i/ j i 2 supp.X//;

X 2 ColocSpk;n
.X/D ColocSpk;n

.K.i/ j i 2 cosupp.X//:

Proof Because X 2 Spk;n � Spn, applying [32, Proposition 6.18] we have

(3-3) X 2 LocSp.X/D LocSp.K.i/ j i 2 suppHS.X//;

X 2 ColocSp.X/D ColocSp.K.i/ j i 2 cosupp.X//:
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The result for colocalizing subcategories is then clear, as we get the same result taking
the colocalizing subcategories in Spk;n. For localizing subcategories we apply [8,
Lemma 2.5] to (3-3) with the colimit-preserving functor F DLk;n W Sp! Spk;n to see
that

Lk;nX 'X 2 LocSpk;n
.X/D LocSpk;n

.K.i/ j i 2 suppHS.X/\Q/;

where we have used that

Lk;nK.i/'

�
K.i/ if i 2Q;
0 if i …Q:

As noted in Remark 3.26, suppHS.X/\QD supp.X/, and the result follows.

Remark 3.31 If follows from the local–global principle that both support and cosup-
port detect trivial objects:

supp.X/D∅ () X ' 0 () cosupp.X/D∅:

Corollary 3.32 We have

supp�1.T /D LocSpk;n
.K.i/ j i 2 T /; cosupp�1.T /D ColocSpk;n

.K.i/ j i 2 T /:

Proof Let AD LocSpk;n
.K.i/ j i 2 T /. Because supp.K.i//D i (Example 3.23), it

is clear that A � supp�1.T /. Conversely, if X 2 supp�1.T /, then Proposition 3.30
shows that

X 2 LocSpk;n
.K.i/ j i 2 T /DA;

so supp�1.T /DA, as claimed. The argument for colocalizing categories is similar.

We now give the promised classification of localizing and colocalizing subcategories.

Theorem 3.33 (1) The maps (3-1) give an order-preserving bijection between
localizing subcategories of Spk;n and subsets of QD fk; : : : ; ng.

(2) The maps (3-2) give an order-preserving bijection between colocalizing subcate-
gories of Spk;n and subsets of QD fk; : : : ; ng.

Proof Let C � Spk;n be a localizing subcategory and T � fk; : : : ; ng a subset. Then
via Corollary 3.32 and basic properties of support,

supp.supp�1.T //D
[
i2T

supp.K.i//D T :

Now suppose that X 2 C, so that supp.X/� supp.C/. It follows from the definitions
that X 2 supp�1.supp.C//, and so C � supp�1.supp.C//. We are therefore reduced
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to showing that supp�1.supp.C//� C. To that end, let Y 2 supp�1.supp.C//, so that
supp.Y /� supp.C /. Using the local–global principle, Proposition 3.30, we then have

Y 2 LocSpk;n
.K.i/ j i 2 supp.Y //� LocSpk;n

.K.i/ j i 2 supp.C//D C;

where the last equality follows from Proposition 3.30 again. The proof for colocalizing
subcategories is analogous.

Notation 3.34 For the following, we recall that for C � Spk;n the right orthogonal C?

is defined as
C? D fY 2 Spk;n j F.X; Y /D 0 for all X 2 Cg:

Similarly, the left orthogonal ?C is
?C D fY 2 Spk;n j F.Y;X/D 0 for all X 2 Cg:

Moreover, the right orthogonal is a colocalizing subcategory, and the left orthogonal is
a localizing subcategory.

Corollary 3.35 The map that sends a localizing subcategory C of Spk;n to C? induces
a bijection

(3-4) fLocalizing subcategories of Spk;ng
��!Colocalizing subcategories of Spk;ng:

The inverse map sends a colocalizing subcategory U to ?U .

Proof We follow [14, Corollary 9.9]. Let C be a localizing subcategory; then, using
Remark 3.31 and Lemma 3.27,

C? D fY 2 Spk;n j F.X; Y /D 0 for all X 2 Cg

D fY 2 Spk;n j cosupp.Y /\ supp.C/D∅g

D fY 2 Spk;n j cosupp.Y /�Q n supp.C/g

D cosupp�1.Q n supp.C//:
Similarly, if U is a colocalizing subcategory, then

?U D fX 2 Spk;n j F.X; Y /D 0 for all Y 2 Ug

D fX 2 Spk;n j cosupp.U/\ supp.X/D∅g

D fX 2 Spk;n j supp.X/�Q n cosupp.U/g

D supp�1.Q n cosupp.U//:

It follows that under the equivalences of Theorem 3.33, the maps C 7! C? and U 7! ?U
correspond to the map Q!Q sending a subset to its complement, and are thus mutually
inverse bijections.
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3D The Bousfield lattice

We recall the basics on the Bousfield lattice of an algebraic stable homotopy theory. In
order to avoid confusion with the (localized) categories of spectra considered previously
we let .C;^; 1/ denote a tensor triangulated category.

Definition 3.36 The Bousfield class of an object X 2 C is the full subcategory of
objects

hXi D fW 2 C jX ^W D 0g:

Remark 3.37 We always assume that our categories are compactly generated and
hence there is a set of Bousfield classes [34, Theorem 3.1].

Remark 3.38 We let BL.C/ denote the set of Bousfield classes of C. As is known, this
has a lattice structure, which we now describe. We say that hXi � hY i if Y ^W D 0
impliesX^W D0. Hence, h0i is the minimum Bousfield class, and h1i is the maximum.
The join is defined by

W
i2I hXi i D

˝`
i2I Xi

˛
, and the meet is the join of all lower

bounds.

Proposition 3.39 The Bousfield lattice BL.Spk;n/ is isomorphic to the lattice of
subsets of Q via the map sending hXi to supp.X/.

Proof Define a map that sends T �Q to h
W
i2T K.i/i in BL.Spk;n/. We claim that

this gives the necessary inverse map. By the local–global principle (Proposition 3.30),

LocSpk;n
.X/D LocSpk;n

.K.i/ j i 2 supp.X//:

In particular, X x̂ W ' 0 if and only if K.i/ x̂ W ' 0 for all i 2 supp.X/, so

(3-5) hXi D

� _
i2supp.X/

K.i/

�
:

The result then follows by direct computation.

3E The telescope conjecture and variants

We begin by considering variants of the telescope conjecture in the localized categories
Spk;n using work of Wolcott [55].

Definition 3.40 For i 2Q, let lfi W Spk;n! Spk;n denote finite localization away from
Lk;nF.i C 1/.
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Remark 3.41 Because Lk;nF.i C 1/ is in Sp!k;n by Theorem 3.8, this is a smashing
localization.

Remark 3.42 By [55, Proposition 3.8] we have an equivalence of endofunctors of
Spk;n (recall that hTel.n/i is the Bousfield class of a telescope of a finite type n
spectrum),

l
f
i ' LLk;n Tel.0/_Lk;n Tel.1/_���_Lk;n Tel.i/:

We note thatLk;n Tel.j / is trivial when j …Q by [48, Proposition A.2.13]. In particular,

l
f
i ' LLk;n Tel.k/_���_Lk;n Tel.i/:

We also consider the following Bousfield localization on Spk;n.

Definition 3.43 For i 2 Q, let li W Spk;n ! Spk;n denote Bousfield localization at
K.k/_K.kC 1/_ � � � _K.i/.

Remark 3.44 Following Wolcott [55], we consider the following variants of the
telescope conjecture on Spk;n for i 2Q:

LTC1i hLk;n Tel.i/i D hK.i/i in BL.Spk;n/.

LTC2i l
f
i X

��! liX for all X , or equivalently,� i_
jDk

Lk;n Tel.j /
�
D

� i_
jDk

K.j /

�
in BL.Spk;n/.

LTC3i If X is a type i spectrum and f is a vi self-map, li .Lk;nX/ŠLk;n.f �1X/.

GSC Every smashing localization is generated by a set of compact objects.

SDGSC Every smashing localization is generated by a set of dualizable objects.

Here LTC stands for the localized telescope conjecture, GSC is the generalized smashing
conjecture, and SDGSC is the strongly dualizable generalized smashing conjecture. We
emphasize the difference here because compact and dualizable objects do not coincide
in Spk;n when k ¤ 0.

Proposition 3.45 On Spk;n, we have that LTC1i, LTC2i and LTC3i hold for all i 2Q.

Proof By [55, Theorem 3.12] it suffices to prove that LTC1i holds. By Proposition 3.39
this will follow if we show that Lk;n Tel.i/ and K.i/ have the same support in Spk;n.
To see this, we have supp.K.i//D fig by Example 3.23, while supp.Tel.i//D fig by
[55, Lemmas 2.10 and 3.7].
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We now classify all smashing localizations on Spk;n and show that all variants of the
telescope conjecture hold.

Theorem 3.46 Let L be a nontrivial smashing localization functor on Spk;n. Then
L' l

f
j ' lj for some j 2Q. In particular , the GSC and SDGSC both hold in Spk;n.

Proof We closely follow [55, Theorem 4.4]. Throughout the proof we let 1 denote
Lk;nS

0, the monoidal unit in Spk;n, so that hLi D hL1i. By (3-5),

hL1i D
� _
i2supp.L1/

K.i/

�
:

Note that supp.L1/ is nonempty because we assume L ¤ 0. Hence, we can fix
j 2 supp.L1/ such that hK.j /i � hL.1/i in BL.Spk;n/. It follows that LK.j /L '
LLK.j /'LK.j /, and hLK.j /1i D hLK.j /1 x̂ L1i � hL1i in BL.Spk;n/. We also note
that LK.j /1D LK.j /Lk;nS0 ' LK.j /S0.

By [32, Proposition 5.3], hLK.j /S0i D
Wj
iD0hK.i/i in BL.Sp/, and it follows easily

that hLK.j /S0i D
Wj

iDk
hK.i/i in BL.Spk;n/. It follows that hL1i �

Wj

iDk
hK.i/i in

BL.Spk;n/. We deduce that hL1i D
Wj

iDk
hK.i/i, where j D maxfsupp.L1/g, and

hence by Proposition 3.45 that L' lfj ' lj . Finally, because LnF.j C 1/ is compact
and therefore also dualizable in Spk;n, both the GSC and SDGSC hold in Spk;n.

Remark 3.47 Using [30, Proposition 3.8.3] and Theorems 3.33 and 3.46 one can
reprove the thick subcategory theorem Theorem 3.16.

4 Descent theory and the E.n; Jk/–local Adams spectral
sequence

In this section we use descent theory to construct an Adams-type spectral sequence in
the E.n; Jk/–local category. Using descent, we shall see that this has a vanishing line
at some finite stage. Moreover, for p� n, we show that the E.n; Jk/–local Adams
spectral sequence computing ��Lk;nS0 has a horizontal vanishing line on theE2–page,
and there are no nontrivial differentials.

4A Descendability

We begin with the notion of a descendable object in an algebraic stable homotopy
category.
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Remark 4.1 We recall that in C there is an 1–category CAlg.C/ of commutative
algebra objects; see [40, Chapter 3]. Moreover, given A 2 CAlg.C/ we can define a
stable, presentable, symmetric monoidal1–category ModA.C/ of A–modules internal
to C, with the relative A–linear tensor product [40, Section 4.5]. We will mainly focus
on the case A D En and C D Spk;n, so that ModEn

.Spk;n/ denotes the1–category
of E.n; Jk/–local En–modules, that is En–modules whose underlying spectrum is
E.n; Jk/–local, with monoidal structure A^B D Lk;n.A^E B/.

Remark 4.2 Note that En 2 CAlg.Sp/ by the Goerss–Hopkins–Miller [21] theorem,
and soEn 2CAlg.Spk;n/ as well. On the other hand, E.n; Jk/ will not, in general, be a
commutative ring spectrum (for example, K.n/ is never a commutative ring spectrum).

Definition 4.3 [41, Definition 3.18] A commutative algebra object A 2 CAlg.C/
is said to be descendable if 1 2 C is A–nilpotent (Definition 3.3), or equivalently
C D thick˝hAi.

One reason to be interested in descendable objects is the following [41, Proposition
3.22].

Proposition 4.4 (Mathew) Let A 2 CAlg.C/ be descendable. Then the adjunction
C �ModC.A/ given by tensoring with A and forgetting is comonadic. In particular ,
the natural functor from C to the totalization

C! Tot
�

ModA.C/ //
// ModA^A.C/

//

//
//
�

is an equivalence.

We also note the following [41, Proposition 3.19].

Proposition 4.5 (Mathew) If A 2 CAlg.C/ is descendable , then the functor

C!ModA.C/; M 7!M ^A;

is conservative.

4B Morava modules and L–complete comodules

The following theorem, essentially due to Hopkins–Ravenel [48], shows that the
results of the previous section can be applied in Spk;n. We note that En 2 Sp is a
commutative algebra object; this is the Goerss–Hopkins–Miller theorem [21]. It follows
that En 2 CAlg.Spk;n/.
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Theorem 4.6 En 2 CAlg.Spk;n/ is descendable , and there is an equivalence of
symmetric-monoidal stable1–categories

(4-1) Spk;n ' Tot
�

ModEn
.Spk;n/

//
// ModEn x̂En

.Spk;n/
//

//
//
�

Proof It is consequence of the Hopkins–Ravenel smash product theorem that En 2
CAlg.Spn/ is descendable; see [41, Theorem 4.18]. It follows from [41, Corollary 3.21]
that Lk;nEn ' En is descendable in Spk;n. The equivalence then follows from
Proposition 4.4.

By Proposition 4.5 we deduce the following.

Corollary 4.7 The functor En x̂ .�/ W Spk;n!ModEn
.Spk;n/ is conservative.

We therefore define the following.

Definition 4.8 For X 2 Spk;n the Morava module of X is .Ek;n/_�X WD ��.En x̂ X/.

We recall that Lk;nX ' lim
 ��j

.LnX ^Mk.j // (Proposition 2.24). The Milnor sequence
then gives the following.

Lemma 4.9 There is a short exact sequence

0! lim
 ��
j

1.En/�C1.X ^Mj .k//! .Ek;n/
_
�X ! lim

 ��
j

E�.X ^Mj .k//! 0:

Example 4.10 If .En/�X is a free .En/�–module, then the lim
 ��

1 term vanishes and it
follows that .Ek;n/_�X D .E�X/

^
Ik

.

Remark 4.11 As the short exact sequence shows, .Ek;n/_�X is not always complete
with respect to the Ik–adic topology. However, it is always LIk

0 –complete in the sense
of [32, Appendix A] — this the same argument as given in [32, Proposition 8.4(a)].

4C The E.n; Jk/–local En–Adams spectral sequence

In this section we construct an Adams-type spectral sequence in the E.n; Jk/–local
category. When k D 0, this is the En–Adams spectral sequence, while when k D n
this is the K.n/–local En–Adams spectral sequence considered in [16, Appendix A].
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To begin, we recall that the cobar (or Amitsur) complex for En in Spk;n is

CB�.En/ W En
//
// En x̂ En

//

//
// � � � :

Definition 4.12 Let cExts;�
.Ek;n/

_
� .En/

..En/�; .En/�/ WDH
s
�
��.CB

�.En//
�
, ie it is the

cohomology of the complex

.En/�
//
// .Ek;n/

_
� .En/

//

//
// � � � :

More generally, we letcExts;�
.Ek;n/

_
� .En/

..En/�; .Ek;n/
_
� .X// WDH

s
�
��.X x̂ CB

�.En//
�
:

Proposition 4.13 For any spectrum X there is a strongly convergent spectral sequence

E
s;t
2 Š

cExts;�
.Ek;n/

_
� .En/

..En/�; .Ek;n/
_
� .X//) ��.Lk;nX/

which has a horizontal vanishing line at a finite stage (independent of X ).

Proof This is the Bousfield–Kan spectral sequence associated to the tower

X x̂ CB�.En/:

The claimed results are a consequence of descendability (Theorem 4.6); see [41,
Corollary 4.4; 42, Example 2.11, Propositions 2.12 and 2.14].

Remark 4.14 For the SpK.n/–local homotopy category, this completed Ext can be
interpreted as an Ext group in the category of LIn

0 –complete comodules [9]. In the case
of X D S0, Morava’s change of rings theorem, in the form [9, Theorem 4.3], shows
that

E
s;t
2 ŠH

s
c .Gn; .En/t /;

the continuous cohomology of the Morava stabilizer group Gn, and this spectral
sequence is isomorphic to that considered by Devinatz and Hopkins in [16, Appendix A].
The key point is the computation that

.En/
_
� .En/Š Homc.Gn; .En/�/;

for which see [29]. We remark that we do not know what .Ek;n/_� .En/ is for k ¤ n.
However, the same arguments as in [9] go through; the pair ..En/�; .Ek;n/_� .En// is
an LIk

0 –complete comodule, and if .Ek;n/_� .X/ is either a finitely generated .En/�–
module, is the Ik–adic completion of a free-module, or has bounded Ik–torsion,
then .Ek;n/_� .X/ is a comodule over this Hopf algebroid — see [9, Lemma 1.17 and
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Proposition 1.22]. The relative homological algebra studied in [9, Section 2] also goes
through to see that cExts;� as used above is a relative Ext group in the category of
L
Ik

0 –complete comodules. We will not use this in what follows, so we leave the details
to the interested reader.

Remark 4.15 In [26, Section 7] the authors construct the K.n/–local Adams spectral
sequence for dualizable K.n/–local X as the inverse limit of the En–Adams spectral
sequences for X ^Mn.j /. The following result recovers the identification of the
E2–term in the case k D n.

Proposition 4.16 Let Mk.j / be a tower of generalized Moore spectra of height k.
Then there is an isomorphismcExts;t

.Ek;n/
_
� .En/

..En/�; .En/�/Š lim
 ��
j

Exts;t
.En/�En

�
.En/�; .En/�.Mk.j //

�
:

Proof By definition, cExts;t
.Ek;n/

_
� .En/

..En/�; .En/�/ is the cohomology of the complex

.En/�
//
// .Ek;n/

_
� .En/

//

//
// � � � :

The t th term of this complex is the homotopy of Lk;n.E^tn /' lim
 ��j

.E^tn ^Mk.j // by
Proposition 2.24, and there is a corresponding Milnor exact sequence of the form

0! lim
 ��
j

1�qC1.E
^t
n ^Mk.j //! �q.Lk;n.E

^t
n //! lim

 ��
j

�q.E
^t
n ^Mk.j //! 0:

We note thatE^tn is Landweber exact, as the smash product of Landweber exact spectra;
see [12, Lemma 4.3]. It follows that ��.E^tn ^Mk.j //Š ��.E

^t
n /=.p

i0 ; : : : ; u
ik�1

k�1
/

for suitable integers i0; : : : ; ik�1. In particular, the maps in the tower are surjections
by the construction of the tower fMk.j /g (see Remark 2.19), and so the lim

 ��

1
j

–term
vanishes, and

.Ek;n/
_
� .E

t�1
n /Š ��.Lk;n.E

^t
n //Š lim

 ��
j

�q.E
^t
n ^Mk.j //:

Note that the cohomology of the complex f�q.Etn ^Mk.j //gt is

Ext�;�
.En/�En

�
.En/�; .En/�.Mk.j //

�
:

Therefore, there is an exact sequence

0! lim
 ��
j

1 Extq�1;�
.En/�En

�
.En/�; .En/�.Mk.j //

�
! cExtq;�

.Ek;n/
_
� .En/

..En/�; .En/�/

! lim
 ��
j

Extq;�
.En/�En

�
.En/�; .En/�.Mk.j //

�
! 0:

Algebraic & Geometric Topology, Volume 23 (2023)



3684 Drew Heard

We will see below in Corollary 4.22 that Extq;�
.En/�En

�
.En/�; .En/�.Mk.j //

�
is finite,

and so the lim
 ��

1
j

–term vanishes in the exact sequence, and the result follows.

Remark 4.17 It follows that when k ¤ 0, the groups cExts;t
.Ek;n/

_
� .En/

..En/�; .En/�/

are profinite, ie either finite or uncountable. Contrast the case k D 0, where

Exts;t
.En/�En

..En/�; .En/�/

is countable [28, Proof of Lemma 5.4].

4D Vanishing lines in the E.n; Jk/–local En–Adams spectral sequence

In Proposition 4.13 we constructed a spectral sequencecExts;t
.Ek;n/

_
� .En/

..En/�; .En/�/) �t�s.Lk;nS
0/;

and showed that, as a consequence of descendability, this has a horizontal vanishing
line at some finite stage. In the extreme cases of kD 0 and kD n it is known that when
p�n andX DS0, this vanishing line occurs on theE2–page, and occurs at sDn2Cn
and s D n2, respectively; see [31, Theorem 5.1] and [47, Theorem 6.2.10]. In this
section, we show (Theorem 4.24) that the analogous result occurs in general; for p� n

there is a vanishing line on the E2–page of the spectral sequence of Proposition 4.13
above, and s D n2C n� k in the case X D S0. The proof relies on a variant of the
chromatic spectral sequence [47, Chapter 5], which we now construct. Along the way
we prove Corollary 4.22, which also completes the proof of Proposition 4.16.

Remark 4.18 (the chromatic spectral sequence) Fix k � n, and for 0� s � n�k let
M s denote the .En/�.En/–comodule

u�1kCs.En/�=.p; u1; : : : ; uk�1; u
1
k ; : : : ; u

1
kCs�1/:

Arguing as in [47, Lemma 5.1.6], there is an exact sequence of .En/�.En/–comodules

.En/�=Ik!M 0
!M 1

! � � � !M n�k
! 0:

Applying [47, Theorem A.1.3.2], there is then a chromatic spectral sequence of the
form

(4-2) E
s;r;�
1 Š Extr;�

.En/�.En/
..En/�;M

s/) ExtrCs;�
.En/�.En/

..En/�; .En/�=Ik/:

Proposition 4.19 In the chromatic spectral sequence (4-2),

E
s;r;�
1 Š

(
Extr;�

.EkCs/�.EkCs/
..EkCs/�; .EkCs/�=.p; : : : ; uk�1; u

1
k
; : : : ; u1

kCs�1
// if s � n�k;

0 if s > n�k:
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If particular , if p�1 does not divide kC s, we have Es;r;�1 D 0 for r > .sCk/2. Thus ,
if p� 1 does not divide kC s for all 0� s � n� k,2 then

Exts;�
.En/�.En/

..En/�; .En/�=Ik/D 0

for s > n2Cn� k.

Proof This is similar to the proof by Hovey and Sadofsky [31, Theorem 5.1], which is
the case where kD0. We first recall the change of rings theorem of Hovey and Sadofsky
[31, Theorem 3.1]; if M is a BP�BP –comodule, on which vj acts isomorphically, and
n� j , then there is an isomorphism3

Ext�;�BP�BP .BP�;M/Š Ext�;�
.En/�.En/

..En/�; .En/�˝BP�M/:

Applying this change of rings theorem twice to the BP�BP –comodule

u�1kCsBP�=.p; : : : ; uk�1; u
1
k ; : : : ; u

1
kCs�1/

with j D kC s and j D n shows that the E1–term has the claimed form.

For brevity, let us denote I D .p; : : : ; uk�1; u1k ; : : : ; u
1
kCs�1

/. By Morava’s change
of rings theorem,

Extr;�
.EkCs/�.EkCs/

..EkCs/�; .EkCs/�=I /ŠH
r.GkCs; .EkCs/�=I /:

Morava’s vanishing theorem [47, Theorem 6.2.10] shows that if p� 1 does not divide
kC s, then

H r.GkCs; .EkCs/�/D 0

for r > .kCs/2. Along with an argument similar to that given by Hovey and Sadofsky’s,
using standard exact sequences and taking direct limits we find that

Extr;�
.EkCs/�.EkCs/

..EkCs/�; .EkCs/�=I /D 0

for r > .kC s/2 as well.

Remark 4.20 Let Mk denote a generalized Moore spectrum of type k. Then there is
an obvious analog of this spectral sequence, whose abutment is

ExtrCs;�
.En/�.En/

..En/�; .En/�.Mk//Š ExtrCs;�
.En/�.En/

..En/�; .En/�=.p
i0 ; : : : ; u

ik�1

k�1
//

2Taking p > nC 1 suffices, but may not be optimal.
3Hovey and Sadofsky work with E.n/ instead of En, but this does not change anything in light of [33,
Theorem C].
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with E1–term of the form

E
s;r;�
1 Š

(
Extr;�

.EkCs/�.EkCs/
..EkCs/�; .EkCs/�=.p

i0; : : : ; u
ik�1

k�1
;u1
k
; : : : ;u1

kCs�1
// if s � n�k;

0 if s > n�k:

Remark 4.21 The following completes the proof of Proposition 4.16.

Corollary 4.22 Let Mk denote a generalized Moore spectrum of type k. Then the
group Extr;�

.En/�.En/
..En/�; .En/�.Mk// is finite.

Proof By taking appropriate exact sequences it suffices to show this for .En/�=Ik
(alternatively, one can argue directly using the spectral sequence of Remark 4.20). Given
the chromatic spectral sequence, we can reduce to showing thatH r.GkCs; .EkCs/�=I /

is finite, with I as in the proof of the previous proposition. For this, see Proposition 4.2.2
of [54].

Corollary 4.23 LetMk denote a generalized Moore spectrum of type k. Then if p�1
does not divide kC s for 0� s � n� k,

Exts;�
.En/�.En/

..En/�; .En/�.Mk//D 0

for s > n2Cn� k.

Proof Recall that .En/�.Mk/Š .En/�=.p
i0 ; : : : ; u

ik�1

k�1
/ for a suitable sequence of

integers .i0; : : : ; ik�1/. The result for the sequence .1; : : : ; 1/ holds by Proposition 4.19,
and therefore in general by taking appropriate exact sequences.

Theorem 4.24 Suppose p� 1 does not divide kC s for 0� s � n� k. ThencExts;t
.Ek;n/

_
� .En/

..En/�; .En/�/D 0

for s > n2Cn� k.

Proof Combine Proposition 4.16 and Corollary 4.23.

Remark 4.25 The condition on the prime is always satisfied if p is large enough
compared to n (in fact p > nC 1 suffices). This suggests the following, which we do
not attempt to make precise: for large enough primes, the cohomological dimension
of .En/� in a suitable category of (completed) .Ek;n/_� .En/–comodules is finite, and
equal to n2Cn� k.
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We also have the following expected sparseness result.

Proposition 4.26 Let q D 2.p� 1/. ThencExts;t
.En/

_
� .En/

..En/�; .En/�/D 0

for all s and t unless t�0 mod q. Consequently, in the spectral sequence of Proposition
4.13, dr is nontrivial only if r � 1 mod q and E�;�mqC2 DE

�;�
mqCqC1 for all m� 0.

Proof Using Proposition 4.16 it suffices to show the first statement for the E1–term of
the chromatic spectral sequence of Proposition 4.19. Again using the Hovey–Sadofsky
change of rings theorem, this E1–term is isomorphic to

Exts;�;�BP�BP

�
BP�; u

�1
kCsBP�=.p; : : : ; uk�1; u

1
k ; : : : ; u

1
kCs�1/

�
:

Now apply [47, Proposition 4.4.2].

5 Dualizable objects in Spk;n

In this section we use descendability to characterize the dualizable objects in Spk;n.
As noted previously, as long as k ¤ 0, these differ from the compact objects studied in
Section 3A.

Definition 5.1 Let .C;^; 1/ be a symmetric-monoidal1–category. Then X 2 C is
dualizable if there exists an object DCX and a pair of morphisms

e WDCX ^X ! 1; c W 1!X ^DCX

such that the composites

X c^id
��!X ^DCX ^X

id^e
��!X; DCX

id^c
��!DCX ^X ^DCX

e^id
��!DCX

are the identity on X and DCX , respectively.

Remark 5.2 The definition makes it clear that X 2 C is dualizable if and only if it is
dualizable in the homotopy category of C. Moreover, a formal argument shows that,
if it exists, we must have DCX ' F.X; 1/. Finally, for the equivalence with other
definitions of dualizability the reader may have seen, see [17, Theorem 1.3].

Definition 5.3 We let Cdual� C denote the full subcategory consisting of the dualizable
objects of C.

Remark 5.4 The full subcategory Cdual is a thick tensor ideal [30, Theorem A.2.5].
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We have the following relationship between descent theory and dualizability.

Proposition 5.5 LetA2CAlg.C/ be descendable. Then the adjunction C�ModA.C/
gives rise to an equivalence of symmetric monoidal1–categories

Cdual
! Tot

�
ModA.C/dual //

// ModA^A.C/dual //

//
//
�
:

In particular , M 2 C is dualizable if and only if M ^A 2ModA.C/ is dualizable.

Proof The first claim follows from Proposition 4.4 because passing to dualizable
objects commutes with limits of1–categories [40, Proposition 4.6.1.11]. The second
is then an easy consequence, using that all the maps in the totalization are symmetric
monoidal.

5A Dualizable objects in the E.n; Jk/–local category

Using Theorem 4.6 and Proposition 5.5 we deduce the following.

Proposition 5.6 The adjunction Spk;n�ModEn
.Spk;n/ gives rise to an equivalence

of symmetric monoidal1–categories

Spdual
k;n ! Tot

�
ModEn

.Spk;n/
dual //

// ModEn x̂En
.Spk;n/

dual //

//
//
�
:

In particular , X 2 Spk;n is dualizable if and only if En x̂ X 2 ModEn
.Spk;n/ is

dualizable.

This proposition suggests we begin by studying dualizable objects in the category
ModEn

.Spk;n/. Fortunately, these have a nice characterization. We begin with the
following.

Lemma 5.7 If X is dualizable in ModEn
.Spk;n/ then the spectrum underlying X is

K.n/–local.

Proof We first note that for any M 2ModEn
(in particular, for M DX ), the Bousfield

localization LK.n/M is the spectrum underlying LEn

En^X
, where the latter denotes

the Bousfield localization with respect to En ^ X internal to the category of En–
modules. In particular, the localization mapM!LK.n/M is a map in ModEn

; see [19,
Chapter VIII], particularly [19, Proposition VIII.1.8]. If follows that K.n/–localization
defines a localization

LK.n/ WModEn
.Spk;n/!ModEn

.SpK.n//:
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Because X 2 ModEn
.Spk;n/

dual, using [30, Lemma 3.3.1], we see that there are
equivalences

LK.n/X ' Lk;n..LK.n/En/^En
X/' Lk;n.En ^En

X/' Lk;nX 'X:

Remark 5.8 For the following, we let Kn Š En=In. This is a 2–periodic form of
Morava K–theory; indeed,

.Kn/�X Š .Kn/�˝K.n/� K.n/�X;

and so hK.n/i D hKni. We use this only because Kn is naturally an En–module.

Proposition 5.9 For X 2ModEn
.Spk;n/ the following are equivalent :

(1) X is dualizable in ModEn
.Spk;n/.

(2) X is compact (equivalently, dualizable) in ModEn
.Sp/.

(3) The spectrum underlyingX isK.n/–local and the homotopy groups ��.Kn^En
X/

are finite.

Proof We first show that (2) implies (1). The compact objects in ModEn
.Sp/ are

precisely those in the thick subcategory generated by En; see, for example, [40,
Proposition 7.2.4.2]. Since En 2ModEn

.Spk;n/
dual, and the collection of dualizable

objects is thick, the implication (2) implies (1) follows.

Conversely, assume that (1) holds. As above, we have a symmetric-monoidal localiza-
tion

LK.n/ WModEn
.Spk;n/!ModEn

.SpK.n//;

which preserves dualizable objects (as any symmetric-monoidal functor does). Using
Lemma 5.7 it follows thatLK.n/X'X is dualizable in ModEn

.SpK.n//, which implies
by [41, Proposition 10.11] that X is compact in ModEn

.Sp/.

Finally, the equivalence of (2) and (3) is well known; see for example Proposition 2.9.4
of [25].4

Remark 5.10 Suppose X 2 Spdual
k;n

, so that Lk;n.En ^X/ 2ModEn
.Spk;n/

dual. The
previous proposition then implies that

Lk;n.En ^X/' LK.n/Lk;n.En ^X/' LK.n/.En ^X/:

In other words, for dualizable X , there is an isomorphism .Ek;n/
_
� .X/Š .En;n/

_
� .X/.

4Lurie has confirmed via private communication that the cited proposition [25, Proposition 2.9.4] should
additionally have the assumption X is K.n/–local in condition (3).
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We now give our characterization of dualizable spectra in Spk;n — see [32, Theorem 8.6]
for the case k D n. We note that even in this case our proof, which uses descendability,
differs from that of Hovey and Strickland.

Theorem 5.11 The following are equivalent for X 2 Spk;n:

(1) X is dualizable.

(2) X is F –small , ie for any collection of objects fZig, the natural map

Lk;n

�_
i

F.X;Zi /

�
! F

�
X;Lk;n

�_
i

Zi

��
is an equivalence.

(3) En x̂ X 2ModEn
.Spk;n/ is dualizable.

(4) En x̂ X 2ModEn
.Sp/ is dualizable (equivalently, compact).

(5) En x̂ X is K.n/–local and .Kn/�X is finite.

(6) .Ek;n/
_
� .X/ is a finitely generated E�–module.

Proof The equivalences between the first five items come from [30, Theorem 2.1.3(c)]
(.1/() .2/), Proposition 5.5 (.1/() .3/) and Proposition 5.9 (.3/() .4/() .5/).
We note that if M is an En–module, then M is compact if and only if ��M is finitely
generated over .En/�; see [22, Lemma 10.2(i)]. Applying this with M DEn x̂X gives
the equivalence between .4/ and .6/.

Finally, we show that there is only a set of isomorphism classes of dualizable objects.

Lemma 5.12 There are at most 2@0 isomorphism classes of objects in Spdual
k;n

.

Proof This is the same as the argument given in [32, Propositon 12.17]. Namely,
there are only countably many finite spectra X 0 of type at least k, and for each one
ŒLnX

0; LnX
0� is finite, so LnX 0 has only finitely many retracts. By Theorem 3.8

it follows that there is a countable set of isomorphism classes of objects in Sp!k;n.
If U and V are finite, then ŒU; V � is finite, and so there are at most @@0

0 D 2@0

different towers of spectra in Sp!k;n. For X 2 Spdual
k;n

, write X ' lim
 ��j

X ^Mk.j /, as
in Proposition 2.24. Because X is dualizable and Mk.j / is compact, X ^Mk.j / is
compact [30, Theorem 2.1.3(a)]. Therefore, X is the inverse limit of a tower of spectra
in Sp!k;n, and hence there are at most 2@0 isomorphism classes of objects in Spdual

k;n
.
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5B The spectrum of dualizable objects

In Theorem 3.16 we computed the thick subcategories (equivalently, thick tensor-ideals)
of compact objects in Spk;n. One could also ask for a classification of the thick tensor-
ideals of dualizable objects in Spk;n, or equivalently a computation of the Balmer
spectrum Spc.Spdual

k;n
/ (which is well defined by Lemma 5.12). Based on a conjecture

of Hovey and Strickland, the author, along with Barthel and Naumann, investigated
Spc.Spdual

K.n/
/ in detail in [10], showing that the Hovey–Strickland conjecture holds

when n D 1 and 2, and that in general it is implied by a hope of Chai in arithmetic
geometry. In this section, we make some general comments regarding Spc.Spdual

k;n
/.

Remark 5.13 The following full subcategories were considered in the case k D n by
Hovey and Strickland [32, Definition 12.14].

Definition 5.14 For i � n, let Di denote the category of spectra X 2 Spdual
k;n

such that
X is a retract of Y ^Z for some Y 2 Spdual

k;n
and some finite spectrum Z of type at

least i . It is also useful to set DnC1 D .0/.

Remark 5.15 We note that Dk ' Sp!k;n; this is a consequence of the characterization
of compact objects given in Theorem 3.8, and that D0 D Spdual

k;n
.

The following is [32, Proposition 4.17].

Lemma 5.16 X is in Dk if and only if X is a module over a generalized Moore
spectrum of type k. Moreover , Dk � Spdual

k;n
is a thick tensor ideal.

Hovey and Strickland conjecture that in the case k D n these exhaust the thick-tensor
ideals of Spdual

K.n/
. This has been investigated in detail in [10]. We conjecture this holds

more generally in Spk;n.

Conjecture 5.17 If C is a thick tensor-ideal of Spdual
k;n

, then C D Di for some 0� i �
nC 1. Equivalently,

Spc.Spdual
k;n /D fD1; : : : ;DnC1g

with topology determined by the closure operator fDig D fDj j j � ig.

In this section we show that if Conjecture 5.17 holds K.n/–locally, ie for Spdual
n;n , then

it holds for all Spdual
k;n

. We first recall the following definition.
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Definition 5.18 Suppose F W K! L is an exact tensor triangulated functor between
tensor-triangulated categories. We say that F detects tensor-nilpotence of morphisms
if every morphism f WX ! Y in K such that F.f /D 0 satisfies f ˝m D 0 for some
m� 1.

We will use the following.

Proposition 5.19 Suppose A 2 CAlg.C/ is descendable. Then extension of scalars
C!ModA.C/ detects tensor-nilpotence of morphisms.

Proof Let I denote the fiber of 1 �
�!A, and let � W I ! 1 denote the induced map. By

[43, Proposition 4.7] if A is descendable, then there exists m� 1 such that I˝m! 1 is
null-homotopic, ie � is tensor-nilpotent. We can now argue as in (ii) implies (iii) of [5]:
suppose we are given f W X ! Y , a morphism in C, with A˝ f W A˝X ! A˝ Y

null-homotopic. Now consider the diagram of fiber sequences:

I ˝X X A˝X

I ˝Y Y A˝Y

�˝idX �˝idX

�˝idY �˝idY

idI˝f f idA˝f

We see that .�˝ idY /f is null-homotopic, so f factors through � ˝ idY , which is
tensor-nilpotent.

The following is our key observation.

Proposition 5.20 If i > k, then the map induced by localization

Spc.Spdual
i;n /! Spc.Spdual

k;n /

is surjective.

Proof By [6, Theorem 1.3] it suffices to show that the functor Li;n W Spdual
k;n
! Spdual

i;n

detects tensor-nilpotence of morphisms. To that end, let f WX ! Y be a morphism in
Spdual
k;n

with Li;n.f /D 0, so that we must show f x̂m D 0 for some m � 1. Because
En 2 Spk;n is descendable, Proposition 5.19 shows that

Lk;n.En ^�/ W Spk;n!ModEn
.Spk;n/

detects tensor-nilpotence of morphisms, and hence so does its restriction to dualizable
objects; ie Lk;n.En ^ f / D 0 implies f x̂m D 0 for some m � 1. In other words,
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it suffices to show that Lk;n.En ^ f / is trivial. By Lemma 5.7 however, this is a
morphism in ModEn

.Spn;n/. In particular,

Lk;n.En ^f /' Li;n.En ^f /' Li;n.En ^Li;n.f //D 0

because Li;n.f /D 0 by assumption.

Theorem 5.21 Suppose Conjecture 5.17 holds for Spdual
n;n . Then it holds for all Spdual

k;n
.

Proof By [10, Proposition 3.5], Conjecture 5.17 holds for Spdual
n;n if and only if

Ln;n W Spdual
0;n ! Spdual

n;n induces a homeomorphism on Balmer spectra. In other words,
the composite, induced by the localization maps,

Spc.Spdual
n;n /! Spc.Spdual

n�1;n/! � � � ! Spc.Spdual
0;n /

is a homeomorphism. It follows that Spc.Ln�1;n/ W Spc.Spdual
n;n /! Spc.Spdual

n�1;n/ is
an injection, and hence a bijection by Proposition 5.20. Using that Spc.Ln�1;n/ is
continuous and the topologies on each space, we see that it is fact a homeomorphism.
It follows that Spc.Spdual

n�1;n/! Spc.Spdual
0;n / is a homeomorphism, and we can now

repeat the argument.

By [10, Theorem 4.15], Conjecture 5.17 holds for Spdual
2;2 . Along with Theorem 5.21

we deduce the following.

Corollary 5.22 The Balmer spectrum Spc.Spdual
1;2 /D fD1;D2;D3g with

.0/D D3 ¨ D2 ¨ D1 D Sp!1;2:

In particular , if C is a thick tensor-ideal of Spdual
1;2 , then C D Dk for 0� k � 3.

6 The Picard group of the Spk;n–local category

In this section we study invertible objects in the Spk;n–local category. We show that
invertibility of an object can be detected by its Morava module. We construct a spectral
sequence computing the homotopy groups of the Picard spectrum of Spk;n and use
this to show that if p is large compared to n, then the Picard group of Spk;n is entirely
algebraic, in a sense we make precise.

6A Invertible objects and Picard spectra

We recall that if C is a symmetric monoidal category, we denote by Pic.C/ the group of
isomorphism classes of invertible objects; a priori this could be a proper class, but if
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C is a presentable stable1–category (which it will always be in our cases), then it is
actually a set [44, Remark 2.1.4].

The following standard lemma will be useful for us. Here we write DC.X/ for the dual
of an object in a category C, ie DC.X/ D F.X; 1/. Note that an invertible object is
always dualizable [30, Proposition A.2.8].

Lemma 6.1 Let F W C! D be a symmetric-monoidal conservative functor between
stable1–categories. Then X 2 C is invertible if and only if F.X/ 2 D is invertible.

Proof We first note that X is invertible if and only if the natural morphism

X ˝CDC.X/! 1C

is an equivalence; see [30, Proposition A.2.8]. Because F is assumed to be sym-
metric monoidal and conservative, this is an equivalence if and only if it is so after
applying F ; ie if and only if F.X/ ˝D F.DC.X// ! 1D is an equivalence. But
F.DC.X//'DD.F.X//, as symmetric-monoidal functors preserve dualizable objects,
and the result follows.

Remark 6.2 To our symmetric monoidal category C we can instead associate the
Picard spectrum pic.C/ [44, Definition 2.2.1]; this is a connective spectrum with the
property that

�i .pic.C//D

8<:
Pic.C/ if i D 0;
.�0.EndC.1//� if i D 1;
�i�1.EndC.1// if i > 1:

The key advantage of using the Picard spectrum is that, as a functor from the1–category
of symmetric monoidal1–categories to the1–category of connective spectra, pic
commutes with limits [44, Proposition 2.2.3].

Example 6.3 Let C be a category and A 2 CAlg.C/. Then the Picard spectrum of the
category ModA.C/ of A–modules internal to C satisfies

�i .pic.ModA.C//D

8<:
Pic.ModA.C// if i D 0;
.�0.HomC.1C; A//

� if i D 1;
�i�1.HomC.1C; A// if i > 1:

This follows becauseA is the tensor unit in ModA.C/. Indeed, writing F WC!ModC.A/

for the extension of scalars functor (so that A' F.1C/), we have

EndModA.C/.A/D HomModA.C/.F.1C/; A/' HomC.1C; A/

by adjunction.
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6B Invertible objects in the Spk;n–local category

Our main group of interest is the Picard group of K.k/_ � � � _K.n/–local spectra.

Definition 6.4 Let Pick;nDPic.Spk;n/, the group of invertibleK.k/_� � �_K.n/–local
spectra.

Remark 6.5 By [36, Lemma 2.2] the localization functors induce natural morphisms
Pic0;n! Pic1;n! � � � ! Picn;n.

Remark 6.6 The morphism X 7!En x̂ X induces a functor

Pick;n! Pic.ModEn
.Spk;n//:

We can fully understand the latter Picard group.

Lemma 6.7 For all 0� k � n,

Pic.ModEn
.Spk;n//Š Pic.ModEn

/Š Pic.En�/Š Z=2:

Proof We always have Pic.ModEn
/ � Pic.ModEn

.Spk;n// because any invertible
En–module is compact, and hence E.n; Jk/–local. The other inclusion follows if any
M 2 Pic.ModEn

.Spk;n// is compact as an En–module. Such an M is automatically
dualizable in ModEn

.Spk;n/, and hence compact in ModEn
by Proposition 5.9. This

gives the first of the above isomorphisms, and the others hold by work of Baker and
Richter [2].

We now give criteria for when X 2 Pick;n is invertible. This (partially) extends work
of Hopkins, Mahowald and Sadofsky [26], who considered the case k D n.

Theorem 6.8 Let X 2 Spk;n. The following are equivalent :

(1) X 2 Pick;n.

(2) En x̂ X 2 Pic.ModEn
.Spk;n//.

(3) En x̂ X 2 Pic.ModEn
/.

(4) .Ek;n/
_
�X Š .En/�, up to suspension.

Proof The equivalence of (1) and (2) follows from Corollary 4.7 and Lemma 6.1,
while the equivalence of (2) and (3) follows from Lemma 6.7, which also shows that
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(3) implies (4). Finally, to see that (4) implies (3), we note that if M is any En–module
whose homotopy groups are free of rank one over .En/�, then M is equivalent to a
suspension of En; for the elementary proof, see [23, Proposition 2.2]. Thus, (4) implies
that En x̂ X 'En, up to suspension, and hence (3) holds.

Remark 6.9 When nD 1, there are two possibilities, the K.1/ and E.1/–local Picard
groups, both of which are known:

Pic0;1 D
�

Z˚Z=2 if p D 2;
Z if p > 2;

Pic1;1 D
�

Z2˚Z=4˚Z=2 if p D 2;
Zp˚Z=.p� 1/˚Z=2 if p > 2:

These are due to Hovey and Sadofsky [31] and Hopkins, Mahowald and Sadofsky [26],
respectively.

When nD 2, we have three possibilities, theK.2/, K.1/_K.2/, and E.2/–local Picard
groups. The first and last are known for p > 2:

Pic0;2 D
�

Z˚Z=3˚Z=3 if p D 3;
Z if p > 3;

Pic2;2 D
�

Z3˚Z3˚Z=16˚Z=3˚Z=3 if p D 3;
Zp˚Zp˚Z=.2.p2� 1// if p > 3:

These are due to a combination of authors: Hovey and Sadofsky [31], Lader [38],
Goerss, Henn, Mahowald and Rezk [20], Karamanov [37], and Hopkins (unpublished).

This leaves the remaining case of Pic1;1. We note the following.

Proposition 6.10 If p � 3, then the morphism Pic0;2! Pic1;1 of Remark 6.5 is an
injection.

Proof The morphism in question factors through the morphism Pic0;2! Pic2;2 and
so it suffices to show that this is an injection. When p > 3 this is clear, and so we focus
on the case p D 3. In this case, the calculations of Goerss, Henn, Mahowald and Rezk
[20] show that this map is an injection.

Remark 6.11 As noted in the proof, the interesting case in the above proposition is
the case pD 3. In fact, for all n and p� n we have that Pic0;n! Pici;n is an injection
for i � 0. However, here Pic0;n Š Z (by [31]), so this is not particularly helpful.

6C Descent and Picard groups

In Remark 6.2 we recalled that we can associate a connective Picard spectrum pic.C/ to
a symmetric-monoidal1–category C. Using descent for the E.n; Jk/–local category,
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we now construct a spectral sequence whose �0 computes Pick;n. We need to introduce
another algebraic gadget to describe the spectral sequence.

Definition 6.12 We let Picalg
k;n

denote the first cohomology of the complex

.En/
�
0

//
// ..Ek;n/

_
0 .En//

�
//

//
// � � �

induced by taking the units in degree 0 in the cobar complex.

Theorem 6.13 There exists a spectral sequence with

E
s;t
2 Š

8̂<̂
:

Z=2 if s D t D 0;

Picalg
k;n

if s D t D 1;cExts;t�1
.Ek;n/

_
� .En/

..En/�; .En/�/ t � 2;

which converges for t�s�0 to �t�spic.Spk;n/. In particular , when tDs, this computes
Pick;n. The differentials in the spectral sequence run dr WE

s;t
r !E

sCr;tCr�1
r .

Proof Because pic commutes with limits (Remark 6.2), Theorem 4.6 implies that

(6-1) pic.Spk;n/' ��0 Tot
�
pic.ModEn

.Spk;n//
//
// pic.ModEn x̂En

.Spk;n//
//

//
//
�
:

We have (compare Example 6.3)

(6-2) �t .pic.ModE x̂i
n
.Spk;n//Š

8<:
Pic.ModE x̂i

n
/ if t D 0;

�0.E
x̂i
n /
� if t D 1;

�t�1.E
x̂i
n / if t � 2:

The Bousfield–Kan spectral sequence associated to (6-1) has the form

E
s;t
2 ŠH

s
�
�tpic.ModEn

.Spk;n//
//
// �tpic.ModEn x̂En

.Spk;n//
//

//
//
�
:

By (6-2) when t � 2, the spectral sequence is just a shift of the E.n; Jk/–local Adams
spectral for X D S0 sequence considered in Proposition 4.13.

When t D 0 and i D 0, we have Pic.ModEn
.Spk;n// Š Z=2 by Lemma 6.7. We do

not know the higher terms, but this does not matter as only the Z=2 is relevant for the
s D t D 0 part of the spectral sequence.

Finally, we consider the t D 1 part of the spectral sequence. Again using (6-2),

E
s;1
2 Š H s

�
.En/

�
0

//
// ..Ek;n/

_
0 .En//

�
//

//
// � � �

�
:

By definition, when s D 1 this is Picalg
k;n

.
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Remark 6.14 The proof shows that when t D 1, we can compute Es;12 as the sth

cohomology of the complex in Definition 6.12. However, unless k D 0 or n we do
not have a convenient description of this group (for the case k D n, see Example 6.18
below).

Definition 6.15 We will say that Pick;n is algebraic if the only contributions come
from the s D 0 and s D 1 lines of the spectral sequence.

Remark 6.16 The E0;02 term of the spectral sequence always survives the spectral
sequence, as it is the Picard group of En–modules. It is however possible that there is
a nontrivial differential in the E1;1r spot.

Theorem 6.17 Suppose that 2p� 2� n2Cn� k and p� 1 does not divide kC s for
0� s � n� k. Then Pick;n is algebraic. For example , this holds if 2p� 2 > n2Cn.

Proof For all primes p and t � 2 we have that Es;t2 D 0 unless t�1� 0 mod 2.p�1/
by Proposition 4.26. In particular, for s > 2, Es;s2 D 0 unless s � 1 mod 2p� 2, and
the lowest possible nonalgebraic term is in filtration degree 2p� 1.

By Theorem 4.24 and the assumption that p�1 does not divide kCs for 0� s � n�k
we have that Es;s2 D 0 for s >n2Cn�k. Therefore, if additionally 2p�2� n2Cn�k,
there can be no nonalgebraic contributions to the spectral sequence.

Finally, if 2p � 2 > n2C n, then p > nC 1, and in particular p � 1 does not divide
kC s for 0� s � n� k.

Example 6.18 Let us spell out the details in the case k D n. We first claim that the
spectral sequence of Theorem 6.13 takes the form

E
s;t
2 Š

8<:
Z=2 if s D t D 0;
H s
c .Gn; .En/

�
0 / if t D 1;

H s
c .Gn; �t�1En/ if t � 2;

and converges for t � s � 0 to �t�spic.SpK.n//.

The identification is much as in Remark 4.14. For the t D 1 term, we note that
�0.E

x̂i
n /
� Š Homc.G�.i�1/n ; .En/0/

� Š Homc.G�.i�1/n ; .En/
�
0 /.

The existence of such a spectral sequence is folklore; see [18, Remark 6.10] or [45,
Remark 2.6]. In fact, the latter also proves Theorem 6.17 in the case k D n.
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7 E.n; Jk/–local Brown–Comenetz duality

We recall the classical definition of Brown–Comenetz duality. The group Q=Z is an
injective abelian group, and so the functor

X 7! Hom.�0X;Q=Z/

defines a cohomology theory on spectra represented by a spectrum IQ=Z; this is the
Brown–Comenetz dual of the sphere. The Brown–Comenetz dual of a spectrum X is
then defined as IQ=ZX WD F.X; IQ=Z/, and satisfies

ŒY; IQ=ZX�0 Š Hom.�0.X ^Y /;Q=Z/:

It is an insight of Hopkins [24] that there is a good notion of Brown–Comenetz duality
(also known as Gross–Hopkins duality) internal to the K.n/–local category, given by
defining InX D F.MnX; IQ=Z/ for a K.n/–local spectrum X . For details on this,
see [52]. As we will see, this definition can also naturally be made in theE.n; Jk/–local
category. We begin with the following generalization of a result of Stojanoska [50,
Proposition 2.2]. We recall that, by definition, M0;n D Ln. In this case, the following
lemma just says that F.LnX; Y / is already Ln–local.

Proposition 7.1 For any X and Y , the natural map F.LnX; Y /! F.Mk;nX; Y / is
an E.n; Jk/–localization.

Proof We can repeat Stojanoska’s argument. First, we show that F.Mk;nX; Y / is
E.n; Jk/–local. Indeed, let Z be E.n; Jk/–acyclic. Then we must show that

F.Z; F.Mk;nX; Y //' F.Z ^Mk;nX; Y /' F.Mk;nZ ^X; Y /

is contractible. Here we have used that Mk;n is smashing. But Mk;nZ 'Mk;nLk;nZ

by Theorem 2.31 and this is contractible because Z is E.n; Jk/–acyclic.

We now show that the fiber F.Lk�1X; Y / is E.n; Jk/–acyclic. By Proposition 2.15
it suffices by a localizing subcategory argument to show this after smashing with a
generalized Moore spectrum M.k/ of type k. Then (up to suspension),

F.Lk�1X; Y /^M.k/' F.Lk�1X; Y /^DM.k/

' F.M.k/; F.Lk�1X; Y //

' F..Lk�1M.k//^X; Y /' �:
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Definition 7.2 The E.n; Jk/–local Brown–Comenetz dual of X is

Ik;nX D IQ=Z.Mk;nX/D F.Mk;nX; IQ=Z/:

We let Ik;n denote the E.n; Jk/–local Brown–Comenetz dual of Lk;nS0.

Remark 7.3 It does not matter if we ask that X be E.n; Jk/–local in the previous
definition, as Ik;nX only depends on the E.n; Jk/–localization of X . Indeed, we have
equivalences

Ik;nX D F.Mk;nX; IQ=Z/' F.Mk;nLk;nX; IQ=Z/D Ik;n.Lk;nX/:

In particular, Ik;n D Ik;n.Lk;nS0/' Ik;nS0.

From the definition of IQ=Z, we deduce the following.

Lemma 7.4 There is a natural isomorphism

ŒY; Ik;nX�0 Š Hom.�0.Mk;n.X/^Y /;Q=Z/:

As a consequence of Proposition 7.1 we deduce the following.

Lemma 7.5 Ik;nX is always E.n; Jk/–local. In fact , Ik;nX ' Lk;nIQ=Z.LnX/ and
moreover , Ik;nX Š Lk;nIj;nX for any j � k.

It follows that we have natural maps given by localization,

I0;n! I1;n! � � � ! In;n:

Example 7.6 Let nD 1 and p > 2. Then I0;1 ' L1.S2p /, the localization of the p–
completion of S2. On the other hand, when pD 2 we have I0;1'†2L1.DQ^2 / where
DQ is the dual question mark complex [15, Remark 1.5]. Similarly, I1;1 ' LK.1/S2

if p > 2, while I1;1 '†2LK.1/DQ.

Example 7.7 We always have Ik;n.Kn/'Kn. Indeed, first note that Lk;nKn 'Kn,
so Lemma 7.5 allows us to reduce the case where k D 0 (although the proof is no more
difficult in the other cases — just note that Mk;nKn 'Kn). Using the fact that

ŒY;Kn�� Š Hom.Kn/�..Kn/�X; .Kn/�/;

we argue as in [32, Theorem 10.2(a)] to see that

ŒY;Kn�0 Š Hom..Kn/0X;Fp/Š Hom..Kn/0X;Q=Z/Š ŒY; I0;n.Kn/�0:

This implies that I0;n.Kn/'Kn, as claimed.
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Theorem 7.8 Let X 2 Spk;n. Then the natural map X ! I 2
k;n
X is an isomorphism

when ��.F.k/^X/Š ��.Lk;nF.k/^X/ is finite in each degree. In particular , this
holds for X D Lk;nS0.

Proof Let �X WX ! I 2
k;n
X denote the natural map. We first note that

I 2k;n.F.k/ x̂ X/' I
2
k;n.F.k/^X/' F.k/^ I

2
k;n.X/;

because F.k/ is compact (and hence dualizable) in Sp. As in the proof of Theorem 10.2
in [32], this identifies �F.k/^X ' idF ^ �X , and so it is enough to show that �Y is an
equivalence, where Y D F.k/^X .

Because F.k/ has type k, Lk�1F.k/' �, and Mk;nF.k/' LnF.k/, so

Mk;nY DMk;n.F.k/^X/'Mk;nF.k/^X ' LnF.k/^X ' Y:

Likewise, Mk;n.Ik;nY /'Mk;n.DF.k/^ Ik;nX/'DF.k/^ Ik;nX ' Ik;nY . This
implies that ��I 2k;nY Š Hom.Hom.��Y;Q=Z/;Q=Z/, which is the same as ��Y
because ��Y is finite in each degree. Therefore �Y is an equivalence, as required.

Remark 7.9 The Gross–Hopkins dual In;n is always an invertible K.n/–local spec-
trum. We do not know what happens for Ik;n in general; however we note the following
result.

Proposition 7.10 The following are equivalent :

(1) Ik;n 2 Spdual
k;n

;

(2) Ik;n 2 Pick;n;

(3) .Ek;n/
_
� .Ik;n/ is a finitely generated E�–module;

(4) En x̂ Ik;n is K.n/–local.

Proof Suppose first that (1) holds. Then, F.Ik;n; Ik;n/ 'DIk;n x̂ Ik;n, but on the
other hand F.Ik;n; Ik;n/' I 2k;n.Lk;nS

0/' Lk;nS
0 by Theorem 7.8. It follows that

Ik;n 2Pick;n, ie that (2) holds. The converse, (2)D) (1), always holds; see for example
[30, Proposition A.2.8].

The equivalence of .1/ and .3/ is just Theorem 5.11.
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Finally to see that (1)() (4), we note that it suffices to show that .Kn/�Ik;n is finite.
In fact, because .Kn/� is a graded field, it suffices to see that .Kn/�Ik;n is finite. For
this, we compute, using Example 7.7 and Theorem 7.8,

ŒIk;n; Kn�� ' ŒIk;n; Ik;n.Kn/��

' ŒIk;n; F .Kn; Ik;n/��

' ŒKn; F .Ik;n; Ik;n/��

' ŒKn; Lk;nS
0��:

By [32, Lemma 10.4] if Mn denotes a generalized Moore spectrum of type n, then
ŒEn; LK.n/Mn�� ' ŒEn; Lk;nMn�� is finite (the last equivalence follows, for example,
from the fact that LnMn ' LK.n/Mn for a generalized Moore spectrum of type n).
As in [32, Corollary 10.5] it follows that ŒEn x̂DMn; Lk;nS

0� is finite, and hence so
is ŒKn; Lk;nS0�, as Kn lies in the thick subcategory generalized by En x̂DMn (note
that DMn is also the localization of a generalized Moore spectrum of type n; see [32,
Proposition 4.18]).

Question 7.11 For which values of k and n do the conditions of Proposition 7.10
hold?

Remark 7.12 Condition (4) clearly holds in the case kDn. Of course, Proposition 7.10
is precisely Hovey and Strickland’s proof in this case. However, due to the p–
completion, this does not hold for n D 1 and k D 0 (Example 7.6). In fact, this
fails at all heights when k D 0, as we now explain.

Remark 7.13 Fix n > 1 and k D 0, and take p� n. Then Pic0;n Š Z, generated by
LnS

1 [31, Theorem 5.4]. Therefore, if Proposition 7.10 held for k D 0, we must have
I0;n ' LnS

k for some k 2 Z. On the other hand, work of Hopkins and Gross [24], as
written up by Strickland [52], and known results about the K.n/–local Picard group
[26, Proposition 7.5] show that In;n '†n

2�nShdeti, where Shdeti is the determinant
sphere spectrum [7]. It cannot then be the case that LK.n/I0;n ' In;n; a contradiction
to Lemma 7.5. We do not know what occurs in the cases k ¤ 0; n.
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We prove that smooth 1–dimensional topological field theories over a manifold are
equivalent to vector bundles with connection. The main novelty is our definition of
the smooth 1–dimensional bordism category, which encodes cutting laws rather than
gluing laws. We make this idea precise through a smooth version of Rezk’s complete
Segal spaces. With such a definition in hand, we analyze the category of field theories
using a combination of descent, a smooth version of the 1–dimensional cobordism
hypothesis, and standard differential-geometric arguments.
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The goal of this paper is to give a definition of smooth 1–dimensional field theory that
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approach is the notion of smooth1–categories (developed in Section 2). A smooth
1–category is a smooth version of a complete Segal space. This framework can be
used to encode cutting axioms for the value of a field theory on a cobordism rather
than the usual gluing axioms. This perspective on cobordisms is implicit in the work of
Galatius, Madsen, Tillman and Weiss [12] and Lurie [20] in the settings of topological
and1–categories, respectively. Translating into the smooth setting yields field theories
that are determined by familiar differential-geometric objects.

Theorem A The space of smooth 1–dimensional oriented topological field theo-
ries over a smooth manifold X is equivalent to the nerve of the groupoid of (finite-
dimensional ) vector bundles with connection over X and connection-preserving vector
bundle isomorphisms. The equivalence is natural in X .

In our view, the above characterization of smooth 1–dimensional topological field
theories is the only admissible one. As such, the main contribution of this paper is a
precise definition of smooth field theory for which Theorem A holds. The definition
readily generalizes both to higher dimensions and nontopological smooth field theories,
as pursued by Grady and the second author [13, Section 4]. Through its connection
to familiar objects, Theorem A gives a concrete idea of what these more complicated
field theories seek to generalize. Our methods — particularly the role of descent in
Theorem C — are chosen with higher-dimensional generalizations in mind; see [13,
Theorem 1.0.1].

The intuition behind Theorem A goes back to Segal [24, Section 6]. The 1–dimensional
bordism category over X has objects compact 0–manifolds with a map to X and
morphisms compact 1–manifolds with boundary with a map to X . A 1–dimensional
topological field theory over X is a symmetric monoidal functor from the 1–dimensional
bordism category over X to the category of vector spaces. Hence, to each point in X

a topological field theory assigns a finite-dimensional vector space and to each path
the field theory assigns a linear map. A vector bundle with connection produces this
data using parallel transport. Conversely, given the data of parallel transport one may
assign values to arbitrary 1–dimensional bordisms in X by taking tensor products and
duals. This gives a functor from the groupoid of vector bundles with connection to
the groupoid of 1–dimensional topological field theories. To verify Theorem A, one
must show that this functor is an equivalence. This can be thought of as the following
smoothly parametrized variant of the 1–dimensional cobordism hypothesis of Baez and
Dolan [1]. We note that in dimension 1, orientations are equivalent to framings.

Algebraic & Geometric Topology, Volume 23 (2023)
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Theorem B Let Vect˝ denote the symmetric monoidal smooth1–category of vector
spaces and Vect the underlying smooth1–category without monoidal structure. There
is an equivalence between 1–dimensional oriented topological field theories over X

valued in Vect˝ and C1–functors from the smooth path category of X to Vect.

Theorem A follows from Theorem B by identifying a functor from the path category
to Vect with a smooth vector bundle and connection (see Section 4). Such a relation-
ship between parallel transport and representations of path categories goes back to
Kobayashi [17], who introduced the group of smooth based loops modulo thin homotopy
and established that smooth homomorphisms from this group to a Lie group G are in
bijection with isomorphism classes of principal G–bundles with connection. Similar
results were proved by Freed [11], and Schreiber and Waldorf [22]. An analogous
result for gerbes with connections was established for two-dimensional thin homotopies
by Bunke, Turner and Willerton [7]. A statement explicitly relating field theories to
vector bundles with connection was loosely formulated by Segal in his early work on
geometric models for elliptic cohomology. A precise statement was given by Stolz and
Teichner in their language of field theories fibered over manifolds [26, Theorem 1.8],
though a proof has yet to appear. Below we draw inspiration from all of these authors;
the new ingredient is in our treatment of the smooth bordism category.

1.1 What makes a smooth cobordism category difficult to define?

Composition of cobordisms is more subtle than one might hope: given two d–manifolds
and a .d�1/–manifold along which one wishes to glue, one only obtains a glued
manifold up to diffeomorphism. The usual solution is to define morphisms in a cobor-
dism category as smooth d–manifolds up to diffeomorphism, thereby obliterating the
problem. However, if we wish to include extra structures on bordisms, two problems
arise: (1) gluings may fail to exist and (2) gluing isomorphism classes of geometric
structures is typically ill-defined. For example, isomorphism classes of metrics cannot
be glued, and gluing smooth maps to a target manifold X along a codimension 1
submanifold may not result in a smooth map to X . Although the focus in this paper is
on the topological bordism category over X , a guiding principle is to make definitions
for which various flavors of generalization pose no serious technical difficulties.

A reason for pursuing such generalizations comes from Stolz and Teichner’s work on a
geometric model for elliptic cohomology [25; 26], following Segal [24]. Their program
seeks to generalize the relationship between 1–dimensional field theories, vector bundles,
and K–theory to provide a model for elliptic cohomology with cocycles coming from
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(supersymmetric) 2–dimensional Euclidean field theories. They address the problem of
composition by equipping bordisms with germs of collars, so bordisms are composable
when collars match. This allows one to incorporate geometric structures on paths
by simply endowing the collars with geometric structures. However, it introduces
a new technical issue when relating 1–dimensional field theories to vector bundles:
isomorphism classes of objects in their 1–dimensional bordism category are points
of X together with the germ of a collar of a path. Such a large space of objects can be
rather unwieldy in computations (particularly in the presence of geometric structures
on the bordisms). The original motivation for this paper was to find a way around the
technical difficulties brought on by the introduction of collars, with an eye towards
studying supersymmetric Euclidean field theories. We note that since the writing of this
paper, an analog of Theorem A was proved by Ludewig and Stoffel [18] in a framework
that incorporates collared bordisms (we comment further on this work in Section 1.3).

One approach that avoids collars follows Kobayashi [17], Caetano and Picken [8], and
Schreiber and Waldorf [22] who study paths in a manifold modulo thin homotopy;
these are smooth paths modulo smooth homotopies whose rank is at most 1. Each
equivalence class has a representative given by a path with sitting instant, meaning a
path in X for which some neighborhood of the start and end point is mapped constantly
to X . These sitting instants allow concatenation of smooth paths in a straightforward
way, which simplifies many technical challenges (compare Lemma 5.0.1), and leads
to a version of a 1–dimensional bordism category over X . However, endowing an
equivalence class of a path with a geometric structure, eg a metric, is hopeless. If one
does not pass to equivalence classes but instead works with honest paths with sitting
instants, the resulting path category fails to restrict along open covers of X : restricted
paths may not have sitting instants. This destroys a type of locality that we find both
philosophically desirable and computationally essential (compare Theorem C), related
to Mayer–Vietoris sequences in Stolz and Teichner’s program; see [26, Conjecture 1.17].
In summary, techniques involving bordisms with sitting instants seem appropriate only
for a certain class of topological field theories.

Lurie [20] and Galatius, Madsen, Tillman and Weiss [12] take a different road, consider-
ing a topological category (or Segal space) of bordisms, wherein composition need only
be defined up to homotopy. This allows one to effectively add or discard the collars
with impunity since this data is contractible. Geometric structures can be incorporated
as stable tangential structures, ie maps from bordisms to certain classifying spaces.
This framework also leads to field theories that are relatively easy to work with: one
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can obtain a precise relationship between maps from X to BO.k/ and 1–dimensional
topological field theories over X . However, the price one pays is that such bundles
are not smooth, but merely topological. By this we mean a particular space of field
theories is homotopy equivalent to the space of maps from X (viewed as a topological
space, not a manifold) to the classifying space of vector bundles; in particular, from
this vantage the data of a connection is contractible. Our search for a smooth bordism
category is tantamount to asking for a differential refinement of this data. In the case
of line bundles, such a refinement is the jumping-off point for the subject of (ordinary)
differential cohomology, and one can view our undertaking as a close cousin.

1.2 Why model categories?

Our approach combines aspects of Stolz and Teichner’s definition of bordism categories
internal to smooth stacks [25; 26] and the Segal space version (in the world of model
categories) studied by Lurie. What we obtain is not a bordism category strictly speaking,
but rather bordisms in X comprise a collection of objects and morphisms with a
partially defined composition; this is the categorical translation of the geometric idea
to encode cutting laws rather than gluing laws. To make sense of functors out of this
bordism “category” we provide ourself with an ambient category of smooth categories
with partially defined composition. This is directly analogous to Rezk’s category of
complete Segal spaces as a model for1–categories. However, making the framework
precise requires a foray into the world of model categories. This sort of machinery
rarely turns up in standard differential geometry, so might seem a little misplaced
at first glance; however, in the setting of field theories some basic features of this
language seem unavoidable. For example, the bordism category over X ought to be
equivalent to the bordism category over an open cover fUi ! X g with appropriate
compatibility conditions on intersections; asking for these categories to be isomorphic is
too strong since, for example, they have different sets of objects. Hence, the appropriate
categorical setting for describing bordisms over X must have some native notion of
(weak) equivalence of bordism categories, and the language of model categories was
built precisely to facilitate computations in such situations.

Smooth1–categories are fibrant objects for a model category structure we place on
simplicial objects in smooth stacks. This model structure is chosen to satisfy three
properties: (1) nerves of categories fibered over manifolds determine fibrant objects,
eg the category of (smooth) vector spaces is fibrant; (2) all objects are cofibrant, and in
particular bordisms over X define a cofibrant object; and (3) there is a weak equivalence
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between 1–dimensional bordisms over X and 1–dimensional bordisms over an open
cover fUig of X with compatibility on overlaps. These three properties are the only
features of the model structure we actually use. It is important that bordisms over X

do not give a fibrant object: this is precisely the failure of composition to be defined in
general. However, to compute the (derived mapping) space of smooth functors from
bordisms to vector spaces, fibrant replacement of the source is unnecessary.

We refer the reader to Hirschhorn [15], Barwick [2], and Lurie [19, Appendix A] for
background on model categories relevant to this paper.

1.3 Subsequent work

Since the first version of this paper appeared in 2015, its basic ideas have been used
and expanded by several authors. Some of these developments were alluded to above;
we discuss this further presently.

Ludewig and Stoffel [18] constructed a bordism category using model-categorical
techniques, incorporating ideas similar to those in this paper. One important difference
is that their bordisms are equipped with the germ of a collar, following the ideas of
Stolz and Teichner [26]. Ludewig and Stoffel go on to prove a version of Theorem A;
see [18, Theorems 1.1 and 1.2]. This shows that incorporating collars in the context
of 1–dimensional topological field theories has no effect on the underlying geometric
objects of study. Another important result of Ludewig and Stoffel shows that a version
of Theorem A holds where the target category consists of (not necessarily locally
free) sheaves of vector spaces [18, Theorem 5.2]. These more general sheaves are
an important piece of Stolz and Teichner’s formalism; see [26, Remark 3.16]. As
in the formalism below, a crucial tool in Ludewig and Stoffel’s work is the descent
property for field theories. We also mention that the main results of Benini, Perin
and Schenkel [3] verify and utilize descent for a distinct (though related) category of
1–dimensional algebraic quantum field theories.

In [13], Grady and the second author generalize the 1–dimensional topological bordism
category defined in this paper to arbitrary d–dimensional bordism d–categories. Their
definitions also allow one to incorporate a wide class of geometric structures on d–
dimensional bordisms, expanding the ideas of Stolz and Teichner [26] to the fully
extended context. The categorical foundations of Grady–Pavlov involve a smooth
refinement of d–fold iterated Segal spaces, generalizing the definition of smooth
1–category developed below. The main result of Grady and Pavlov [13] is that fully
extended d–dimensional geometric field theories satisfy descent; their proof generalizes
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the ideas of Section 2. This descent statement leads to good behavior for groupoids
of field theories over a manifold. In particular, concordance classes of d–dimensional
geometric field theories are representable [13, Section 7.2]. This fits nicely with Stolz
and Teichner’s point of view: the main conjectures from [26, Section 1] together with
Brown representability require that concordance classes of 1j1– and 2j1–dimensional
Euclidean field theories be representable. Descent gives a conceptually satisfying
mechanism for representability of a wide class of geometric field theories.

Another important development is a proof — by Grady and the second author [14] —
of a geometric version of the cobordism hypothesis. The model categorical framework
is crucial, as freely adjoining duals to a smooth .1; d/–category can be realized by
Bousfield localization. The formalism and techniques of Section 2 continue to play a
central role: generalizations of cutting-and-gluing constructions decompose bordisms
into elementary handles that in turn generate the bordism categories of interest.

1.4 Notation and terminology

Definition 1.4.1 Let Cart denote the cartesian site whose objects are Rn for n2N, mor-
phisms are all smooth maps, and coverings are the usual open coverings,

`
Rn!Rn.

We will use the notation Œk� to denote the finite set f0; 1; : : : ; kg as an object of the
category � of simplices. The word “space” will often be used to refer to simplicial sets
(ie objects in the category sSetD Fun.�op; Set/), eg a simplicial space is a bisimplicial
set.

We will sometimes refer to objects in C1–Cat and C1–Cat˝ as categories even when
they are not, eg we will often refer to 1–Bordor.X / as the 1–dimensional oriented
bordism category over X .

1.5 Structure of the paper

We have attempted to keep the model-categorical discussion separate from the geometric
one, relegating the former to Section 2 and the latter to Sections 3–5.
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2 From 1–categories to smooth 1–categories

Complete Segal spaces provide a model for1–categories. A complete Segal space
is a simplicial space (ie a functor �op ! sSet) satisfying a Segal and completeness
condition reviewed below. As described by Rezk [21], the value of a Segal space on
Œk� 2� can be thought of as the classifying space for chains of morphisms of length k

in an ordinary category. This has an obvious smooth enhancement via simplicial objects
in smooth stacks�op! Stacks wherein the value on Œk� is a classifying stack for chains
of composable morphisms of length k. This is the approach we take leading to the
definition of a smooth1–category. By adjunction, one can also view these smooth
1–categories as sheaves of complete Segal spaces on the smooth site Cart.

For our applications to field theories, we will assemble 1–dimensional bordisms in M

into a functor�op!Stacks whose value on Œk�2� is the classifying stack of (smoothly)
composable chains of bordisms in M of length k. As we shall see, this functor does not
satisfy the Segal condition. The problem is geometric and unavoidable: arbitrary chains
of bordisms in M compose to a piecewise smooth bordism that need not be smooth. To
work with such an object, we require a larger category that includes simplicial objects
in stacks that do not satisfy the Segal condition.

A systematic method for dealing with this type of issue is to construct a model category
whose fibrant objects satisfy a Segal and completeness condition. This allows one to
work with nonfibrant objects precisely when their failure to be fibrant is not homotopi-
cally problematic. For example, mapping out of a nonfibrant object usually presents no
issues, whereas mapping into a nonfibrant object can be problematic. For complete
Segal spaces, such a model structure was constructed by Rezk as a localization of the
Reedy model structure on simplicial spaces. It is only a mild elaboration to extend
these ideas to simplicial objects in stacks, ie smooth1–categories.

2.1 Complete Segal spaces as fibrant objects in a model category

We overview the small part of Rezk’s theory of complete Segal spaces that we require;
see Rezk [21] for a more thorough treatment.

Definition 2.1.1 A Segal space is a functor C W �op ! sSet that satisfies the Segal
condition, meaning the Segal map

.2.1.2/ C.k/! C.1/�h
C.0/ � � � �

h
C.0/ C.1/; k � 1;

into the homotopy fibered product is a weak equivalence.
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When the spaces are Reedy fibrant, the homotopy fibered product can be computed as
the ordinary fibered product.

To obtain a category of Segal spaces into which the category of categories can be
naturally embedded, it is important to also enforce a completeness condition that we
recall presently. For any Segal space C , let hC denote the underlying homotopy
category. This is an ordinary category defined by Rezk [21, Section 5], whose objects
are 0–simplices of C.0/ and whose morphisms from x0 to x1 are the connected
components of the homotopy fiber of C.1/ over .x0;x1/ for the projection

d0 � d1 W C.1/! C.0/�C.0/:

For a Segal space C , let Cequiv � C.1/ be the subspace consisting of connected
components of the above fiber that correspond to isomorphisms in the homotopy
category. Rezk shows that the degeneracy map s0 W C.0/! C.1/ factors through the
subspace Cequiv.

Definition 2.1.3 A Segal space (Definition 2.1.1) is complete if the map

.2.1.4/ s0 W C.0/! Cequiv

is a weak equivalence.

Following Rezk [21, Section 7], we can define a model category1–Cat whose un-
derlying category is simplicial spaces and whose fibrant objects are complete Segal
spaces. We achieve this by localizing a given standard model structure, namely, the
Reedy model structure on simplicial spaces, which coincides with the injective model
structure; see, for example, Bergner and Rezk [5, Propositions 3.10 and 4.1]. For a
brief review of Reedy model structures, see Section 6. The first set of morphisms in
this localization come from the morphisms of simplicial presheaves on � for each
k 2N given by

.2.1.5/ 'k W Œ1�t
h
Œ0� Œ1�t

h
Œ0� � � � t

h
Œ0� Œ1�! Œk�;

where the source is a k–fold iterated homotopy pushout in the category of simplicial
presheaves on � (alias: simplicial spaces), and we have identified Œm� 2 � with its
associated (representable) presheaf. The maps Œ0�! Œ1� defining the homotopy pushout
Œ1� th

Œ0�
Œ1� are 0 7! 0 and 0 7! 1, and the higher pushouts iterate this basic version.

The homotopy colimit in (2.1.5) can be computed as the ordinary colimit because the
underlying diagram is cofibrant. If we map the source and target of 'k into a simplicial
space C and consider the map that 'k induces on these mapping spaces, we obtain the
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Segal map (2.1.2). (The resulting map 'k has a cofibrant domain and codomain, which
means that derived mapping spaces out of them can be computed as ordinary mapping
spaces.)

Let E denote the simplicial space associated to the simplicial set given by the nerve of
the groupoid with two objects x and y, and two nonidentity morphisms x! y and
y! x. Consider the canonical map

.2.1.6/ x WE! Œ0�;

where again we have identified Œ0� 2 � with its associated representable simplicial
presheaf. Rezk [21, Theorem 6.2] shows that Map.E;C /' Cequiv and the map

C.0/!Map.E;C /' Cequiv

induced by (2.1.6) is a weak equivalence if and only if C is complete. (In fact, this
map is weakly equivalent to the map (2.1.4) defined above.)

Definition 2.1.7 Endow the category Fun.�op; sSet/ of simplicial spaces with the
Reedy model structure, which coincides with the injective structure. Define the model
category of complete Segal spaces, denoted by1–Cat, as the left Bousfield localization
of this model structure along the maps 'k and x from (2.1.5) and (2.1.6).

Remark 2.1.8 It is immediate from the properties of the localized model structure
that fibrant objects in1–Cat are simplicial spaces that are fibrant in the Reedy model
structure and satisfy the Segal and completeness conditions; see Rezk [21, Theorem 7.2],
or compare the proof of Lemma 2.2.7 below. In particular, fibrant objects in1–Cat
coincide with Reedy fibrant complete Segal spaces in the sense of Definition 2.1.3.

2.2 Smooth 1–categories

As mentioned at the beginning of the section, we take smooth1–categories to be a
stack-valued version of Segal spaces. A (smooth) stack is a functor F W Cartop! sSet

satisfying descent for good open covers fUig of objects S 2Cart, meaning the canonical
map

.2.2.1/ F.S/! holim
�Y

F.Ui/�
Y

F.Uij /
!!!

Y
F.Uijk/

!!!!
� � �

�
is a weak equivalence. It will be useful later to observe this comes from mapping the
source and target of

.2.2.2/ S
p
 � hocolim

�a
i

Ui �
a
i;j

Ui \Uj
   

a
i;j ;k

Ui \Uj \Uk
    
� � �

�
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to F and considering the map induced by p between the resulting mapping spaces of
simplicial presheaves on Cart. In this description, the above is regarded as a morphism
of simplicial presheaves and (in particular) we have identified S and the Ui with their
representable presheaves and taken the homotopy colimit in simplicial presheaves.
The latter homotopy colimit can be computed as the Čech nerve of U in simplicial
presheaves (where Ui \Uj \Uk is placed in simplicial degree 2, and analogously for
other intersections) due to the Reedy cofibrancy of the underlying simplicial diagram.
The resulting morphism has a projectively cofibrant domain and codomain, which
allows us to compute derived mapping spaces out of them as ordinary mapping spaces
if the target is projectively fibrant, ie an objectwise Kan complex. We emphasize that
in (2.2.2) the coproduct

`
is taken in the category of presheaves (which is different

from the category of sheaves). The original reference for the model structure on stacks
is Jardine [16]. A description in terms of left Bousfield localizations can be found in
Dugger, Hollander and Isaksen [10].

Definition 2.2.3 The model category PreStacks is the projective model structure on
simplicial presheaves on the cartesian site Cart (Definition 1.4.1), ie Fun.Cartop; sSet/.
The model category Stacks is the left Bousfield localization of PreStacks along the
morphisms (2.2.2) for all good open covers fUigi2I of any S 2 Cart.

Remark 2.2.4 Fibrant objects in PreStacks (Definition 2.2.3) are precisely presheaves
valued in Kan complexes, whereas fibrant objects in Stacks are precisely those fibrant
objects in PreStacks that satisfy the homotopy descent condition (2.2.1).

We now consider the Reedy model structure on the category of simplicial prestacks, ie
functors �op! PreStacks. The existence and basic properties of this model structure
follows from Hirschhorn [15, Theorem 15.3.4], as we review briefly. Weak equivalences
are objectwise, meaning a map F !G of simplicial prestacks is an equivalence if we
get an equivalence of prestacks for each fixed Œn� 2�. Fibrations and cofibrations are
described in terms of relative matching and latching maps; see Section 6. By adjunction,
the Reedy model structure also gives a model structure on the presheaf category

�op
�Cartop! sSet:

In this description, fibrant objects C W�op�Cartop! sSet are precisely those presheaves
that define Reedy fibrant simplicial spaces C.�;S/ W�op! sSet for each S 2 Cart.

We wish to localize this Reedy model structure on simplicial prestacks along the
morphisms (2.1.5), (2.1.6) and (2.2.2), but to do so we need to promote these to
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morphisms in presheaves on � � Cart. We achieve this in the following way. For
each representable presheaf associated to an object Œn� 2� or S 2 Cart, we take the
morphisms of presheaves

.2.2.5/ idŒn� �p; 'k � idS ; x � idS ;

where 'k , x and p are as in (2.1.5), (2.1.6) and (2.2.2), and idŒn� or idS denotes the
identity morphism on the corresponding representable presheaf. Letting Œn� 2� and
S 2 Cart range over all possible objects, we obtain our localizing morphisms.

Definition 2.2.6 Define the model category of smooth 1–categories, denoted by
C1–Cat, as the left Bousfield localization of the Reedy model structure on

Fun.�op;PreStacks/

along the set of morphisms (2.2.5). A smooth functor is a morphism in C1–Cat.

Existence and basic properties of such a localization is shown by Barwick in [2,
Theorem 4.7], since the injective or projective model structure on the category of
simplicial presheaves is left proper and combinatorial; see, for example, Lurie [19,
Section A.2.7, Proposition A.2.8.2 and Remark A.2.8.4]. We summarize what we
require as follows.

Lemma 2.2.7 Fibrant objects C 2C1–Cat (Definition 2.2.6) are simplicial presheaves
on ��Cart such that

(1) for any S 2 Cart, the restriction C.�;S/ W�op! sSet is a fibrant complete Segal
space (Remark 2.1.8);

(2) for any Œn� 2�, the restriction C.Œn�;�/ W Cartop! sSet is a fibrant smooth stack
(Remark 2.2.4).

Proof By Barwick [2, Theorem 4.7], an object C is fibrant in the local model structure
if it is fibrant in the Reedy model structure (ie before localization) and has the additional
property that for all maps f WA! B in (2.2.5), the induced map of derived mapping
spaces

.2.2.8/ Map.B;C /!Map.A;C /

is a weak equivalence. As observed above, C being fibrant before localization reduces
to C.�;S/ being a Reedy fibrant simplicial space for any S 2Cart. We observe that the
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maps in (2.2.5) have cofibrant source and fibrant target, so the derived mapping spaces
in (2.2.8) can be computed as the usual mapping spaces. For the maps �k � idS and
x � idS , we see that C.�;S/ must be a complete Segal space. For the maps idŒn� �p

we see that C.Œn�;�/ must be a stack.

2.3 Symmetric monoidal smooth 1–categories

For our intended application to field theories, we also require a version of symmetric
monoidal smooth1–categories. Following ideas of Segal [23], we implement this via
the category � , the opposite category of finite pointed sets.

Just like for �, presheaves on � are first equipped with the Reedy model structure,
which is then localized with respect to appropriate maps. The category � has nontrivial
automorphisms, so the usual notion of a Reedy model structure must be generalized
to accommodate this new setting, resulting in the strict model structure of Bousfield
and Friedlander [6, Section 3]. This approach was generalized by Berger and Moerdijk
[4], resulting in the notion of a generalized Reedy category and the associated model
structure.

As explained in Segal [23], given a �–object X , we can think of Xhni D Xn as the
space of (formal) n–tuples of elements of some commutative monoid. Here “formal”
means that points of Xn are not actual n–tuples, but rather have certain structure that
makes them formally behave like ones. Specifically, given a map of finite pointed
sets f W hmi ! hni, the associated map Xf W Xhmi ! Xhni should be thought of as
multiplying the elements indexed by f �1fj g for each j 2 hni (the product of an empty
family is the identity element), and throwing away elements indexed by f �1f�g. Given
a �–object X , its nth latching map LnX !Xn can be thought of as the subobject of
Xn comprising those (formal) n–tuples where at least one element is the identity. Given
a �–object X , its nth matching map Xn!MnX can be thought of as sending a formal
n–tuples in Xn to the compatible family of formal tuples given by multiplying two or
more elements, or throwing away one or more elements. A �–object X is cofibrant in
the strict model structure if for all n 2 � , the latching map LnX !Xn is a projective
cofibration of objects equipped with an action of †n. A �–object X is fibrant in the
strict model structure if for all n 2 � , the matching map Xn!MnX is a fibration.

To define the Reedy model structure on presheaves on ��� , it suffices to observe that
generalized Reedy categories are closed under finite products by Berger and Moerdijk [4,
Section 1] and both �op and �op have generalized Reedy category structures by Berger
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and Moerdijk [4, Examples 1.9(a) and (b)]. Thus, we can consider the (generalized)
Reedy model structure on the category of functors

�op
��op

! PreStacks:

Next, we turn attention to the morphisms used to define a local model structure. As
above, we define these morphisms in their adjoint form in the category of functors

�op
��op

�Cartop! sSet:

Denote objects of � by hmi D f�; 1; : : : ;mg, where � is the basepoint. Then consider
the set of morphisms

u W∅! h0i; tm;n
W hmi th0i hni ! hmC ni;

where the maps tm;n are induced by a pair of maps of finite pointed sets (which yield
morphisms in � in the opposite direction) hmi  hmC ni and hni  hmC ni. The
first of these maps is the identity on the subset f1; : : : ;mg and sends mC1; : : : ;mCn

to �. The second of these maps uses the obvious bijection from fmC 1; : : : ;mCng to
f1; : : : ; ng and sends the remainder to �.

We then consider a set of localizing morphisms similar to (2.2.5), only now we have to
fix objects in a pair of the categories �, � and Cart. Explicitly, we take morphisms

.2.3.1/
idŒn� � idhmi �p; 'k � idhmi � idS ; x � idhmi � idS ;

idŒn� � tm;n
� idS ; idŒn� �u� idS ;

where Œn� 2�, hmi 2 � , and S 2 Cart vary over all possible objects.

Definition 2.3.2 Define the model category of symmetric monoidal smooth1–cate-
gories, denoted by C1–Cat˝, as the left Bousfield localization of the Reedy model
structure on the category of functors �op � �op ! PreStacks with respect to the
morphisms (2.3.1).

Again, existence of such a localization is shown by Barwick [2, Theorem 4.7], which
also proves that fibrant objects in the localized structure are precisely fibrant and local
objects in the original model structure.

Lemma 2.3.3 Fibrant objects C 2 C1–Cat˝ (Definition 2.3.2) are Reedy fibrant sim-
plicial presheaves C W�op��op�Cartop! sSet (meaning the adjoint map�op��op!

PreStacks is Reedy fibrant , where PreStacks is equipped with the projective model
structure of Definition 2.2.3) such that
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(1) for any S 2 Cart and hmi 2 � , the restriction C.�; hmi;S/ W �op ! sSet is a
complete Segal space (Remark 2.1.8);

(2) for any fixed Œn� 2� and hmi 2 � , the restriction C.Œn�; hmi;�/ W Cartop! sSet

is a smooth stack (Remark 2.2.4);

(3) for any fixed S 2 Cart and Œn� 2 �, the restriction C.Œn�;�;S/ W �op! sSet is
a special �–space (Segal [23, Definition 1.2] and Bousfield and Friedlander [6,
Section 4]).

Proof Fibrant objects in the local model structure are fibrant object in the Reedy
model structure (selected by the first condition) that additionally satisfy the locality
condition (2.2.8) with respect to the maps (2.3.1). For the maps �k � idhmi � idS and
x � idhmi � idS we see using the adjunction property that C.�; hmi;S/ must be a
complete Segal space. For the maps idŒn� � idhmi �p we see that C.Œn�; Œm�;�/ must
be a stack. For the maps idŒn�� tm;n� idS and idŒn��u� idS we see that C.Œn�;�;S/

must be a special �–space.

Definition 2.3.4 We have a functor

C1–Cat˝! C1–Cat

that restricts a simplicial presheaf on����Cart to��h1i�CartŠ��Cart. We call
this the forgetful functor from symmetric monoidal smooth1–categories to smooth
1–categories.

By virtue of Lemmas 2.2.7 and 2.3.3, the forgetful functor preserves fibrant objects
and weak equivalences between them, and in fact is a right Quillen functor, which can
be seen as follows. Hirschhorn [15, Theorem 15.5.2] shows that there is no difference
between the Reedy model structures on

Fun.�op;Fun.�op;PreStacks//;

Fun.�op;Fun.�op;PreStacks//;

Fun.�op
��op;PreStacks/;

using that �op ��op is a (generalized) Reedy category, with Hirschhorn’s proof still
working for generalized Reedy categories. In particular, the forgetful functor can be
presented as evaluation at h1i 2 � ,

Fun.�op;Fun.�op;PreStacks//! Fun.�op;PreStacks/;

hence it is a right Quillen functor because Reedy (acyclic) fibrations are projective
(acyclic) fibrations.
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2.4 Smooth 1–categories from sheaves of categories

The main example of a Segal space comes from a simplicial space-valued nerve of
an ordinary category; see Rezk [21, Section 3.3]. For small categories C and D, let
Iso.CD/ denote the category whose objects are functors D! C and whose morphisms
are natural isomorphisms of functors. Then define

.2.4.1/ N1 W Cat! Fun.�op; sSet/; C 7! .Œl � 7! N.Iso.CŒl�///:

Rezk [21, Proposition 6.1] proves that N1.C / is a complete Segal space; we sketch
the idea. The set of .k; l/–bisimplices of N1.C/ is the set of diagrams in C

.2.4.2/ Nervek.Iso.CŒl�//D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

c00
f10
��! c10

f20
��! � � �

fl0
��! cl0??y ??y ??y

c01
f11
��! c11

f21
��! � � �

fl1
��! cl1??y ??y ??y

:::
:::

:::??y ??y ??y
c0k

f1k
��! c1k

f2k
��! � � �

flk
��! clk

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;

;

where cij 2 C are objects, the horizontal arrows fij are morphisms in C, and the vertical
arrows are isomorphisms in C. These diagrams stack horizontally, from which one
deduces that the resulting simplicial space satisfies the Segal condition. Furthermore, the
space we get from setting l D 0 consists of chains of invertible morphisms; unraveling
the definitions (and with a bit of work), this verifies that the Segal space is complete.

To generalize this construction for a nerve valued in smooth1–categories, we consider
diagrams like (2.4.2) with each cij an object in a category-valued presheaf on Cart.

Definition 2.4.3 Given a (strict) presheaf C W Cartop! Cat of categories, consider the
presheaf of groupoids C� W Cartop ��op! Grpd defined by the formula

.S; Œk�/ 7! Iso.C.S/Œk�/:

Define the nerve of a category-valued presheaf as NC1.C/ WD N.C�/.

Lemma 2.4.4 If C satisfies descent , then so does C� and therefore NC1.C/ is fibrant
in the model structure of Definition 2.2.6.
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Proof This follows immediately from Lemma 2.2.7. The part with fixed S is verified
by Rezk. The part with fixed Œk� is satisfied because .�/Œk� and Iso.�/ both preserve
homotopy limits of categories and therefore preserve the descent property for presheaves
of categories.

We will also need a symmetric monoidal version of the previous lemma. This is the
classical construction of a �–object from a symmetric monoidal object with a strict
monoidal structure.

Definition 2.4.5 Given a presheaf C W Cartop! SymCat of symmetric monoidal cat-
egories with a strict monoidal structure (and symmetric strict monoidal functors as
morphisms), consider the presheaf

C� W Cartop ��op
! Cat

defined by the formula
C�.S; hli/D C.S/l

with the naturality in S 2 Cart induced by C and naturality in hli 2 � induced by the
strict monoidal structure on C.S/ and its symmetric braiding. Define the nerve of a
symmetric monoidal category-valued presheaf by NC1

˝ .C/ WD N..C�/�/.

We say a presheaf of symmetric monoidal categories with strict monoidal structure on
Cart satisfies descent if its underlying presheaf of categories (forgetting the symmetric
monoidal structure) does. This construction continues to work when Cart is replaced by
any other site. In Lemma 2.4.6, we need to use the site Cart�� given by the product
of the site Cart and the category � equipped with the trivial Grothendieck topology.

Lemma 2.4.6 If C satisfies descent , then so does C� and therefore NC1
˝ .C/ is fibrant

in the model structure of Definition 2.3.2.

Proof The functor .�/l preserves homotopy limits and therefore preserves the descent
condition. Thus C� satisfies descent and we can invoke the previous lemma.

3 Bordisms, path categories, and field theories

In this section we present our definition of a smooth 1–dimensional topological field
theory over a manifold, as well as a closely related notion of a transport functor.
In Section 3.1, we apply the nerve construction of the previous section to the stack
of vector bundles on Cart to obtain the symmetric monoidal smooth1–category of
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smooth vector spaces, which is a fibrant object in C1–Cat˝. The 1–dimensional
oriented bordism “category” over X , denoted by 1–Bordor.X /, is defined in Section 3.2
and is a nonfibrant object of C1–Cat˝. Together, these define the main ingredients of
a smooth field theory.

The model categories C1–Cat and C1–Cat˝ are simplicial model categories, so they
are equipped with mapping simplicial set functors of the form

C op
�C ! sSet:

These functors are right Quillen bifunctors, and “derived mapping space” below refers
to their right derived functors.

Definition 3.0.1 A 1–dimensional smooth oriented topological field theory over X

is a point in the derived mapping space C1–Cat˝.1–Bordor.X /;Vect/, and the space
of 1–dimensional smooth oriented topological field theories over X is this derived
mapping space.

We will also define a closely related (nonfibrant) smooth1–category of smooth paths
in X , denoted by P.X /, which is a nonfibrant object of C1–Cat.

Definition 3.0.2 A transport functor on X is a point in the derived mapping space
C1–Cat.P.X /;Vect/, and the space of transport functors on X is the derived mapping
space C1–Cat.P.X /;Vect/.

There is a restriction functor

C1–Cat˝.1–Bordor.X /;Vect/! C1–Cat.P.X /;Vect/

from field theories to transport functors.

Before jumping into detailed definitions of the objects in C1–Cat, we overview some of
the ideas that go into in Lurie’s definition of the bordism category [20] as a Segal space;
see also Calaque and Scheimbauer [9]. The standard way of chopping up a manifold M

into k pieces is a Morse function on M with a choice of k nondegenerate critical values.
One can consider the group of diffeomorphisms of M that preserve the inverse images
of these critical values. The classifying space of this diffeomorphism group is roughly
the value of Lurie’s Segal space on Œk� 2�. This is rough because one also wants the
classifying space to allow for varying Morse functions and varying critical values. In
total, the result is a classifying space of the ways of cutting a manifold M along k
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codimension 1 submanifolds. In terms of the usual description of the bordism category,
this corresponds to a composable chain of bordisms of length k � 1. Forgetting a
codimension 1 submanifold or adding extra multiplicity gives maps between these
classifying spaces, producing the requisite simplicial maps. In the 1–dimensional
case, these classifying spaces are particularly easy owing to the simplicity of Morse
decompositions of 1–manifolds. Our approach to 1–Bordor.X / is the same idea, but
we replace the classifying space with a (smooth) classifying stack.

3.1 Smooth vector spaces

Define the sheaf of symmetric monoidal categories, V W Cartop! SymCat, as follows.
The objects of V.S/ are elements of N, corresponding to the dimension of a trivial
bundle on S ŠRm, and morphisms m! n are smooth maps S ! Hom.Rm;Rn/ into
the space of linear maps. The morphism of groupoids associated with maps S! S 0 of
objects in Cart is the identity map on objects, and on morphisms we precompose. The
strict monoidal structure is determined by multiplication in N and tensor products of
linear maps. The (nontrivial) braiding is induced by the obvious block matrix. This
satisfies descent because smooth functions do.

Definition 3.1.1 Let Vect 2 C1–Cat˝ (Definition 2.3.2) be the fibrant object obtained
by applying Lemma 2.4.6 to the sheaf of symmetric monoidal categories V defined
above.

To explain this a bit more concretely, the vertices of the simplicial set associated to
S 2 Cart, Œk� 2� and h1i 2 � are chains of length k of morphisms of vector bundles
over S ,

.3.1.2/ fV0
�1
�! V1

�2
�! � � �

�k
�! Vk j Vi! Sg;

where the dimensions of the Vi correspond to the natural numbers in the formal
definition. The 1–simplices of this simplicial set are commutative diagrams of vector
bundles,

.3.1.3/

8̂̂<̂
:̂

V0
�1
�! V1

�2
�! � � �

�k
�! Vk??y ??y ??y

V 0
0

�0
1
�! V 0

1

�0
2
�! � � �

�0
k
�! V 0

k

9>>=>>; ;
where the vertical arrows are vector bundle isomorphisms. These 0- and 1–simplices
vary with Œk�2� by composing horizontal morphisms of vector bundles or by inserting
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"

�

#

 �������������������������������!

Figure 1: A vertex (ie an object) in the simplicial set 1–Bordpt.pt/.2; 3/. The
bordism is drawn in solid black, the height function is given by the height
in the picture, and the cut functions are represented by the dotted horizontal
lines. The map to f0; 1; 2g 2 � maps the left of the vertical dotted line to 1
and the right of the vertical line to 2. The fiber over zero is empty. Regularity
at the cut values means that the intersections of the bordism with the dotted
lines are transverse. Restricting attention to the bordism confined within an
adjacent pair of horizontal dotted lines gives the three Segal �–maps and
similar restrictions corresponding to the vertical dotted line gives the two
Segal �–maps. The action by †2 interchanges the bordisms on the left and
right sides of the vertical dotted line.

a horizontal identity morphism of vector bundles. We can also pull this data back along
smooth maps S 0! S .

3.2 The definition of the 1–dimensional bordism category

Definition 3.2.1 (the 1–dimensional oriented bordism category over X ) Given
X 2 Fun.Cartop; Set/ (the most important example of X being the presheaf induced
by a smooth manifold), the nonfibrant smooth symmetric monoidal 1–category
1–Bordor.X / (Definition 2.3.2) is defined by taking the nerve of the following presheaf
of groupoids on �� Cart� �: send Œl � 2 � , Œk� 2 �, and S 2 Cart to the groupoid
whose objects are given by data

(1) M 1, an oriented 1–manifold that defines a trivial bundle M 1 �S ! S ,

(2) a map  WM 1 �S !X � f�; 1; : : : ; lg,
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(3) cut functions t0 � t1 � t2 � � � � � tk 2 C1.S/,

(4) a proper map h WM 1 �S !R�S over S called the height function such that
for each s 2 S the fiber of h over s 2 S has ti.s/ as a regular value for all i .

Isomorphisms in the groupoid are certain equivalence classes defined as follows. First
consider the set of smooth functions �0; �k ; �

0
0
; �0

k
WS! .0;1/ together with orientation-

preserving diffeomorphisms

� W h�1..t0� �0; tk C �k/�S/! .h0/�1..t 00� �
0
0; t
0
k C �

0
k/�S/

over S �X such that � restricts to a fiberwise diffeomorphism over S �X of the form

h�1.Œti ; tj ��S/! .h0/�1.Œt 0i ; t
0
j ��S/

for any 0 � i � j � k. Two such elements are equivalent if their restrictions to
h�1.Œt0; tk ��S/ coincide. The quotient sets admit a well-defined composition operation,
given by pointwise composition.

Functoriality in S is given by the composition of  , t , h, and � with the given map
S 0! S . Functoriality in � is given by postcomposing  with the given map of finite
sets f�; 1; : : : ; lg ! f�; 1; : : : ; l 0g. Functoriality in � with respect to a morphism of
simplices Œk 0�! Œk� is given by dropping those ti for which i is not in the image of Œk 0�
and duplicating those ti that are in the image of more than one element of Œk 0�, and
restricting � accordingly.

We observe that 1–Bordor.X / is covariant in X : a smooth map X ! Y induces a
smooth symmetric monoidal functor 1–Bordor.X /! 1–Bordor.Y /.

Remark 3.2.2 The properness assumption on 0–simplices in property (1) guarantees
that the 1–dimensional bordism “between” S � ft0g and S � ftkg is compact in each
fiber over S .

Remark 3.2.3 The second piece of data, M 1 �S !X � f�; 1; : : : ; lg, encodes both
the map from the bordism to X , and the partition of connected components of this
bordism associated with the monoidal structure. Our definition of 1–Bordor.X / does
not satisfy the Segal �–condition, but this failure of fibrancy is not a problem for
computing field theories.

Remark 3.2.4 Below, we will find it convenient to replace 1–Bordor.X / with a weakly
equivalent object 1–Bord0or.X /, which coincides with 1–Bordor.X / for all Œn� 2 �
except for nD 0, where we replace the �–object 1–Bordor.X /.0/ with the �–object
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hmi 7! .X t X /m, where hmi D f�; 1; : : : ;mg and X m denotes the representable
presheaf of the m–fold cartesian product of XtX , corresponding to the two orientations
of points. There are canonical homotopy equivalences 1–Bord0or.X /! 1–Bordor.X /

and 1–Bordor.X /! 1–Bord0or.X / that identify points in X with constant paths in X

equipped with the cut function t0 D 0. The advantage of this replacement is that
1–Bord0or.X /.0/.m/ is a representable presheaf for all hmi 2 � , hence a cofibrant
object in the projective model structure on Stacks.

3.3 The category of smooth paths in a smooth manifold

Similar to the intuition behind cutting bordisms, we can also consider an analogous
structure for paths in X . In this case a Morse function is afforded by the parametrization
of the path itself.

Definition 3.3.1 Given X 2 Fun.Cartop; Set/ (the most important example of X

being the presheaf induced by a smooth manifold), define the smooth path category
PX 2 C1–Cat (Definition 2.2.6) of X as the nerve of the presheaf of groupoids on
��Cart constructed as follows. A pair Œk� 2�, S 2 Cart is sent to the groupoid whose
objects consist of a map  W S �R!X and cut functions t0 � t1 � � � � � tk 2 C1.S/.

Isomorphisms in the groupoid are equivalence classes of a certain equivalence rela-
tion. Elements in the underlying set of this equivalence relation are smooth functions
�0; �k ; �

0
0
; �0

k
W S ! .0;1/ together with orientation-preserving diffeomorphisms

� W .t0� �0; tk C �k/�S ! .t 00� �
0
0; t
0
k C �

0
k/�S

over S �X such that � restricts to a fiberwise diffeomorphism over S �X of the form

Œti ; tj ��S ! Œt 0i ; t
0
j ��S

for any 0 � i � j � k. Two such elements are equivalent if their restrictions to
Œt0; tk �� S coincide. The quotient sets admit a well-defined composition operation,
given by pointwise composition.

Functoriality in S is given by the appropriate composition of  , t , and � with the given
map S 0! S . Functoriality in � with respect to a morphism of simplices Œk 0�! Œk� is
given by dropping those ti for which i is not in the image of Œk 0� and duplicating those
ti that are in the image of more than one element of Œk 0�, and restricting � accordingly.

We recall that a manifold X defines a presheaf (of sets) on Cart, and the fiber of PX

over Œ0� 2 � is homotopy equivalent to this presheaf via the map .; t0/ 7!  .t0/,
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with an inverse that sends a map f W S ! X to an S–family of constant paths,
S �R! S

f
�!X , with cut function the zero function. The fiber of PX over S 2Cart

and Œk�2� is the nerve of the groupoid of S–families of paths in X with kC1 marked
points and diffeomorphisms of these paths. The object PX is covariant in X , meaning
a smooth map X ! Y induces a smooth functor PX ! PY ; hence P is a functor
from Mfld to C1–Cat.

There is a smooth functor PX ! U.1–Bordor.X // in C1–Cat (where U denotes the
forgetful functor of Definition 2.3.4) we get by viewing a family of paths as the family
of bordisms S �M 1 D S �R and the height function h the projection to R. This has
an induced restriction map

C1–Cat˝.1–Bordor.X /;Vect/! C1–Cat.PX;Vect/

from 1–dimensional field theories over X to representations to the smooth path category
of X . Here C1–Cat˝.�;�/ and C1–Cat.�;�/ denote the corresponding derived
mapping simplicial sets.

Remark 3.3.2 In analogy to Remark 3.2.4, we will find it convenient to replace PX

with a weakly equivalent object P 0X , which coincides with PX for all Œn� 2� except
for n D 0, where we replace PX.0/ with X itself. There are canonical homotopy
equivalences X ! PX.0/ and PX.0/!X that identify X with constant paths in X

equipped with the cut function t0D 0. The advantage of this replacement is that P 0X.0/
is a representable presheaf, hence a cofibrant object in the projective model structure
on Stacks.

3.4 Descent for field theories and representations of paths

A key step to verifying the main theorem is that field theories over X and representations
of smooth paths in X can be computed locally in the following sense.

Theorem C Let fUig be an open cover of a smooth manifold X . The canonical maps

hocolimP.Uk/! P.X /; hocolim 1–Bordor.Uk/! 1–Bordor.X /

are equivalences of smooth1–categories and symmetric monoidal smooth1–cate-
gories , respectively. Here k runs over all finite tuples of elements in I and Uk denotes
the intersection of Ui for all i 2 k. This immediately implies that the assignments

X 7! C1–Cat.P.X /;Vect/; X 7! C1–Cat˝.1–Bordor.X /;Vect/

are stacks on the site of smooth manifolds.
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Proof See Grady and Pavlov [13, Theorem 1.0.1] for the case of bordism categories.
The case of path categories then follows formally. We remark that the most technical
part of the cited proof — Section 6.6 in [op. cit.] — becomes completely trivial in the
1–dimensional case, since the nerves of relevant categories are contractible for trivial
reasons.

We apply the above result to reduce our main theorems to the case X 2 Cart. In
particular, this simplifies the construction of a transport functor from a vector bundle
with connection, since the general case X 2 Mfld would require us to work with
arbitrary cocycles for vector bundles, bringing considerable technicalities, whereas for
X 2Cart all vector bundles over X are trivial, and the problem reduces to manipulating
connection 1–forms.

Definition 3.4.1 We define Vectr 2Stacks as follows. Given X 2Cart, we send it to the
nerve of groupoid whose objects are pairs .n; !/, where n� 0 specifies a finite-dimen-
sional vector space V DRn and ! 2�1.X;End.V //. Morphisms .n; !0/! .n; !1/

are smooth maps f 2 C1.X;GL.V // such that !1 D Adf �1!0Cf
�1df , where Ad

denotes the adjoint action.

The groupoid Vectr.X / is equivalent to the groupoid of trivial vector bundles with
connection over the cartesian space X .

Corollary 3.4.2 Consider the functors

C1–Cat.�;Vectr/;C1–Cat.P.�/;Vect/ W Fun.Cartop; Set/op! sSet

that send X 2 Fun.Cartop; Set/ to C1–Cat.X;Vectr/ and C1–Cat.PX;Vect/, respec-
tively. The space of natural weak equivalences

C1–Cat.�;Vectr/! C1–Cat.P.�/;Vect/

is weakly equivalent to the space of natural weak equivalences between the same
functors , restricted along the Yoneda embedding Cart! Fun.Cartop; Set/ to the cate-
gory Cart. In particular , any natural weak equivalence

Vectr ! C1–Cat.P.�/;Vect/

on Cart can be extended to a natural weak equivalence on Fun.Cartop; Set/ in a unique
way up to a contractible choice.

Proof Cart generates Fun.Cartop; Set/ under homotopy colimits. Both functors,

C1–Cat.�;Vectr/ and C1–Cat.P.�/;Vect/;
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send homotopy colimits in Fun.Cartop; Set/ to homotopy limits in sSet. For the former,
it boils down to the classical fact that vector bundles with connection satisfy descent,
whereas for the latter it follows from Theorem C.

In the next section, we construct a specific weak equivalence

Vectr ! C1–Cat.P.�/;Vect/

in PreStacks, which will prove that representations of the path category of any smooth
manifold X are precisely vector bundles with connection over X .

4 Representations of the smooth path category of a manifold

In this section we prove the following.

Proposition 4.0.1 Given X 2 Fun.Cartop; Set/, the derived mapping space

C1–Cat.PX;Vect/

is naturally weakly equivalent to Vectr.X / of Definition 3.4.1. (In particular , we can
take X 2Mfld.)

Proof By Corollary 3.4.2, it suffices to construct such a natural weak equivalence
for X 2 Cart. Replace PX with weakly equivalent P 0X from Remark 3.3.2. Recall
that Vect is fibrant in C1–Cat (Lemma 2.2.7). Furthermore, the stack of objects
.P 0X /Œ0� D P 0X.0/ D X is a representable (hence cofibrant) presheaf in PreStacks

and Vect and P 0X are constructed as objectwise nerves of groupoids. Hence, the
derived mapping space C1–Cat.P 0X;Vect/ can be computed using the nonderived
hom C1–Cat.P 0X;Vect/. The map

Vectr.X /! C1–Cat.P 0X;Vect/

is constructed in Definition 4.0.2 and is shown to be an isomorphism in Lemma 4.1.2
and Proposition 4.2.10.

The following construction codifies the parallel transport data of a connection on a
vector bundle as a functor.

Definition 4.0.2 Given X 2 Cart, we construct a map (natural in X )

Vectr.X /! C1–Cat.P 0X;Vect/
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as follows. A (trivial) vector bundle with connection .n; !/ defines a smooth functor
R W P 0X ! Vect via parallel transport: to f W S !X , an S–family of points in X , we
assign the object n over S , defining a functor X D P 0X.0/! Vect.0/. To a family of
oriented paths S �R!X , we apply the fiberwise parallel transport with respect to the
connection 1–form !, yielding a morphism of (trivial) vector bundles over S . These
maps are invariant under families of diffeomorphisms of 1–manifolds, so we obtain a
functor P 0

S
X.1/! VectS .1/, which is again natural in S so defines a fibered functor

P 0X.1/! Vect.1/ by extension from individual fibers in the usual fashion. We extend
in the obvious way to P 0X.k/! Vect.k/, where naturality with respect to maps in �
follows from compatibility of parallel transport with concatenation of paths. Hence,
we have constructed a functor from the path category of X to smooth vector spaces.
Lastly, we observe that an isomorphism of vector bundles with connection leads to a
natural isomorphism of functors of such functors, ie an edge in the simplicial mapping
space. An n–simplex comes from a composable n–tuple of isomorphisms of vector
bundles with connection.

4.1 Reduction to parallel transport data

In this section we whittle the proof of Proposition 4.0.1 down to a statement about
parallel transport data, by which we shall mean smooth endomorphism-valued functions
on paths that compose under concatenation of paths and are compatible with restrictions
to intersections of the cover. The next definition and lemma describe the precise manner
in which a representation of the path category determines a transport functor on X .

Definition 4.1.1 We define the stack Tran 2 PreStacks of transport data as follows.
Given X 2 Cart, we send it to the nerve of groupoid whose objects are pairs .n;F /,
where n� 0 determines a vector space V DRn and F is a morphism

F WR�Hom.R;X /! End.V /

in PreStacks such that the following three properties are satisfied: (1) for any p WR!X

and any L1;L2 2R the following functoriality property holds:

F.L2;p ıSL1
/ ıF.L1;p/D F.L1CL2;p/;

where SL1
.t/ D t � L1; (2) for any p W R ! X we have F.0;p/ D idV ; (3) F is

invariant under diffeomorphisms of paths: if g W R! R is an orientation-preserving
diffeomorphism such that g.0/D 0, then

F.L;p/D F.g�1.L/;p ıg/:
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(The first argument of F specifies the length L of a smooth path p in X . The path itself
is given by the second argument of F and is parametrized by Œ0;L��R.) Morphisms
F1! F2 are smooth maps h WX ! GL.V / such that

h.p.L// ıF1.L;p/D F2.L;p/ ı h.p.0//:

Lemma 4.1.2 There is an isomorphism in PreStacks,

C1–Cat.P 0.�/;Vect/! Tran:

(P 0X is constructed in Remark 3.3.2.)

Proof Fix some X 2 Cart; we need to define a morphism

C1–Cat.P 0X;Vect/! Tran.X /:

Both sides are nerves of groupoids, so we define the map first on objects, then on
morphisms. Pick a functor R W P 0X ! Vect. The presheaf of objects PX.0/ D X

maps via R to a fixed object of Vect given by some dimension n � 0. The data
of F is obtained by evaluating on Œ1� 2 � with cut function t0 D 0. On objects, we
map R 7! .n;F /. Property (1) boils down to functoriality with respect to the three
coface maps Œ1�! Œ2� in �, where the middle face map computes the composition.
Property (2) boils down to functoriality with respect to the codegeneracy map Œ1�! Œ0�

in �. Property (3) boils down to the fact that isomorphisms in PX.Œn�;S/ are endpoint-
preserving diffeomorphisms between n–chains of paths in X , whose individual .nC1/

vertices are identity maps (this holds for P 0X , not for PX ). Finally, a morphism
R ! R0 is given by a map h W X D P 0X.0/ ! GL.n/, which yields a morphism
h W .n;F /! .n0;F 0/ (where nD n0).

Conversely, the inverse map

Tran.X /! C1–Cat.P 0X;Vect/

sends .n;F / to the functor R W P 0X ! Vect that maps the presheaf of objects P 0X.0/
to n. The presheaf of k–simplices for k � 1 is mapped to the corresponding transport
maps between endpoints.

4.2 From parallel transport data to vector bundles with connection

From the above discussion, we have shown that a point in the (derived) mapping
space C1–Cat.PX;Vect/ for X 2 Cart defines a parallel transport data for a vector
bundle on X , ie an object of Tran.X /. In this section we explain how parallel trans-
port data defines a vector bundle with connection. More precisely, we construct an
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equivalence Tran.X /! Vectr.X /. Most of the ideas below are present in Freed [11]
and Schreiber and Waldorf [22], and we have adapted them to our situation with some
minor modifications.

Lemma 4.2.1 Given X 2 Cart and .n;F / 2 Tran.X /, the map F assigns the identity
map on V DRn to constant paths in X .

Proof Since a constant path  can be factored as the concatenation  �  , the value
of F on  must be a projection in V , denoted by P . Furthermore, there is a family of
constant paths parametrized by Œ0; t � coming from the restriction of  to Œ0; t 0�� Œ0; t �.
Over t 0 D 0, the constant path is the identity morphism in the path category and
therefore is assigned the identity linear map. Smoothness gives a family of projections
connecting P on V that is the identity projection at an endpoint. Since the rank of
the projection is discrete, it must be constant along this family. Therefore, P is the
identity.

Lemma 4.2.2 Given X 2Cart and .n;F /2Tran.X /, the map F lands in the invertible
morphisms , ie the morphism F. / for an family of paths  is an isomorphism on
V DRn.

Proof Since a path of length zero is assigned the identity linear map on V , by continuity
there is an � > 0 such that the restriction of any path  to Œ0; �� is assigned an invertible
morphism. Observe that this holds for any point on a given path (though possibly with
variable �). Choosing a finite subcover and factoring the value on a path into the value
on pieces of the path subordinate to the subcover, we see that the value on a path is a
composition of vector space isomorphisms, and therefore an isomorphism.

The remaining work is in the construction of an inverse to the map Vectr.X /!Tran.X /
(see Definition 4.0.2 and Lemma 4.1.2). For this we use the following two lemmas of
Schreiber and Waldorf [22, Lemmas 4.1 and 4.2], reproduced here for convenience.

Lemma 4.2.3 For a finite-dimensional vector space V , smooth functions

F WR�R! Aut.V /

satisfying the cocycle condition F.y; z/ �F.x;y/D F.x; z/ and F.x;x/D id are in
bijection with 1–forms , �1.RIEnd.V //.

Proof Given such a 1–form A, consider the initial value problem

.4.2.4/ .@t˛/.t/DAt .@t /.˛.t//; ˛.s/D id;
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where ˛ WR!Aut.V / and s 2R. We obtain a unique solution ˛.t/ depending on s, and
define F.s; t/D ˛.t/. The function F is smooth in s because the original coefficients
were smooth in s, and is globally defined because the equation is linear. To verify that
F.s; t/ satisfies the cocycle condition, we calculate

@t .F.y; t/F.x;y//D .@tF.y; t//F.x;y/DAt .@t /F.y; t/F.x;y/;

and since F.y;y/F.x;y/DF.x;y/, uniqueness dictates that F.y; t/F.x;y/DF.x; t/.
Conversely, for F WR�R! Aut.V /, let ˛.t/D F.s; t/ for some s 2R and let

At .@t /D .@t˛.t//˛.t/
�1:

When F satisfies the cocycle condition, At .@t / is independent of the choice of s:

F.s0; t/D F.s1; t/F.s0; s1/ D) .@tF.s0; t//F.s0; t/
�1
D .@tF.s1; t//F.s1; t/

�1:

This gives the desired bijection.

Lemma 4.2.5 Let A;A0 2�1.RIEnd.V // be endomorphism valued 1–forms on R

and g W R! Aut.V / be a smooth function. Let FA and FA0 be the smooth functions
corresponding to A and A0 by Lemma 4.2.3. Then

g.y/ �FA.x;y/D FA0.x;y/ �g.x/

if and only if A0 D Adg�1ACg�1dg.

Proof The function g.y/FA.x;y/g.x/
�1 solves the initial value problem (4.2.4)

for A0,

@y.g.y/F.x;y/g.x/
�1/D .@yg.y//F.x;y/g.x/�1

Cg.y/@yF.x;y/g.x/�1

D .@yg.y/g.y/�1/.g.y/F.x;y/g.x/�1/

C.g.y/Ay.@y/g.y/
�1/.g.y/F.x;y/g.x/�1/;

so by uniqueness we obtain the desired equality.

Now we construct a differential form from the parallel transport data that will give
rise to a connection. Throughout, .d;F / 2 Tran.X / is a transport data on X 2 Cart

with typical fiber V DRd . Let  WR!X be a path such that  .0/D p and P .0/D v;
restrictions of  to intervals (as a family over R2) will give a family of paths in PX ,
ie a 0–simplex. Define

F .x;y/D F. W Œx;y�!X /; F WR�R! End.V /:

By the above lemma, F gives us a 1–form A with values in End.V /. By varying  ,
we want to promote this to a 1–form on X whose value at .p; v/ is A .@t /.
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Definition 4.2.6 The morphism Tran! Vectr is defined as follows. Fix X 2 Cart

and .d;F / 2 Tran.X /; we need to produce A 2 �1.X;End.V //, where V D Rd .
Fix a point p 2 X and a tangent vector v 2 X ; we need to define Ap.v/ 2 End.V /.
We use the linear structure on X Š Rn to define Ap.v/ D .Atv/0.1/, where tv is
the path through p 2 X with velocity vector v 2 X , Atv is a 1–form on R, and
.Atv/0.1/ is the value of this 1–form at 0 evaluated at 1 2 T0R. This defines a functor
Tran.X /! Vectr.X / on objects, and on morphisms we send h WX !GL.V / to itself,
now viewed as a morphism in Vectr.X /.

Lemma 4.2.7 Definition 4.2.6 is well defined : objects in Tran are sent to smooth
differential 1–forms A 2�1.X;End.V //, and isomorphisms are sent to gauge trans-
formations A0 7! Adg�1ACg�1dg.

Proof The claim on isomorphisms follows from Lemma 4.2.5. To verify the claim
on objects, we first observe that A is smooth: choose families of affine paths in a
neighborhood of p and invoke smoothness of the representation. Furthermore, we
claim that A satisfies A.�v/D �A.v/ for all � > 0. To see this, define �.t/D  .�t/

for � > 0. We compute

A.�v/D @tF�
.0; t/jtD0 D @tF .0; �t/jtD0 D �A.v/:

Lemma 4.2.8 shows that this property implies A is linear.

Lemma 4.2.8 A smooth function A W V ! W between vector spaces that satisfies
A.�v/D �A.v/ for � > 0 is linear.

Proof It suffices to show that A is equal to its derivative at zero. From the assumptions
it follows that A.0/D 0. Smoothness of A implies that dA.0/ exists, and we compute
its value on v by the one-sided limit

.dA.0//.v/D lim
�!0C

A.�v/=�D lim
�!0C

�A.v/=�DA.v/;

completing the proof.

The next lemma shows that A determines the given representation. Our techniques are
in the spirit of D Freed’s [11, Appendix B], though benefited from K Waldorf pointing
out to us the utility of Hadamard’s lemma in this context.

Lemma 4.2.9 For X 2 Cart and .d;F / 2 Tran.X /, the value of F on a path  is the
path-ordered exponential associated to the End.V /–valued 1–form A constructed in
Definition 4.2.6, where V DRd .
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Proof Let X Š Rn and  W Œ0;T �! Rn be a path. Fix N a large integer, and let i

denote the restriction of  to ŒT .i � 1/=N;T i=N � for 1 � i � N . By definition of
Tran.X /,

F. /D F.N / ı � � � ıF.2/ ıF.1/:

Reparametrize i by Qi.t/ WD i.T .tCi�1/=N / and let `i W Œ0;T=N �!Rn denote the
affine path of length 1 starting at i.0/ with velocity Pi.0/D vi . By Hadamard’s lemma
there is a smooth function gi with i.s/�`i.s/D s2gi.s/. Define G W Œ0; 1�! End.V /
by G.t/ WD F. Qi jŒ0;t �/. Using that Qi.s/D `i.s.T=N //C s2.T 2=N 2/gi.s.T

2=N 2//

and applying Hadamard’s lemma to G we obtain

G.t/DG.0/C tG0.0/C t2G2.t/D idC t.T=N /A`i
.vi/CO.N�2/

for some function G2 W Œ0; 1�! End.V /. The O.N�2/ estimate comes from Taylor’s
formula and the fact that the original domain of definition Œ0;T � is compact, so a uniform
estimate can be given for the coefficient before .T=N /2. The claimed form of the deriv-
ative G0.0/ follows from Lemma 4.2.8 and an argument in Schreiber and Waldorf [22,
Lemma B.2] (reproduced in the next paragraph) to show that Ai

.vi/DA`i
.vi/.

First we consider the family of paths �.t; ˛/ WD `i.t/ C ˛gi.t/ depending on the
parameter ˛ for 0 � ˛ � 1. Define q W Œ0; 1�2 ! Œ0; 1�2 by .t; ˛/ 7! .t; t2˛/. The
composition

.� ı q/.t; ˛/D `i.t/C˛t2gi.t/

defines a smooth homotopy running from `i (when ˛ D 0) to i (when ˛ D 1). For
a fixed ˛, we evaluate F on the family of paths � ı q obtained from restriction to
Œ0; t �� f˛g � Œ0; 1�2 and differentiate with respect to t using the chain rule,

d

dt
F..� ı q/jŒ0;t ��f˛g/jtD0 D d.F.�//jq.0;˛/ ı

dq

dt

ˇ̌̌
tD0
D d.F.�//j.0;0/ ı .1; 0/:

The right-hand side is independent of ˛, whereas the left-hand side is A`i
.vi/ for ˛D 0

and Ai
.vi/ when ˛ D 1, so the claim follows.

Putting this together, we have F.i/ D idC .T=N /A`i
.vi/CO.N�2/; and taking

N !1,

F. /D lim
N!1

.idC.T=N /A`1
.v1//.idC.T=N /A`2

.v2// � � � .idC.T=N /A`N
.vN //

D lim
N!1

exp..T=N /A`1
.v1// exp..T=N /A`2

.v2// � � � exp..T=N /A`N
.vN //

D P exp.A. P //;

since the limit is the definition of the path-ordered exponential of A along  .
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Proposition 4.2.10 The morphism

Tran! Vectr

in PreStacks constructed in Definition 4.2.6 is an isomorphism.

Proof The inverse isomorphism is the composition

Vectr.X /! C1–Cat.P 0X;Vect/! Tran.X /;

where the two maps are constructed in Definition 4.0.2 and Lemma 4.1.2. As shown in
Lemma 4.2.9, for every X 2 Cart, the composition

Tran.X /! Vectr.X /! Tran.X /

is an isomorphism on objects. Morphisms in Tran.X / and Vectr.X / were defined as
smooth maps X !GL.V / satisfying certain respective properties, and we have shown
in Lemma 4.2.7 that these properties are preserved by these functors.

5 Smooth 1–dimensional field theories and the cobordism
hypothesis

We keep the notation of the previous section: X 2 Cart is a cartesian space, on which
we consider a field theory.

By construction, there is a map PX ! U.1–Bordor.X // (in the category C1–Cat of
Definition 2.2.6, where U is the forgetful functor of Definition 2.3.4) that views a path
as a bordism. This will allow us to apply arguments from the preceding section to the
bordism category.

Lemma 5.0.1 The value of a field theory — see Definition 3.0.1 — on a family of
bordisms  W S �M !X as a vertex in 1–Bordor

S
.X / is equal to the value on a bordism

sit W S �M !X that has the same image in X as  but has sitting instants , meaning
that the map sit WM !X is constant near t0 and t1.

Proof Using the �–structure, it suffices to prove the lemma for arcs in X , ie S–
families  W S � I ! X for I an interval. Choose b W R! R to be a smooth bump
function such that bj.�1;1=3� D 0, bjŒ2=3;1/ D 1, and bj.1=3;2=3/ � .0; 1/. Consider a
new .S�R/–family of 1–manifolds that, for t 2R, is given by sit WD  ı�.x; t/, where
�.x; t/D txC .1� t/b.x/ for x 2 I . To this family a field theory assigns a smooth
family of linear maps. We observe that for all t 2 .0; 1�, the fibers in this family are
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isomorphic as morphisms in the fiber of 1–Bordor.X / over S D pt 2 Cart. Therefore, a
field theory assigns the same linear maps for all t ¤ 0. By smoothness, we obtain the
same linear map at t D 0 and the resulting path has sitting instants around 0 and 1 by
construction.

We are now ready to prove Theorem B.

Theorem D Evaluating at h1i2� and restricting along PX!U.1–Bordor.X // yields
a weak equivalence of derived mapping simplicial sets , natural in X 2Mfld (and , more
generally, X 2 Fun.Cartop; Set/),

C1–Cat˝.1–Bordor.X /;Vect˝/! C1–Cat.PX;Vect/:

Thus , there is an equivalence between 1–dimensional oriented topological field theories
over X valued in Vect˝ and C1–functors from the smooth path category of X to Vect.

Proof Applying Theorem C, we reduce the problem to the case X 2 Cart. Apply-
ing Remark 3.2.4, we replace 1–Bordor.X / with 1–Bord0or.X /, for which we have
1–Bord0or.X /.Œ0�; h1i/DX tX , corresponding to two possible orientations of points
in X . These two copies of X a priori map to some d; d 0 2 N D Vect.X /.Œ0�; h1i/,
which uniquely determines the maps on 1–Bord0or.X /.Œ0�; hmi/ for m¤ 1. As shown
below, we necessarily have d D d 0, which corresponds to the dimension of the vector
bundle determined by the field theory.

To understand the value of a field theory on morphisms, since the target category
Vect˝ is fibrant (Lemma 2.3.3), in particular, satisfies the Segal �–condition, a functor
1–Bordor.X /! Vect is determined (up to a contractible choice) by its value over the
fiber Œ1� 2�. Furthermore, since any bordism can be expressed as a disjoint union of
connected bordisms, we can restrict attention to S–families of connected 1–manifolds
in 1–Bordor

S
.X /.1/.

In the case that cut functions satisfy t0 < t1, Morse theory of 1–manifolds cuts a given
connected bordism into elementary pieces that are of three types: (1) bordism from a
point to a point (all points of M 1 � fsg are regular values for h), (2) bordisms from
the empty set to a pair of points (0–handles), and (3) bordisms from a pair of points
to the empty set (1–handles). For a given bordism, ie 0–simplex of 1–Bordor.X /, this
reduction comes from a choice of (new) height function that is Morse with regular values
at the prescribed cut values, which defines a 1–simplex in 1–Bordor.X / connecting
the original bordism to one with a Morse height function. Then we can impose
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additional cut points using the Morse height function to reduce to the cases above. The
relations among these generators are precisely the familiar birth-death diagrams from
1–dimensional Morse theory.

When cut functions satisfy t0 D t1, since t0 is a regular value and the bordism is
connected, this bordism is in the image of the degeneracy map, ie is an identity path in
the bordism category. For S connected and t0 � t1 with t0 D t1 somewhere on S , then
this is necessarily a bordism of type (1) above.

In the case that the above types of generating bordisms are mapped constantly to X ,
meaning the map x WM 1 �S ! X factors through the projection to S , the standard
dualizable object argument shows that the value of the field theory on the .C/–point
must be a vector space .VC/x D Rd , and the value on the .�/–point is the dual
space, .V�/�x DRd 0 , which in our formulation amounts to showing d D d 0.

Now we need to show that the value on a generating bordism with an arbitrary map
to X is determined by the value of the field theory on the path category. For generating
bordisms of type (1) this is clear, since such a bordism can be identified with a morphism
in the path category.

For bordisms of type (2) and (3) we use Lemma 5.0.1 to identify the value of a field
theory on a 0– or 1–handle with the value on a handle that has a sitting instant at its
Morse critical point. Then we can factor the handle into 3 pieces: one given by a subset
of the sitting instant of the Morse critical points (ie a handle that is mapped constantly
to X ) and two paths given by the closure of the complement of this subset in the
original handle. Hence, the value of the original bordism is determined by previously
computed dualizing data at the sitting instant together with the value on paths between
points.

Proof of Theorem A The result follows from Theorem B and Proposition 4.0.1.

6 Reedy model structures

In this auxiliary section we review the necessary facts from the theory of Reedy model
structures.

Let C be a model category. Following Hirschhorn [15, Definition 15.3.3], we review
the Reedy model structure on the category of simplicial objects in C , ie the category
of functors �op! C .
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First, define the nth latching functor, Ln W Fun.�op;C /! C as

LnX D colim
Œm�!Œn�

Xm;

where the colimit is indexed by surjections of finite ordered sets Œm� Œn� that are not
isomorphisms (ie the union of degenerate simplices). Similarly, define the nth matching
functor Mn W Fun.�op;C /! C as

MnX D lim
Œm� Œn�

Xm;

where the limit is indexed by injections of finite ordered sets Œm�! Œn� that are not
isomorphisms (ie the defining data of a boundary of an n–simplex).

Now, in the Reedy model structure on simplicial objects in C , a map X ! Y is a
cofibration if

Xn tLnX LnY ! Yn

is a cofibration in C for any Œn� 2�. Similarly, a map X ! Y is a fibration if

Xn! Yn �MnY MnX

is a fibration for any Œn� 2�. In particular, an object X is cofibrant if the latching map
LnX !X is a cofibration in C for any Œn� and fibrant if the matching map X !MnX

is a fibration in C for any Œn� 2�.

By Hirschhorn [15, Theorem 15.6.27] the Reedy model is cofibrantly generated, with
generating (acyclic) cofibrations as in Hirschhorn [15, Definition 15.6.23]: if A! B

is a generating (acyclic) cofibration in C , then A˝ Œn�tA˝@Œn�B˝@Œn�!B˝ Œn� is a
generating (acyclic) cofibration of the Reedy model structure.
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Round fold maps on 3–manifolds

NAOKI KITAZAWA

OSAMU SAEKI

We show that a closed orientable 3–dimensional manifold admits a round fold map
into the plane, ie a fold map whose critical value set consists of disjoint simple closed
curves isotopic to concentric circles, if and only if it is a graph manifold, generalizing
the characterization for simple stable maps into the plane. Furthermore, we also give
a characterization of closed orientable graph manifolds that admit directed round
fold maps into the plane, ie round fold maps such that the number of regular fiber
components of a regular value increases toward the central region in the plane.

57R45; 57K30, 58K30

Dedicated to Professor Kazuhiro Sakuma on the occasion of his 60th birthday

1 Introduction

Let M be a smooth closed manifold of dimension � 2. It is known that if a smooth
map f WM !R2 is generic enough, then it has only fold and cusps as its singularities;
see Levine [9; 10] and Whitney [16]. Furthermore, if M has even Euler characteristic
(eg if dim M is odd), then the cusps can be eliminated by homotopy. In particular,
every smooth closed orientable 3–dimensional manifold admits a smooth map into R2

with only fold singularities, ie a fold map.

In [13; 14], the second author considered the following smaller class of generic smooth
maps. A fold map f WM ! R2 on a smooth closed orientable 3–dimensional mani-
fold M is a simple stable map if for every q 2R2, each component of f �1.q/ contains
at most one singular point and f jS.f / is an immersion with normal crossings, where
S.f /.�M / denotes the set of singular points of f . Note that if f is a fold map, then
S.f / is a regular closed 1–dimensional submanifold of M . In particular, if f jS.f / is
an embedding, then f is a simple stable map. In [14], it has been proved that for a
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smooth closed orientable 3–dimensional manifold M , the following three properties
are equivalent to each other:

(1) M admits a fold map f WM !R2 such that f jS.f / is an embedding.

(2) M admits a simple stable map into R2.

(3) M is a graph manifold, ie it is a finite union of S1–bundles over compact surfaces
attached along their torus boundaries.

Thus, for example, if M is hyperbolic, then M never admits such a fold map.

On the other hand, the first author introduced the notion of a round fold map [7; 6; 5]:
a smooth map f WM ! R2 is a round fold map if it is a fold map and f jS.f / is an
embedding onto the disjoint union of some concentric circles in R2; for details, see
Section 2. As has been studied by the first author, round fold maps have various nice
properties.

The first main result of this paper is Theorem 3.1, which states that every graph
3–manifold admits a round fold map into R2. This generalizes the characterization
result obtained in [14] for simple stable maps mentioned above.

It is not difficult to observe that if f W M ! R2 is a round fold map of a closed
orientable 3–dimensional manifold, then the number of components of the fiber over a
regular value changes exactly by one when the regular value crosses the critical value
set transversely once. We can thus put a normal orientation to each component of the
critical value set in such a way that the orientation points in the direction that increases
the number of components of a regular fiber. Then, a round fold map is said to be
directed if all the circles in the critical value set are directed inward. The second main
result of this paper (Theorem 3.2) characterizes those graph 3–manifolds which admit
directed round fold maps. It will turn out that the class is strictly smaller than that of
closed orientable graph 3–manifolds.

The paper is organized as follows. In Section 2, we prepare several definitions and a
lemma concerning round fold maps and graph 3–manifolds necessary for our purposes.
We also give an observation on fibered links or open book structures associated with
round fold maps and give some examples. In Section 3, we state and prove the main
theorems. Basically, we will follow the proof given in [14, Theorem 3.1]: however, in
some steps we need to modify the strategy for the constructions of round fold maps. In
Section 4, we give some corollaries and show that the class of 3–manifolds that admit
directed round fold maps is strictly smaller than that of all graph 3–manifolds, using
results obtained in [2; 12]. Finally, we give some open problems related to our results.
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Throughout the paper, all manifolds and maps between them are smooth of class C1

unless otherwise specified. For a space X , idX denotes the identity map of X . The
symbol Š denotes a diffeomorphism between smooth manifolds.

2 Preliminaries

2.1 Round fold maps

In this subsection, we recall some notions related to round fold maps and give some
examples.

Let M be a closed orientable 3–dimensional manifold and f WM !R2 a smooth map.
We denote by S.f / .�M / the set of all singular points of f .

Definition 2.1 A point p 2 S.f / is a definite fold point (resp. an indefinite fold point,
or a cusp point) if f is represented by the map

.u;x;y/ 7! .u;x2
Cy2/ (resp. .u;x2�y2/, or .u;y2Cux�x3/)

around the origin with respect to certain local coordinates around p and f .p/. We call
a point p 2 S.f / a fold point if it is a definite or an indefinite fold point. A smooth
map f WM !R2 is called a fold map if it has only fold points as its singular points.
Note that then S.f / is a closed 1–dimensional submanifold of M and that f jS.f / is
an immersion.

Definition 2.2 Let C1.M;R2/ denote the space of all smooth maps of M into R2,
endowed with the Whitney C1–topology. A smooth map f WM !R2 is a stable map
if there exists a neighborhood N.f / of f in C1.M;R2/ such that for every g 2N.f /,
there are diffeomorphisms ˆ WM !M and ' WR2!R2 such that g D ' ıf ıˆ�1.

It is known that a smooth map f WM !R2 is a stable map if and only if the following
three conditions hold; for example, see Levine [10].

(1) It has only fold and cusp points as its singularities.

(2) We have f �1.f .q//\S.f /D fqg for every cusp point q 2 S.f /.

(3) The restriction of f to the set of fold points is an immersion with normal
crossings.
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Definition 2.3 A stable map f WM ! R2 is simple if it has no cusp points and for
every q 2 R2, each component of f �1.q/ contains at most one singular point; for
details, see [13; 14].

In the following, for r > 0, Cr denotes the circle of radius r centered at the origin
in R2.

Definition 2.4 A finite disjoint union of simple closed curves in R2 is said to be
concentric if it is isotopic to a set of concentric circles

m[
iD1

Ci

for some positive integer m.

Definition 2.5 We say that a smooth map f WM !R2 is a round fold map if it is a
fold map and f jS.f / is an embedding onto a concentric family of simple closed curves.
Note that a round fold map is a simple stable map. Note also that the outermost circle
component of f .S.f // consists of the images of definite fold points.

By composing a diffeomorphism of R2 if necessary, we always assume that a round
fold map f WM !R2 satisfies

(2-1) f .S.f //D

m[
iD1

Ci

for some positive integer m.

In the following, A denotes the annulus S1 � Œ�1; 1�, and P denotes the compact
surface obtained from the 2–sphere by removing three open disks: in other words, P is
a pair of pants.

Let f WM!R2 be a round fold map of a closed orientable 3–dimensional manifold M .
For a component C of f .S.f //, take a small arc ˛ Š Œ�1; 1� in R2 that intersects
f .S.f // exactly at one point in C transversely. Then, f �1.˛/ is a compact surface
with boundary f �1.a/[ f �1.b/, which is diffeomorphic to a finite disjoint union of
circles, where a and b are the end points of ˛. Furthermore, f jf �1.˛/ Wf

�1.˛/!˛ can
be regarded as a Morse function with exactly one critical point. As M is orientable, we
see that f �1.˛/ is diffeomorphic to the union of D2 (or P ) and a finite number of copies
of A; see [15], for example. Therefore, the number of components of f �1.a/ differs
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from that of f �1.b/ exactly by one. If f �1.a/ has more components than f �1.b/,
then we normally orient C from b to a; otherwise, we orient C from a to b. It is easily
shown that this normal orientation is independent of the choice of ˛. In this way, each
component of f .S.f // is normally oriented. If the normal orientation points inward,
then the component is said to be inward-directed; otherwise, it is outward-directed.

Definition 2.6 Let f WM ! R2 be a round fold map. We say that f is directed if
all the components of f .S.f // are inward-directed. It is easy to see that a round fold
map f is directed if and only if the number of components of a regular fiber over
a point in the innermost component of R2 n f .S.f // coincides with the number of
components of S.f /.

Let f W M ! R2 be a round fold map satisfying (2-1). Set L D f �1.0/, which
is an oriented link in M if it is not empty. Let D be the closed disk centered at
the origin with radius 1

2
. Then, f �1.D/ is diffeomorphic to L �D, which can be

identified with a tubular neighborhood N.L/ of L in M . Furthermore, the composition
' D � ı f WM n Int N.L/! S1 is a submersion, where � W R2 n Int D! S1 is the
standard radial projection and 'j@N.L/ W @N.L/ D L� @D! S1 corresponds to the
projection to the second factor followed by a scalar multiplication. Hence, ' is a smooth
fiber bundle and L is a fibered link. (In other words, M admits an open book structure
with binding L.) The fiber (or the page) is identified with F D f �1.J /, where

J D
�

1
2
;mC 1

�
� f0g �R2;

and it is a compact oriented surface. Note that g D f jF W F ! J is a Morse function
with exactly m critical points, and that a monodromy diffeomorphism of the fibration
over S1 can be chosen so that it preserves g.

Note that all these arguments work even when L D ∅. In this case, F is a closed
orientable surface and M is the total space of an F–bundle over S1.

Conversely, if we have a compact orientable surface F , a Morse function g W F !�
1
2
;mC1

�
such that g.@F /D 1

2
and that g has no critical point near the boundary, and

a diffeomorphism h W F ! F which is the identity on the boundary and which satisfies
g ıhD g, then we can construct a round fold map f WM !R2 in such a way that M

is the union of @F �D2 and the total space of the F–bundle over S1 with geometric
monodromy h.
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Figure 1: Morse functions on surfaces with Euler characteristic �1.

Example 2.7 Let F be a compact connected orientable surface with @F ¤ ∅. Let
us consider the identity diffeomorphism as the geometric monodromy in the above
construction. Then, we see that the source 3–manifold M of the round fold map is
diffeomorphic to .@F�D2/[.F�S1/Š @.F�D2/. By using a handle decomposition
argument, we can easily see that F�D2 is diffeomorphic to D4 or a boundary connected
sum of a finite number of copies of S1 �D3. Therefore, M is diffeomorphic either to
S3 or to the connected sum of a finite number of copies of S1 �S2.

For example, if we start with the Morse function g1 WF1!
�

1
2
; 4
�

as depicted in Figure 1,
left, then the singular point set S.f1/ of the resulting round fold map f1 WM1!R2

has three components and their images coincide with C1, C2 and C3. The first one is
outward directed, while the other two are inward directed. Therefore, the fold map f1

is not directed. In this example, M1 is diffeomorphic to .S1 �S2/ ] .S1 �S2/.

On the other hand, if we start with the Morse function g2 W F2!
�

1
2
; 4
�

as depicted in
Figure 1, right, then we get a round fold map f2 WM2! R2 with the same singular
values: however, this round fold map is directed. We can also show that M2 is again
diffeomorphic to .S1 �S2/ ] .S1 �S2/.

2.2 Graph 3–manifolds

In this subsection, we recall the notion of graph 3–manifolds and related results
necessary to state our main theorems of the paper, and to get further results.

Definition 2.8 Let M be a compact orientable 3–dimensional manifold possibly with
torus boundaries. It is called a graph manifold if it is diffeomorphic to a union of
S1–bundles over compact surfaces attached along their torus boundaries.
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Let M be a graph manifold. For a boundary component of each S1–bundle piece, we
have a pair of distinguished simple closed curves: an S1–fiber and a cross-section
over the corresponding boundary component of the base surface with respect to a fixed
trivialization. Note that such a pair of simple closed curves are unique up to isotopy
once we fix a trivialization of the S1–bundle over the boundary of the base surface.
More precisely, the manifold M is oriented, and when the base surface is orientable,
we orient the simple closed curves in a way consistent with the orientations of the
base surface and the ambient 3–manifold. A decomposition of M as in Definition 2.8
is said to be of plumbing type if for each gluing of a pair of torus boundaries, the
attaching diffeomorphism, which is orientation reversing, interchanges the S1–fiber
and the cross-section over the corresponding boundary component of the base surface.
It is well-known that every graph manifold admits a decomposition of plumbing type;
for example, see Hirzebruch, Neumann and Koh [4].

Each decomposition of plumbing type can be represented by a weighted graph: each
vertex corresponds to an S1–bundle piece over a connected surface and each edge
corresponds to a gluing of the corresponding torus boundaries. A vertex is weighted
with the genus of the base surface together with its orientability and the Euler number of
the S1–bundle. Furthermore, an edge is weighted by a signC or � corresponding to the
orientation preserving/reversing property of the gluing map on the pair of an S1–fiber
and a cross-section. Then, Neumann [12] listed up certain operations to weighted
graphs in such a way that the two graph 3–manifolds corresponding to two weighted
graphs are diffeomorphic if and only if the graphs are related by a finite iteration of the
operations. Neumann also established the notion of normal form plumbing graphs as a
special class of weighted graphs as above and showed that every graph 3–manifold has
a unique normal form plumbing graph.

Now, in order to state one of our main theorems, we need the following.

Lemma 2.9 Every closed orientable graph 3–manifold is diffeomorphic to a union of
finite numbers of copies of P �S1 and the solid torus D2 �S1 attached along their
torus boundaries.

Proof It is known that every such 3–manifold is diffeomorphic to a union of a finite
number of S1–bundles over compact connected orientable surfaces of genus zero
attached along their torus boundaries; for example, see [14, Lemma 3.3]. In fact, if a
base surface is nonorientable, then we can decompose the surface into the union of a
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compact orientable surface of genus zero and some copies of the Möbius band attached
along their boundaries, and we see that the S1–bundle over the Möbius band can be
further decomposed into the union of S1–bundles over compact orientable surfaces of
genus zero. If a base surface is orientable of positive genus, then we can decompose
it into the union of compact orientable surfaces of genus zero attached along their
boundaries. Then, we can decompose the 3–manifold accordingly so that we obtain a
desired decomposition.

Now, consider a base surface B, which is orientable of genus zero. If the number of
boundary components is greater than or equal to 4, then we can decompose B into
a union of a finite number of copies of P attached along their circle boundaries. If
the number of boundary components is equal to two, then B is diffeomorphic to the
union of P and a disk. If the surface B has no boundary, then we can decompose it
into two disks. As orientable S1–bundles over P or a disk are always trivial, the result
follows.

As a consequence, a graph manifold can be represented by a (multi-)graph, where
each vertex corresponds to P �S1 or a solid torus and each edge corresponds to the
gluing along a pair of boundary components. Note that each gluing corresponds to
an element of the (orientation preserving) mapping class group of the torus, identified
with SL.2;Z/.

3 Main theorems and proofs

In this section, we state our main results, Theorems 3.1 and 3.2, of this paper and give
their proofs.

Theorem 3.1 Let M be a closed orientable 3–dimensional manifold. Then , it admits
a round fold map into R2 if and only if it is a graph manifold.

Theorem 3.1 generalizes the characterization for simple stable maps obtained in [14].

In particular, every closed orientable graph 3–manifold admits a fibered link which is
also a graph link. Compare this with Myers [11]. Here, a link in a graph 3–manifold is
a graph link if its exterior is a graph manifold.
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Theorem 3.2 Let M be a closed connected orientable graph 3–manifold. Then , it
admits a directed round fold map into R2 if and only if it can be decomposed into a
union of finite numbers of copies of P �S1 and D2 �S1 such that the corresponding
graph is a tree.

Proof of Theorem 3.1 As noted above, a round fold map is a simple stable map.
Therefore, if a closed orientable 3–dimensional manifold admits such a map, then it is
necessarily a graph manifold by [14].

Now, suppose M is a graph manifold. We will follow the proof of [14, Theorem 3.1]
in order to construct a round fold map f WM !R2, except for the first step, in which
a nonsingular map is constructed for each S1–bundle piece in [14] while we construct
a fold map for each piece, as explained below.

By virtue of Lemma 2.9, we have disjointly embedded tori T1;T2; : : : ;T` in M such
that each of the components X1;X2; : : : ;Xk of M n

F`
iD1 Int N.Ti/ is diffeomorphic

either to P �S1 or to D2 �S1, where N.Ti/ denotes a small tubular neighborhood
of Ti in M , 1 � i � `. By inserting pieces diffeomorphic to A�S1 Š T 2 � Œ�1; 1�

if necessary, we may assume that the decomposition is of plumbing type (for details,
see [4]), where T 2 D S1�S1 denotes the torus. Now, each Xi is diffeomorphic either
to P �S1, D2 �S1 or A�S1.

Take a component Xj , for some 1� j � k. Suppose it is diffeomorphic to D2 �S1.
Let ı WD2! Œ�1; 1� be the Morse function defined by ı.x;y/D�x2�y2, where D2

is identified with the unit 2–disk in R2; see Figure 2, left. Then, define f jXj
to be the

composition

�j ı .ı� idS1/ ı'j WXj
'j
�!D2

�S1 ı�idS1

����! Œ�1; 1��S1 �j
�!R2;

where 'j is a diffeomorphism and �j is an embedding whose image is a small tubular
neighborhood of the circle of radius j centered at the origin. We also arrange �j in
such a way that �j .f˙1g �S1/ coincides with the circle of radius j ˙ 1

3
.

Suppose Xj is diffeomorphic to P �S1. We define f jXj
by the composition

�j ı .�� idS1/ ı'j WXj
'j
�! P �S1 ��idS1

����! Œ�1; 1��S1 �j
�!R2;

where 'j is a diffeomorphism, � W P ! Œ�1; 1� is the standard Morse function with
exactly one saddle point (as depicted in Figure 2, right) and �j is an embedding as
described in the previous paragraph.
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Figure 2: Morse functions ı and �.

Finally, suppose Xj is diffeomorphic to A�S1. In this case, we define f jXj
by the

composition

�j ı .�� idS1/ ı'j WXj
'j
�!A�S1 ��idS1

����! Œ�1; 1��S1 �j
�!R2;

where 'j is a diffeomorphism, � WAŠ S1 � Œ�1; 1�! Œ�1; 1� is the projection to the
second factor and �j is an embedding as described above.

Now, the map f jFk
jD1 Xj

has only fold singular points, and its restriction to the singular
point set is an embedding onto a concentric family of circles in R2. Then, we can
extend the map to get a round fold map f WM !R2 as follows, by a method similar
to that used in [14, Proof of Theorem 3.1].

In the following, we set I D Œ0; 1�. For the construction, we need two smooth maps
h1 and h2 W T

2 � I !R2 as follows. (For details, see [14, Section 3].) The map h1 is
constructed as the composition

T 2
� I

Š
�!A�S1 v�idS1

����! Œ�1; 1��S1 �
�!R2;

where v W A ! Œ�1; 1� is a Morse function with exactly one saddle point and one
maximum point such that v�1.�1/D @A (see [14, Figure 8]), and � is an embedding.

On the other hand, the smooth map h2 W T
2 � I !R2 enjoys the following properties.

(1) The image of h2 is the disk of radius 3 centered at the origin.

(2) The singular point set S.h2/ is a circle and consists of indefinite fold points.

(3) The map h2jS.h2/ is an embedding onto the circle C2.

(4) The inverse image .h2/
�1.C3/ coincides with a boundary component of T 2� I ,

and .h2/
�1.C1/ consists of two components one of which coincides with the

other boundary component.
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Figure 3: Quotient space of h2.

(5) The quotient space in the Stein factorization of h2 is a 2–dimensional polyhedron
as depicted in Figure 3. (For the definition of the quotient space in the Stein
factorization, see [14, Section 2], for example.)

Here, we omit the detailed construction of h2, as it is fully explained in [14]. The idea
is to use a Dehn surgery on the exterior of a 2–component trivial link in S3.

Note that on the boundary components of T 2� I , the maps h1 and h2 are S1–bundles
over their images. Therefore, on the boundary components, we have distinguished
pairs of simple closed curves: pairs of an S1–fiber and a cross-section. Another
important property of h1 and h2 is that for h1 the canonical diffeomorphism between
the components of @.T 2 � I/ keeps the S1–fiber and the cross-section, while for h2 it
interchanges them.

Now, let us proceed as in [14, Proof of Theorem 3.1]. Recall that in the proof there, a
simple stable map into S2 is first constructed: however, in our case, we can directly
construct a map into R2 as the singular value set of f jFk

jD1 Xj
is a concentric family

of circles in R2. In order to extend the map, we need to arrange an appropriate map on
each N.Ti/Š T 2�I . Depending on the location of the images by the map f jFk

jD1 Xj

of the small collar neighborhoods of the boundary tori for gluing, we have 4 cases.1

Depending on the cases, we may need to decompose N.Ti/ into two or three parts,
each of which is diffeomorphic to T 2 � I , in order to glue the parts as prescribed by
the weighted plumbing graph. The key ideas are to use h2 in order to interchange the
S1–fiber and the cross-section for gluing, and to use h1 in order to adjust the direction
of the gluing. In order to use h2, we need to use a disk region in the target: in such a
case, we can choose the region that does not contain the point12 S2 DR2[f1g.

1In [14, Proof of Theorem 3.1], we had only three cases, since S2 was considered as the target. Here, as
the target is R2, we have one more case for Case 2 there: however, the argument that we use is the same.
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We can also arrange f in such a way that f jS.f / is an embedding by appropriately
modifying f near S.f / if necessary. This completes the proof of Theorem 3.1.

Let us go on to the proof of the second theorem. In the following, we put, for 0< a< b,

AŒa;b� D f.x;y/ 2R2
j a�

p
x2
Cy2

� bg:

We can observe that f �1.Ci�
1
2
/ is a finite disjoint union of tori for each iD1; 2; : : : ;m,

since M is orientable. Let K be the closure of a component of

M n

� mG
iD1

f �1.Ci�1=2/

�
such that f .K/�AŒi�1=2;iC1=2�. Let pK WK!S1 be the composition of f jK WK!
AŒi�1=2;iC1=2� and the radial projection AŒi�1=2;iC1=2�! S1. We can easily see that
pK and its restriction to the boundary are submersions and hence pK is a locally trivial
fibration. The fiber is a disjoint union of copies of D2, A and P . Since f jS.f / is an
embedding and K is connected, the fiber is diffeomorphic to D2, P , or a finite disjoint
union of copies of A. If the fiber is diffeomorphic to D2, then K is diffeomorphic to
D2�S1, since K is an orientable 3–dimensional manifold. If the fiber is diffeomorphic
to P , then K is diffeomorphic either to P �S1 or a nontrivial P–bundle over S1; see
the proof of [14, Lemma 2.4].

Suppose that K is a nontrivial P–bundle over S1 and that Ci � f .S.f // is inward-
directed. If i D 1, then this leads to a contradiction, since f is a trivial fiber bun-
dle over the innermost region of R2 n f .S.f //. If i > 1, then a component of
f �1.AŒi�3=2;i�1=2�/ adjacent to K is either a nontrivial P–bundle over S1, or a
nontrivial .AtA/–bundle over S1, where AtA is the disjoint union of two copies
of A and the monodromy for the latter bundle interchanges the two components of AtA.
In the former case, Ci�1 � f .S.f // is outward-directed. In the latter case, we can
repeat the argument toward inner components to find an outward-directed component.

Thus we have proved the following.

Lemma 3.3 Let f WM!R2 be a round fold map of a closed orientable 3–dimensional
manifold such that f .S.f // D

Sm
iD1 Ci . If f is directed , then the closure of a

component of

M n

� mG
iD1

f �1.Ci�1=2/

�
is never diffeomorphic to the nontrivial P–bundle over S1.
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Proof of Theorem 3.2 First, suppose that there exists a directed round fold map
f WM ! R2. We may assume that it satisfies (2-1). Then the disjoint union of toriFm

iD1 f
�1.Ci�1=2/ decomposes M into a union of copies of P � S1, A � S1 and

D2 �S1 attached along their torus boundaries. Note that by Lemma 3.3, a nontrivial
P–bundle over S1 does not appear, since f is directed. Furthermore, we can ignore
the components diffeomorphic to A�S1Š T 2� Œ�1; 1� for obtaining a decomposition
of M .

Since f is directed and M is connected, we see that the components diffeomorphic to
D2 �S1 are the outermost component f �1.AŒm�1=2;mC1=2�/ together with the com-
ponents of the innermost part f �1.AŒ0;1=2�/: no other components are diffeomorphic
to D2 � S1. Then, we can easily see that the corresponding graph describing this
decomposition of M into copies of D2 �S1 and P �S1 is a tree, as the number of
components of regular fibers strictly increases toward the central region.

Conversely, suppose that the graph describing the decomposition of M into copies
of P � S1 and D2 � S1 is a tree. By inserting pieces diffeomorphic to A � S1 if
necessary, we may assume that the decomposition is of plumbing type. Then, the
graph � describing this new decomposition is also a tree. Note that � has at least one
vertex of degree one. Let k denote the number of vertices of � . We label the vertices
by f1; 2; : : : ; kg in such a way that

(1) the labeling gives a one-to-one correspondence between the set of vertices and
the set f1; 2; : : : ; kg,

(2) the degree of the vertex labeled k is equal to one,

(3) for each j 2 f1; 2; : : : ; kg, the vertices of labels � j together with the edges
connecting them constitute a connected subgraph of � .

This is possible, since � is a tree with only vertices of degrees one, two or three.

Then, we follow the procedure as in the proof of Theorem 3.1 for constructing a round
fold map on M , except for the components corresponding to vertices of degree one
whose label is different from k. Note that in the process described in the proof of
[14, Theorem 3.1], we do not need to use h1 WT

2�I!R2 in our situation. Furthermore,
when we use h2, we make sure that the corresponding image is contained in AŒ0;k�.
Finally, for the components corresponding to vertices of degree one with label < k, we
just consider the projection D2 �S1!D2, where the target D2 should be enlarged
depending on the label. This matches with the construction for the adjacent components.
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Now, it is not difficult to see that the resulting map f WM !R2 is a directed round
fold map. This completes the proof.

4 Further results and open problems

4.1 Corollaries and examples

In this subsection, we give some corollaries of our main theorems. We also show that
the class of 3–manifolds that admit directed round fold maps is strictly smaller than
that of all graph 3–manifolds.

Corollary 4.1 Suppose that M is a closed connected orientable graph 3–manifold. If
H1.M IQ/D 0, then it admits a directed round fold map into R2.

Proof Let G be the graph corresponding to a decomposition of M into P �S1 and
D2 �S1 as described in Lemma 2.9. Then, we can naturally construct a continuous
map  WM !G in such a way that for each piece, the complement of a small collar
neighborhood of the boundary is mapped to the corresponding vertex. Then, we can
show that  induces a surjection � W �1.M /! �1.G/. Since H1.M IQ/D 0, we see
that G is a tree. Then, the result follows from Theorem 3.2.

Since every closed orientable Seifert 3–manifold over the 2–sphere admits a decompo-
sition into a union of a finite number of copies of P �S1 and D2 �S1 such that the
corresponding graph is a tree, we have the following.

Corollary 4.2 Every closed orientable Seifert 3–manifold over S2 admits a directed
round fold map into R2.

By virtue of the realization result due to [1], as a corollary, we see that every linking
form can be realized as that of a 3–manifold admitting a directed round fold map
into R2. Thus, the linking form cannot detect the nonexistence of a directed round fold
map.

On the other hand, as to the cohomology ring, we have the following.

Corollary 4.3 If a closed orientable 3–manifold M admits a directed round fold map
into R2, then for every pair �; � 2 H 1.M IQ/, their cup product � ^ � vanishes in
H 2.M IQ/.
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The above corollary follows from [2, Theorem 5.2]. More precisely, let us consider the
decomposition of M into the union of copies of P �S1 and D2 �S1 attached along
their torus boundaries such that the corresponding graph is a tree. As P and D2 are of
genus 0, and as the cohomology ring of S2 �S1 satisfies the property described as in
the corollary, we see that the cohomology ring of M also satisfies the same property.

Thus, for example, for every closed orientable surface † of genus � 1, the 3–manifold
†�S1 never admits a directed round fold map into R2, although it is a graph manifold.

Note that if we use coefficients other than Q, the result might not hold. For ex-
ample, RP3 admits a directed round fold map into R2, as it is the union of two
copies of D2 �S1 attached along their boundaries; however, for the generator of
H 1.RP3IZ2/Š Z2, its square does not vanish in H 2.RP3IZ2/. On the other hand,
we do not know if the result in Corollary 4.3 holds for Z–coefficients.

Now, let us consider the normal form plumbing graphs as explained in Section 2.2.
The following lemma can be proved by following the proof of [12, Theorem 4.1].

Lemma 4.4 If a closed connected orientable graph 3–manifold is decomposed into
a union of finite numbers of copies of P � S1 and D2 � S1 in such a way that the
corresponding graph is a tree , then its normal form plumbing graph is a finite disjoint
union of trees.

Proof Let us consider the tree that represents a given decomposition into copies of
P �S1 and D2�S1. This may not be of plumbing type; however, by inserting copies
of T 2 � I if necessary, we may assume that the tree is of plumbing type.

On the other hand, as shown in the proof of [12, Theorem 4.1], there is an algorithm
that turns a given plumbing graph into a normal form. It is not difficult to see that if
we start with a tree, then each operation in the algorithm keeps the property that it is a
finite disjoint union of trees. Then the result follows.

As a corollary, we have the following.

Corollary 4.5 Let M be a closed connected orientable graph 3–manifold whose
normal-form plumbing graph contains a cycle. Then , M admits a round fold map
into R2 but does not admit a directed round fold map into R2.

For example, some torus bundles over S1 as described in [12, Theorem 6.1] satisfy
the assumption of the above corollary. (More precisely, those torus bundles over S1

whose monodromy matrix has trace � 3 or � �3 give such examples.)
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4.2 Open problems

Finally, we list some related open problems which may interest the reader.

Problem 4.6 (1) Generalize Theorems 3.1 and 3.2 for nonorientable 3–manifolds.

(2) The notion of round fold maps of 3–dimensional manifolds into R2 as in
Definition 2.5 can naturally be generalized to that of round fold maps of
n–dimensional manifolds into Rp for n� p � 2; for details, see [7; 6; 5]. For
such a fixed pair .n;p/ of dimensions, characterize those closed n–dimensional
manifolds which admit round fold maps into Rp.

For the dimension pair .n; n�1/, n� 4, such a generalization has been obtained in [8].

Problem 4.7 Classify the right–left equivalence classes of (directed) round fold maps
on a given 3–manifold.

Refer to a certain classification result for simple stable maps given in [14]. For round
fold maps of n–dimensional manifolds into Rn�1, a classification result has been
obtained in [8].

Recall that as explained in Section 2.1, a round fold map corresponds naturally to
an open book structure. On the other hand, open book structures are closely related
to contact structures on 3–manifolds; for example, see [3]. Therefore, the following
problem seems to be reasonable.

Problem 4.8 Clarify the relationship between round fold maps and contact structures
on 3–dimensional manifolds through open book decompositions.

One of the main motivations of Neumann’s work [12] on plumbing graphs is to analyze
the topology of the links of normal surface singularities. The following questions have
been addressed by quite a few topologists to the authors.

Problem 4.9 Is there any relation between singularity links and round fold maps? Is it
possible to construct explicit round fold maps on the singularity links in a natural way?

Acknowledgements We thank Professor Yuya Koda for stimulating discussions, which
motivated the theme of this paper. We also thank the referee for various important
comments which drastically improved the presentation of the paper. This work has
been supported by JSPS KAKENHI grant JP17H06128.

Algebraic & Geometric Topology, Volume 23 (2023)



Round fold maps on 3–manifolds 3761

References
[1] J Bryden, F Deloup, A linking form conjecture for 3–manifolds, from “Advances in

topological quantum field theory” (J M Bryden, editor), NATO Sci. Ser. II Math. Phys.
Chem. 179, Kluwer, Dordrecht (2004) 253–265 MR Zbl

[2] M I Doig, P D Horn, On the intersection ring of graph manifolds, Trans. Amer. Math.
Soc. 369 (2017) 1185–1203 MR Zbl

[3] E Giroux, Géométrie de contact: de la dimension trois vers les dimensions supérieures,
from “Proceedings of the International Congress of Mathematicians, II” (T Li, editor),
Higher Ed., Beijing (2002) 405–414 MR Zbl

[4] F Hirzebruch, W D Neumann, S S Koh, Differentiable manifolds and quadratic forms,
Lecture Notes in Pure and Applied Mathematics 4, Marcel Dekker, New York (1971)
MR Zbl

[5] N Kitazawa, Constructions of round fold maps on smooth bundles, Tokyo J. Math. 37
(2014) 385–403 MR Zbl

[6] N Kitazawa, Fold maps with singular value sets of concentric spheres, Hokkaido Math.
J. 43 (2014) 327–359 MR Zbl

[7] N Kitazawa, On manifolds admitting fold maps with singular value sets of concentric
spheres, PhD thesis, Tokyo Institute of Technology (2014)

[8] N Kitazawa, O Saeki, Round fold maps of n–dimensional manifolds into .n � 1/–
dimensional Euclidean space, J. Singul. 26 (2023) 1–12 MR Zbl

[9] H I Levine, Elimination of cusps, Topology 3 (1965) 263–296 MR Zbl

[10] H Levine, Classifying immersions into R4 over stable maps of 3–manifolds into R2,
Lecture Notes in Math. 1157, Springer (1985) MR Zbl

[11] R Myers, Open book decompositions of 3–manifolds, Proc. Amer. Math. Soc. 72 (1978)
397–402 MR Zbl

[12] W D Neumann, A calculus for plumbing applied to the topology of complex surface
singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981)
299–344 MR Zbl

[13] O Saeki, Simple stable maps of 3–manifolds into surfaces, II, J. Fac. Sci. Univ. Tokyo
Sect. IA Math. 40 (1993) 73–124 MR Zbl

[14] O Saeki, Simple stable maps of 3–manifolds into surfaces, Topology 35 (1996) 671–698
MR Zbl

[15] O Saeki, Topology of singular fibers of differentiable maps, Lecture Notes in Math.
1854, Springer (2004) MR Zbl

[16] H Whitney, On singularities of mappings of euclidean spaces, I: Mappings of the plane
into the plane, Ann. of Math. 62 (1955) 374–410 MR Zbl

Algebraic & Geometric Topology, Volume 23 (2023)

https://doi.org/10.1007/978-1-4020-2772-7_9
http://msp.org/idx/mr/2147422
http://msp.org/idx/zbl/1089.57016
http://dx.doi.org/10.1090/tran/6722
http://msp.org/idx/mr/3572270
http://msp.org/idx/zbl/1357.57034
https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM2002.2/ICM2002.2.ocr.pdf
http://msp.org/idx/mr/1957051
http://msp.org/idx/zbl/1015.53049
http://msp.org/idx/mr/0341499
http://msp.org/idx/zbl/0226.57001
http://dx.doi.org/10.3836/tjm/1422452799
http://msp.org/idx/mr/3304687
http://msp.org/idx/zbl/1337.57061
http://dx.doi.org/10.14492/hokmj/1416837569
http://msp.org/idx/mr/3282638
http://msp.org/idx/zbl/1307.57018
http://dx.doi.org/10.5427/jsing.2023.26a
http://dx.doi.org/10.5427/jsing.2023.26a
http://msp.org/idx/mr/4562472
http://msp.org/idx/zbl/7732150
http://dx.doi.org/10.1016/0040-9383(65)90078-9
http://msp.org/idx/mr/0176484
http://msp.org/idx/zbl/0146.20001
http://dx.doi.org/10.1007/BFb0075066
http://msp.org/idx/mr/0814689
http://msp.org/idx/zbl/0567.57001
http://dx.doi.org/10.2307/2042814
http://msp.org/idx/mr/0507346
http://msp.org/idx/zbl/0395.57002
http://dx.doi.org/10.2307/1999331
http://dx.doi.org/10.2307/1999331
http://msp.org/idx/mr/0632532
http://msp.org/idx/zbl/0546.57002
http://msp.org/idx/mr/1217661
http://msp.org/idx/zbl/0794.57014
http://dx.doi.org/10.1016/0040-9383(95)00034-8
http://msp.org/idx/mr/1396772
http://msp.org/idx/zbl/0864.57028
http://dx.doi.org/10.1007/b100393
http://msp.org/idx/mr/2106689
http://msp.org/idx/zbl/1072.57023
http://dx.doi.org/10.2307/1970070
http://dx.doi.org/10.2307/1970070
http://msp.org/idx/mr/0073980
http://msp.org/idx/zbl/0068.37101


3762 Naoki Kitazawa and Osamu Saeki

Institute of Mathematics for Industry, Kyushu University
Fukuoka, Japan

Institute of Mathematics for Industry, Kyushu University
Fukuoka, Japan

n-kitazawa@imi.kyushu-u.ac.jp, saeki@imi.kyushu-u.ac.jp

Received: 7 September 2021 Revised: 29 March 2022

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

mailto:n-kitazawa@imi.kyushu-u.ac.jp
mailto:saeki@imi.kyushu-u.ac.jp
http://msp.org
http://msp.org


msp
Algebraic & Geometric Topology 23:8 (2023) 3763–3804

DOI: 10.2140/agt.2023.23.3763
Published: 5 November 2023

The upsilon invariant at 1 of 3–braid knots

PAULA TRUÖL

We provide explicit formulas for the integer-valued smooth concordance invariant
�.K/D ‡K .1/ for every 3–braid knot K. We determine this invariant, which was
defined by Ozsváth, Stipsicz and Szabó (2017), by constructing cobordisms between
3–braid knots and (connected sums of) torus knots. As an application, we show
that for positive 3–braid knots K several alternating distances all equal the sum
g.K/C�.K/, where g.K/ denotes the 3–genus of K. In particular, we compute the
alternation number, the dealternating number and the Turaev genus for all positive
3–braid knots. We also provide upper and lower bounds on the alternation number
and dealternating number of every 3–braid knot which differ by 1.

57K10; 20F36, 57K18

1 Introduction

We study knots in the 3–sphere S3, ie nonempty, connected, oriented, closed, smooth
1–dimensional submanifolds of S3, considered up to ambient isotopy. Two knots K

and J are called concordant if there exists an annulus AŠ S1 � Œ0; 1� smoothly and
properly embedded in S3 � Œ0; 1� such that @ADK � f0g[J � f1g and such that the
induced orientation on the boundary of the annulus agrees with the orientation of K,
but is the opposite one on J . Knots up to concordance form a group, the concordance
group C, with the group operation induced by connected sum.

In [46], Ozsváth, Stipsicz and Szabó used the Heegaard Floer knot complex to define the
invariant ‡K of a knot K, which induces a homomorphism from the knot concordance
group to the group of real-valued piecewise-linear functions on the interval Œ0; 2�. The
function ‡K evaluated at t D 1, �.K/ WD ‡K .1/, induces a homomorphism C! Z.
In this article, we will call �.K/ upsilon of K.

© 2023 The Author, under license to MSP (Mathematical Sciences Publishers). Distributed under
the Creative Commons Attribution License 4.0 (CC BY). Open Access made possible by subscribing
institutions via Subscribe to Open.
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D

Figure 1: Generators and relation in the braid group B3. Left: the two
generators a and b. Right: the braid relation abaD bab.

A 3–braid is an element of the braid group on three strands, denoted B3. The classical
presentation of B3 with generators a and b and relation abaD bab, the braid relation,
was introduced by Artin [5]. A braid word  — a word in the generators of B3 and
their inverses — defines a diagram for a (geometric) 3–braid; the generators a and b

correspond to the geometric 3–braids given by braid diagrams as in Figure 1. In our
figures, braid diagrams will always be oriented from bottom to top. We denote by �
the braid abaD bab, and note that its square �2 D .ab/3 (the positive full twist on
three strands) generates the center of B3; see Chow [14, Theorem 3]. A 3–braid knot
is a knot that arises as the closure O of a 3–braid  .

As our main result, we determine the upsilon invariant for all 3–braid knots. More
precisely, we show the following.

Theorem 1.1 Let  D�2`a�p1bq1a�p2bq2 � � � a�pr bqr be a braid word in the gen-
erators a and b of B3 for some integers ` 2 Z, r � 1 and pi ; qi � 1 for i 2 f1; : : : ; rg,
where �2 D .ab/3. Suppose that the closure K D O of  is a knot. Then its upsilon
invariant is

�.K/D
1

2

� rX
iD1

.pi � qi/

�
� 2`:

By Murasugi’s classification of the conjugacy classes of 3–braids [45, Proposition 2.1],
indeed all 3–braid knots — except for the torus knots that are closures of 3–braids —
are covered by Theorem 1.1. However, for torus knots the invariant � can be calculated
explicitly by a combinatorial, inductive formula in terms of their Alexander polynomial
[46, Theorem 1.15]; see (12) below. Hence, we have indeed determined �.K/ for all
3–braid knots K.

As an application of Theorem 1.1, we show that the following invariants coincide for
positive 3–braid knots — knots that are the closure of positive 3–braids.

Algebraic & Geometric Topology, Volume 23 (2023)
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Corollary 1.2 Let K be a knot that is the closure of a positive 3–braid , ie an element
of B3 that can be written as a word in the generators a and b only (no inverses). Then

alt.K/D dalt.K/D gT .K/DAs.K/D g.K/C �.K/:

Here, the alternation number alt.K/, dealternating number dalt.K/ and Turaev genus
gT .K/ are different ways of measuring how far the knot K is from being alternating.
The best known among them is certainly the first one: the alternation number alt.K/ of
a knot K was first defined by Kawauchi [31] as the minimal Gordian distance of K to
the set of alternating knots. In Section 5, we will review the precise definition and prove
Corollary 1.2. The invariant As.K/ introduced by Friedl, Livingston and Zentner [23]
is defined as the minimal number of double point singularities in a generically immersed
concordance from a knot K to an alternating knot. Lastly, g.K/ denotes the 3–genus
of K, the minimal genus of a compact, connected, oriented, smooth surface in S3 with
oriented boundary the knot K.

Two other corollaries of Theorem 1.1 for positive 3–braid knots are the following.

Corollary 1.3 Let K be a positive 3–braid knot. Then the minimal r such that K is the
closure of ap1bq1ap2bq2 � � � apr bqr for positive integers pi and qi , for i 2 f1; : : : ; rg,
is r D g.K/C �.K/C 1.

Corollary 1.4 If K and J are concordant knots that are both closures of positive
3–braids , then the minimal r from Corollary 1.3 is the same for both K and J .

Proposition 3.2 provides a normal form for 3–braids, the Garside normal form, which
is different from Murasugi’s normal form mentioned above (see Definition 4.15). The
Garside normal form allows us to read off from a braid word whether it is conjugate to
a positive braid word. In Section 6, we provide formulas for the fractional Dehn twist
coefficient for all 3–braids in Garside normal form; see Corollary 6.1.

Proof strategy for Theorem 1.1 A crucial property of the invariant � is that it
provides a lower bound on the 4–genus g4.K/ of a knot K, the minimal genus of
a compact, connected, oriented surface smoothly embedded in the 4–ball B4 with
oriented boundary the knot K in S3 D @B4: we have

(1) j�.K/j � g4.K/

Algebraic & Geometric Topology, Volume 23 (2023)
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for any knot K [46, Theorem 1.11]. Our general strategy to find �.K/ for any 3–braid
knot K will be to construct a cobordism between K and another knot J for which
the value of � is known. A cobordism between K and J is a smoothly and properly
embedded oriented surface C in S3� Œ0; 1� with boundary K�f0g[J �f1g such that
the induced orientation on the boundary of C agrees with the orientation of K and
disagrees with the orientation of J . We have

(2) j�.K/� �.J /j � g.C /

for any cobordism C between K and J , where g.C / denotes the genus of the cobordism;
see inequality (15) in Section 4.1. This provides bounds on �.K/ in terms of �.J /
and g.C /.

We will find such cobordisms for example by algebraic modifications of a braid word
representing K and by saddle moves corresponding to the addition or deletion of
generators from such braid words. We will also repeatedly make use of the trick
described in Example 4.1 in Section 4.1 of looking at cobordisms of genus 1 between
O # T2;2nC1 and 1b2n for 3–braid words  and n� 1.

To prove Theorem 1.1, we will first determine � for all positive 3–braid knots and
then generalize our computations to all 3–braid knots. This extension was somewhat
unexpected for the author since, in contrast, the same method would not work to
determine slice-torus invariants — see Lewark [33] — like the invariant � defined by
Ozsváth and Szabó [48] or Rasmussen’s invariant s [50] for all 3–braid knots. We will
elaborate on this in Section 4.4.2.

Remark 1.5 As we will only use properties of the upsilon invariant (see Section 2.2)
and not its definition, we can similarly determine any concordance homomorphism
C!Z whose absolute value bounds the 4–genus of a knot from below and which takes
the same value as � on torus knots of braid index 2 and 3. An example is �1

2
t for the

concordance invariant t constructed by Ballinger [8] from the E.�1/ spectral sequence
on Khovanov homology. The invariant t defines a concordance homomorphism valued
in the even integers which satisfies

ˇ̌
1
2
t.K/

ˇ̌
� g4.K/ for any knot K [8, Theorem 1.1].

Moreover, it fulfills t.Tp;q/ D �2�.Tp;q/ for the torus knots Tp;q for any coprime
positive integers p and q [8, page 22]. The same method we use for the proof of
Theorem 1.1 shows that t.K/D�2�.K/ for any 3–braid knot K.

Remark 1.6 Theorem 1.1 and a result of Erle [17] imply that �.K/D 2�.K/ for all
3–braid knots K except when KD˙T3;3`Ck for odd ` > 0 and k 2 f1; 2g. Here �.K/

Algebraic & Geometric Topology, Volume 23 (2023)
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denotes the classical signature of the knot K; see Trotter [54].1 In the exceptional
cases, �.K/D 2�.K/�2. This observation improves a result by Feller and Krcatovich
who showed that

ˇ̌
�.K/� 1

2
�.K/

ˇ̌
� 2 for all 3–braid knots K [20, Proposition 4.4];

see also Section 4.4.1.

Organization The remainder of this article is organized as follows. In Section 2, we
will provide the necessary background on (positive) braids and the upsilon invariant
before providing a normal form for 3–braids (Proposition 3.2) that we call the Garside
normal form in Section 3. Then in Section 4, after a more detailed outline of our
proof strategy (Section 4.1), we will prove Theorem 1.1 first for positive 3–braid knots
(Section 4.2) and afterwards in the general 3–braid case (Section 4.3). We will prove
Corollaries 1.3 and 1.4 in Section 4.2. Section 4.4 will provide further context on our
results. Section 5 is concerned with the proof of Corollary 1.2 (Section 5.1) and the
application of our result about the upsilon invariant to alternating distances of general
3–braid knots (Section 5.2). In particular, we determine the alternation number of any
3–braid knot up to an additive error of at most 1. Finally, in Section 6, we determine
the fractional Dehn twist coefficient for all 3–braids in Garside normal form.

Acknowledgements I would like to thank Peter Feller for introducing me to the topic
and for all the helpful discussions. Thanks also to Lukas Lewark for lots of useful
comments, including during my stay in Regensburg in September 2020, and to Xenia
Flamm for her feedback. Finally, I thank the referee for many valuable remarks and
improvements. This project is supported by the Swiss National Science Foundation
grant 181199.

2 Preliminaries

We recall important concepts about knots and braids, and also the necessary properties
of the upsilon invariant and the knot invariant � coming from Heegaard Floer homology.

2.1 Knots and braids

By a fundamental theorem of Alexander [4], every knot in S3 can be represented as the
closure of a geometric n–braid for some positive integer n. An n–braid is an element

1We use the standard signature convention that the positive torus knots have negative signatures, eg
�.T3;2/D�2.
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of the braid group on n strands, denoted by Bn, which is presented by n�1 generators
�1; : : : ; �n�1 and relations

�i�j D �j�i if ji � j j � 2;

�i�iC1�i D �iC1�i�iC1I

see [5]. We call a word in the generators of Bn and their inverses a braid word. A braid
word defines a diagram for a (geometric) n–braid where the generators �i of the braid
group correspond to the geometric n–braids given by the braid diagrams in which the
i th and .iC1/st strands cross once positively. In the following, we will always identify
braid words with the corresponding geometric braids, and we suppress n if the context
is clear.

By gluing the top ends of the (oriented) strands of a geometric braid  2 Bn to the
corresponding bottom ends, we get a knot (or link) O , called the closure of  . If 
induces a permutation with only one cycle on the ends of its n strands, then its closure
O is a knot and we call it an n–braid knot. Note that conjugate braids 0; 1 2 Bn,
denoted by 0 � 1, have isotopic closures O0 D O1. For a more detailed account on
braids, we refer the reader to [10].

A positive braid is an element of the braid group Bn for some n that can be written as
a positive braid word �s1

�s2
� � � �sl

with si 2 f1; : : : ; n� 1g. A knot is called a positive
braid knot if it can be represented as the closure of a positive braid. The set of positive
braid knots contains the sets of (positive) torus knots and algebraic knots, while itself
being a subset of the set of positive knots or, more generally, the frequently studied set
of (strongly) quasipositive knots.

Let wr. / denote the writhe of a braid word  2Bn, ie the exponent sum of the word  .
If  is a positive n–braid such that K D O is a knot, then, by work of Bennequin [9]
and Rudolph [51] — the latter building on Kronheimer and Mrowka’s proof of the local
Thom conjecture [32] — we have

(3) g4.K/D g.K/D 1
2
.wr. /� nC 1/:

2.2 The concordance invariants � and ‡

In [48], Ozsváth and Szabó constructed the knot invariant � via the knot filtration on
the Heegaard Floer chain complex of S3; the latter was also defined independently
by Rasmussen [49]. The invariant � induces a group homomorphism C! Z from the
(smooth) knot concordance group C to the group of integers Z and gives a lower bound
on the 4–ball genus g4.K/: we have j�.K/j � g4.K/ for any knot K. For the torus
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knots Tp;q , where p and q are coprime positive integers, the invariant � recovers the
3–genus [48, Corollary 1.7]; namely,

(4) �.Tp;q/D g.Tp;q/D
1
2
.p� 1/.q� 1/:

Moreover, it follows from [34, Theorem 4 and Corollary 7] together with (3) above
that, for any knot K that is the closure of a positive n–braid  ,

(5) �.K/D 1
2
.wr. /� nC 1/D g4.K/D g.K/:

The invariant ‡ was defined by Ozsváth, Stipsicz and Szabó in [46]. We will not recall
the definition of ‡ via the knot Floer complex CFK1.K/ since the properties of ‡
mentioned below will be enough for our later computations and we will not explicitly
use the Heegaard Floer theory behind it. For an overview on the properties of ‡ , see the
original article [46] or Livingston’s notes on ‡ [35]; see [28] for a survey on Heegaard
Floer homology and knot concordance.

For every knot K, the knot invariant ‡K W Œ0; 1�!R is a continuous, piecewise linear
function with the following properties [46]:

‡K .0/D 0;(6)

the slope of ‡K .t/ at t D 0 is given by � �.K/;(7)

‡K1#K2
.t/D ‡K1

.t/C‡K2
.t/ for all 0� t � 1 and all knots K1 and K2;(8)

‡�K .t/D�‡K .t/ for all 0� t � 1;(9)

j‡K .t/j � g4.K/t for all 0� t � 1:(10)

Here, �K is the knot obtained by mirroring K and reversing its orientation. Its
concordance class is the inverse of the class of K in the knot concordance group C. It
follows from (8)–(10) that ‡ induces a homomorphism from the concordance group to
the group of real-valued piecewise-linear functions on the interval Œ0; 1�.

For some classes of knots, the invariant ‡ can be explicitly computed in terms of
classical knot invariants like the signature and the Alexander polynomial.

Proposition 2.1 [46, Theorem 1.14] We have ‡K .t/D
1
2
�.K/t for all alternating or

quasialternating knots K and all 0� t � 1.

For positive torus knots, ‡K .t/ is completely determined by a combinatorial formula
in terms of their Alexander polynomial [46, Theorem 1.15]. For torus knots of braid
index 2 or 3, the following holds; see eg [18]. For `� 0,

(11) ‡T2;2`C1
.t/D��.T2;2`C1/ � t D�` � t for all 0� t � 1:

Algebraic & Geometric Topology, Volume 23 (2023)
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For `� 0 and k 2 f1; 2g,

(12)

‡T3;3`C1
.1/D ‡T3;3`C2

.1/C 1D�2`;

‡T3;3`Ck
.t/D��.T3;3`Ck/t D�.3`C k � 1/t for all 0� t � 2

3

‡T3;3`Ck
.t/ is linear on

�
2
3
; 1
�
:

3 The Garside normal form for 3–braids

In this section, we provide a classification result on the conjugacy classes of 3–braids;
see Proposition 3.2. This result is basically due to work of Garside [25] who gave the
first solution to the conjugacy problem for all braid groups Bn with n � 3 in 1965.
Proposition 3.2 might be known to the experts, but since the explicit formulas appear
to be missing from the literature, we will provide them here.

Throughout, we denote the two generators of the braid group B3 by a WD �1 and
b WD �2 which are subject to the braid relation aba D bab. Recall that the braid
�2 D .aba/2 D .ab/3 generates the center of B3.

Remark 3.1 Any 3–braid is conjugate to the same braid with generators a and b

interchanged. More precisely, let  D ap1bq1 � � � apr bqr for some r � 1 and integers
pi and qi for i 2 f1; : : : ; rg be a 3–braid. Then using �a D b� and �b D a�, we
have

 D��1�ap1bq1 � � � apr bqr D��1bp1aq1 � � � bpr aqr�� bp1aq1 � � � bpr aqr :

In Proposition 3.2, we will provide a certain standard form for the conjugacy classes of
3–braids.

Proposition 3.2 Let  be a 3–braid. Then  is conjugate to one of the 3–braids

�2`ap; `2Z; p�0;(A)

�2`apb; `2Z; p2f1;2;3g;(B)

�2`ap1bq1 � � �apr bqr ; `2Z; r�1; pi ;qi�2; i 2f1; : : : ; rg;(C)

�2`C1ap1bq1 � � �apr�1bqr�1apr ; `2Z; r�1; pr ;pi ;qi�2; i 2f1; : : : ; r � 1g:(D)

If  is a positive 3–braid , then `� 0. If O is a knot , then only cases (B)–(D) can occur
and p must be odd in case (B), at least one of the pi and one of the qi must be odd in
case (C), and at least one of the pi or qi must be odd in case (D).
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While we will never use it in this article, we note — without proof — the following
uniqueness result related to Proposition 3.2.

Remark 3.3 Up to cyclic permutation of the powers p1; q1; : : : ;pr ; qr in (C) and
p1; q1; : : : ;pr�1; qr�1;pr in (D), each 3–braid is conjugate to exactly one of the 3–
braids listed in Proposition 3.2. This follows from Garside’s work [25]. In his notation,
each of the 3–braids listed in (A)–(D) in Proposition 3.2 is the standard form of a
certain element in the (so-called) summit set of  . For 3–braids of the form (C) or (D),
the summit set consists of those 3–braids obtained by cyclic permutation of the powers
p1; q1; : : : ;pr ; qr in (C) and p1; q1; : : : ;pr�1; qr�1;pr in (D), respectively.

Definition 3.4 We call a braid word of the form in (A)–(D) a 3–braid in Garside
normal form.

Remark 3.5 The advantage of the Garside normal form over Murasugi’s normal form
for 3–braids used later in Section 4.3 (see Definition 4.15) is that positive 3–braids are
easier to detect in this normal form: if  is a positive 3–braid, then  is conjugate to
one of the braids in (A)–(D) with ` � 0. Since Garside’s solution to the conjugacy
problem works for any n–braid with n� 3, one might hope to generalize an explicit
standard form as in Proposition 3.2 to n–braids for any n� 3.

Remark 3.6 For odd p, case (B) of Proposition 3.2 covers the torus knots of braid
index 3. More precisely, if  � �2`ab D .ab/3`C1, then its closure is O D T3;3`C1

for ` � 0 and O D �T3;3.�`�1/C2 for ` < 0, and if  � �2`a3b � .ab/3`C2, then
O D T3;3`C2 for `� 0 and O D�T3;3.�`�1/C1 for ` < 0.

Proof of Proposition 3.2 The proof will follow from the following claim.

Claim 1 Let  be a positive 3–braid. Then  is conjugate to one of the 3–braids in
(A)–(D) with `� 0.

We first deduce Proposition 3.2 from this claim. To that end, let  be any 3–braid. If 
is a positive braid, we are done by Claim 1. If not, then  can be written in the form
 D�m˛ where m is a negative integer and ˛ a positive 3–braid [25, Theorem 5]. In
fact, inserting ��1� if m is odd, we can assume  to be of the form ��2n˛ for some
n � 1 and a positive 3–braid ˛. The proposition then easily follows using the claim
for ˛. It remains to prove Claim 1.

Proof of Claim 1 A positive 3–braid  has the form  D aP1bQ1 � � � aPR bQR for
integers R� 1 and Pi ;Qi � 0 for i 2 f1; : : : ;Rg. If all the Pi or all the Qi are 0, then
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(possibly using Remark 3.1)  is conjugate to ap for some p� 0 and we are in case (A)
for `D 0. Possibly after conjugation and reduction of R, we can thus assume that all of
the integers Pi and Qi are nonzero. If P1;Q1 � 2 applies for all i 2 f1; : : : ;Rg, then
 is of the form in (C) for `D 0. If RD 1, ie  D aP1bQ1 for integers P1;Q1 � 1,
and P1 D 1 or Q1 D 1, then (possibly using Remark 3.1)  is conjugate to a braid of
the form in (B).

It remains to consider the case where R� 2 and at least one of the Pi or Qi is 1. In that
case — if necessary after conjugation —  contains �D abaD bab as a subword and
is thus conjugate to �˛ for some positive 3–braid ˛. Now, let n� 1 be maximal with
the property that  is conjugate to �n˛ for some positive 3–braid ˛. Then, possibly
after conjugation of  , the braid word ˛ must be one of the following:

(13)

ap; p � 0;

apb; p � 1;

ap1bq1 � � � apr bqr ; r � 1; pi ; qi � 2; i 2 f1; : : : ; rg;

ap1bq1 � � � apr�1bqr�1apr ; r � 1; pr � 2; pi ; qi � 2; i 2 f1; : : : ; r � 1g:

Indeed, using Remark 3.1, up to conjugation these are the only possible words such
that �n˛ does not contain any additional � as a subword. Note that ˛ can be the empty
word, which is covered by the first case in (13) for p D 0. Further, note that

(14)

�2`apb ��2`C1ap�2;

�2`C1a��2`a3b;

�2`C1apb ��2`C1apC1;

�2`C1ap1bq1 � � � apr bqr ��2`C1ap1Cqr bq1ap2 � � � bqr�1apr ;

�2`ap1bq1 � � � apr�1bqr�1apr ��2`ap1Cpr bq1ap2 � � � apr�1bpr�1

for any `� 0, p � 1 and pi ; qi � 2 for i 2 f1; : : : ; rg. It follows from a case by case
analysis of the cases in (13), using (14) and taking the parity of n into account, that
any positive 3–braid is conjugate to one of the 3–braids in (A)–(D) with `� 0.

4 The upsilon invariant of 3–braid knots

In this section, we prove Theorem 1.1. Along the way, we compute the invariant
� for positive 3–braid knots in Garside normal form (Proposition 4.2) and prove
Corollaries 1.3 and 1.4.
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4.1 Methodology

We first recall inequality (2) from the introduction — which will be repeatedly used in
Section 4 — in more generality.

The cobordism distance d.K;J / between two knots K and J is defined as the 4–
genus g4.K #�J / of the connected sum of K and the inverse of J . Equivalently, the
cobordism distance d.K;J / could be defined as the minimal genus of a smoothly and
properly embedded oriented surface C in S3 � Œ0; 1� with boundary K � f0g[J � f1g

such that the induced orientation on the boundary of C agrees with the orientation of K

and disagrees with the orientation of J . Suppose the genus of a cobordism C between
two knots K and J is g.C /. We then have d.K;J / � g.C /, so by the properties
(8)–(10) of ‡ from Section 2.2 we get

(15) j‡K .t/�‡J .t/j D j‡K#�J .t/j � g4.K #�T /t D d.K;T /t � g.C /t

for all 0� t � 1. This provides bounds on ‡K .t/ in terms of ‡J .t/ and g.C /.

We now give an example for the cobordisms we will use later on.

Example 4.1 Among other things, we will frequently use the following trick the
author first saw in [20, Example 4.5]. Let  be a 3–braid such that K D O is a knot.
Consider the 3–braid ˛ WD b2n for some n� 1. Then Ǫ is also a knot and there is a
cobordism between Ǫ and the connected sum K # T2;2nC1 of genus 1. This cobordism
can be realized by two saddle moves (1–handle attachments) of the form shown in
Figure 2, right, performed in the two circled regions of Figure 2, left. One of them is
used to add a generator b to the braid ˛ to obtain the braid word b2nC1 and the other
is used to transform the closure of this new braid word into a connected sum of K and
T2;2nC1. Recall that our braid diagrams are oriented from bottom to top.

Using �.T2;2nC1/D�n by (11) and that the genus of the cobordism is 1, by (15) for
t D 1 we have

(16) j�. Ǫ /� �.K # T2;2nC1/j � 1 () j�. Ǫ /� �.K/C nj � 1;

which provides the lower bound �.K/� �
�
Ǫ
�
C n� 1 on �.K/.

4.2 The upsilon invariant of positive 3–braid knots

In this section, we determine the invariant � for all positive 3–braid knots.

By Proposition 3.2 and Remark 3.6, positive 3–braid knots are either the torus knots
T3;3`Ck for `� 0 and k 2 f1; 2g which have braid representatives of Garside normal
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2n

Ǫ

2n

C1

O # T2;2nC1

2 saddle
moves

Figure 2: An example illustrating our proof strategy. Left: a schematic of
a cobordism between the knots Ǫ and O # T2;2nC1 realized by two saddle
moves. Right: a saddle move.

form (B), or closures of positive 3–braids of Garside normal form (C) or (D) (see
Definition 3.4). The following proposition thus proves Theorem 1.1 for all positive
3–braid knots.

Proposition 4.2 Let  be a positive 3–braid such that K D O is a knot. Then

�.K/D

8̂<̂
:
�2`� 1

2
.p�1/ if  is conjugate to a braid in (B);

�
1
2

�Pr
iD1.piCqi/

�
Cr �2` if  is conjugate to a braid in (C);

�
1
2

�Pr�1
iD1.piCqi/Cpr

�
Cr �2`� 3

2
if  is conjugate to a braid in (D):

Remark 4.3 In fact, the formulas from Proposition 4.2 also give the correct upsilon
invariant in terms of the Garside normal form of a 3–braid representative of a knot K

if K is the closure of any 3–braid in Garside normal form (C) or (D), not necessarily
a positive one. This follows from Theorem 1.1 (proved in the next section) and the
observations of Section 4.4.3.

Recall that for the torus knots of braid index 3, we know the invariant � by (12). In the
following, we will determine the invariant � for all knots that are closures of positive
3–braids of Garside normal form (C) or (D).

Algebraic & Geometric Topology, Volume 23 (2023)



The upsilon invariant at 1 of 3–braid knots 3775

We first provide an upper bound on ‡K .t/ for positive 3–braid knots K and 0� t � 1.
The following inequality (17) in Lemma 4.4 could also be shown using the dealternating
number and a result of Abe and Kishimoto [2, Lemma 2.2], whereas the main work
for the upper bound on � for the knots in the second and third case in Proposition 4.2
will be to rewrite the braid words representing these knots. We use the approach below
since it will also give bounds on the minimal cobordism distance between any positive
3–braid knot and an alternating knot; see Remark 4.14.

Lemma 4.4 Let  D ap1bq1 � � � apr bqr be a positive 3–braid , where r � 1 and
pi ; qi � 1 for i 2 f1; : : : ; rg are integers such that K D O is a knot. Then

(17) ‡K .t/� .�g.K/C r � 1/t for all 0� t � 1:

Proof We claim that there is a cobordism C of genus

(18) g.C /D 1
2
.r � 1C "/

between K and the connected sum

J" D T2;
Pr

iD1 piC"p
# T2;q1C"1

# T2;q2C"2
# � � � # T2;qrC"r

;

where "1; : : : ; "r ; "p 2 f0; 1g are chosen such that J" is a connected sum of torus knots
(rather than links), ie such that

Pr
iD1 piC"p , q1C"1, q2C"2; : : : ; qrC"r are all odd,

and " WD "pC
Pr

iD1 "i . This cobordism C can be realized by r�1C" saddle moves as
follows. Following the schematic in Figure 3, we add " generators b by " saddle moves
and additionally perform r � 1 saddle moves of the form shown in Figure 2, right, in
the circled regions of Figure 3. In Figure 3, a box on the left labeled pi or qi stands for
the positive braid api or bqi , respectively. The Euler characteristic of the cobordism C

is �.C /D�r C 1� ". Since C is connected and — as J" and K are knots — has two
boundary components, the genus of C is g.C /D�1

2
�.C /D 1

2
.r � 1C "/ as claimed.

By (15), we get j‡K .t/�‡J"
.t/j � g.C /t for all 0� t � 1; hence

(19) ‡K .t/� ‡J"
.t/Cg.C /t for all 0� t � 1:

By (8) and (11) from Section 2.2,

‡J"
.t/D

�
�

1

2

� rX
iD1

piC"p�1

�
�

1

2
.q1C"1�1/�

1

2
.q2C"2�1/�� � ��

1

2
.qrC"r�1/

�
t

D�
1

2

� rX
iD1

.piCqi/�.rC1/C"

�
t;
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p1p1

q1

p2p2

q2

pr

qr

q1

C"1

q2

C"2

qr

C"r

r � 1 C "

saddle
moves

pr

C"p

K J"

Figure 3: A schematic of a cobordism between K D O and the connected
sum of torus knots J" D T2;

Pr
iD1 piC"p

# T2;q1C"1
# T2;q2C"2

# � � �# T2;qrC"r

realized by r � 1C " saddle moves.

so (18) and (19) imply

‡K .t/�

�
�

1

2

� rX
iD1

.pi C qi/

�
C r

�
t for all 0� t � 1:
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The claim follows, since by (3),

g.K/D
wr. /� 2

2
D

1

2

� rX
iD1

.pi C qi/� 2

�
:

The following two lemmas improve the bound from Lemma 4.4 for knots that are
closures of positive 3–braids of Garside normal form (C) or (D), respectively.

Lemma 4.5 Let  D�2`C1ap1bq1 � � � apr�1bqr�1apr for some `� 0, r � 1, pr � 1

and pi ; qi � 1 for i 2 f1; : : : ; r � 1g such that K D O is a knot. Then

‡K .t/�

�
�

1

2

� r�1X
iD1

.pi C qi/Cpr

�
C r � 2`�

3

2

�
t for all 0� t � 1:

In the proof of Lemma 4.5, we will use that in B3,

(20) .ab/3nC1
D ab�2n

D a2ba3.aba3/n�1ban for all n� 1;

where �2 D .aba/2 D .ab/3 D .ba/3; see [18, Proof of Proposition 22].

Proof of Lemma 4.5 Let † D
Pr�1

iD1.pi C qi/Cpr and note that using (3),

(21) g.K/D 1
2
.3.2`C 1/C† � 2/D 1

2
† C 3`C 1

2
:

If `D 0, then  D�ap1bq1 � � � apr�1bqr�1apr is conjugate to

1 D ap1C1bq1 � � � apr�1bqr�1aprC1b

and O1 D O DK, so g. O1/D
1
2
† C

1
2

. By Lemma 4.4,

‡K .t/� .�g. O1/C r � 1/t D
�
�

1
2
† C r � 3

2

�
t for all 0� t � 1:

For `� 1, using �2`C1 D .ab/3`abaD .ab/3`C1a,

 D�2`C1ap1bq1 � � � apr�1bqr�1apr

D .ab/3`C1ap1C1bq1 � � � apr�1bqr�1apr

D a2ba3.aba3/`�1bap1C`C1bq1 � � � apr�1bqr�1apr (by (20))

� aprC2ba3.aba3/`�1bap1C`C1bq1 � � � apr�1bqr�1 DW 1:

We have O1 D O DK and g. O1/D
1
2
† C 3`C 1

2
by (21). Again, Lemma 4.4 implies

‡K .t/� .�g. O1/C r C `� 1/t D
�
�

1
2
† C r � 2`� 3

2

�
t for all 0� t � 1;

which proves the claim of the lemma.
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Lemma 4.6 Let  D�2`ap1bq1 � � � apr bqr for some ` � 0, r � 1 and pi ; qi � 1 for
i 2 f1; : : : ; rg such that K D O is a knot. Then

‡K .t/�

�
�

1

2

� rX
iD1

.pi C qi/

�
C r � 2`

�
t for all 0� t � 1:

In the proof, we will need the following statement about positive 3–braids.

Lemma 4.7 In B3, we have .ab/3n�1 D a2nb.a2b2/n�1a for all n� 1.

Proof Starting with the left-hand side,

.ab/3n�1
D a.ba/3.n�1/bab D a.ab/3.n�1/aba;

which proves the lemma for nD 1. We now show by induction that

(22) .ab/3.n�1/aD a2n�1b.a2b2/n�2a2b for all n� 2;

which implies the lemma for all n� 1. For nD 2,

.ab/3aD a.ba/3 D a.ab/3 D a2babab D a3ba2b:

Assuming that (22) is true for some n� 1� 2,

.ab/3.n�1/aD a.ba/3.n�1/

D a.ab/3.n�1/

D a2.ba/3.n�2/babab

D a2.ab/3.n�2/aba2b

D a2.a2n�3b.a2b2/n�3a2b/ba2b

D a2n�1b.a2b2/n�2a2b;

using the induction hypothesis in the second to last equality.

Proof of Lemma 4.6 Let † D
Pr

iD1.piCqi/. If `D 0, then by (3) and Lemma 4.4,

‡K .t/� .�g.K/C r � 1/t D
�
�

1
2
† C r

�
t for all 0� t � 1:

For `� 1, using �2 D .ba/3 and Lemma 4.7,

 D .ba/3`ap1bq1 � � � apr bqr � .ab/3`�1ap1C1bq1 � � � apr bqrC1

� a2`b.a2b2/`�1ap1C2bq1 � � � apr bqrC1
DW 1:

Note that O1 D O DK and by (3),

g. O1/D g.K/D 1
2
.6`C† � 2/D 1

2
† C 3`� 1:
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Again by Lemma 4.4,

‡K .t/� .�g. O1/C r C `� 1/t D
�
�

1
2
† C r � 2`

�
t for all 0� t � 1:

We will now focus on �.K/D ‡K .1/ and prove Proposition 4.2 by showing that the
upper bounds on ‡K .t/ from Lemmas 4.5 and 4.6 for t D 1 are also lower bounds. We
will need the following observation used in [20, Example 4.5] about 3–braids, which
we prove here for completeness.

Lemma 4.8 In B3, a2nC1b.a2b2/nD .ab/3nC1 and b2nC1a.b2a2/nD .ba/3nC1 for
all n� 0.

Proof We prove the first statement by induction. For n D 0, the equality is clearly
true. For nD 1, using �aD b� and �b D a�, we have

a3ba2b2
D a2�ab2

D a2ba�b D a�2b D�2ab D .ab/4:

We now assume the lemma is true for some n� 1� 0. Using the induction hypothesis
and the equality for nD 1,

a2nC1b.a2b2/n D a2.ab/3.n�1/C1a2b2
D a3b�2.n�1/a2b2

D�2.n�1/a3ba2b2
D .ab/3.n�1/.ab/4 D .ab/3nC1:

Lemma 4.9 Let  D�2`C1ap1bq1 � � � apr�1bqr�1apr for some `� 0, r � 1, pr � 3

and pi ; qi � 2 for i 2 f1; : : : ; r � 1g such that K D O is a knot. Then

�.K/D�
1

2

� r�1X
iD1

.pi C qi/Cpr

�
C r � 2`�

3

2
:

Proof Let † D
Pr�1

iD1.pi C qi/Cpr . From Lemma 4.5, it follows directly that

�.K/D ‡K .1/� �
1
2
† C r � 2`� 3

2
;

so we are left to show that �.K/� �1
2
† C r � 2`� 3

2
. To that end, consider

 D�2`C1ap1bq1 � � � apr�1bqr�1apr

��2`a�ap1bq1 � � � apr�1bqr�1apr�1

D�2`bab2ap1bq1 � � � apr�1bqr�1apr�1
DW 1;

where we used a�D abab D bab2. Note that O1 D O DK. Now, define

˛ WD b2r1 D�
2`b2rC1ab2ap1bq1 � � � apr�1bqr�1apr�1
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and note that Ǫ is a knot. By assumption, pr � 1� 2. There is a cobordism between Ǫ
and the connected sum T2;2rC1 # O1 D T2;2rC1 # K of genus 1 by using two saddle
moves similar to the two saddle moves illustrated in Figure 2. Similarly as in (16) from
Example 4.1, we have �.K/� �. Ǫ /C r � 1. In order to find a lower bound for �. Ǫ /,
note that there is a cobordism C between Ǫ and the torus knot T D T3;3.`Cr/C1 of
genus g.C / D 1

2
† � 2r C 1

2
. Here we think of T as the closure of the braid word

ˇ D�2`b2rC1a.b2a2/r , which is equal to �2`.ba/3rC1 D .ba/3.`Cr/C1 as 3–braids
by Lemma 4.8. The cobordism C between Ǫ and T D Ǒ can thus be realized by

p1� 2C q1� 2C � � �Cpr�1� 2C qr�1� 2Cpr � 3D† � 4r C 1

saddle moves corresponding to the deletion of the same number of generators a and b

from the braid word ˛ to obtain ˇ. Hence the Euler characteristic of the cobordism C

is �.C /D�† C4r �1. Since C is connected and has two boundary components (as
Ǫ and T D Ǒ are knots), the genus of C is indeed g.C /D 1

2
† � 2r C 1

2
. Now, by

(15) and (12),

�. Ǫ /� �.T /�g.C /D�2.`C r/�
�

1
2
† � 2r C 1

2

�
D�

1
2
† � 2`� 1

2
:

It follows that
�.K/� �. Ǫ /C r � 1� �1

2
† C r � 2`� 3

2
:

Lemma 4.10 Let  D �2`ap1bq1 � � � apr bqr for some ` � 0, r � 1, pr ; qr � 3 and
pi ; qi � 2 for i 2 f1; : : : ; r � 1g such that K D O is a knot. Then

�.K/D�
1

2

� rX
iD1

.pi C qi/

�
C r � 2`:

Proof The proof uses similar ideas as that of Lemma 4.9. Let† D
Pr

iD1.piCqi/. By
Lemma 4.6, �.K/��1

2
†Cr�2`, so it remains to show that �.K/��1

2
†Cr�2`.

To that end, we consider

 D�2`ap1bq1 � � � apr bqr ��2`bap1bq1 � � � apr bqr�1
DW 1:

Note that O1 D O DK. We define

˛ WD a2r1 D a2r�2`bap1bq1 � � � apr bqr�1
��2`ba2r bap1bq1 � � � apr bqr�2

DW ˛1:

Then Ǫ1 D Ǫ is a knot and by assumption we have qr � 2� 1. There is a cobordism
between Ǫ and T2;2rC1 # O1 D T2;2rC1 # K of genus 1 by using two saddle moves
similar to the cobordism considered in Example 4.1 and in the proof of Lemma 4.9;
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hence �.K/� �. Ǫ1/C r � 1. To find a lower bound for �. Ǫ1/, we observe that there
is a cobordism C between the knot Ǫ1 and the knot Ǒ, where

ˇ D�2`ba2r b.a2b2/r�1a3b:

Using Lemma 4.8 for n� 1, in B3,

ba2nb.a2b2/n�1a2
D ba.ab/3.n�1/C1a2

D ba�2.n�1/aba2
D�2n for all n� 1:

We thus have ˇ D �2`�2r ab D .ab/3.`Cr/C1, so the closure of ˇ is the torus knot
T D T3;3.`Cr/C1 with �.T /D�2.`C r/ by (12). The cobordism C between Ǫ1 and
T D Ǒ can be realized by

p1� 2C q1� 2C � � �Cpr�1� 2C qr�1� 2Cpr � 3C qr � 3D† � 4r � 2

saddle moves corresponding to the deletion of the same number of generators a and b

from the braid word ˛1 to obtain ˇ. By a similar Euler characteristic argument as in the
proofs of Lemmas 4.4 and 4.9, the genus of this cobordism is g.C /D 1

2
† � 2r � 1.

Note that here we used pr � 3 and qr � 3. Now, by (15),

�. Ǫ1/� �.T /�g.C / D�1
2
† � 2`C 1;

�.K/� �. Ǫ1/C r � 1� �1
2
† C r � 2`:

Lemma 4.11 Let  D�2`ap1bq1 � � � apr bqr for some `� 0, r � 2 and pi ; qi � 2 for
i 2 f1; : : : ; rg. Suppose that qr � 3 and pk � 3 for some 1� k < r and that K D O is
a knot. Then

�.K/D�
1

2

� rX
iD1

.pi C qi/

�
C r � 2`:

Proof We proceed as in the proof of Lemma 4.10, but here we will look at a different
cobordism to obtain a lower bound for �. Ǫ1/. The steps of the proof are exactly the
same until then, so we consider

 D�2`ap1bq1 � � � apr bqr ��2`bap1bq1 � � � apr bqr�1
DW 1

and define
˛ WD a2r1 ��

2`ba2r bap1bq1 � � � apr bqr�2
DW ˛1:

Again, we have �.K/� �. Ǫ1/C r � 1: Now, in order to find a lower bound for �. Ǫ1/,
we observe that there is a cobordism C between Ǫ1 and the knot Ǒ, where

ˇ D�2`ba2r b.a2b2/k�1a3b2.a2b2/r�k�1a2b:
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We find the cobordism C by the deletion of generators from the braid word ˇ to
obtain ˛1, where we use the assumptions qr � 3 and pk � 3. In fact, the cobordism
can be realized by

p1� 2C q1� 2C � � �Cpk�1� 2C qk�1� 2Cpk � 3C qk � 2

CpkC1� 2C qkC1� 2C � � �Cpr�1� 2C qr�1� 2

Cpr � 2C qr � 3D† � 4r � 2

saddle moves, so its genus is g.C /D 1
2
† � 2r � 1. Using

a2k�1b.a2b2/k�1
D .ab/3k�2

from Lemma 4.8, we have

ˇ D�2`ba2r�2kC1.ab/3k�2a3b2.a2b2/r�k�1a2b

D�2`ba2r�2kC1�2.k�1/aba3b2.a2b2/r�k�1a2b

��2.`Ck�1/�a2b2.a2b2/r�k�1a2b2a2r�2kC1

D�2.`Ck�1/C1.a2b2/r�kC1a2r�2kC1
DW ˇ1:

Note that by our assumptions on `, r and k, we have `Ck � 1� 0, r �kC 1� 2 and
2r � 2kC 1� 3, so ˇ1 has the form of the braid words considered in Lemma 4.9. We
thus have

�. Ǒ/D �. Ǒ1/D�
1
2
.4.r � kC 1/C 2r � 2kC 1/C .r � kC 2/� 2.`C k � 1/� 3

2

D�2.`C r/:

By (15),
�. Ǫ1/� �. Ǒ/�g.C /D�1

2
† � 2`C 1;

�.K/� �. Ǫ1/C r � 1� �1
2
† C r � 2`:

Proof of Proposition 4.2 The first case of Proposition 4.2 follows from Remark 3.6
and (12). Lemmas 4.10 and 4.11 together prove the second case, Lemma 4.9 proves
the third case. Note that up to conjugation, by Remark 3.1 and the remarks in
Proposition 3.2, it is no restriction to assume that pr � 3 in Lemma 4.9 and that
qr � 3 and either pr � 3 or pk � 3 for some 1 � k < r in Lemmas 4.10 and 4.11,
respectively.

Before we proceed with the general case where the knot K is given as the closure of
any 3–braid, let us prove the following corollaries of our results in this section.
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Corollary 4.12 (Corollary 1.3) Let K be a knot that is the closure of a positive
3–braid. Then

r D g.K/C �.K/C 1

is minimal among all integers r � 1 such that K is the closure of a positive 3–braid
ap1bq1 � � � apr bqr for integers pi ; qi � 1 for i 2 f1; : : : ; rg.

Proof By Lemma 4.4,

�.K/� �g.K/C r � 1 () g.K/C �.K/C 1� r

whenever K is the closure of a positive 3–braid ap1bq1 � � � apr bqr for integers r � 1

and pi ; qi � 1 for i 2 f1; : : : ; rg. It remains to show that we can always find a positive
braid representative for K of the form ap1bq1 � � � apr bqr with r D g.K/C �.K/C 1.
We will use Proposition 3.2. In fact, if K is the closure of a positive braid  of the form
in (C) with `� 0, then g.K/C�.K/C1D rC` by (3) applied to  and Lemmas 4.10
and 4.11. Moreover,

 D ap1bq1 � � � apr bqr if `D 0;

 � a2`b.a2b2/`�1ap1C2bq1 � � � apr bqrC1 if `� 1

by the proof of Lemma 4.6; these give the desired braid representatives for K. Fur-
thermore, if K is represented by a positive braid  of the form in (D) with `� 0, then
g.K/C �.K/C 1D r C ` by (3) and Lemma 4.9, and we have

 � ap1C1bq1 � � � apr�1bqr�1aprC1b if `D 0;

 � aprC2ba3.aba3/`�1bap1C`C1bq1 � � � apr�1bqr�1 if `� 1

by the proof of Lemma 4.5. Finally, if KDT3;3`Ck for `� 0 and k 2 f1; 2g, then by (4)
and (12), we have g.K/C�.K/C1D `C1 and T3;3`C1 and T3;3`C2 are represented
by the positive 3–braids .ab/3`C1D a2`C1b.a2b2/` and .ab/3`C2 � a2`C3b.a2b2/`;

respectively, by Lemmas 4.8 and 4.7.

Corollary 4.13 (Corollary 1.4) If K and J are concordant knots that are both closures
of positive 3–braids , then the minimal r from Corollary 4.12 is the same for both K

and J .

Proof If K and J are concordant, then their 4–genus and their upsilon invariants
are equal. So by (3) from Section 2.1 and by Corollary 4.12, positive 3–braids with
closures K and J , respectively, will have the same minimal r .
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Remark 4.14 Let Ag.K/ denote the minimal genus of a cobordism between a knot
K and an alternating knot, ie the cobordism distance d.K; falternating knotsg/. By
[23, Theorem 8], we have 1

2
j�.K/C�.K/j �Ag.K/ for any knot K. It thus follows

from our results in this section that

1
2
.r C `� 1/�Ag.K/�

1
2
.r C `� 1C "/

for any knot K that is the closure of a positive 3–braid in Garside normal form (C)
or (D), where "� 0 is an integer depending on K. The lower bound uses Proposition 4.2
and (5) from Section 2.2; see also the proof of Corollary 4.12. The upper bound follows
from the proofs of Lemmas 4.5 and 4.6; see also the proof of Lemma 4.4. Note that
for most positive 3–braid knots, we have " > 0, so we do not get an equality.

A shorter proof of Lemma 4.4 without cobordisms follows from a result of Abe and
Kishimoto on the dealternating number of positive 3–braid knots. Indeed, by (5), (24)
and (27),

j‡K .t/Cg.K/t jDj‡K .t/C�.K/t j�alt.K/t�dalt.K/t� .r�1/t for all 0� t�1:

The definitions of the dealternating number dalt.K/ and the alternation number alt.K/
of a knot K and more details on the inequalities used here will be provided in Section 5.

4.3 Proof of Theorem 1.1

It remains to show Theorem 1.1 when K is the closure of a not necessarily positive
3–braid. We first recall a result of Murasugi, which implies that indeed all 3–braid
knots except for the torus knots of braid index 3 are covered by Theorem 1.1.

Let  be a 3–braid. Then, by [45, Proposition 2.1],  is conjugate to one and only one
of the 3–braids

�2`ap or �2`C1 for ` 2 Z; p 2 Z;(a)

�2`ab or �2`.ab/2 for ` 2 Z;(b)

�2`a�p1bq1 � � � a�pr bqr for ` 2 Z; r � 1; pi ; qi � 1; i 2 f1; : : : ; rg:(c)

Definition 4.15 We call a braid word of the form in (a)–(c) a 3–braid in Murasugi
normal form.

Remark 4.16 The closures of the 3–braids in Murasugi normal form (a) are links of
two (if p is odd) or three components and the closures of the 3–braids in Murasugi
normal form (b) are the torus knots of braid index 3 (see Remark 3.6).
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If `D 0 in case (c), the braid word  D a�p1bq1 � � � a�pr bqr for integers r � 1 and
pi ; qi � 1 for i 2 f1; : : : ; rg gives rise to an alternating braid diagram. If K D O is a
knot, by Proposition 2.1 we thus have �.K/D 1

2
�.K/ in that case and the statement of

Theorem 1.1 follows directly from a result by Erle on the signature of 3–braid knots.

Proposition 4.17 [17, Theorem 2.6] Let  D�2`a�p1bq1 � � � a�pr bqr for integers
` 2 Z, r � 1 and pi ; qi � 1 for i 2 f1; : : : ; rg such that K D O is a knot. Then

�.K/D

rX
iD1

.pi � qi/� 4`:

We still need to show Theorem 1.1 when K is the closure of a 3–braid in Murasugi
normal form (c) with `¤ 0. The proof will follow from the following two lemmas.

Lemma 4.18 Let  D�2`a�p1bq1 � � � a�pr bqr for some `� 1, r � 1 and pi ; qi � 1

for i 2 f1; : : : ; rg such that K D O is a knot. Then

‡K .t/�

�
1

2

� rX
iD1

.pi � qi/

�
� 2`

�
t for all 0� t � 1:

Lemma 4.19 Let  D�2`a�p1bq1 � � � a�pr bqr for some `� 0, r � 1 and pi ; qi � 1

for i 2 f1; : : : ; rg such that K D O is a knot. Then

�.K/�
1

2

� rX
iD1

.pi � qi/

�
� 2`:

Proof of Theorem 1.1 For ` � 1, the statement of the theorem follows directly
from Lemmas 4.18 and 4.19. If ` < 0, the knot �K is represented by the braid word
��2`a�qr bpr � � � a�q1bp1 with �`� 1 and accordingly we have

�.�K/D
1

2

� rX
iD1

.qi �pi/

�
C 2`:

Using that �.�K/D��.K/ by (9) from Section 2.2, this implies the claim.

The remainder of this section is devoted to the proofs of the above lemmas.

Proof of Lemma 4.18 We first consider the case where p1 � 2 and ` � 2. Using
�a�1 D ab and

.ab/3nC2
D bnC1a.b3ab/n�1b3ab3 for all n� 1
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from [18, Proof of Proposition 22], we have

 D�2`a�p1bq1 � � � a�pr bqr

D�2.`�1/C1aba�p1C1bq1 � � � a�pr bqr

D .ba/3.`�1/C2ba�p1C1bq1 � � � a�pr bqr

� .ab/3.`�1/C2a�p1C1bq1 � � � a�pr bqrC1

� a.b3ab/`�2b3ab3a�p1C1bq1 � � � a�pr bqrC`C1
DW 1:

Now, we claim that there is a cobordism C of genus g.C /D 1
2
.`C r �1C "/ between

the closure K of 1 and the connected sum

J" D�T2;p1�1�"1
#�T2;p2�"2

# � � � #�T2;pr�"r
# T2;

Pr
iD1 qiC5`�1C"q

;

where we choose "1; : : : ; "r ; "q 2 f0; 1g such that J" is a connected sum of torus knots,
ie such that

Pr
iD1 qi C 5`� 1C "q , p1 � 1� "1, p2 � "2; : : : ;pr � "r are all odd;

and "D "qC
Pr

iD1 "i . This cobordism C can be realized using `C r � 1C " saddle
moves as follows. On the one hand, we add

Pr
iD1 "i generators a and "q generators

b to the braid word 1; on the other hand, we perform `C r � 1 saddle moves of the
form as the r �1 saddle moves used in the proof of Lemma 4.4 to get a connected sum
of torus knots. The Euler characteristic of C is �.C / D �`� r C 1� ". Since C is
connected and has two boundary components (as K and J" are knots), the genus of C

is g.C /D�1
2
�.C /D 1

2
.`C r � 1C "/ as claimed. By (8) and (11),

‡J"
.t/D

�
1

2

� rX
iD1

.pi � qi/� "� r � 5`C 1

��
t for all 0� t � 1;

and by (15),

‡K .t/� ‡J"
.t/Cg.C /t D

�
1

2

� rX
iD1

.pi � qi/

�
� 2`

�
t for all 0� t � 1:

If p1 � 2 and `D 1, then

 � .ab/2a�p1C1bq1 � � � a�pr bqrC1
� ab2a�p1C1bq1 � � � a�pr bqrC2

DW 1;

and similarly as above, there is a cobordism C of genus g.C /D 1
2
.r C "/ between the

closure K of 1 and the connected sum

J" D�T2;p1�1�"1
#�T2;p2�"2

# � � � #�T2;pr�"r
# T2;

Pr
iD1 qiC4C"q

;
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where we choose "1; : : : ; "r ; "q 2 f0; 1g such that J" is a connected sum of torus knots
and "D "qC

Pr
iD1 "i . The claim follows also in this case from equations (8) and (11),

and the inequality in (15).

It remains to show the claim when p1 D 1. In that case, using �a�1 D ab,

 D�2`a�1bq1 � � � a�pr bqr

D�2`�1abq1C1
� � � a�pr bqr ��2`�1bq1C1

� � � a�pr bqrC1:

If `D 1, then  is conjugate to 1 D abq1C2a�p2bq2 � � � a�pr bqrC2 and if `� 2, then
using (20) from Section 4.2,

 ��2.`�1/C1bq1C1a�p2bq2 � � � a�pr bqrC1

D .ba/3.`�1/C1bq1C2a�p2bq2 � � � a�pr bqrC1

� ab3.bab3/`�2abq1C`C1a�p2bq2 � � � a�pr bqrC3
DW 1:

In both cases, there is a cobordism C of genus g.C /D 1
2
.`C r � 2C "/ between the

closure K of 1 and the connected sum

J" D�T2;p2�"2
# � � � #�T2;pr�"r

# T2;
Pr

iD1 qiC5`�1C"q
;

where we choose "1; : : : ; "r ; "q 2 f0; 1g such that J" is a connected sum of torus knots
and "D "qC

Pr
iD1 "i . Using (8), (11), and (15) again, the claim follows.

We will need the following two technical lemmas for the proof of Lemma 4.19.

Lemma 4.20 Let  D�2`ap1bq1 � � � apr bqr for some `� 0, r � 1 and integers pi and
qi such that pi < 0 or pi � 2, and qi < 0 or qi � 2, for any i 2 f1; : : : ; rg. Moreover ,
assume that K D O is a knot. Then

�.K/� �
1

2

� rX
iD1

.pi C qi/

�
C r � 2`� #fi j pi < 0g� #fi j qi < 0g;

where #A denotes the cardinality of the set A.

Lemma 4.21 Let  D �2`C1ap1bq1 � � � apr�1bqr�1apr for some ` � 0, r � 1 and
integers pi and qi such that pi < 0 or pi � 2 for any i 2 f1; : : : ; rg and qi < 0 or qi � 2

for any i 2 f1; : : : ; r � 1g. Moreover , assume that K D O is a knot. Then

�.K/� �
1

2

� r�1X
iD1

.pi C qi/Cpr

�
C r � 2`�

3

2
� #fi j pi < 0g� #fi j qi < 0g:
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For the proofs of Lemmas 4.20 and 4.21, we refer the reader to the very end of this
section; we will first prove Lemma 4.19 using these lemmas.

Proof of Lemma 4.19 Let k be the number of exponents qj of  with qj D 1 and let
J D fj1; : : : ; jkg for 0 � k � r be the set of indices such that qj D 1 if and only if
j 2 J . For all j 2 J , we rewrite the subword a�pj bqj of  using ��1ab D a�1 as

a�pj bqj D a�pj b D a�pj a�1���1ab D a�pj�1�a�1
D�b�pj�1a�1:

Note that if j ; jC12J , then a�pj bqj a�pjC1bqjC1 D�2a�pj�1b�pjC1�2a�1: After
rewriting a�pj bqj for all j 2 J , the braid  is conjugate to 1 D �

2`Ck˛ for some
3–braid ˛ which is of the form

˛ D

�
a Qp1b Qq1 � � � a Qpnb Qqn for nD r � 1

2
k if k is even;

b Qp1aQq1 � � � b Qpn�1aQqn�1b Qpn for nD r � 1
2
.k � 1/ if k is odd;

where
Pn

iD1. Qpi C Qqi/ D
Pr

iD1.�pi C qi/� 3k and where the Qpi and Qqi fulfill the
assumptions of Lemmas 4.20 and 4.21, respectively, ie where Qpi < 0 or � 2 and Qqi < 0

or � 2 for any i . The number of negative exponents in ˛ equals the number of negative
exponents �pi in  , so

#fi j Qpi < 0gC #fi j Qqi < 0g D r:

If k is even, by Lemma 4.20,

�. O /� �
1

2

� nX
iD1

. Qpi C Qqi/

�
C n� .2`C k/� #fi j Qpi < 0gC #fi j Qqi < 0g

D �
1

2

� rX
iD1

.�pi C qi/� 3k

�
C r �

k

2
� .2`C k/� r

D
1

2

� rX
iD1

.pi � qi/

�
� 2`:

Similarly, if k is odd, the claim follows from Lemma 4.21.

It remains to prove Lemmas 4.20 and 4.21.

Proof of Lemma 4.20 We will modify the braid word  in 2r steps, where each step
corresponds to one of the 2r exponents pi or qi , for i 2 f1; : : : ; rg, of  . In every step,
we will either just conjugate  (if the corresponding exponent is positive) or perform
a cobordism of genus 1 between the closure of a2n or b2n and the connected sum
T2;2nC1 # O for some n� 0 — similar to the cobordism described in Example 4.1 and
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used in the proofs of Lemmas 4.9, 4.10 and 4.11. We now describe these steps in more
detail. First, let  0

0;q
D  and define

a�p1C2C"1;p 00;q D�
2`a2C"1;p bq1ap2bq2 � � � apr bqr

��2`bq1ap2bq2 � � � apr bqr a2C"1;p DW  01;p if p1 < 0;

 00;q ��
2`bq1ap2bq2 � � � apr bqr ap1 DW  01;p if p1 > 0;

so that  0
1;p
D�2`bq1ap2 � � � apr bqr a Qp1 for some Qp1� 2 (note that we assumed p1< 0

or p1 � 2). Here, if p1 < 0, we choose "1;p 2 f0; 1g such that �p1C 2C "1;p is even
and O 0

1;p
is a knot. Second, let "1;q 2 f0; 1g be such that �q1 C 2C "1;q is even if

q1 < 0, and define

1;q D b�q1C2C"1;q 01;p D�
2`b2C"1;q ap2bq2 � � � apr bqr a Qp1

��2`ap2bq2 � � � apr bqr a Qp1b2C"1;q DW  01;q if q1 < 0;

1;q D 
0
1;p ��

2`ap2bq2 � � � apr bqr a Qp1bq1 DW  01;q if q1 > 0;

so that  0
1;q
D�2`ap2bq2 � � � apr bqr a Qp1b Qq1 for some Qp1; Qq1 � 2. Inductively, for any

1� i � r , we let

a�piC2C"i;p 0i�1;q

D�2`a2C"i;p bqi apiC1 � � � apr bqr a Qp1b Qq1 � � � a Qpi�1b Qqi�1

��2`bqi apiC1 � � � apr bqr a Qp1b Qq1 � � � a Qpi�1b Qqi�1a2C"i;p DW  0i;p if pi < 0;

 0i�1;q ��
2`bqi apiC1 � � � apr bqr a Qp1b Qq1 � � � a Qpi�1b Qqi�1api DW  0i;p if pi > 0;

so that
 0i;p D�

2`bqi apiC1 � � � apr bqr a Qp1b Qq1 � � � a Qpi�1b Qqi�1a Qpi

for some integers Qp1; Qq1; : : : ; Qpi�1; Qqi�1; Qpi � 2. Here we choose "i;p 2 f0; 1g such
that �pi C 2C "i;p is even if pi < 0. Moreover, for 1� i � r , we let "i;q 2 f0; 1g be
such that �qi C 2C "i;q is even, and define

i;q D

�
b�qiC2C"i;q 0i;p if qi < 0;

 0i;p if qi > 0;

and we define  0i;q similarly as  0
1;q

. Inductively, after 2r steps, we get the positive
3–braid

 0r;q D�
2`a Qp1b Qq1 � � � a Qpr b Qqr

with

Qpi D

�
2C "i;p if pi < 0;

pi if pi > 0;
and Qqi D

�
2C "i;q if qi < 0;

qi if qi > 0;
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for all 1� i � r ; so Qp1; Qq1; : : : ; Qpr ; Qqr � 2. By Proposition 4.2,

�. O 0r;q/D�
1

2

� rX
iD1

pi>0

pi C

rX
iD1
qi>0

qi C

rX
iD1

pi<0

.2C "i;p/C

rX
iD1
qi<0

.2C "i;q/

�
C r � 2`:

Now, note that if pi <0 for some 1� i � r , then there is a cobordism of genus 1 between
O 0i;p and T2;2mC1 # O 0

i�1;q
by using two saddle moves, where mD 1

2
.�pi C 2C "i;p/,

so similarly as in (16) from Example 4.1, we have

�. O 0i�1;q/� �. O
0
i;p/Cm� 1D �. O 0i;p/C

1
2
.�pi C "i;p/:

Similarly, if qi < 0 for some 1 � i � r , then �. O 0i;p/ � �. O
0
i;q/C

1
2
.�qi C "i;q/. In

addition, if pi > 0, then �. O 0i;p/ D �. O
0
i�1;q

/, and if qi > 0, then �. O 0i;q/ D �. O
0
i;p/.

We conclude that

�. O /D �. O 00;q/� �. O
0
r;q/C

rX
iD1

pi<0

�pi C "i;p

2
C

rX
iD1
qi<0

�qi C "i;q

2

D�
1

2

� rX
iD1

pi>0

pi C

rX
iD1
qi>0

qi C

rX
iD1

pi<0

.pi C 2/C

rX
iD1
qi<0

.qi C 2/

�
C r � 2`

D�
1

2

� rX
iD1

.pi C qi/

�
C r � 2`� #fi j pi < 0g� #fi j qi < 0g:

Proof of Lemma 4.21 The strategy of the proof is the same as in the proof of
Lemma 4.20. Here, we need 2r � 1 steps corresponding to the 2r � 1 exponents
p1; q1; : : : ;pr�1; qr�1;pr of  . The steps are similar to the proof of Lemma 4.20, the
only change is that we multiply  0

i�1;q
by a power of b if pi < 0, and  0i;p by a power

of a if qi < 0 (since a�2`C1 D�2`C1b and b�2`C1 D�2`C1a). Thus, starting with
 0

0;q
D  , after 2r � 1 steps we obtain the positive 3–braid

 0r;p D�
2`C1a Qp1b Qq1 � � � a Qpr�1b Qqr�1a Qpr

with
Qpi D

�
2C "i;p if pi < 0;

pi if pi > 0;
and Qqi D

�
2C "i;q if qi < 0;

qi if qi > 0:

By Lemma 4.9,

�. 0r;p/D�
1

2

� rX
iD1

pi>0

pi C

r�1X
iD1
qi>0

qi C

rX
iD1

pi<0

.2C "i;p/C

r�1X
iD1
qi<0

.2C "i;q/

�
C r � 2`�

3

2
:
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Since the steps we performed have similar effects on �. O / as the ones in the proof of
Lemma 4.20, we get

�. O /D �. O 00;q/� �. O
0
r;p/C

rX
iD1

pi<0

�pi C "i;p

2
C

r�1X
iD1
qi<0

�qi C "i;q

2

D�
1

2

� rX
iD1

pi>0

pi C

r�1X
iD1
qi>0

qi C

rX
iD1

pi<0

.pi C 2/C

r�1X
iD1
qi<0

.qi C 2/

�
C r � 2`�

3

2

D�
1

2

� r�1X
iD1

.pi C qi/Cpr

�
C r � 2`�

3

2
� #fi j pi < 0g� #fi j qi < 0g:

4.4 Further discussion of Theorem 1.1

In this section, we provide some further context on our main result. In particular, in
Section 4.4.2 we will discuss why it might be surprising that our proof strategy works
for all 3–braid knots.

4.4.1 Comparison of upsilon and the classical signature By Theorem 1.1 and
Proposition 4.17,

(23) �.K/D 2�.K/

for any knot K that is the closure of a 3–braid  D�2`a�p1bq1 � � � a�pr bqr for integers
` 2 Z, r � 1 and pi ; qi � 1 for i 2 f1; : : : ; rg. Computations of the signature for torus
knots (and links) of braid index 3, first done by Hirzebruch, Murasugi and Shinora
[45, Proposition 9.1, pages 34–35], together with (12) from Section 2.2 imply that
the equality in (23) is in fact true for all 3–braid knots K except for the cases that
K D ˙T3;3`C1 for odd ` > 0 or K D ˙T3;3`C2 for odd ` > 0. In the exceptional
cases, we have �.K/D 2�.K/� 2. As mentioned in the introduction, this improves
the inequality

ˇ̌
�.K/� 1

2
�.K/

ˇ̌
� 2 for all 3–braid knots K in [20, Proposition 4.4].

It was shown in [47, Theorem 1.2] that
ˇ̌
�.K/� 1

2
�.K/

ˇ̌
gives a lower bound on the

nonorientable smooth 4–genus of a knot K, denoted by 4.K/, the minimal first Betti
number of a nonorientable surface in B4 that meets the boundary S3 along K. The
similarity of the invariant � and the classical signature � on 3–braid knots K described
above clearly does not lead to a good lower bound on 4.K/.

However, the equality �.K/ D 2�.K/ for most 3–braid knots is actually no great
surprise when noting that in fact

ˇ̌
�.K/� 1

2
�.K/

ˇ̌
� 1 must be true for all 3–braid
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knots K for the following reason. It is not hard to see that for every 3–braid knot K,
there is a nonorientable band move to a 2–bridge knot J , which is alternating [26].
This implies that the nonorientable cobordism distance d .K;J / D 4.K # �J /

between K and J is bounded from above by 1. On the other hand, using that �
and � induce homomorphisms C ! Z (see Section 2.2 and [44]), the inequalityˇ̌
�.K/� 1

2
�.K/

ˇ̌
� 4.K/ implies thatˇ̌

�.K/� 1
2
�.K/

ˇ̌
D
ˇ̌
�.K #�J /� 1

2
�.K #�J /

ˇ̌
� d .K;J /� 1;

where we used �.J /D 1
2
�.J / by Proposition 2.1.

Note that a similar argument shows that
ˇ̌
�.K/� 1

2
�.K/

ˇ̌
� 2 for all 4–braid knots K,

using two nonorientable band moves to transform K into a 2–bridge link, which is also
alternating.

4.4.2 On the proof technique As mentioned in the introduction, it came as a surprise
to the author that our proof strategy works not only for positive 3–braid knots, but for
all 3–braid knots. Let us make this more precise.

The proofs in Sections 4.2 and 4.3 imply, for any 3–braid knot K, the existence of
cobordisms C1 and C2 of genus g.C1/ and g.C2/ between K and (connected sums of)
torus knots T1 and T2, respectively, such that

g.C1/Cg.C2/D j�.T2/� �.T1/j

and
�.K/D �.T1/Cg.C1/D �.T2/�g.C2/:

For example, for knots K that are closures of positive 3–braids of Garside normal
form (D), the proof of Lemma 4.5 shows the existence of such a cobordism C1 for
T1 D J" as in the proof of Lemma 4.4; and the existence of such a cobordism C2

between K and T2 D T3;3.`Cr/C1 #�T2;2rC1 follows from the proof of Lemma 4.9.

The same strategy would work to determine the concordance invariants s and � for
all positive 3–braid knots K. Indeed, every positive 3–braid knot can be realized
as the slice of a cobordism C between the unknot U and a torus knot T of braid
index 3 such that g.C / D j�.U / � �.T /j D js.U / � s.T /j [21, Proposition 4.1].
However, in contrast, there are 3–braid knots where this strategy provably fails to
determine s and � . A concrete example is the 3–braid knot 10125 — the closure of
a�5ba3b [36] — which is not squeezed [21, Example 3.1]. This means that every
cobordism C between two connected sums of torus knots T1 and T2 that has 10125 as
a slice satisfies g.C / > j�.T2/� �.T1/j D js.T2/� s.T1/j.
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4.4.3 Comparison of the normal forms for 3–braids An algorithm described in
[11, Section 7] as Schreier’s solution to the conjugacy problem [52] can be used to
convert 3–braids in Garside normal form (see Definition 3.4) to 3–braids in Murasugi
normal form (see Definition 4.15): if  is a 3–braid of Garside normal form (C), then

 ��2.`Cr/a�1bp1�2a�1bq1�2
� � � a�1bpr�2a�1bqr�2;

and if  is of Garside normal form (D), then

 ��2.`Cr/a�1bp1�2a�1bq1�2
� � � a�1bpr�1�2a�1bqr�1�2a�1bpr�2:

In addition, it is easy to see how 3–braids of Garside normal form (A) or (B) are
conjugate to braids of Murasugi normal form (a) or (b).

5 On alternating distances of 3–braid knots

In this section, we prove Corollary 1.2 from the introduction and provide lower and
upper bounds on the alternation number and dealternating number of any 3–braid knot
which differ by 1.

5.1 Alternating distances of positive 3–braid knots

We will prove the following proposition.

Proposition 5.1 Let K be a knot that is the closure of a positive 3–braid. Then

alt.K/D dalt.K/D �.K/C �.K/

D

�
` if K is the torus knot T3;3`Ck for `� 0 and k 2 f1; 2g;

r C `� 1 if K is the closure of a braid of the form in (C) or (D);
where (C) and (D) refer to the Garside normal forms from Proposition 3.2.

Remark 5.2 Some of the cases in Proposition 5.1 have already been proved by other
authors. Indeed, Feller, Pohlmann and Zentner used the observation (25) below to
show that alt.T3;3`Ck/D ` for all `� 0 and k 2 f1; 2g [22, Theorem 1.1]. The upper
bound they used was provided by [30, Theorem 8]; in fact, the equality had already
been shown by Kanenobu in half of the cases, namely when ` is even. Moreover, Abe
and Kishimoto [2, Theorem 3.1] showed that alt.K/ D dalt.K/ D r C `� 1 if K is
a knot that is the closure of a positive 3–braid of the form in (C). However, to the
best of this author’s knowledge, it is new that alt.K/D g.K/C �.K/ for all positive
3–braid knots K. Recall that �.K/ D g.K/ for all positive 3–braid knots K by (5)
from Section 2.1.
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Before we prove Proposition 5.1, let us provide the necessary definitions and background.
The Gordian distance dG.K;J / between two knots K and J is the minimal number
of crossing changes needed to transform a diagram of K into a diagram of J , where
the minimum is taken over all diagrams of K [43]. The alternation number alt.K/
of a knot K is defined as the minimal Gordian distance of the knot K to the set of
alternating knots [31], ie

alt.K/DminfdG.K;J / j J is an alternating knotg:

The dealternating number dalt.K/ of a knot K is defined via a more diagrammatic
approach [3]: it is the minimal number n such that K has a diagram that can be turned
into an alternating diagram by n crossing changes. It follows from the definitions that

(24) alt.K/� dalt.K/

for any knot K and alt.K/ D dalt.K/ D 0 if and only if K is alternating. Note that
there are families of knots for which the difference between the alternation number
and the dealternating number becomes arbitrarily large [38, Theorem 1.1].

In the proof of Proposition 5.1, we will use that

(25) j�.K/C �.K/j � alt.K/

for any knot K. In fact, for all alternating knots K,

(26) �.K/D 1
2
s.K/D��.K/D�1

t
‡K .t/D�

1
2
�.K/

for any t 2 .0; 1�— see [46, Theorem 1.14; 48, Theorem 1.4; 50, Theorem 3] — where s

denotes Rasmussen’s concordance invariant from Khovanov homology [50]. It follows
from [1, Theorem 2.1] — which builds on ideas of Livingston [34, Corollary 3] — that
the absolute value of the difference of any two of the invariants in (26) is a lower bound
on alt.K/. It was first observed in [22] that the upsilon invariant fits very well in this
context; see also [23, Lemma 8].

Another main ingredient of our proof of Proposition 5.1 is the inequality

(27) dalt. O /� r � 1

for any positive 3–braid  D ap1bq1 � � � apr bqr with integers r � 1 and pi ; qi � 1 for
i 2 f1; : : : ; rg [2, Lemma 2.2].

Proof of Proposition 5.1 Let K be a knot that is the closure of a positive 3–braid 
of the form in (C) or (D) from Proposition 3.2 with `� 0. We claim that

(28) r C `� 1D �.K/C �.K/D j�.K/C �.K/j � alt.K/� dalt.K/� r C `� 1;
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which implies the statement of the proposition for these knots. The two equalities in
(28) directly follow from our computations of �.K/ in Proposition 4.2 and (5) applied
to  . The first two inequalities are direct consequences of the inequalities (25) and (24).
Finally, the last inequality follows from inequality (27) applied to the particular braid
representatives of K considered in the proof of Corollary 4.12.

For torus knots of braid index 3, the statement follows analogously. More precisely, if
KDT3;3`Ck for `� 0 and k 2f1; 2g, then by (4) and (12), we have j�.K/C�.K/jD `.
In addition, the inequality in (27) applied to the particular braid representatives of K

considered in the proof of Corollary 4.12 implies that dalt.T3;3`Ck/� `.

From Proposition 5.1, it is easy to deduce that the alternating positive 3–braid knots
are precisely the unknot and the connected sums T2;2pC1 # T2;2qC1 of two torus knots
of braid index 2 for p; q � 0. This was already known; in fact, the stronger statement
is true that the only prime alternating positive braid knots are the torus knots of braid
index 2 [6, Corollary 3]. Note that by [42] — see also [11, Corollary 7.2] — the only
composite 3–braid knots are the connected sums T2;2pC1 # T2;2qC1 for p; q 2 Z.

By [1, Theorem 1.1], the only torus knots with alternation number 1 are the torus knots
T3;4 and T3;5. A knot with dealternating number 1 is called almost alternating.

Corollary 5.3 A positive 3–braid knot is almost alternating if and only if it is one of
the torus knots T3;4 or T3;5, or it is represented by a braid of the form

ap1bq1ap2bq2 ; �ap1bq1ap2 ; �2ap1bq1 or �3ap1

for some integers p1;p2; q1; q2 � 2.

Proof This follows directly from Proposition 5.1.

Remark 5.4 In particular, the seven positive 3–braid knots with crossing number 12 —
see [36] — are all almost alternating.

Remark 5.5 Our results imply that the Turaev genus equals the alternation number
for all positive 3–braid knots. Indeed, let K be a knot that is the closure of a positive
braid of the form in (C) or (D) with `� 0. Then we have

(29) gT .K/D alt.K/D dalt.K/D r C `� 1;

Algebraic & Geometric Topology, Volume 23 (2023)



3796 Paula Truöl

where gT .K/ denotes the Turaev genus of the knot K. The Turaev genus gT .K/ of
a knot K is another alternating distance [38], which was first defined in [15] as the
minimal genus of a Turaev surface F.D/, where the minimum is taken over all diagrams
D of K. The Turaev surface F.D/ is a closed orientable surface embedded in S3

associated to the diagram D. It is formed by building the natural cobordism between
the circles in the two extreme Kauffman states (the all-A–state and the all-B–state)
of the diagram D via adding saddles for each crossing of D, and then capping off
the boundary components with disks. More details on the definition can be found, for
example, in a survey by Champanerkar and Kofman [13].

The equality gT .K/ D dalt.K/ in (29) easily follows from Proposition 5.1, the in-
equalities

ˇ̌
�.K/C 1

2
�.K/

ˇ̌
� gT .K/ [16, Theorem 1.1] and gT .K/ � dalt.K/ [2,

Corollary 5.4], and the fact that �.K/ D 2�.K/ for all knots that are closures of
positive braids of Garside normal form (C) or (D) (see Section 4.4.1).

It is not known whether the alternation number and the Turaev genus of a knot are
in general comparable; namely, it is not known whether alt.K/ � gT .K/ for all
knots K — see [38, Question 3]. However, it was shown by Abe and Kishimoto that
gT .T3;3`Ck/ D dalt.T3;3`Ck/ D ` for all ` � 0 and k 2 f1; 2g [2, Theorem 5.9], so
gT .K/D alt.K/D dalt.K/ is true for all positive 3–braid knots.

Remark 5.6 In [23], Friedl, Livingston and Zentner introduce the invariant As.K/, the
minimal number of double point singularities in a generically immersed concordance
from a knot K to an alternating knot. In the case that the alternating knot is the unknot,
this is the well studied invariant c4.K/ called the 4–dimensional clasp number [53].
A sequence of crossing changes in a diagram of a knot K leading to a diagram of
an alternating knot J realizes an immersed concordance from K to J where any
crossing change gives rise to a double point singularity in the concordance. We thus
have As.K/� alt.K/ for any knot K, which resembles the inequality c4.K/� u.K/

between the 4–dimensional clasp number and the unknotting number u.K/ of K.
Moreover, we have j�.K/C �.K/j � As.K/ for any knot K [23, Theorem 18], so
Proposition 5.1 implies As.K/D alt.K/ for all positive 3–braid knots K.

We are now ready to prove Corollary 1.2 from the introduction.

Proof of Corollary 1.2 The corollary follows directly from Proposition 5.1 and
Remarks 5.5 and 5.6.
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5.2 Bounds on the alternation number of general 3–braid knots

In the following, we turn our attention to 3–braid knots in general, which are not
necessarily the closure of positive 3–braids. We will use that

(30)
ˇ̌

1
2
s.K/C �.K/

ˇ̌
� alt.K/

for any knot K, which follows from [1, Theorem 2.1]; see also (26) from Section 5.1.
Rasmussen’s invariant s was computed for all 3–braid knots in Murasugi normal form
(see Definition 4.15) by Greene.2

Corollary 5.7 Let  D�2`a�p1bq1 � � � a�pr bqr for some ` 2Z, r � 1 and pi ; qi � 1

for i 2 f1; : : : ; rg such that K D O is a knot. Then

j`j � 1� alt.K/� dalt.K/� j`j if `¤ 0:

Proof The lower bound on the alternation number follows from (30), Theorem 1.1
and the values of the invariant s for K D O [27, Proposition 2.4]; namely

s.K/D

�
�
Pr

iD1.pi � qi/C 6`� 2 if ` > 0;

�
Pr

iD1.pi � qi/C 6`C 2 if ` < 0:

Moreover, it follows from [2, Theorem 2.5] that dalt. O /� j`j.

Remark 5.8 An alternative way to prove the upper bound on dalt.K/ in Corollary 5.7
for `� 1 follows from our observations in the proof of Lemma 4.18. In fact, the braid
diagrams given by the braid representatives 1 of K D O considered in that proof can
easily be transformed into alternating diagrams by ` crossing changes: it is enough to
change the positive crossings corresponding to the single generators a in 1 to negative
crossings; we obtain generators a�1 in the corresponding braid words which then
correspond to alternating braid diagrams.

Remark 5.9 If K is represented by a 3–braid of Garside normal form (C) or (D) (see
Definition 3.4), then using the observations in Section 4.4.3, Corollary 5.7 implies

(31) jr C `j � 1� alt.K/� dalt.K/� jr C `j if jr C `j> 0;

alt.K/D dalt.K/D 0 if r C `D 0:

By Proposition 5.1, the lower bound in (31) is sharp whenever K is the closure of
a positive 3–braid of Garside normal form (C) or (D). However, there are examples

2These computations were generalized to all links that are closures of 3–braids in [41].
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where the upper bound in (31) is sharp. The two easiest such examples in terms of
crossing number are the nonalternating knots 820 and 821, which are represented by
the 3–braids

a3b�1a�3b�1
���3a7; a3ba�2b2

���2a3b2a2b3;

respectively; see [36]. The lower bound on the alternation number from (31) is

jr C `j � 1D 0

in both cases. Indeed, by [7, Theorem 8.6] both knots are quasialternating, so all the
invariants from (26) are equal [7, Proposition 1.4; 40; 46].

Remark 5.10 In a similar fashion as Corollary 5.7, the Turaev genus of all 3–braid
knots was determined up to an additive error of at most 1 by Lowrance using his
computation of the Khovanov width for these knots [37, Proposition 4.15]. More
precisely,

j`j � 1� gT .K/� j`j if `¤ 0

for any knot K that is represented by  D �2`a�p1bq1 � � � a�pr bqr for some ` 2 Z,
r � 1 and pi ; qi � 1 for i 2 f1; : : : ; rg.

6 The fractional Dehn twist coefficient of 3–braids in Garside
normal form

In this section, we compute the fractional Dehn twist coefficient of any 3–braid in
Garside normal form (see Definition 3.4).

The fractional Dehn twist coefficient is a homogeneous quasimorphism on the braid
group Bn that assigns to any n–braid  a rational number !. /. Here, a quasimorphism
on a group G is any map ' WG!R such that

sup
.a;b/2G�G

j'.ab/�'.a/�'.b/j DWD' <1;

where D' is called the defect of '. A quasimorphism ' WG!R is called homogeneous
if '.ak/ D k'.a/ for all k 2 Z and a 2 G. Any homogeneous quasimorphism is
invariant under conjugation, so !. / is invariant under the conjugacy class of  .

The fractional Dehn twist coefficient first appeared in [24] in a different language. It
can be defined for mapping classes of general surfaces with boundary, where we here
view braids as mapping classes of the n times punctured closed disk. Malyutin defined
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the fractional Dehn twist coefficient ! W Bn!R, with n� 2, for all braid groups and
showed that its defect is 1 if n � 3 and 0 if n D 2 [39, Theorem 6.3]. We refer the
reader to [39] for a more detailed account.

Corollary 6.1 Let  be a 3–braid. Then its fractional Dehn twist coefficient is

!. /D

8<:
` if  is conjugate to a braid in (A);
1
6
.pC 1/C ` if  is conjugate to a braid in (B);

r C ` if  is conjugate to a braid in (C) or (D);

where (A)–(D) refer to the Garside normal forms from Proposition 3.2.

Remark 6.2 The fractional Dehn twist coefficient was computed for 3–braids in
Murasugi normal form (see Definition 4.15) in [29, Proposition 6.6].

In the proof of Corollary 6.1, we will use that the fractional Dehn twist coefficient
of any 3–braid  is completely determined by the writhe wr. / and the homogenized
upsilon invariant Q� of  : we have, by [19, Theorem 1.3],

(32) !. /D Q�. /C 1
2

wr. /

for any 3–braid  . The invariant Q� is another real-valued homogeneous quasimorphism
on the braid group B3 which can be defined as

Q� W B3!R;  7! Q�. /D lim
k!1

�.1 6kab/

6k
:

More generally, Brandenbursky [12, Theorem 2.6] showed that a homogeneous quasi-
morphism Bn!R can be assigned to any concordance homomorphism C!R that is
bounded above by a constant multiple of the 4–genus. We refer the reader to [12] or
[19, Appendix A] for more details on homogenized concordance invariants.

Proposition 6.3 Let  be a 3–braid. Then

Q�. /D

8̂̂̂<̂
ˆ̂:
�

1
2
p�2` if  is conjugate to a braid in (A);

�
1
3
.pC1/�2` if  is conjugate to a braid in (B);

�
1
2

�Pr
iD1.piCqi/

�
Cr �2` if  is conjugate to a braid in (C);

�
1
2

�Pr�1
iD1.piCqi/Cpr

�
Cr �2`� 3

2
if  is conjugate to a braid in (D):

Proof We will use that Q�.˛ˇ/D Q�.˛/C Q�.ˇ/ if ˛ and ˇ commute [19, Lemma A.1].
In particular, for any 3–braid  and any ` 2 Z,

(33) Q�.�2` /D Q�.�2`/C Q�. /:
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Moreover, by the definition of Q� , equation (12) and the homogeneity of Q� ,

(34) Q�.�2`/D�2` for all ` 2 Z:

We will now compute Q�. / for the positive 3–braids  of the form (A)–(D), ie assuming
`� 0 in (A)–(D). The statement of Proposition 6.3 will then follow from (33) and (34).

First, let  D�2`ap for some `� 0 and p � 0. If pD 0, we have Q�. /D�2` by (34).
If p � 1, we have

 6kab D�12`ka6pkab ��12`kC1a6pk�1;

so by Lemma 4.9, for k � 1,

�.1 6kab/D�1
2
.6pk � 1/C 1� 12`k � 3

2
D�3pk � 12`k;

Q�. /D lim
k!1

�.1 6kab/

6k
D lim

k!1

�3pk � 12`k

6k
D�

p

2
� 2`:

Second, let  D�2`apb for some `� 0 and p 2 f1; 2; 3g. We have

 6kab D�12`k.ab/6kab D�12`kC4kab if p D 1;

 6kab D�12`k.a2ba2b/3kab D�12`k.ababab/3kab D�12`kC6kab if p D 2;

 6kab D�12`k.a3ba3ba3b/2kab D�12`k.a2babababa2b/2kab

D�12`kC8kab if p D 3:

By (12),
Q�. /D lim

k!1

�12`k � .2pC 2/k

6k
D�2`�

pC 1

3
:

Third, let  D �2`ap1bq1 � � � apr bqr for some ` � 0, r � 1 and pi ; qi � 2 for
i 2 f1; : : : ; rg. Then

 6kab D�12`k.ap1bq1 � � � apr bqr /6kab

��12`kC1ap1�1bq1 � � � apr bqr .ap1bq1 � � � apr bqr /6k�1

��12`kC1.bq1ap2bq2 � � � apr bqr ap1/6k�1bq1ap2bq2 � � � apr bp1Cqr�1;

where p1C qr � 1� 3. By Lemma 4.9,

�.1 6kab/D�3k

rX
iD1

.pi C qi/C 6kr � 12`k � 1;

Q�. /D�
1

2

rX
iD1

.pi C qi/C r � 2`:
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Finally, let  D �2`C1ap1bq1 � � � apr�1bqr�1apr for some ` � 0, r � 1, pr � 2, and
pi ; qi � 2 for i 2 f1; : : : ; r � 1g. Then

 6kab D�12`k.�ap1bq1 � � � apr�1bqr�1apr /6kab

D�12`k.�2bp1aq1 � � � bpr�1aqr�1bpr ap1bq1 � � � apr�1bqr�1apr /3kab

D�12`kC6k.bp1 � � � bpr ap1 � � � apr /3kab

��12`kC6kaq1bp2 � � � bpr ap1 � � �

� � � apr .bp1 � � � bpr ap1 � � � apr /3k�2bp1 � � � bpr ap1 � � � aprC1bp1C1;

where pr C 1;p1C 1� 3. By Lemma 4.10,

�.1 6kab/D�3k

� r�1X
iD1

.pi C qi/Cpr

�
C 6kr � 12`k � 9k � 1;

Q�. /D�
1

2

� r�1X
iD1

.pi C qi/Cpr

�
C r � 2`�

3

2
:

Proof of Corollary 6.1 This follows directly from Proposition 6.3, (32), and a straight-
forward calculation of the writhe of the braids in (A)–(D).

Remark 6.4 If  is a 3–braid conjugate to a braid of the form in (C) or (D) such that O
is a knot, then Proposition 6.3 and Theorem 1.1 imply Q�. /D �. O /. If  additionally
is a positive 3–braid, then !. /D r C `D g. O /C �. O /C 1 is the minimal number
from Corollary 1.3 (ie Corollary 4.12).

Remark 6.5 Our computation of!. / in Corollary 6.1 together with [19, Theorem 1.3]
completely determines e‡.t/. / for all 0� t �1 for any 3–braid  , where e‡.t/. / is the
homogenization of the invariant ‡.t/ W C!R, defined similarly as the homogenization
Q� of � .

References
[1] T Abe, An estimation of the alternation number of a torus knot, J. Knot Theory

Ramifications 18 (2009) 363–379 MR Zbl

[2] T Abe, K Kishimoto, The dealternating number and the alternation number of a closed
3–braid, J. Knot Theory Ramifications 19 (2010) 1157–1181 MR Zbl

[3] C C Adams, J F Brock, J Bugbee, T D Comar, K A Faigin, A M Huston, A M
Joseph, D Pesikoff, Almost alternating links, Topology Appl. 46 (1992) 151–165 MR
Zbl

Algebraic & Geometric Topology, Volume 23 (2023)

http://dx.doi.org/10.1142/S021821650900694X
http://msp.org/idx/mr/2514849
http://msp.org/idx/zbl/1180.57005
http://dx.doi.org/10.1142/S0218216510008352
http://dx.doi.org/10.1142/S0218216510008352
http://msp.org/idx/mr/2726563
http://msp.org/idx/zbl/1209.57005
http://dx.doi.org/10.1016/0166-8641(92)90130-R
http://msp.org/idx/mr/1184114
http://msp.org/idx/zbl/0766.57003


3802 Paula Truöl

[4] J W I Alexander, A lemma on systems of knotted curves, Proc. Natl. Acad. Sci. USA 9
(1923) 93–95 Zbl

[5] E Artin, Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg 4 (1925) 47–72 MR Zbl

[6] S Baader, Positive braids of maximal signature, Enseign. Math. 59 (2013) 351–358
MR Zbl

[7] J A Baldwin, Heegaard Floer homology and genus one, one-boundary component open
books, J. Topol. 1 (2008) 963–992 MR Zbl

[8] W Ballinger, Concordance invariants from the E.�1/ spectral sequence on Khovanov
homology, preprint (2020) arXiv 2004.10807

[9] D Bennequin, Entrelacements et équations de Pfaff , from “Third Schnepfenried geom-
etry conference, I”, Astérisque 107–108, Soc. Math. France, Paris (1983) 87–161 MR
Zbl

[10] J S Birman, T E Brendle, Braids: A survey, from “Handbook of knot theory” (W
Menasco, M Thistlethwaite, editors), Elsevier, Amsterdam (2005) 19–103 MR Zbl

[11] J S Birman, W W Menasco, Studying links via closed braids, III: Classifying links
which are closed 3–braids, Pacific J. Math. 161 (1993) 25–113 MR Zbl

[12] M Brandenbursky, On quasi-morphisms from knot and braid invariants, J. Knot
Theory Ramifications 20 (2011) 1397–1417 MR Zbl

[13] A Champanerkar, I Kofman, A survey on the Turaev genus of knots, Acta Math.
Vietnam. 39 (2014) 497–514 MR Zbl

[14] W-L Chow, On the algebraical braid group, Ann. of Math. 49 (1948) 654–658 MR
Zbl

[15] O T Dasbach, D Futer, E Kalfagianni, X-S Lin, N W Stoltzfus, The Jones polynomial
and graphs on surfaces, J. Combin. Theory Ser. B 98 (2008) 384–399 MR Zbl

[16] O T Dasbach, A M Lowrance, Turaev genus, knot signature, and the knot homology
concordance invariants, Proc. Amer. Math. Soc. 139 (2011) 2631–2645 MR Zbl

[17] D Erle, Calculation of the signature of a 3–braid link, Kobe J. Math. 16 (1999) 161–175
MR Zbl

[18] P Feller, Optimal cobordisms between torus knots, Comm. Anal. Geom. 24 (2016)
993–1025 MR Zbl

[19] P Feller, D Hubbard, Braids with as many full twists as strands realize the braid index,
J. Topol. 12 (2019) 1069–1092 MR Zbl

[20] P Feller, D Krcatovich, On cobordisms between knots, braid index, and the upsilon-
invariant, Math. Ann. 369 (2017) 301–329 MR Zbl

[21] P Feller, L Lewark, A Lobb, Squeezed knots, preprint (2022) arXiv 2202.12289

[22] P Feller, S Pohlmann, R Zentner, Alternation numbers of torus knots with small braid
index, Indiana Univ. Math. J. 67 (2018) 645–655 MR Zbl

Algebraic & Geometric Topology, Volume 23 (2023)

http://dx.doi.org/10.1073/pnas.9.3.93
http://msp.org/idx/zbl/49.0408.03
http://dx.doi.org/10.1007/BF02950718
http://msp.org/idx/mr/3069440
http://msp.org/idx/zbl/51.0450.01
http://dx.doi.org/10.4171/LEM/59-3-8
http://msp.org/idx/mr/3189041
http://msp.org/idx/zbl/1320.57005
http://dx.doi.org/10.1112/jtopol/jtn029
http://dx.doi.org/10.1112/jtopol/jtn029
http://msp.org/idx/mr/2461862
http://msp.org/idx/zbl/1160.57009
http://msp.org/idx/arx/2004.10807
http://www.numdam.org/book-part/AST_1983__107-108__87_0/
http://msp.org/idx/mr/0753131
http://msp.org/idx/zbl/0573.58022
http://dx.doi.org/10.1016/B978-044451452-3/50003-4
http://msp.org/idx/mr/2179260
http://msp.org/idx/zbl/1094.57006
http://dx.doi.org/10.2140/pjm.1993.161.25
http://dx.doi.org/10.2140/pjm.1993.161.25
http://msp.org/idx/mr/1237139
http://msp.org/idx/zbl/0813.57010
http://dx.doi.org/10.1142/S0218216511009212
http://msp.org/idx/mr/2851716
http://msp.org/idx/zbl/1238.57008
http://dx.doi.org/10.1007/s40306-014-0083-y
http://msp.org/idx/mr/3292579
http://msp.org/idx/zbl/1306.57007
http://dx.doi.org/10.2307/1969050
http://msp.org/idx/mr/0026050
http://msp.org/idx/zbl/0033.01002
http://dx.doi.org/10.1016/j.jctb.2007.08.003
http://dx.doi.org/10.1016/j.jctb.2007.08.003
http://msp.org/idx/mr/2389605
http://msp.org/idx/zbl/1135.05015
http://dx.doi.org/10.1090/S0002-9939-2010-10698-6
http://dx.doi.org/10.1090/S0002-9939-2010-10698-6
http://msp.org/idx/mr/2784832
http://msp.org/idx/zbl/1226.57020
http://msp.org/idx/mr/1745024
http://msp.org/idx/zbl/0968.57007
http://dx.doi.org/10.4310/CAG.2016.v24.n5.a4
http://msp.org/idx/mr/3622312
http://msp.org/idx/zbl/1373.57009
http://dx.doi.org/10.1112/topo.12112
http://msp.org/idx/mr/3977871
http://msp.org/idx/zbl/1450.57001
http://dx.doi.org/10.1007/s00208-017-1519-1
http://dx.doi.org/10.1007/s00208-017-1519-1
http://msp.org/idx/mr/3694648
http://msp.org/idx/zbl/1383.57003
http://msp.org/idx/arx/2202.12289
http://dx.doi.org/10.1512/iumj.2018.67.7302
http://dx.doi.org/10.1512/iumj.2018.67.7302
http://msp.org/idx/mr/3798852
http://msp.org/idx/zbl/1401.57011


The upsilon invariant at 1 of 3–braid knots 3803

[23] S Friedl, C Livingston, R Zentner, Knot concordances and alternating knots, Michi-
gan Math. J. 66 (2017) 421–432 MR Zbl

[24] D Gabai, U Oertel, Essential laminations in 3–manifolds, Ann. of Math. 130 (1989)
41–73 MR Zbl

[25] F A Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. 20 (1969)
235–254 MR Zbl

[26] R E Goodrick, Two bridge knots are alternating knots, Pacific J. Math. 40 (1972)
561–564 MR Zbl

[27] J E Greene, Donaldson’s theorem, Heegaard Floer homology, and knots with unknot-
ting number one, Adv. Math. 255 (2014) 672–705 MR Zbl

[28] J Hom, A survey on Heegaard Floer homology and concordance, J. Knot Theory
Ramifications 26 (2017) art. id. 1740015 MR Zbl

[29] D Hubbard, K Kawamuro, F C Kose, G Martin, O Plamenevskaya, K Raoux, L
Truong, H Turner, Braids, fibered knots, and concordance questions, from “Research
directions in symplectic and contact geometry and topology” (B Acu, C Cannizzo, D
McDuff, Z Myer, Y Pan, L Traynor, editors), Assoc. Women Math. Ser. 27, Springer
(2021) 293–324 MR Zbl

[30] T Kanenobu, Upper bound for the alternation number of a torus knot, Topology Appl.
157 (2010) 302–318 MR Zbl

[31] A Kawauchi, On alternation numbers of links, Topology Appl. 157 (2010) 274–279
MR Zbl

[32] P B Kronheimer, T S Mrowka, Gauge theory for embedded surfaces, I, Topology 32
(1993) 773–826 MR Zbl

[33] L Lewark, Rasmussen’s spectral sequences and the slN –concordance invariants, Adv.
Math. 260 (2014) 59–83 MR Zbl

[34] C Livingston, Computations of the Ozsváth–Szabó knot concordance invariant, Geom.
Topol. 8 (2004) 735–742 MR Zbl

[35] C Livingston, Notes on the knot concordance invariant upsilon, Algebr. Geom. Topol.
17 (2017) 111–130 MR Zbl

[36] C Livingston, A H Moore, KnotInfo: table of knot invariants, online resource (2021)
Available at http://knotinfo.math.indiana.edu

[37] A Lowrance, The Khovanov width of twisted links and closed 3–braids, Comment.
Math. Helv. 86 (2011) 675–706 MR Zbl

[38] A M Lowrance, Alternating distances of knots and links, Topology Appl. 182 (2015)
53–70 MR Zbl

[39] A V Malyutin, Writhe of (closed) braids, Algebra i Analiz 16 (2004) 59–91 MR Zbl
In Russian; translated in St. Petersburg Math. J. 16 (2005) 791–813

Algebraic & Geometric Topology, Volume 23 (2023)

http://dx.doi.org/10.1307/mmj/1491465685
http://msp.org/idx/mr/3657225
http://msp.org/idx/zbl/1376.57007
http://dx.doi.org/10.2307/1971476
http://msp.org/idx/mr/1005607
http://msp.org/idx/zbl/0685.57007
http://dx.doi.org/10.1093/qmath/20.1.235
http://msp.org/idx/mr/0248801
http://msp.org/idx/zbl/0194.03303
http://dx.doi.org/10.2140/pjm.1972.40.561
http://msp.org/idx/mr/0315693
http://msp.org/idx/zbl/0236.55001
http://dx.doi.org/10.1016/j.aim.2014.01.018
http://dx.doi.org/10.1016/j.aim.2014.01.018
http://msp.org/idx/mr/3167496
http://msp.org/idx/zbl/1351.57018
http://dx.doi.org/10.1142/S0218216517400156
http://msp.org/idx/mr/3604497
http://msp.org/idx/zbl/1360.57002
http://dx.doi.org/10.1007/978-3-030-80979-9_7
http://msp.org/idx/mr/4417720
http://msp.org/idx/zbl/1502.53112
http://dx.doi.org/10.1016/j.topol.2009.04.025
http://msp.org/idx/mr/2556109
http://msp.org/idx/zbl/1191.57007
http://dx.doi.org/10.1016/j.topol.2009.04.027
http://msp.org/idx/mr/2556105
http://msp.org/idx/zbl/1188.57002
http://dx.doi.org/10.1016/0040-9383(93)90051-V
http://msp.org/idx/mr/1241873
http://msp.org/idx/zbl/0799.57007
http://dx.doi.org/10.1016/j.aim.2014.04.003
http://msp.org/idx/mr/3209349
http://msp.org/idx/zbl/1316.57007
http://dx.doi.org/10.2140/gt.2004.8.735
http://msp.org/idx/mr/2057779
http://msp.org/idx/zbl/1067.57008
http://dx.doi.org/10.2140/agt.2017.17.111
http://msp.org/idx/mr/3604374
http://msp.org/idx/zbl/1357.57018
http://knotinfo.math.indiana.edu
http://dx.doi.org/10.4171/CMH/238
http://msp.org/idx/mr/2803857
http://msp.org/idx/zbl/1225.57010
http://dx.doi.org/10.1016/j.topol.2014.12.010
http://msp.org/idx/mr/3305610
http://msp.org/idx/zbl/1314.57008
http://mi.mathnet.ru/aa631
http://msp.org/idx/mr/2106667
http://msp.org/idx/zbl/1088.57008
https://doi.org/10.1090/S1061-0022-05-00879-4


3804 Paula Truöl

[40] C Manolescu, P Ozsváth, On the Khovanov and knot Floer homologies of quasi-
alternating links, from “Proceedings of the 14th Gökova geometry-topology conference”
(S Akbulut, T Önder, R J Stern, editors), GGT, Gökova (2008) 60–81 MR Zbl

[41] G Martin, Annular Rasmussen invariants: Properties and 3–braid classification,
preprint (2019) arXiv 1909.09245

[42] H R Morton, Closed braids which are not prime knots, Math. Proc. Cambridge Philos.
Soc. 86 (1979) 421–426 MR Zbl

[43] H Murakami, Some metrics on classical knots, Math. Ann. 270 (1985) 35–45 MR Zbl

[44] K Murasugi, On a certain numerical invariant of link types, Trans. Amer. Math. Soc.
117 (1965) 387–422 MR Zbl

[45] K Murasugi, On closed 3–braids, Mem. Amer. Math. Soc. 151, Amer. Math. Soc.,
Providence, RI (1974) MR Zbl

[46] P S Ozsváth, A I Stipsicz, Z Szabó, Concordance homomorphisms from knot Floer
homology, Adv. Math. 315 (2017) 366–426 MR Zbl

[47] P S Ozsváth, A I Stipsicz, Z Szabó, Unoriented knot Floer homology and the unori-
ented four-ball genus, Int. Math. Res. Not. 2017 (2017) 5137–5181 MR Zbl

[48] P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7
(2003) 615–639 MR Zbl

[49] J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University
(2003) MR arXiv math/0306378

[50] J Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010)
419–447 MR Zbl

[51] L Rudolph, Quasipositivity as an obstruction to sliceness, Bull. Amer. Math. Soc. 29
(1993) 51–59 MR Zbl

[52] O Schreier, Über die gruppen AaBb D 1, Abh. Math. Sem. Univ. Hamburg 3 (1924)
167–169 MR Zbl

[53] T Shibuya, Some relations among various numerical invariants for links, Osaka Math.
J. 11 (1974) 313–322 MR Zbl

[54] H F Trotter, Homology of group systems with applications to knot theory, Ann. of
Math. 76 (1962) 464–498 MR Zbl

Department of Mathematics, ETH Zurich
Zurich, Switzerland

paulagtruoel@gmail.com

Received: 20 September 2021 Revised: 22 March 2022

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://gokovagt.org/proceedings/2007/ggt07-manolescu-ozsvath.pdf
http://gokovagt.org/proceedings/2007/ggt07-manolescu-ozsvath.pdf
http://msp.org/idx/mr/2509750
http://msp.org/idx/zbl/1195.57032
http://msp.org/idx/arx/1909.09245
http://dx.doi.org/10.1017/S0305004100056267
http://msp.org/idx/mr/0542687
http://msp.org/idx/zbl/0433.57005
http://dx.doi.org/10.1007/BF01455526
http://msp.org/idx/mr/0769605
http://msp.org/idx/zbl/0535.57005
http://dx.doi.org/10.2307/1994215
http://msp.org/idx/mr/0171275
http://msp.org/idx/zbl/0137.17903
http://dx.doi.org/10.1090/memo/0151
http://msp.org/idx/mr/0356023
http://msp.org/idx/zbl/0327.55001
http://dx.doi.org/10.1016/j.aim.2017.05.017
http://dx.doi.org/10.1016/j.aim.2017.05.017
http://msp.org/idx/mr/3667589
http://msp.org/idx/zbl/1383.57020
http://dx.doi.org/10.1093/imrn/rnw143
http://dx.doi.org/10.1093/imrn/rnw143
http://msp.org/idx/mr/3694597
http://msp.org/idx/zbl/1405.57024
http://dx.doi.org/10.2140/gt.2003.7.615
http://msp.org/idx/mr/2026543
http://msp.org/idx/zbl/1037.57027
http://msp.org/idx/mr/2704683
http://msp.org/idx/arx/math/0306378
http://dx.doi.org/10.1007/s00222-010-0275-6
http://msp.org/idx/mr/2729272
http://msp.org/idx/zbl/1211.57009
http://dx.doi.org/10.1090/S0273-0979-1993-00397-5
http://msp.org/idx/mr/1193540
http://msp.org/idx/zbl/0789.57004
http://dx.doi.org/10.1007/BF02954621
http://msp.org/idx/mr/3069424
http://msp.org/idx/zbl/50.0070.01
http://projecteuclid.org/euclid.ojm/1200757391
http://msp.org/idx/mr/0353295
http://msp.org/idx/zbl/0291.55002
http://dx.doi.org/10.2307/1970369
http://msp.org/idx/mr/0143201
http://msp.org/idx/zbl/0108.18302
mailto:paulagtruoel@gmail.com
http://msp.org
http://msp.org


msp
Algebraic & Geometric Topology 23:8 (2023) 3805–3834

DOI: 10.2140/agt.2023.23.3805
Published: 5 November 2023

Cusps and commensurability classes
of hyperbolic 4–manifolds

CONNOR SELL

There are six orientable compact flat 3–manifolds that can occur as cusp cross-sections
of hyperbolic 4–manifolds. We provide criteria for exactly when a given commensu-
rability class of arithmetic hyperbolic 4–manifolds contains a representative with a
given cusp type. In particular, for three of the six cusp types, we provide infinitely
many examples of commensurability classes that contain no manifolds with cusps of
the given type; no such examples were previously known for any cusp type.

57M50; 11E20, 11F06, 16H05, 57K50

1 Introduction

Let M DHn=� be a finite-volume noncompact hyperbolic n–manifold. A cusp of
M is homeomorphic to B �RC, where B is a compact flat .n�1/–manifold. If M is
orientable, then B must be orientable. In [13], Long and Reid proved that every compact
flat .n�1/–manifold, up to homeomorphism, must occur as a cusp cross-section of a
hyperbolic n–orbifold; this result was upgraded from n–orbifolds to n–manifolds by
McReynolds in [15]. Long and Reid [13] give a constructive algorithm which, given a
compact flat .n�1/–manifold, outputs an arithmetic hyperbolic n–orbifold with a cusp
with the specified cross-section. We discuss this algorithm in more detail in Section 5.

For ease of notation, we may refer to a cusp with cross-section B as a cusp of type B,
as the cross-section of a cusp determines its homeomorphism class. We may also refer
to a homeomorphism class of cusps, or “cusp type”, by its cross-section. See Section 4
for a description of the six possible cusp types for hyperbolic 4–manifolds, and the
names used below.

The above results tell us that each compact flat .n�1/–manifold occurs as a cusp of
some hyperbolic n–manifold, but little is known about which conditions give rise to

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution
License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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each cusp type. To investigate the occurrence of cusp types further, it makes sense
to look at compact flat 3–manifolds in finite-volume hyperbolic 4–manifolds, as this
is the lowest dimension in which multiple orientable cusp types can occur. It is well
known that the 3–torus occurs as a cusp in every commensurability class of cusped
hyperbolic 4–manifolds. Indeed, in every commensurability class of cusped hyperbolic
4–manifolds, manifolds where all cusp types are the 3–torus occur; see McReynolds,
Reid, and Stover [16]. A striking result by Kolpakov and Martelli [10] showed that there
exist one-cusped hyperbolic 4–manifolds having cusp type the 3–torus. Furthermore,
Kolpakov and Slavich [11] showed that the 1

2
–twist also occurs as the cusp type of a one-

cusped hyperbolic 4–manifold. On the other hand, the 1
3

–twist and 1
6

–twist have been
obstructed from occurring as cusps of one-cusped manifolds; see Long and Reid [12].
Although it is as yet unknown whether the Hantzsche–Wendt manifold occurs as a cusp
type of a one-cusped hyperbolic 4–manifold, it was shown by Ferrari, Kolpakov, and
Slavich [9] that there exists a finite-volume hyperbolic 4–manifold where all cusp types
are the Hantzsche–Wendt manifold. We also note that the isometry classes within each
homeomorphism class that occur geometrically as cusps of hyperbolic 4–manifolds are
dense in the moduli space of any compact flat 3–manifold; see Nimershiem [20].

We provide the first known examples of commensurability classes that avoid three cusp
types. In fact, we provide infinitely many such examples, obtaining the result below.
Furthermore, given any commensurability class C of cusped arithmetic hyperbolic
4–manifolds and any cusp type B, we give conditions on when C contains a manifold
with a cusp of type B in Theorem 5.1. Notably, three cusp types occur in every such
class. We refer to Section 2 for terminology used in Theorems 1.1 and 1.2.

Theorem 1.1 Every commensurability class of arithmetic hyperbolic 4–manifolds
contains manifolds with the 3–torus , the 1

2
–twist , and the Hantzsche–Wendt manifold

as cusp types. There exist infinitely many commensurability classes C of hyperbolic
4–manifolds such that no manifold in C has a cusp of type 1

3
–twist. The same holds for

cusps of type 1
4

–twist and 1
6

–twist.

Additionally, we can use “inbreeding” of arithmetic hyperbolic 4–manifolds (see
Agol [1]) to construct some nonarithmetic manifolds that avoid some cusp types, up to
commensurability.

Theorem 1.2 There exist infinitely many commensurability classes of finite-volume
cusped nonarithmetic hyperbolic 4–manifolds that avoid each of the following cusp
types: the 1

3
–twist , the 1

4
–twist , and the 1

6
–twist.

Algebraic & Geometric Topology, Volume 23 (2023)
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We briefly review the organization of the paper. In Sections 2, 3, and 4, we provide
preliminary information about quadratic forms, quaternion algebras, arithmetic hy-
perbolic manifolds, and the six orientable compact flat 3–manifolds that are the cusp
types of orientable hyperbolic 4–manifolds. In Sections 5 and 6, we prove Theorem 1.1
and generalize it to give complete conditions on when a given commensurability class
contains a manifold with a cusp of given type. In Section 7, we use this result to show
that there are some commensurability classes of hyperbolic 5–manifolds that avoid
some compact flat 4–manifold cusp types, and explain why we can’t make the same
argument in higher dimensions. In Section 8, we show that there are commensurability
classes of nonarithmetic hyperbolic manifolds in both 4 and 5 dimensions that avoid
certain cusp types as well, proving Theorem 1.2.

Acknowledgements The author wishes to thank his PhD advisor Alan Reid for his
guidance and useful discussions. This paper is partially supported by NSF grant
DMS-1745670.

2 Quadratic forms and quaternion algebras

2.1 Quadratic forms

Definition 2.1 (quadratic form) A quadratic form over a field K is a homogeneous
polynomial of degree 2 with coefficients in K.

A quadratic form q.x/D
Pn

iD1

Pn
jD1 aij xixj in n variables is said to have rank n,

and can be written as an n� n symmetric matrix Q such that q.x/D xtQx. This can
be accomplished by defining the entries by Qii D aii and Qij D

1
2
aij when i ¤ j .

For any quadratic form q of rank n and ring R, we can define the orthogonal group
O.q;R/ to be the group of all invertible n� n matrices A with entries in R such that
q.x/D q.Ax/ for any x 2Rn. We can similarly define the special orthogonal group
SO.q;R/ to be the subgroup of O.q;R/ of matrices with determinant 1. Note that
SO.q;R/ is a Lie group, and thus has an identity component SO0.q;R/. Then, for any
subring R�R, we define SO0.q;R/D SO0.q;R/\SO.q;R/. Our focus is quadratic
forms over Q and the corresponding groups SO0.q;Z/.

Definition 2.2 (rational equivalence) Quadratic forms given by symmetric matrices
Q1;Q2 2 GL.n;Q/ are rationally equivalent (or equivalent over Q) if there exists
T 2 GL.n;Q/ such that T tQ1T DQ2.
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All quadratic forms over Q are rationally equivalent to a diagonal quadratic form, by
which we mean a quadratic form whose corresponding matrix is diagonal. Thus, when
working with a rational equivalence class of quadratic forms, we will always choose a
diagonal representative. For ease of notation, we will denote diagonal quadratic forms
q.x/D

Pn
iD1 aix

2
i by writing their coefficients ha1; : : : ; ani. Here all quadratic forms

will be nondegenerate; that is, ai ¤ 0 for all i .

There is another relevant notion of equivalence, which is closely related to rational
equivalence [18]:

Definition 2.3 (projective equivalence) Quadratic forms q1 and q2 are projectively
equivalent over Q, or just “projectively equivalent”, if there are nonzero integers a and
b such that aq1 and bq2 are rationally equivalent.

Let q1 and q2 be quadratic forms of odd rank with the same signature and discriminant.
We can check for projective equivalence by scaling q1 and q2 so they have the same
discriminant, and then checking for rational equivalence.

A complete set of invariants for diagonal quadratic forms up to rational equivalence is
given by the signature, discriminant, and the Hasse–Witt invariants over all primes p.
A quadratic form q D ha1; : : : ; ani of signature .a; b/ has a positive coefficients and b

negative coefficients. The discriminant d 2Q=.Q�/2 is given by d D
Qn

iD1 ai ; note
that it is defined only up to multiplication by squares. The Hasse–Witt invariants are a
little harder to define, and contain the bulk of the number-theoretic information. For
integers a and b and prime p, we first define the Hilbert symbol

.a; b/p D

�
1 if z2 D ax2C by2 has a solution in Qp;

�1 otherwise:

Here Qp denotes the p–adic field at p, or R if p D1.

Definition 2.4 (Hasse–Witt invariant) For a diagonal quadratic form qDha1; : : : ; ani

over Q and a prime p, possibly1, the Hasse–Witt invariant of q at p is given by

�p.q/D
Y

1�i<j�n

.ai ; aj /p:

Every Hasse–Witt invariant must have value 1 or �1. There is a closed-form equation
that allows us to easily compute a Hilbert symbol; thus, a Hasse–Witt invariant is easy
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to compute as well. Let aD p˛u and b D pˇv with u and v both relatively prime to p

in Z. Then for p > 2

.a; b/p D .�1/˛ˇ�.p/
�

u

p

�ˇ� v
p

�˛
;

and, for p D 2,
.a; b/p D .�1/�.u/�.v/C˛!.v/Cˇ!.u/:

Here we use the Legendre symbol and the functions �.x/ D 1
2
.x � 1/ and !.x/ D

1
8
.x2�1/, both of which only need to be defined modulo 2 [25, Chapter III, Theorem 1].

We can see from these equations that .a; b/p can only be �1 if either a or b is divisible
by p an odd number of times. This means that �p.q/D 1 for all primes p that don’t
occur as a factor of a coefficient of q. In particular, for any given quadratic form q,
�p.q/D 1 for all but finitely many values of p.

Additionally, Hilbert’s reciprocity law states that the Hilbert symbols satisfy the identityQ
p.a; b/p D 1, where the product is taken over all places p of Q, including p D1

[25, Chapter III, Theorem 3]. From this, we deduce the identity
Q

p �p.q/D 1 for any
quadratic form q. Since .a; b/1 depends on the existence of a nonzero solution to
z2 D ax2C by2 over the field Q1 DR, we know .a; b/1 D�1 if and only if both a

and b are negative. We’ll be working mostly with quadratic forms of signature .4; 1/,
so in this case

Q
1�i<j�n.ai ; aj /1 D 1, as no pair .ai ; aj / of distinct coefficients are

both negative. As a result, the identity
Q

p �p.q/ D 1 holds when we consider only
finite places p for quadratic forms of signature .4; 1/.

2.2 Quaternion algebras

Definition 2.5 (quaternion algebra) A quaternion algebra over a field F with
char.F /¤2 is an algebra consisting of elementswCxiCyjCzij , withw;x;y; z 2F ,
equipped with relations i2 D a, j 2 D b, and ij D�j i for some fixed a; b 2 F . We
write this as ..a; b/=F /.

Alternatively, a quaternion algebra Q over F is any central simple algebra of dimension
4 over F . Every such QD..a; b/=F / has a norm form, given by N.wCxiCyjCzij /D

w2� ax2� by2C abz2, which is compatible with multiplication in Q.

The pure quaternions Q0 of Q are the elements w C xi C yj C zij with w D 0.
Restricted to the pure quaternions, the norm form of Q (or, for short, the norm form
of Q0) becomes N.xi C yj C zij /D�ax2 � by2C abz2. Note that any quadratic
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form of rank 3 and discriminant 1 is rationally equivalent to such a form. To see
this, observe that if ha; b; ci has discriminant 1 then c D ab up to multiplication by a
square. In particular, the quadratic form ha; b; abi coincides with the norm form of
..�a;�b/=Q/0. We will make use of quadratic forms of signature .4; 1/ that are the
direct sum of a positive definite norm form of some Q0 and h1;�1i.

Definition 2.6 (quaternion type) A quadratic form of quaternion type is a quadratic
form q D ha; b; ab; 1;�1i for some positive a; b 2 Z.

Lemma 2.7 Every quadratic form q over Q of signature .4; 1/ is projectively equiva-
lent to a quadratic form q0 of quaternion type.

In order to prove this lemma we’ll need to use Conway’s p–excesses, as described in
[7, Chapter 15]. These will not appear in the rest of the paper, so readers not interested
in the proof of this lemma may ignore these definitions.

Definition 2.8 (p–excess of rank-1 quadratic form) Let p¤2 be a prime, possibly1,
and let q D hai be a rank-1 quadratic form such that aD pku with u relatively prime
to p. If p D1, then let pk be the sign of a and u its magnitude. Then we define the
p–excess of q to be

ep.q/�

�
pk C 3 .mod 8/ if k is odd and u is a quadratic nonresidue modulo p;
pk � 1 .mod 8/ otherwise:

If p D 2, then

ep.q/�

�
�u� 3 .mod 8/ if k is odd and u� 3; 5 .mod 8/;

�uC 1 .mod 8/ otherwise:

Definition 2.9 (p–excess of arbitrary quadratic form) Let p be a prime, possibly1,
and let q D ha1; : : : ; ani be a diagonal quadratic form. Then we define the p–excess
of q to be

ep.q/�

nX
iD1

ep.haii/ .mod 8/:

The most notable properties of the p–excesses are that they are additive under direct
sum of quadratic forms, and that they are invariant under rational equivalence. In fact,
p–excesses are part of a complete invariant of quadratic forms up to rational equivalence,
together with the signature and, in the case of forms of even rank, the discriminant
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[7, Section 15.5.1, Theorem 3]. We can also extract the Hasse–Witt invariants of a
quadratic form q from the discriminant d and p–excesses ep.q/ [7, Section 15.5.3]:

�p.q/D

�
1 if ep.q/D ep.hd; 1; : : : ; 1i/;

�1 otherwise:

To prove Lemma 2.7, we’ll use the additivity of ep to construct a rank-3 form q3

of discriminant 1 such that q3 ˚ h1;�1i has certain desired Hasse–Witt invariants.
We’ll also use the following lemma, which can be found in greater generality in
[25, Chapter IV, Proposition 7].

Lemma 2.10 Let d , r , s, and n be integers , and �p be 1 or �1 for each prime p,
including1. Then there exists a rank-n quadratic form q of discriminant d , signature
.r; s/, and Hasse–Witt invariants �p if and only if the following conditions are satisfied :

(1) �p D 1 for almost all p and
Q
�p D 1 over all primes p.

(2) �p D 1 if nD 1, or if nD 2 and the image of d in Q�p=.Q
�
p/

2 is �1.

(3) r; s � 0 and nD r C s.

(4) The sign of d is equal to .�1/s .

(5) �1 D .�1/s.s�1/=2.

Proof of Lemma 2.7 We can scale q to ensure it has discriminant �1 by multiplying
the entire form by �d , where d is its discriminant. This will multiply the product of
the terms by �d5, and thus we’ll obtain the new discriminant �d6 ��1. Note that
scaling a form does not change its projective equivalence class.

Now, compute the p–excesses ep.q/ and set e0p D ep.q/� ep.h1;�1i/. By definition
ep.ha1; a2; : : : ; ani/D

Pn
iD1 ep.ai/, so if we can find a quadratic form q3 of signature

.3; 0/, discriminant 1, and p–excesses equal to e0p, then q0 D q3˚h1;�1i will have
p–excesses equal to those of q and discriminant �1. Since it will also have signature
.4; 1/, q0 will be rationally equivalent to q.

It suffices, then, to show that q3 exists. Lemma 2.10 gives five conditions on the
Hasse–Witt invariants, signature, and discriminant under which a quadratic form must
exist. Conditions (2)–(4) hold trivially for q3, either because they only apply to forms
of rank 2 or less, or because they merely require that the signature is valid and agrees
with the sign of the discriminant. This is true because the desired signature of q3 is
.3; 0/ and the discriminant is 1.
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Conditions (1) and (5) concern the desired Hasse–Witt invariants �0p of q3, which can
be determined from the desired discriminant 1 and desired p–excesses e0p. We will
show that �0p D �p.q/ for all p, and thus that conditions (1) and (5) are satisfied.

Recall that �0p D 1 if e0p D ep.hd.q3/; 1; 1i/ D ep.h1; 1; 1i/, and �1 otherwise. We
can similarly compute the Hasse–Witt invariants of q to be �p.q/D 1 if and only if
ep.q/ D ep.h�1; 1; 1; 1; 1i/. By construction, e0p D ep.q/� ep.h1;�1i/. Then note
that ep.h1; 1; 1i/D ep.h�1; 1; 1; 1; 1i/�ep.h1;�1i/ by additivity of p–excesses. Thus,
�0p D �p.q/ for all p.

In particular, for any quadratic form q, �p.q/ D 1 for all but finitely many p, andQ
�p.q/D 1 over all primes p. These same properties must hold for �0p , so condition (1)

holds. Similarly, �1.q/D 1 since q has signature .4; 1/, so �01 D 1 as well, satisfying
condition (5). Now we can apply Lemma 2.10 to deduce that a valid quadratic form
q3 exists with signature .3; 0/, discriminant 1, and Hasse–Witt invariants �p.q3/D �

0
p .

As stated above, we can take the form q0D q3˚h1;�1i, which is rationally equivalent
to q, has discriminant �1, and is of the form ha; b; c; 1;�1i, where q3 D ha; b; ci.

On the pure quaternions of any quaternion algebra, we can define the orthogonal group

O.N;Q0/D ff WQ0!Q0 j f is linear and N.f .x//DN.x/ for all x 2Q0g

as the set of linear transformations on Q0 that preserve the norm form. These transfor-
mations can be described as conjugation by the units Q� of Q. This is the intuition
behind the following theorem from [14, Section 2.4]:

Theorem 2.11 Let QD ..�a;�b/=Q/ and q D ha; b; abi. Then SO.q;Q/ is isomor-
phic to Q�=Z.Q�/, where Z.G/ denotes the center of G.

There are three more theorems from [14] that are used in our argument. We state them
here, along with a relevant definition, and remark that it will be important to obstruct
certain torsion from occurring in Q�=Z.Q�/.

Definition 2.12 (ramification) A prime p ramifies a quaternion algebra Q over Q

if Q˝Q Qp is isomorphic to the unique division algebra of dimension 4 over Qp.
Otherwise, Q˝Q Qp is isomorphic to the algebra of 2� 2 matrices M2.Qp/, and we
say Q splits over p.

Theorem 2.13 [14, Lemma 12.5.6] Let �n for n> 2 be a primitive nth root of unity,
and Q be a quaternion algebra over Q. Then Q�=Z.Q�/ contains an element of
order n if and only if �nC ��1

n 2Q and Q.�n/ embeds in Q.

Algebraic & Geometric Topology, Volume 23 (2023)



Cusps and commensurability classes of hyperbolic 4–manifolds 3813

Theorem 2.14 [14, Theorem 7.3.3] Given a quaternion algebra Q over Q and a
quadratic extension L of Q, then L embeds in Q if and only if , for each prime p that
ramifies Q, p does not split in L.

Theorem 2.15 [14, Theorem 2.6.6] Let p ¤ 2;1 be a prime in Q. Consider the
quaternion algebra QD ..a; b/=Q/, with both a and b squarefree.

(1) If p does not divide a or b, then p does not ramify Q.

(2) If p divides a but not b, then p ramifies Q if and only if b is a quadratic
nonresidue modulo p.

(3) If p divides both a and b, then p ramifies Q if and only if �a�1b is a quadratic
nonresidue modulo p.

3 Arithmetic hyperbolic manifolds

3.1 Hyperbolic manifolds

Let q D x2
1
C � � � C x2

n � x2
nC1

be a quadratic form of signature .n; 1/. We define
hyperbolic space using the hyperboloid model HnDfx 2RnC1 jq.x/D�1;xnC1>0g,
equipped with the metric derived from the inner product

x ıy D
p

x1y1C � � �Cxnyn�xnC1ynC1;

so that .xıx/2D q.x/. A hyperplane in Hn is an intersection of a subspace V �RnC1

with Hn, and Hn has a boundary @Hn consisting of 1–dimensional subspaces of light-
like vectors y 2RnC1 such that q.y/D 0. The isometries of Hn must preserve q, and
in fact IsomC.Hn/D SO0.q;R/.

Observe that we can perform this construction with any form q0 of signature .n; 1/ in
place of q. The resulting space Hn

q0 is isometric to Hn, although both are different
subsets of RnC1 and points in QnC1 in one model may not correspond to points in
QnC1 in the other. Thus, IsomC.Hn/ is isomorphic to IsomC.Hn

q0/. In particular, there
is a linear transformation A that maps any Hn

q0 to Hn isometrically, so any isometry
 2 IsomC.Hn

q0/ can be said to sit in IsomC.Hn/ as AA�1. We will sometimes abuse
notation and refer to any Hn

q0 as Hn when it is clear which quadratic form is being used.

We will use the notion of hyperplanes P sitting rationally inside Hn
q . By this, we mean

P is the intersection of Hn
q with a subspace V � RnC1 determined by a system of

equations with rational coefficients. This notion depends on our choice of q, which in
our case will always have coefficients in Z.
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A hyperbolic n–manifold is a quotient Hn=� of hyperbolic n–space by a discrete,
torsion-free group � acting on Hn via isometries. If � is not torsion-free, a hyperbolic
orbifold results instead. A cusp of a finite-volume hyperbolic n–manifold or orbifold is
a subset of the manifold homeomorphic to B �RC for some cross-section B. Cusps
result from the parabolic elements of � that fix a single point y of @Hn. Specifically,
since Stab�.y/ acts on a horosphere centered at y, which has a flat geometry, the
cross-section of the corresponding cusp is given by BDEn�1=Stab�.y/. We consider
only finite-volume hyperbolic manifolds, so B is compact. Furthermore, if Hn=� is
orientable then so is B. For more information on cusps of hyperbolic manifolds and
the thick–thin decomposition we refer the reader to [23, Chapter 12].

Definition 3.1 (commensurability) Two subgroups �1 and �2 of a group � are
commensurable if �1\�2 has finite index in both �1 and �2. Two hyperbolic orbifolds
Hn=�1 and Hn=�2 are commensurable if �1

�1 and �2 are commensurable in
Isom.Hn/ for some  2 Isom.Hn/.

Note that two orbifolds are commensurable if and only if they share a finite cover.

3.2 Arithmetic manifolds

Since we are working solely with cusped hyperbolic manifolds, all arithmetic hyperbolic
manifolds in this paper are of simplest type. This allows us to use a simpler definition
of arithmetic hyperbolic manifolds than the more involved general definition. This is
stated, for example, in [19, Proposition 6.4.2] with the condition n¤ 3; 7, although
this condition is unnecessary.

Definition 3.2 (arithmetic hyperbolic orbifold/arithmetic group) Let M be a finite-
volume cusped hyperbolic n–orbifold with �1.M / D � < Isom.Hn/. Then M is
arithmetic if there exists a quadratic form q of signature .n; 1/ such that A�1�A <

Isom.Hn
q/ is commensurable to SO0.q;Z/, where A is the linear transformation that

maps Hn
q to Hn isometrically. We say � is arithmetic under the same condition, that

is, when � is conjugate to a subgroup of IsomC.Hn
q/ commensurable to SO0.q;Z/.

A hyperbolic arithmetic n–manifold is a hyperbolic arithmetic n–orbifold that is also a
hyperbolic manifold. Henceforth we may refer to the arithmetic orbifold Hn

q=SO0.q;Z/

as Hn=SO0.q;Z/ using this particular embedding, without ambiguity.

To any cusped arithmetic hyperbolic n–orbifold M we can associate the (nonunique)
quadratic form q from the definition. There are easily checkable conditions on quadratic
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forms q1 and q2 that determine whether �1 D SO0.q1;Z/ and �2 D SO0.q2;Z/ are
commensurable as subgroups of Isom.Hn/, identifying both Isom.Hn

q1
/ and Isom.Hn

q2
/

with Isom.Hn/, and are thus associated to the same orbifolds.

Proposition 3.3 [18, Theorem 1] Let M1 and M2 be arithmetic hyperbolic orbi-
folds with associated quadratic forms q1 and q2, respectively. Then M1 and M2 are
commensurable if and only if q1 and q2 are projectively equivalent.

One way to determine whether two quadratic forms q1 and q2 of signature .4; 1/ are
projectively equivalent is to scale both so they have the same discriminant, and then
compare Hasse–Witt invariants. In particular, since such forms have odd rank, if qi

has discriminant �di then the form diqi must have discriminant �1. Thus, we can
deal with rational equivalence rather than projective equivalence by associating to a
commensurability class of arithmetic hyperbolic 4–manifolds a (nonunique) quadratic
form q of discriminant �1. Furthermore, by Lemma 2.7 we can take q to be of
quaternion type. We summarize this discussion:

Corollary 3.4 Every commensurability class C of cusped arithmetic hyperbolic 4–
orbifolds has an associated quadratic form q of quaternion type such that H4=SO0.q;Z/

lies in C .

3.3 Systoles

Definition 3.5 (systole length) The systole length of a manifold M is the minimal
length of a closed geodesic in M .

The arithmetic n–manifolds we deal with have a minimum bound on the systole length.
The following proposition is an application of Corollary 1.3 or 1.8 from [8], depending
on whether n is even or odd:

Proposition 3.6 There is a lower bound on the systole length of a cusped arithmetic
hyperbolic 4–manifold.

We will use this fact to show that certain finite-volume hyperbolic n–manifolds are
nonarithmetic.

4 Compact flat 3–manifolds

Recall from Section 3.1 that finite-volume cusped hyperbolic n–manifolds M DHn=�

have compact flat .n�1/–manifolds B for the cross-sections of their cusps, and if M
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M �1.M / Hol.�1.M //

3–torus Z3Dht1; t2; t3 j ti tj D tj tii 1

1
2

–twist h˛; t1; t2; t3 j ti tj D tj ti ; ˛
2D t1; ˛t2˛

�1D t�1
2
; ˛t3˛

�1D t�1
3
i Z=2Z

H–W hx;y; z jxy2x�1y2D 1;yx2y�1x2D 1;xyzD 1i [4] Z=2Z�Z=2Z
1
3

–twist h˛; t1; t2; t3 j ti tj D tj ti ; ˛
3D t1; ˛t2˛

�1D t3; ˛t3˛
�1D t�1

2
t�1
3
i Z=3Z

1
4

–twist h˛; t1; t2; t3 j ti tj D tj ti ; ˛
4D t1; ˛t2˛

�1D t3; ˛t3˛
�1D t�1

2
i Z=4Z

1
6

–twist h˛; t1; t2; t3 j ti tj D tj ti ; ˛
6D t1; ˛t2˛

�1D t3; ˛t3˛
�1D t�1

2 t3i Z=6Z

Table 1: The six orientable compact flat 3–manifolds [21].

is orientable then so is B. Considering only orientable manifolds, this means that
hyperbolic 2– and 3–manifolds only have one type of cusp cross-section each: S1

and T 2, respectively. However, there are six orientable compact flat 3–manifolds up
to homeomorphism, which means there are six possible cusp cross-sections for an
orientable finite-volume hyperbolic 4–manifold. We give a brief description of each in
Table 1 and Figure 1.

In the images depicting the fundamental domains, a face without a label is paired with
its opposite face via translation, and labeled faces are paired in such a way that the
labels align. Note that all but the Hantzsche–Wendt manifold differ from the 3–torus by
at most a twist on one of the face pairings. All six flat manifolds are commensurable,
and are in fact finitely covered by the 3–torus.

P
P

3–torus

P

P

1
2

–twist

F

P
P

J

R
R
G

G F

J

Hantzsche–Wendt

P

P

1
3

–twist

P

1
4

–twist

P

P

P

1
6

–twist

Figure 1: The fundamental domains for the manifolds in Table 1.
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Every isometry of Euclidean 3–space E3 is an affine transformation v 7!AvCw for
some A 2 SO.3/. For a group G < Isom.E3/, the holonomy of G is given by

Hol.G/D fA 2 SO.3/ j .v 7!AvCw/ 2G for some w 2R3
g:

Hol.G/ is independent of the faithful representation of G into Isom.E3/.

5 Classes with a given cusp

One goal of the next two sections is to prove Theorem 1.1. In fact, we generalize
Theorem 1.1 to a full description of exactly when a commensurability class of cusped
arithmetic hyperbolic 4–manifolds contains a manifold with a given cusp type.

Theorem 5.1 Let C be a commensurability class of cusped arithmetic hyperbolic
4–manifolds , with associated quadratic form q, scaled so that the discriminant of q

is �1. Then:

� C must contain a manifold with a 3–torus cusp , a manifold with a 1
2

–twist cusp ,
and a manifold with a Hantzsche–Wendt cusp.

� C contains a manifold with a 1
4

–twist cusp if and only if �p.q/ D 1 for all
p � 1 .mod 4/.

� C contains a manifold with a 1
3

–twist cusp if and only if �p.q/ D 1 for all
p � 1 .mod 3/. C contains a manifold with a 1

6
–twist cusp under the same

condition.

In this section, we prove the positive portion of the theorem, namely that C does indeed
contain certain cusp types.

Proposition 5.2 Let C be a commensurability class of arithmetic hyperbolic 4–
manifolds , with associated quadratic form q of discriminant �1. Then:

� C must contain a manifold with a 3–torus cusp , a manifold with a 1
2

–twist cusp ,
and a manifold with a Hantzsche–Wendt cusp.

� If �p.q/D 1 for all p � 1 .mod 4/, then C contains a manifold with a 1
4

–twist
cusp.

� If �p.q/D 1 for all p � 1 .mod 3/, then C contains a manifold with a 1
3

–twist
cusp and a manifold with a 1

6
–twist cusp.

Our primary tool for showing that a commensurability class must contain a given cusp
type is the algorithm given by Long and Reid [13]. Given a compact flat n–manifold B,
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this algorithm yields an arithmetic hyperbolic .nC1/–orbifold with a cusp of type B. We
can always find an .nC1/–manifold with a cusp of type B covering this orbifold by [15].

Given a cusp type B of dimension n, the algorithm works as follows. Consider the
holonomy group of �1.B/. We can find a faithful representation of Hol.�1.B// into
GL.n;Z/, which yields an embedding Hol.�1.B//�GL.n;Z/. Further, we can choose
a signature-.n; 0/ quadratic form qn that is invariant under Hol.�1.B// by considering
an arbitrary signature-.n; 0/ quadratic form r and taking the average of all the quadratic
forms r ı A over A 2 Hol.�1.B//, since Hol.�1.B// is finite. Then, using linear
algebra, the algorithm extends the representation into GL.nC 2;Z/ in such a way that
Hol.�1.B// leaves a quadratic form q0 rationally equivalent to qn˚h1;�1i invariant.
As a result, we see that some cover of HnC1=SO0.q

0;Z/must contain a cusp of type B,
and is commensurable to HnC1=SO0.qn˚h1;�1i;Z/.

By investigating properties of quadratic forms qn invariant under Hol.�1.B//, we
characterize the commensurability classes of arithmetic hyperbolic manifolds that can
be output by this algorithm. Since we’re working with flat 3–manifolds and hyperbolic
4–manifolds, we apply the algorithm with nD 3.

Proof of Proposition 5.2 Given the commensurability class C , we can choose a
quadratic form q D hx;y;xy; 1;�1i of quaternion type such that H4=SO0.q;Z/ 2 C

by Lemma 2.7. Note that q has discriminant �1. We can compute the Hasse–Witt
invariants �p.q/.

First let B be the 3–torus, 1
2

–twist, or Hantzsche–Wendt manifold. These have holo-
nomy groups of 1, Z=2Z, and Z=2Z�Z=2Z, respectively. Each holonomy group has
a representation into GL.3;R/ consisting solely of diagonal matrices with ˙1 along
the diagonal. In particular, these representations fix any quadratic form ha; b; abi of
rank 3. Thus, we can apply the Long–Reid algorithm to find a representation of the
corresponding Bieberbach group into SO0.ha; b; ab; k;�ki;Z/. Set aD x and b D y.
Then ha; b; ab; k;�ki is rationally equivalent to ha; b; ab; 1;�1i D hx;y;xy; 1;�1i.
This yields an orbifold commensurable to H4=SO0.q;Z/ that has the desired cusp
type. By [15], there is also a manifold with the desired cusp type.

Next, consider the 1
4

–twist cusp. This flat manifold has holonomy group Z=4Z, and
has a representation � into SL.3;Z/ mapping its generator g4 to

�.g4/D

24 0 1 0

�1 0 0

0 0 1

35 :
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This holonomy preserves any quadratic form q3 D ha; a; bi, so the Long–Reid al-
gorithm finds a representation of B into SO0.ha; a; b; k;�ki;Z/, which is commen-
surable to SO0.hab; ab; 1; 1;�1i;Z/. The Hasse–Witt invariant at p of the form
q0 D hab; ab; 1; 1;�1i is equal to the Hilbert symbol .ab; ab/p . Let ab D up˛ , where
u is an integer not divisible by p. By definition, for p > 2 and �.p/D 1

2
.p� 1/,

.ab; ab/p D .�1/�.p/˛˛
�

u

p

�˛�u

p

�˛
D .�1/�.p/˛:

Note that �.p/ is even if p � 1 .mod 4/ and odd if p � 3 .mod 4/.

So if p � 1 .mod 4/, we always have �p.q0/D .ab; ab/p D 1. But if p � 3 .mod 4/,
then �p.q0/D�1 if and only if p divides ab an odd number of times. Given the finite set
of primes pi>2 such that �p.q/D�1, as long as there is no pi such that pi�1 .mod 4/,
we can now ensure that there is a quadratic form q00 D

˝Q
pi ;

Q
pi ; 1; 1;�1

˛
such that

�p.q
00/ D �p.q/. Note that the identity

Q
�p.q/ D 1 ensures that �2.q

00/ D �2.q/ as
well. Thus q00 and q both have the same Hasse–Witt invariants, as well as discriminant
�1 and signature .4; 1/. Hence q00 is rationally equivalent to q and, taking ab D

Q
pi ,

we see that H4=SO0.q
00;Z/ must have a finite cover with a 1

4
–twist cusp. Thus we can

construct a manifold in C with a 1
4

–twist cusp.

The arguments for the 1
3

–twist and the 1
6

–twist cusps are similar. The holonomy groups
Z=3Z and Z=6Z have representations �3 and �6 into SL.3;Z/ mapping the respective
generators g3 and g6 as

�3.g3/D

24�1 �1 0

1 0 0

0 0 1

35 and �6.g6/D

240 �1 0

1 1 0

0 0 1

35 :
Under this representation, both holonomy groups preserve quadratic forms of the
form q0.x/ D 4ax2

1
C 4ax2

2
� 4ax1x2C 3bx2

3
. With some effort, we can show that

this form is projectively equivalent to q00 D hab; 3ab; 3; 1;�1i. We then compute
that �p.q00/ D .ab; 3ab/p.3; 3/p. The second Hilbert symbol .3; 3/p is equal to �1

at p D 2; 3 and equal to 1 everywhere else. To compute the first Hilbert symbol
.ab; 3ab/p , we consider the case p D 3 separately from p ¤ 2; 3. (We’ll ignore p D 2

for now since the identity
Q
�p.q/D

Q
�p.q

00/D 1 will ensure that �2.q
00/D �2.q/ if

all other Hasse–Witt invariants are equal.)

For p D 3, suppose ab D 3˛u where u is not divisible by 3. Then 3ab D 3˛C1u, so

.ab; 3ab/3 D .�1/˛.˛C1/�.3/
�

u

3

�˛�u

3

�˛C1
D

�
u

3

�
:

Thus .ab; 3ab/3 D 1 if u� 1 .mod 3/ and �1 if u� 2 .mod 3/.
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For p ¤ 3, let ab D p˛u where u is not divisible by p, so that 3ab D p˛.3u/. Then

.ab; 3ab/p D .�1/˛˛�.p/
�

u

p

�˛�3u

p

�˛
D

�
.�1/�.p/

�
3

p

��˛
:

Combining .�1/�.p/ with quadratic reciprocity, we can see that, for p>2, .ab; 3ab/pD

1˛ if p � 1 .mod 3/ and .�1/˛ if p � 2 .mod 3/. Consider the finite set of primes
pi > 2 such that �p.q/ D �1. As long as there is no pi such that pi � 1 .mod 3/,
we can take ab D

Q
pi over all pi � 2 .mod 3/. Additionally, we can multiply ab

by 2 if necessary to set ab � 1 or 2 .mod 3/ to obtain the desired value of �3.q
00/.

Now �p.q/D �p.q
00/ for all p > 2 and, as before, �2.q/D �2.q

00/ due to the identityQ
�p.q/D

Q
�p.q

00/D 1. Now q00 is rationally equivalent to q, and from SO0.q
00;Z/

we can construct a manifold in C with a 1
3

–twist or 1
6

–twist cusp, as desired.

Remark 5.3 In addition to the six orientable compact flat 3–manifolds, there are four
nonorientable ones: two double-covered by the 3–torus and two double-covered by
the 1

2
–twist. A thorough description of these manifolds can be found in [6]. Notably,

all of them have holonomies generated by orthogonal reflections. In particular, this
means each fundamental group has a holonomy representation into GL.3;R/ with
image consisting of diagonal matrices with ˙1 along the diagonal. Thus, for the same
reasons as the 3–torus, 1

2
–twist, and Hantzsche–Wendt manifold, all four nonorientable

compact flat 3–manifolds occur as a cusp cross-section in every commensurability class
of arithmetic hyperbolic 4–manifolds.

6 Classes without a given cusp

The goal of this section is to prove the negative part of Theorem 5.1, that is, to obstruct
some cusp types from occurring in some commensurability classes of hyperbolic 4–
manifolds. This obstruction will yield infinitely many commensurability classes that
avoid each of the 1

3
–twist, 1

6
–twist, and 1

4
–twist.

Proposition 6.1 Let C be a commensurability class of arithmetic hyperbolic 4–
manifolds , with associated quadratic form q with discriminant �1. Then:

� If �p.q/¤ 1 for some p � 1 .mod 4/, then C does not contain a manifold with
a 1

4
–twist cusp.

� If �p.q/¤ 1 for some p� 1 .mod 3/, then C contains neither a manifold with a
1
3

–twist cusp , nor a manifold with a 1
6

–twist cusp.
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Proof By Lemma 2.7, we can take q to be of quaternion form. Thus, without loss of
generality, we can set q D ha; b; ab; 1;�1i for some positive integers a and b.

Let B be the cusp type that we want to obstruct, and let �D �1.B/. We will show that
it suffices to obstruct the existence of an injective homomorphism �! SO0.q;Q/.

For the sake of contradiction, suppose C contains a manifold M with the cusp type in
question. This yields an embedding�!�1.M /D� . Because � is an arithmetic lattice
in SO.4; 1/, we know that � lies in the Q–points of some quadratic form q0 [3]. Because
M 2 C , q and q0 are projectively equivalent. Thus by Proposition 3.3, there exists a
matrix F 2GL.5;Q/ such that F�F�1 is commensurable with SO0.q;Z/ and embeds
into SO0.q;Q/. Note that � acts on a horosphere centered at some point y in @H4.

Since y is fixed by isometries that lie in SO0.q;Z/, we can take y itself to lie in Q5.
Additionally, since SO0.q;Q/ acts transitively on the rational points of @H4

q , we can
choose y to be .0; 0; 0; 1; 1/ without loss of generality. Specifically, we can conjugate
the image of � by some matrix A0 2 SO0.q;Q/ such that A0y D y0 D .0; 0; 0; 1; 1/ to
get a new rational representation of � acting on a horosphere H centered at y0.

Let q3 D ha; b; abi be the quadratic form such that q3˚h1;�1i D q. Given any affine
transformation ' 2 Isom.E3/, we can write the isometry as '.v/ D Av C w, with
A2 SO0.q3;R/. Then we can map ' to an action �.'/ on H by taking � to be induced
by an isometry from E3 to H . Imitating [22], we can write � as

�.'/ W v 7!

24 A w �w

f .w/tA 1C 1
2
q3.w/ �

1
2
q3.w/

f .w/tA 1
2
q3.w/ 1� 1

2
q3.w/

35 v:
Here f is the linear function f .x/D .ax1; bx2; abx3/

t such that f .x/tx D q3.x/ for
any x 2 R3. Since one can recover A from the top left and �w from the top right
of �.'/, we see that � must be injective. One can check through manual calculation that
� is a homomorphism, and that all elements in �.Isom.E3// preserve both q and y0,
and thus act on H . All isometries of H must be of the form �.'/ above for some
' 2 Isom.E3/, so in particular, every element of �.�/ has this form.

If� is the fundamental group of the 1
3

–twist, 1
4

–twist, or 1
6

–twist cusp, it has holonomy
group Z=3Z, Z=4Z, or Z=6Z, respectively. The holonomy is represented by the
matrix A above, so in order to embed � into SO0.q;Q/ there must exist an isometry '
with A that is 3–torsion or 4–torsion. Since A is a submatrix of �.'/, which has rational
entries, it must have rational entries. Thus, if we can obstruct 3–torsion or 4–torsion
from SO0.q3;Q/, then we can obstruct the existence of an embedding�! SO0.q;Q/.
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Now consider the quaternion algebra Q D ..�a;�b/=Q/. The norm form of Q0 is
given by ax2

1
Cbx2

2
Cabx2

3
D q3.x/, so by Theorem 2.11, SO.q3;Q/ is isomorphic to

Q�=Z.Q�/. Thus, if we obstruct torsion of some degree from appearing in Q�=Z.Q�/,
then we obstruct it from SO0.q3;Q/ < SO.q3;Q/ as well.

Now we apply Theorem 2.13. For n D 3 and n D 4, clearly �n C ��1
n 2 Q. So

there are no order-n elements of Q�=Z.Q�/ if and only if Q.�n/ does not embed
in Q. Furthermore, by Theorem 2.14, the field Q.�n/ embeds in Q if and only if
Q.�n/˝Q Qp is a field for each p 2 Ram.Q/. The latter occurs exactly when p does
not split in Q.�n/. Thus, in order to obstruct n–torsion, we wish to show there is some
p 2 Ram.Q/ such that p splits in Q.�n/.

To check this condition, we must first determine when p 2 Ram.Q/. If neither �a nor
�b is divisible by p an odd number of times, then p does not ramify by Theorem 2.15(1).
Note that if both �a and �b are divisible by p an odd number of times, then ab is
not. Since a, b, and ab are interchangeable when constructing Q, in this case we can
pass to Q0 D ..�a;�ab/=Q/ to ensure that p divides only one of �a and �b an odd
number of times. Without loss of generality, say p divides �a but not �b. Then, by
Theorem 2.15(2), p ramifies if and only if b is a nonsquare modulo p.

We claim that p ramifies over Q exactly when the Hasse–Witt invariant �p.q/ equals�1.
Using the definitions of the Hasse–Witt invariant and the Hilbert symbol, we can
expand �p.q/. Let aD p˛j and b D pˇk with j and k relatively prime to p. Then
ab D p˛Cˇj k, so

�p.q/D �p.ha; b; ab; 1;�1i/D .a; b/p.ab; ab/p

D

�
.�1/˛ˇ�.p/

�
j

p

�̌ �
k

p

�̨ ��
.�1/.˛Cˇ/.˛Cˇ/�.p/

�
j k

p

�̨ Cˇ�
j k

p

�̨ Cˇ�
D .�1/�.p/.˛ˇC˛Cˇ/

�
j

p

�̌ �
k

p

�̨
:

If both ˛ and ˇ are even, then �p.q/ D .�1/0.j=p/0.k=p/0 D 1. As shown above,
p does not ramify over Q in this case.

If both ˛ and ˇ are odd, then we can choose to use Q0D ..�a;�ab/=Q/ as before. So,
unless both ˛ and ˇ are even, without loss of generality we can assume ˛ is odd and
ˇ is even. Then �p.q/D .�1/�.p/.k=p/. Note that .�1=p/ is 1 when p � 1 .mod 4/

and �1 when p � 3 .mod 4/, so .�1/�.p/ D .�1=p/. Thus, since b D pˇk with ˇ
even, we have �p.q/D .�1=p/.k=p/D .�k=p/D .�b=p/. We already showed that
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p ramifies over Q exactly when �b is a nonsquare modulo p in this case, which is
equivalent to the condition �p.q/D .�b=p/D�1. Now, in all cases, p ramifies over
Q exactly when �p.q/D�1.

Next, we investigate when p splits in Q.�n/. When n D 3 or 6 we have Q.�n/ D

Q.
p
�3/, and if nD 4 we have Q.�n/DQ.

p
�1/. It is well known that p splits in

Q.
p

a/ if and only if a is a quadratic residue modulo p, so p splits in Q.
p
�3/ exactly

when p � 1 .mod 3/ and in Q.
p
�1/ exactly when p � 1 .mod 4/.

Now, suppose there is some prime p such that �p.q/D�1 and p � 1 .mod 4/. Then,
p ramifies over Q and p splits in Q.�n/. Thus, as stated above, SO0.q3;Q/ Š

Q�=Z.Q�/ has no 4–torsion. As a result, the 1
4

–twist group B cannot possibly embed
into SO0.q;Q/, so there is no 1

4
–twist cusp in the associated commensurability class

of hyperbolic 4–manifolds. In fact, this same argument suffices to show there are no
1
4

–twist cusps in the class of orbifolds, either.

By similar logic, we can also see that if there is a prime p such that �p.q/D�1 and
p � 1 .mod 3/, then there is no 3–torsion in SO0.q3;Q/ Š Q�=Z.Q�/. Thus the
commensurability class of hyperbolic 4–manifolds (or orbifolds) associated to q must
avoid 1

3
–twist cusps and 1

6
–twist cusps.

Between Propositions 5.2 and 6.1, we’ve exhausted all possible commensurability
classes for each cusp type. This suffices to prove Theorem 5.1. Theorem 1.1 follows.

Example 6.2 For q6 D h1; 1; 7; 7;�1i the commensurability class of H4=SO0.q6;Z/

avoids the 1
3

–twist and 1
6

–twist, since �7.q6/D�1 and 7� 1 .mod 3/.

Example 6.3 For q4Dh1; 2; 5; 10;�1i the commensurability class of H4=SO0.q4;Z/

avoids the 1
4

–twist, since �5.q4/D�1 and 5� 1 .mod 4/.

7 Obstructions in higher dimensions

Using Theorem 5.1, we can prove a version of Theorem 1.1 one dimension higher.
Namely, some commensurability classes of hyperbolic 5–manifolds avoid some cusp
types associated to flat 4–manifolds. Our strategy will be to show that an arithmetic
hyperbolic 5–manifold with cusp B�S1 must contain a 4–dimensional totally geodesic
submanifold with cusp B, and then manipulate Hasse–Witt invariants to show that,
sometimes, no such submanifold can contain B as a cusp.
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Proposition 7.1 Let B be either the 1
3

–twist , 1
4

–twist , or 1
6

–twist. Then any arithmetic
hyperbolic 5–manifold M with B �S1 as a cusp cross-section contains an immersed
finite-volume totally geodesic submanifold W of codimension 1 with B as a cusp
cross-section.

Proof Let � be the fundamental group of M . As M is arithmetic, it is commensurable
to some orbifold H5=SO0.q;Z/. Let y be a light-like vector in H5

q that lies above the
B �S1 cusp under the universal covering map of M .

The parabolic elements of � that fix y act on a horosphere E centered at y which
is isomorphic to E4. Without loss of generality, we can take E to be the horosphere
passing through .0; 0; 0; 0; 0; 1/ by conjugating by an element of SO0.q;Q/. Note that
Stab�.y/ is isomorphic to �1.B �S1/D �1.B/�Z, which acts on E3 �E1. We can
choose a flat subspace P 0 �E of dimension 3 such that H D Stab�.y/\ Stab�.P 0/
is isomorphic to �1.B/. Let 1, 2, and 3 be three translations that generate the
translation subgroup of H .

Unlike in IsomC.H4/, we can’t assume that each i lies in SO.q;Q/ for i D 1; 2; 3.
However, we can argue as follows. The i act by translation on E, and so are parabolic
translations. One can check, by applying � from Proposition 6.1 to any translation
v 7! IvCw, that this means each i must be unipotent as an element of SO0.q;R/.
For each i , there is some positive integer k such that  k

i lies in SO0.q;Z/, since � is
commensurable to SO0.q;Z/. Hence, the field of coefficients of  k

i , denoted by F. k
i /,

is Q. This allows us to argue that F.i/DQ, and so i 2 SO0.q;Q/. The justification
of the previous sentence is somewhat technical, so we defer it to Lemma 7.6.

The three translations i act on the three-dimensional subspace P 0 �E. Since each
i 2 SO0.q;Q/, P 0 must sit rationally in E �H5

q . To see this, pick any rational point
in E, say O D .0; 0; 0; 0; 1/, and notice that i.O/ 2Q5 for all i .

The four points O , 1.O/, 2.O/, and 3.O/, together with y a rational line in
@H5

q �R6, determine a four-dimensional hyperplane P which must also sit rationally
in H5

q . Hence, after an appropriate change of basis over Q, the quadratic form q restricts
to a rank-5 form f on the 5–dimensional subspace V �R6 containing P . Then since P

consists of exactly the points in V satisfying f .x/D q.x/D�1 and x6> 0, P sits in V

as H4
f

. In particular, this means IsomC.P /D SO0.f;R/, so IsomC.P /\SO0.q;Z/D

SO0.f;Z/. Note that this group is commensurable to IsomC.P /\� , as SO0.q;Z/

is commensurable to � . Thus IsomC.P /\ � is arithmetic and its action on P has
finite covolume. Furthermore, IsomC.P /\ Stab�.y/D IsomC.P 0/\ Stab�.y/DH ,
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so W D P=.IsomC.P / \ �/ has a cusp at y with cross-section B. Now, W is an
immersed finite-volume totally geodesic submanifold of M with cusp B.

This completes the first half of the proof. For the second, using Hasse–Witt invariants
we prove that we should not find any totally geodesic 4–manifolds in our 5–manifold
class with a cusp of type B, yielding a contradiction. The next step, then, is to find the
Hasse–Witt invariants associated to such submanifolds.

Proposition 7.2 Let q be a quadratic form of signature .5; 1/, discriminant �1, and
Hasse–Witt invariants �p.q/, and let M be a hyperbolic 5–manifold commensurable to
H5=SO0.q;Z/. Then any immersed finite-volume totally geodesic 4–dimensional sub-
manifold W �M must be commensurable to H4=SO0.f;Z/, where f is a quadratic
form of signature .4; 1/, discriminant �1, and Hasse–Witt invariants �p.f /D �p.q/.

Proof Since M is arithmetic, W is also arithmetic [17, Theorem 3.2]. Thus, we know
W is commensurable to H4=SO0.f;Z/ for some quadratic form f of signature .4; 1/,
which we can scale to ensure discriminant �1. All that remains to be shown is that
�p.f /D �p.q/ at all primes p.

Let f D ha; b; c; d;�abcdi over a quadratic space with basis fv1; : : : ; v5g. Since
W is an arithmetic manifold commensurable to H4=SO0.f;Z/, we know �1.W / <

SO0.f;Q/ [3]. In particular, �1.W / acts on H5 in such a way that it preserves f and
a 4–dimensional hyperplane P . Taking a vector w transverse to P and adding it to the
basis above, we have a basis fv1; : : : ; v5; wg upon which we can define our quadratic
form q. Though q may not be diagonal, we can use the Gram–Schmidt process to find a
basis which makes q diagonal. And, since q restricted to span.fv1; : : : ; v5g/ is already
diagonal, the only basis element that is affected is w. Thus, since q has signature .5; 1/,
it can be written as a diagonal form ha; b; c; d;�abcd; ei for some positive e2Z. Since
we started with the assumption that the discriminant of q is �1, we can conclude eD 1.

It is now easy to show that the Hasse–Witt invariants of f D ha; b; c; d;�abcdi are
equal to the Hasse–Witt invariants of q D ha; b; c; d;�abcd; 1i. Since any Hilbert
symbol .1;x/p equals 1,

�p.q/D .a; b/p.a; c/p.a; d/p.a;�abcd/p.b; c/p.b; d/p.b;�abcd/p.c; d/p

� .c;�abcd/p.d;�abcd/p.1; a/p.1; b/p.1; c/p.1; d/p.1;�abcd/p

D .a; b/p.a; c/p.a; d/p.a;�abcd/p.b; c/p.b; d/p.b;�abcd/p.c; d/p

� .c;�abcd/p.d;�abcd/p

D �p.f /:
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Theorem 7.3 Let B be either the 1
3

–twist , 1
4

–twist , or 1
6

–twist. Then there exist
infinitely many commensurability classes of arithmetic hyperbolic 5–manifolds that
contain no manifolds with cusp cross-section given by B �S1.

Proof Consider any quadratic form q of signature .5; 1/ and discriminant �1. We
claim that if �p.q/D �1 for any p � 1 .mod 3/ then the commensurability class C

of H5=SO0.q;Z/ cannot contain B � S1 for B the 1
3

–twist or the 1
6

–twist, and if
�p.q/D�1 for any p � 1 .mod 4/ then this commensurability class cannot contain
B �S1 for B the 1

4
–twist.

By Proposition 7.1, any manifold M in C with a B�S1 cusp must contain an immersed
totally geodesic submanifold W with a B cusp. By Proposition 7.2, W must be
commensurable to some H4=SO0.q

0;Z/ with �p.q0/D �p.q/ for all primes p. But by
Theorem 5.1, a manifold with these Hasse–Witt invariants cannot have a cusp with cross-
section B. Thus we’ve reached a contradiction, and such an M cannot exist in C .

It is tempting to apply this argument repeatedly to find commensurability classes in
higher-dimensional hyperbolic manifolds that avoid certain cusp types. Unfortunately,
this argument fails to work even in dimension 6, because Proposition 7.2 fails to
generalize. Proposition 7.2 relies on the fact that we can rescale a quadratic form of
rank 5 to control the discriminant. In rank 6, rescaling a quadratic form by k multiplies
the discriminant by k6, so the discriminant does not change in Q�=.Q�/2.

In fact, we can prove that repeatedly taking products of a compact flat manifold B with
S1 will eventually yield a manifold that occurs as a cusp cross-section in all arithmetic
hyperbolic manifolds of the appropriate dimension. Thus, if we want to find cusp types
with obstructions in higher dimensions, we’ll have to use nontrivial high-dimensional
flat manifolds.

Theorem 7.4 Let B be a compact flat n–manifold. Then B � .S1/k occurs as a
cusp cross-section in every commensurability class C of cusped arithmetic hyperbolic
.nCkC1/–manifolds of simplest type for sufficiently high k.

Proof First, we prove the result for nC k C 1 even. When nC k C 1 is even, any
commensurability class C is associated with a quadratic form q of discriminant �1,
since q has odd rank and we can scale q to control the discriminant.

Note that B � .S1/k has the same associated holonomy group as B. Since B is a
flat manifold, the holonomy of its fundamental group Hol.�1.B// must be finite. As
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such, Hol.�1.B// must be a subgroup of a symmetric group Sm. Let qm denote
the quadratic form h1; : : : ; 1i of rank m. The natural representation � of Sm into
permutation matrices in GL.m;Z/ clearly preserves qm. Restricting � to Hol.�1.B//,
we have a representation of Hol.�1.B// that preserves qm and must have entries in Z.
Let q0mD qm˚h1;�1i. We can use the Long–Reid algorithm [13] as in Proposition 5.2
to construct an orbifold with cusp cross-section B � .S1/k in the commensurability
class of HnCkC1=SO0.q

0˚ q0m;Z/ for any positive definite quadratic form q0 of rank
nC k �m� 0.

Now, if m is even, let k Dm� nC 3 so that nC kC 1DmC 4, and if m is odd, let
k Dm� nC 4 so that nC kC 1DmC 5. This ensures nC kC 1 is even. Consider
the class C of .nCkC1/–manifolds with quadratic form q of discriminant �1. We can
show that q must be rationally equivalent to a quadratic form f D ha; b; ci˚ q0m (or
f Dha; b; c; 1i˚q0m if m is odd) by the same argument used to prove Lemma 2.7, with
q0m in the place of h1;�1i. Then HnCkC1=SO0.f;Z/ lies in C and is commensurable
to a manifold with a cusp of type B � .S1/k .

When nC k C 1 is odd, we cannot control the discriminant of the quadratic form
q associated to C . However, we can take a rank-.nCk/ subform q0 of q such that
q D q0 ˚ hxi for some positive integer x. Then we can scale q0 by y so that it
has discriminant �1, and, as in the paragraph above, q0 is rationally equivalent to
f D ha; b; ci˚ q0m or f D ha; b; c; 1i˚ q0m. But now yq D yq0˚hxyi is rationally
equivalent to f ˚hxyi, and we can conclude that HnCkC1=SO0.f ˚hxyi/ lies in C

and is commensurable to a manifold with a cusp of type B � .S1/k , as before.

Corollary 7.5 Every commensurability class C of cusped arithmetic hyperbolic 8–
manifolds contains a manifold with a cusp of type B � .S1/3, where B is any compact
flat 3–manifold.

Proof According to Theorem 5.1, every B occurs in the commensurability class of
H4=SO.h1; 1; 1; 1;�1i;Z/. The result follows from the third paragraph of the proof
of Theorem 7.4, using mD 3.

7.1 Fields of coefficients of unipotent matrices

In proving Proposition 7.1, we used the fact that, for a unipotent matrix M , the field of
coefficients F.M /, defined to be the number field obtained by adjoining the entries of
M to Q, is unchanged under powers of M . We prove this result here:
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Lemma 7.6 For any unipotent matrix M and any positive integer k, F.M /DF.M k/.

Proof Because the entries of M k are polynomial in the entries of M , F.M k/�F.M /.
This holds for any M , so in particular, F.M ak/�F.M k/ for any nonnegative integer a.
We will show that M can be written as a linear combination over Q of matrices M ak ,
and thus that each entry in M is polynomial in entries of M k . This will suffice to
show F.M /� F.M k/.

By definition, a unipotent matrix M can be written as M D I C T , where T is a
nilpotent matrix. There is a positive integer l such that T l D 0. Now we can expand
M k D .I CT /k using binomial coefficients:

M k
D

kX
iD0

�k

i

�
T i
D

l�1X
iD0

�k

i

�
T i :

Consider the vector space V over Q consisting of the matrices spanned by all T i for
nonnegative integers i . V must have dimension at most l , since only l of the T i are
nonzero. We will show that if T l D 0 then the lC1 matrices M ak for a 2 f0; 1; : : : ; lg

span V . Since M 2 V , this will show that M is a linear combination of these M ak .

Choose some n 2 ZC, and consider the linear combination of matrices M ak

nX
aD0

.�1/nCa
�n

a

�
M ak

D

nX
aD0

.�1/nCa
�n

a

�� akX
bD0

�ak

b

�
T b

�

D

nX
aD0

akX
bD0

.�1/nCa
�n

a

��ak

b

�
T b

D

nkX
bD0

nX
aDdb=ke

.�1/nCa
�n

a

��ak

b

�
T b

D

nkX
bD0

.�1/n
� nX

aD0

.�1/a
�n

a

��ak

b

��
T b:

Note that when we interchange the summations in line three, we see that a is indexed
from db=ke to n. However, when ak < b,

�
ak
b

�
D 0 anyway, so we can start a at 0 in

line four to get the same value.

The coefficient of T b in this sum is given by
Pn

aD0.�1/nCa
�
n
a

��
ak
b

�
. Note that for

fixed b,
�

t
b

�
is a degree-b polynomial in t , defined over all nonnegative integers t . When
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b < n, the coefficient of T b is 0; we apply Lemma 7.7, proven below, with f .t/D
�

t
b

�
and y D k. Since the function g

n;k
f
.x/ is uniformly 0, it is 0 at x D 0 in particular.

Furthermore, when b D n,
�

t
b

�
is a degree-n polynomial, anxnCan�1xn�1C� � �Ca0.

The coefficient of T b then must be ann!.�k/n ¤ 0, by Lemma 7.7.

Now we can use induction on i to construct each T i as a linear combination of M ak .
For the base case, consider i D l � 1. Choose nD l � 1, and in the above summation,
T b has coefficient 0 when b < nD l �1, and T b D 0 when b > n because b � l . Thus
we’ve obtained a rational multiple of T l�1, which we can rescale to write T l�1 as a
linear combination of M ak .

For the induction step, assume T j can be written as such a linear combination for all
i < j � l �1. Consider the linear combination above with nD i . Then, by Lemma 7.7,
the coefficients of T b are 0 for b < i , nonzero for b D i , and T b D 0 for b � l . Since
T b can already be written as a linear combination for i < b � l � 1 by the induction
hypothesis we can subtract out the appropriate linear combinations to leave only a
multiple of T i .

This suffices to show that every T i is a linear combination of M ak , and thus M D

T 0CT 1 is some linear combination of matrices M ak . Since F.M ak/� F.M k/ for
all a and we have already proven F.M k/�F.M /, we conclude F.M /DF.M k/.

Finally, we prove here the technical result that allowed us to conclude certain coefficients
were zero or nonzero:

Lemma 7.7 Let f WR!R be a function , and fix y 2R and n 2 ZC. Let

g
n;y

f
.x/D

nX
aD0

.�1/af .xC ay/
�n

a

�
:

If f is a polynomial of degree less than n, then g
n;y

f
D 0 uniformly. Furthermore , if

f .x/D xn, then g
n;y

f
is the constant function n!.�y/n.

Proof First, we prove that g
n;y

f
D 0 when f is a polynomial of degree less than n by

induction on n. For the base case, consider nD 1. In order for f to be a polynomial of
degree less than 1 it must be a constant function f .x/D c. Then

g
1;y

f
.x/D

1X
aD0

.�1/af .xC ay/
�1

a

�
D f .x/�f .xCy/D c � c D 0:
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Now assume the statement holds for n� 1. We can compute

g
n;y

f
.x/D

nX
aD0

.�1/af .xCay/
�n

a

�

D

nX
aD1

.�1/af .xCay/
�n�1

a�1

�
C

n�1X
aD0

.�1/af .xCay/
�n�1

a

�

D�

n�1X
aD0

.�1/af .xCyCay/
�n�1

a

�
C

n�1X
aD0

.�1/af .xCay/
�n�1

a

�
D�g

n�1;y

f
.xCy/Cg

n�1;y

f
.x/D

Z x

xCy

@

@t
Œg

n�1;y

f
.t/� dtD

Z x

xCy

g
n�1;y

f 0 .t/ dt

The second line above follows from the identity
�
n
a

�
D
�
n�1
a�1

�
C
�
n�1

a

�
. The final equality

follows from the fact that g
n;y

f
is a particular linear combination of f .xC ay/, with

fixed coefficients depending on n; concisely, g is linear in f . Since f is a polynomial
of degree less than n, its derivative f 0 is a polynomial of degree less than n� 1. Thus,
g

n�1;y

f 0 .t/D 0 everywhere by induction, and therefore g
n;y

f
D 0.

Next, we prove that g
n;y

f
D n!.�y/n for f D xn by induction on n. For the base case,

consider nD 1. Then

g
1;y

f
.x/D

1X
aD0

.�1/a.xC ay/
�1

a

�
D .x/� .xCy/D�y:

Now assume the statement holds for n� 1. Let f .x/D xn and h.x/D xn�1, so that
f 0 D nh. Then

g
n;y

f
.x/D

Z x

xCy

g
n�1;y

f 0 .t/ dt D n

Z x

xCy

g
n�1;y

h
.t/ dt

D n

Z x

xCy

.n� 1/!.�y/n�1 dt D n!.�y/n:

We proved the first equality in the first part of this proof. The rest follows from the fact
that g

n;y

f
is linear in f , and the induction hypothesis.

8 Commensurability classes of nonarithmetic manifolds

We can turn arithmetic commensurability classes that avoid certain cusp types into
nonarithmetic ones by “inbreeding” the arithmetic manifolds with themselves, in a
manner introduced by Agol [1]. We mimic the argument in [1] to construct a manifold
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with arbitrarily short geodesic, which must be nonarithmetic by Proposition 3.6. Further,
this nonarithmetic group is constructed in such a way that it still lies in the Q–points of
the original quadratic form, so we can conclude by the same argument as our proof of
Proposition 6.1 that it avoids the same cusps. Since this construction can be performed
on any of the infinitely many classes that avoid the 1

3
–twist, 1

4
–twist, and 1

6
–twist cusps,

there are infinitely many nonarithmetic commensurability classes that avoid such cusps.

Proof of Theorem 1.2 Let q be a quadratic form such that the commensurability class
of H4=SO0.q;Z/ does not contain any manifolds or orbifolds with a certain cusp B.
Let M be any manifold in this commensurability class, and � its fundamental group.
By [5, Theorem 4.2], there exist infinitely many closed totally geodesic hyperbolic
3–manifolds immersed in M . These 3–manifolds lift to copies of H3 in H4; pick one
such copy and call it P . Since the immersed 3–manifold is compact, H D Isom.P /\�
acts cocompactly on P .

By Margulis’ commensurability criterion for arithmeticity [19, Theorem 16.3.3], since
� is arithmetic, its commensurator Comm.�/ contains PO.q;Q/. Thus for any � > 0,
we can choose  2 Comm.�/ such that  .P / is disjoint from P and the distance
d.P;  .P // is less than 1

2
�. Since  2 Comm.�/, the stabilizer of  .P /, namely

.H�1/ \ � , acts cocompactly on  .P /. Then H D Isom. .P // \ � must act
cocompactly on  .P /, since .H�1/\� <H .

Let g be the geodesic segment orthogonal to both P and  .P / intersecting P at p1

and  .P / at p2. Because H is discrete and residually finite, as a finitely generated
linear group we can choose a finite-index subgroup H1 <H such that d.p1; h.p1// >

2 arctanh
�
sech

�
1
4
�
��

for all nonidentity h 2H1. Similarly, choose H2 <H such that
d.p2; h.p2// > 2 arctanh

�
sech

�
1
4
�
��

for all nonidentity h 2H2. Let †1 D P=H1 and
†2 D  .P /=H2. Let Ei �H4 be the Dirichlet domain of Hi centered at pi .

Now, U D †1 [p1
g [p2

†2 is an embedded compact spine for E1 \E2, with one
component of H4�P retracting to†1, the opposite component of H4� .P / retracting
to †2, and the space in between P and  .P / retracting to g.

We claim G WD hH1;H2i DH1 �H2 and G is geometrically finite, and defer the proof
to Lemma 8.1.

Then G is separable in � [2]. By Scott’s separability criterion [24], for some finite
index subgroup �1 < � , U embeds in H4=�1. Thus, †1 and †2 embed in H4=�1.
Now let N D .H4=�1/� .†1 [†2/, and D be the double of N along its boundary.
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D is a hyperbolic manifold, since N is a hyperbolic manifold with totally geodesic
boundary. Note that the double of g is a closed geodesic of length bounded by �, since
g is perpendicular to †1 and †2. Through choice of �, we can construct D so that it
has a geodesic of arbitrarily small length. Thus, by Proposition 3.6, we can construct
D to be nonarithmetic.

Next, we claim that �1.D/ < SO0.q;Q/. First, note that the universal cover of N is
H4 with some half-spaces removed, with its group action given by �1. By construction,
�1 < � < SO0.q;Q/. Thus, we can find a fundamental domain S for N such that all
the face pairings of S lie in SO0.q;Q/. We can construct a fundamental domain for D

by taking two copies of S glued together at one of the boundary faces F that lifts
to †1, and pairing the remaining boundary faces by mapping each to its counterpart
in the other copy of S . We will show that �1.D/ < SO0.q;Q/ by showing that these
face pairings, which generate �1.D/, each lie in SO0.q;Q/.

By construction, the face pairings �i on the original copy of S must lie in SO0.q;Q/.
The corresponding face pairings in the other copy of S are given by rP�irP , where rP

is reflection across P . Recall that P was constructed as a hyperplane perpendicular to
some v 2Q5, so the reflection rP across P lies in SO0.q;Q/. Thus each rP�irP must
also lie in SO0.q;Q/.

The remaining face pairings are the new ones formed from identifying boundary
components of N . To pair a boundary component C with its corresponding mirror
component, we can use the isometry rP rF , where rF is the reflection across the
hyperplane F containing C . Note that F must be the image of  .P / under some
isometry ˛ 2 �1.N /, so rF D ˛

�1r.P/˛D ˛
�1�1rP˛. Since we chose  to lie in

SO0.q;Q/ and ˛ must be an element of �1.N /, rF lies in SO0.q;Q/ as well. Now
rF rP lies in SO0.q;Q/, and thus every face pairing does as well. Therefore, �1.D/ is
generated by elements of SO0.q;Q/, and so �1.D/ < SO0.q;Q/.

Now, if we choose the quadratic form q in such a way that the commensurability class
of H4=SO0.q;Q/ avoids cusps with cross-section B, then D cannot have cusps with
cross-section B, using the same argument as in the proof of Proposition 6.1. In this
way, we use Theorem 1.1 to construct infinitely many commensurability classes of
nonarithmetic manifolds that avoid the 1

3
–twist, 1

4
–twist, and 1

6
–twist.

The same proof can be applied to provide examples of commensurability classes of
nonarithmetic hyperbolic 5–manifolds that avoid certain cusp types, with Theorem 7.3.
We finish the proof by proving the claim we deferred:
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Lemma 8.1 Let H1 and H2 be as above. Then G D hH1;H2i is isomorphic to
H1 �H2, and is geometrically finite.

Proof As in the proof of Theorem 1.2, we let g be the geodesic segment connecting
p1 2 P with p2 2  .P /, meeting both planes perpendicularly. Let L be the 3–
plane that perpendicularly bisects g, and consider the projections pr1 WH

4! P and
pr2 WH

4!  .P / that map each point in H4 to the closest point on the target 3–plane.
Using hyperbolic geometry (see Theorem 3.5.10 in [23]), we can see that pri.L/ is a
disk with radius bounded by arcsinh

�
csch

�
1
4
�
��
D arctanh

�
sech

�
1
4
�
��

centered at pi .
We defined H1 so that d.p1; h.p1// > 2 arctanh

�
sech

�
1
4
�
��

for all nonidentity h 2H1,
so pr1.L/ must lie inside E1, the Dirichlet domain of H1 centered at p1. Thus, since
H1 < Isom.P /, L must lie inside of E1. Similarly, L lies in E2 as well. Now L

splits H4 into two parts, with @E1 lying in the part with P , and @E2 lying in the part
with  .P /. Thus @E1 \ @E2 D ∅. Since E1 and E2 are each geometrically finite,
E1 \E2, the fundamental domain of G, is geometrically finite too. Also, note that
E1\E2 DE1 # E2, with the two sets glued along L, so it’s a fundamental domain of
H1 �H2. We can conclude that G is geometrically finite and G DH1 �H2.
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The group of quasi-isometries of the real line
cannot act effectively on the line

SHENGKUI YE

YANXIN ZHAO

We prove that the group QIC.R/ of orientation-preserving quasi-isometries of the
real line is a left-orderable, nonsimple group, which cannot act effectively on the real
line R.

20F65

1 Introduction

A function f W X ! Y between metric spaces X and Y is a quasi-isometry if there
exist real numbers K � 1 and C � 0 such that

1

K
d.x1; x2/�C � d.f .x1/; f .x2//�Kd.x1; x2/CC

for any x1; x2 2X , and d.Imf; y/� C for any y 2 Y . Two quasi-isometries f and g
are called equivalent if they are of bounded distance; ie supx2X d.f .x/; g.x// <1.
The quasi-isometry group QI.X/ is the group of all equivalence classes Œf � of quasi-
isometries f W X ! X under composition. The notion of quasi-isometries is one of
the fundamental concepts in geometric group theory. In this note, we consider the
quasi-isometry group QI.R/ of the real line. Gromov and Pansu [3, Section 3.3B] noted
that the group of bi-Lipschitz homeomorphisms has a full image in QI.R/. Sankaran [9]
proved that the orientation-preserving subgroup QIC.R/ is torsion-free and many large
groups, like Thompson groups and free groups of infinite rank, can be embedded into
QIC.R/.

Recall that a group G is left-orderable if there is a total order � on G such that g � h
implies fg � f h for any f 2G. We will prove the following.

Theorem 1.1 The quasi-isometry group QIC.R/— or QI.Œ0;C1//— is not simple.
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License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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3836 Shengkui Ye and Yanxin Zhao

Theorem 1.2 The quasi-isometry group QIC.R/— or QI.Œ0;C1//— is left-order-
able.

Theorem 1.3 The quasi-isometry group QIC.R/ cannot act effectively on the real
line R.

Other (uncountable) left-orderable groups that cannot act on the line are been known.
For example, the germ group G1.R/, due to Mann [4] and Rivas; and the compact
supported diffeomorphism group Diffc.Rn/ for n > 1, due to Chen and Mann [1].

2 The group structure of QI.R/

Let QI.RC/ (resp. QI.R�/) be the quasi-isometry group of the ray Œ0;C1/ (resp.
.�1; 0�), viewed as subgroup of QI.R/ fixing the negative (resp. positive) part.

Lemma 2.1 QI.R/ D .QI.RC/�QI.R�// Ì hti, where t 2 QI.R/ is the reflection
t .x/D�x for any x 2R.

Proof Sankaran [9] proves that the group PLı.R/ consisting of piecewise linear
homeomorphisms with bounded slopes has a full image in QI.R/. Since every homeo-
morphism f 2 PLı.R/ is of bounded distance to the map f �f .0/ 2 PLı.R/, we see
that the subgroup

PLı;0.R/D ff 2 PLı.R/ j f .0/D 0g

also has full image in QI.R/. Let

PLı;C.R/D ff 2 PLı.R/ j f .x/D x; x � 0g;

PLı;�.R/D ff 2 PLı.R/ j f .x/D x; x � 0g:

Since PLı;C.R/\ PLı;�.R/ D fidRg, we see that PLı;C.R/ � PLı;�.R/ has a full
image in QIC.R/, the orientation-preserving subgroup of QI.R/. It’s obvious that
PLı;C.R/ (resp. PLı;�.R/) has a full image in QI.RC/ (resp. QI.R�/). Therefore,
QI.R/D .QI.RC/�QI.R�//Ì hti.

Let HomeoC.R/ be the group of orientation-preserving homeomorphisms of the real
line. Two functions f; g 2 HomeoC.R/ are of bounded distance if

sup
jxj�M

jf .x/�g.x/j<1

for a sufficiently large real number M . This means when we study elements Œf � in
QI.R/, we don’t need to care too much about the function values f .x/ for x with small
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absolute values. We will implicitly use this fact in the following context. As PLı.R/
has a full image in QI.R/ (by Sankaran [9]), we take representatives of quasi-isometries
which are homeomorphisms in the rest of the article.

2.1 QI.RC/ is not simple

Let QI.RC/ be the quasi-isometry group of the half-line Œ0;C1/. Note that the quasi-
isometry group QIC.R/ DQI.RC/�QI.R�/ and QI.RC/ŠQI.R�/, by Lemma 2.1.
Let H D fŒf � 2 QI.RC/ j limx!1.f .x/�x/=x D 0g. Theorem 1.1 follows from the
following theorem.

Theorem 2.2 H is a proper normal subgroup of QI.RC/. In particular , QI.RC/ is
not simple.

Proof For any Œf �; Œg� 2H ,
f .g.x//� x

x
D
f .g.x//�g.x/

g.x/

g.x/

x
C
g.x/� x

x
:

Since g is a quasi-isometry, we know that .1=K/x � C � g.x/� g.0/ � Kx C C .
Therefore, 1=K�1� g.x/=x �KC1 for sufficiently large x. When x!1, we have
g.x/!1. This means .f .g.x//�g.x//=g.x/! 0. Therefore, .f .g.x//�x/=x! 0

as x!1. This proves that Œfg� 2H .

Note that
jf �1.x/� xj

x
D
jf �1.x/�f �1.f .x//j

x
�
Kjx�f .x/jCC

x
:

Therefore,

lim
x!1

jf �1.x/� xj

x
D 0:

This means Œf �1� 2H and that H is a subgroup.

For any quasi-isometric homeomorphism g 2 Homeo.RC/ and any Œf � 2H ,

g�1.f .g.x///� x

x
D
g�1.f .g.x///�g�1.g.x//

x

D
g�1.f .g.x///�g�1.g.x//

g.x/

g.x/

x
:

Note that when x!1, the function g.x/=x is bounded. Let y D g.x/. We have

jg�1.f .y//�g�1.y/j

y
�
Kjf .y/�yjCC

y
! 0; x!1:

Therefore, Œg�1fg� 2H .

Algebraic & Geometric Topology, Volume 23 (2023)
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It’s obvious that the function f defined by f .x/D 2x is not an element in H . The
function defined by g.x/D xC ln.xC 1/ gives a nontrivial element in H . Thus H is
a proper normal subgroup of QI.RC/.

Lemma 2.3 Let

W.R/D
˚
f 2 Diff.R/ j sup

x2R
jf .x/� xj<1; sup

x2R
jf 0.x/j<1

	
be the group consisting of diffeomorphisms with bounded derivatives and of bounded
distance from the identity. Define a homeomorphism h W R! R by h.x/D ex when
x � 1, h.x/D�h.�x/ when x ��1, and h.x/D ex when �1� x � 1. Then hf h�1

is a quasi-isometry for any f 2W.R/.

Proof For any f 2W.R/ and sufficiently large x > 0, its derivative satisfies that

jhf h�1.x/0j D j.ef .lnx//0j

D j.xef .lnx/�lnx/0j

D jef .lnx/�lnx.1Cf 0.ln x/� 1/j

D jef .lnx/�lnxf 0.ln x/j

� esupx2R jf .x/�xj � sup
x2R
jf 0.x/j:

The case for negative x < 0 can be calculated similarly. This proves that hf h�1 is a
quasi-isometry.

The following result was proved by Sankaran [9].

Corollary 2.4 The quasi-isometry group QI.R/ contains DiffZ.R/ (the lift of Diff.S1/
to Homeo.R/).

Proof For any f 2 DiffZ.R/, we have f .xC 1/ D f .x/C 1 for any x 2 R. This
means supx2R jf .x/� xj<C1. Since f .x/� x is periodic, we know that f 0.x/ is
bounded. Suppose that f .x/ > x for some x 2 Œ0; 1�. Take yn D exCn for n > 0. Let
h be the function defined in Lemma 2.3. We have

jhf h�1.yn/�ynj D je
f .xCn/

� exCnj D jef .x/� exjen!1;

which means Œhf h�1�¤ Œid� 2 QI.R/.

Lemma 2.5 QI.R/ contains the semidirect product DiffZ.R/ËH .
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Proof Since H is normal, it’s enough to prove that DiffZ.R/\H D feg, the trivial
subgroup. Actually, for any f 2 DiffZ.R/, the conjugate hf h�1 is a quasi-isometry
as in the proof of Corollary 2.4. If hf h�1 2H , then

lim
x!1

hf h�1.x/

x
D lim
x!1

xef .lnx/�lnx

x
D lim
x!1

ef .lnx/�lnx
D 1:

Since f .x/� x is periodic, we know that f .ln x/D ln x for any sufficiently large x.
But this means that f .y/D y for any y, so f is the identity.

2.2 Affine subgroups of QI.R/

Lemma 2.6 The quasi-isometry group QI.RC/ (actually, the semidirect product
DiffZ.R/ËH ) contains the semidirect product R>0 Ë

�L
i2R�1

R
�
, generated by At

and Bi;s for t 2R>0, i 2R�1 D Œ1;1/ and s 2R satisfying

AtBi;sA
�1
t D B

i;st
i

iC1
; Bi;s1Bi;s2 D Bi;s1Cs2 ;

At1At2 D At1t2 ; Bi;s1Bj;s2 D Bj;s2Bi;s1 ;

for any t1; t2 2R>0, i; j 2R�1 and s1; s2 2R.

Proof Let
At .x/D tx; t 2R>0;

Bi;s.x/D xC sx
1

iC1 ; s 2R;

for x � 0. We define At .x/D Bi;s.x/D x for x � 0. Since the derivatives

A0t .x/D t; B 0i;s.x/D 1C
s

i C 1
x
�i

iC1

are bounded for sufficiently large x, we know that At and Bi;s are quasi-isometries.
For any x � 1,

AtBi;sA
�1
t .x/DAtBi;s

�
x

t

�
DAt

�
x

t
Cs
�
x

t

� 1
iC1

�
D xCst

i
iC1x

1
iC1 DB

i;st
i

iC1
.x/:

For any x � 1,

Bi;s1Bi;s2.x/D Bi;s1.xC s2x
1

iC1 /D xC s2x
1

iC1 C s1.xC s2x
1

iC1 /
1

iC1

and

jBi;s1Bs2.x/�Bi;s1Cs2.x/j D js1..xC s2x
1

iC1 /
1

iC1 � x
1

iC1 /j �

ˇ̌̌̌
s1
s2x

1
iC1

x
i

iC1

ˇ̌̌̌
� js1s2j

by Newton’s binomial theorem. This means that Bi;s1Bi;s2 and Bi;s1Cs2 are of bounded
distance. It is obvious that At1At2 D At1t2 .
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When i < j are distinct natural numbers,

jBi;s1Bj;s2.x/�Bj;s2Bi;s1.x/j

D jxC s2x
1

jC1 C s1.xC s2x
1

jC1 /
1

iC1 � .xC s1x
1

iC1 C s2.xC s1x
1

iC1 /
1

jC1 /j

D js1..xC s2x
1

jC1 /
1

iC1 � x
1

iC1 /C s2.x
1

jC1 � .xC s1x
1

iC1 /
1

jC1 /j

�

ˇ̌̌̌
s1
s2x

1
jC1

x
i

iC1

ˇ̌̌̌
C

ˇ̌̌̌
s2
s1x

1
iC1

x
j

jC1

ˇ̌̌̌
� 2js1s2j

for any x � 1. This proves that images ŒAt �; ŒBi;s� 2 QI.R�0/ satisfy the relations. By
abuse of notation, we still denote the classes by the same letters.

We prove that the subgroup generated by fBi;s j i 2R�1; s 2Rg is the infinite direct
sum

L
i2R�1

R. It’s enough to prove that Bi1;s1 ; Bi2;s2 ; : : : ; Bik ;sk are Z–linearly
independent for distinct i1; i2; : : : ; ik and nonzero s1; s2; : : : ; sk 2R. This can directly
checked. For integers n1; n2; : : : ; nk , suppose that Bn1

i1;s1
ıB

n2

i2;s2
ı � � � ıB

nk

ik ;sk
D id 2

QI.R�0/. We have

sup
x2R>0

jB
n1

i1;s1
ıB

n2

i2;s2
ı � � � ıB

nk

ik ;sk
.x/� xj

D sup
x2R>0

jnkskx
1

ikC1Cnk�1sk�1.xCnkskx
1

ikC1 /
1

ik�1C1C� � �Cn1s1.xC� � � /
1

i1C1 j

<C1;

which implies n1 D n2 D � � � D nk D 0, considering the exponents.

The subgroup R>0Ë
�L

i2R�1
R
�

lies in DiffZ.R/ËH by the following construction.
Let at ; bi;s W R! R be defined by at .x/ D x C ln t and bi;s.x/ D ln.ex C se

x
iC1 /

for t 2 R>0, i 2 R�1 and s 2 R. It can be directly checked that at 2 DiffZ.R/ and
bi;s 2W.R/ (defined in Lemma 2.3). Let h.x/D ex . A direct calculation shows that
hath

�1 D At and hbi;sh�1 D Bi;s , as elements in QI.RC/.

3 Left-orderability

The following is well known; for a proof, see [7, Proposition 1.4]:

Lemma 3.1 A group G is left-orderable if and only if , for every finite collection of
nontrivial elements g1; : : : ; gk , there exist choices "i 2 f1;�1g such that the identity is
not an element of the semigroup generated by fg"i

i j i D 1; 2; : : : ; kg.
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The proof of Theorem 1.2 follows a similar strategy used by Navas to prove the
left-orderability of the group G1 of germs at 1 of homeomorphisms of R; cf [2,
Remark 1.1.13] or [4, Proposition 2.2].

Proof of Theorem 1.2 It’s enough to prove that QI.RC/ is left-orderable. Let
f1; f2; : : : ; fn 2 QI.RC/ be any finitely many nontrivial elements. Note that any
1 ¤ Œf � 2 QI.RC/ has supx>0 jf .x/ � xj D 1. This property doesn’t depend on
the choice of f 2 Œf �. Without confusion, we still denote Œf � by f . Choose a
sequence fx1;kg � RC such that supk2N jf1.x1;k/� x1;kj D1. For each i > 1, we
have either supk2N jfi .x1;k/�x1;kj D1 or supk2N jfi .x1;k/�x1;kj �M for a real
number M . After passing to subsequences, we assume for each i D 1; 2; : : : ; n that
either fi .x1;k/�x1;k!C1, fi .x1;k/�x1;k!�1 or supk2N jfi .x1;k/�x1;kj�M .
We assign "i D 1 for the first case and "i D�1 for the second case. For the third case,
let

S1 D ffi j sup
k2N
jfi .x1;k/� x1;kj �M g:

Note that f1 … S1. Choose fi0 2 S1 if S1 is not empty. We choose another se-
quence fx2;kg such that supk2N jfi0.x2;k/ � x2;kj D 1. Similarly, after passing
to a subsequence, we have for each f 2 S1 that either f .x2;k/ � x2;k ! C1,
f .x2;k/�x2;k!�1 or supk2N jf .x2;k/�x2;kj �M

0 for another real number M 0.
Assign "i D 1 for the first case and "i D�1 for the second case. Continue this process
to define S2; S3; : : : and choose sequences fxi;kg; i D 3; 4; : : : to assign "i for each fi .
Note that the process will stop at n times, as the number of elements without assignment
is strictly decreasing.

For an element f 2QI.RC/ satisfying f .xi /�xi !1 as i !1 for some sequence
fxig, we assume that f .xi /� xi > 0 for each i . Since f and f �1 are orientation-
preserving,

f �1.xi /� xi D�.xi �f
�1.xi //

D�.f �1.f .xi //�f
�1.xi //� �

�
1

K
.f .xi /� xi /�C

�
!�1:

Let w D f
"i1

i1
� � � f

"im

im
2 hf1; f2; : : : ; fni be a nontrivial word. If fi1; : : : ; img ª S1,

we have w.x1;k/ � x1;k ! 1. Otherwise, supk2N jw.x1;k/ � x1;kj < 1. Sup-
pose that fi1; : : : ; img � St , but fi1; : : : ; img ª StC1 with the assumption that S0 D
ff1; f2; : : : ; fng. We have w.xtC1;k/� xtC1;k !1 as k !1. This proves that
w ¤ 1 2 QI.RC/. Therefore, QI.RC/ is left-orderable by Lemma 3.1.

Lemma 3.2 The group QI.RC/ is not locally indicable.
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Proof Note that QI.RC/ contains the lift z� of PSL.2;R/ < Diff.S1/ to Homeo.R/
(Corollary 2.4). But this lift z� contains a subgroup �Dhf; g; h Wf 2Dg3Dh7Dfghi,
the lift of the .2; 3; 7/–triangle group. There are no nontrivial maps from � to .R;C/;
for more details see [2, page 94].

4 The quasi-isometric group cannot act effectively on the line

The following was proved by Mann [4, Proposition 6].

Lemma 4.1 Consider the affine group R>0 Ë R, generated by At and Bs for t 2R>0
and s 2R satisfying

AtBsA
�1
t D Bts; Bs1Bs2 D Bs1Cs2 ; At1At2 D At1t2 :

The affine group R>0ËR cannot act effectively on the real line R by homeomorphisms
with At a translation for each t .

Proof Suppose that R>0 Ë R acts effectively on the real line R with each At a
translation. After passing to an index-2 subgroup, we assume that the group is
orientation-preserving. If B1 acts freely on R, then it is conjugate to the translation
T WR!R defined by x 7! xC 1. In such a case, we have A2TA�12 D T

2. Therefore,
A�12 .x C 2/ D A�12 .x/C 1 for any x. Since A�12 maps intervals of length 2 to an
interval of length 1, it is a contracting map, and thus has a fixed point.

If B1 has a nonempty fixed point set Fix.B1/, choose I to be a connected component
of RnFix.B1/. Suppose that A2.x/D xCa, a translation by some real number a > 0.
Since A2 D An

21=n , we have A21=n.x/ D x C a=n for each positive integer n. For
each n, let FnDA21=nB1A

�1
21=n . Since A21=nB1A

�1
21=n commutes with B1, we see that

FnFix.B1/ D Fix.B1/. This means that either Fn.I / D I or Fn.I /\ I D ∅. Since
Fn.x/D B1.x� a=n/C a=n for any x 2R, we know that Fn.I /D I for sufficiently
large n. Without loss of generality, we assume that I is of the form .x; y/ or .�1; y/.
Choose a sufficiently large n such that y � a=n 2 I . We have

A21=nB1A
�1
21=n.y/D B1

�
y �

a

n

�
C
a

n
¤ y;

which is a contradiction to the fact that Fn.I /D I .

Definition 4.2 A topologically diagonal embedding of a group G < Homeo.R/ is
a homomorphism � W G ! HomeoC.R/ defined as follows. Choose a collection of
disjoint open intervals In � R and homeomorphisms fn W R ! In. Define � by
�.g/.x/D fngf

�1
n .x/ when x 2 In and �.g/.x/D x when x … In.
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The following is similar to a result proved by Militon [6].

Lemma 4.3 (Militon [6]) Let � D PSL2.R/ and z� < HomeoC.R/ be the lift of �
to the real line. Any effective action � W z� ,! HomeoC.R/ of z� on the real line R is a
topological diagonal embedding.

Proof After passing to an index-2 subgroup, we assume the action is orientation-
preserving. Let � WR!R be the translation x 7! xC 1. Suppose that Fix.�.�//¤∅.
Note that � lies in the center of z� . The quotient group � D z�=h�i acts on the fixed
point set Fix.�.�//. For any f 2 � and x 2 Fix.�.�//, we denote the action by f .x/
without confusion. Choose any torsion-element f 2 � and any x 2 Fix.�.�//. We
must have xD f .x/, for otherwise x < f .x/ < f 2.x/ < � � �< f k.x/ for any k. Since
� is simple, we know that the action of z� on Fix.�/ is trivial. For each connected
component Ii � R n Fix.�.�//, we know that � jIi

is conjugate to a translation. The
group � D z�=h�i acts on Ii=h�.�/i D S1. A result of Matsumoto [5, Theorem 5.2]
says that the group � is conjugate to the natural inclusion PSL2.R/ ,! HomeoC.S1/
by a homeomorphism g 2 HomeoC.S1/. Therefore, the group �.z�/jIi

is conjugate to
the image of the natural inclusion z� ,! HomeoC.R/.

For a real number a 2R, let

ta WR!R; x 7! xC a

be the translation. Denote by AD hta W a 2Ri, the subgroup of translations in the lift
z� of PSL2.R/.

Corollary 4.4 For any injective group homomorphism � W z�! Homeo.R/, the image
�.A/ is a continuous one-parameter subgroup; ie lima!a0

�.ta/ D �.ta0
/ for any

a0 2R.

Proof If � is injective, the previous lemma says that � is a topological diagonal
embedding. Therefore, �.A/ is continuous.

We will need the following elementary fact.

Lemma 4.5 Let � W .R;C/! .R;C/ be a group homomorphism. If � is continuous
at any x ¤ 0, then � is R–linear.

Proof For any nonzero integer n, we have �.n/D n�.1/ and �.1/D �
�
1
n
n
�
D n�

�
1
n

�
.

Since � is additive, we have �
�
m
n

�
D m�

�
1
n

�
D

m
n
�.1/ for any integers m; n ¤ 0.
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For any nonzero real number a 2 R, choose a rational sequence ri ! a. When � is
continuous, we have that �.ri /! �.a/ and �.ri /D ri�.1/! a�.1/D �.a/.

The following is the classical theorem of Hölder: a group acting freely on R is semi-
conjugate to a group of translations; see Navas [8, Section 2.2.4].

Lemma 4.6 Let � be a group acting freely on the real line R. There is an injective
group homomorphism � W �! .R;C/ and a continuous nondecreasing map ' WR!R

such that
'.h.x//D '.x/C�.h/

for any x 2R and h 2 � .

Corollary 4.7 Suppose that the affine group R>0ËRDhat W t 2 R>0iËhbs W s 2 Ri

acts on the real line R by homeomorphisms satisfying

(1) the action of the subgroup RDhbs W s 2Ri is free;

(2) for any fixed x 2R, at .x/ is continuous with respect to t 2R>0.

Let � W hbs W s 2Ri ! .R;C/ be the additive map in Lemma 4.6 for � D hbs W s 2Ri.
Then � is an R–linear map.

Proof Note that atbsa�1t D bts . We have

'.bts.x//D '.x/C�.bts/:

Since bts.x/D atbsa�1t .x/! bs.x/ when t ! 1, we have that

'.x/C�.bts/! '.bs.x//D '.x/C�.bs/:

This implies that �.bts/! �.bs/ as t ! 1. For any nonzero x 2 R and sequence
xn! x,

�.bxn
/D �.bxn

x
x/! �.bx/:

The map � is R–linear by Lemma 4.5.

Theorem 4.8 Consider G D R>0 Ë
�L

i2R�1
R
�
, generated by At and Bi;s for

t 2R>0, i 2R�1 D Œ1;1/ and s 2R satisfying

AtBi;sA
�1
t D B

i;st
i

iC1
; Bi;s1Bi;s2 D Bi;s1Cs2 ;

At1At2 D At1t2 ; Bi;s1Bj;s2 D Bj;s2Bi;s1

for any t1; t2 2 R>0, i; j 2 R�1 and s1; s2 2 R. Then G cannot act effectively on
the real line R by homeomorphisms when the induced action of hAt W t 2 R>0i is a
topologically diagonal embedding of the translation subgroup .R;C/ ,! Homeo.R/.
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Proof Suppose that G acts effectively on R with the induced action of hAt W t 2R>0i,
a topologically diagonal embedding of the translation subgroup .R;C/ ,! Homeo.R/.
Let I be a connected component of R nFix.hAt ; Bi;s W t 2R>0; i D 1; s 2Ri/.

Suppose that there is an element B1;s having a fixed point x 2 I for some s > 0. Since
A4B1;sA

�1
4 D B

2
1;s , we know that A4x 2 Fix.B1;s/D Fix.B21;s/. Since there are no

fixed points in I for hAt ; B1;s W t 2 R>0; s 2 Ri, we know that limn!1An4x … I .1

This implies that A4 has no fixed point in I . Since the group homomorphism

hAt W t 2R>0i ! Homeo.R/

is a diagonal embedding, we see that each At has no fixed point in I and the action of
hAt W t 2R>0i on I is conjugate to a group of translations. By Lemma 4.1, the affine
group hAt ; B1;s W t 2R>0; s 2Ri cannot act effectively on I . Suppose that AtB1;s0 acts
trivially on I for some t >0 and s0>0. We have thatAtB1;sDAs2s0�2.AtB1;s0/A

�1
s2s0�2

acts trivially on I . But AtB1;s.x/ D At .x/ D x implies that t D 1. Therefore, the
element B1;s (and any B1;t DAt2s�2B1;sA

�1
t2s�2 for t 2R>0) acts trivially on I . This

means that the action of hB1;s W s 2Ri on the connected component I is either trivial
or free. Since the action of G is effective, there is a connected component I1 on which
B1;s acts freely. A similar argument shows that Bi;s0 acts freely on a component Ii for
each i 2R�1 and any s0 2R n f0g.

Since Bi;s0 commutes with Bj;s , we have Bi;s0.I1/�RnFix.hBj;s W s 2Ri/. Moreover,
Bi;s0.Ij /\ Ij is either Ij or the empty set. Suppose that Ii \ Ij ¤∅ and the right end
bi of Ii lies in Ij . Choose x 2 Ii \ Ij . Note that Bj;s.Œx; bi //\ Œx; bi /D ∅ for any
s > 0. This is impossible as Bj;s=n.x/! x as n!1. Therefore, Ii \ Ij D Ii or is
empty for distinct i; j 2R�1. Since we have uncountably many i 2R>0, there must
be some distinct i; j 2 R�1 such that Ii D Ij . This means that the subgroup R˚R

spanned by the i; j –components acts freely on Ii . Hölder’s theorem (Lemma 4.6) gives
an injective group homomorphism � WR˚R! .R;C/ and a continuous nondecreasing
map ' WR!R such that

'.h.x//D '.x/C�.h/

for any x 2R. Since hAt W t 2R>0i!Homeo.R/ is a topological embedding, we have
that for any fixed x 2R, At .x/ is continuous with respect to t 2R>0. By Corollary 4.7,

1Otherwise, limn!1 An4x 2I . ButAt .limn!1 An4x/D limn!1 An4x for any t >0 by the topologically
diagonal embedding. For any s0, we have B1;s0 D As02s�2B1;sA

�1
s02s�2 and B1;s0.limn!1 An4x/ D

limn!1 An4x. This would imply that limn!1 An4x is a global fixed point of hAt ; B1;s W t 2R>0; s 2Ri.
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the restriction map �jR is R–linear for each direct summand R. This is a contradiction
to the fact that � is injective. Therefore, the group G cannot act effectively.

Proof of Theorem 1.3 Suppose that QIC.R/ acts on the real line by an injective group
homomorphism � WQIC.R/!Homeo.R/. The group QIC.R/ contains the semidirect
product R>0 Ë

�L
i2R�1

R
�
, by Lemma 2.6. The subgroup R>0 (as the image of the

exponential map) is a homomorphic image of the subgroup R < z� , which is the lift
of SO.2/=f˙I2g < PSL2.R/ to Homeo.R/. Note that z� is embedded into QIC.R/
(see Corollary 2.4 and its proof). By Lemma 4.3, any effective action of z� on the real
line R is a topological diagonal embedding. This means that the action of R>0 is a
topological diagonal embedding (Corollary 4.4). Theorem 4.8 shows that the action of
R>0 Ë

�L
i2R�1

R
�

is not effective.
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We describe a method for constructing simplicial model structures on ind- and pro-
categories. Our method is particularly useful for constructing “profinite” analogues of
known model categories. Our construction quickly recovers Morel’s model structure
for pro-p spaces and Quick’s model structure for profinite spaces, but we will show
that it can also be applied to construct many interesting new model structures. In
addition, we study some general properties of our method, such as its functorial
behavior and its relation to Bousfield localization. We compare our construction to
the1–categorical approach to ind- and pro-categories in an appendix.
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1 Introduction

In [31; 32], Quick constructed a fibrantly generated Quillen model structure on the
category of simplicial profinite sets that models the homotopy theory of “profinite
spaces”. This can be seen as a continuation of Morel’s work in [30], where, for a
given prime p, he presented a model structure on the same category that models the
homotopy theory of “pro-p spaces”.

The purpose of this paper is to present a new and uniform method that immediately
gives these two model structures, as well as many others. For example, while Quick’s
model structure is in a sense derived from the classical homotopy theory of simplicial
sets, our method also applies to the Joyal model structure, thus providing a homotopy
theory of profinite1–categories. Our construction can also be used to obtain a model
category of profinite P–stratified spaces, where P is a finite poset, whose underlying
1–category is the 1–category of profinite P–stratified spaces defined in Barwick,
Glasman and Haine [8].

One general form that our results take is the following version of pro-completion of
model categories:

Theorem 1.1 Let E be a simplicial model category in which every object is cofibrant
and let C be an (essentially) small full subcategory of E closed under finite limits and
cotensors by finite simplicial sets. Then for any collection T of fibrant objects in C, the
pro-completion Pro.C/ carries a fibrantly generated simplicial model structure with the
following properties:

(i) The weak equivalences are the T–local equivalences; that is , f W C ! D is a
weak equivalence if and only if

f � WMap.D; t/!Map.C; t/

is a weak equivalence of simplicial sets for any t 2 T.

(ii) Every object in Pro.C/ is again cofibrant.

(iii) The inclusion C ,! E induces a simplicial Quillen adjunction E� Pro.C/.

(iv) If T � C is closed under pullbacks along fibrations (as in Definition 7.10)
and cotensors by finite simplicial sets , then the underlying1–category of this
model structure on Pro.C/ is equivalent to Pro.N.T//, where N.T/ denotes the
homotopy coherent nerve of the full simplicial subcategory of E spanned by the
objects of T.
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The model structures of Quick and Morel mentioned above can be obtained from this
theorem by appropriately choosing a full subcategory C of sSet and a collection T
of fibrant objects. Another known model structure that can be recovered from the
above theorem is the model structure for “profinite groupoids” constructed by Horel in
[18, Section 4].

The new model category Pro.C/ is a kind of pro-completion of E with respect to the
pair .C;T/, and could be denoted by yE or E^

.C;T/. The left adjoint E! Pro.C/ of the
Quillen adjunction mentioned in item (iii) can be seen as a “pro-C completion” functor.
For the model structures of Morel, Quick and Horel mentioned above, this functor
agrees with the profinite completion functor.

We would like to point out that the above formulation is slightly incomplete since there
are multiple ways of choosing sets of generating (trivial) fibrations, which theoretically
could lead to different model structures on Pro.C/, though always with the weak
equivalences as described above. A noteworthy fact is that the above theorem also
holds for model categories enriched over the Joyal model structure on simplicial
sets, so in particular it applies to the Joyal model structure itself. In this case, the
model structure obtained on Pro.C/ is enriched over the Joyal model structure, but
not necessarily over the classical Kan–Quillen model structure on sSet. Another fact
worth mentioning is that there exist many simplicial model categories satisfying the
hypotheses of the above theorem, that is, all objects being cofibrant. Indeed, by a result
of Dugger [11, Corollary 1.2], any combinatorial model category is Quillen equivalent
to such a simplicial model category.

Even though we are mostly interested in model structures on pro-categories, we will first
describe our construction in the context of ind-categories, and then dualize those results.
We have chosen this approach since in the case of ind-categories our construction
produces cofibrantly generated model categories, which to most readers will be more
familiar territory than that of fibrantly generated model categories. In addition, this
will make it clear that the core of our argument, which is contained in Section 3, only
takes a few pages. Another reason for describing our construction in the context of
ind-categories is that an interesting example occurs there: if we apply our construction
to a well-chosen full subcategory of the category of topological spaces, then we obtain
a model category that is Quillen equivalent to the usual Quillen model structure on Top,
but that has many favorable properties, such as being combinatorial.

Our original motivation partly came from the desire to have a full-fledged Quillen-style
homotopy theory of profinite1–operads, by using the category of dendroidal Stone
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spaces (ie dendroidal profinite sets). However, not every object is cofibrant in the
operadic model structure for dendroidal sets, so the methods from the current paper
do not apply directly to this case. The extra work needed to deal with objects that are
not cofibrant is of a technical nature, and very specific to the example of dendroidal
sets. For this reason, we have decided to present this case separately; see Blom and
Moerdijk [9].

Relation to the construction by Barnea and Schlank There are several results in the
literature that describe general methods for constructing model structures on ind- or pro-
categories. The construction in the current paper is quite close in spirit to that by Barnea
and Schlank in [7]. They show that if C is a category endowed with the structure of a
“weak fibration category”, then there exists an “induced” model structure on Pro.C/
provided some additional technical requirements are satisfied. However, there are
important examples of model structures on pro-categories that are not of this form. For
example, Quick’s model structure is not of this kind, as explained just above Proposition
7.4.2 in [4]. In the present paper, we prove the existence of a certain model structure on
the pro-category of a simplicial category endowed with the extra structure of a so-called
“fibration test category” (defined in Definition 5.1). While the definition of a fibration
test category given here seems less general than that of a weak fibration category, there
are many interesting examples where it is easy to prove that a category is a fibration
test category while it is not clear whether this category is a weak fibration category in
the sense of [7]. In particular, Quick’s model structure can be obtained through our
construction; see Example 5.5 and Corollary 6.6. Another advantage is that we do not
have to check the technical requirement of “pro-admissibility” (see [7, Definition 4.4])
to obtain a model structure on Pro.C/, which is generally not an easy task. We also
believe that our description of the weak equivalences in Pro.C/, namely as the T–local
equivalences for some collection of objects T, is often more natural and flexible than
the one given in [7]. It is worth pointing out that if both our model structure and that
of [7] on Pro.C/ exist, then they agree by Remark 5.12 below.

Overview of the paper In Section 2, we will establish some terminology and mention
a few facts on simplicial model categories and ind- and pro-categories. We will then
describe our general construction of the model structure for ind-categories in Section 3.
We illustrate our construction with an example in Section 4, where we construct a
convenient model category of spaces. In Section 5, we dualize our results to the context
of pro-categories, and illustrate this dual construction with many examples. We show
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that some of these examples coincide with model structures that are already known to
exist in Section 6, such as Quick’s and Morel’s model structures. We then continue the
study of our construction in Section 7, where we discuss its functorial behavior, and in
Section 8, where we prove results about the existence of certain Bousfield localizations.
The latter section also contains the proof of Theorem 1.1, except for item (iv). We then
give a detailed discussion of two examples in Section 9; namely the model structure for
complete Segal profinite spaces and the model structure for profinite quasicategories.
In the appendix, we compare our construction to the1–categorical approach to ind-
and pro-categories.

Acknowledgements We would like to thank the referees for numerous comments that
helped improve the exposition.

2 Preliminaries

In this section, we will briefly review some basic definitions concerning simplicial
objects, and then discuss ind- and pro-categories.

2.1 Simplicial conventions

We assume the reader to be familiar with the basic theory of simplicial sets, as in
[28; 23; 13; 14]. We will say that a simplicial set X is skeletal if it is n–skeletal for
some natural number n, ie if the map skn X ! X is an isomorphism. Dually, X is
coskeletal if X ! coskn X is an isomorphism for some n. Recall that a simplicial
set X is degreewise finite if each Xn is a finite set, and finite if it has finitely many
nondegenerate simplices. Note that the latter is equivalent to X being degreewise finite
and skeletal. We will say that a simplicial set is lean if it is degreewise finite and
coskeletal, and write L for the full subcategory of sSet on the lean simplicial sets. One
can show that if X is a lean simplicial set and if Y is a degreewise finite simplicial set,
then the cotensor X Y DMap.Y;X / is again a lean simplicial set.

Most categories we deal with are simplicial categories, ie categories enriched over
simplicial sets. Moreover, they will generally be required to have tensors or cotensors
by finite simplicial sets. For objects c and d in a simplicial category C, we will write
Map.c; d/ for the simplicial hom set. Recall that for a morphism c! d in C and a
morphism U ! V of simplicial sets, the pushout-product map is the map

d ˝U [c˝U c˝V ! d ˝V;
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which makes sense in C if the necessary pushouts and tensors exist. Dually, we refer to

cV
! cU

�dU dV

as the pullback-power map (if it exists). If given another morphism a! b in C, we
refer to

Map.b; c/!Map.a; c/�Map.a;d/ Map.b; d/

as a pullback-power map as well. Note that this map always exists.

We assume the reader to be familiar with the basic theory of Quillen model categories,
as in [19; 17]. Basic examples include the classical Kan–Quillen model structure
on simplicial sets, which we denote by sSetKQ, and the Joyal model structure sSetJ

modeling the homotopy theory of1–categories [24]. A simplicial model category is a
model category E that is enriched, tensored and cotensored over simplicial sets, and that
satisfies the additional axiom SM7 phrased in terms of pullback-power maps, or dually
in terms of pushout-product maps; see eg [17, Definition 9.1.6 and Proposition 9.3.7]
or [33, Definition II.2.2]. We emphasize that we will use this terminology in a somewhat
nonstandard way. Namely, by a simplicial model category, we will either mean that
the axiom SM7 holds with respect to the Kan–Quillen model structure or the Joyal
model structure. Whenever it is necessary to emphasize the distinction, we will call
a simplicial model category of the former kind a sSetKQ–enriched model category
and the latter a sSetJ–enriched model category. Note that any sSetKQ–enriched model
category is sSetJ–enriched, since sSetKQ is a left Bousfield localization of sSetJ.

We will make use of the following fact about the (categorical) fibrations in sSetJ.

Lemma 2.1 There exists a set M of maps between finite simplicial sets such that a
map between quasicategories X ! Y is a fibration in sSetJ if and only if it has the right
lifting property with respect to all maps in M .

Proof Let H denote the simplicial set obtained by gluing two 2–simplices to each
other along the edges opposite to the 0th and 2nd vertex, respectively, and then collapsing
the edges opposite to the 1st vertex to a point in both of these 2–simplices. This means
that H looks as follows, where the dashed lines represent the collapsed edges:

H D

�

� �

�
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A map from H into a quasicategory X consists of an arrow f 2X1, a left and right
homotopy inverse g; h2X1 and homotopies gf � id and f h� id. Let f0g ,!H denote
the inclusion of the leftmost vertex into H . It follows from [24, Corollary 2.4.6.5]
that if X ! Y is an inner fibration between quasicategories that has the right lifting
property with respect to f0g ,!H , then it is a categorical fibration. The converse is also
true. To see this, note that for any quasicategory Z, a map H !Z lands in the largest
Kan complex k.Z/ contained in Z. Since f0g ,!H is a weak homotopy equivalence,
we see that Map.H;Z/DMap.H; k.Z//'Map.f0g; k.Z//DMap.f0g;Z/, so the
inclusion f0g ,!H is a categorical equivalence. In particular, any categorical fibration
has the right lifting property with respect to f0g ! H . We conclude that the set
M D fƒn

k
,!�n j 0< k < ng[ ff0g ,!H g has the desired properties.

2.2 Ind- and pro-categories

In this section we recall some basic definitions concerning ind- and pro-categories.
Most of these will be familiar to the reader, with the possible exception of Theorem 2.3
below. For details, we refer the reader to [15; 12, Section 2.1; 2, Appendix; 20]. In the
discussion below, all (co)limits are assumed to be small.

For a category C, its ind-completion Ind.C/ is obtained by freely adjoining filtered (or
directed) colimits to C. Dually, the free completion under cofiltered limits is denoted
by Pro.C/. This in particular means that Pro.C/op D Ind.Cop/, so any statement about
ind-categories dualizes to a statement about pro-categories and vice versa. We will
therefore mainly discuss ind-categories here and leave it to the reader to dualize the
discussion.

One way to make the above precise is to define the objects in Ind.C/ to be all diagrams
I ! C for all filtered categories I . Such objects are called ind-objects and denoted by
C Dfcigi2I . The morphisms between two such objects C Dfcigi2I and DDfdj gj2J

are defined by

(1) HomInd.C/.C;D/D lim
i

colim
j

HomC.ci ; dj /:

If C is a simplicial category, then Ind.C/ can be seen as a simplicial category as well.
The enrichment is expressed by a formula similar to (1), namely

Map.fcig; fdj g/D lim
i

colim
j

Map.ci ; dj /:

One can define the pro-category Pro.C/ of a (simplicial) category C as the category
of all diagrams I ! C for all cofiltered I , and with (simplicial) hom sets dual to the
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ones above. An object in Pro.C/ is called a pro-object. One could also simply define
Pro.C/ as Ind.Cop/op.

It can be shown that any object in Ind.C/ is isomorphic to one where the indexing
category I is a directed poset, and dually that any object in Pro.C/ is isomorphic to one
that is indexed by a codirected poset; see [15, Proposition 8.1.6], or [12, Theorem 2.1.6]
with a correction just after Corollary 3.11 of [5].

There is a fully faithful embedding C ,! Ind.C/ sending an object c to the constant
diagram with value c, again denoted by c. We will generally identify C with its image
in Ind.C/ under this embedding. This embedding preserves all limits and all finite
colimits that exist in C. The universal property of Ind.C/ states that Ind.C/ has all
filtered colimits and that any functor F WC!E , where E is a category that has all filtered
colimits, has an essentially unique extension to a functor zF W Ind.C/! E that preserves
filtered colimits. This extension can be defined explicitly by zF .fcig/D colimi F.ci/.

Recall that if E is a category that has all filtered colimits, then an object c in E is called
compact if HomE.c;�/ commutes with filtered colimits. The dual notion is called
cocompact. One can deduce from the definition of the morphisms in Ind.C/ that any
object in the image of C ,! Ind.C/ is compact. Dually, the objects of C are cocompact
in Pro.C/.

There is the following recognition principle for ind-completions, whose proof we leave
to the reader.

Lemma 2.2 (recognition principle) Let E be a category closed under filtered colimits
and let C ,! E be a full subcategory. If

(i) any object in C is compact in E , and

(ii) any object in E is a filtered colimit of objects in C,

then the canonical extension Ind.C/!E , coming from the universal property of Ind.C/,
is an equivalence of categories.

To avoid size issues, we assume from now on that C is an (essentially) small category.
The fact that the presheaf category SetCop

is the free cocompletion of C leads to an
alternative description of Ind.C/ that is sometimes easier to work with. Namely, we
can think of Ind.C/ as the full subcategory of SetCop

consisting of those presheaves
which are filtered colimits of representables. If C is small and has finite colimits, as
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will be the case in all of our examples, then these are exactly the functors Cop! Set
that send the finite colimits of C to limits in Set (see [15, Théorème 8.3.3(v)]), that is,

Ind.C/' lex.Cop;Set/;

where the right-hand side stands for the category of left exact functors. From this
description, one sees immediately that Ind.C/ has all small limits and that the inclusion
Ind.C/! SetCop

preserves these. The category Ind.C/ also has all colimits in this
case. Namely, finite coproducts and pushouts can be computed “levelwise” in C as
described in [2, Appendix 4], while filtered colimits exist as mentioned above. Note,
however, that the inclusion Ind.C/! SetCop

does not preserve all colimits, but only
filtered ones.

One sees dually that if C is small and has all finite limits, then

Pro.C/' lex.C;Set/op:

As above, it follows that Pro.C/ is complete and cocomplete in this case.

Another consequence of the fact that finite coproducts and pushouts in Ind.C/ are
computed “levelwise” is the following: if F W C! E , with E cocomplete, preserves
finite colimits, then its extension zF W Ind.C/! E given by the universal property also
preserves finite colimits. Since it also preserves filtered colimits, we conclude that
it preserves all colimits. In fact, more is true. The above description of Ind.C/ as
lex.Cop;Set/ allows us to construct a right adjoint R of zF . Namely, if we define
R.E/.c/ WD Hom.Fc;E/, then R.E/ W Cop ! Set is left exact, hence R defines a
functor E! Ind.C/. Adjointness follows from the Yoneda lemma. We therefore see
that, up to unique natural isomorphism, there is a one-to-one correspondence between
finite colimit-preserving functors C! E and functors Ind.C/! E that have a right
adjoint.

There are two important examples of adjunctions obtained in this way that we would
like to mention here. The first one is the ind-completion functor. If E is a cocomplete
category and C a full subcategory closed under finite colimits, then the inclusion C� E
induces an adjunction

U W Ind.C/� E W y. � /Ind;

whose right adjoint we call ind-completion (relative to C) or ind-C completion. Dually,
if E is complete and C is a full subcategory closed under finite limits, then we obtain
an adjunction

y. � /Pro W E� Pro.C/ WU;
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whose left adjoint we call pro-completion (relative to C) or pro-C completion. In
many examples, C is the full subcategory of E consisting of objects that are “finite” in
some sense, and this left adjoint is better known as the profinite completion functor.
For instance, in the case of groups, this functor y. � /Pro W Grp! Pro.FinGrp/ is the
well-known profinite completion functor for groups.

The other important example is about cotensors in ind-categories. Suppose C is a small
simplicial category that has all finite colimits and tensors with finite simplicial sets,
and that furthermore these tensors commute with these finite colimits. We will call
C finitely tensored if this is the case; see Definition 3.1 for a precise definition. If X

is a simplicial set, then we can write it as colimi Xi , where i ranges over all finite
simplicial subsets Xi �X . Define

�˝X W C! Ind.C/ by c˝X D fc˝Xigi :

This functor preserves finite colimits since these are computed “levelwise” in Ind.C/,
hence it extends to a functor �˝X W Ind.C/! Ind.C/ that has a right adjoint .�/X .
These define tensors and cotensors by arbitrary simplicial sets on Ind.C/. In particular,
Ind.C/ is a simplicial category that is complete, cocomplete, tensored and cotensored;
note the similarity with [6, Proposition 4.10]. The dual of this statement says that
for any small simplicial category C that has finite limits and cotensors with finite
simplicial sets, and in which these finite cotensors commute with finite limits in C, the
pro-category Pro.C/ is a simplicial category that is complete, cocomplete, tensored
and cotensored. We call C finitely cotensored in this case.

Let us return to the basic definition (1) of morphisms in Ind.C/. If C D fcig and
D D fdig are objects indexed by the same filtered category I , then any natural trans-
formation with components fi W ci ! di represents a morphism in Ind.C/. Morphisms
of this type (or more precisely, morphisms represented in this way) will be called level
maps or strict maps. Up to isomorphism, any morphism in Ind.C/ has such a strict
representation; see Corollary 3.2 of [2, Appendix]. One can define the notion of a
“level” diagram or “strict” diagram in a similar way. Given an indexing category K, a
conceptual way of thinking about these is through the canonical functor

Ind.CK /! Ind.C/K :

A strict diagram can be thought of as an object in the image of this functor. If K is a
finite category and C has all finite colimits, then the above functor is an equivalence of
categories [29, Section 4]. This shows in particular that, up to isomorphism, any finite
diagram in Ind.C/ is a strict diagram if C is small and has finite colimits.
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In our context, the following extension of Meyer’s result is important. Suppose that K

is a category which can be written as a union of a sequence of finite full subcategories

K0 �K1 �K2 � � � � �K D
[

n2N

Kn:

Let C be a small category that has finite colimits. Then any functor f WKn! C has
a left Kan extension g WK! C defined in terms of finite colimits as in (the dual to)
Theorem X.3.1 of [26]. For X W K ! C, write skn X for the left Kan extension of
the restriction of X to Kn. We call X n–skeletal if the canonical map skn X ! X

is an isomorphism, and skeletal if this is the case for some n. The full subcategory
sk.CK /� CK spanned by the skeletal functors K! C can be viewed as a full sub-
category of Ind.C/K via the inclusion C ,! Ind.C/. Note that for any X in Ind.C/K , we
have X D colimn skn X . Exactly as in (the dual of) the proof of [4, Proposition 7.4.1],
the result of [29, Section 4] mentioned above can be used to show that the hypotheses of
the recognition principle for ind-categories are satisfied, hence that the induced functor
Ind.sk.CK //! Ind.C/K is an equivalence of categories. In fact, the assumption that
K is a union of a sequence of finite full subcategories is irrelevant, and the following
more general result, which we write down for future reference, can be proved by
the same argument. Note that a category K can be written as a union of finite full
subcategories if and only if for any k; k 0 2K, the set HomK .k; k

0/ is finite.

Theorem 2.3 Let C be a small category that has finite colimits , and let K be a small
category that can be written as a union of finite full subcategories. Write sk.CK / for
the full subcategory of CK of those functors K! C that are isomorphic to the left
Kan extension of a functor K0! C for some finite full subcategory K0 � K. Then
Ind.sk.CK //' Ind.C/K .

This theorem recovers the well-known equivalence Ind.sSetfin/' sSet when applied to
�opD

S
n�

op
�n and CDFinSet. Note that we already (implicitly) used this equivalence

when we defined tensors by simplicial sets for ind-categories above.

We can also apply the dual of this theorem to the same categories K D �op and
CD FinSet. Write cSetD Pro.FinSet/ for the category of profinite sets, which is well
known to be equivalent to the category of Stone spaces Stone. Since we want to apply
the dual of Theorem 2.3, we need to work with right Kan extensions instead of left
Kan extensions. In particular, we obtain the full subcategory of FinSet�

op
on those

simplicial sets that are the right Kan extension of some functor �op
�n! FinSet. These
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are exactly the coskeletal degreewise finite simplicial sets, ie the lean simplicial sets.
In particular, the theorem above recovers the equivalence Pro.L/ ' scSet proved in
Proposition 7.4.1 of [4].

An example that plays an important role in Section 9 is that of bisimplicial (profinite)
sets. The dual of the above theorem shows that the category of bisimplicial profinite sets
biscSetD scSet�op

ŠcSet�op��op
is canonically equivalent to the category Pro.L.2// for a

certain full subcategory L.2/ of the category of bisimplicial sets bisSetD sSet�
op

. This
category L.2/ consists of those bisimplicial sets that are isomorphic to the right Kan
extension of a functor�op

�t��
op
�n!FinSet along the inclusion�op

�t��
op
�n ,!�op��op

for some t; n 2N. We will refer to such bisimplicial sets as doubly lean.

3 The completed model structure on Ind.C/

In this section, we will describe our construction of the model structure on Ind.C/,
where C is what we call a “cofibration test category”. In Section 5, we will dualize this
construction to the context of pro-categories. After that, we will study the functorial
behavior of the construction in Section 7 and discuss Bousfield localizations in Section 8.

Throughout these sections, the terms “weak equivalence” and “fibration” of simplicial
sets refer to either the classical Kan–Quillen model structure or to the Joyal model
structure. When we say that a model category is simplicial, this can mean either that it
is enriched over the Kan–Quillen model structure or over the Joyal model structure.

We wish to single out the definition of being finitely tensored, since it occurs many
times throughout this paper.

Definition 3.1 Let C be a simplicial category. Then C is called finitely tensored if

(i) it admits finite colimits,

(ii) it admits tensors by finite simplicial sets, and

(iii) these commute with each other, meaning that the canonical map

colim
i
.ci ˝X /!

�
colim

i
ci

�
˝X

is an isomorphism for any finite diagram fcig in C and any finite simplicial
set X .
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Remark 3.2 Condition (iii) is equivalent to asking that the finite colimits of (i) are
enriched colimits; that is, for any finite diagram fcig in C and any object d in C, the
canonical map colimi Map.ci ; d/!Map.colimi ci ; d/ is an isomorphism of simplicial
sets.

As explained in Section 2.2, if C is finitely tensored, then the category Ind.C/ is a
tensored and cotensored simplicial category that is both complete and cocomplete. We
will endow C with some additional structure, that of a “cofibration test category”, and
show that it induces a simplicial model structure on Ind.C/ in Theorem 3.9 below.

Definition 3.3 A cofibration test category .C;T/ consists of a small finitely tensored
simplicial category C, a full subcategory T of test objects and two classes of maps
in T called cofibrations, denoted by�, and trivial cofibrations, denoted by ���!, both
containing all isomorphisms, that satisfy the following properties:

(i) The initial object ¿ is a test object, and for every test object t 2 T, the map
¿! t is a cofibration.

(ii) For every cofibration between test objects s� t and cofibration between finite
simplicial set U � V , the pushout-product map t˝U [s˝U s˝V ! t˝V is
a cofibration between test objects which is trivial if either s� t or U � V is.

(iii) A morphism r ! s in T is a trivial cofibration if and only if it is a cofibration
and Map.t; r/!Map.t; s/ is a weak equivalence of simplicial sets for every
t 2 T.

(iv) Any object c 2C has the right lifting property with respect to trivial cofibrations.

Remark 3.4 Property (iv) implies that Map.t;C / is fibrant for every t 2 T and
C 2 Ind.C/. Namely, writing C as a filtered colimit colimi ci with ci 2 C for every i ,
we see that Map.t;C /D colimi Map.t; ci/. Hence it suffices to show that Map.t; c/ is
fibrant for every object c in C. This is equivalent to c having the right lifting property
with respect to certain maps of the form t˝ƒn

k
! t˝�n, which is indeed the case by

items (i), (ii) and (iv).

Remark 3.5 The definition of a cofibration test category depends on whether we
work with the Kan–Quillen model structure sSetKQ or the Joyal model structure sSetJ.
However, since sSetKQ is a left Bousfield localization of sSetJ, any cofibration test
category with respect to sSetKQ is also a cofibration test category with respect to sSetJ.
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To see this, suppose that .C;T/ is a cofibration test category with respect to sSetKQ. It
is clear that items (i), (ii) and (iv) also hold with respect to sSetJ. For item (iii), note
that the map Map.t; r/!Map.t; s/ is a map between Kan complexes by Remark 3.4,
hence it is a weak equivalence in sSetJ if and only if it is in sSetKQ.

We will often write C for a cofibration test category .C;T/, omitting the full subcategory
of test objects T from the notation. We will write cof.C/ for the set of cofibrations.
Note that this is a subset of the morphisms of T.

The role of the test objects t 2T is to detect the weak equivalences in Ind.C/ “from the
left”. More precisely, the weak equivalences in Ind.C/ will be those arrows C !D for
which Map.t;C /!Map.t;D/ is a weak equivalence for every t 2T. For this reason, we
will call an arrow c!d in C for which Map.t; c/!Map.t; d/ is a weak equivalence for
every t 2T a weak equivalence, and denote such arrows by ��!. We write we.C/ for the
set of weak equivalences in C. Using this terminology, item (iii) of the above definition
can be rephrased as saying that the trivial cofibrations are precisely the cofibrations
that are weak equivalences. In particular, the set of trivial cofibrations in a cofibration
test category C is fully determined by the full subcategory T and the set cof.C/.

Let us look at a few examples. We will discuss more interesting examples in Section 5,
where we consider fibration test categories, the dual of cofibration test categories.

Example 3.6 Suppose E is a simplicial model category in which every object is
fibrant, and let C � E be a (small) full subcategory closed under finite colimits and
finite tensors. If we define T to be the full subcategory on the cofibrant objects, then
.C;T/ forms a cofibration test category where the (trivial) cofibrations are the (trivial)
cofibrations of E between objects of T. We say that C inherits this structure of a
cofibration test category from E . Properties (i), (ii) and (iv) of Definition 3.3 follow
directly from the fact that E is a (simplicial) model category and the fact that any object
in E is fibrant. For one direction of property (iii), note that since all objects in E are
fibrant, the functor Map.t;�/ preserves weak equivalences for any cofibrant object t .
For the converse direction, note that a cofibration r� s is trivial if and only if it is
mapped to an isomorphism in the homotopy category Ho.E/. By the Yoneda lemma
applied to the full subcategory Ho.T/ � Ho.E/ spanned by the objects of T, this is
equivalent to HomHo.E/.t; r/!HomHo.E/.t; s/ being an isomorphism for every t . Since
Map.t; r/!Map.t; s/ is a weak equivalence by assumption and HomHo.E/.t;�/ equals
the set of path components of (the maximal Kan complex contained in) Map.t;�/, this
is indeed the case.
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Example 3.7 Suppose that a cofibration test category .C;T/ is given, and let T0 � T
be a full subcategory such that ¿ 2 T0 and such that for any cofibration s� t between
objects of T0 and any cofibration U�V in sSetfin, the object t˝U[s˝U s˝V is again
in T0. We will call such a full subcategory T0 � T closed under finite pushout-products.
Then .C;T0/ is again a cofibration test category if we define the (trivial) cofibrations to
be those of .C;T/ between objects of T0. All items of Definition 3.3 are straightforward
to show except possibly property (iii). The “only if” direction follows immediately. For
the “if” direction of (iii), suppose r� s is a map in T0 that is a cofibration with the
property that Map.t; r/!Map.t; s/ is a weak equivalence for any t 2 T0. Applying
this to t D r and t D s and using that these mapping spaces are fibrant, we obtain
left and right homotopy inverses of r� s, where homotopies in T0 are defined using
the tensor �˝�1 (in the case of sSetKQ) or �˝H (in the case sSetJ, where H is
as in the proof of Lemma 2.1). Since Map.t;�/ is a simplicial functor it preserves
these homotopies, showing that Map.t; r/!Map.t; s/ is a homotopy equivalence for
every t 2 T. We conclude that r� s is a trivial cofibration in T and hence a trivial
cofibration in T0 by definition.

Example 3.8 Let Top be a convenient category of topological spaces, such as k–
spaces or compactly generated (weak) Hausdorff spaces. The Quillen model structure
on Top is a simplicial model structure, in which tensors are given by C ˝X DC �jX j

for any C 2 Top and X 2 sSet. Let C� Top be any small full subcategory of Top that
is closed under finite colimits and finite tensors, and moreover contains the space jX j
for any finite simplicial set X . Define T� C to be the full subcategory consisting of
the objects jX j for any finite simplicial set X , and define a map jX j ! jY j in T to be
a (trivial) cofibration if it is the geometric realization of a (trivial) cofibration X � Y

in the Kan–Quillen model structure on sSet. Using that there are natural isomorphisms
jY j ˝ V Š jY � V j and jX j ˝ V [jX j˝U jY j ˝U Š jX � V [X�U Y � V j for any
pair of maps X ! Y and U ! V in sSet, it is straightforward to verify that .C;T/ is
a cofibration test category in the sense of Definition 3.3 (with respect to sSetKQ). This
example will be studied further in Section 4.

For a cofibration test category C, we will write I for the image of the set of cofibrations
of C in Ind.C/, and J for the image of the set of trivial cofibrations of C in Ind.C/.
Identifying C with its image in Ind.C/, we can write

I D ff W s! t j f is a cofibration in Cg D cof.C/;

J D ff W s! t j f is a trivial cofibration in Cg D cof.C/\we.C/:
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Recall that the sets of (trivial) cofibrations cof.C/ and cof.C/\we.C/ in .C;T/ are
both contained in T; that is, any (trivial) cofibration is a map between test objects.

The sets I and J are generating (trivial) cofibrations for a model structure on Ind.C/
in which the weak equivalences are as above.

Theorem 3.9 Let C be a cofibration test category. Then Ind.C/ carries a cofibrantly
generated (hence combinatorial ) simplicial model structure , the completed model
structure , where a map C !D is a weak equivalence if and only if for every t 2 T,
Map.t;C / ! Map.t;D/ is a weak equivalence. A set of generating cofibrations
(resp. generating trivial cofibrations) is given by I (resp. J ). Every object is fibrant in
this model structure.

Remark 3.10 As mentioned in Remark 3.5, the definition of a cofibration test category
depends on whether we work with the Joyal model structure or the Kan–Quillen model
structure on sSet. In the first case, the model structure on Ind.C/ will be sSetJ–enriched,
while in the latter case, it will be sSetKQ–enriched.

The proof uses the following lemmas.

Lemma 3.11 Let C be a cofibration test category. The weak equivalences of Ind.C/
as defined in Theorem 3.9 are stable under filtered colimits.

Proof Let fCi
�
�!Dig be a levelwise weak equivalence between filtered diagrams

in Ind.C/ and let t 2 T. Then Map.t; colimi Ci/!Map.t; colimi Di/ is the filtered
colimit of the maps Map.t;Ci/!Map.t;Di/ since t is compact in Ind.C/, which are
weak equivalences by assumption. The proof therefore reduces to the statement in sSet
that a filtered colimit of weak equivalences, indexed by some filtered category I , is
again a weak equivalence. This can be proved for the Kan–Quillen and Joyal model
structure in exactly the same way. Namely, this is equivalent to the statement that
the functor colim W sSetI

! sSet, where sSetI is endowed with the projective model
structure, preserves weak equivalences. To see that this is the case, factor fXig

�
�!fYig

in sSetI as a projective trivial cofibration fXig
���! fZig followed by a pointwise

trivial fibration fZig
�
�� fYig. Then colim Xi! colim Zi is again a trivial cofibration,

so in particular a weak equivalence. Furthermore, since the generating cofibrations
@�n!�n in sSet are maps between compact objects, we see that colim Zi! colim Yi

must have the right lifting property with respect to these maps, ie it is a trivial fibration.
We conclude that colim W sSetI

! sSet preserves weak equivalences.
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Lemma 3.12 Let C be a cofibration test category , let s� t be a cofibration in C, ie a
map in I , and let C !D be an arrow in Ind.C/ which has the right lifting property
with respect to all maps in J. Then Map.t;C /!Map.s;C /�Map.s;D/ Map.t;D/ is a
fibration , which is trivial if either s� t is trivial or if C !D is a weak equivalence in
the sense of Theorem 3.9.

Proof Let M be a set of trivial cofibrations in sSetfin such that a map between fibrant
objects in sSet is a fibration if and only if it has the right lifting property with respect
to the maps in M . For the Kan–Quillen model structure, one can take the set of horn
inclusions, while for sSetJ, the set M from Lemma 2.1 works. By Remark 3.4, for any
test object t 2 T and any C 2 Ind.C/, the simplicial set Map.t;C / is fibrant. For any
t 2T and any map U ���!V in M , the map t˝U! t˝V is in J by items (i) and (ii) of
Definition 3.3. By adjunction, we conclude that for any C !D that has the right lifting
property with respect to maps in J, the map Map.t;C /!Map.t;D/ is a fibration. If
we are given a map s� t in I , then Map.s;C /�Map.s;D/Map.t;D/ is fibrant because
the map to Map.t;D/ is the pullback of the fibration Map.s;C /�Map.s;D/. By a
similar argument as above, Map.t;C /!Map.s;C /�Map.s;D/Map.t;D/ is a fibration.
The same argument with the set of boundary inclusions f@�n! �ng instead of M

shows that Map.t;C /!Map.s;C /�Map.s;D/Map.t;D/ is a trivial fibration if s� t

is in J. If C !D is a weak equivalence, then the maps Map.s;C /!Map.s;D/ and
Map.t;C /!Map.t;D/ are weak equivalences by definition, hence trivial fibrations
by the above. As indicated in the diagram

Map.t;C /

Map.s;C /�Map.s;D/ Map.t;D/ Map.s;C /

Map.t;D/ Map.s;D/

� y

�

the map Map.t;C /!Map.s;C /�Map.s;D/Map.t;D/ is a trivial fibration by the two-
out-of-three property.

Lemma 3.13 Let C be a cofibration test category and let s ���! t be a trivial cofibration
in C. Then any pushout of s ���! t in Ind.C/ is a weak equivalence in the sense of
Theorem 3.9.
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Proof The following proof works if C is a cofibration test category with respect to
the Kan–Quillen model structure on sSet. The same proof works in the case that C is
a cofibration test category with respect to sSetJ if one replaces every instance of �1

by H , where H is as in the proof of Lemma 2.1.

We will first show that i W s ���! t is a deformation retract. By item (iv) of Definition 3.3,
there exists a lift in

s s

t

� i r

ie a retract r of i . By (ii) and (iv) of Definition 3.3, there exists a lift F in

s˝�1[s˝@�1 t ˝ @�1 t

t ˝�1

i [ .idt ; i r/

� F

This lift F W t ˝�1! t is a deformation retract.

Now let a pushout square

(2)
s C

t D

� i

f

j

g p

be given, where s! C is any map in Ind.C/. The maps f r W t ! C and idC W C ! C

give, by the universal property of the pushout, a retract r 0 of j W C !D. Since tensors
preserve colimits, we see that D˝�1 is the pushout of t ˝�1 and C ˝�1 along
s˝�1. Then g ıF W t ˝�1 ! D and C ˝�1 ! C ˝� Š C

j
�! D give, by the

universal property of the pushout, a map G WD˝�1!D. Write �0; �1 WD!D˝�1

for the endpoint inclusions. It follows from the universal property of the pushout (2)
that �0G D idD while �1G D j r 0, ie G is a deformation retract.

Now let u 2 T be any test object. We deduce from the existence of the deformation
retract G that Map.u;C /!Map.u;D/ is the inclusion of a deformation retract, hence
a weak equivalence.

Proof of Theorem 3.9 We check all four assumptions of Kan’s recognition theorem as
spelled out in [17, Theorem 11.3.1]. The weak equivalences satisfy the two-out-of-three
property and are closed under retracts since this holds for the weak equivalences in sSet.
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(1) Since all objects of C are compact in Ind.C/, the sets I and J permit the small
object argument.

(2) It suffices to prove that any transfinite composition of pushouts of maps in J is a
weak equivalence. This follows immediately from Lemmas 3.11 and 3.13.

(3) We need to show that any map having the right lifting property with respect to maps
in I has the right lifting property with respect to maps in J and is a weak equivalence.
The first of these follows since J � I . To see that any map that has the right lifting
property with respect to maps in I is a weak equivalence, let such a map C !D be
given. Note that t ˝ @�Œn�! t ˝�Œn� is in I for any t 2 T and n � 0, by items (i)
and (ii) of Definition 3.3. This implies that Map.t;C /!Map.t;D/ is a trivial fibration
for any t 2 T and in particular that C !D is a weak equivalence.

(4) We need to show that if C !D has the right lifting property with respect to maps
in J and is a weak equivalence, then it has the right lifting property with respect to maps
in I . Let s� t in I be given. Then Map.t;C / ���Map.s;C /�Map.s;D/ Map.t;D/
is a trivial fibration by Lemma 3.12, and in particular surjective on 0–simplices. In
particular, C !D has the right lifting property with respect to s� t .

The fact that this model structure is simplicial follows from Lemma 3.12. By (iv), all
objects in C � Ind.C/ are fibrant. Since the generating trivial cofibrations are maps
between compact objects and any C 2 Ind.C/ is a filtered colimit of objects in C, it
follows that all objects in Ind.C/ are fibrant.

Example 3.14 Let .C;T/ be the cofibration test category from Example 3.8. The
model structure on Ind.C/ obtained by applying Theorem 3.9 turns out to be Quillen
equivalent to the Kan–Quillen model structure on sSet and the Quillen model structure
on Top. More precisely, there is a canonical way to factor the geometric realization
functor for simplicial sets j � j W sSet! Top as a composite sSet! Ind.C/! Top,
where both of these functors are left Quillen equivalences. This will be proved in
Proposition 4.2.

Example 3.15 For this example, Top is again a convenient category of spaces as in
Example 3.8. If P is a topological operad, then the category P–Alg of P–algebras
admits a model structure, obtained through transfer along the free-forgetful adjunction
F W Top � P–Alg WU . In particular, any object is fibrant in this model structure.
This category is Top–enriched, since one can view HomP–Alg.S;T / as a subspace
of HomTop.US;U T /. For any topological space X and any P–algebra S , one can
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endow the space SX with the “pointwise” structure of a P–algebra. By restricting the
usual homeomorphism coming from the cartesian closed structure on Top, we obtain
a natural homeomorphism HomP–Alg.S;T

X /Š HomTop.X;HomP–Alg.S;T //. One
can furthermore show that �X W P–Alg! P–Alg has a left adjoint that makes P–Alg
into a tensored and cotensored topological category. In particular, it can be viewed
as a tensored and cotensored simplicial category. Since the cotensors, fibrations and
weak equivalences are defined underlying in Top, we see that P–Alg is an sSetKQ–
enriched model category with respect to this enrichment. By Example 3.6, any small
full subcategory closed under finite colimits and tensors with finite simplicial sets
inherits the structure of a cofibration test category.

Example 3.16 One can modify the previous example in a way that is similar to
Example 3.8. Namely, suppose that C � P–Alg is a small full subcategory which
is closed under finite colimits and tensors by finite simplicial sets, and suppose that
F jX j is contained in C for any finite simplicial set X , where F W Top! P–Alg is the
left adjoint of the free-forgetful adjunction. Define the full subcategory of test objects
T� C to be the category of objects of the form F jX j for X a finite simplicial set, and
define the (trivial) cofibrations to be the maps of the form F ji jW F jX j ! F jY j, where
i is a (trivial) cofibration between finite simplicial sets in sSetKQ. Then .C;T/ is a
cofibration test category; hence we obtain a model structure on Ind.C/ by Theorem 3.9.
Since the inclusion C ,! P–Alg preserves finite colimits, it induces an adjunction
Ind.C/� P–Alg. One can show that this adjunction is a Quillen equivalence.

4 Example: a convenient model category of topological spaces

Throughout this section, let Top be a convenient category of spaces, such as k–spaces,
compactly generated weak Hausdorff spaces or compactly generated Hausdorff spaces.
Suppose that a small full subcategory C � Top is given that is closed under finite
colimits and tensors with finite simplicial sets, and that contains the space jX j for any
finite simplicial set X . As explained in Example 3.8, if we define T to be the collection
of spaces of the form jX j, where X is any finite simplicial set, and if we define a map
to be a (trivial) cofibration if and only if it is the geometric realization of a (trivial)
cofibration in sSetKQ between finite simplicial sets, then .C;T/ is a cofibration test
category. In this section, we will study this example in more detail.

We begin by characterizing the weak equivalences of Ind.C/. Note that the geometric
realization functor j � j W sSetfin! C extends uniquely to a filtered colimit-preserving
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functor j � j W sSet ! Ind.C/ that has a right adjoint Sing defined by .Sing C /n D

Hom.j�nj;C / for any C 2 Ind.C/.

Lemma 4.1 Let .C;T/ be a cofibration test category as above. Then a map C !D

in Ind.C/ is a weak equivalence if and only if Map.�;C /! Map.�;D/ is a weak
equivalence , where � is the terminal object. In particular , C!D is a weak equivalence
if and only if Sing C ! Sing D is a weak equivalence in sSetKQ.

Proof If C !D is a weak equivalence in Ind.C/, then Map.�;C /!Map.�;D/ is
a weak equivalence by definition. Conversely, suppose that Map.�;C /!Map.�;D/
is a weak equivalence and let X be a finite simplicial set. It follows by adjunction that
Map.jX j;C /!Map.jX j;D/ agrees with Map.�;C /X !Map.�;D/X , hence this
map is a weak equivalence.

For the second statement, note that Map.�;E/Š Hom.�˝��;E/Š Sing E.

The inclusion C ,! Top induces an adjunction L W Ind.C/� Top W y. � /Ind as explained
in Section 2.2, where L is defined by L.fcig/D colimi ci for any fcig in Ind.C/. Since
geometric realization commutes with colimits, we see that the geometric realization
functor j � j W sSet! Top factors as sSet j � j�! Ind.C/ L

�! Top.

Proposition 4.2 Let .C;T/ be a cofibration test category as above. The adjunctions
j � j W sSetKQ� Ind.C/ WSing and L W Ind.C/� Top W y. � /Ind are Quillen equivalences.

Proof It is clear from the definition of the (trivial) cofibrations in .C;T/ that

j � j W sSetKQ! Ind.C/ and L W Ind.C/! Top

send generating (trivial) cofibrations to (trivial) cofibrations. In particular, they are
left Quillen functors. Since the composition of these adjunctions is the well-known
Quillen equivalence j � j W sSetKQ� Top WSing, it suffices to show by the two-out-of-
three property for Quillen equivalences that j � j W sSetKQ� Ind.C/ WSing is a Quillen
equivalence. By Lemma 4.1, a map C !D in Ind.C/ is a weak equivalence if and
only if Sing C ! Sing D is. In particular, this adjunction is a Quillen equivalence if
and only if the unit X ! Sing jX j is a weak equivalence for any simplicial set X . If
X is a finite simplicial set, then X ! Sing jX j agrees by definition with the unit of
the adjunction j � j W sSetKQ� Top WSing, which is always a weak equivalence. Since
weak equivalences are stable under filtered colimits in sSetKQ, it follows that the unit
X ! Sing jX j of j � j W sSetKQ� Ind.C/ WSing is a weak equivalence for any simplicial
set X .
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One can show that the model category Ind.C/, with .C;T/ a cofibration test category
of the type considered above, is very similar to Top. We mention a few similarities.
We first note that it is possible to define homotopy groups for objects of Ind.C/, and
that they detect weak equivalences. If C is an object in Ind.C/, then by a basepoint
of C we mean a map �! C .

Definition 4.3 The nth homotopy group �n.C; c0/ of an object C 2 Ind.C/ and a
basepoint c0 W � ! C is defined as the set of pointed maps j�n=@�nj ! C modulo
pointed homotopy.

It follows from this definition that �n.C; c0/D �n.Sing C; c0/ for any C 2 Ind.C/ and
c0 2 C . We conclude the following:

Proposition 4.4 A map f W C ! D in Ind.C/ is a weak equivalence if and only if
�n.C; c0/! �n.D; f .c0// is a bijection for any c0 2 C and n � 0. Moreover , the
homotopy groups for objects in Ind.C/ commute with filtered colimits.

Proof The first statement follows since f is a weak equivalence if and only if Singf is.
The second part follows since both the functor Sing and the homotopy groups of
simplicial sets commute with filtered colimits.

It can also be shown that one can take the same generating (trivial) cofibrations in
Ind.C/ as in the usual Quillen model structure on Top. Define

I D f@Dn ,!Dn
j n� 0g;

J D fDn
� f0g ,!Dn

� Œ0; 1� j n� 0g:

Proposition 4.5 The sets I and J are sets of generating cofibrations and generating
trivial cofibrations for Ind.C/, respectively.

Proof We need to show that the geometric realization of any cofibration (resp. trivial
cofibration) between finite simplicial sets lies in the saturation of I (resp. J ). This
follows from the fact that j � j W sSet! Ind.C/ preserves colimits and that each map of
the form j@�nj ! j�nj (resp. jƒn

k
j ! j�nj) is isomorphic to a map in I (resp. J ).

For any two objects C Dfcigi and DDfdj gj in Ind.C/, one can compute their product
levelwise by C �D D fci � dj g.i;j/2I�J . Since the finite colimits of C are computed
in Top, and finite colimits in Ind.C/ can be computed levelwise, we see that the functor
��D W C! Ind.C/ preserves finite colimits for any D in Ind.C/. As explained in
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Section 2.2, it follows from this that the product functor ��D W Ind.C/! Ind.C/ has
a right adjoint. In particular, Ind.C/ is cartesian closed. This cartesian closed structure
interacts well with the model structure defined above.

Proposition 4.6 Ind.C/ is a cartesian closed model category.

Proof It suffices to show that for any pair of generating cofibrations C � D and
C 0�D0, the pushout-product

C �D0[C�C 0 D �C 0!D �D0

is a cofibration that is trivial if either C �D or C 0�D0 is. This is clearly true.

One can furthermore show that the full subcategory of Top on the CW–complexes
embeds fully faithfully into Ind.C/, by using that any finite CW–complex X is (homeo-
morphic to) an object in C.

Proposition 4.7 There is a fully faithful functor from the category of CW–complexes
into Ind.C/ that preserves and detects weak equivalences.

Proof If X is a CW–complex, then one can always choose a CW–decomposition. The
finite CW–subcomplexes in this decomposition together with their inclusions form a
directed diagram fXig for which colimi Xi Š X . Suppose that we have chosen a CW–
decomposition for any CW–complex X , and denote the associated directed diagram
of finite CW–subcomplexes by fXiX g. Since a map from a compact space into a CW–
complex (with a given CW–decomposition) always lands in a finite CW–subcomplex,
we see that the canonical map

lim
iX

colim
iY

Hom.XiX ;YiY
/! Hom.X;Y /

is an isomorphism for any pair of CW–complexes. By definition of the morphisms
in Ind.C/, this implies that the functor that sends a CW–complex X to the ind-object
fXiX g in Ind.C/ is well-defined and fully faithful. Preservation and detection of weak
equivalences follows directly from the fact that Sing detects weak equivalences and
that colimiX Sing.XiX /Š Sing.X / for any CW–complex X .

We end this section by discussing a specific example of such a full subcategory C,
namely the category CM of compact metrizable spaces. Under Gelfand–Naimark
duality, this category corresponds to the category of separable commutative unital
C �–algebras. If we let Top be the category of compactly generated Hausdorff spaces,
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then CM as a full subcategory is closed under all finite colimits and tensors by finite
simplicial sets. In particular, by the above we obtain a model structure on Ind.CM/

that is equivalent to the Quillen model structure on Top. In [3], Barnea also proposes
a model structure on Ind.CM/. However, this model structure does not agree with
the one constructed above, so we will briefly describe his model structure and the
difference with ours. Let us denote our model structure by Ind.CM/Q.

Barnea shows in [3] that CM is a “special weak cofibration category”, and hence
that there exists an induced model structure on Ind.CM/, which we will denote by
Ind.CM/B . This model structure is cofibrantly generated and one can take the set of
Hurewicz cofibrations in CM as a set of generating cofibrations, while one can take the
Hurewicz cofibrations that are also homotopy equivalences as a set of generating trivial
cofibrations. If we define TDCM and if we define a map in T to be a (trivial) cofibration
if it is in the set of generating (trivial) cofibrations just mentioned, then .CM;T/ is
a cofibration test category and the completed model structure on Ind.CM/ coincides
with the one that Barnea constructed. Since Barnea’s model structure Ind.CM/B has
strictly more generating (trivial) cofibrations than our model structure Ind.CM/Q, we
see that the identity functor is a left Quillen functor Ind.CM/Q! Ind.CM/B. To see
that the model structures do not coincide, we will show that Ind.CM/Q has strictly
more weak equivalences than Ind.CM/B. Let C be any metrizable infinite Stone space,
such as a Cantor space. Then, for Sing and j � j as defined just above Lemma 4.1, the
counit jSing C j ! C is a weak equivalence in Ind.CM/Q. However, this map is not a
weak equivalence in Ind.CM/B, since Map.C; jSing C j/!Map.C;C / is not a weak
equivalence of simplicial sets: since these mapping spaces are discrete, this would
imply that the map is an isomorphism. However, it is not surjective since there is no
map C ! jSing C j that gets mapped to idC . The model structure Ind.CM/Q defined
here is similar to the Quillen model structure on Top, while Barnea’s model structure
Ind.CM/B bears some similarity to the Strøm model structure on Top.

5 The dual model structure on Pro.C/

A model structure on E also gives rise to a model structure on Eop, where the fibrations
(resp. cofibrations) of Eop are the cofibrations (resp. fibrations) of E . In particular,
E is cofibrantly generated if and only if Eop is fibrantly generated. Since Pro.C/ '
Ind.Cop/op, this implies that if C is the dual of a cofibration test category, then Pro.C/
admits a fibrantly generated simplicial model structure. We explicitly dualize the main
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definition and result of Section 3 in this section, and then discuss a few examples of
such fibrantly generated simplicial model structures on pro-categories. Again, we work
with sSet endowed with either the Joyal or the Kan–Quillen model structure.

We say that a simplicial category C is finitely cotensored if Cop is finitely tensored in the
sense of Definition 3.1. Explicitly, this means that C admits finite limits and cotensors
by finite simplicial sets, and that these commute with each other. As explained in
Section 2.2, if C is a small simplicial category that is finitely cotensored, then the
simplicial category Pro.C/ is tensored, cotensored, complete and cocomplete.

Definition 5.1 A fibration test category .C;T/ consists of a small finitely cotensored
simplicial category C, a full subcategory T�C of test objects and two classes of maps
in T called fibrations, denoted by�, and trivial fibrations, denoted by �

��, both
containing all isomorphisms, that satisfy the following properties:

(i) The terminal object � is a test object, and for every test object t 2 T, the map
t !� is a fibration.

(ii) For every fibration between test objects s� t and cofibration between finite
simplicial sets U � V , the pullback-power map sV ! sU �tU tV is a fibration
between test objects, which is trivial if either s� t or U � V is.

(iii) A morphism c! d in T is a trivial fibration if and only if it is a fibration and
Map.d; t/!Map.c; t/ is a weak equivalence of simplicial sets for every t 2 T.

(iv) Any object c 2 C has the left lifting property with respect to trivial fibrations.

For a fibration test category C, we write fib.C/ for the set of fibrations and we.C/
for the set of maps c! d that induce a weak equivalence Map.d; t/!Map.c; t/ for
every t 2 T. By property (iii), the set of trivial fibrations is fib.C/\we.C/. Note that
the definition of a fibration test category is formally dual to that of a cofibration test
category. More precisely, .C;T/ is a fibration test category if and only if .Cop;Top/ is
a cofibration test category in the sense of Definition 3.3, where the (trivial) cofibrations
of .Cop;Top/ are defined as the (trivial) fibrations of .C;T/.

Let P �Ar.Pro.C// denote the image of the set fib.C/ along the inclusion C ,!Pro.C/,
and Q� Ar.Pro.C// the image of the set of trivial fibrations. The sets P and Q are
the generating (trivial) fibrations of the completed model structure on Pro.C/. The
following theorem is formally dual to Theorem 3.9.
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Theorem 5.2 Let .C;T/ be a fibration test category. Then Pro.C/ carries a fibrantly
generated (hence cocombinatorial ) simplicial model structure , the completed model
structure , where a map C ! D is a weak equivalence if and only if Map.D; t/!
Map.C; t/ is a weak equivalence for every t 2 T. A set of generating fibrations
(resp. generating trivial fibrations) is given by P (resp. Q). Every object is cofibrant in
this model structure.

Example 5.3 Dualizing Example 3.6, we see that if E is a simplicial model category
in which every object is cofibrant, then any small full subcategory C � E which is
closed under finite limits and finite cotensors admits the structure of a fibration test
category. Namely, defining T to be the full subcategory of fibrant objects of C, and
defining the (trivial) fibrations to be those of E between objects in T, then .C;T/ is a
fibration test category. As in Example 3.6, will say that C inherits the structure of a
fibration test category from E .

Remark 5.4 For the fibration test category .C;T/ from the previous example, the
completed model structure on Pro.C/ is a special case of Theorem 1.1, namely the
case where T is the collection of all fibrant objects in C. By (the dual of) Example 3.7,
it follows that we can take T to be any collection of fibrant objects in C that is closed
under “finite pullback-powers”. The general case, where we let T be any collection of
fibrant objects in C, is discussed in Section 8.

Example 5.5 Recall that we call a simplicial set lean if it is degreewise finite and
coskeletal. The full subcategory of sSet spanned by all lean simplicial sets L is closed
under finite limits and finite cotensors. By Example 5.3, it inherits the structure of a
fibration test category from sSetKQ, which we will denote by LKQ. By Theorem 5.2 we
obtain a model structure on Pro.L/. Since this category is equivalent to the category of
simplicial profinite sets scSet by (the dual of) Theorem 2.3, we in particular obtain a
simplicial model structure on scSet. This model structure coincides with Quick’s model
structure for profinite spaces [31], as explained in Corollary 6.6 below. We denote it
by scSetQ.

Example 5.6 Consider the full simplicial subcategory Tp of sSet whose objects are
those lean Kan complexes that have finite p–groups as homotopy groups. One can
show that Tp is closed under “finite pullback-powers”, so by the previous example and
the dual of Example 3.7, we obtain a fibration test category Lp D .L;Tp/ in which the
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(trivial) fibrations are the (trivial) Kan fibrations between objects of Tp. It is proved
in Corollary 6.7 that the completed model structure on Pro.Lp/ agrees with Morel’s
model structure for pro-p spaces [30].

Example 5.7 The category of lean simplicial sets also inherits the structure of a
fibration test category from the Joyal model structure sSetJ, which we will denote
by LJ. The corresponding model structure on scSet obtained from Theorem 5.2 will be
called the profinite Joyal model structure, and its fibrant objects will be called profinite
quasicategories. We will come back to this model category in Section 9, and we will
describe its underlying1–category in Remark A.11.

Example 5.8 In [16], Haine defines the Joyal–Kan model structure on sSet=P , where
P is (the nerve of) a poset. This model category describes the homotopy theory of
P–stratified spaces. Since it is a left Bousfield localization of the Joyal model structure
on sSet=P , any object is cofibrant and it is an sSetJ–enriched model category. Actually,
this model structure can be shown to be sSetKQ–enriched [16, Sections 2.4–2.5]. In
particular, any small full subcategory C closed under finite limits and cotensors by
finite simplicial sets inherits the structure of a fibration test category. If P is a finite
poset and CD L=P is the full subcategory of lean simplicial sets over (the nerve of) P ,
then one can show that Pro.L=P /Š scSet=P . In particular, by Theorem 5.2, we obtain
a model structure on scSet=P that is sSetKQ–enriched. It is shown in Example A.8
that the underlying1–category of this model category is the1–category of profinite
P–stratified spaces defined in [8].

Example 5.9 We call a groupoid finite if it has finitely many arrows (including the
identity arrows). The category of finite groupoids FinGrpd inherits the structure of
a fibration test category from the canonical model structure on Grpd [1, Section 5].
(Note that Grpd can be viewed as an sSetKQ–enriched model structure by defining
Map.A;B/ D N.Fun.A;B// for any A;B 2 Grpd.) The completed model struc-
ture on the category of profinite groupoids 1Grpd D Pro.FinGrpd/ obtained from
Theorem 5.2 coincides with the model structure for profinite groupoids defined by
Horel in [18, Section 4]. To see this, note that Horel shows in [18, Section 4] that the
Barnea–Schlank model structure on 1Grpd exists and coincides with his model structure.
By Remark 5.12 below, the Barnea–Schlank model structure on 1Grpd must coincide
with our model structure. In particular, Horel’s model structure agrees with the one
that we construct in this example.
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Example 5.10 Similarly, we call a category finite if it has finitely many arrows. The
category of all small categories admits the canonical model structure, defined for
example in [34]. Since this model structure is sSetJ–enriched, the category of finite
categories FinCat inherits the structure of a fibration test category. By Theorem 5.2,
we obtain an sSetJ–enriched model structure on bCatD Pro.FinCat/, which we will
call the model structure for profinite categories.

Example 5.11 Let bisSet be endowed with the Reedy model structure with respect
to the Kan–Quillen model structure on sSet. Recall that the category of bisimplicial
profinite sets biscSet is equivalent to Pro.L.2//, where L.2/ denotes the category of
doubly lean bisimplicial sets defined at the end of Section 2.2. Since any object in
bisSet is cofibrant, L.2/ inherits the structure of a fibration test category from the Reedy
model structure on bisSet. By applying Theorem 5.2, we obtain a model structure on
Pro.L.2//' biscSet. This model structure coincides with the Reedy model structure
on biscSet with respect to the Quick model structure on scSet, as will be shown in
Proposition 6.9.

Remark 5.12 As discussed in the introduction, there are similarities between our
construction of a model structure on Pro.C/ and the construction of Barnea–Schlank
in [7]. Suppose C is a fibration test category in the sense of Definition 5.1. Then
C comes with a set fib.C/ of fibrations and a set of we.C/ of weak equivalences. It
is very unlikely that the triple .C;fib.C/;we.C// is a “weak fibration category” in
the sense of Definition 1.2 of [7]. Namely, that definition asks that fib.C/ contain
all isomorphisms of C, that it be closed under composition, and that a pushout of a
map in fib.C/ be again in fib.C/. However, if we define fib0.C/ to be the smallest set
that contains fib.C/ and that satisfies these properties, then .C;fib0.C/;we.C// might
be a weak fibration category. If this is the case, then the “induced” model structure
on Pro.C/, in the sense of Theorem 1.8 of [7], could exist. The cofibrations of this
model structure are defined as the maps that have the left lifting property with respect
to fib0.C/\we.C/, while the trivial cofibrations are the maps that have the left lifting
property with respect to fib0.C/. Since the maps in fib0.C/ are clearly fibrations in
our construction of the “completed model structure” on Pro.C/ (see Theorem 5.2),
we conclude that the (trivial) cofibrations for both model structures must agree. In
particular, if both our model structure and the Barnea–Schlank model structure of [7]
exist on Pro.C/, then they must coincide. An example where this happens is when
CD FinGrpd. (See Example 5.9 above.)
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6 Comparison to some known model structures

As stated in Theorem 5.2, for any fibration test category .C;T/, all objects in the
completed model structure on Pro.C/ are cofibrant. We will now show that, in the case
that C is the category L of lean simplicial sets, for many choices of T this statement can
be strengthened to say that the cofibrations are exactly the monomorphisms. We show
how this can be used to prove that the model structures on scSet obtained in Examples 5.5
and 5.6 agree with Quick’s model structure and Morel’s model structure, respectively.
It will also follow that the cofibrations in the profinite Joyal model structure from
Example 5.7 are exactly the monomorphisms. We conclude this section by showing
that the model structure on biscSet from Example 5.11 agrees with the Reedy model
structure on biscSet with respect to Quick’s model structure on scSet. The main result
about cofibrations in scSet is the following:

Proposition 6.1 Let L be the category of lean simplicial sets endowed with the
structure of a fibration test category. Suppose that for any contractible lean Kan
complex K, the map K ! � is a trivial fibration in L, and further that any trivial
fibration L �

��K in L is a trivial Kan fibration. Then the cofibrations in the completed
model structure on Pro.L/' scSet are the monomorphisms.

This proposition clearly applies to the fibration test categories LKQ, Lp and LJ of
Examples 5.5, 5.6 and 5.7. The following lemmas will be used to prove this result.
Recall that the category cSet of profinite sets is equivalent to the category Stone of
Stone spaces.

Lemma 6.2 A map of profinite sets (resp. simplicial profinite sets) S ! T is a
monomorphism if and only if it is (isomorphic to) the limit of a cofiltered diagram
fSi � Tigi2I consisting of monomorphisms between finite sets (resp. degreewise
finite simplicial sets).

Proof In the category of Stone spaces, the monomorphisms are precisely the injective
continuous maps. Since a cofiltered limit of injective maps is again injective, we see
that if S ! T is an inverse limit of monomorphisms Si� Ti , then S ! T is itself a
monomorphism.

Conversely, suppose that S ! T is a monomorphism of profinite sets (resp. simplicial
profinite sets). Write T D limi Ti as a cofiltered limit of finite sets (resp. lean simplicial
sets), and, for every i , write S 0i for the image of the composition S ! T ! Ti . Then
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fS 0igi2I is a cofiltered diagram since the structure maps Ti ! Tj restrict to maps
S 0i ! S 0j for any i ! j in I . Since fS 0i ! Tigi2I is levelwise a monomorphism,
the proof is complete if we can show that S ! limi S 0i is an isomorphism. Since
isomorphisms of Stone spaces are detected on the underlying sets, it suffices to show
that this map is both injective and surjective. It is injective since the composition
S ! limi S 0i ! T is, while it is surjective by [36, Corollary 1.1.6].

We will denote the two-element set f0; 1g by 2.

Lemma 6.3 A map of (profinite) sets S ! T is a monomorphism if and only if it has
the left lifting property with respect to 2!�.

Proof We leave the case where S ! T is a map of sets to the reader. For the “if”
direction in the profinite case, suppose that f W S! T has the left lifting property with
respect to 2!�, but is not a monomorphism. Regarding S and T as Stone spaces,
there must exist distinct s; s0 2 S such that f .s/D f .s0/. Choose some clopen U � S

such that s 2 U and s0 62 U . Then the indicator function 1U W S ! 2 is continuous but
does not extend to a map T ! 2. We conclude that S ! T must be a monomorphism.

For the converse, note that by Lemma 6.2 we may assume without loss of generality
that S ! T can be represented by levelwise monomorphisms fSi ! Tig. Since 2 is
cocompact in cSet, any map S ! 2 factors through Si for some i . Since Si! Ti is a
monomorphism of sets, the result follows.

Consider the diagram

� FinSet

�op

2

Œn�
Rn2

where Œn� denotes the inclusion of the terminal category � into �op at Œn�, and 2 denotes
the inclusion of � into FinSet at the two-element set 2. Since FinSet has all finite limits,
the right Kan extension Rn2 exists. Since the inclusion � ,!�op factors through �op

�n,
the simplicial set Rn2 is n–coskeletal. In particular, it is a lean simplicial set.

Lemma 6.4 A map of simplicial (profinite) sets is a monomorphism if and only if it
has the left lifting property with respect to Rn2!� for every n 2N.
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Proof Since the inclusions of FinSet into Set and cSet both preserve limits, we see
that the lean simplicial set Rn2 constructed above is also the right Kan extension of
�
Œn�
�! �op along � 2

�! Set and along � 2
�! cSet. In particular, a map of simplicial

(profinite) sets X ! Y has the left lifting property with respect to Rn2! � if and
only if Xn! Yn has the left lifting property with respect to 2!�, hence the result
follows from Lemma 6.3.

Proof of Proposition 6.1 We first show that any cofibration in the model category
Pro.L/ is a monomorphism. Since Rn2!� has the right lifting property with respect to
all monomorphisms in sSet, we see that it is a trivial Kan fibration, hence by assumption
a trivial fibration in the fibration test category L and a generating trivial fibration in
Pro.L/. By Lemma 6.4, any cofibration in Pro.L/' scSet is a monomorphism.

For the converse, suppose X ! Y is a monomorphism in Pro.L/. By Lemma 6.2, we
may assume that X ! Y is a cofiltered limit of monomorphisms between degreewise
finite simplicial sets fXi ! Yigi2I . We see that for every i , the map Xi ! Yi has
the left lifting property with respect to the generating trivial fibrations of Pro.L/ since
these are trivial Kan fibrations between lean simplicial sets. Since any generating trivial
fibration is a map between cocompact objects, it follows that X ! Y also has the left
lifting property with respect to the generating trivial fibrations.

Proposition 6.1 shows that, for LKQ and Lp the fibration test categories of Examples
5.5 and 5.6, the cofibrations of the model categories Pro.LKQ/ and Pro.Lp/ are the
monomorphisms. This means that the cofibrations coincide with those of Quick’s
model structure [31] and Morel’s model structure [30], respectively. The same is true
for the weak equivalences. This follows from the results in Section 7 of [4] (most
notably Lemmas 7.4.7 and 7.4.10), using that Quick’s and Morel’s model structures on
scSet are simplicial. We state this explicitly as follows:

Proposition 6.5 [4] A map X ! Y of simplicial profinite sets is a weak equiva-
lence in Quick’s model structure if and only if Map.Y;K/!Map.X;K/ is a weak
equivalence for any lean Kan complex K. It is a weak equivalence in Morel’s model
structure if and only if Map.Y;K/!Map.X;K/ is a weak equivalence for any lean
Kan complex K whose homotopy groups are finite p–groups.

From this proposition and the definition of the completed model structure (Theorem 5.2),
we see that the weak equivalences of Pro.LKQ/ (resp. Pro.Lp/) agree with the weak
equivalences in Quick’s model structure (resp. Morel’s model structure) on scSet.
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Corollary 6.6 The completed model structure on Pro.LKQ/ coincides with Quick’s
model structure.

Corollary 6.7 For any prime number p, the completed model structure on Pro.Lp/

coincides with Morel’s model structure.

The proof of Proposition 6.1 admits an analogue for bisimplicial sets (in fact, for the
category of presheaves on K for any small category K that can be written as a union
of finite full subcategories), which we leave as an exercise to the reader.

Proposition 6.8 Let bisSet be endowed with a simplicial model structure in which the
cofibrations are the monomorphisms , and let L.2/ be the full subcategory of doubly lean
bisimplicial sets , which inherits the structure of a fibration test category in the sense of
Example 5.3. Then the cofibrations in Pro.L.2//' biscSet are the monomorphisms.

Note that this proposition implies that the cofibrations in the model structure on biscSet
from Example 5.11 are exactly the monomorphisms. We will show that, in fact, this
model structure coincides with the Reedy model structure on biscSet with respect to
scSetQ. We do this by inspecting the generating (trivial) fibrations of the Reedy model
structure. For the following proof, note that Quick’s model structure coincides with the
completed model structure on Pro.LKQ/ by Corollary 6.6, hence that any (trivial) Kan
fibration between lean Kan complexes is a (trivial) fibration in Quick’s model structure.

Proposition 6.9 The model structure on Pro.L.2// of Example 5.11 coincides with
the Reedy model structure on biscSet (with respect to scSetQ).

Proof Note that if L!K is a (trivial) Reedy fibration between Reedy fibrant doubly
lean bisimplicial sets, then Ln and MnL�MnK Kn are lean Kan complexes for every n.
In particular, the map Ln!MnL�MnK Kn is a (trivial) fibration between lean Kan
complexes for every n. This shows that any generating (trivial) fibration in Pro.L.2//
is a (trivial) fibration in the Reedy model structure on biscSet.

For the converse, note that the Reedy model structure on biscSet is fibrantly generated.
Its generating (trivial) fibrations are maps of the form

(3) GnL! @GnL�@GnK GnK

for any n� 0, where Gn is the right adjoint to the functor X 7!Xn, while @Gn is the
right adjoint to the latching object functor X 7! LnX , and L! K is a generating
(trivial) fibration in scSet. It can be shown using the right adjointness of Gn and @Gn
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that these functors restrict to functors L! L.2/. One can furthermore deduce from the
adjointness that if L and K are fibrant in sSet, then both the domain and codomain of
the map (3) are Reedy fibrant in biscSet and hence in bisSet. This shows that any map
of the form (3), with L!K a (trivial) fibration in L, is a (trivial) fibration in L.2/. In
particular, any generating (trivial) fibration in the Reedy model structure on biscSet is a
(trivial) fibration in Pro.L.2//. We conclude that both model structures coincide.

7 Quillen pairs

As explained in Section 2.2, there is an easy criterion for constructing adjunctions
between ind-categories: if C is a small category that admits finite colimits and if E
is any cocomplete category, then a functor F W Ind.C/! E has a right adjoint if and
only if it preserves all colimits. Furthermore, these functors correspond to functors
C! E that preserve all finite colimits. There is a dual criterion for pro-categories. In
the simplicial case, this can be strengthened as in the following lemma.

If E is a tensored cocomplete simplicial category, then we say that colimits and tensors
commute in E if the analogue of item (iii) of Definition 3.1 holds for all diagrams in E
and all simplicial sets.

Lemma 7.1 Let C be a small finitely tensored simplicial category and let E be a
tensored cocomplete simplicial category in which colimits and tensors commute. Then
any simplicial functor F W C! E that preserves finite colimits and tensors with finite
simplicial sets extends to a functor zF W Ind.C/!E that admits a right adjoint. Moreover ,
this adjunction is an enriched adjunction.

Proof The simplicial functor zF W Ind.C/! E is defined on objects by zF .fcig/ D

colimi F.ci/ and on the internal homs by

Map.fcig; fdj g/D lim
i

colim
j

Map.ci ; dj /! lim
i

colim
j

Map.F.ci/;F.dj //

!Map
�
colim

i
F.ci/; colim

i
F.dj /

�
:

We saw in the preliminaries that zF preserves all colimits and has a right adjoint (as
functor of unenriched categories). In particular, it is part of an enriched adjunction if and
only if it preserves tensors. To see that this is the case, let X D colimj Xj be a simplicial
set written as a filtered colimit of finite simplicial sets. Then fcigi˝X Šfci˝Xj g.i;j/,
hence F.fcigi˝X /Š colim.i;j/ F.ci/˝Xj Š

zF .fcig/˝X , using the hypothesis that
F preserves tensors with finite simplicial sets.
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In this section we give some assumptions under which an adjunction of the type above
is a Quillen adjunction, and give a further criterion for this adjunction to be a Quillen
equivalence. This gives a straightforward way of constructing “profinite” versions of
certain classical Quillen adjunctions, as illustrated in Example 7.7. At the end of this
section, we show that if C� E inherits the structure of a (co)fibration test category in
the sense of Example 3.6, then the ind- or pro-completion functor (relative to C) is a
Quillen functor.

Definition 7.2 A morphism of cofibration test categories � W .C1;T1/! .C2;T2/

is a simplicial functor � W C1 ! C2 that preserves finite colimits, finite tensors and
(trivial) cofibrations, and in particular maps the full subcategory T1 into T2. Dually, a
morphism of fibration test categories � W .C1;T1/! .C2;T2/ is a simplicial functor
� W C1! C2 that preserves finite limits, finite cotensors and (trivial) fibrations, and in
particular maps the full subcategory T1 into T2.

Example 7.3 The nerve functor N W FinGrpd! LKQ is a morphism of fibration test
categories. Similarly, taking the nerve of a category gives a morphism of fibration test
categories N W FinCat! LJ.

Remark 7.4 If � W .C1;T1/! .C2;T2/ is a morphism of cofibration test categories,
then its canonical filtered colimit-preserving extension �! W Ind.C1/! Ind.C2/ has
a right adjoint �� W Ind.C2/! Ind.C1/ by Lemma 7.1. Since �! is an extension of
� W C1! C2, it sends all objects in the image of C1 ,! Ind.C1/ to compact objects
in Ind.C2/, hence its right adjoint �� must preserve filtered colimits. Dually, if �
is a morphism of fibration test categories, then it canonically extends to a functor
�� W Pro.C1/ ! Pro.C2/ that admits a left adjoint �� W Pro.C2/ ! Pro.C1/ which
preserves cofiltered limits.

Proposition 7.5 Let � W .C1;T1/! .C2;T2/ be a morphism of cofibration test cate-
gories. Then the induced adjunction from Remark 7.4

�! W Ind.C1/� Ind.C2/ W�
�

is a simplicial Quillen adjunction. Dually , for a morphism of fibration test categories
� W .C1;T1/! .C2;T2/, the induced adjunction from Remark 7.4

�� W Pro.C2/� Pro.C1/ W��

is a simplicial Quillen adjunction.
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Proof Suppose � W .C1;T1/! .C2;T2/ is a morphism of cofibration test categories.
By Lemma 7.1, the adjunction �! a �

� is an enriched adjunction of simplicial functors.
Since �! extends � and � W C1! C2 preserves all (trivial) cofibrations, we conclude
that �! W Ind.C1/! Ind.C2/ preserves all generating (trivial) cofibrations. We conclude
that �! a �

� is a simplicial Quillen adjunction. The case of fibration test categories is
dual.

Remark 7.6 One could weaken the definition of a morphism of (co)fibration test
categories � W C1! C2 by only asking it to be an (unenriched) functor of underlying
categories and not asking it to preserve (co)tensors. In this case, one would still obtain
a Quillen adjunction between the completed model structures, but it would merely be a
Quillen adjunction between the underlying model categories, and not a simplicial one.
Moreover, the proof of Proposition 7.8 below would not go through in this case.

Example 7.7 The nerve functors from Example 7.3 induce simplicial Quillen adjunc-
tions y…1 W scSetQ�1Grpd W yN and yh W scSetJ�bCat W yN . These left adjoints are profinite
versions of the fundamental groupoid and the homotopy category, respectively.

We call the restriction � W T1 ! T2 of a morphism of cofibration test categories
homotopically essentially surjective if for any t 0 2 T2, there exists a t 2 T1 together
with a weak equivalence �.t/ ��! t 0 in T2.

Proposition 7.8 Let � W .C1;T1/ ! .C2;T2/ be a morphism of (co)fibration test
categories.

(a) If the restriction T1! T2 of � is homotopically essentially surjective , then ��

detects weak equivalences.

(b) In the case of a morphism of cofibration test categories , if moreover for any
t 2 T1 and c 2 C1 the map

Map.t; c/!Map.�.t/; �.c//

is a weak equivalence , then the induced Quillen adjunction of Proposition 7.5 is
a Quillen equivalence.

(b0) In the case of fibration test categories , if � is homotopically essentially surjective
and for any t 2 T1 and c 2 C1, the map

Map.c; t/!Map.�.c/; �.t//

is a weak equivalence , then the induced Quillen adjunction of Proposition 7.5 is
a Quillen equivalence.
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Proof We again only include a proof for cofibration test categories, as the case
of a morphism of fibration test categories is dual. For item (a), let f W C ! D be
a map in Ind.C2/ and suppose that ��.f / is a weak equivalence in Ind.C1/. If
t 0 2 T2, then since � W T1 ! T2 is homotopically essentially surjective, there is
a t 2 T1 together with an equivalence �.t/ ��! t 0. Since C and D are fibrant in
Ind.C2), the map Map.t 0;C / ! Map.t 0;D/ is a weak equivalence if and only if
Map.�.t/;C /!Map.�.t/;D/ is so. Since �! extends � and the adjunction �! a �

�

is enriched, we see that

Map.�.t/;C / Map.�.t/;D/

Map.t; ��.C // Map.t; ��.D//

Š Š

�

commutes, hence Map.t 0;C /!Map.t 0;D/ is a weak equivalence.

For item (b), since the right adjoint �� detects weak equivalences by part (a), it suffices
to show that the unit C ! ���!C is a weak equivalence for every cofibrant C in
Ind.C1/. Since C is a cofiltered limit of objects in C1, by Remark 7.4 it is enough to
show that c!���!c is a weak equivalence for every c in C1. By definition of the weak
equivalences in Ind.C1/ and by the simplicial adjunction �! a �

�, this is equivalent to

Map.t; c/!Map.�!.t/; �!.c//ŠMap.�.t/; �.c//

being a weak equivalence, which holds by assumption.

An interesting consequence of Proposition 7.8 is that if, for a (co)fibration test category
.C;T/, one “enlarges” C to a bigger category C0 but keeps T the same, then one obtains
Quillen equivalent model structures on Ind.C/ and Ind.C0/ (or Pro.C/ and Pro.C0/).
The next example gives an illustration of this.

Example 7.9 Recall from Example 5.5 that the category of lean simplicial sets L
inherits the structure of a fibration test category from sSetKQ. We could give the category
of degreewise finite simplicial sets sFinSet a similar structure of a fibration test category,
namely by defining the test objects to be the lean Kan complexes and the (trivial)
fibrations to be those of LKQ. That is, the test objects and the (trivial) fibrations of
sFinSet and of LKQ are identical. It is well known that the pro-categories Pro.sFinSet/
and Pro.L/' scSet are not equivalent. However, the inclusion � W LKQ ,! sFinSet is a
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morphism of fibration test categories that satisfies item (b0) of Proposition 7.8, hence
the induced adjunction

�� W Pro.sFinSet/� scSetQ W��

is a Quillen equivalence.

The hypotheses for item (b) of Proposition 7.8 can usually be weakened, namely if T
is “large enough” in the following sense.

Definition 7.10 Let .C;T/ be a cofibration test category. We say that T is closed
under pushouts along cofibrations if, for any cofibration r� s in T and any map r! t

in T, the pushout s[r t is again contained in T.

Dually, for a fibration test category .C;T/, we say that T is closed under pullbacks
along fibrations if, for any fibration s� r and any map t! r in T, the pullback s�r t

is again contained in T.

This definition can be seen as ensuring that T has all finite homotopy (co)limits. If T
is closed under pushouts along cofibrations, then it is enough to assume in item (b)
that the restriction � W T1 ! T2 is homotopically fully faithful, ie that Map.s; t/!
Map.�.s/; �.t// is a weak equivalence for all s; t 2 T1. The main ingredient is the
following useful lemma.

Lemma 7.11 Let .C;T/ be a cofibration test category and suppose that T is closed
under pushouts along cofibrations. Then any cofibrant object in Ind.C/ is a filtered
colimit of objects in T.

Proof The “fat small object argument” of [27] shows that if C in Ind.C/ is cofibrant,
then it is a retract of a colimit colimi2I ci indexed by a directed poset I that has a
least element ?, such that c? is the initial object ¿ and such that c?! ci is a (finite)
composition of pushouts of generating cofibrations for any i . (This follows from
Theorem 4.11 of [27] together with the fact that all objects in T are compact.) In
particular, since T is closed under pushouts along cofibrations, it follows that ci 2T for
every i 2 I . Since ind-categories are idempotent complete, it follows that any retract
of such a colimit is an object of Ind.T/ as well. In particular, any cofibrant object of
Ind.C/ lies in Ind.T/.

We leave it to the reader to dualize Lemma 7.11 to the context of fibration test categories.
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Proposition 7.12 Let � W .C1;T1/ ! .C2;T2/ be a morphism of cofibration test
categories (resp. fibration test categories) and suppose that T1 is closed under pushouts
along cofibrations (resp. closed under pullbacks along fibrations). If the restriction
� W T1! T2 is homotopically essentially surjective and homotopically fully faithful ,
then the induced Quillen adjunction of Proposition 7.5 is a Quillen equivalence.

Proof We prove the statement for ind-categories. As in the proof of Proposition 7.8, it
suffices to show that the unit C ! ���!C is a weak equivalence for every cofibrant C

in Ind.C1/. By Lemma 7.11 any cofibrant object is a filtered colimit of objects of T1,
so by Remark 7.4 it suffices to show that t ! ���!t is a weak equivalence for every
t 2 T1. This follows exactly as in the proof of Proposition 7.8.

Recall from Section 2.2 that if E is a complete category and if C � E is a small full
subcategory closed under finite limits, then the functor U W Pro.C/! E that sends
a pro-object to its limit in E has a left adjoint y. � /Pro, the pro-C completion functor.
Dually, if E is cocomplete and C is closed under finite colimits, then the canonical
functor U W Ind.C/! E has a right adjoint y. � /Ind. In the situation where E is a simplicial
model category and C is a (co)fibration test category, these adjunctions are almost by
definition Quillen pairs. Note that in the case of pro-categories, this is the Quillen pair
mentioned in item (iii) of Theorem 1.1.

Proposition 7.13 Let E be a simplicial model category in which every object is fibrant
and C � E a full subcategory closed under finite colimits and finite tensors with the
inherited structure of a cofibration test category (in the sense of Example 3.6). Then

U W Ind.C/� E W y. � /Ind

is a simplicial Quillen adjunction. Dually , if every object in E is cofibrant and C� E
is a full subcategory closed under finite limits and finite cotensors , given the inherited
structure of a fibration test category (as in Example 5.3), then

y. � /Pro W E� Pro.C/ WU

is a simplicial Quillen adjunction.

Proof The first adjunction arises by applying Lemma 7.1 to the inclusion C ,! E .
We need to show that the left adjoint U preserves the generating (trivial) cofibrations.
Note that U agrees with the inclusion C ,! E when restricted to C� Ind.C/. Since
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the generating (trivial) cofibrations are defined as the (trivial) cofibrations in C � E
between cofibrant objects, they are preserved by U .

The case for pro-C completion follows dually.

Example 7.14 The proposition above shows that the profinite completion functors for
sSetKQ and Grpd are left Quillen. These Quillen adjunctions fit into a commutative
diagram

sSetKQ Grpd

scSetQ 1Grpd

…1

y. � /Pro

N

a

y. � /Pro

y…1

Ua

yN

a

Ua

where yN is the nerve adjunction from Example 7.7. There is a similar diagram of
Quillen adjunctions for the (profinite) Joyal model structure and the model category of
(profinite) categories.

8 Bousfield localizations

Suppose we are given a cofibration test category .C;T/ and that we wish to shrink
the full subcategory of test objects T to a smaller one T0 � T. If T0 is closed under
finite pushout-products, then .C;T0/ is a cofibration test category by Example 3.7,
hence we obtain two model structures Ind.C;T/ and Ind.C;T0/ on the category Ind.C/.
Since the (trivial) cofibrations of .C;T0/ are those of .C;T/ between objects of T0,
the sets of generating (trivial) cofibrations of Ind.C;T0/ are contained in those of
Ind.C;T/. In particular, the identity functor is right Quillen when viewed as a functor
Ind.C;T/! Ind.C;T0/. Since there are fewer weak equivalences in Ind.C;T/ than in
Ind.C;T0/, this right Quillen functor is close to being a right Bousfield localization.
Recall that a right Bousfield localization of a model category is a model structure
on the same category with the same class of fibrations, but with a larger class of
weak equivalences. The model category Ind.C;T0/ is not necessarily a right Bousfield
localization of Ind.C;T/ since it has fewer generating trivial cofibrations, and hence it
might have more fibrations than Ind.C;T/. However, it is a general fact about model
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categories that in such a situation, there exists a model structure on Ind.C/ with the
weak equivalences of Ind.C;T0/ and the fibrations of Ind.C;T/:

Lemma 8.1 Let E˛ and Eˇ be cofibrantly generated model structures on the same
category E and suppose that sets of generating cofibrations I˛ and Iˇ and sets of
generating trivial cofibration J˛ and Jˇ respectively , are given. If I˛� Iˇ and J˛�Jˇ,
and if E˛ has more weak equivalences than Eˇ, then there exists a cofibrantly generated
model structure on E with the weak equivalences of E˛ and the fibrations of Eˇ.

Proof It easily follows by checking the hypotheses of Theorem 11.3.1 of [17] that the
sets I˛ [Jˇ and Jˇ determine a cofibrantly generated model structure on E in which
the weak equivalences agree with those of E˛. This model structure has the desired
properties. As an example, we check item (4b) of Theorem 11.3.1 of [17], and leave
the other hypotheses to the reader. This comes down to showing that if E! F has the
right lifting property with respect to Jˇ and is a weak equivalence in E˛, then it must
have the right lifting property with respect to I˛ [Jˇ . It suffices to show that E! F

has the right lifting property with respect to I˛. Since E ! F has the right lifting
property with respect to Jˇ, it has so with respect to J˛ � Jˇ, hence it is a fibration
in E˛. Since it is also a weak equivalence in E˛, it follows that it has the right lifting
property with respect to I˛ and hence with respect to I˛ [Jˇ.

If E is a simplicial model category with a given full subcategory T � E , then RTE
denotes (if it exists) the right Bousfield localization of E in which a map E!E0 is
a weak equivalence if and only if Map.t;E/!Map.t;E0/ is a weak equivalence for
every t 2 T. We call such a map a T–colocal weak equivalence. Dually, LTE denotes
(if it exists) the left Bousfield localization of E in which E!E0 is a weak equivalence
if and only if Map.E0; t/!Map.E; t/ is a weak equivalence for every t 2 T. Such a
map is called a T–local weak equivalence.

Proposition 8.2 Let .C;T/ be a cofibration test category and let T0 � T be a full
subcategory. Then the right Bousfield localization RT0 Ind.C/ exists and is cofibrantly
generated.

Dually, if .C;T/ is a fibration test category and T0 � T a full subcategory , then the left
Bousfield localization LT0 Pro.C/ exists and is fibrantly generated.

Proof We first prove the proposition in the special case that T0 is closed under finite
pushout-products, and then deduce the general case from this. In this special case,
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.C;T0/ is a cofibration test category as in Example 3.7, so we obtain a cofibrantly gen-
erated model category on Ind.C;T0/ in which the weak equivalences are the T0–colocal
ones. We also have the model structure on Ind.C/ corresponding to the cofibration test
category .C;T/, which by construction has more generating (trivial) cofibrations than
Ind.C;T0/. By applying Lemma 8.1, we obtain the desired right Bousfield localization
RT0 Ind.C/.

Now suppose that T0 is not necessarily closed under finite pushout-products. Let T00 be
the smallest full subcategory of T that contains T0 and is closed under finite pushout-
products and isomorphisms. This category can be obtained by repeatedly enlarging
T0 by adding all objects isomorphic to an object of the form t 0 ˝ U [s0˝U s0 ˝ V

to T0, for s0� t 0 a cofibration in T0 and U � V a cofibration of finite simplicial
sets. This produces a sequence of full subcategories T0 � T0

1
� T0

2
� � � � � T such that

T00 D
S

n2N T0n. We claim that the T0–colocal weak equivalences and the T00–colocal
weak equivalences in Ind.C/ agree. By the above inductive construction of T00, it
suffices to show that for any cofibration s0� t 0 of .C;T/ with s0; t 0 2 T0 and any
cofibration U � V in sSetfin, the map

Map.t 0˝U [s0˝U s0˝V;C /!Map.t 0˝U [s0˝U s0˝V;D/

is a weak equivalence for any T0–colocal weak equivalence C !D. We leave this as
an exercise to the reader, noting that these pushouts can be taken out of the mapping
spaces to obtain homotopy pullbacks.

Example 8.3 Let LKQ be the category of lean simplicial sets with the structure of a
fibration test category as in Example 5.5. The model structure Pro.LKQ/ then coincides
with Quick’s model structure scSetQ under the equivalence of categories Pro.L/' scSetQ,
by Corollary 6.6. In particular, by Proposition 8.2, the left Bousfield localization
LTscSetQ exists for any collection of lean Kan complexes T. If one takes T to consist of
the spaces K.Fp; n/ for all n 2N, then one obtains a model structure on scSet in which
the weak equivalences are the maps that induce equivalences in Fp–cohomology and in
which the cofibrations are the monomorphisms. This is exactly Morel’s model structure
on scSet for pro-p spaces [30]. In particular, this is an alternative to the construction in
Example 5.6.

Example 8.4 Recall the Reedy model structure (with respect to Quick’s model structure
on scSet) on biscSet from Example 5.11. By Proposition 6.9, this model structure can be
obtained by applying Theorem 5.2 to a certain fibration test category L.2/R . In particular,
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Proposition 8.2 ensures that the left Bousfield localization LTbiscSet exists for any
collection T of Reedy fibrant doubly lean simplicial sets. For example, one can take T
to be the collection of all doubly lean bisimplicial sets that are complete Segal spaces in
the sense of [35]. This model structure will be called the model structure for complete
Segal profinite spaces and denoted by biscSetCSS. We will study this model structure
in detail in Section 9. In particular, we will show in Proposition 9.3 that biscSetCSS is
equivalent to the model structure for profinite quasicategories scSetJ from Example 5.7.

Proposition 8.2 was the last missing piece in the proof of Theorem 1.1 (except for item
(iv) of that theorem, which follows from Theorem A.7).

Proof of Theorem 1.1 Let E be a simplicial model category in which every object is
cofibrant, and let C� E be a small full subcategory of E which is closed under finite
limits and cotensors by finite simplicial sets. Then .C;T0/, where T0 � C is the full
subcategory on the fibrant objects, inherits the structure of a fibration test category
from E in the sense of Example 5.3.

Now suppose T is any collection of fibrant objects in C. By applying Theorem 5.2 to
.C;T0/ and then applying Proposition 8.2 (with T and T0 interchanged), we obtain a
model structure on Pro.C/ together with a (fibrantly generated) left Bousfield localiza-
tion Pro.C/�LT Pro.C/. The weak equivalences of LT Pro.C/ are by definition the
T–local equivalences. By Theorem 5.2, any object in Pro.C/ (and hence in LT Pro.C/)
is cofibrant. By Proposition 7.13, we obtain a simplicial Quillen adjunction E�Pro.C/
and hence a simplicial Quillen adjunction E�LT Pro.C/. We conclude that the model
structure LT Pro.C/ satisfies items (i)–(iii) of Theorem 1.1.

9 Example: complete Segal profinite spaces vs profinite
quasicategories

Recall that in Example 5.7, we defined the profinite Joyal model structure. In this
section, we will define another candidate for the homotopy theory of profinite 1–
categories, namely a profinite version of Rezk’s model category of complete Segal
spaces. We then show that there are two Quillen equivalences between the model
category of complete Segal profinite spaces and the profinite Joyal model structure.
After establishing these Quillen equivalences, we characterize in both these model
categories the weak equivalences between the fibrant objects as the essentially surjective
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and fully faithful maps, where being fully faithful is defined in terms of the Quick
model structure. It is worth mentioning that in Remark A.11, we moreover give a
precise description of the underlying1–category of these model categories.

Let us start with a short review of the theory of complete Segal spaces, originally
defined by Rezk in [35]. Consider the category bisSetD sSet�

op
of bisimplicial sets,

or simplicial spaces, equipped with the Reedy model structure (with respect to the Kan–
Quillen model structure on sSet). We denote this model category by bisSetR. Objects
of bisSet have two simplicial parameters. We denote the “inner” one by n;m; : : : and
refer to it as the space parameter, and we denote the “outer” one (corresponding to the
�op in sSet�

op
) by s; t; r; : : : . For any pair of simplicial sets X and Y , one can define

the external product X �Y by .X �Y /t;n DXt �Yn. Note that the external product
�t ��n is the functor �op ��op ! Set represented by .Œt �; Œn�/. In particular, the
internal hom of bisSet can be defined by .Y X /t;n D Hom..�t ��n/�X;Y /. This
internal hom allows one to regard bisSet as a simplicial category in multiple ways; the
two simplicial enrichments that we will use are given by

Map1.X;Y / WD .Y
X /�;0 and Map2.X;Y / WD .Y

X /0;�:

The category bisSet is tensored and cotensored with respect to both of these enrichments.

As described in [35, Sections 10 and 12], one can localize the Reedy model structure
on bisSet by the Segal maps

Sp�t
��0��t

��0;

where Sp�t D�Œ0; 1�[ � � � [�Œt � 1; t � is the spine of the t–simplex. This gives the
model category bisSetSS for Segal spaces. Localizing one step further by the map

f0g ��0� J ��0

gives the model category bisSetCSS for complete Segal spaces. Here J is the nerve
of the groupoid with two objects and exactly one isomorphism between any ordered
pair of objects. It is part of a cosimplicial object J � in sSet, J t being the nerve of the
groupoid with t C 1 objects and exactly one isomorphism between any ordered pair of
objects.

All three of the model structures bisSetR, bisSetSS and bisSetCSS are sSetKQ–enriched
model structures with respect to the enrichment Map2 mentioned above.

The model category bisSetCSS is Quillen equivalent to sSetJ. In fact, there are Quillen
pairs in both directions, whose right Quillen functors are the evaluation at the inner
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coordinate nD 0,
ev0 W bisSet! sSetI .ev0 X /t DXt;0;

and the singular complex functor with respect to J �,

SingJ W sSet! bisSetI SingJ.X /t;n DMap.J n;X /t D Hom.�t
�J n;X /:

These Quillen equivalences are described in detail in [22]. One can prove, using the
Quillen equivalence ev0 together with the fact that bisSetCSS is a cartesian closed
model category, that bisSetCSS is an sSetJ–enriched model category with respect to
the simplicial enrichment Map1 mentioned above. Both of the above right Quillen
functors are simplicial functors that preserve cotensors with respect to this simplicial
enrichment. This is explained in detail in the proof of Proposition E.2.2 of [37].

Now let L.2/ be the category of doubly lean bisimplicial sets, ie those bisimplicial
sets X for which Xt;n is finite for each t and n, and such that X Š coskt;n.X / for some
t and n. Here coskt;n W bisSet! bisSet is the functor that restricts X 2 bisSet to a
functor �op

�t ��
op
�n! Set and then right Kan extends along �op

�t ��
op
�n ,!�op��op.

This agrees with the notion of doubly lean as defined at the end of Section 2.2, and it
follows from (the dual of) Theorem 2.3 that the inclusion L.2/ ,! biscSet extends to an
equivalence Pro.L.2//' biscSet.

Each of the three model structures bisSetR, bisSetSS and bisSetCSS gives rise to the
structure of a fibration test category on L.2/ by the general scheme of Example 5.3.
We will mainly be interested in the Reedy and the complete Segal model structures, so
denote the corresponding fibration test categories by L.2/R and L.2/CSS, respectively.

Definition 9.1 The model structures on biscSet obtained by applying Theorem 5.2 to
the fibration test categories L.2/R and L.2/CSS will be called the Reedy model structure for
profinite spaces and model structure for complete Segal profinite spaces, and denoted
by biscSetR and biscSetCSS, respectively. A fibrant object in biscSetCSS will be called a
complete Segal profinite space.

Since we can view bisSetCSS as a simplicial model category in two ways, the full subcat-
egory L.2/CSS inherits two different structures of a fibration test category, namely one with
respect to the enrichment Map1 and one with respect to Map2. The (trivial) fibrations
of both fibration test category structures agree, so they will induce the same model
structures on Pro.L.2//Š biscSet. This shows that we can view biscSetCSS as an sSetJ–
enriched model category through the enrichment Map1, and as an sSetKQ–enriched
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model category through Map2.1 In what follows, we will consider the simplicial
enrichment Map1, since this one is compatible with the right Quillen functors ev0 and
SingJ discussed above.

By Proposition 7.13, the profinite completion functor bisSet! biscSet is a left Quillen
functor, whose right adjoint is given by the functor U W biscSet! bisSet that sends a
bisimplicial profinite set to its underlying bisimplicial set. Levelwise, this is the functor
that sends a profinite set to its underlying set.

Since L.2/CSS has fewer test objects than L.2/R , we see that biscSetCSS has more weak
equivalences than biscSetR. By Proposition 6.8, the cofibrations are the monomorphisms
in both model structures, hence biscSetCSS is a left Bousfield localization of biscSetR.
In particular, the construction of the model structure biscSetCSS given in Example 8.4
agrees with the one given here.

The right Quillen functors ev0 and SingJ mentioned above restrict to morphisms of
fibration test categories between LJ and L.2/CSS, where LJ is the category of lean simplicial
sets (with the fibration test category structure from Example 5.7). This amounts to
showing that ev0 maps doubly lean bisimplicial sets to lean simplicial sets, and that
SingJ maps lean simplicial sets to doubly lean bisimplicial sets. In the case of ev0, this
follows directly from the definition, while the case of SingJ requires some work.

Lemma 9.2 The functor SingJ W sSet! bisSet takes lean simplicial sets to doubly
lean bisimplicial sets.

Proof Let X be a lean simplicial set and suppose that X is n–coskeletal. It suffices to
show that SingJ.X /�;m and SingJ.X /t;� are both n–coskeletal and degreewise finite
simplicial sets for any t;m 2 N. Since J m is a degreewise finite simplicial set for
every m, we see that SingJ.X /�;m DMap.J m;X / is an n–coskeletal degreewise finite
simplicial set for every m. This automatically shows that SingJ.X /t;� is a degreewise
finite simplicial set as well. It therefore remains to show that, for every n–coskeletal
simplicial set X and every t , the simplicial set SingJ.X /t;� Š Hom.J � ��t ;X / Š

Hom.J �;X�t

/ is n–coskeletal. Since any cotensor X Y of an n–coskeletal simplicial
set X is again n–coskeletal, it suffices to prove the case t D 0. To this end, let @J kC1

denote the simplicial subset

@J kC1
D

[
x2.�kC1/k

J k
� J kC1;

1In fact, one can show that biscSetCSS is a bisSetCSS–enriched model category, strengthening this statement.
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or equivalently, the left Kan extension of J � W�! sSet along the Yoneda embedding
�! sSet, evaluated at @�kC1 2 sSet. The inclusion @J kC1 ,! J kC1 restricts to
an isomorphism skn @J

kC1 ! skn J kC1 for any k � n. Combining this with the
canonical isomorphism Hom.@�kC1;Hom.J �;X // Š Hom.@J kC1;X /, it follows
that Hom.J �;X / is n–coskeletal.

Denote the profinite Joyal model structure by scSetJ. We can apply Proposition 7.12
to ev0 W L

.2/
CSS! LJ and SingJ W LJ! L.2/CSS to show that the induced functors between

scSetJ and biscSetCSS are right Quillen equivalences. We will denote these functors by
ev0 and SingJ as well.

Proposition 9.3 The functors ev0 W biscSetCSS! scSetJ and SingJ W scSetJ! biscSetCSS

are right Quillen equivalences.

Proof Since there is a natural isomorphism ev0 SingJ.X /ŠX , it suffices to show that
ev0 W biscSetCSS! scSetJ is a right Quillen equivalence. The same then follows for SingJ

by the two-out-of-three property. Since ev0 W bisSetCSS! sSetJ is a (simplicial) right
Quillen equivalence, its restriction ev0 W L

.2/
CSS! LJ is a morphism of fibration test cate-

gories that is homotopically fully faithful when restricted to test objects. Furthermore, it
is homotopically essentially surjective since X Š ev0.SingJ X / for any lean quasicate-
gory X . By Proposition 7.12, we conclude that induced functor ev0 W biscSetCSS! scSetJ

(and hence SingJ W scSetJ! biscSetCSS) is a right Quillen equivalence.

One can prove “profinite versions” of many of the properties that complete Segal spaces
enjoy. The general strategy for proving such a profinite version of a given property
is to reduce it to its classical counterpart. We will illustrate this by showing that the
weak equivalences between complete Segal profinite spaces coincide with (a profinite
version of) the Dwyer–Kan equivalences. This is done by exploiting two facts: that
biscSetCSS is a left Bousfield localization of the Reedy model structure biscSetR (with
respect to scSetQ), and that the weak equivalences between fibrant objects in scSetQ can
be detected underlying in sSetKQ. To state this explicitly, denote the functor that sends a
simplicial profinite set to its underlying simplicial set by U W scSet! sSet. Note that this
functor is right Quillen as a functor from Quick’s model structure to the Kan–Quillen
model structure, and that its left adjoint is the profinite completion functor.

Proposition 9.4 A map X!Y between fibrant objects in scSetQ is a weak equivalence
if and only if UX ! U Y is a weak equivalence in sSetKQ.
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Proof This follows from Theorem E.3.1.6 of [25], which states that the functor between
the underlying1–categories of scSetQ and sSetKQ induced by U (which is called “Mat”
by Lurie) is conservative. Another way to deduce this proposition is to show that the
weak equivalences between fibrant objects in scSetQ are the ��–isomorphisms (as in
the proof of Proposition 3.9 of [10]) and that the underlying group/set U�n.X;x/ of
the profinite group/set �n.X;x/ agrees with �n.UX;x/ for any fibrant X 2 scSetQ and
any x 2X0.

Since biscSetCSS is a left Bousfield localization of the model category biscSetR, which
by Proposition 6.9 coincides with the Reedy model structure on biscSet with respect to
scSetQ, we see that a map between complete Segal profinite spaces is a weak equivalence
if and only if it is levelwise a weak equivalence in scSetQ. In particular, we obtain the
following result:

Proposition 9.5 A map X ! Y between complete Segal profinite spaces is a weak
equivalence if and only if for every t , the map Xt;�! Yt;� is a weak equivalence in
scSetQ. In particular , X ! Y is a weak equivalence between complete Segal profinite
spaces if and only if UX ! U Y is a weak equivalence between complete Segal spaces.

For a complete Segal profinite space X and two objects x;y 2 X0;0, ie two maps
�0��0!X , we can mimic the classical definition of the mapping space by defining
a profinite space mapX .x;y/ as the pullback

mapX .x;y/ X1;�

�0 X0;� �X0;�

y
.d1;d0/

.x;y/

Since X is Reedy fibrant, the map .d1; d0/ WX1;�!X0;��X0;� is a fibration in scSetQ,
and hence mapX .x;y/ is a fibrant object in scSetQ. Since U W biscSetCSS! bisSetCSS

preserves limits, we see that U.mapX .x;y//ŠmapUX .x;y/ for any complete Segal
profinite space X . If f WX!Y is a map between complete Segal profinite spaces, then
for any x;y 2X0;0, we obtain a map mapX .x;y/!mapY .f x; fy/ from the universal
property of the pullback. We call a map between complete Segal profinite spaces
f WX!Y fully faithful if, for any x;y 2X0;0, the map mapX .x;y/!mapY .f x; fy/

is a weak equivalence in scSetQ. It follows from Proposition 9.4 that X ! Y is fully
faithful if and only if UX ! U Y is a fully faithful map of complete Segal spaces.
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One can also mimic the classical definitions of a homotopy and of homotopy equiv-
alences in a complete Segal space, and use this to define what it means for a map
of complete Segal profinite spaces to be essentially surjective. An equivalent, but
easier, way is to say that X ! Y is essentially surjective if and only if the induced
map �0X0;�! �0Y0;� is an epimorphism of profinite sets. Since U�0Z Š �0UZ for
any fibrant object Z in scSetQ, and since epimorphisms of profinite sets are detected
underlying, we see that a map of complete Segal profinite spaces X ! Y is essentially
surjective if and only if UX ! U Y is.

Definition 9.6 A map between complete Segal profinite spaces is called a Dwyer–Kan
equivalence or DK–equivalence if it is essentially surjective and fully faithful.

Theorem 9.7 A map between complete Segal profinite spaces is a Dwyer–Kan equiva-
lence if and only if it is a weak equivalence in biscSetCSS.

Proof As explained above Definition 9.6, f WX ! Y is essentially surjective and fully
faithful if and only if UX ! U Y is so. By Proposition 7.6 of [35], this is the case if
and only if UX ! U Y is a weak equivalence in bisSetCSS. By Proposition 9.5, this is
equivalent to X ! Y being a weak equivalence in biscSetCSS.

One can lift Proposition 9.5 and Theorem 9.7 to analogous results about weak equiva-
lences between profinite quasicategories using the Quillen equivalences ev0 and SingJ

between scSetJ and biscSetCSS.

Proposition 9.8 A map X ! Y between profinite quasicategories is a weak equiva-
lence in scSetJ if and only if UX ! U Y is a weak equivalence in sSetJ.

Proof Let f W X ! Y be a map between profinite quasicategories. If f is a weak
equivalence in scSetJ, then Uf W UX ! U Y is a weak equivalence of quasicategories
since U W scSetJ! sSetJ is right Quillen. Conversely, suppose Uf is a weak equivalence
of quasicategories. Then SingJ Uf W SingJ.UX /! SingJ.U Y / is a weak equivalence
between complete Segal spaces. Note that SingJ ıU ' U ıSingJ , since both functors
preserve cofiltered limits and they agree on lean simplicial sets. By Proposition 9.5,
SingJ X ! SingJ Y is a weak equivalence between complete Segal profinite spaces.
Since ev0 is right Quillen, the original map ev0 SingJ X ŠX ! Y Š ev0 SingJ Y is a
weak equivalence in scSetJ.
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For a profinite quasicategory X and two 0–simplices x;y 2 X0 (ie maps �0! X ),
we define mapX .x;y/ as the pullback

mapX .x;y/ X�1

�0 X �X

y
.ev0 ; ev1/

.x;y/

Since the right-hand vertical map is obtained by cotensoring with the cofibration
@�1 ,!�1, it must be a fibration in scSetJ. In particular, mapX .x;y/ is fibrant in scSetJ.
One can show that, analogously to the classical case, mapX .x;y/ is actually fibrant in
scSetQ. However, the proof of this is technical and not necessary for what follows, so it
is not included.

A map f W X ! Y of profinite quasicategories induces a morphism mapX .x;y/!

mapY .f x; fy/ for any x;y 2 X0 by the universal property of the pullback. We say
that f is fully faithful if mapX .x;y/!mapY .f x; fy/ is a weak equivalence in scSetJ

for any x;y 2X0.2 For a 1–simplex ˛ 2X1 with d1˛Dx and d0˛Dy, ie a 0–simplex
in mapX .x;y/, we say that ˛ is a homotopy equivalence if �1 ˛

�! X extends to a
map J 1! X . Here J 1 is viewed as a simplicial profinite set through the inclusion
sFinSet ,! scSet. We say that a map of profinite quasicategories f WX!Y is essentially
surjective if for any y 2 Y0, there exists an x 2X0 and an ˛ 2mapY .f x;y/ such that
˛ is a homotopy equivalence.

Since U W scSet! sSet preserves pullbacks, we see that U mapX .x;y/ŠmapUX .x;y/.
By Proposition 9.8, a map X ! Y of profinite quasicategories is fully faithful if and
only if UX !U Y is. Since Hom.J 1;X /ŠHom.J 1;UX / for any X 2 scSet, we also
see that X ! Y is essentially surjective if and only if UX ! U Y is.

Definition 9.9 A map between profinite quasicategories is called a Dwyer–Kan equiv-
alence or DK–equivalence if it is essentially surjective and fully faithful.

Theorem 9.10 A map between profinite quasicategories is a Dwyer–Kan equivalence
if and only if it is a weak equivalence in scSetJ.

Proof A map X ! Y of profinite quasicategories is a DK–equivalence if and only
if UX ! U Y is. Since the weak equivalences between fibrant objects in sSetJ are

2Since the simplicial profinite sets mapX .x;y/ and mapY .f x; fy/ are actually fibrant in scSetQ, this is
equivalent to asking that mapX .x;y/!mapY .f x; fy/ is a weak equivalence in scSetQ.
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exactly the DK–equivalences, we conclude from Proposition 9.8 that a map of profinite
quasicategories X ! Y is a DK–equivalence if and only if it is a weak equivalence.

Appendix Comparison to the 1–categorical approach

The goal of this appendix is to compare the model structures on Ind.C/ and Pro.C/
constructed in this paper to the 1–categorical approach to ind- and pro-categories.
Since the cases of ind- and pro-categories are dual, we only treat the case of ind-
categories and dualize the main result at the end of this appendix.

Given a cofibration test category C, the underlying1–category of the completed model
structure on Ind.C/ will be denoted by Ind.C/1. Recall that this1–category is defined
as the homotopy-coherent nerve of the full simplicial subcategory spanned by the fibrant-
cofibrant objects. We will show that if .C;T/ is a cofibration test category with a suitable
assumption on T, then the 1–category Ind.C/1 is equivalent to Ind.N.T//. Here
N.T/ is the homotopy-coherent nerve of the simplicial category T, and Ind denotes
the1–categorical version of the ind-completion as defined in [24, Definition 5.3.5.1].

Warning A.1 There is a subtlety here that we should point out: if .C;T/ is a cofibration
test category with respect to the Joyal model structure on sSet, meaning that items
(ii) and (iii) of Definition 3.3 hold with respect to the trivial cofibrations and weak
equivalences of sSetJ, then the “mapping spaces” of T are quasicategories but not
necessarily Kan complexes. Recall that any quasicategory X contains a maximal Kan
complex, which we will denote by k.X /. Since this functor k preserves cartesian
products, any category enriched in quasicategories can be replaced by a category
enriched in Kan complexes by applying the functor k to the simplicial hom. If .C;T/
is a cofibration test category with respect to sSetJ, then we will abusively write N.T/
for the simplicial set obtained by first applying the functor k to all the mapping spaces
in T, and then applying the homotopy-coherent nerve. Similarly, by the underlying
infinity category Ind.C/1 of Ind.C/, we mean the quasicategory obtained by taking
the full subcategory on fibrant-cofibrant objects, applying k to all mapping spaces, and
then taking the homotopy-coherent nerve.

Since Ind.C/1 is the underlying1–category of a combinatorial model category, we
see that it is complete and cocomplete. Furthermore, since T is a full subcategory of the
fibrant-cofibrant objects in Ind.C/, we see that the inclusion T ,! Ind.C/ induces a fully
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faithful inclusion N.T/ ,! Ind.C/1. By Proposition 5.3.5.10 of [24], this inclusion
extends canonically to a filtered colimit-preserving functor F W Ind.N.T//! Ind.C/1.
In order for this functor to be an equivalence, any object in Ind.C/ needs to be equivalent
to a filtered homotopy colimit of objects in T. This means that T should be “large
enough” for this to hold. It turns out that this is the case if T is closed under pushouts
along cofibrations (in the sense of Definition 7.10).

Theorem A.2 Let .C;T/ be a cofibration test category and suppose that T is closed
under pushouts along cofibrations. Then the canonical functor

F W Ind.N.T//! Ind.C/1

is an equivalence of quasicategories.

Remark A.3 In many of the examples discussed in this paper, the category T of
test objects is closed under pushouts along cofibrations. For example, this is the case
if .C;T/ has inherited the structure of a cofibration test category from some model
category E in the sense of Example 3.6.

Remark A.4 If .C;T/ is a cofibration test category, then one can always “enlarge” the
full subcategory T together with the sets of (trivial) cofibrations to obtain a cofibration
test category .C;T0/ such that T0 is closed under pushouts along cofibrations, and for
which the completed model structures Ind.C;T/ and Ind.C;T0/ coincide. To see this,
note that we can define T0 to consist of all objects in C that are cofibrant in Ind.C;T/,
and that we can define the (trivial) cofibrations of .C;T0/ to be the trivial cofibrations of
Ind.C;T/ between objects of T0; that is, we endow C with the structure of a cofibration
test category inherited from Ind.C;T/; see Example 3.6. It is then clear that the model
structures Ind.C;T/ and Ind.C;T0/ coincide, and that T0 is closed under pushouts along
cofibrations. In particular, we see by Theorem A.2 that the underlying1–category of
Ind.C;T/ can be described as the ind-category of the small1–category N.T0/, which
contains N.T/ as a full subcategory.

Before proving this theorem, we will prove the following rectification result.

Lemma A.5 Let .C;T/ be a cofibration test category such that T is closed under
pushouts along cofibrations , and let I be a poset with the property that I<i is finite for
every i . For any diagram X W N.I/! N.T/, there exists a strict diagram Y W I ! T
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such that N.Y / WN.I/!N.T/ is naturally equivalent to X . This diagram Y can be
constructed in such a way that for any i 2 I , the map

colim
j<i

Yj ! Yi

is a composition of two pushouts of cofibrations in T.

The following lemma is needed for the proof.

Lemma A.6 Let .C;T/ be a cofibration test category and let fYigi2I be a diagram
in T indexed by a finite poset such that for any i 2 I , the map

colim
j<i

Yj ! Yi

is a finite composition of pushouts of cofibrations of .C;T/. Then , for any k 2 I , the
map

Yk ! colim
i2I

Yi

is a finite composition of pushouts of cofibrations. In particular , if T is closed under
pushouts along cofibrations , then colimi Yi is an object of T.

Proof This follows from the dual of [7, Proposition 2.17]. For the convenience of the
reader, we spell out their argument in our setting. Throughout this proof, we call a
map in C good if it is a finite composition of pushouts of cofibrations. Note that any
pushout of a good map is again a good map. A subposet S � I is called a sieve if for
any i 2 S and any j � i in I , one has j 2 S . Write YS D colimj2S Yj for any sieve S

and Y<i for YI<i
D colimj<i Yj for any i 2 I .

We will prove inductively that for two sieves S � T , the map YS ! YT is good. This
certainly holds if jT j D 0, so suppose this holds for jT j< n and let sieves S � T with
jT j D n be given. If S D T then there is nothing to prove, so suppose that S ¨ T and
choose some maximal i 2 T nS . We then obtain a diagram

Y<i Yi

YS YT nfig YT

good

good p

where the square is a pushout. The map Y<i ! Yi is good by assumption while
YS ! YT nfig is good by the induction hypothesis, so we conclude that YS ! YT is
good. This completes the induction, and the lemma now follows by considering the
sieves S D I�k and T D I .
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Proof of Lemma A.5 To distinguish colimits in quasicategories from homotopy
colimits and ordinary colimits in simplicial categories, we will call them1–colimits.
By a homotopy colimit of a diagram Z W J ! T, we mean a cocone Zj ! W that
induces an equivalence

Map.W; t/ ��! holim
j2J

Map.Zj ; t/ for every t 2 T:

The following proof is for the case that .C;T/ is a cofibration test category with respect
to the Kan–Quillen model structure on sSet. The same proof works if .C;T/ is a
cofibration test category with respect to sSetJ; however, one has to replace Map.�;�/
with the maximal Kan complex k.Map.�;�// contained in it, and one has to replace
�1 by the simplicial set H (as defined in Lemma 2.1) in the construction of the mapping
cylinder below.

We will construct the diagram Y W I ! T and the equivalence N.Y /'X inductively.
Let i 2 I be given and suppose that Y jI<i

W I<i ! T and N.Y jI<i
/'X jN.I<i / have

been constructed and have the desired properties. We need to construct Y jI�i
W I�i!T

and an equivalence N.YI�i
/' X jI�i

extending these. Write Y<i WD colimj<i Yj . If
I<i is empty, then Y<i is the initial object of C and hence an object of T by definition.
If I<i is not empty, then it follows from the assumptions on Y jI<i

and Lemma A.6
that Y<i is an object of T. The assumptions on Y jI<i

and the fact that Ind.C/ is a
simplicial model structure ensure that, for any t 2 T, the diagram j 7!Map.Yj ; t/ is
fibrant in the injective model structure on sSet.I<i /

op
. In particular, we see that

Map.Y<i ; t/Š lim
j<i

Map.Yj ; t/' holim
j<i

Map.Yj ; t/;

so Y<i is a homotopy colimit of the diagram Y jI<i
. By Theorem 4.2.4.1 of [24],

it follows that it is also the 1–colimit of the diagram N.Y jI<i
/ W N.I<i/! N.T/.

In particular, if we define the diagram Y 0 W I�i ! T by Y 0j D Yj for all j < i and
Y 0i D Y<i , then the natural equivalence N.Y jI<i

/'X jN.I<i / extends to a natural map
N.Y 0/!X jN.I�i /. The map Y<i D Y 0i !Xi factors through the mapping cylinder

Y<i Š Y<i ˝f0g ! Y<i ˝�
1
[Y<i˝f1gXi ˝f1g

�
�!Xi

in T, where the second map is a weak equivalence. The first map can be written as a
composition of the following two pushouts of cofibrations:

¿ Y<i˝f0g Y<i˝@�
1 Y<i˝f0gtXi˝f1g

Xi˝f1g Y<i˝f0gtXi˝f1g Y<i˝�
1 Y<i˝�

1[Y<i˝f1gXi˝f1g
p p
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Define YiDY<i˝�
1[Y<i˝f1gXi . This defines a diagram Y jI�i

W I�i!T. The above
factorization of Y<i ! Xi shows that we obtain a natural equivalence N.Y jI�i

/ '

X jN.I�i / extending the equivalence N.Y jI<i
/'X jN.I<i /.

We are now ready to prove Theorem A.2.

Proof of Theorem A.2 The terms “colimit”, “homotopy colimit” and “1–colimit”
are used in the same way as in the proof of Lemma A.5. We will denote mapping
spaces in a simplicial category by “Map”, while mapping spaces in a quasicategory are
denoted by “map”; that is, with a lowercase m.

We will prove that the functor F W Ind.N.T//! Ind.C/1 is fully faithful and essentially
surjective. To see that F is fully faithful, we need to show that

mapInd.N.T//.X;Y /!mapInd.C/1.F.X /;F.Y //

is a weak equivalence for any X;Y 2 Ind.N.T//. Since F preserves filtered1–colimits,
it suffices to show this for X 2N.T/. Write Y D colimi Yi as a filtered1–colimit of
a diagram Y W I!N.T/ (which we also denote by Y ). By Proposition 5.3.1.18 of [24]
and Lemma E.1.6.4 of [25], we may assume without loss of generality that I is the
nerve of a directed poset, which we also denote by I , with the property that I<i is finite
for any i 2 I . By Lemma A.5, we may replace Y by a strict diagram Z W I ! T. Since
a diagram as described in Lemma A.5 is cofibrant in the projective model structure
on Ind.C/I , we see that the ind-object Z D fZigi2I is the homotopy colimit of the
diagram i 7! Zi . By Theorem 4.2.4.1 of [24], the object Z is an1–colimit of the
diagram Y WN.I/! Ind.C/1, hence Z is equivalent to F.Y / (note that F preserves
filtered colimits). In particular, we obtain a commutative diagram

colimi mapInd.N.T//.X;Zi/ colimi mapInd.C/1.FX;FZi/

mapInd.N.T//.X;Y / mapInd.C/1.FX;FY /

Here the left-hand vertical map is an equivalence since objects of T are compact (in the
1–categorical sense), while the right-hand vertical map is an equivalence since it is
equivalent to colimi MapInd.C/.X;Zi/!MapInd.C/.X;Z/, which is an isomorphism
since X is compact in Ind.C/. The top horizontal map is an equivalence since F is by
construction fully faithful when restricted to N.T/ � Ind.N.T//. We conclude that
the bottom map is an equivalence and hence that F is fully faithful.
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To see that F is essentially surjective, let X be a fibrant-cofibrant object in Ind.C/. By
Lemma 7.11, X is a directed colimit colimi ti of objects in T. By Lemma 3.11, X

is also a homotopy colimit of this diagram, hence X is an1–colimit of the diagram
ftigi in the underlying1–category Ind.C/1. View ftigi as a diagram in N.T/ and
let Y denote the1–colimit of this diagram in Ind.N.T//. Since F preserves filtered
1–colimits, it follows that F.Y /'X and hence that F is essentially surjective.

We automatically obtain the following dual result. Note that item (iv) of Theorem 1.1
stated in the introduction is a direct consequence of this theorem.

Theorem A.7 Let .C;T/ be a fibration test category and suppose that T is closed
under pullbacks along fibrations (see Definition 7.10). Then the canonical functor

Pro.N.T//! Pro.C/1

is an equivalence of quasicategories.

The main theorems of this appendix can be used to determine the underlying 1–
categories of many of the examples that were mentioned throughout this paper. More-
over, it shows that the homotopy theory of Pro.C/ is often fully determined by the
full simplicial subcategory T of C. By way of illustration, we will single out one
specific example. Namely, we will relate the “profinite” Joyal–Kan model structure
(see Example 5.8) to the profinite stratified spaces defined in [8, Section 2.5]. Note that
one can use similar arguments to determine the underlying1–categories of Quick’s
and Morel’s model structures on scSet (cf [4, Section 7]) and of the profinite Joyal
model structure (see Remark A.11).

Example A.8 Let P be a finite poset and let L=P be the fibration test category defined
in Example 5.8. The full subcategory of test objects T in this fibration test category
consists of the fibrant objects of the Joyal–Kan model structure on sSet=P whose total
space is a lean simplicial set. We will call these lean P–stratified Kan complexes.
They can be described explicitly as those inner fibrations f W X � P for which X

is lean and the fiber above any point is a Kan complex. We prove in Lemma A.9
below that the homotopy-coherent nerve N.T/ of the category of lean P–stratified
Kan complexes is equivalent to Str�;P , the1–category of �–finite P–stratified spaces
defined in Definition 2.4.3 of [8]. By Theorem A.7, it now follows that the underlying
1–category of the profinite Joyal–Kan model structure on scSet=P is equivalent to
Pro.Str�;P /, which is equivalent to the1–category of profinite P–stratified spaces
defined in [8, Section 2.5].
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We conclude this appendix by proving the lemma used in the above example.

Lemma A.9 Let P be (the nerve of ) a finite poset and let T be the full simpli-
cial subcategory of sSet=P spanned by the lean P–stratified Kan complexes. Then
the homotopy-coherent nerve N.T/ is equivalent to the 1–category of �–finite P–
stratified spaces as defined in [8, Definition 2.4.3].

Proof By slightly rephrasing the definition of “�–finite” given in [8], this comes down
to proving that if X � P is a lean P–stratified Kan complex, then

(i) for any p 2 P , the set �0.f
�1.p// is finite,

(ii) there exists an n 2 N such that for all x;y 2 X , the homotopy groups of
mapX .x;y/ vanish above degree n, and

(iii) for all x;y 2X , the Kan complex mapX .x;y/ has finite homotopy groups,

and conversely that any P–stratified Kan complex X � P satisfying these properties
is equivalent to a lean P–stratified Kan complex. If X is lean, then items (i) and (iii)
follow since X is degreewise finite, while (ii) follows since X is coskeletal. For the
converse, let a P–stratified Kan complex X � P satisfy these items. If we replace
X � P by a minimal inner fibration zX ! P (cf [24, Section 2.3.3]), then it is still
a P–stratified Kan complex satisfying items (i)–(iii), so it suffices to show that zX is
lean. Since pullbacks of minimal fibrations are again minimal, it follows from (i) that
f �1.p/� zX has finitely many 0–simplices for any p 2P , and hence that zX has finitely
many 0–simplices. Since P is (the nerve of) a poset, two maps �n! zX are homotopic
relative to the boundary if and only if they are so over P . This implies that zX is
itself a minimal quasicategory, and hence degreewise finite by (iii) and Lemma A.10
below. It is proved in Proposition 2.3.4.18 of [24] that if zX is a minimal quasicategory
satisfying (ii), then it is coskeletal, so we conclude that zX is lean.

Lemma A.10 Let X be a minimal quasicategory with finitely many 0–simplices and
with the property that for any x;y 2X0, the homotopy groups of mapX .x;y/ are finite.
Then X is degreewise finite.

Proof Since X has finitely many 0–simplices, it suffices to show that for any n� 1

and any map D W @�n!X , there exist finitely many n–simplices filling D. For nD 1

this is clear: by minimality, the number of 1–simplices from x to y in X agrees with
�0 map.x;y/, which is finite by assumption. Now assume n> 1 and let D be given.
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Write E for the restriction of D to the face opposite to the n-th vertex, and write @E for
the restriction of E to @�n�1. This restriction induces a left fibration XE=!X@E=,
where these slice categories are defined as in [21, Section 3]. Let z be the 0–simplex
of X obtained by restricting D to the top vertex, and denote the fibers of XE= and
X@E= above z by map.E; z/ and map.@E; z/, respectively. Since these are fibers of
left fibrations over X , we see that these are Kan complexes. Note that the restriction
of D to ƒn

n defines a 0–simplex in map.@E; z/. Now define Fill.D/ as the pullback

Fill.D/ map.E; z/

fDjƒn
n
g map.@E; z/

y

It is clear that the 0–simplices of Fill.D/ correspond to n–simplices in X that fill D.
A 1–simplex in Fill.D/ between two such n–simplices f;g in X is exactly an .nC1/–
simplex h W �nC1 ! X such that dnh D f , dnC1h D g and dih D dismf for any
i < n. Given such an .nC1/–simplex h, the sequence .s0f; s1f; : : : ; sn�1f; h/ defines
a homotopy �n � �1 ! X between f and g relative to @�n.3 In particular, by
minimality of X , the existence of such an .nC 1/–simplex h implies that f D g,
and hence the number of elements in �0.Fill.D// equals the number of fillers of
D W @�n!X .

Since XE=!X@E= is a left fibration and map.@E; z/ is a Kan complex, the restriction
map.E; z/!map.@E; z/ is a Kan fibration and hence Fill.D/ is the homotopy fiber
of map.E; z/�map.@E; z/. In particular, if map.E; z/ and map.@E; z/ have finite
homotopy groups, then Fill.D/ does as well, and hence D has finitely many fillers. If
we let y denote the top vertex of the .n�1/–simplex E, then map.E; z/'map.y; z/,
which has finite homotopy groups by assumption. To see that map.@E; z/ has finite
homotopy groups, note that

map.@E; z/D lim
x2nd.@�n/op

map.Ejx; z/;

where nd.@�n/ denotes the poset of nondegenerate simplices of @�n�1. This follows
from the fact that the join of simplicial sets ? preserves connected colimits. We see that
for any x 2 nd.@�n/, the Kan complex map.Ejx; z/ is equivalent to map.y; z/, where
y denotes the top vertex of Ejx . In particular, it has finite homotopy groups. Note that

3The converse is also true: if there is a homotopy between f and f 0 relative to @�n, then there exists
an .nC1/–simplex h in X with the given property. A proof of this statement can be obtained by slightly
modifying the proof of Theorem I.8.2 in [23] in such a way that one only needs to fill inner horns.
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the diagram x 7!map.Ejx; z/ is injectively fibrant since the diagram fxgx2nd.@�n/ is
cofibrant in the projective model structure on sSetnd.@�n/. In particular, map.@E; z/
is a finite homotopy limit of spaces with finite homotopy groups, so it has finite
homotopy groups as well. We conclude that there are finitely many n–simplices filling
D W @�n!X .

Remark A.11 It follows as in the proofs of Lemmas A.9 and A.10 that a quasicategory
is equivalent to a lean quasicategory if and only if it has finitely many objects up to
equivalence and all its mapping spaces have finite homotopy groups that vanish above
a certain dimension; let us call such quasicategories �–finite. Applying Theorem A.7
to the fibration test category LJ of Example 5.7 shows that the underlying1–category
of the profinite Joyal model structure scSetJ (and hence also of biscSetCSS) is equivalent
to Pro.Cat1;�/, where Cat1;� denotes the1–category of �–finite1–categories.
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